

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingenierías en Ciencias de la Tierra

"Análisis Comparativo de los Modelos de Flujo de Reservorio y Efectos de Limite, de Pruebas de Presión entre Pozos Verticales y Pozos Horizontales del Oriente Ecuatoriano"

TESINA DE SEMINARIO

Previa a la obtención del Título de:

INGENIERO DE PETROLEO

Presentado por:

Oscar Patricio Bravo Ramírez

Luis Iván Carrillo Quezada

GUAYAQUIL-ECUADOR

2011

AGRADECIMIENTO

A Dios, Por haberme dado la fortaleza necesaria para superar todos los obstáculos que se me presentaron a lo largo de mi vida.

A mis Padres, Quienes permanentemente me apoyaron contribuyendo incondicionalmente a lograr todas mis metas y objetivos propuestos.

A todas y todos, Quienes de una u otra forma han colocado un granito de arena para el logro de este Trabajo de Grado, agradezco de forma sincera su valiosa colaboración.

OSCAR BRAVO

AGRADECIMIENTO

A Dios, Mi principal gratitud por haberme dado la existencia y fuerzas para superar barreras y permitirme llegar al final de mi carrera.

A mis Padres, Por su apoyo incondicional a lo largo de toda mi vida en el aspecto ético, moral y espiritual necesario para lograr mis metas y objetivos.

A todos aquellas personas que contribuyeron de alguna manera para conseguir este importante logro en mi vida.

LUIS CARRILLO

DEDICATORIA

Con mucho cariño, a mi familia y amigos, por su apoyo incondicional.

OSCAR BRAVO

DEDICATORIA

Dedico este proyecto a mi familia y amistades, las cuales me ayudaron con su apoyo incondicional a ampliar mis conocimientos y estar más cerca de mis metas profesionales.

LUIS CARRILLO

TRIBUNAL DE GRADUACIÓN

Ing. Gastón Proaño C. DECANO (E) DE LA FICT PRESIDENTE Ing. Bolívar Miranda DIRECTOR DE TESINA VICEPRESIDENTE

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Trabajo Final de Graduación, nos corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Oscar Bravo R.

jul 9

Luis Carrillo Q.

RESUMEN

En el presente trabajo se presenta un completo estudio de los fundamentos técnicos de evaluación y análisis de los regímenes de flujo y aplicaciones prácticas de la respuesta de presión; tanto en Pruebas de Pozos verticales como horizontales de petróleo, con la finalidad de estimar los parámetros petrofísicos, el estado del pozo-yacimiento; presiones; potencial del pozo y modelos de flujo del reservorio y de límites. Los principios básicos son revisados, y la aplicabilidad y limitaciones de las técnicas para el análisis de pruebas de presión se discuten críticamente y se las ha ilustrado con ejemplos reales de campo; aplicando uno de los software de presiones más usados en la industria.

En el capítulo 1, discutimos los principios básicos del flujo en medios porosos para un líquido monofásico y ligeramente compresible, y su relación con las pruebas de presión en pozos.

En el capítulo 2, analizamos los diferentes métodos que pueden ser utilizados para analizar pruebas de pozos; tanto los métodos convencionales como utilizando curvas tipo, haciendo énfasis principalmente en la curva de la derivada.

En el capítulo 3, analizamos las heterogeneidades del reservorio, las cuales se dividen en tres modelos básicos: de flujo radial, fracturas finitas e infinitas

(flujo lineal y bilineal); doble porosidad, doble permeabilidad y sistemas compuestos.

En el capítulo 4, describimos los diferentes tipos de modelos de límites que pueden ser encontrados como: infinito; presión constante en el límite y sus principales efectos en la caracterización del reservorio mediante la interpretación de pruebas de presión de pozos.

En el capítulo 5, revisaremos los métodos analíticos para el análisis e interpretación de pruebas de presión en pozos horizontales. Se hace un énfasis especial en los regímenes de flujo que se presentan en este tipo de pozos y las diferencias con pruebas de presiones en pozos verticales.

En el capítulo 6, presentamos ecuaciones prácticas utilizadas en la ingeniería de reservorios, que están diseñadas para predecir el rendimiento de la producción con respecto a la disminución de la presión en el reservorio, tanto de pozos verticales como de pozos horizontales.

En el capítulo 7, realizamos el análisis y la interpretación de cuatro pozos del Oriente ecuatoriano, con la finalidad de estimar los parámetros petrofísicos, modelos de reservorio y limite, presiones iníciales de reservorio y el índice de productividad de cada pozo. La interpretación se realizó con la ayuda del programa PANSYSTEM de EPS (Edimburg Petroleum Services).

En el capítulo 8, finalmente presentamos las conclusiones y recomendaciones del trabajo realizado, así como también se muestra dos tablas generales de resultados de cada pozo.

ÍNDICE GENERAL

RESUMEN	I
ÍNDICE GENERAL	
ABREVIATURAS	IX
SIMBOLOGÍA	X
ÍNDICE DE FIGURAS	XIVIV
ÍNDICE DE TABLAS	XVIIVII
INTRODUCCIÓN	1

CAPÍTULO 1

1. PRINCIPIOS UTILIZADOS EN LA PRUEBA DE PRESIONES (FLUJ	IO EN
MEDIOS POROSOS).	2
1.1Introducción	2
1.2Ley de Darcy	3
1.3Compresibilidad	5
1.4Ecuación de Difusividad	7
1.4.1Solución a la Ecuación de Difusividad	10
1.5Zona Compresible	11
1.6Radio de Investigación	14
1.7Regimenes de Flujo	16

Pág.

1.8Principio de Superposición	17
1.9Efecto de Almacenamiento de Pozo	21
1.10Factor de Piel	28
CAPÍTULO 2	
2. MÉTODOS PARA ANALIZAR PRUEBAS DE PRESION EN POZOS	27
	37
	37
2.2 Regiones de Tiempo en Gráficos de Prueba de Presiones en Pozos Verticales	s 41
2.3 Métodos de Interpretación Convencionales	43
2.3.1 Drawdown Test	43
2.3.1.1 Interpretación	44
2.3.2 Buildup Metodo de Horner	46
2.3.2.1 Interpretación	48
2.3.2.2 La Presión Extrapolada	49
2.3.3 Buildup: Metodo Mdh	50
2.3.3.1 Interpretación	51
2.3.4 Prueba Despues de Diferentes Tasas de Flujo	53
2.3.4.1 Interpretación	54
2.3.4.2 Presión Extrapolada	56
2.3.4.3 Simplificacion del Historial de las Tasas de Flujo	56
2.3.5 Radio de Investigacion de un Buildup	57
2.4 Metodos de Curvas Tipo	58
2.5 La Derivada	59

2.5.1 Representación de la Derivada	59
2.5.2 Interpretación Directa por Medio de la Derivada	60
2.5.3 Conclusión6	62
CAPÍTULO 3	
3. MODELOS DE RESERVORIO	63
3.1 Doble Porosidad	63
3.1.1 Porosidad dual PSS (flujo interporoso en estado pseudocontinuo)6	66
3.1.2 Porosidad Dual (flujo interporoso en estado transiente)6	69
3.2 Doble permeabilidad:	73
3.3 Modelo Radial Compuesto	76
3.4 Modelo Compuesto Lineal	79

4.	MODELOS DE LIMITES Y SUS EFECTOS	82
	4.1 Introducción	82
	4.2 Limites Lineales	84
	4.2.1 Fallas sellantes	84
	4.2.2 Presión Constante en el Límite	84
	4.2.3 Respuesta de la Presión	85
	4.2.3.1 Respuesta en el gráfico de la derivada	85
	4.2.3.2 Respuesta en el gráfico semilog	86
	4.3 Limites Circulares	87
	4.3.1 Circulo Cerrado	87
	4.3.2 Circulo con Presión Constante	89

4.4 Intersección de Fallas	90
4.5 Fallas Paralelas (Canal)	92
4.6 Rectangulo con Limites Mixtos	93
CAPÍTULO 5	
5. MÉTODOS PARA ANALIZAR PRUEBA DE PRESIONES EN POZ HORIZONTALES.	OS 95
5.1 Diferencias con las Pruebas de Pozos Verticales	95
5.2 Regimenes de Flujo Posibles	
5.3 Modelo Matematico	
5.3.1 Solución Analítica para el Drawdown	101
5.3.2 Aproximaciones de tiempo para periodos de flujo	104
5.3.3 Solución analítica para Buildup	105
5.3.3.1 Flujo radial de tiempo temprano (Flujo radial vertical)	106
5.3.3.2 Flujo Lineal de Tiempo Intermedio	107
5.3.3.3Flujo radial de tiempo intermedio tardío (Flujo radial horizontal)	108
5.3.3.4 Flujo Linear de Tiempo Tardío (Flujo Linear Estado Pseudocontinuo)	109
5.3.4 Factores de Piel	109
5.3.4.1 Factores de Piel para Drawdown	109
5.3.4.2 Factores de piel para Buildup	111

6. INDICE DE PRODUCTIVIDAD

6.1Definición	. 113
6.1.1Índice de Productividad Real y Teórico	. 114
6.2Productividad en Pozos Horizontales	. 115
6.2.1Para Reservorios Homogéneos e Isotrópicos	. 115
6.2.1.1Problema	. 117
6.2.2Para Reservorios homogéneos y Anisotrópicos	. 118
6.2.2.1Problema	. 119

7.DESARROLLO DE PROBLEMAS DE CAMPO 121
7.1Introducción 121
7.2Análisis de la Prueba de Restauración de Presión del Pozo Vertical ESPOL-01
7.2.1Características de la Prueba de Presión del Pozo ESPOL-01 122
7.2.2Datos Básicos para la Evaluación124
7.2.3Interpretación 126
7.2.4Resultados de la Interpretación130
7.3Análisis de la Prueba de Restauración de Presión del Pozo Horizontal ESPOL-01H
7.3.1Características de la Prueba de Presión del Pozo ESPOL-01 132
7.3.2Datos Básicos para la Evaluación135
7.3.3Interpretación137
7.3.4Resultados de la Interpretación141

7.4Análisis de la Prueba de Restauración de Presión del Pozo Vertical
ESPOL-02
7.4.1Características de la Prueba de Presión del Pozo ESPOL-02 144
7.4.2Datos Básicos para la Evaluación146
7.4.3Interpretación148
7.4.4Resultados de la Interpretación152
7.5 Análisis de la Prueba de Restauración de Presión del Pozo Horizontal
ESPOL-02H
7.5.1Características de la Prueba de Presión del Pozo ESPOL-01 154
7.5.2Datos Básicos para la Evaluación157
7.5.3Interpretación159
7.5.4Resultados de la Interpretación163

8.CONCLUSIONES Y RECOMENDACIONES	. 165
8.1Conclusiones	. 165
8.2Recomendaciones	. 167

ANEXOS

BIBLIOGRAFÍA

ABREVIATURAS

- **IARF** = Infinite acting radial flow (Flujo radial infinito).
- **PSS** = Estado Pseudocontinuo.
- **Bup** = Build up (Restauración de presión).
- **BSW** = Basic sediments and water (Sedimentos básicos y agua).

IPR = Inflow performance relationship. (Relación de rendimiento de influjo del pozo).

- **IP** = Índice de productividad.
- **mp** = Mitad de las perforaciones.
- **EPS** = Edimburg Petroleum Services.
- **MD** = Measured depth. (Profundidad medida).
- **TVD** = Total vertical depth. (Profundidad total vertical).
- **PVT** = Presión, volumen y temperatura (Análisis de laboratorio).
- **MDH** = Miller Dyes and Hutchinson.
- GOR = Relación gas- petróleo.
- **EF** = Eficiencia de flujo.
- **API** = American Petroleum Institute.

SIMBOLOGÍA

- **S** = Sección transversal.
- **A** = Área del medio poroso.
- **k** = Permeabilidad de la zona virgen del reservorio.
- **k**_s = Permeabilidad de la zona dañada.
- **k**_z = Permeabilidad vertical.
- **k**_{bar} = Permeabilidad vertical promedio.
- μ = Viscosidad del fluido.
- µ₀ = Viscosidad del petróleo.
- μ_{od} = Viscosidad del petróleo libre de gas.
- **M** = Movilidad del fluido.
- **q** = Tasa de fluido.
- **p** = Presión ejercida por el fluido.
- **V** = Volumen de fluido.
- **r** = Radio.
- \mathbf{r}_{e} = Radio del reservorio.
- \mathbf{r}_{s} = Radio de la zona dañada.
- r_w = Radio del pozo.
- c = Compresibilidad.
- c_e = Compresibilidad en términos de densidad.
- **c**_o = Compresibilidad del petróleo.
- $\mathbf{c}_{\mathbf{w}}$ = Compresibilidad del agua.
- **c**_p = Compresibilidad de la formación.
- \mathbf{c}_{t} = Compresibilidad total.

- **c**_e = Compresibilidad equivalente.
- ρ = Densidad .
- **T** = Temperatura.
- V_o = Volumen de petróleo.
- V_w = Volumen de agua.
- **S**_o = Saturación del petróleo.
- **S**_w = Saturación del agua.
- V_p = Volumen poroso.
- ϕ = Porosidad.
- t = Tiempo.
- **K** = Difusividad hidráulica del medio poroso.
- **p**_i = Presión inicial.
- h = espesor de la formación.
- **B** = Factor volumétrico de formación.
- B_o = Factor volumétrico de formación del petróleo.
- **B**_w = Factor volumétrico de formación del agua.
- \mathbf{B}_{ob} = Factor volumétrico de formación del petróleo en el punto de burbuja.
- \mathbf{B}_{t} = Factor volumétrico de formación total.
- P_{D} = Presión adimensional.
- \mathbf{r}_{D} = Radio adimensional.
- \mathbf{t}_{D} = Tiempo adimensional.
- **r**_i = Radio de investigación.
- **C** = Coeficiente de almacenamiento del pozo.
- **Vwb** = Volumen del pozo.
- **Cwb** = Compresibilidad del fluido en el pozo.

- C_{D} = Coeficiente adimensional del pozo.
- **p**_{wf} = Presión de fondo fluyente.
- \mathbf{q}_{f} = Flujo de fondo.
- S = Factor de piel o daño.
- a= Factor de conversión de unidades.
- Dp_s = Caída de presión adicional debido al daño.
- **r'w** = Radio del pozo ficticio.
- m = Pendiente.

 \mathbf{p}_{1hr} = Presión a t = 1 hora.

- **p**_{ws} = Presión durante la restauración.
- **Dt** = Tiempo de cierre.
- t_p = Tiempo de producción.
- **p**^{*} = Presión extrapolada.
- t_{pe} = Tiempo de presión equivalente.
- Δp_{st} = Estabilización de la derivada.
- ω = Relación de almacenamiento.
- λ = Coeficiente de flujo interporoso.
- \mathbf{k}_{m} = Permeabilidad de la matriz.
- \mathbf{k}_{f} = Permeabilidad de la fisura.
- κ = Relación de permeabilidad-espesor.
- **D** = Relación de difusividad.
- θ = Angulo de intersección de fallas.
- Ψ = Función de Spence.

Sz = Seudo factor de piel resultante de la penetración parcial en la dirección vertical.

Sx = Seudo factor de piel resultante de la penetración parcial en la dirección x.

 $\mathbf{J} =$ Índice de productividad.

 \overline{p} = Presión promedio del área de drenaje del pozo.

C_A = Geometría del pozo – reservorio.

L = Longitud de la sección horizontal del pozo.

 \mathbf{r}_{eh} = Radio de drenaje del pozo horizontal.

 \mathbf{r}_{ev} = Radio de drenaje del pozo vertical.

Jh: Indice de productividad para pozos horizontales.

Jv: Indice de productividad para pozos verticales.

Qt = Tasa de flujo total.

Q_o = Tasa de flujo de petróleo.

 \mathbf{Q}_{w} = Tasa de flujo de agua.

Q_{max} = Tasa de flujo máximo total.

 \mathbf{p}_{b} = Presión en el punto de burbuja.

R_s = Relación gas en solución – petróleo.

R_{sb} = Relación gas en solución – petróleo en el punto de burbuja.

R_{si} = Relación gas en solución – petróleo al p_i.

Ht = Espesor total de la formación.

Hn = Espesor neto de la formación (punzados).

Yo = Gravedad específica del petróleo.

yg = Gravedad específica del gas.

API = Grados API del petróleo.

Z = Factor de compresibilidad del gas.

P_{sc} = Presión pseudocrítica.

T_{sc} = Temperatura pseudocrítica.

ÍNDICE DE FIGURAS

XIV

Pág.

Fig. 1-1 LEY DE DARCY	4
Fig. 1-2 FORMA RADIAL DE LA LEY DE DARCY	5
Fig. 1-3 PERFIL DEL FLUJO	12
Fig. 1-4 VARIACIONES DEL FLUJO ENTRE DOS TIEMPOS	12
Fig. 1-5 RADIO DE INVESTIGACION COMO FUNCION DEL TIEMPO FLUJO D-D	DE 14
Fig. 1-6 RADIO DE INVESTIGACION COMO FUNCION	15
Fig. 1-7 DEPRESION DURANTE EL DRAWDOWN	18
Fig. 1-8 SUPERPOSICION: BUILD-UP	18
Fig. 1-9 DIAGRAMA PARA DOS TASAS DE FLUJO	18
Fig. 1-10 SOLUCIÓN PARA UN BUILD-UP	19
Fig. 1-11 PRUEBA MULTI TASAS	20
Fig. 1-12 EFECTO DE ALMACENAMIENTO	21
Fig. 1-13 FLUJO EN EL FONDO, D-D	23
Fig. 1-14 FLUJO EN EL FONDO, B-U	24
Fig. 1-15 REGLA DE THUMB	27
Fig. 1-16 FACTOR DE PIEL	28
Fig. 1-17 EFECTO DEL FACTOR DE PIEL SOBRE LA PRESION	29
Fig. 1-18 RADIO EFECTIVO	32
Fig. 2-1 FORMA CARACTERISTICA DE LA CURVA DURANTE UNA PRUEBA DE FLUJO	41
Fig. 2-2 FORMA CARACTERISTICA DE LA CURVA DURANTE UN BUILDUP	41
Fig. 2-3 CURVA SEMILOG	45
Fig. 2-4 TRANSICION AL CIERRE DEL POZO	46
Fig. 2-5 GRAFICA DE HORNER	49
Fig. 2-6 GRAFICA MDH	50
Fig. 2-7 SUPERPOSICION	55

Fig. 2-8 MODELOS DE DERIVADA	60
Fig. 3-1 FLUJO EN UN SISTEMA DE FISURAS	64
Fig. 3-2 CONTRIBUCION DE LA MATRIZ	65
Fig. 3-3 ESTADO PSEUDO CONTINUO CON DOBLE POROSIDAD	66
Fig. 3-4 DOBLE PERMEABILIDAD	73
Fig. 3-5 MODELO RADIAL COMPUESTO	76
Fig. 3-5 MODELO LINEAL COMPUESTO	80
Fig. 4-1 FLUJO RADIAL INFINITO	82
Fig. 4-2 LÍMITES LINEALES	84
Fig. 4-3 RESPUESTA DEL LÍMITE LINEAL EN EL LOG-LOG	85
Fig. 4-4 RESPUESTA DEL LÍMITE LINEAL EN EL SEMI-LOG	86
Fig. 4-5 LÍMITES CIRCULARES	87
Fig. 4-6 LÍMITE CIRCULAR CERRADO	88
Fig. 4-7 LÍMITE CIRCULAR CON PRESIÓN CONSTANTE	89
Fig. 4-8 INTERSECCION DE FALLAS	90
Fig. 4-9 RESPUESTA A LA INTERSECCION DE FALLAS	91
Fig. 4-10 FALLAS PARALELAS O CANAL	92
Fig. 4-11 RESPUESTA DE FALLAS PARALELAS O CANAL	92
Fig. 4-12 RECTANGULO CON LÍMITES MESCLADOS	93
Fig. 4-13 RESPUESTA A VARIOS EFECTOS DE LÍMITES	94
Fig. 5-1 RESPUESTAS DE UN POZO HORIZONTAL	97
Fig. 5-2 MODELO DE UN POZO HORIZONTAL	99
Fig. 7-1 GRAFICO DE LA DATA DE PRESIONES VS TIEMPO DEL PO ESPOL 01)ZO 123
FIG 7-2 GRAFICO DE LA DERIVADA DE LA PRESION VS TIEMPO EQUIVALENTE DEL POZO ESPOL 01	127
FIG 7-3 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DE HORN DEL POZO ESPOL 01	ER 129
FIG 7-4 GRAFICO IPR DEL POZO ESPOL 01	131

FIG. 7-5 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZ ESPOL 01H	:O . 134
FIG. 7-6 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 01H	. 138
FIG. 7-7 GRAFICA DEL TIEMPO DE HORNER DEL POZO ESPOL 01H .	140
FIG. 7-8 GRAFICO IPR DEL POZO ESPOL 01H	. 142
FIG. 7-9 GRAFICO DE LA DATA DE PRESIONES VS TIEMPO DEL POZ ESPOL 02	<u>'</u> O .145
FIG 7-10 GRAFICO DE LA DERIVADA DE LA PRESION VS TIEMPO EQUIVALENTE DEL POZO ESPOL 02	.148
FIG 7-11 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DE HORNE DEL POZO ESPOL 02	ER .150
FIG 7-12 GRAFICO IPR DEL POZO ESPOL 02	.152
FIG 7-12 GRAFICO IPR DEL POZO ESPOL 02 FIG 7-13 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZ ESPOL 02H	.152 ZO 154
FIG 7-12 GRAFICO IPR DEL POZO ESPOL 02 FIG 7-13 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZ ESPOL 02H FIG.7-14 GRAFICA SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (BUILDUP)	.152 ZO 154 155
FIG 7-12 GRAFICO IPR DEL POZO ESPOL 02 FIG 7-13 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZ ESPOL 02H FIG.7-14 GRAFICA SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (BUILDUP) FIG. 7.15 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (DRAWDOWN)	.152 ZO 154 155) .159
 FIG 7-12 GRAFICO IPR DEL POZO ESPOL 02 FIG 7-13 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZ ESPOL 02H FIG.7-14 GRAFICA SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (BUILDUP) FIG. 7.15 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (DRAWDOWN) FIG. 7-16 GRAFICA DEL TIEMPO DE HORNER DEL POZO ESPOL 02H 	.152 ZO 154 155 .159 I 161

