

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Instituto de Ciencias Matemáticas TERCERA EVALUACIÓN DE CÁLCULO DE VARIAS VARIABLES

Guayaquil, 15 de septiembre de 2010

No	ombre:	Paralelo	
1.	(10 puntos) Califique como verdaderas o	ntos) Califique como verdaderas o falsas las siguientes proposiciones. Justifique su respuesta	
	a) Sean L y M dos rectas en el espacio. S	Si L y M no son paralelas, entonces son secantes.	
	b) $\rho = 4sec(\phi)$ representa un paraboloide	hiperbólico.	
	c) Si f es un campo escalar con extremo	o relativo en $\mathbf{x_0}$, f es diferenciable en $\mathbf{x_0}$.	

d) La rapidez de la trayectoria $C: \mathbf{r}(t) = (e^t cos(t), e^t sen(t)); t \ge 0$, es $\sqrt{2}$ en el instante t=0.

e) Si $\mathbf{F}(x, y, z)$: $\mathbb{R}^3 \mapsto \mathbb{R}^3$, rot (div \mathbf{F})= $\mathbf{0}$.

2. (15 puntos) Determine de ser posible la ecuación del plano perpendicular a 2x+y-3z+4=0 y que contiene a la recta L: $\mathbf{r}(t)=(-1+3t, 1+2t, 2+4t)$; $t\in\mathbb{R}$.

3. (15 puntos) Determine si la función
$$f(x,y) = \begin{cases} \frac{\cos(x^2 + y^2) - 1}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 es:

- a) Continua en (0,0).
- b) Diferenciable en (0,0).

4. (15 puntos) Empleando el método de Lagrange, determine un valor extremo de la función $f(r,z)=2\pi r^2 z$; r,z>0, sujeta a la condición $r^2+z^2=1$. Justifique si este valor es máximo o mínimo.

- 5. (15 puntos) Dada $\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) dz dy dx$, tal que f es integrable en \mathbb{R}^{3} .
 - a) Grafique la región de integración especificando sus límites.
 - b) Escribir la integral en el orden dx dy dz.

6. (15 Puntos) Una partícula se mueve desde el punto (0,0) a lo largo del eje X hasta el punto (1,0); luego sigue el trayecto sobre la curva $y=1-x^2$ hasta el punto (0, 1) y finalmente llega al punto inicial a lo largo del eje Y. Determine el trabajo realizado por el campo de fuerzas $\mathbf{F}(x,y)=(x^2,x^2+xy)$ al mover la partícula a lo largo de la trayectoria descrita.

7. (15 puntos) Sea S la superficie compuesta por $x^2 + y^2 = 1$; $0 \le z \le 1$, $x^2 + y^2 + (z-1)^2 = 1$; $z \ge 1$. Sea el campo vectorial $\mathbf{F}(x,y,z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Calcular el flujo de \mathbf{F} a través de S.