Please use this identifier to cite or link to this item: http://www.dspace.espol.edu.ec/handle/123456789/6143
Title: Detection of individual specimens in populations using contour energies
Authors: Ochoa, Daniel
Gautama, Sidharta
Vintimilla, Boris
Keywords: RECOGNITION
FEATURE EXTRACTION
STATISTICAL SHAPE ANALYSIS
Issue Date: 27-Jul-2009
Series/Report no.: Springer LNCS;4678
Abstract: In this paper we study how shape information encoded in contour energy components values can be used for detection of microscopic organisms in population images. We proposed features based on shape and geometrical statistical data obtained from samples of optimized contour lines integrated in the framework of Bayesian inference for recognition of individual specimens. Compared with common geometric features the results show that patterns present in the image allow better detection of a considerable amount of individuals even in cluttered regions when sufficient shape information is retained. Therefore providing an alternative to building a specific shape model or imposing specific constrains on the interaction of overlapping objects.
URI: http://www.dspace.espol.edu.ec/handle/123456789/6143
ISBN: 978-3-540-74606-5
Appears in Collections:Publicaciones - FIEC

Files in This Item:
File Description SizeFormat 
ACIVS2007_LNCS.pdfArticulo en formato pdf1.23 MBAdobe PDFView/Open
ACIVS2007_LNCS.docArticulo en formato doc (office 2003)17.35 MBMicrosoft WordView/Open
ACIVS2007_LNCS.docxArticulo en word (office 2007)1.33 MBMicrosoft Word XMLView/Open
ACIVS2007_LNCS.ps2.73 MBPostscriptView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.