ÍNDICE DE TABLAS

Tabla 6-1: Tabla de resultados de índice de productividad118
Tabla 6-2: Tabla de resultados de relación de permeabilidades verticalyhorizontal en yacimientos Anisotrópicos
Tabla 7-1 : Tabla de eventos durante la prueba de producción y restauracióndel pozo vertical ESPOL 01
Tabla 7-2: Tabla de datos de la prueba de producción del pozo verticalESPOL 01
Tabla 7-3: Tabla de parámetros del estrato del pozo vertical ESPOL 01126
Tabla 7-4: Tabla de parámetros del fluido del pozo vertical ESPOL 01126 Tabla 7-5: Tabla de presiones del pozo vertical ESPOL 01126
Tabla 7-6: Tablas de resultados del pozo ESPOL 01131
Tabla 7-7: Tabla de eventos durante la prueba de producción y restauracióndel pozo horizontal ESPOL 01H133
Tabla 7-8: Tabla de datos de la prueba de producción del pozo horizontalESPOL 01H135
Tabla 7-9 : Tabla de parámetros del estrato del pozo horizontal ESPOL01H
Tabla 7-10: Tabla de parámetros del fluido del pozo horizontal ESPOL 01H.
Tabla 7-11: Tabla de presiones del pozo horizontal ESPOL 01H136
Tabla 7-12: Tablas de resultados del pozo Horizontal ESPOL-01H141

Tabla 7-13: Tabla de eventos durante la prueba de producción y restauracióndel pozo vertical ESPOL 02143
Tabla 7-14: Tabla de datos de la prueba de producción del pozo verticalESPOL 02145
Tabla 7-15: Tabla de parámetros del estrato del pozo vertical ESPOL02
Tabla 7-16: Tabla de parámetros del fluido del pozo vertical ESPOL02
Tabla 7-17: Tabla de presiones del pozo vertical ESPOL 02146
Tabla 7-18: Tablas de resultados del pozo ESPOL 02151
Tabla 7-19 Tabla de eventos durante la prueba de producción y restauracióndel pozo horizontal ESPOL 02H153
Tabla 7-20 Tabla de datos de la prueba de producción del pozo horizontalESPOL 02H.155
Tabla 7-21 Tabla de parámetros del estrato del pozo horizontal ESPOL02H156
Tabla 7-22 Tabla de parámetros del fluido del pozo horizontal ESPOL02H156
Tabla 7-23 Tabla de presiones del pozo horizontal ESPOL 02H156
Tabla 7-24 Tablas de resultados del pozo Horizontal ESPOL-02H
Tabla 8-1 Tabla General de resultados de pozos verticales
Tabla 8-2 Tabla General de resultados de pozos horizontales

INTRODUCCIÓN

El análisis de pruebas de presión de pozos, es una rama de la ingeniería de reservorios. La información obtenida de las pruebas de presión en un drawdown y en un buildup, acerca de la condiciones in-situ del reservorio son importantes para determinar la capacidad de producción del yacimiento. Con estas pruebas podemos obtener estimaciones de la presión promedio del yacimiento. El ingeniero de reservorios debe tener suficiente información acerca de las condiciones y características del pozo y yacimiento, y así, analizar de una manera adecuada el rendimiento del reservorio y predecir la producción futura bajo varios modelos de producción.

Las presiones son los datos más valorados y útiles en la ingeniería de reservorio. Directa o indirectamente estas intervienen en todas las fases de cálculos de la ingeniería del yacimiento, por lo tanto la determinación precisa de los parámetros del reservorio es muy importante. En general una prueba de presión es ejecutada para llegar a los siguientes objetivos:

- Evaluar las condiciones del pozo y caracterizar el reservorio.
- Obtener parámetros del reservorio (Permeabilidades) para poder describirlo.
- Determinar que intervalos del pozo son zonas productoras.
- Determinar el factor de piel, S, y determinar la cantidad de daño a causa de la perforación y completación que se ha producido, y así determinar si se necesitará realizar una estimulación.

1. PRINCIPIOS UTILIZADOS EN LA PRUEBA DE PRESIONES (FLUJO EN MEDIOS POROSOS).

1.1 Introducción

Los principios discutidos a continuación y en los capítulos posteriores consideran flujo monofásico de petróleo en un yacimiento.

Generalmente hablando el objetivo de la prueba de presiones en pozos es obtener información sobre el pozo y el reservorio.

Para obtener esta información, la tasa de flujo en un pozo es variada, y esta variación a a su vez perturba la presión existente en el yacimiento. Midiendo las variaciones en la presión a lo largo del tiempo, nos dará información sobre el reservorio y el pozo.

La presión puede ser medida:

- En el pozo donde la tasa de flujo ha sido cambiada :Este es el método utilizado en la mayoría de pruebas ;
- O en otro pozo: Este es el objetivo de las pruebas de interferencia.

Las variaciones en la presión son interpretados usando unas cuantas leyes de mecánica de fluídos.

1.2 Ley de Darcy

La ley de Darcy es usada para describir flujo de fluído en un medio poroso.

De acuerdo a la ley de Darcy, la tasa de flujo de un fluído que fluye a través de una muestra de roca porosa es proporcional a:

- El gradiente de presión aplicado a la muestra de roca.
- La sección transversal de la muestra, S
- La mobilidad del fluido, k/µ.

La ley de Darcy es válida dentro de un intervalo de tiempo cuando la tasa de flujo y otros parámetros son constantes.

No depende de la porosidad del medio, o de la compresibilidad tanto de los fluídos como de la roca.

• Expresión vectorial:

La expresión vectorial de la ley de Darcy es la siguiente:

$$\vec{q} = -\frac{k}{\mu}S\overline{grad}p$$

Una prueba de pozo estudia las variaciones en la presión que ocurren después de una variación en la tasa de flujo. Desde que la tasa de flujo ha variado, la ley de Darcy no puede ser aplicada macroscopicamente para describir el flujo alrededor del pozo.

La ley de Darcy puede también estar expresada como una función de la tasa de filtración de un fluido:

$$\vec{V} = \frac{q}{S}$$
$$\vec{V} = -\frac{k}{\mu} \frac{d}{dr} dr$$

Fig. 1-1 LEY DE DARCY

• Expresión para flujo radial:

La ley de Darcy en un flujo radial es expresada por:

$$q = \frac{k}{\mu} 2\pi r h \frac{\partial p}{\partial r}$$

Esta expresión puede ser integrada entre dos valores de distancia al pozo, rw y re:

$$q = \frac{2\pi kh}{\mu} \frac{p_w - p_e}{\ln \frac{r_w}{r_e}}$$

Fig. 1-2 FORMA RADIAL DE LA LEY DE DARCY

1.3 Compresibilidad

Toda la información de una prueba de pozo es obtenida debido a la roca y los fluídos son compresibles.

La compresibilidad de cualquier material es definido por el cambio relativo en el volumen del material por unidad de variación de presión a una temperatura constante:

$$c = -\frac{1}{V} (\frac{\partial V}{\partial P})_T$$

Esto también puede ser expresado en términos de densidad:

$$c_e = \frac{1}{\rho} (\frac{\partial \rho}{\partial P})_T$$

Compresibilidad total de un reservorio de petróleo:

En un reservorio de petróleo algunos componentes son compresibles:

- El petróleo;
- El agua, inclusive a una saturación irreducible;
- El volumen poroso en sí.

Cuando la descompresión ocurre, el fluído es producido:

- Por la expansión de los fluídos:

Petróleo: $\Delta V_o = -c_o S_o V_p \Delta p$

Agua: $\Delta V_w = -c_w S_w V_p \Delta p$

- Por una reducción en el volumen poroso Vp.

El volumen poroso es balanceado entre la influencia de la presión del fluído y la presión litostática.

Cuando la descompresión ocurre, la presión del fluído decrece mientras que la presión litostática permanece constante. El volumen poroso decrece, de tal modo que causa una producción general de fluído:

$$\Delta V_p = -C_p V_p \Delta p$$

En contraste, la compresibilidad del material en sí es insignificante en comparación.

La compresibilidad total de una unidad de volumen poroso se debe a la suma de todos los componentes compresibles:

$$c_t = c_o S_o + c_w S_w + c_p$$

La capacidad compresible de una unidad de volumen de un medio poroso es igual a ϕc_t .

• Compresibilidad equivalente:

El reservorio es modelado por:

- Una roca porosa incompresible con una porosidad de $ØS_o$.
- Y un fluído de compresibilidad equivalente:

$$C_e = \frac{c_o S_o + c_w S_w + c_p}{S_o}$$

• Orden de magnitud:

El orden de magnitud para compresibilidad es :

- Para petróleo: de 3 a 10*10-6 psi-1.
- Para agua: 3*10-6 psi-1.
- Para espacios porosos: de 3 a 100*10-6 psi-1.

1.4 Ecuación de Difusividad

La ecuación de diusividad gobierna las variaciones en presión en el reservorio versus tiempo. Está basado en dos leyes y una ecuación de estado:

• Ecuación de flujo de fluído:

Es asumido que la ley de Darcy gobierna el flujo de fluidos.

La ley de Darcy no es aplicable macroscópicamente a la duración total de la prueba: la tasa de flujo ha variado, el fluido no puede ser considerado imcompresible.

Sin embargo, es aplicado microscópicamente durante el intervalo de tiempo cuando diferentes parámetros y la tasa de flujo pueden ser considerados constantes.

La expresión usada es la siguiente:

$$\vec{V} = -\frac{k}{\mu} \overrightarrow{grad} p$$

En esta expresión, las fuerzas gravitacionales son ignorados. Esta es la hipótesis que es hecha en la mayoría de las interpretaciones de prueba de pozos.

• Balance de Material:

La variación en la masa del fluído contenido en la unidad de volumen de reservorio es igual a la diferencia entre la cantidad de fluído ingresado y expulsado durante el intervalo de tiempo:

$$div\rho\vec{V} + \frac{\partial(\rho\emptyset S_o)}{\partial t} = 0$$

Ecuación de estado:

La gravedad del fluído varia con la presión y la variación es mostrada por la compresibilidad equivalente del fluido fluyente:

$$c_e = \frac{1}{\rho} (\frac{\partial \rho}{\partial p})_T$$

Ecuación de difusividad:

Vamos a considerar la ecuación de balance de materiales y la expresión de tasa de filtración y densidad versus la presión usando la ley de Darcy y la ecuación de estado.

Nosotros tendremos la siguiente expresión de presión:

$$\Delta p + c_e (\overrightarrow{grad}p)^2 - \frac{\emptyset \mu c_t}{k} \frac{\partial p}{\partial t} = 0$$

Proporcionando dos asunciones:

- El fluido es bajo y constante: este es el caso para un líquido no para un gas;
- Los gradientes de presión son bajos: este es el caso en reservorios donde las tasas de flujo son pequeñas;

 $c_e(\overline{grad}p)^2$ es pequeño comparado a los otros dos términos de la ecuación. La ecuación es reducido a una ecuación de difusividad ordinaria:

$$\Delta p - \frac{1}{K} \frac{\partial p}{\partial t} = 0$$

 $K = \frac{k}{\phi \mu c_t}$ es llamado "Difusividad hidráulica del medio poroso".

Este es la relación entre la movilidad de los fluídos k/μ y la capacidad compresible del reservorio $\emptyset c_t$.

La ecuación de difusividad es escrita como sigue en un flujo radial:

$$\frac{\partial^2 y}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} - \frac{1}{K} \frac{\partial p}{\partial t} = 0$$

1.4.1 Solución a la Ecuación de Difusividad

Condiciones de límites:

La ecuación que describe las variaciones en presión en el reservorio versus el tiempo y la distancia desde el pozo es obtenido resolviendo la ecuación con tres condiciones de límites. Estas condiciones son:

- La presión al principio de la prueba;
- Los límites de reservorio;
- El pozo.

• Solución para un reservorio homogéneo infinito:

La asunción que es usualmente hecha es suponer que el reservorio es homogéneo, isotrópico, con espesor constante y limitado por límites impermeables. El pozo penetra el espesor total del reservorio. La compresibilidad del fluído y viscosidad son constantes y uniforme usando las siguientes condiciones de límites:

- Presión inicial uniforme: pi;
- Reservorio infinito;
- Tasa de flujo constante en el pozo que es considerado para tener un radio infinitesimal.

Las variaciones en presión versus el tiempo y la distancia desde el pozo está dado por la ecuación:

$$pi - p(r,t) = -\frac{qB\mu}{4\pi kh}Ei(\frac{-r^2}{4Kt})$$

Donde Ei(x) es la función integral exponencial definida por:

$$-Ei(-x) = \int_{x}^{\infty} \frac{\exp\left(-u\right)}{u} du$$

La ecuación es escrita como sigue:

$$P_D = -\frac{1}{2}Ei\left[-\frac{r_D^2}{4t_D}\right]$$

Usando los siguientes factores adimensionales:

Presión:
$$P_D = \frac{2\pi kh}{qB\mu} \Delta p$$
 (en Unidades SI)
 $P_D = \frac{kh}{141.2qB\mu} \Delta p$ (en unidades prácticas US)
Longitud: $r_D = \frac{r}{rw}$ (en SI unidades)
Tiempo: $t_D = \frac{k\Delta t}{\phi \mu c t r w^2}$ (en unidades prácticas US)
 $t_D = \frac{0.000264k\Delta t}{\phi \mu c t r w^2}$ (en unidades prácticas métricas)
 $t_D = \frac{0.00036k\Delta t}{\phi \mu c t r w^2}$

1.5 Zona Compresible

El flujo a una distancia r desde el pozo al tiempo t puede ser determinado basado en la ley de Darcy microscópica expresada en flujo radial y basado en la ecuación que describe la variación de la

presión:
$$q(r, t) = qBexp(-\frac{r^2}{4Kt})$$

donde:

q es la tasa de flujo en la cabeza del pozo

qB es la tasa de flujo de fondo
Esta figura muestra el perfil de flujo al tiempo t versus la distancia desde el pozo.

Fig. 1-3 PERFIL DEL FLUJO

En el perfil de flujo puede ser visto que entre el pozo y r1 la tasa de flujo tiene casi el mismo valor como el que tiene cerca del pozo. La ley de Darcy es aplicable macroscópicamente en estas areas.

Hay un flujo insignificante através de las zonas localizados más allá de r2. La caída de presión entre r2 y una distancia infinita es despreciable.

Veamos las variaciones en el perfil de flujo entre dos tiempos t y t'.

Fig. 1-4 VARIACIONES DEL FLUJO ENTRE DOS TIEMPOS

A través del lugar localizado entre el pozo y r1 hay un flujo cercano a qB.

Desde t a t' la caída de presión entre el pozo y t1 es pequeña.

El área localizado más allá r2' no está todavía involucrado en el flujo.

La caída de presión entre r2' y una distancia infinita permanece insignificante.

Entre t y t' la caída de presión entre una distancia infinita y el pozo es por lo tanto principalmente debido a lo que está ocurriendo entre r1 y r2'.

Esto es en esta área que la compresibilidad del reservorio, permite al flujo ir desde cero hasta qB, entra en juego. Esta área es llamada zona compresible.

La caída de presión en el pozo desde la presión inicial es igual a la caída de presión entre una distancia infinita y el pozo.

La caída de presión en el pozo refleja principalmente las propiedades del reservorio en la zona compresible.

Al principio de la prueba la caída de presión refleja las propiedades del reservorio en la vecindad del pozo. Después en la prueba alcanza zonas que están mucho más lejos.

Esto es lo que le permite a una prueba de pozo:

- Caracterizar las propiedades promedios lejos del pozo,permeabilidad por ejemplo;
- Detectar heterogeneidades de facies;
- Identificar barreras permeables.

1.6 Radio de Investigación

Las variaciones de presión en el pozo da una indicación de las propiedades de parte del reservorio involucrado en la zona compresible. Es importante localizar la zona compresible y esto es lo que está involucrado en el concepto de un radio de investigación de una prueba.

La literatura de la industria del petróleo ofrece un gran número de diferentes definiciones del radio de investigación.

Fig. 1-5 RADIO DE INVESTIGACION COMO FUNCION DEL TIEMPO DE FLUJO D-D

Fig. 1-6 RADIO DE INVESTIGACION COMO FUNCION

• Definición de Jones

El radio de investigación es el punto en el reservorio donde las variaciones de presión representa el 1% de las variaciones observadas en el pozo:

$$ri = 4\sqrt{\frac{kt}{\phi\mu c_t}}$$
 (en SI)

• Definición de Poettmann:

El radio de investigación es el punto en el reservorio donde el flujo es igual al 1% de la tasa de flujo del pozo:

$$ri = 4.29 \sqrt{\frac{kt}{\emptyset \mu c_t}}$$
 (en SI)

El radio de investigación es el punto donde las variaciones de presión son las más rápidas.

Las variaciones están dados por la ecuación siguiente:

$$pi - p(r, t) = -\frac{qB\mu}{4\pi kh}Ei\left(\frac{-r^2}{4Kt}\right)$$

Las variaciones de presión son igual a:

$$\frac{dp}{dt} = \frac{qB\mu}{4\pi kh} \frac{\exp\left(-r^2\right)}{4Kt}$$

La variación es un máximo para $\frac{d^2p}{dt^2} = 0$ y para $\frac{r^2}{4Kt} = 1$.

En otros términos :

$$ri = 2\sqrt{\frac{kt}{\phi\mu c_t}}$$
(en unidades SI)

1.7 Regimenes de Flujo

• Flujo transiente:

Hasta que la zona compresible alcanza los límites del reservorio o se encuentra bajo la influencia de otro pozo, el reservorio se comporta con si fuera infinito para propósitos de prueba.

Durante este período el regimen de flujo es llamado transiente.

Flujo estado Pseudocontinuo:

Cuando la zona compresible alcanza una serie de limites impermeables, el regimen de flujo se convierte en estadopseudocontinuo. Este es el tipo de flujo en un reservorio productor con flujos impermeables.

• Flujo estado continuo:

Cuando la zona compresible es afectada por alguna presión constante fuera de los límites, el flujo se convierte en estado continuo. Este es el tipo de flujo en un reservorio produciendo bajo condiciones de capa de gas o empuje de agua cuando la movilidad del agua es alta comparada a la del petróleo.

Una prueba de pozo es casi siempre desarrollada en un regimen de flujo transiente inclusive aun si algunos límites son alcanzados.

1.8 Principio de Superposición

La presión en el reservorio cuando muchas variaciones de tasa de flujo ocurren, puede ser descrita debido a que las ecuaciones de variación de presión son lineales versus la tasa de flujo.

Las variaciones de presión debido a varias tasas de flujo son igual a la suma de las caídas de presión debido a cada una de las diferentes tasas de flujo. Esta propiedad es llamada superposición.

Fig. 1-7 DEPRESION DURANTE EL DRAWDOWN

Fig. 1-8 SUPERPOSICION: BUILD-UP

• Dos tasas de flujo:

Fig. 1-9 DIAGRAMA PARA DOS TASAS DE FLUJO

Si $pi - p(t) = \frac{qB\mu}{2\pi kh} P_D(t)$ la caída de presión debido a la tasa de flujo q, empezando en el tiempo t=0.

El diagrama mostrado en la figura puede ser considerado como la suma de:

- Una producción a la tasa de flujo q1 desde t=0 y;
- Una producción a la tasa de flujo (q2-q1) desde t=t1.

La variación de presión debido a las dos tasas es igual a:

$$pi - p(t) = \frac{q_1 B \mu}{2\pi k h} P_D(t) + \frac{(q_2 - q_1) B \mu}{2\pi k h} P_D(t - t_1)$$

Restauración de presión (Bup pressure):

Un caso es de particular interés: cuando q2 es cero. Este es el caso para la gran mayoría de pruebas.

Fig. 1-10 SOLUCIÓN PARA UN BUILD-UP

La ecuación se convierte en:

$$pi - p(t) = \frac{qB\mu}{2\pi kh} \left[P_D \left(t_p + \Delta t \right) - P_D (\Delta t) \right]$$

Prueba con multiples tasas

Para prueba con múltiples tasas:

$$pi - p(t) = \frac{B\mu}{2\pi kh} \sum_{i=1}^{n} (q_i - q_{i-1}) P_D(t - t_{i-1})$$

Con q0 = 0 y t0 = 0.

1.9 Efecto de Almacenamiento de Pozo

Definición

Una prueba de pozo empieza con una variación repentina la la tasa de flujo del pozo. La variación ocurre en el pozo, en la cabeza del pozo usualmente o cerca de la formación en un DST o con un cierre de fondo de pozo.

El flujo de salida de la formación se somete a una variación gradual debido a la compresibilidad de la columna del fluido en el tubing entre el fondo del pozo y el punto de cierre.

Fig. 1-12 EFECTO DE ALMACENAMIENTO

La tasa de flujo en superficie cuando el pozo es abierto es asumido que va a la vez desde 0 a q. El fondo del pozo empieza a producir gradualmente.

El período cuando el flujo de fondo varía es llamado <u>Período de</u> <u>efecto de almacenamiento del pozo.</u> El Almacenamiento del pozo es definido como:

$$C = -\frac{\Delta V}{\Delta p}$$

Donde:

DV es la variación de volumen de fluido en el pozo bajo las condiciones del pozo en barriles;

Dp es la variación en presión aplicada al pozo en psi.

El almacenamiento de pozo es homogéneo con el producto de un volumen por una compresión.

Si el pozo contiene una sola fase simple de fluido (líquido o gas), entonces:

$$C = V_{wb}C_{wb}$$

Donde Vwb es el volumen del pozo y Cwb es la compresibilidad del fluido evaluado a condiciones de temperatura y presiones promedio en el pozo.

Un factor adimensional es relacionado al almacenamiento del pozo definido por:

$$C_D = \frac{C}{2\pi\varphi c_t h r_w^2}$$
$$C_D = \frac{0.89C}{\varphi c_t h r_w^2}$$

En la mayoría decasos la duración de la región del tiempo temprano es determinado por la duración de la distorsión de los datos de la prueba debido al almacenamiento del pozo. En las pruebas de flujo (drawdown), el caso específico de almacenamiento de pozo es llamado <u>Wellbore unloading</u>, que ocurre porque la producción de fluído inicial medido en la superficie proviene de los fluidos almacenados en el pozo en vez de los que provienen de la formación.

Sólo despues de un tiempo prolongado la tasa de flujo en la boca del pozo es aproximadamente igual a la tasa de superficie.

Fig. 1-13 FLUJO EN EL FONDO, D-D

Hasta entonces, la asunción de la tasa de flujo de fondo constante, en que la ecuación de flujo y técnica de graficación están basados, no está satisfecha.

El almacenamiento de pozo también afecta a la respuesta temprana de presión de buildup. Posterior al cierre en la superficie, el fluido continua fluyendo del reservorio al pozo, comprimiendo el gas y liquido alrededor del pozo y también almacenando más fluido. Esta producción continuada, que es también un caso especial de almacenamiento de pozo, es llamado <u>Afterflow.</u>

Fig. 1-14 FLUJO EN EL FONDO, B-U

Hasta que la tasa de afterflow disminuya a menos de aproximadamente el 1% de la tasa antes del cierre, la línea recta predicha por la teoría ideal para un gráfico de Horner de datos de Buildup no aparecerá.

Variaciones de presión.

Justo despues de que el pozo ha sido abierto , la presión de fondo es principalmente afectada por el efecto de almacenamiento del pozo.

$$\Delta p = \frac{qBt}{24C}$$
$$P_D = \frac{t_D}{C_D}$$

Si el almacenamiento de pozo es constante, la presión de fondo pwf varía linealmente versus el tiempo, por cuanto el almacenamiento del pozo tenga un efecto dominante.

La pendiente de esta línea recta, cuando la caída de presión de fondo fluyente pwf es graficada versus el tiempo, es usada para obtener C.

La línea recta debería ir a través del origen de los ejes de coordenada. Muchas razones deben explicar por que este no es el caso:

- Un error en la presión de cierre.
- Un error de tiempo de cierre.

Si dichos errores son verosímiles, el valor del desfase en el origen puede ser usado para corregir los datos.

La corrección debería, sin embargo, ser hecha con precaución ya que otras causas pueden explicar el desfase:

- Demasiado tiempo transcurrido entre las mediciones: el efecto de almacenamiento de poco está terminando cuando la segunda medida esta hecha;
- Almacenamiento del pozo variable debido al gas;
- Segregación de fluído en el pozo.

Flujo de fondo.

Cuando el pozo es abierto, el efecto de almacenamiento de pozo retrasa la producción de fondo de pozo.

El flujo de fondo bajo las condiciones estandar está dada por:

$$qf = q + \frac{24C}{B} \frac{dp}{dt}$$
$$qf = q(1 - C_D \frac{dp_D}{dt_D})$$

Fin del efecto de almacenamiento de pozo.

Tres criterios son propuestos en la literatura de la industria del petróleo para determinar el fin del efecto de almacenamiento de pozo:

Criterio de Ramey:

$$t_D = (60 + 3.5S)C_D$$

Aproximadamente:

$$t = \frac{(200000 + 12000S)C}{kh/\mu}$$

Donde S es el factor de piel del pozo.

Criterio de Chen y Brigham:

$$t_D = 50C_D \exp(0.14S)$$

Aproximadamente:

$$t = \frac{170000C\exp\left(0.14\,S\right)}{kh/\mu}$$

Regla de thumb:

Este criterio puede ser aplicado a la representación usada para curvas tipo. Esta representación muestra las variaciones de presión versus el tiempo en un gráfico log-log.

El período cuando el efecto de almacenamiento del pozo prevalece es representado por una línea recta con pendiente 1.

La regla de thumb localiza el fin del efecto de almacenamiento del pozo en la intersection de un punto medido de curva y la línea paralela a la línea de pendiente 1 traducido en 1.5 ciclos.

Fig. 1-15 REGLA DE THUMB

1.10 Factor de Piel

Definición

La vecindad del pozo tiene características que son diferentes de aquellos en el reservorio como un resultado de la perforación y operaciones de tratamiento de pozo.

El factor de piel refleja la diferencia en la caída de presión que existe en la vecindad del pozo entre:

- El reservorio como tal,y
- Como sería si sus características (especialmente permeabilidad) fueran uniformes hasta el pozo.

Fig. 1-16 FACTOR DE PIEL

El efecto de piel refleja la conexión entre el reservorio y el pozo. La diferencia en la caída de presión en la vecindad del pozo puede ser interpretada de muchas maneras:

- Usando un efecto de piel infinitesimal;
- Efecto de piel de un espesor finito;
- O el método de radio efectivo.

Factor de piel infinitesimal

La caída de presión adicional debido al efecto de piel es definido por:

$$\Delta p_S = \frac{\alpha q B \mu}{kh} S$$

Con:

a = 1/2π (en SI unidades)
a = 141.2 (en unidades practicas US)
a = 18.66 (en unidades práticas metricas)

En la aproximación de Hurst y Van Everdingen, la caída de presión debido a el efecto de piel es localizado en una capa de espesor infinita alrededor del pozo.

Fig. 1-17 EFECTO DEL FACTOR DE PIEL SOBRE LA PRESION

El efecto de piel S es homogéneo con una caída de presión adimensional.

Efecto de piel con espesor finito

Otra representación consiste en asumir que la caída de presión está localizada en un área con un radio rs y permeabilidad ks alrededor del pozo.

Cuando la zona compresible deja esta zona, el flujo puede ser considerado como estado seudocontinuo y está governado por la ley de Darcy.

La diferencia en caída de presión entre el reservorio real y el reservorio uniforme hacia el pozo es expresado como sigue con la ley de Darcy:

$$\Delta p_{S} = \frac{qB\mu}{2\pi k_{S}h} ln \frac{r_{S}}{r_{w}} - \frac{qB\mu}{2\pi kh} ln \frac{r_{S}}{r_{w}}$$

Expresando Δp_s con la ecuación anterior tenemos:

$$S = (\frac{k}{k_s} - 1)ln\frac{r_s}{r_w}$$

Esta ecuación muestra que el daño (ks<k) corresponde a un factor de piel positivo. Cuando la vecindad del pozo es conectado al efecto de piel puede tener valores muy grandes. Mientras más permeable el medio y más grande el daño, el factor de piel tendrá valores altos.

Los tratamientos de pozo, como acidificación por ejemplo, son desarrollados para mejorar la permeabilidad cerca del pozo y por lo tanto para reducir el factor de piel.

La ecuación muestra que una permeabilidad mejorada corresponde a un factor de piel negativo.

Vamos a imaginar que un suficiente tratamiento sea tan efectivo que k/ks es pequeño comparado a 1 en un radio rs de 2m alrededor del pozo. Considerando un pozo con un radio de 10 cm, la ecuación muestra que bajo estas condiciones el factor de piel es -3.

La permeabilidad mejorada distribuida homogeneamente y envolviendo un radio de 2 m alrededor del pozo no sería muy probable.

Un mejoramiento en la permeabilidad en la vecindad del pozo puede corresponder a la contribución de entre 0 y -3 al factor de piel. Un valor de piel pequeño debe ser explicado por otro fenómeno como fracturas y fisuras.

Radio Efectivo

El método de radio efectivo consiste en reemplazar el pozo real con una radio rw y piel S por uno ficticio con un radio r'w y factor de piel cero.

Fig. 1-18 RADIO EFECTIVO

El radio r'w está determinado a tener una caída entre rs y r'w en el pozo ficticio igual a la caída de presión entre rs y rw en el pozo real:

$$\Delta p(r'wS=0) = \Delta p(rw,S)$$

Expresando la caída de presión con la ley de Darcy:

$$\frac{qB\mu}{2\pi kh}ln\frac{rs}{r'w} = \frac{qB\mu}{2\pi kh}(ln\frac{rs}{rw} + S)$$

Nosotros tenemos que:

$$r'w = rwexp(-S)$$

Nota: El método del radio efectivo es usado para representar el factor de piel analítico en todos los posibles casos, incluyendo cuando el factor de piel negativo.

Esto expresa el efecto de tratamientos de pozos.

Esto puede ser ilustrado por el caso de un cama de grava (gravel pack). El radio efectivo del pozo debería normalmente caer entre el radio de pantalla y el underreaming radio.

Un radio efectivo que es menor que el radio linear signicaría que el gravel pack es particularmente inefectivo.

El factor de piel refleja la conexión entre el pozo y el reservorio. Este es el porque es recomendado usar el radio interno del pozo como radio rw para calcular el factor de piel; el radio interior del casing cuando hay perforaciones y el radio interno de los liners cuando hay gravel pack.

Generalización del concepto de piel.

El efecto de piel representa una caida de presión adicional localizada en la vecindad del pozo.

En las siguientes secciones, la caída de presión adicional se debió a variaciones en permeabilidad en la formación cercana al pozo.

El factor de piel puede ser usado para tener en cuenta:

• Perforaciones:

La piel debido a las perforaciones incluye muchos fenómenos como:

- La restricción de flujo debido al hoyo perforado: un factor de piel positivo;
- El reservorio punzonado debido a la perforación en sí: Un factor de piel negativo (minifractura);

 El hecho de que sólo ciertas perforaciones están activas: un factor de piel positivo.

Estos diferentes fenómenos no son generalmente disociados del efecto de daño.

• Pozos inclinados.

La inclinación de un pozo mejora el flujo en la vecindad del pozo y contribuye un factor de piel negativo.

• Perforaciones parciales del reservorio.

Perforando solo una parte del espesor del reservorio causa una restricción en las líneas de corriente cerca al pozo y contribuye a un factor de piel positivo.

• Fracturamiento hidráulico.

El fracturamiento hidráulico mejora considerablemente el flujo alrededor del pozo. Esto produce un factor de piel negativo.

• Un pozo horizontal.

Un pozo horizontal puede bajo ciertas condiciones ser tratado como un pozo vertical con efecto de piel negativo debido al mejoramiento del flujo provocada por el pozo.

• Pozo de gas.

La velocidad del fluido en la vecindad de un pozo de gas es a menudo alto. El flujo no sigue la ley de Darcy cerca del pozo.

El factor de piel positivo, depende de la tasa de flujo, muestra la caída de presión adicional debido a la desviación de la Ley de Darcy.

• Factor de piel de inyección.

La inyección de fluido(agua, polímeros, etc) dentro del reservorio crea una zona de diferente movilidad en la vecindad del pozo. Esto causa una caída de presión adicional que puede también ser considerada como una piel cuando la zona compresible está más allá del radio de inyección de fluido.

• Factor de piel geológico.

Un pozo en un low-input objetivo puede ser reflejado por una piel:

- El reservorio tien las características de las regiones distantes que proveen el lente;
- La piel refleja las características de los lentes.

En todos los casos la caída de presión adicional en la vecindad del pozo puede ser tratado como una piel provista que el flujo en la piel puede ser considerada estado continuo.

Para esto será verdad que la zona compresible debe ser alcanzado más allá de la zona de piel.

El concepto de vecindad del pozo puede cubrir un número de muchos diferentes cosas en el tema actual:

- Cuando la acidificación ha sido desarrollado, la caída de presión adicional envuelve una distancia de menos de 2m alrededor del pozo.
- Cuando el fracturamiento hidráulico se ha hecho, la prueba necesita haber empezado afectando las regiones localizadas a muchas decenas de metros desde el pozo antes de la fractura puede ser considerados en terminos de piel.

CAPITULO 2

2.MÉTODOS PARA ANALIZAR PRUEBAS DE PRESION EN POZOS VERTICALES

2.1 Introducción

Diferentes métodos pueden ser utilizados para analizar pruebas de pozos; los mismos que se clasifican en dos principales grupos:

- MÉTODOS CONVENCIONALES
- MÉTODOS UTILIZANDO CURVAS TIPO

Cada método puede ser aplicado a los diferentes tipos de pozos y reservorios que existen.

METODOS CONVENCIONALES

Los métodos de interpretación convencionales fueron desarrollados en los años treinta y fueron los únicos disponibles hasta los setentas. Estos consisten en identificar los diferentes periodos de flujo característicos que ocurren durante la prueba.

Durante un régimen de flujo (radial, lineal,bi-lineal, etc.) la variación de presión es representada por una escala de tiempo adaptada para tener una línea recta en dicho régimen de flujo.

Usar solamente métodos convencionales para analizar una prueba, conduce a varios inconvenientes:

- Algunas veces es difícil diagnosticar un régimen de flujo que corresponde a una pendiente determinada en el grafico presión vs tiempo y La línea recta característica solo existe si los diferentes flujos están separados, de otro modo si no existe esa pendiente ; la interpretación convencional se dificulta.
- La interpretación toma en cuenta solo los puntos localizados sobre la línea recta y Los puntos correspondientes a la transición entre dos flujos nos son utilizados. Debido a lo anterior solo una pequeña proporción de los datos es usada en una interpretación convencional.
- Algunas veces es difícil dibujar la línea recta apropiada, ya que en muchas interpretaciones puede parecer que existan varias líneas rectas alternativas y algunas líneas rectas solo corresponden a la tangente a una curva con ligera inclinación.

MATCHING DE CURVAS TIPO

Estos métodos comenzaron a ser utilizados en los años setentas, pero no llegaron a desarrollarse ampliamente hasta los años ochenta. Las primeras curvas tipo que aparecieron eran sets de curvas que usaban parámetros adimensionales. Su popularidad está relacionada directamente al enorme progreso hecho por la ciencia en la computación. Esto significa que las variaciones de presión esperadas a través de la prueba de pozos, pueden ser simuladas acorde a la configuración pozo-reservorio escogida por medio de un modelo analítico con una cantidad mínima de simplificación.

Las curvas tipo producidas por un modelo de pozo en una computadora han eliminado la mayoría de las limitaciones de los métodos.

De 1983 en adelante, los métodos de curvas tipo fueron ampliamente mejorados a medida que ellos fueron usados en conjunción con la derivada de la presión. Lo que los métodos de curvas tipo tienen en común es que ellos toman en cuenta al mismo tiempo todas las variaciones de presión obtenidas durante una prueba.

Esto permite la determinación de los diferentes regímenes de flujo que ocurren durante la prueba, y después un diagnostico del pozo y del reservorio. Los diferentes periodos de flujo permiten la aplicación de métodos de interpretación convencional correspondientes a cada tipo de flujo.

PROCEDIMIENTO DE INTERPRETACIÓN

Desde que las curvas tipo han sido integradas al análisis, el procedimiento ha sido modificado considerablemente.

El procedimiento ahora usado es como sigue:

Diagnóstico: permite la determinación de la secuencia de regímenes de flujo que pueden aparecer durante una prueba. La identificación

de los regímenes de flujo determina cual configuración pozoreservorio será entonces utilizada para la interpretación. El diagnostico es hecho principalmente sobre la base de la derivada de presión.

Análisis: tiene como objetivo cuantificar los parámetros de la configuración pozo-reservorio. Esta etapa es realizada con las curvas tipo, la derivada de presión y los métodos convencionales.

Validación: el análisis es validado mediante la generación de curvas tipo simulando los datos obtenidos durante la prueba y su derivada lo más cercano posible por medio de un modelo analítico adaptado a la configuración pozo-reservorio y a los caudales registrados.

Los parámetros iniciales en el modelo son determinados durante la fase de análisis.

Un ajuste final de parámetros es usualmente necesario para ajustar mejor los datos, especialmente para las transiciones entre los diferentes regímenes de flujo.

2.2 Regiones de Tiempo en Gráficos de Prueba de Presiones en Pozos Verticales

En una gráfica actual de prueba de drawdown y buildup, la linea recta predicha por la teoría raramente ocurre sobre todo el rango de tiempo de prueba. En lugar de esto, la curva es parecida a los gráficos siguientes:

Fig. 2-1 FORMA CARACTERISTICA DE LA CURVA DURANTE UNA PRUEBA DE FLUJO

Fig. 2-2 FORMA CARACTERISTICA DE LA CURVA DURANTE UN BUILDUP

Para entender mejor el comportamiento de las porciones no lineales de la curva, se ha subdividido los datos de la prueba de flujo en tres regiones de tiempo : **temprano , medio y tardío**; basado en el concepto de radio de investigación.

Tiempos tempranos. El transiente de la presión está en una zona dañada o estimulada cerca del pozo. La descarga del pozo o el postflujo de fluido almacenado en el pozo también distorsiona los datos de la prueba durante este período.

Tiempos medios. El transiente de la presión se ha movido dentro de la zona de la formación sin daño. Una línea recta, cuya pendiente está relacionada a la permeabilidad efectiva de la fase fluyente, usualmente aparece durante este período. A menudo, este período de flujo es referido como región de tiempo medio y la línea recta es llamada la " correcta linea recta semilog".

Tiempos tardíos. El transiente de la presión encuentra los límites del reservorio, efectos de interferencia de otros pozos productores, o masivos cambios en las propiedades del reservorio. La curva de prueba de drawdown se desvía de la línea recta establecida durante la región de tiempo medio.

2.3Métodos de Interpretación Convencionales

Durante una prueba de pozo de un reservorio homogéneo infinito, dos flujos pueden ser observados:

- El flujo que es relacionado con el efecto de almacenamiento.
- El flujo radial sobre todo el espesor del yacimiento.

Tres condiciones de caudal de flujo son consideradas:

- El Drawdown test
- > El Buildup test, precedido con un caudal constante.
- La prueba después de distintos caudales de flujo.

2.3.1 Drawdown Test

La ecuación que describe las variaciones de presión versus el tiempo, y la distancia desde el pozo después de abrir el pozo a un flujo constante, q, es la siguiente:

$$p_i - p(r,t) = -\frac{q\beta\mu}{4\pi kh}E_i\left(\frac{-r^2}{4Kt}\right)$$

Donde $K = \frac{k}{\phi \mu c_t}$; difusividad hidráulica.

Cuando la presión es medida en el pozo donde la turbulencia del flujo esta localizada, $r = r_w$

Tan pronto como $\frac{r_w^2}{4Kt} < 10^{-2}$, lo cual usualmente ocurre antes de que el efecto de almacenamiento se acabe, la funcion Ei puede ser reemplazada por su aproximación logaritmica:

$$p_i - p_{wf}(t) = \frac{q\beta\mu}{4\pi kh} (\ln\frac{Kt}{r_w^2} + 0.81)$$
(4.2)

Tomando en cuenta la caída de presión en la zona de daño, la expresión se transforma en :

$$p_i - p_{wf}(t) = \frac{q\beta\mu}{4\pi kh} (\ln\frac{Kt}{r_w^2} + 0.81 + 2S)$$
 (4.3)

Esta ecuación también puede ser escrita en otras formas equivalentes

En unidades US:

$$p_i - p_{wf}(t) = \frac{162,6 \, q\beta\mu}{kh} \left(\log t + \log \frac{k}{\phi\mu c_t r_w^2} - 3,23 + 0,87 \, \mathrm{S} \right)$$
(4.4)

En unidades métricas:

$$p_i - p_{wf}(t) = \frac{21,5q\beta\mu}{kh} \left(\log t + \log \frac{k}{\beta\mu c_t r_w^2} - 3,10 + 0,87 \,\mathrm{S} \right)$$
(4.5)

Como una ecuación adimensional:

$$P_D = \frac{1}{2} (\ln t_D + 0.81 + 2S)$$
(4.6)

2.3.1.1 Interpretación

Las ecuaciones anteriores muestran que las presiones de fondo varian logaritmicamente versus el tiempo.

Si la presión medida al fondo del hoyo es graficada versus el logaritmo del tiempo, una linea recta con una pendiente m, puede ser observada una vez que el efecto de almacenamiento haya terminado:

$$m = \frac{162,6 \ q\beta\mu}{kh}$$

La pendiente, m, es usada para determinar:

$$kh = \frac{162,6q\beta\mu}{m}$$

El valor de **S** es usualmente computado usando la medida de presión a una hora sobre la linea recta en el semi-log ; para este punto log t = 0.

$$S = 1,15 \left(\frac{p_i - p_{1hr}}{m} - \log \frac{k}{\phi \mu c_t r_w^2} + 3,23 \right)$$
(4.7)

Se debe tener cuidado al momento de leer la presion a una hora en la recta del simi-log, no interpolando entre los puntos medidos. Despues de una hora la data puede aun estar afectada por el efecto de almacenamiento, como se nota en la figura siguiente. En este caso, no se verifica en la ecuación de la linea recta sobre el semilog.

Fig. 2-3 CURVA SEMILOG

2.3.2 Buildup Metodo de Horner

La mayoria de información de una prueba de pozo proviene de la interpretación de la restauración de presión.

La interpratación de una prueba drawdown es limitada por las fluctuaciones de caudales de flujo inherentes a la producción. Las fluctiaciones causan variaciones de presión, que son más grandes cerca del final de la prueba, que la variación de presión debido a los cambios iniciales en el caudal del fluido.

El caudal de cero que corresponde a las pruebas de restauración de presión no causa estos tipos de problemas.

Fig. 2-4 TRANSICION AL CIERRE DEL POZO

En la gráfica anterior : Pwf(t) es la presión de flujo; el tiempo es contado desde que se abre el pozo.

Pws(Δt) es la presión durante la restauración, el tiempo es contado desde que el pozo se cierra tp:

$$P_{ws}(\Delta t = 0) = P_{wf}(t_p)$$

La presión de restauración es analizada usando el principio de superposición del caudal:

$$p_i - p_{ws}(\Delta t) = \left[p_i - p_{wf}(t_p + \Delta t)\right] - \left[p_i - p_{wf}(\Delta t)\right]$$

Reemplazando los dos terminos de la derecha de la ecuación anterior, por las expresiones semilogaritmicas del flujo radial, entonces:

$$p_i - p_{ws}(\Delta t) = \frac{q\beta\mu}{4\pi kh} ln \frac{t_p + \Delta t}{\Delta t}$$

En unidades US:

$$p_i - p_{ws}(\Delta t) = \frac{162.6 \text{ q}\beta\mu}{\text{kh}}\log\frac{t_p + \Delta t}{\Delta t}$$

En unidades metricas:

$$p_i - p_{ws}(\Delta t) = \frac{21,5 \text{ q}\beta\mu}{\text{kh}} \log \frac{t_p + \Delta t}{\Delta t}$$
2.3.2.1 Interpretación

Las ecuaciones anteriores muestran que la presión de fondo varia linealmente conlog $\frac{t_p+\Delta t}{\Delta t}$

Si el valor de la presión medida al fondo es ploteada versus el logaritmo de $\frac{t_p + \Delta t}{\Delta t}$, una vez que el efecto de almacenamiento haya terminado una linea recta con pendiente m puede ser observado:

$$m = \frac{162,6 \text{ q}\beta\mu}{\text{kh}}$$

Como en el drawdown, la pendiente m es usada para obtener kh:

$$kh = \frac{162,6 \,\mathrm{q}\beta\mu}{\mathrm{m}}$$

El factor de piel S es computado de la diferencia entre: el valor de la presión tomado después de una hora del buildup sobre la linea recta en el semi-log.

$$p_i - p(1hr) = \frac{162,6 \,\mathrm{q}\beta\mu}{\mathrm{kh}} \log(t_p + 1)$$

Y el valor de la presión al tiempo de cierre:

$$p_i - p_{wf}(t_p) = \frac{162,6 \text{ q}\beta\mu}{\text{kh}} \left(\log t_p + \log \frac{\text{k}}{\emptyset\mu c_t r_w^2} - 3,23 + 0,87 \text{ S}\right)$$

Lo que queda:

$$S = 1,15\left(\frac{p_{1H} - p_{wf}(t_p)}{m} + \log\frac{t_p + 1}{t_p} - \log\frac{k}{\emptyset\mu c_t r_w^2} + 3,23\right)$$

Fig. 2-5 GRAFICA DE HORNER

2.3.2.2 La Presión Extrapolada

Durante la prueba inicial , la cantidad de fluido producido antes del cierre es usualmente despreciado comparado con la cantidad de petroleo in situ.

Si la restauración de presión continuara indefinidamente, la presión de fondo sería igual a la presión inicial de reservorio.

La presión inicial del reservorio puede ser leída en el buildup por:

$$\Delta t = \infty$$
; porlotanto: $\frac{t_p + \Delta t}{\Delta t} = 1$

El valor de la presión es llamada presión extrapolada y se escribe **p***.

2.3.3 Buildup: Metodo Mdh

La sección anterior mostraba que en un buildup la presión varia linealmente versus el logaritmo de $\frac{t_p + \Delta t}{\Delta t}$

Esta expresión puede ser escrita de una forma mas simple, cuando el tiempo de producción **tp** sea muy grande comparado con Δt , entonces se tiene:

$$p_i - p_w f = -\frac{q\beta\mu}{4\pi kh} (\ln \Delta t - lnt_p)$$

La presión de fondo varia linealmente versus el tiempo de restauración de presión. Esto significa que durante el buildup la presión cae debido a que la producción previa es despreciada.

La siguiente figura ilustra el metodo de interpretación desarrollado por Miller Dyes and Hutchinson (MDH).

Fig. 2-6 GRAFICA MDH

- La presión de restauración real es Δp;
- La presión de restauración que tiene que ver con el MDH es
 Δp_{MDH}
- La diferencia entre Δp y Δp_{MDH} es despreciable cuando Δt es pequeño comparado con **tp**.

2.3.3.1 Interpretación

La presión varia linealmente versus el logaritmo del tiempo. Por lo que plotear $\Delta pMDH$ vs Δt , dejará ver una recta semilog con una pendiente m, una vez que el efecto de almacenamiento haya terminado.

En unidades US

$$m = \frac{162,6 \ q\beta\mu}{kh}$$

En unidades métricas:

$$m = \frac{21,5q\beta\mu}{kh}$$

Esta pendiente la utilizamos para encontrar:

$$kh = \frac{162,5 \ q\beta\mu}{m}$$

El factor **S** lo determinamos de la misma manera que en el método de Horner:

$$S = 1,15\left(\frac{p_{1H} - p_{wf}(t_p)}{m} - \log\frac{k}{\emptyset\mu c_{t}r_{w}^{2}} + 3,23\right)$$

La ventaja de este método es que es muy simple, sin embargo tiene 2 principales desventajas:

- No puede ser usado para encontrar la presión extrapolada
- Puede solamente ser usado para valores de Δt pequeños comparados con el tp.

Cuando el tiempo de producción es corto o se acerca a Δt , los ultimos puntos del buildup se localizan por debajo de la linea semilog teórica que se representa en el método **MDH**.

2.3.4 Prueba Despues de Diferentes Tasas de Flujo

Una prueba después de diferentes caudales es interpretada usando el principio de superposición de las tasas de flujo.

$$p_i - p_{wf}(t) = \frac{\beta \mu}{2\pi kh} \sum_{i=1}^n (q_i - q_{i-1}) P_D(t_i - t_{i-1})$$

Una vez que el efecto de almacenamiento ha terminado, las variaciones de presión estan dados por la siguiente ecuación:

$$p_i - p_{wf}(t) = \frac{\beta\mu}{4\pi kh} \sum_{i=1}^n (q_i - q_{i-1}) \left[\ln \frac{K(t_i - t_{i-1})}{r_w^2} + 0.81 + 2 S \right]$$

Como el interpretador esta interesado en las variaciones de presión desde el ultimo cambio en la tasa de flujo, t_{n-1} . La variación de presión al tiempo que el cambio de caudal tomo lugar es:

$$p_i - p_{wf}(t_{n-1}) = \frac{\beta\mu}{4\pi kh} \sum_{i=1}^n (q_i - q_{i-1}) \left[\ln \frac{K(t_{n-1} - t_i)}{r_w^2} + 0.81 + 2 S \right]$$

La presión de buildup desde el tiempo que el pozo fue cerrado esta expresada por:

En unidades US:

$$p_{ws}(\Delta t) - p_{wf}(t_{n-1})$$

$$= \frac{162.6 \,\beta\mu}{kh} \Biggl\{ \sum_{i=1}^{n} (q_i - q_{i-1}) \log \frac{t_{n-1} - t_{i-1}}{t_{n-1} - t_{i-1} + \Delta t} - (q_n - q_{n-1}) \left(\log \Delta t + \log \frac{k}{\emptyset \mu C_t r_w^2} - 3.23 + 0.87 \, S \right) \Biggr\}$$

Donde : Δt es el tiempo transcurrido desde el ultimo cambio en la tasa de flujo.

2.3.4.1 Interpretación

La presión varia linealmente versus el miembro de la derecha entre llaves de la ecuación anterior. Este miembro es llamado <u>función de</u> <u>superposición</u>.

Si el valor de la presión medida en el fondo del hoyo es ploteada vs la función de superposición, una linea reacta con pendiente **m**, puede ser observada una vez que el efecto de almacenamiento haya terminado.

En unidades US:

$$m = \frac{162,6\,\beta\mu}{kh}$$

En unidades métricas:

Fig. 2-7 SUPERPOSICION

La pendiente es independiente de la tasa de flujo. Esta es la ventaja de la representación: el resultado obtenido con diferentes tasas puede ser comparado sobre la misma gráfica.

Para encontrar una expresión de **m**, la cual es dependiente de las tasas de flujo comparable a la que es obtenida con el método de Horner, la función de superposición necesita solamente ser dividida para la ultima tasa de flujo.

La pendiente m, de la linea recta es usada para determinar:

$$kh = \frac{162,6\,\beta\mu}{m}$$

El factor S es determinado basado en el valor de presión leído sobre la línea recta una hora después de la ultima variación del caudal.

$$S = 1,15\left(\frac{p_{1h} - p_{wf}(t_{n-1})}{(q_{n-1} - q_n)m} - \log\frac{k}{\phi\mu C_t r_w^2} + 3,23\right)$$

2.3.4.2Presión Extrapolada

Si la ultima variación de la tasa es un cierre, la lectura de presión para un tiempo infinito, para un valor de la función de superposición igual a cero, es usado para determinar la presión del reservorio extrapolada.

2.3.4.3 Simplificacion del Historial de las Tasas de Flujo

La función de superposición toma en cuenta el historial de caudales.

Tiempo Equivalente

Para analizar el buildup final, el método más simple consiste en reducir el historial de caudales a una única tasa, usando el método de Horner para la interpretación actual.

La tasa de producción que reemplaza las n-1 tasas reales, debe regirse de los siguientes principios:

- Tasa de flujo = a la última tasa
- Tiempo de producción equivalente:

$$t_{pe} = \frac{\sum_{i=1}^{n-1} q_i (t_i - t_{i-1})}{q_n}$$

El tiempo de producción es designado para proveer un valor de producción total identico a la producción que estaba hasta la fecha registrada.

El tiempo de producción real no debería ser usado en ningun caso para estimar una tasa de flujo equivalente.

2.3.5 Radio de Investigacion de un Buildup

El radio de investigación teorico depende solamente de la duración de la restauración de presión.

El radio de investigación puede ser estimado usando las siguientes formulas:

En unidades US:

$$r_i = 0.032 \sqrt{\frac{k\Delta t}{\phi \mu C_t}}$$

En unidades métricas:

$$r_i = 0.038 \sqrt{\frac{k\Delta t}{\emptyset \mu C_t}}$$

Es teoricamente independiente de la duración del período del drawdown.

En contraste, el radio de investigación práctico de un buildup esta limitado por la precisión de los medidores de presión. Cuando la presión de restauración es larga comparada con la duración del drawdown, entonces la caída de presión registrada hacia el final del buildup puede llegar a ser demasiado pequeña para ser medida. Para incrementar el radio de investigación práctico de un buildup, algunos métodos pueden ser usados:

- Usar medidores de presión más precisos.
- Incrementar la tasa de flujo del pozo para así incrementar la caída de presión antes del buildup
- Incrementar la duración del drawdown por la misma razón anterior.

2.4 Metodos de Curvas Tipo

Las curvas tipo aparecierón en la industria petrolera en los años setenta. A continuación la lista de las curvas tipo más conocidas y usadas en la interpretación de pruebas en pozos verticales:

- Agarwal et al.
- McKinley
- Earlougher & Kersch
- Gringarten et al.

Según lo consultado, las curvas de Gringarten son las más completas y prácticas para usar, a parte de que son las más utilizadas en las literatura de la industria del petróleo.

2.5La Derivada

Los métodos usando la derivada de la presión toman ventajas de las ventajas que proporcionan las representaciones de curvas tipo y contrarestan las desventajas de la representación logarítmica.

Estos métodos estan basados en el hecho: en una prueba de pozo, la variación de presión es más significante que la presión misma. Esto es ilustrado por el hecho que, la pendiente de la recta en la semilog es usada para conseguir información del reservorio en los métodos convencionales.

Diferentes formas de la derivada fuerón propuestas en la industria petrolera, en los principios de los ochenta. Entre ellos el más interesante fue la aproximación de D. Bourdet.

2.5.1 Representación de la Derivada

La derivada de la presión como la representa D. Bourdet, es calculada en relación a la función del tiempo del flujo radial en el regimen transiente.

Para drawdown:

$$\frac{dp_D}{d}\ln(t_D/C_D)$$

Para buildup después de una tasa constante

$$\frac{dp_D}{d}\ln\left(\frac{t_p + \Delta t}{\Delta t}\right)$$

Más general, con tasa variable

$$\frac{dp_D}{d}$$
 (función de superposición)

La derivada es presentada en un gráfico log-log como una curva tipo.

2.5.2 Interpretación Directa por Medio de la Derivada

La permeabilidad del reservorio, el efecto de almacenamiento y el factor de piel, pueden ser determinados directamente usando la curva tipo y su derivada, siempre que la estabilización de la derivada ha sido alcanzada.

Kh del reservorio

La permeabilidad es calculada basada en el valor Δp_{st} correspondiente a la estabilización de la derivada, como se muestra en la siguiente figura:

Fig. 2-8 MODELOS DE DERIVADA

El valor de esta derivada expresada en términos adimensionales es conocida y es igual a 0.5.

La expresión de Δp_{st} en ralación a 0.5 es igual a:

$$\Delta p_{st} = \frac{141.2 \text{ q}\beta\mu}{\text{kh}} * 0.5$$

La cual es usada para calcular:

$$kh = \frac{141.2 \text{ q}\beta\mu}{\Delta p_{st}} * 0.5$$

• Efecto de Almacenamiento

El efecto de almacenamiento puede ser calculado si las coordenadas de un punto localizado en la línea de pendiente 1 son conocidas: $\Delta p_1 y \Delta t_1$

Durante el efecto de almacenamiento dominante:

$$\Delta p_1 = \frac{\mathbf{q}\beta}{24\mathbf{C}} \Delta t_1$$

Por lo tanto:

$$C = \frac{q\beta}{24} \frac{\Delta t_1}{\Delta p_1}$$

• Factor de Piel (S)

El factor de piel puede ser calculado si las coordenadas de un punto localizado en la línea recta del semilog son conocidos: : $\Delta p_S y \Delta t_S$

$$S = 1.151 \left[\frac{\Delta p_S}{2.303 \Delta p_{St}} - \log \frac{\Delta t_S}{1 + \frac{\Delta t_S}{t_p}} - \log \frac{k}{\emptyset \mu C_t r_w^2 + 3.23} \right]$$

2.5.3 Conclusión

Como las curvas tipo la derivada ofrece la gran ventaja de permitir que sea tomada una completa prueba de pozo usando una solo curva.

Cada tipo de flujo exhibe una facie caracteristica en la derivada, la cual representa una excelente herramienta de diagnóstico. Por materializar las variaciones de presión, la derivada, es similar a hacer un zoom sobre la data, amplificando variaciones que otra forma no serian tomadas en cuenta por la representación logaritmica.

Es practicamente imposible hacer un calculo manual de un registro de presión utilizando el método de la derivada , por lo que se hace necesario la utilización de una computadora . El método de La derivada es una de las mejores herramientas utilizada actualmente por los softwares disponibles en la industria (Pansystem ; Fekkete ; Zafir etc.) para realizar interpretaciones de las pruebas de pozos.

CAPITULO 3

3. MODELOS DE RESERVORIO

3.1 Doble Porosidad

Los modelos de doble porosidad (2ϕ) asumen que el reservorio no es homogéneo, pero que está compuesto por bloques de roca matriz, con alto almacenamiento y baja permeabilidad, que conectan al pozo con fisuras naturales de bajo almacenamiento y alta permeabilidad. Los bloques matrices no pueden fluir al pozo directamente, por lo que incluso aunque la mayoría del hidrocarburo está almacenado en los bloques matriz tiene que entrar al sistema de fisura para ser producido.

El modelo de porosidad dual es descrito por 2 variables adicionales comparadas al modelo homogéneo:

wes**la relación de almacenamiento**, y es esencialmente la fracción de petróleo o gas almacenado en el sistema de fisura; por ejemplo:

 ω = 0.05 significa 5%.

 λ es**el coeficiente de flujo interporoso**y caracteriza la habilidad de los bloques matriz de fluir dentro del sistema de fisura; está dominado por el contraste de permeabilidad matriz/fisuras, k_m/k_f .

Fig. 3-1 FLUJO EN UN SISTEMA DE FISURAS

Cuando el pozo es inicialmente puesto en producción, el primer régimen de flujo será el flujo radial del sistema de fisura, es decir que el sistema de fisura está produciendo, y no hay cambio en la presión dentro de los bloques matriz. Este primer régimen de flujo es típicamente muy rápido, y es frecuentemente ocultado por el almacenamiento del pozo. Si no, será manifestado por un IARF (Flujo radial infinito) respuesta en la derivada de la presión.

Una vez que el sistema de fisura ha empezado a producir, un diferencial de presión es establecido entre los bloques de matriz, que sigue a la presión inicial pi, y el sistema de fisura, que en el pozo tiene una presión pwf. Los bloques matrices entonces empiezan a producir dentro del sistema de fisura, efectivamente proporcionando

mantenimiento de presión, y el drawdown de forma breve disminuye lentamente, creando una inclinación transicional en la derivada.

Fig. 3-2 CONTRIBUCION DE LA MATRIZ

El flujo radial del "sistema total" es establecido cuando cualquier presión diferencial entre los bloques matriz y el sistema de fisura no es tan significantemente largo, y la respuesta del flujo radial "equivalente homogéneo" es observada – la segunda IARF línea en la derivada de la presión.

(De acuerdo a los matemáticos, esto toma lugar cuando la presión dentro de los bloques matriz es la misma como en el sistema de fisura – pero este nunca podría ser verdad en todos los puntos en el reservorio, así como no habría producción dentro del sistema de fisura.)

3.1.1 Porosidad dual PSS (flujo interporoso en estado pseudocontinuo)

En este caso es asumido que la distribución de la presión en los bloques matriz es uniforme, es decir no hay caída de presión dentro de los bloques matriz. (Una explicación física para esto podría ser que los bloques de la matriz son pequeños, por lo que cualquier caída de presión dentro de ellos es insignificante comparado a la difusión de presión en las zonas del reservorio lejos del pozo.)

Toda la caída de presión toma lugar en la superficie de los bloques, como una discontinuidad, y la respuesta resultante de presión da una brusca depresión durante la transición:

Fig. 3-3 ESTADO PSEUDO CONTINUO CON DOBLE POROSIDAD

Como se ha visto en este ejemplo, si la constante de almacenamiento del pozo es muy baja, puede ser posible ver el flujo radial del sistema de fisura en un tiempo temprano. Sin embargo con un valor de almacenamiento de solo 0.01 bbl/psi el primer régimen de flujo ya se ha oscurecido, el la curva morada es típica del que sería visto en una prueba real. Los datos recogen la transición de porosidad dual inmediatamente después de que los efectos de almacenamiento se terminan, y esto crea un singular problema potencial con el conjunto de datos.

Dimensionless Groups:

 $p_D = \frac{kh}{141.2 \text{ q}\mu\text{B}} \Delta p$

 $t_{\rm D} = \frac{0.0002637 \text{ k}}{\varphi \mu C_t r_{\star}^2} \Delta t$

Type-Curve Analysis:

$$\mathbf{k}\mathbf{h} = 141.2 \ \mathbf{q}\mathbf{\mu}\mathbf{B}\left(\frac{\mathbf{p}_{\mathrm{D}}}{\Delta \mathbf{p}}\right)$$

$$C = \frac{0.0002637 \text{ kh}}{\mu \left(\frac{t_D / C_D}{\Delta t}\right)}$$

$$C_{D} = \frac{0.8936C}{\phi C_{t}hr^{2}}$$

S

$$S = 0.5 \ \ln\left[\frac{(C_D e^{2S})_{match}}{C_D}\right]$$

La depresión en la derivada causada por la porosidad dual es definida por 2 parámetros:

La relación de almacenamiento:

$$\omega = \frac{(\varphi V C_t)_t}{(\varphi V C_t)_f + (\varphi V C_t)_m}$$

(Fracción de petróleo en las fisuras) ω determina la profundidad de la depresión.

Para pequeños valores de ω , correspondiente a una alta proporción de hidrocarburo almacenada en el sistema de fisura, el "mantenimiento" durante la transición es substancial, y la depresión es más profunda y más larga, como es visto en la página siguiente.

Coeficiente de flujo interporoso:

$$\lambda = \alpha r_w^2 \frac{k_m}{k_f}$$

(Habilidad de fluir de la matriz a las fisuras)

 $[\alpha$ es una función del tamaño del bloque matriz]

λdetermina el tiempo de la transición

 λ controla la velocidad en que la matriz reaccionará, y por lo tanto determina el tiempo de la transición: Para un valor alto de λ , la permeabilidad de la matriz es comparativamente alto, por lo que empezará a entregar su petróleo (o gas) casi tan pronto como el sistema de fisuras comience a producir. A la inversa, una valor bajo de λ significa una muy apretada matriz, y más de un drawdown tendrá que ser establecida en el sistema de fisura antes que los bloques de la matriz entreguen apreciablemente su petróleo, y la transición es vista más tarde.

Aunque hay teóricamente dos líneas de IARF en la derivada de la presión, correspondiente a 2 líneas rectas paralelas en el gráfico del semilog, la primera es casi invariablemente ocultada por el almacenamiento del pozo.

Si visto, las dos líneas cada una correspondería a $k_f h$, el flujo radial en el sistema de fisura, como en el primer casi sólo el sistema de fisura está produciendo. En el segundo caso, aunque el sistema total está produciendo, cualquier diferencial de presión entre los bloques matrices y el sistema de fisura es ahora despreciable, y la única caída de presión en el sistema está en las fisuras, a medida que los fluidos fluyen hacia el pozo. Imaginando una gota de petróleo en el bloque matriz 50 metros desde el pozo; viajará lentamente unos cuantos centímetros para entrar al sistema de fisura, expulsado por un Δp despreciable, entonces viajará 50 metros a través del sistema de fisura, acelerando a medida que se aproxima al pozo así como el gradiente de presión aumenta (y el área de flujo disminuye). Es este gradiente de presión, en el sistema de fisuras, que crea la medida respuesta del pozo.

3.1.2 Porosidad Dual (flujo interporoso en estado transiente)

Este modelo asume que hay una gradiente de presión, y por lo tanto difusividad, dentro de los bloques de matriz. Si el perfil de presión dentro de los bloques es importante, entonces la forma de los bloques tiene que ser tomada en consideración, y por esta razón hay 2 modelos de solución disponibles, cada uno correspondiente a

dual porosity reservoir with transient interporosity flow 10³ fissure + matrix flow 10² -spheres 2 slabs 10 100 1011 10 104 dP & dP' [psia] versus dt [hr]

diferentes geometrías de bloque matriz. Las 2 respuestas son muy similares:

El modelo de geometría del "bloque" asume bloques de matriz rectangulares, que es lo que hemos tomado en cuenta hasta ahora con los modelos de porosidad dual. El modelo de "esferas", realísticamente o no, representa otra simple geometría con que se define las condiciones de límite para la solución matemática. Es difícil visualizar un reservorio consistente de bloques de matriz esférica, pero tal vez debido a movimientos de fluido sobre tiempos geológicos el sistema de fisura puede hacerse "vugular" (porosidad inducida), los extremos de los bloques matriz pueden hacerse redondeadospor cualquier razón, los conjuntos de datos de porosidad dual a veces encajan en el modelo de "esferas" mejor que cualquier otro. (Como antes, nuestros modelos matemáticos no serán una exacta representación de que naturaleza se tiene prevista en el reservorio, pero el desempeño de estos modelos es muy cercano a las presiones medidas de estos pozos.) Como es mostrado en los gráficos, el flujo radial del sistema de fisuras es de corta duración, y en práctica no es visto. Durante la transición, el valor pendiente/derivada semilog es la mitad del valor de flujo radial del sistema total.

Como se ha visto anteriormente, ω en este modelo tiene un efecto más sutil en la forma de la derivada, y λ define el tiempo de la respuesta de transiciones al sistema total IARF:

Dimensionless Groups:

Type-Curve Analysis:

$$p_{\rm D} = \frac{kh}{141.2 \ q\mu B} \ \Delta p$$

$$t_{\rm D} = \frac{0.0002637 \text{ k}}{\varphi \mu C_{\rm t} r^2} \Delta t$$

$$C_{D} = \frac{0.8936C}{\varphi C_{*}hr_{*}^2}$$

S

PC-Curve Analysis

$$kh = 141.2 \ q\mu B \left(\frac{p_{\rm D}}{\Delta p}\right)_{\rm match}$$
$$C = \frac{0.0002637 \ kh}{\mu \left(\frac{t_{\rm D} / C_{\rm D}}{\Delta p}\right)}$$

$$\mu\left(\frac{t_D / C_D}{\Delta t}\right)_{\text{match}}$$

$$S = 0.5 \ln \left[\frac{(C_D e^{2S})_{match}}{C_D} \right]$$

La depresión de la doble porosidad en la derivada es definida por 2 parámetros:

Relación de almacenamiento:

$$\omega = \frac{(\varphi V C_t)_f}{(\varphi V C_t)_f + (\varphi V C_t)_m}$$

(Fracción de petróleo en las fisuras) ω determina la profundidad de la depresión – pequeño ω , depresión más profunda.

Coeficiente de flujo interporoso:

$$\lambda = \alpha r_w^2 \frac{k_m}{k_f}$$

(Habilidad de fluir de la matriz a las fisuras)

 λ determina el tiempo de la transición – pequeño λ , depresión tardía.

 $[\alpha$ es una función del tamaño del bloque matriz.]

Dentro del modelo de la curva-tipo y los parámetros de emparejamiento, los valores de $\omega y\lambda$ son calculados como sigue:

• De la primera y última $C_D e^{2s}$ curva:

$$\omega = \frac{(\mathcal{C}_D e^{2s})_{f+m}}{(\mathcal{C}_D e^{2s})_f}$$

• De la curva de β' empatada durante el periodo de transición:

$$\lambda = \frac{\delta'(C_D e^{2s})_{f+m}}{\beta'(e^{-2s})}$$

 $[\delta'$ es una función de la geometría estructural.]

3.2 Doble permeabilidad:

Un reservorio está estratificado cuando cada capa tiene las mismas propiedades, en cuyo caso el comportamiento del sistema será equivalente al comportamiento del intervalo sumado.

En el modelo de doble permeabilidad (2k) el reservorio consiste de 2 capas de diferentes permeabilidades, cada una de las cuales pueden ser perforadas. El flujo cruzado entre las capas es proporcional a la diferencia de presión entre ellas.

Fig. 3-4 DOBLE PERMEABILIDAD

En adición a la relación de almacenamiento ω y el coeficiente de flujo interporoso λ , otro coeficiente es introducido: κ es la relación de permeabilidad-espesor producto de la primera capa al total de ambas capas:

$$\kappa = \frac{k_1 h_1}{k_1 h_1 + k_2 h_2}$$

Usualmente la capa de permeabilidad alta es considerada como capa 1, por lo tanto κ será cercano a 1.

A tiempo temprano no hay diferencia de presión entre las capas y el sistema se comporta como 2 capas homogéneas sin flujo cruzado, en flujo radial infinito, con el total kh de las dos capas. Como la capa más permeable produce más rápidamente que la de menor permeabilidad, un diferencial de presión Δp se desarrolla entre las capas y el flujo cruzado empieza a ocurrir. Eventualmente el sistema se comporta de nuevo como un reservorio homogéneo, con el kh total y almacenamiento de las dos capas.

La depresión heterogénea en la derivada es ahora definida por 3 parámetros:

Relación de almacenamiento de capas:

$$\omega = \frac{(\varphi C_t h)_1}{(\varphi C_t h)_1 + (\varphi C_t h)_2}$$

Coeficiente de flujo entre capas:

$$\lambda = \alpha r_{w}^{2} \frac{k_{2}h_{2}}{k_{1}h_{1} + k_{2}h_{2}}$$

Contraste de permeabilidad:

$$\kappa = \frac{k_1 h_1}{k_1 h_1 + k_2 h_2}$$

κtambién influye en la profundidad de la depresión

- $\kappa = 1$: lo mismo que 2φ pss
- $\kappa < 1$: depresión menos profunda

La depresión transicional está gobernada por $\omega y \lambda$, que tienen el mismo efecto que en los modelos de doble porosidad, y κ , que reduce la profundidad de la depresión comparada a $\kappa = 1$, que da una solución de porosidad-dual en estado pseudocontinuo.

Esto es porque si $\kappa = 1$ entonces $k_2h_2 = 0$, y el petróleo o gas en la capa de baja permeabilidad, equivalente a los bloques de matriz, puede solo ser producido enteramente en la capa de alta permeabilidad, equivalente al sistema de fisura. No es sorprendente que se comporte como el modelo de doble porosidad.

3.3 Modelo Radial Compuesto

Con los modelos compuestos, el reservorio es dividido dentro de 2 regiones de diferentes movilidades y/o almacenamiento:

Fig. 3-5 MODELO RADIAL COMPUESTO

En el caso de un modelo radial compuesto, hay una zona circular interna, con el pozo localizado en el centro, y una zona infinita exterior.

Cada zona tiene las características de un reservorio homogéneo. Los parámetros que definen el cambio de propiedades desde una zona a la otra son la movilidad y la relación de difusividad, M y D ya mencionados. No hay pérdida de presión en la interface, que es a una distancia r_i desde el pozo.

En la respuesta de presión, el tiempo temprano corresponde a la zona interna, y el comportamiento en el tiempo tardío depende de las propiedades de la zona exterior:

Este modelo tiene un uso práctico en pozos de inyección, donde la inyección de fluido tiene una viscosidad diferente al fluido de reservorio.

Con cualquier modelo, la dirección del movimiento de la derivada puede ser recordada como " baja = buena ", así como un movimiento a la baja significa una desaceleración del drawdown debido a algún tipo de mejora del mecanismo de flujo, si existe un límite de soporte, existirá un incremento en kh, o en este caso un incremento en la movilidad. (Con una excepción, la derivada del build-up siempre se mueve en la misma dirección que la derivada del drawdown.)

Por ejemplo, al inyectar agua dentro de petróleo, la movilidad del petróleo será típicamente más grande que la movilidad del agua, y la derivada se moverá hacia abajo en la interface. Es interesante, que

el agua inyectada dentro de un acuífero hará lo mismo, así como el agua fresca inyectada es más viscosa que el agua de reservorio.

Este modelo puede ser considerado como el modelo general de límite circular, y si la segunda movilidad es cero corresponde a un límite circular cerrado, y si este es infinito corresponde a un límite circular de presión constante.

3.4 Modelo Compuesto Lineal

El pozo productor está en un reservorio homogéneo, infinito en todas las direcciones pero único, donde el reservorio y/o características del fluido cambian a través de un frente lineal. De nuevo no hay pérdida de presión en la interface. En el otro lado de la interface el reservorio es de nuevo homogéneo e infinito, con diferentes propiedades:

Después de los efectos de almacenamiento de pozo, la derivada corresponderá al flujo radial homogéneo en la primera zona.

Después de la transición, la segunda respuesta homogénea es flujo semi radial en las dos partes del reservorio.

Fig. 3-5 MODELO LINEAL COMPUESTO

La relación de movilidad y difusividad, M y D, son como en el modelo compuesto radial:

$$M = \frac{[k/\mu]_1}{[k/\mu]_2}$$
$$D = \frac{[k/\phi\mu C_t]_1}{[k/\phi\mu C_t]_2}$$

Asumiendo un espesor de la capa constante, h, la primera estabilización de la derivada corresponderá a ${}^{k_1}\!/_{\mu_1}$.

El segundo será la movilidad promedio de las 2 zonas: ((k1/mu1) + (k2/mu2))/2.

En el caso de que la movilidad disminuya, la segunda estabilización nunca puede ser más que doble que la primera, en cuyo caso la discontinuidad linear representa una falla sellante – es decir M = $^{\infty}$, porque k2mu2 = 0.

Es el caso de que la movilidad aumente, no hay limite bajo para la segunda estabilización que tiende a cero (presión constante) cuando M = 0, lo cual significa que k2mu2 = [∞].

CAPITULO 4

4. MODELOS DE LIMITES Y SUS EFECTOS

4.1 Introducción

Al principio de una prueba de pozo la zona compresible generada por la variación de la tasa de flujo, se mueve lejos del pozo sin alcanzar ningún límite y el reservorio se comporta como si fuera infinito.

Fig. 4-1 FLUJO RADIAL INFINITO

Cuando un límite es alcanzado, es percibido como un cambio característico en la presión del pozo, como se muestra a continuación:

1. El frente de presión aún no ha alcanzado la falla:

2. La reflección aún no ha alcanzado el pozo:

3. El efecto del límite ya es sentido en el pozo:

4.2 Limites Lineales

4.2.1 Fallas sellantes

La solución es construída por la superposición de 2 respuestas infinitas. En realidad, la naturaleza del reservorio más alla de la falla es irrelevante, pero en el modelo, el reservorio es remplazado por un reservorio virtual infinito, el cual se extiende más alla de la falla como lo muestra la figura de abajo. El pozo imaginario virtual tiene el mismo historial de producción que el pozo activo, así que el Δp en cada lado del límite es simétrico, y nada va a fluir a través del límite.

Fig. 4-2 LÍMITES LINEALES

4.2.2 Presión Constante en el Límite

La configuración es exactamente como se muestra en el gráfico anterior, excepto que el historial de producción en el pozo virtual es el inverso que el pozo activo; si el pozo activo es productor, el virtual va a ser inyector, y viceversa. Cualquier punto en el límite es equidistante a cualquier pozo, por lo tanto el Δp del uno es balanceado por el Δp del otro, por lo que la presión a lo largo del límite es constante.

4.2.3 Respuesta de la Presión

4.2.3.1 Respuesta en el gráfico de la derivada

Fig. 4-3 RESPUESTA DEL LÍMITE LINEAL EN EL LOG-LOG

- En el caso de la falla sellante, la respuesta del tiempo tardío es idéntica a la respuesta de un sistema infinito con una permeabilidad de la mitad a la permeabilidad del reservorio actual.
- En el caso de la presión constante, la derivada tiende a cero a medida que la presión se estabiliza.

4.2.3.2 Respuesta en el gráfico semilog

Fig. 4-4 RESPUESTA DEL LÍMITE LINEAL EN EL SEMI-LOG

- La respuesta en el semilog de la falla sellante es una segunda línea recta con el doble de la pendiente de la línea IARF.
- La respuesta de la presión constante en el límite, se nota con que la línea se quiere estabilizar a una presión, algunas veces llamada "presión promedio del reservorio."

4.3 Limites Circulares

4.3.1 Circulo Cerrado

El pozo esta en el centro de un reservorio limitado por un límite de falla circular, de radio re. A diferencia de la falla lineal, este modelo tiene una simetría radial y puede ser resuelto sin la necesidad de pozos imaginarios:

Fig. 4-5 LÍMITES CIRCULARES

Cuando el límite es visto durante un drawdown, la respuesta de la presión pasará de flujo radial a flujo pseudo-continua, correspondiente a la depleción y aproximación en términos adimensionales por:

$$p_D = 2\pi t_{DA} + a$$

Donde a es una constante, y t_{DA} es el tiempo adimensional, en el cual el r_w^2 por el área del reservorio A. Durante el flujo de estado pseudocontinuo, Δp es proporcional a Δt , para una tasa de flujo constante, entonces habrá una línea recta en el gráfico lineal, y una línea con pendiente 1 en el gráfico log-log. La derivada $2\pi t_{DA}$, es también proporcional a Δt , y también sigue una línea con pendiente la unidad La respuesta en un buildup es la diferencia entre 2 respuestas de drawdown, al mismo punto en espacio pero desplazado en el tiempo. Cuando la aproximación para el estado pseudo-continuo se mantiene para ambas respuestas, la presión se hace constante, igual a la presión promedio del yacimiento, y la derivada tiende a cero, como si fuera un límite con presión constante.

Fig. 4-6 LÍMITE CIRCULAR CERRADO

4.3.2 Circulocon Presión Constante

La geometría es la misma que en el circulo cerrado, pero la presión el el límite de radio (re) es constante. El modelo también tiene simetría radial y no es resuelto con pozos imaginarios.

El comportamiento es el mismo que para el límite lineal de presión constante, sabiendo que una estabilización de presión es indicada por el undimiento en la derivada, pero para un límite circular la tendencia es más nitida. Tanto lo drawdowns y los buildups lucen iguales:

Fig. 4-7 LÍMITE CIRCULAR CON PRESIÓN CONSTANTE

4.4Intersección de Fallas

Si la primera falla esta lo suficientemente alejada, el flujo radial infinito interino se estabiliza después del almacenamiento. Hasta que la falla sea detectada, no habrá ningun efecto en la curva de presión. Similarmente, la primera falla siempre causará que la derivada se haga el doble, hasta que la segunda falla haga efecto. El nivel de estabilización final es determinado por el ángulo entre las fallas, θ .

Fig. 4-8 INTERSECCION DE FALLAS

Si el pozo es centrado (1), habrá un unico salto a la estabilización final, a un valor de 360/θ veces la estabilización del flujo radial inicial. Si el pozo esta mucho más cerca(2) a alguna falla, la falla que hace el doble a la derivada puede ser vista antes del segundo salto.

Cuando al menos una de las fallas tiene presión constante, la presión se estabilizara y la derivada tenderá a cero. El límite de presión constante dominará la respuesta de la presión, por lo que nada mas distante podrá ser observado.

El salto total en la derivada, entre el flujo radial infinito y la estabilización final, es igual a 360/0. La estructura del flujo en la "cuña" es una fracción del flujo radial, por lo que la capacidad de flujo del sistema se ha reducido por esa fracción. Justo como una sola falla reduce el reservorio infinito por un factor de 2, y hace el doble la derivada, fallas a 60° la reducirían por un factor de 6, por lo que el incremento en la derivada del valor de la IARF sería de 6. Es interesante, la misma regla aplica para fallas paralelas.

Fig. 4-9 RESPUESTA A LA INTERSECCION DE FALLAS

4.5 Fallas Paralelas (Canal)

El pozo puede estar entre fallas paralelas o en un canal.

Fig. 4-10 FALLAS PARALELAS O CANAL

El comportamiento del tiempo tardío será flujo lineal, resultando en una pendiente igual a ¹/₂ en la derivada, como para una fractura en el tiempo temprano. Antes del flujo lineal puede haber flujo radial infinito, y puede haber una duplicación en la derivada, debido a que la primera falla esta mucho más cerca que la segunda:

Fig. 4-11 RESPUESTA DE FALLAS PARALELAS O CANAL

Notese que la regla del 360/ θ aplica al salto total en la derivada, en este caso cuando θ es cero, es infinito, y la derivada se incrementa continuamente a una pendiente igual a $\frac{1}{2}$.

4.6 Rectangulo con Limites Mixtos

El rectangulo de límites mixtos o compuestos tiene en cada uno de sus cuatros lados cualquier tipo de límite, ya sea de falla, de presión constante o infinito:

Fig. 4-12 RECTANGULO CON LÍMITES MESCLADOS

En este caso los lados 1 y 3 son fallas sellantes, el 2 tiene presión constante y el 4 es infinito. La respuesta de la derivada claramente depende de la naturaleza de sus límites y su configuración, en este caso sería como se muestra a continuación:

Fig. 4-13 RESPUESTA A VARIOS EFECTOS DE LÍMITES

Note que la declinación en la derivada debido al límite con presión constante es muy gradual, como el soporte es compensado con una rápida caída de presión lineal a lo largo del canal.

CAPITULO 5

5. MÉTODOS PARA ANALIZAR PRUEBA DE PRESIONES EN POZOS HORIZONTALES.

5.1 Diferencias con las Pruebas de Pozos Verticales

Las pruebas en pozos horizontales difiere de la de pozos verticales en los siguientes aspectos:

- La geometria de flujo en una prueba de presion de un pozo horizontal es tridimensional comparado a la geometria de flujo unidimensional en las pruebas de pozos verticales. Como resultado, el analisis de una prueba para pozos horizontales es mucho mas complejo que para pozos verticales, ya que los pozos horizontales presentan S(Factor de piel) negativos.
- La mayoria de los modelos para pozos horizontales asumen que estan perfectamente horizontales. En general, los hoyos de los pozos son raramente horizontales, con muchas variaciones en el plano vertical a lo largo de la longitud del pozo.
- 3. El intervalo abierto para el flujo del o los fluidos al pozo es mucho mas grande en un pozo horizontal que en uno vertical. En muchos

casos, la longitud de produccion de un pozo horizontal no puede ser conocida al menos que se haya corrido un registro de produccion para determinar el caudal a lo largo del pozo.

- La permeabilidad vertical juega un roll importante en las pruebas de presion de pozos horizontales mientras que en los pozos verticales no.
- 5. Hay mas regimenes de flujo posibles en pruebas de pozos horizontales que en la de verticales.
- 6. Es dificil estimar la longitud exacta de producción de un pozo horizontal.

5.2 Regimenes de Flujo Posibles

La fig. 6.1 muestra una funcion tipica de respuesta de presiones para un pozo horizontal. Los regimenes de flujo pueden ser identificados en la respuesta de la derivada de la funcion. Calculamos diferentes parametros de la formacion de la data en cada uno de estos regimenes. Dependiendo de la magnitud de los parametros del reservorio, uno o mas regimenes de flujo puede ser posible que falte.

: intermediate-time linear

3 : late-time pseudo-radial

Efecto de Almacenamiento

Este regimen de flujo es el mismo que el de pozos verticales. Es caracterizado por una unidad de la pendiente en el grafico log-log ΔP y en el grafico de la derivada. Este regimen de flujo solo puede ser utlizado para determinar el coeficiente de almacenamiento C.

Flujo Radial de tiempo temprano

Este es un flujo radial en el plano vertical perpendicular al pozo. Este regimen de flujo ocurre cuando los limites superior e inferior aun no han sido encontrados. Se caracteriza por una pendiente cero en el grafico de la derivada y por una linea recta en en grafico semilog. Puede ser ocultado por el efecto de alamacenamiento. Puede no ocurrir si la relacion de permeabilidades vertical y horizontal es muy pequeña. Su duracion puede ser muy corta, a menos que el reservorio sea muy delgado o la permeabilidad vertical sea muy baja.

Flujo linear del tiempo intermedio

Este regimen de flujo ocurre despues de que los limites superior e inferior han sido encontrados, y la longitud del pozo horizontal es aun relativamente importante al radio de investigación. Este regimen se caracteriza por una media pendiente en el grafico de la derivada y una linea recta en el grafico de la raiz cuadrada del tiempo. Puede que no se presente si la relación de la longitud del pozo con el espesor de la formacion es pequeño o la relacion de la permeabilidad vertical con la horizontal también es pequeña.

Flujo radial de finales del tiempo intermedio

Es un flujo radial en el plano horizontal. Este regimen de flujo ocurre cuando el radio de investigacion es grande en relacion a la longitud del pozo horizontal. El pozo horizontal actua como un sumidero. Este regimen es caracterizado por una pendiente cero en el grafico de la derivada y por una linea recta en el grafico semilog. Puede que no ocurra si los limites laterales son encontrados primero. No ocurrira si la presion es mantenida por un acuifero o por una gorra de gas.

Flujo linear del tiempo final

Este regimen de flujo ocurre cuando todos los limites han sido encontrados. Se caracteriza por una media pendiente en el grafico de la derivada y por una linea recta en el grafico de la raiz cuadrada del tiempo.

5.3 Modelo Matematico

Fig. 5-2 MODELO DE UN POZO HORIZONTAL

El modelo físico consiste de un pozo horizontal de conductividad infinita localizada en el centro de un reservorio homogéneo semiinfinito y anisotrópico de espesor y ancho uniformes como se muestran en la figura 10.3. La ecuación diferencial parcial que gobierna el flujo de un líquido ligeramente compresible está dada por:

$$\frac{k_x \partial yP}{k_y \partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{k_x \partial^2 P}{k_z \partial z^2} = \frac{\varphi \mu C_t}{k_y} \frac{\partial P}{\partial t}$$

Las condiciones iniciales y de límite son:

$$P(x, y, z, 0) = P_{i}$$

$$\lim_{y \to \infty} P(x, y, z, t) = P_{i}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl}L_{xd})\frac{\delta P}{\delta y} = 0, 0 \le x < L_{xd}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, 0 \le z < L_{za}, L_{xd} \le x < L_{xl}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = -\frac{q\mu}{2k_{y}}, L_{za} \le z < L_{zb}, L_{xd} \le x < L_{xl}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, L_{zb} \le z < h_{z}, L_{xd} \le x \le L_{xl}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, L_{zb} \le z < h_{z}, L_{xd} \le x \le L_{xl}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, L_{zb} \le z < h_{z}, L_{xd} \le x \le L_{xl}$$

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd})\frac{\delta P}{\delta y} = 0, L_{zb} \le z < h_{z}, L_{xd} \le x \le L_{xl}$$

5.3.1 Solución Analítica para el Drawdown

Goode y Thambynayagam (1987) presentaron la siguiente solución analítica para la respuesta de presión en el pozo:

$$P_{i} - P_{wf}$$

$$= \frac{282.4q\mu B_{o}r'_{w}}{h_{x}h_{z}h_{y}} \left[\sqrt{\pi t_{D}} + \frac{h_{x}^{2}}{\pi^{2}v_{x}} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{erf}(v_{x}\pi n\sqrt{t_{D}})E_{n}^{2} + \frac{h_{x}h_{z}}{L_{w}v_{z}\pi} \sum_{m=1}^{\infty} \frac{1}{m} \operatorname{erf}(v_{z}\pi m\sqrt{t_{D}})E_{m} \cos(m\pi z_{e}) + \frac{h_{z}h_{x}}{2r'_{w}L_{w}}S_{m} \right]$$

En las siguientes ecuaciones, Sm es un factor de piel mecánico,

$$E_n = \frac{1}{nL_w} \left[\sin\left(\frac{n\pi L_{xl}}{h_x}\right) - \sin\left(\frac{n\pi L_{xd}}{h_x}\right) \right]$$
$$E_m = \frac{1}{4mr'_w} \left\{ \sin\left[\frac{m\pi}{h_z}\left(h_s + 2r'_w\right)\right] - \sin\left[\frac{m\pi}{h_z}\left(h_s - 2r'_w\right)\right] \right\}$$
$$z_e = \frac{1}{h_z}\left(h_s + 1.47r'_w\right)$$
$$t_D = \frac{0.0002637k_yt}{\varphi\mu c_t r'_w}$$

$$v_x = \frac{r'_w}{h_x} \sqrt{\frac{k_x}{k_y}}$$
$$v_x = \frac{r'_w}{h_z} \sqrt{\frac{k_x}{k_y}}$$
$$L_w = L_{xl} - L_{xd}$$
$$r'_w = \frac{L_{zb} - L_{za}}{4} = r_w (\frac{k_z}{k_y})^{1/4}$$

Esta solución puede ser simplificada por los intervalos de tiempo varios como sigue.

a) Flujo radial de tiempo temprano

La ecuación 11 se reduce a

$$P_{i} - P_{wf} = \frac{162.6q\mu B_{o}}{\sqrt{k_{z}k_{y}}L_{w}} \left[\log\left(\frac{\sqrt{k_{y}k_{z}}t}{\varphi\mu c_{t}r_{w}^{2}}\right) - 3.23 + 0.87S_{m} \right]$$

b) Flujo lineal de tiempo intermedio

$$P_{i} - P_{wf} = \frac{8.128qB_{o}}{L_{w}h_{z}} \sqrt{\frac{\mu t}{k_{y}\varphi c_{t}}} + \frac{141.2q\mu B_{o}}{L_{w}\sqrt{k_{z}k_{y}}}(S_{z} + S_{m})$$

Donde Sz es un seudo factor de piel resultante de la penetración parcial en la dirección vertical. El seudo factor de piel esta dado por:

$$S_{z} = \frac{0.07958h_{z}}{r'_{w}} [\Psi(\eta_{1}) + \Psi(\eta_{2}) - \Psi(\eta_{3}) - \Psi(\eta_{4})]$$

Donde Ψ es la función Spence dada por:

$$\Psi(\eta) = \sum_{m=1}^{\infty} \frac{\sin(m\eta)}{m^2} = -\int_0^{\eta} \ln\left[2\sin\left(\frac{u}{2}\right)\right] du$$

También:

$$\eta_1 = \frac{0.52\pi r'_w}{h_z}$$
$$\eta_2 = \frac{\pi}{h_z} (2h_s + 3.48r'_w)$$
$$\eta_3 = \frac{-3.48\pi r'_w}{h_z}$$
$$\eta_4 = \frac{\pi}{h_z} (2h_s - 0.52r'_w)$$

c) Flujo radial de tiempo intermedio tardío (Flujo radial horizontal)

$$P_{i} - P_{wf} = \frac{162.6q\mu B_{o}}{\sqrt{k_{x}k_{y}}h_{z}} \left[\log\left(\frac{k_{x}t}{\varphi\mu c_{t}L_{w}^{2}}\right) - 2.023 \right] + \frac{141.2q\mu B_{o}}{L_{w}\sqrt{k_{y}k_{z}}} \left(S_{z} + S_{m}\right)$$

d) Flujo linear de tiempo tardío (Flujo linear estado Pseudocontinuo)

$$P_{i} - P_{wf} = \frac{8.128qB_{o}}{h_{x}h_{z}} \sqrt{\frac{\mu t}{h_{y}\varphi c_{t}}} + \frac{141.2q\mu B_{o}}{L_{w}\sqrt{k_{y}k_{z}}} (S_{x} + S_{z} + S_{m})$$

Donde Sx es un seudo factor de piel resultante de la penetración parcial en la dirección x. Este factor de seudo piel está dada por:

$$S_{x} = \frac{0.6366 {h_{x}}^{2} L_{w}}{h_{z} \sqrt{\frac{k_{y}}{k_{x}}}} \sum_{n=1}^{\infty} \frac{{E_{n}}^{2}}{n}$$

5.3.2 Aproximaciones de tiempo para periodos de flujoa) Flujo radial de tiempo temprano (Flujo radial vertical)

El flujo radial de tiempo temprano termina aproximadamente en:

$$t_{erf1} = \frac{190.0h_s^{2.095} r_w^{-0.095} \varphi \mu c_t}{k_z}$$

b) Flujo lineal de tiempo intermedio

El periodo de flujo lineal de tiempo intermedio termina en aproximadamente:

$$t_{elf1} = \frac{20.8\varphi\mu L_w^2}{k_x}$$

Si el tiempo calculado por la ecuación es más grande que el de la ecuación significa que la longitud del pozo no fue lo suficientemente largo comparado al espesor de la formación para este período de flujo se desarrolle.

c) Flujo radial de tiempo intermedio tardío (Flujo radial horizontal)

El flujo radial de tiempo tardío empezará en aproximadamente:

$$t_{brf2} = \frac{1230.0\varphi\mu L_w^2}{k_x}$$

Y para un reservorio de ancho infinito terminará en aproximadamente:

$$t_{erf2} = \frac{297.0(L_{xl} + L_{xd})^{2.095} L_w^{-0.095} \varphi \mu c_t}{k_x}$$

Si el tiempo calculado por la ecuación es más grande que aquel calculado por la ecuación, entonces el pozo es largo comparado con la distancia a las extremidades del reservorio y el segundo período de flujo radial no se desarrolla.

5.3.3 Solución analítica para Buildup

Para buildup, la condición de límite interno dada por la ecuación es reemplazada por

$$\lim_{y \to \infty} (L_{zb} - L_{za})(L_{xl} - L_{xd}) \frac{\delta P}{\delta y} = 0, \qquad L_{za} \le z < L_{zb}, L_{xd} \le x < L_{xl}$$

Todas las otras condiciones de límites permanecen iguales. Goode y Thambynayagam (1987) presentaron la siguiente solución analítica para el buildup de presión en el pozo:

$$P_{i} - P_{ws}$$

$$= \frac{282.4q\mu B_{o}r'_{w}}{h_{x}h_{z}k_{y}} \left\{ \sqrt{\pi} \left(\sqrt{t_{D}} - \sqrt{\Delta t_{D}} \right) + \frac{h_{x}^{2}}{\pi^{2}v_{x}} \sum_{n=1}^{\infty} \frac{1}{n} \left[\operatorname{erf} \left(v_{x}\pi n \sqrt{t_{D}} \right) - \operatorname{erf} \left(v_{x}\pi n \sqrt{\Delta t_{D}} \right) \right] E_{n}^{2} + \frac{h_{x}h_{z}}{L_{w}v_{z}\pi} \sum_{m=1}^{\infty} \frac{1}{m} \left[\operatorname{erf} \left(v_{z}\pi m \sqrt{t_{D}} \right) - \operatorname{erf} \left(v_{z}\pi m \sqrt{\Delta t_{D}} \right) \right] E_{m} \cos \left(m \pi z_{e} \right) \right\}$$

Donde Δt es el cierre en tiempo (t-tp)

Dos escenarios de buildup de presión son considerados. El primero es el caso en que el reservorio está actuando como infinito $(h_x \rightarrow \infty)$. Este es probablemente el caso más común. El segundo es el caso de un reservorio de ancho finito, en que el transiente de la presión ha alcanzado todos los límites y el flujo linear de tiempo tardío es logrado antes del cierre.

La ecuación puede ser simplificada para los varios períodos de flujo como sigue:

5.3.3.1 Flujo radial de tiempo temprano (Flujo radial vertical)

Caso 1. Reservorio infinito $(h_x \rightarrow \infty)$.

$$P_i - P_{ws} = \frac{162.6q\mu B_o}{\sqrt{k_z k_y} L_w} \left[\log\left(\frac{tp + \Delta t}{\Delta t}\right) + \gamma_1 \right]$$

Donde

$$\gamma_{1} = \frac{L_{w}}{h_{z}} \sqrt{\frac{k_{z}}{k_{x}}} \left[\log\left(\frac{k_{x}t}{\varphi\mu c_{t}L_{w}^{2}}\right) - 2.023 \right] - \log t - \log\left(\frac{\sqrt{k_{z}k_{y}}}{\varphi\mu c_{t}r_{w}^{2}}\right) + 3.23$$
$$+ 0.87S_{z}$$

Caso 2. Reservorio de espesor finito

$$P_i - P_{ws} = \frac{162.6q\mu B_o}{\sqrt{k_z k_y L_w}} \left[\log\left(\frac{tp + \Delta t}{\Delta t}\right) + \gamma_2 \right]$$

Donde

$$\gamma_2 = \frac{0.05L_w}{h_z h_x} \sqrt{\frac{k_z t}{\varphi \mu c_t}} - \log\left(\frac{\sqrt{k_y k_z} t}{\varphi \mu c_t r_w^2}\right) + 3.23 + 0.87(S_x - S_z)$$

Para este tiempo, $t_p \gg \Delta t$ y log $(t_p + \Delta t)$ es aproximadamente igual a una constante. Por lo tanto, para Δt variable, γ_1 y γ_2 son aproximadamente constantes. Un gráfico de Horner producirá una línea recta con una pendiente determinada por la permeabilidad efectiva isotrópica para el plano y-z y la longitud horizontal del pozo.

5.3.3.2 Flujo Lineal de Tiempo Intermedio

Caso 1. Reservorio infinito $(h_x \rightarrow \infty)$.

$$P_i - P_{ws} = \frac{8.128qB_o}{h_z L_w} \sqrt{\frac{\mu\Delta t}{k_y \varphi c_t}} + \gamma_3$$

Donde

$$\gamma_{3} = \frac{162.6q\mu B_{o}}{h_{z}\sqrt{k_{x}k_{y}}} \left[\log\left(\frac{k_{x}t}{\varphi\mu c_{t}L_{w}^{2}}\right) - 2.023 \right]$$

Caso 2. Reservorio de espesor finito

$$P_i - P_{ws} = \frac{8.128qB_o}{h_z L_w} \sqrt{\frac{\mu}{k_y \varphi c_t}} \left(\sqrt{\Delta t} - \frac{L_w \sqrt{t}}{h_x}\right) + \frac{141.2q\mu B_o}{L_w \sqrt{k_y k_x}} S_x$$

Un gráfico de Δp versus la raíz cuadrada de Δt será linear.

5.3.3.3Flujo radial de tiempo intermedio tardío (Flujo radial horizontal)

Caso 1. Reservorio infinito $(h_x \rightarrow \infty)$.

$$P_i - P_{ws} = \frac{162.6q\mu B_o}{h_z \sqrt{k_x k_y}} \left[\log\left(\frac{tp + \Delta t}{\Delta t}\right) \right]$$

Caso 2. Reservorio de espesor finito

$$P_i - P_{ws} = \frac{162.6q\mu B_o}{h_z \sqrt{k_x k_y}} \left[\log\left(\frac{tp + \Delta t}{\Delta t}\right) + \gamma_4 \right]$$

Donde

$$\gamma_{4} = \frac{0.05}{h_{x}} \sqrt{\frac{k_{x}t}{\varphi\mu c_{t}} - \log\left(\frac{k_{x}t}{\varphi\mu c_{t}L_{w}^{2}}\right) + 2.023 + 0.87S_{x}}$$

La parte inicial del gráfico de Horner será linear para $t_p \gg \Delta t$. Sin embargo, cuando esta condición ya no se cumple, los datos se desviarán de la línea recta de Horner.

5.3.3.4 Flujo Linear de Tiempo Tardío (Flujo Linear Estado Pseudocontinuo)

Este es el segundo flujo linear que no existirá para el caso de reservorio infinito.

Caso 2. Reservorio de espesor finito

$$P_i - P_{ws} = \frac{8.128qB_o}{h_z h_x} \sqrt{\frac{\mu}{k_y \varphi c_t}} (\sqrt{t} - \sqrt{\Delta t})$$

5.3.4 Factores de Piel

Si los diferentes períodos de flujo son considerados separadamente, el factor de piel mecánico puede ser determinado.

5.3.4.1 Factores de Piel para Drawdown

a) Flujo radial de tiempo temprano (Flujo radial vertical)

$$S_m = 1.1513 \left[\frac{P_i - P_{wf}(1 hr)}{m_{1r}} - \log \left(\frac{\sqrt{k_y k_z}}{\varphi \mu c_t r_w^2} \right) + 3.23 \right]$$

Donde m_{1r} es el valor absoluto de la pendiente de la línea semilog y $P_{wf}(1hr)$ es leída en la línea semilog.

b) Flujo lineal de tiempo intermedio

$$S_m = \frac{0.058}{h_z} \sqrt{\frac{k_z}{\varphi \mu c_t} \left(\frac{P_i - P_{wf}(0 hr)}{m_{1l}}\right)} - S_z$$

Donde m_{1l} es la pendiente positiva del gráfico de la raíz cuadrada de tiempo y $P_{wf}(0hr)$ es la presión en t=0 obtenida extrapolando la línea recta hacia atrás a este tiempo.

c) Flujo radial de tiempo intermedio tardío (Flujo radial horizontal)

$$S_{m} = \frac{1.1513L_{w}}{h_{z}} \sqrt{\frac{k_{z}}{k_{x}}} \left[\frac{P_{i} - P_{wf}(1hr)}{m_{2r}} - \log\left(\frac{k_{x}}{\varphi\mu c_{t}L_{w}^{2}}\right) + 2.023 \right] - S_{z}$$

Donde m_{2r} es el valor absoluto de la pendiente de la línea semilog y $P_{wf}(1hr)$ es leída de la línea semilog.

d) Flujo linear de tiempo tardío (Flujo linear estado Pseudocontinuo)

$$S_{m} = \frac{0.058L_{w}}{h_{z}h_{x}} \sqrt{\frac{k_{z}}{\varphi\mu c_{t}}} \left(\frac{P_{i} - P_{wf}(0 hr)}{m_{2l}}\right) - (S_{x} + S_{z})$$

Donde m_{2l} es la pendiente positiva del gráfico de la raíz cuadrada de tiempo y $P_{wf}(0hr)$ es la presión en t=0 obtenida extrapolando la línea recta hacia atrás a este tiempo.

5.3.4.2 Factores de piel para Buildup

a)Caso 1. Reservorio infinito $(h_x \rightarrow \infty)$.

Flujo radial de tiempo temprano (Flujo radial vertical)

$$S_m = 1.1513 \left[\frac{P_{ws}(1hr) - P_{wf}(t_p)}{m_{1r}} - \log\left(\frac{\sqrt{k_y k_z}}{\varphi \mu c_t r_w^2}\right) + 3.23 \right]$$

Donde m_{1r} es el valor absoluto de la pendiente de la línea recta de Horner y $P_{ws}(1hr)$ es leída en la línea recta de Horner.

Flujo lineal de tiempo intermedio

$$S_m = \frac{0.058}{h_z} \sqrt{\frac{k_z}{\varphi \mu c_t} \left(\frac{P_{ws}(0hr) - P_{wf}(t_p)}{m_{1l}}\right) - S_z}$$

Donde m_{1l} es la pendiente positiva del gráfico de raíz cuadrada de tiempo y $P_{ws}(0hr)$ es la presión en $\Delta t=0$ obtenida extrapolando la línea recta hacia atrás a este tiempo.

Flujo radial de tiempo intermedio tardío (Flujo radial horizontal)

$$S_{m} = \frac{1.1513L_{w}}{h_{z}} \sqrt{\frac{k_{z}}{k_{x}}} \left[\frac{P_{ws}(1hr) - P_{wf}(t_{p})}{m_{2r}} - \log\left(\frac{k_{x}}{\varphi\mu c_{t}{L_{w}}^{2}} + 2.023\right) \right] - S_{z}$$

Donde m_{2r} es el valor absoluto de la pendiente de la línea recta de Horner y $P_{ws}(1hr)$ es leída en la línea recta de Horner.

b) Caso 2. Reservorio de espesor finito

Flujo linear de tiempo tardío (Flujo linear estado Pseudocontinuo)

$$S_m = \frac{0.058L_w}{h_z h_x} \sqrt{\frac{k_z}{\varphi \mu c_t} \left(\frac{P_{ws}(0hr) - P_{wf}(t_p)}{m_{2l}}\right) - (S_x + S_z)}$$

Donde m_{2l} es la pendiente positiva del gráfico de raíz cuadrada de tiempo y $P_{ws}(0hr)$ es obtenida extrapolando la línea recta hacia atrás a este tiempo.

CAPITULO 6

6. INDICE DE PRODUCTIVIDAD

6.1 Definición

El índice de productividad de un pozo es la relación entre:

- La tasa de producción del pozo y
- La diferencia entre la presión promedio del área de drenaje y la presión de fondo fluyente.

$$IP = \frac{q}{\bar{p} - p_{wf}}$$

Dos casos pueden ser distinguidos, dependiendo si la presión es medida en el flujo transiente o en el flujo pseudo-cotinuo. El primero corresponde a las pruebas de pozo iniciales y el segundo a las mediciones hechas durante la producción.

INDICE DE PRODUCTIVIDAD DURANTE EL PERIODO INFINITO (TRANSIENTE)

La presión promedio en el área de drenaje del pozo es cercana a la presión promedio del inicio de la prueba: $\bar{p} \approx p_i$

$$IP = \frac{kh}{162.6\beta\mu \left(\log \Delta t + \log \frac{k}{\phi\mu C_t r_w^2} - 3.23 + 0.87 S\right)}$$

Por lo que podemos observar el índice de productividad es una función decreciente del tiempo durante el flujo transiente.

 INDICE DE PRODUCTIVIDAD DURANTE EL FLUJO PSEUDO CONTINUO

Aquí el índice de productividad es constante

$$IP = \frac{kh}{162.6\beta\mu \left(\log\frac{A}{r_{w}^{2}} - \log C_{A} + 0.351 + 0.87 S\right)}$$

A: tamaño del reservorio

C_A: geometría pozo-reservorio

6.1.1 Índice de Productividad Real y Teórico

El índice de productividad real es el que es medido en el pozo. Mientras que el índice de productividad teórico es el que el pozo tendría si el factor de piel (S) fuera cero.

El índice de productividad teórico es usado para estimar la ganancia en productividad que se produciría en una estimulación, o la pérdida de productividad debido a la perforación parcial, la inclinación del pozo, etc.

$$IP_{Th} = \frac{q}{\left(\bar{p} - p_{wf}\right) - \Delta p_S}$$

 Δp_s es la caída de presión causada por el daño alrededor del pozo

$$\Delta p_S = 141.2 \frac{\mathrm{q}\beta\mu}{\mathrm{kh}} \mathrm{S}$$

6.2 Productividad en Pozos Horizontales

La perforación de pozos horizontales está incrementándose para la recuperación de hidrocarburos. Una de las mayores ventajas de un pozo horizontal sobre uno vertical, es el área de contacto más grande que hay entre el pozo horizontal y el reservorio, comparado con un pozo vertical en el mismo reservorio. Esto puede significativamente mejorar la productividad de dicho reservorio. Sin embargo la productividad de un pozo horizontal puede ser afectada considerablemente por la permeabilidad anisotrópica del reservorio.

6.2.1 Para Reservorios Homogéneos e Isotrópicos

El índice de productividad en el estado continúo estacionario para pozos horizontales dentro de reservorios homogéneos e isotrópicos esta dado por los siguientes métodos:

METODO DE JOSHI

$$a = \left(\frac{L}{2}\right) \left[0.5 + \sqrt{0.25 + \left(\frac{r_{eh}}{L}\right)^4} \right]^{0.5}$$

$$J_{h} = \frac{q_{h}}{\bar{p} - p_{wf}} = \frac{\frac{0.007078k_{h}h(\bar{p} - p_{wf})}{\mu_{o}\beta_{o}}}{\ln\left[\frac{a + \sqrt{a^{2} - \left(\frac{L}{2}\right)^{2}}}{\frac{L}{2}}\right] + \frac{h}{L}\left(\ln\frac{h}{2r_{w}}\right)}$$

• METODO DE GIGER et al.

$$J_{h} = \frac{q_{h}}{\bar{p} - p_{wf}} = \frac{\frac{0.007078k_{h}L}{\mu_{o}\beta_{o}}}{\frac{L}{h}ln\left[\frac{1 + \sqrt{1 - \left(\frac{L}{2r_{eh}}\right)^{2}}}{\frac{L}{2r_{eh}}}\right] + \left(ln\frac{h}{2\pi r_{w}}\right)}$$

METODO DE BOROSOV

$$J_h = \frac{q_h}{\bar{p} - p_{wf}} = \frac{\frac{0.007078k_h h}{\mu_o \beta_o}}{\ln\left(\frac{4r_e}{L}\right) + \left(\frac{h}{L}\right)\ln\left(\frac{h}{2\pi r_w}\right)}$$

$$J_V = \frac{\frac{0.007078kh}{\mu_0 \beta_0}}{ln\left(\frac{r_{ev}}{r_w}\right) + S}$$

L: longitud de la sección horizontal del pozo, ft

h: espesor de la formación, ft

r_w: radio del pozo, ft

r_{eh}: radio de drenaje del pozo horizontal, ft= $\sqrt{\frac{2 x (acres) x 43560}{\pi}}$ r_{ev}: radio de drenaje del pozo vertical, ft= $\sqrt{\frac{(acres) x 43560}{\pi}}$ Jh: índice de productividad para pozos horizontales, stb/(day/psi)

Jv: índice de productividad para pozos verticales, stb/(day/psi)

6.2.1.1 Problema

Un pozo horizontal el cual tiene una sección horizontal L=1250 ft de longitud, es perforado en un reservorio con las siguientes características:

h=170 ft, rw=0.39 ft, Ø=4.9%, βo=1.275 rb/stb, y μ=0.75 cp.

Calcular el índice de productividad usando varios métodos si un pozo vertical drena 80 acres, kv=kh=85md

SOLUCIÓN:

Si el espaciamiento de un pozo vertical es de 80 acres, entonces un pozo horizontal de longitud 1250 ft podría drenar cerca de 160 acres. Para un drenaje de un pozo vertical de 80 acres, el radio de drenaje para un área de drenaje circular es:

$$r_{ev} = \sqrt{\frac{\left(80acres * 43560\frac{ft^2}{acre}\right)}{\pi}} = 1053ft$$

Entonces el índice de productividad para un pozo vertical es el siguiente:

$$J_V = \frac{\frac{0.007078(85)(170)}{(0.75)(1.275)}}{\ln\left(\frac{1053}{0.39}\right) + 0} = 13.54 \, stb/(day/psi)$$

El radio de drenaje de un pozo horizontal que drena 160 acres es:

$$r_{eh} = \sqrt{\frac{\left(2 * 80 a cres * 43560 \frac{ft^2}{a cre}\right)}{\pi}} = 1489 ft$$

TABLA DE RESULTADOS		
METODO	Jh	Jh/Jv
JOSHI	46.54	3.44
GIGER	51.16	3.78
BOROSOV	49.89	3.68

Tabla 6-1 Tabla de resultados de índices de productividad

6.2.2 Para Reservorios homogéneos y Anisotrópicos

Muchos reservorios son anisotrópicos y tienen diferentes valores de permeabilidad en diferentes direcciones. Por ejemplo, en un reservorio laminado, la permeabilidad vertical es usualmente mucho menor que la permeabilidad horizontal.

Un reservorio que es interceptado por un gran número de fracturas verticales tendrá mayor permeabilidad vertical que permeabilidad horizontal. La anisotropía de la permeabilidad puede tener un considerable efecto sobre la productividad de un pozo horizontal.

METODO DE RENARD Y DUPUY

$$J_{h} = \frac{0.007078k_{h}h}{\mu_{o}\beta_{o}} * \left[\frac{1}{\cosh^{-1}(x) + \left(\frac{\beta h}{L}\right)\ln(\frac{h}{2\pi r'_{w}})}\right]$$

METODO DE JOSHI

$$J_h = \frac{0.007078k_h h}{\mu_o \beta_o \ln\left[\frac{a + \sqrt{a^{2-\left(\frac{L}{2}\right)^2}}}{\frac{L}{2}}\right] + \left(\frac{\beta h}{L}\right) \ln\left(\frac{\beta h}{2r_w}\right)}$$

Donde:

$$r'_w = \frac{1+\beta}{2\beta}r_w$$

$$\beta = \sqrt{\frac{k_h}{k_v}};$$

$$a = \left(\frac{L}{2}\right) \left[0.5 + \sqrt{0.25 + \left(\frac{r_{eh}}{L}\right)^4}\right]^{0.5}$$

$$x = \frac{2a}{L}$$

6.2.2.1 Problema

Dado un pozo con las siguientes características y parámetros del reservorio:

L=2000 ft, A=160 acres, kh=10md, h=45ft, μ o=0.45 cp, β o=1.225 rb/stb, rw=0.39 ft. Calcular el índice de productividad a distintos valores de permeabilidad horizontal y vertical, con las siguientes relaciones kv/kh=0.1, 0.5, y 1.0

SOLUCIÓN:

Los cálculos preliminares son:

Para cada relación de permeabilidad (0.1, 0.5 y 1.0)
$$\beta = \sqrt{\frac{1}{0.1}} = 3.162 \qquad \beta = \sqrt{\frac{1}{0.5}} = 1.414 \qquad \beta = \sqrt{\frac{1}{1}} = 1.0$$
$$r'_{w} = \frac{1+\beta}{2\beta} r_{w} = \frac{1+3.162}{2(3.162)} (0.39) = 0.2567$$
$$r'_{w} = \frac{1+\beta}{2\beta} r_{w} = \frac{1+1.414}{2(1.414)} (0.39) = 0.3329$$
$$r'_{w} = \frac{1+\beta}{2\beta} r_{w} = \frac{1+1}{2(1)} (0.39) = 0.39$$
$$a = \left(\frac{2000}{2}\right) \left[0.5 + \sqrt{0.25 + \left(\frac{1489}{2000}\right)^{4}} \right]^{0.5} = 1665$$
$$x = \frac{2(1665)}{2000} = 1.665$$

Reemplazando en las fórmulas de cada método tenemos los siguientes Jh:

METODO	ANISOTROPIA		
	Kv/Kh=0.1	Kv/Kh=0.5	Kv/Kh=1
Renard y Dupuy	4.43	4.48	4.97
Joshi	3.94	4.67	4.86

Tabla 6-2 Tabla de resultados de relación de permeabilidades vertical y horizontal en yacimientos Anisotrópicos

CAPITULO 7

7. DESARROLLO DE PROBLEMAS DE CAMPO

7.1 Introducción

Se obtuvieron los datos de pruebas de presión de 4 pozos, (2 Pozos verticales ESPOL-01 y ESPOL-02, y 2 Pozos horizontales ESPOL-01H y ESPOL-02H) de distintos campos del Oriente ecuatoriano, en los cuales se realizo pruebas de restauración de presión(buildup) y drawdown, con la finalidad de cuantificar los valores de presiones existentes en el yacimiento Pi; la magnitud del daño o estimulación S; el valor de las permeabilidades horizontal Kh y vertical Kv, para fines de evaluación de la formación y cuantificar la capacidad de cada pozo.

La interpretación se realizará con la ayuda del programa PANSYSTEM de EPS (Edimburg Petroleum Services).

7.2 Análisis de la Prueba de Restauración de Presión del Pozo Vertical ESPOL-01

7.2.1 Características de la Prueba de Presión del Pozo ESPOL-01

El presente Análisis de Restauración de Presión corresponde a la arena X del pozo ESPOL-01 que tiene dos intervalos disparados: de 10160 - 10176 (16 pies) y de 10189- 10215 (26 pies).

El pozo produjo un Qt = 1326 BBL/día, con un BSW de 14.0% de un crudo de 19.6 grados API. A continuación se presentan los diferentes eventos que se desarrollaron durante la prueba de producción y luego la restauración:

TIEMPO (hrs)		EVENTO
t1	14.3	Se abre el pozo
t2	31.2	Se cierra el pozo
t3	46.9	Fin de la prueba

Tabla 7-1 Tabla de eventos durante la prueba de producción y restauración del pozo vertical ESPOL 01

El diagrama de registro de la prueba de restauración indica que se tuvo una prueba de producción de 16.9 horas y un cierre de 15.7 horas tal como se observa en la siguiente figura:

Fig. 7.1 GRAFICO DE LA DATA DE PRESIONES VS TIEMPO DEL POZO ESPOL 01

En el registro de presión se utilizó el sensor Zi-9578 que fue asentado en el No-Go ubicado a 10011 ft. Los valores de presión del yacimiento X serán reportados a la mitad de las perforaciones (mp) estimada a 10189 ft.

Para el proceso de cálculo se han utilizado los parámetros básicos del yacimiento proporcionados por el departamento de Ingeniería de Petróleos de la empresa operadora del campo y se han determinado los datos de análisis PVT: Pb, Rs, Bo a partir de la correlación de LASATER y µo a partir de la correlación de Beggs et al, aplicando el software de Interpretación de Presiones Pansystem de EPS.

7.2.2 Datos Básicos para la Evaluación

A continuación se presentaran las tablas con la información básica para la respectiva evaluación.

Datos de la prueba de producción:

1140 BPPD
186 BAPP
1326 BFPD
14 %
19.6

Tabla 7-2 Tabla de datos de la prueba de producción del pozo vertical ESPOL 01

Parámetros del estrato:

Ht	62 ft
Hn	48 ft
Ø	18 %
Rw	0.29 ft
Ту	211 °F

Tabla 7-3 Tabla de parámetros del estrato del pozo vertical ESPOL

Parámetros del fluido:

Во	1.2099 rb/stb
Bw	1.0383 rb/stb
Rs	281scf/bbl
μο	2.18 cps
Ct	1.3221e-5 psi ⁻¹
GOR	250 scf/bbl
γg	1.21

Tabla 7-4 Tabla de parámetros del fluido del pozo vertical ESPOL 01

Presiones:

Pwf @ Sensor (10011')	= 1937	Psi
Pwf@ mp (10189')	= 2013	Psi
Pws @ Sensor (10011')	= 2522	Psi
Pws @ mp (10189')	= 2598	Psi
P Burbuja	= 1167	Psi

Tabla 7-5 Tabla de presiones del pozo vertical ESPOL 01

7.2.3 Interpretación

En la gráfica siguiente de la derivada, observamos que se presentan 3 etapas, donde la primera corresponde al efecto de almacenamiento, la segunda nos indica el flujo en el reservorio y la tercera parte nos indica la presencia del efecto de límite.

El modelo de almacenamiento de la zona I es considerado constante. La segunda parte corresponde en este caso a un flujo en el reservorio de tipo radial, lo cual se denota mediante la estabilización de la derivada (m=0). Y en la parte Final de la curva se presenta el efecto de límite, que en este caso, se comporta como una barrera cercana debido a la presencia de un canal.

FIG 7-2 GRAFICO DE LA DERIVADA DE LA PRESION VS TIEMPO EQUIVALENTE DEL POZO ESPOL 01

Adicionalmente, presentamos la curva semilogarítmica, en la cual se denota una pendiente correspondiente al flujo radial y a continuación la curva tiende a disminuir su pendiente debido al efecto de límite.

FIG 7.3 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DE HORNER DEL POZO ESPOL 01

7.2.4 Resultados de la Interpretación

Como resultado del ajuste de las curvas mediante la aplicación del software, tanto de la curva semilogarítmica, como de la derivada se han obtenido los siguientes estimados de los parámetros del reservorio:

Pendiente	-41.24 psi/ciclo
K	284.9 md
ΔpS	305.11 psi
S	8.52
P* (@sensor)	2551 Psi
P* (@ mp)	2658 Psi

METODO DE HORNER

METODO DE LA DERIVADA

Cs	0.0048 bbl/psi
Cd	443.23
K	287 md
S	8.7
Pi @ sensor	2579 psi
Pi @ mp	2714 psi

RESULTADOS DE PRODUCTIVIDAD		
J actual	2.17 bbl/dia/psi	
J ideal	5.4 bbl/dia/psi	
EF	0.4	
Q max	4380 bbl/dia	

Modelos de Flujo:

ALMACENAJE	EFECTO DE LLENADO CONSTANTE
FLUJO DE RESERVORIO	FLUJO RADIAL HOMOGENEO
LIMITE	FALLAS PARALELAS O CANAL

Tabla 7-6 TABLAS DE RESULTADOS DEL POZO ESPOL-01

FIG 7.4 GRAFICO IPR DEL POZO ESPOL 01

131

7.3 Análisis de la Prueba de Restauración de Presión del Pozo Horizontal ESPOL-01H

7.3.1 Características de la Prueba de Presión del Pozo ESPOL-01

El presente Análisis de Restauración de Presión corresponde a la arena X del pozo ESPOL-01H, con sección horizontal Lw=427 ft que tiene el intervalo disparado: de 10346- 10773 (427 pies) MD o **9382-9431 (49 pies)TVD**.

El pozo produjo un Qt = 342BBL/día, con un BSW de 23.0% de un crudo de 26 grados API. A continuación se presentan los diferentes eventos que se desarrollaron durante la prueba de producción y luego la restauración:

TIEMPO (hrs)		EVENTO
t1	8.14	Se abre el pozo
t2	32.52	Se cierra el pozo
t3	60.1	Fin de la prueba

Tabla 7-7 Tabla de eventos durante la prueba de producción y restauración del pozo horizontal ESPOL 01H

El diagrama de registro de la prueba de restauración indica que se tuvo una prueba de producción de 24.4 horas y un cierre de 27.6 horas tal como se observa en la siguiente figura:

FIGURA 7.5 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZO ESPOL 01H

En el registro de presión se utilizó el sensor Zi-1068 que fue asentado en el No-Go ubicado a 8656 ft. Los valores de presión del yacimiento X serán reportados a la mitad de las perforaciones (mp) estimada a 9407 ft TVD.

Para el proceso de cálculo se han utilizado los parámetros básicos del yacimiento proporcionados por el departamento de Ingeniería de Petróleos de la empresa operadora del campo y se han determinado los datos de análisis PVT: Pb, Rs, Bo a partir de la correlación de LASATER y µo a partir de la correlación de Beal et al, aplicando el software de Interpretación de Presiones Pansystem de EPS.

7.3.2 Datos Básicos para la Evaluación

A continuación se presentaran las tablas con la información básica para la respectiva evaluación.

Datos de la prueba de producción:

Qo	263 BPPD
Qw	79 BAPP
Qt	342 BFPD
BSW	23 %
API	26

Tabla 7-8 Tabla de datos de la prueba de producción del pozo horizontalESPOL01H

Parámetros del estrato:

Ht	50 ft
Hn	35 ft
Ø	15.1 %
Rw	0.255ft
Ту	200 °F

Tabla 7-9 Tabla de parámetros del estrato del pozo horizontal ESPOL 01H

Parámetros del fluido:

Во	1.1817 rb/stb
Bw	1.0336 rb/stb
Rs	206 scf/bbl
μο	2.3623 cps
Ct	6.587e-4 psi ⁻¹
GOR	215 scf/bbl
γg	1.21

Tabla 7-10 Tabla de parámetros del fluido del pozo horizontal ESPOL 01H

Presiones:

Pwf @ Sensor (8656')	= 726	Psi	
Pwf@ mp (9407')	= 1031	Psi	
Pws @ Sensor (8656')	= 793	Psi	
Pws @ mp (9407')	= 1098	Psi	
P Burbuja	= 799.4	psi	

Tabla 7-11 Tabla de presiones del pozo horizontal ESPOL 01H

7.3.3 Interpretación

En la gráfica siguiente que corresponde a la derivada observamos que esta curva se divide en 4 zonas definidas de la siguiente forma: La **zona I** refleja el efecto de almacenamiento, la cual no se presenta definida, con un valor estimado de Cs=0.0172 bbl/psi; sin embargo a continuación se presenta el comportamiento de un pozo fracturado.

En **la zona II** se presenta un **flujo radial temprano** (m=0) a 1.21hrs, el cual se debe a un flujo radial vertical que se produce en un plano vertical perpendicular al pozo horizontal, en donde se determina la permeabilidad vertical (Kv); este flujo ocurre cuando los límites del tope y fondo de la formación no han sido alcanzados.

La zona III, pertenece a un flujo lineal intermedio el cual está caracterizado por una pendiente m=1/2. La zona IV corresponde al flujo radial tardío (m=0) a 2.17hrs, en donde se determina la permeabilidad horizontal (Kh) y la presión del reservorio (Pi).

Finalmente a continuación de la zona IV se presenta el efecto de límite que corresponde a un comportamiento de una barrera cercana permeable conocida como U SHAPED FAULT (Fallas en Forma de U).

FIG. 7.6 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 01H

Adicionalmente, presentamos la curva semilogarítmica, en la cual se denota una pendiente correspondiente al flujo radial y a continuación la curva tiende a disminuir su pendiente debido al efecto de límite.

FIG. 7.7 GRAFICA DEL TIEMPO DE HORNER DEL POZO ESPOL 01H

7.3.4 Resultados de la Interpretación

Como resultado del ajuste de las curvas mediante la aplicación del software, tanto de la semilogarítmica y de la derivada se han obtenido los siguientes estimados de los parámetros:

Parámetros Petrofísicos:

K (permeabilidad horizontal radial)	80 md
Kz(permeabilidad vertical)	12 md
Kbar(permeabilidad vertical promedio)	35 md
Kh(capacidad de flujo)	13950 md ft

Efecto de Daño:

S (Flujo radial vertical)	2.8
S(Flujo radial horizontal)	2.7

Presiones:

P*@8656 TVD	788 psi
P*@9407 TVD	1098 psi
Pi@8656 TVD	829 psi
Pi@9407 TVD	1134 psi

Modelos de Flujo:

ALMACENAJE	EFECTO DE LLENADO CONSTANTE
FLUJO DE RESERVORIO	DOBLE POROSIDAD
LIMITE	FALLAS EN FORMA DE U

RESULTADOS DE PRODUCTIVIDAD		
J actual	5.1 bbl/dia/psi	
J ideal	5.9 bbl/dia/psi	
EF	0.79	
Q max	3782 bbl/dia	
Table 7.12 Tables de requitedes del para Herizantel ESDOL 01		

Tabla 7-12 Tablas de resultados del pozo Horizontal ESPOL-01H

FIG. 7-8 GRAFICO IPR DEL POZO ESPOL 01H

7.4Análisis de la Prueba de Restauración de Presión del Pozo Vertical ESPOL-02

7.4.1 Características de la Prueba de Presión del Pozo ESPOL-02

El presente Análisis de Restauración de Presión corresponde a la arena Y del pozo ESPOL-02 con un el intervalo disparado que va de: 10227 - 10257 MD.

El pozo produjo un Qt = 576 BBL/día, con un BSW de 81.0% de un crudo de 30.6 grados API. A continuación se presentan los diferentes eventos que se desarrollaron durante la prueba de producción y luego la restauración:

TIEMPO (hrs)		EVENTO
t1	2.1	Se abre el pozo
t2	21.15	Se cierra el pozo
t3	43.13	Fin de la prueba

Tabla 7-13 Tabla de eventos durante la prueba de producción y restauración del pozo vertical ESPOL 02

El diagrama de registro de la prueba de restauración indica que se tuvo una prueba de producción de 19.05 horas y un cierre de 22 horas tal como se observa en la siguiente figura:

FIG. 7-9 GRAFICO DE LA DATA DE PRESIONES VS TIEMPO DEL POZO ESPOL 02

En el registro de presión se utilizó el sensor Zi-1012 que fue asentado en el No-Go ubicado a 10032 ft. Los valores de presión del yacimiento Y serán reportados a la mitad de las perforaciones (mp) estimada a 10242 ft.

Para el proceso de cálculo se han utilizado los parámetros básicos del yacimiento proporcionados por el departamento de Ingeniería de Petróleos de la empresa operadora del campo donde esta el pozo y se han determinado los datos de análisis PVT: Pb, Rs, Bo a partir de la correlación de VASQUEZ Y BEGGS y µo a partir de la correlación de Beggs et al, aplicando el software de Interpretación de Presiones Pansystem de EPS.

7.4.2 Datos Básicos para la Evaluación

A continuación se presentaran las tablas con la información básica para la respectiva evaluación.

Datos de la prueba de producción:

Qo	110 BPPD
Qw	466 BAPP
Qt	576 BFPD
BSW	81 %
API	30.6

Tabla 7-14 Tabla de datos de la prueba de producción del pozo vertical ESPOL 02

Parámetros del estrato:

Ht	35 ft
Hn	17 ft
Ø	13 %
Rw	0.29 ft
Ту	234 °F

 Tabla 7-15 Tabla de parámetros del estrato del pozo vertical ESPOL 02

Parámetros del fluido:

Во	1.03437 rb/stb
Bw	1.04655 rb/stb
Rs	18 scf/bbl
μο	4.92 cps
Ct	8.0508 e-5 psi ⁻¹
GOR	18 scf/bbl
гд	1.5

 Tabla 7-16 Tabla de parámetros del fluido del pozo vertical ESPOL 02

Presiones:

Pwf @ Sensor (10032')MD	= 1075	Psi
Pwf@ mp (10242')MD	= 1164	Psi
Pws @ Sensor (10032')MD	= 3469	Psi
Pws @ mp (10242')MD	= 3558	Psi
P Burbuja	= 99	Psi

Tabla 7-17 Tabla de presiones del pozo vertical ESPOL 02

7.4.3 Interpretación

En la gráfica siguiente de la derivada, observamos que se presentan 3 etapas, donde la primera corresponde al efecto de almacenamiento, la segunda nos indica el flujo en el reservorio y la tercera parte nos indica la presencia del efecto de límite.

El modelo de almacenamiento de la zona I es considerado constante. La segunda parte corresponde en este caso a un flujo en el reservorio de tipo radial, lo cual se denota mediante la estabilización de la derivada (m=0). Y en la parte Final de la curva se presenta el efecto de límite, que en este caso, se comporta como una barrera cercana debido a la presencia de un canal.

FIG 7-10 GRAFICO DE LA DERIVADA DE LA PRESION VS TIEMPO EQUIVALENTE DEL POZO ESPOL 02

Adicionalmente, presentamos la curva semilogarítmica, en la cual se denota una pendiente correspondiente al flujo radial y a continuación la curva tiende a disminuir su pendiente debido al efecto de límite.

FIG 7-11 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DE HORNER DEL POZO ESPOL 02

7.4.4 Resultados de la Interpretación

Como resultado del ajuste de las curvas mediante la aplicación del software, tanto de la curva semilogarítmica, como de la derivada se han obtenido los siguientes estimados de los parámetros del reservorio:

K	37 md
ΔpS	63 psi
S	0.19
P* (@sensor)	3404 Psi
P* (@ mp)	3538 Psi

METODO DE HORNER

METODO DE LA DERIVADA

Cs	0.00086 bbl/psi
K	40 md
S	0.7
Pi @ sensor	4027 psi
Pi @ mp	4161 psi

RESULTADOS DE PRODUCTIVIDAD			
J actual	0.24 bbl/dia/psi		
J ideal	0.27 bbl/dia/psi		
EF	0.88		
Q max	800 bbl/dia		

Modelos de Flujo:

ALMACENAJE	EFECTO DE LLENADO CONSTANTE
FLUJO DE RESERVORIO	FLUJO RADIAL HOMOGENEO
LIMITE	FALLAS PARALELAS O CANAL

Tabla 7-18 TABLAS DE RESULTADOS DEL POZO ESPOL-02

FIG 7.12 GRAFICO IPR DEL POZO ESPOL 02

7.5 Análisis de la Prueba de Restauración de Presión del Pozo Horizontal ESPOL-02H

7.5.1 Características de la Prueba de Presión del Pozo ESPOL-02H

El presente Análisis de Presión (**DRAWDOWN**) corresponde a la arena Z del pozo ESPOL-02H, que tiene una sección horizontal de 1433 ft.

El pozo produjo un Qt = 1325 BBL/día, con un BSW de 19.0% de un crudo de 16.5 grados API. A continuación se presentan los diferentes eventos que se desarrollaron durante la prueba de restauración y luego de producción.

	TIEMPO (hrs)	EVENTO
t1	0.02	Se cierra el pozo
t2	22.2	Se abre el pozo
t3	54	Fin de la prueba

Tabla 7-19 Tabla de eventos durante la prueba de producción y restauración del pozo horizontal ESPOL 02H

El diagrama de registro de la prueba de restauración indica que se tuvo un cierre de 22.6 horas y una prueba de producción de 31.8 horas, tal como se observa en la siguiente figura:

FIGURA 7.13 GRAFICA DE LA DATA DE PRESIONES VS TIEMPO DEL POZO ESPOL 02H

Para este pozo, podemos observar en la gráfica de presión vs tiempo, que hubo un problema de registro de presiones durante el cierre del pozo (parte recta antes del Drawdown) por lo que se ha completado con datos de presión ficticios que siguen la tendencia del cierre.

FIG. 7.14 GRAFICA SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (BUILDUP)

Con la información registrada en el pozo horizontal, no es posible realizar un análisis e interpretación en el gráfico de la derivada del Buildup anterior, por lo que hemos optado por hacer un análisis en la parte del Drawdown.

En el registro de presión se utilizó el sensor Zi-1768 que fue asentado en el No-Go ubicado a 7713 ft TVD. Los valores de presión del yacimiento Z serán reportados a la mitad de las perforaciones (mp) estimada a 8634 ft TVD.
Para el proceso de cálculo se han utilizado los parámetros básicos del yacimiento proporcionados por el departamento de Ingeniería de Petróleos de la empresa operadora del campo donde se perforo este pozo y se han determinado los datos de análisis PVT: Pb, Rs, Bo a partir de la correlación de LASATER y µo a partir de la correlación de Beal et al, aplicando el software de Interpretación de Presiones Pansystem de EPS.

7.5.2 Datos Básicos para la Evaluación

A continuación se presentaran las tablas con la información básica para la respectiva evaluación.

Qo	1070 BPPD				
Qw	255 BAPP				
Qt	1325 BFPD				
BSW	19 %				
API	16.5				

Datos de la prueba de producción:

Tabla 7-20 Tabla de datos de la prueba de producción del pozo ESPOL- 02H

Hn	20 ft
Ø	23 %
rw	0.25 ft
Ту	210 °F

 Tabla 7-21 Tabla de parámetros del estrato del pozo horizontal ESPOL 02H

Parámetros del fluido:

Во	1.07533 rb/stb			
Bw	1.0389 rb/stb			
Rs	47 scf/bbl			
μο	18 cps			
Ct	1.2489e-5 psi ⁻¹			
GOR	50 scf/bbl			
γg	.75			

Tabla 7-22 Tabla de parámetros del fluido del pozo horizontal ESPOL 02H

Presiones:

Pwf @ Sensor (7713')	= 1067	Psi
Pwf@ mp (8634')	= 1730	Psi
Pws @ Sensor (7713')	= 1912	Psi
Pws @ mp (8634')	= 2575	Psi
P Burbuja	= 380	Psi

Tabla 7-23 Tabla de presiones del pozo horizontal ESPOL 02H

En la gráfica siguiente que corresponde a la derivada observamos que EXISTE un límite con presión constante ya que la derivada comienza a disminuir a medida que el tiempo aumenta. También se observa que es un pozo fracturado y que presenta doble porosidad por ese pico negativo que se ve en la derivada.

FIG. 7.15 GRAFICO SEMILOG DE LA PRESION VS TIEMPO DEL POZO ESPOL 02H (DRAWDOWN)

Adicionalmente, presentamos la curva semilogarítmica, en la cual se denota una pendiente correspondiente al flujo radial y a continuación la curva tiende a disminuir su pendiente debido al efecto de límite.

FIG. 7.16 GRAFICA DEL TIEMPO DE HORNER DEL POZO ESPOL 02H

7.5.4 Resultados de la Interpretación

Como resultado del ajuste de las curvas mediante la aplicación del software, tanto de la semilogarítmica y de la derivada se han obtenido los siguientes estimados de los parámetros:

Parámetros Petrofísicos:

K (permeabilidad horizontal radial)	45 md
Kz(permeabilidad vertical)	7.8 md
Kbar(permeabilidad vertical promedio)	19 md
Kh(capacidad de flujo)	86700 md ft

Efecto de Daño:

S (Flujo radial vertical)	-1.4
S(Flujo radial horizontal)	-1.5

Presiones:

P*@7713 TVD	1912 psi
P*@8634 TVD	2452 psi
Pi@7713 TVD	1920 psi
Pi@8634 TVD	2560 psi

Modelos de Flujo:

ALMACENAJE	EFECTO DE LLENADO CONSTANTE		
FLUJO DE RESERVORIO	DOBLE POROSIDAD		
LIMITE	PRESIÓN CONSTANTE		

RESULTADOS DE PRODUCTIVIDAD			
J actual 1.55 bbl/dia/psi			
J ideal	1.4 bbl/dia/psi		
EF 1.09			
Q max	2717 bbl/dia		

Tabla 7-24 Tablas de resultados del pozo Horizontal ESPOL-02H

CAPITULO 8

8. CONCLUSIONES Y RECOMENDACIONES

8.1 Conclusiones

Al culminar este Trabajo de Graduación podemos concluir:

- Que el conocimiento de las presiones de un yacimiento es uno de los parámetros más valorados y útiles en la ingeniería de reservorios. Directa o indirectamente estos intervienen en todas las fases de cálculos de la ingeniería del yacimiento, por lo tanto la determinación precisa de los parámetros del reservorio es una fase muy importante en el desarrollo y explotación de un campo.
- 2. El análisis de las pruebas de presión de pozos provee información tanto del yacimiento como del pozo. La información geológica, geofísica y petrofísica se utiliza siempre que sea posible junto con la información obtenida a través de pruebas de presión, para así construir un modelo de reservorio y poder predecir el comportamiento del campo y la recuperación del fluido para diferentes escenarios de operación.

- 3. Es mucho más complicado interpretar datos de pruebas de presión de un pozo horizontal que de un pozo vertical debido a la dificultad en identificar los diferentes regímenes de flujo tridimensionales en un pozo horizontal, los cuales pueden estar ausentes a causa del efecto de almacenamiento, geometría del pozo, heterogeneidades del reservorio, etc. a diferencia del régimen de flujo unidimensional en un pozo vertical.
- 4. Es importante la estimación de la permeabilidad vertical en pruebas de presión en un pozo horizontal debido a que el flujo en el reservorio del petróleo en este tipo de pozo se da tanto en dirección horizontal como en dirección vertical, a diferencia de un pozo vertical en donde solo se evidencia un flujo horizontal a través del reservorio.
- 5. El efecto de almacenaje es mucho más significante en un pozo horizontal que en un pozo vertical debido al gran volumen que posee el pozo y también a causa de que la anisotropía del reservorio reduce la permeabilidad efectiva en un pozo horizontal.
- 6. La productividad de un pozo horizontal es mayor a la de un pozo vertical debido a que esta dependerá principalmente a la longitud del pozo horizontal, la cual se evidenciará en una mayor área de drenaje; y además se necesitará una menor caída de presión para provocar el influjo dentro del pozo.

$$J_V = \frac{\frac{0.007078kh}{\mu_o \beta_o}}{ln\left(\frac{r_{ev}}{r_w}\right) + S}$$

$$J_h = \frac{q_h}{\bar{p} - p_{wf}} = \frac{\frac{0.007078k_h h}{\mu_o \beta_o}}{\ln\left(\frac{4r_e}{L}\right) + \left(\frac{h}{L}\right)\ln\left(\frac{h}{2\pi r_w}\right)}$$

7. El objetivo de la aplicación del software de interpretación de presiones PanSystem fue el de proveer un sistema que permita al usuario ejecutar eficientemente todas las tareas asociadas con el diseño, análisis y simulación de la data de pruebas de pozo para evaluar de forma precisa las características y propiedades del pozo-yacimiento, aplicado a varios pozos y yacimientos del Oriente Ecuatoriano.

	Pozos Verticales		
RESULTADOS	Espol-01	Espol-02	
Kh	286 md	40 md	
Κv	ХХ	ХХ	
S	8,6	0,7	
ΔpS	305 psi	63 psi	
Cs	0.0048 bbl/psi	0,000863 bbl/psi	
Pi @ mp	2714 psi	4161 psi	
J actual	2.17 bbl/dia/psi	0.24 bbl/dia/psi	
J ideal	5.4 bbl/dia/psi	0.27 bbl/dia/psi	
EF	0,4	0,88	
Q max	4380 bbl/dia	800 bbl/dia	
Almacenamiento	Efec. Llenado Cte.	Efec. Llenado Cte.	
Flujo de Reservorio	Flujo Radial Homogeneo	Flujo Radial Homogeneo	
Efecto de Límite	Fallas Paralelas o Canal Fallas Paralelas o Can		

8.

 Tabla 8-1 Tabla General de resultados de pozos verticales

	Pozos Horizontales			
RESULTADOS	Espol-01H Espol-02H			
Kh	80 md	45 md		
Kv	12 md	7.8 md		
S	2,75	-1,45		
ΔpS	27 psi	(-61) psi		
Cs	0,0172 bbl/psi	0,013 bbl/psi		
Pi @ mp	1134 psi	2560 psi		
J actual	5.1 bbl/dia/psi	1.55 bbl/dia/psi		
J ideal	5.9 bbl/dia/psi	1.4 bbl/dia/psi		
EF	0,79	1,09		
Q max	3782 bbl/dia	2717 bbl/dia		
Almacenamiento	Efec. Llenado Cte.	Efec. Llenado Cte.		
Flujo de Reservorio	Doble porosidad	Doble porosidad		
Efecto de Límite	Fallas en forma de U	Presión constante		

Tabla 8-2 Tabla General de resultados de pozos horizontales

8.2 Recomendaciones

Se recomienda lo siguiente:

- Al ingresar la data de las pruebas de presión que se desea analizar, se debe remover previamente los ruidos que puedan presentarse durante el registro del sensor. El software Pansystem es muy eficiente y permite eliminar estas inconformidades para mejorar principalmente la evaluación y ajuste de la curva de la derivada.
- 2. Al momento de ingresar los datos (Parámetros del pozo, del reservorio y de los fluidos) requeridos por el software para el análisis, debemos fijarnos bien en las unidades, y seleccionar adecuadamente la correlación que se adapte mejor al fluido, tomando como parámetro básico referencial conocido, la Presión de saturación del yacimiento. Específicamente de correlaciones de análisis PVT del yacimiento en estudio, en caso de no disponer de un reporte PVT de laboratorio; para así calcular adecuadamente el resto de parámetros necesarios para el análisis.
- 3. Durante la selección de los modelos (Almacenamiento, Reservorio y de Límite), se debe analizar y establecer cuidadosamente el modelo que más se ajuste a nuestro caso real, para la caracterización del reservorio, ya que cualquier error cometido en esta fase, se traducirá directamente en errores mayores en los parámetros de reservorio estimados por el proceso de análisis. Por lo tanto es importante en primer lugar conocer el comportamiento teórico que tendría cada modelo para que sea representativa la aplicación de los diferentes gráficos, tanto en el semi-log como en el log-log para una mejor interpretación.

	YACIMIE	ACIMIENTO HOMOGENEO		YACIMIENTO CON I	DOBLE POROSIDAD
MODELO	MODELO SISTEMAS SISTEMAS POZOS		POZOS	INTERPO	ROSITY FLOW
	INFINITOS	CERRADOS	FRACTURADOS	ESTADO PSEUDOESTABLE	TRANSITORIO
GRAFICO LOG-LOG ଜୁ ତୁ			1/2 	Flujo radial	Flujo radial
GRAFICO SEMILOG	m 25		Cartesiano $\sqrt{\Delta t}$ $\sqrt[4]{\Delta t}$	F, m T	F / / m / / m
GRAFICO DE LA DERIVADA 'a Cara da Cara	0.5	0.5	1/2 	1/2 1/2 HTRANSH	>1/4 1/2 HTRANSH
m = Pendiente semilog. Representa flujo radial infinito	Infinito Infinito ·-Barrera de no flujo ·Presión constante	Hay un factor de 2 en separaciónentre PD y PD' para fracturas de conduc- tividad infinita. El factor es 4 para fracturas de -con- ductividad finita	 Conduct. infinita Flujo uniform Conduc. finita (flujo bilineal) 	 Se desarrollan 2 lineas paralelas La transición inicia antes que termine los efectos de WBS 	F = FISURA T =SISTEMA TOTAL

CORRELACIONES PVT UTILIZADAS POR EL PROGRAMA PANSYSTEM

Para nuestro estudio se presentan las correlaciones más acertadas para determinar las propiedades físicas del petróleo en este caso son: La Razón Gas-Disuelto-Petróleo, el factor volumétrico del petróleo y la viscosidad del petróleo.

A) RAZÓN GAS-DISUELTO-PETRÓLEO, Rs

Las correlaciones a utilizarse para determinar la razón de gas disuelto del petróleo son las siguientes:

1. Correlación de Standing, MB¹

$$R_s = \gamma_g \left[\left(\frac{P}{18.2} + 1.4 \right) 10^{(0.0125\gamma_{API} - 0.00091T)} \right]^{1.2048}$$
(5.1)

Donde;

R_s : Razon de gas disuelto-petróleo a P<P_b, PCN/BN

- P : presión de interés, lpca
- T : Temperatura del yacimiento, °F
- γ_g : Gravedad especifica del gas, (aire =1)
- A_{PI} : Gravedad del petróleo, ºAPI

2. Correlación de Vázquez, M.E. y Beggs, H.D²

$$R_{s} = C_{1} \gamma_{gc} P^{C2} \exp \frac{C_{3} \gamma_{API}}{(T + 460)} \quad (5.2)$$
$$\gamma_{gc} = \gamma_{g} \left[1 + 5.912 \times 10^{-5} \gamma_{API} T_{sp} \log \left(\frac{P_{sp}}{114.7}\right) \right] \quad (5.3)$$

Donde;

- R_s : Razon de gas disuelto-petróleo a P<P_b, PCN/BN
- P : presión de interés, lpca
- T : Temperatura del yacimiento, °F
- γ_{gc} : Gravedad especifica del gas corregida a 100 lpcm., (aire =1)
- A_{PI} : Gravedad del petróleo, ºAPI
- *P_{sp}*: Presión del separador, lpca
- T_{sp} : Temperatura del separador, °F

En la siguiente tabla siguiente se presentan los valores de las constantes C_1 , C_2 y C_3 de acuerdo a la gravedad API del crudo.

VALORES DE LAS CONSTANTES C ₁ , C ₂ y C ₃			
API -RANGO	C ₁	C ₂	C ₃
A _{PI} ≤30	0.0362	1.0937	25.724
A _{PI} > 30	0.0178	1.1870	23.931

3. Correlación de Glaso, O.³

$$R_{s} = \gamma_{g} \left[F \frac{\gamma_{API}}{T^{0.1722}} \right]^{1.2255}$$
(5.4)
$$F = 10^{\left(2.8869 - (14.181 + 3.3093 \log P)^{0.5}\right)}$$
(5.5)

Donde;

- R_s : Razon de gas disuelto-petróleo a P<P_b, PCN/BN
- P : presión de interés, lpca
- T : Temperatura del yacimiento, °F
- γ_g : Gravedad especifica del gas, (aire =1)
- A_{PI} : Gravedad del petróleo, ºAPI

B) FACTOR VOLUMÉTRICO DEL PETRÓLEO, Bo

Las correlaciones a utilizarse para determinar el factor volumétrico del petróleo son las siguientes:

1. Correlación de Standing, M.B.¹

Standing encontró una correlación entre el denominado factor de correlación, F, y el factor volumétrico del petróleo a la presión del punto de burbujeo, B_{ob}. La siguiente figura presenta la correlación de estos factores.

Un ajuste de la correlación grafica de la Fig. anterior esta dado por la siguiente ecuación:

$$B_{ob} = 0.9759 + 12x10^{-5} F^{1.2} \quad (5.6)$$
$$F = R_{sb} \sqrt{\frac{\gamma_g}{\gamma_o}} + 12.5T \quad (5.7)$$

Donde;

 B_{ob} : Factor volumétrico del petróleo a P_b, BY/BN

 R_{sb} : Razon gas disuelto-petróleo a P≥ P_b, PCN/BN

- T : Temperatura del yacimiento, °F
- γ_g : Gravedad especifica del gas, (aire =1)
- γ_o : Gravedad del petróleo, (agua=1)

RANGO DE LOS DATOS PARA LA CORRELACION DE STANDING, M.B.		
Presión de burbujeo, lpca	130 - 7000	
Temperatura, ºF	100 - 258	
Factor volumétrico del petróleo,	1.024 – 2.15	
BY/BN		
Razón de gas disuelto-petróleo,	20 - 1425	
PCN/BN		
Gravedad del petróleo, ºAPI	16.5 – 63.8	
Gravedad específica del gas, (aire=1)	0.59 – 0.95	
Presión del separador, lpca		
Primera etapa	265 - 465	
Segunda etapa	14.7	
Temperatura del separador, °F	100	

2. Correlación de Vázquez, M.E. y Beggs, H.D²

$$B_{ob} = 1.0 + C_1 R_{sb} + C_2 \left(T - 60 \right) \left(\frac{\gamma_{API}}{\gamma_{gc}} \right) + C_3 R_{sb} \left(T - 60 \right) \left(\frac{\gamma_{API}}{\gamma_{gc}} \right)$$
(5.8)

Donde;

- B_{ob} : Factor volumétrico del petróleo a P_b, BY/BN
- R_{sb} : Razón gas disuelto-petróleo a P≥ P_b, PCN/BN
- T : Temperatura del yacimiento, °F
- γ_g : Gravedad especifica del gas, (aire =1)
- γ_o : Gravedad del petróleo, (agua=1)

Las siguientes tablas presentan el rango de los datos utilizados en su desarrollo y los valores de las C_1 , C_2 y C_3 de acuerdo a la gravedad API del crudo.

RANGO DE LOS DATOS PARA LA CORRELACION DE VAZQUEZ M.E. Y		
BEGGS, H.D.		
	A _{PI} ≤ 30	A _{PI} < 30
Número de puntos de datos	1141	4863
Presión de burbujeo, lpca	15 – 4572	15 – 6055
Temperatura, ºF	162	180
Factor volumétrico del petróleo, BY/BN	1.042 – 1.545	1.028 – 2.226
Razón de gas disuelto-petróleo, PCN/BN	0 – 831	0 – 2199
Gravedad del petróleo, ºAPI	5.3 – 30	30.6 - 59.5
Gravedad específica del gas, (aire=1)	0.511 – 1.351	0.53 – 1.259

VALORES DE LAS CONSTANTES C ₁ , C ₂ y C ₃			
API -RANGO	C ₁	C ₂	C ₃
A _{PI} ≤ 30	4.667x10 ⁻⁴	1.751x10 ⁻⁵	-1.8106x10 ⁻⁸
A _{PI} > 30	4.670x10 ⁻⁴	1.100x10 ⁻⁵	1.3370x10 ⁻⁹

3. Correlación de Glaso, O.³

$$B_{ab} = 1.0 + 10^{\left[-6.5851 \pm 2.91329 \log F - 0.2768 (\log F)^2\right]}$$
(5.9)

$$F = \mathbf{R}_{\rm sb} \left(\frac{\gamma_g}{\gamma_o}\right)^{0.526} + 0.968T \quad (5.10)$$

Donde;

- B_{ob} : Factor volumétrico del petróleo a P_b, BY/BN
- R_{sb} : Razón gas disuelto-petróleo a P≥ P_b, PCN/BN
- T : Temperatura del yacimiento, °F
- γ_g : Gravedad especifica del gas, (aire =1)
- γ_o : Gravedad del petróleo, (agua=1)

RANGO DE LOS DATOS PARA LA CORRELACION DE GLASO, O.		
Presión de burbujeo, lpca	165 – 7142	
Temperatura, ⁰F	80 - 280	
Factor volumétrico del petróleo,	1.025 – 2.588	
BY/BN		
Razón de gas disuelto-petróleo,	90 – 2637	
PCN/BN		
Gravedad del petróleo, ºAPI	22.3 – 48.1	
Gravedad específica del gas, (aire=1)	0.65 – 1.276	
Presión del separador, lpca		
Primera etapa	415	
Segunda etapa	15	
Temperatura del separador, °F	125	

C) FACTOR VOLUMÉTRICO TOTAL DEL PETRÓLEO, Bt

El factor volumétrico total se puede determinar mediante la siguiente ecuación:

$$B_t = B_o + (R_{si} - R_s)B_g$$
 (5.11)

Donde;

- *B_t* : Factor volumétrico total del petróleo, BY/BN
- *B_a* : Factor volumétrico del petróleo, BY/BN
- B_{g} : Factor volumétrico del gas a P y T, BY/PCN
- *R_{si}* : Razón gas disuelto-petróleo a P_i, PCN/BN
- *R*_s : Razón gas disuelto-petróleo a P, PCN/BN
- 1. Correlación de Glaso, O.³

$$B_t = 10^{(8.0135x10^{-2} + 4.7257x10^{-1}\log F + 1.7351x10^{-1}(\log F)^2)}$$
(5.11)

$$F = \mathbf{R}_{s} \left(\frac{T^{0.5}}{\gamma_{g}^{0.3}} \right) P^{-1.1089} \gamma_{o}^{2.9 \times 10^{-0.0002 \mathcal{R}_{s}}}$$
(5.12)

Donde;

- *B_t* : Factor volumétrico total del petróleo, BY/BN
- R_s : Razón gas disuelto-petróleo a P, PCN/BN
- P : presión de interés, lpca
- T : Temperatura del yacimiento, °F

- γ_g : Gravedad especifica del gas, (aire =1)
- A_{PI} : Gravedad del petróleo, ºAPI

RANGO DE LOS DATOS PARA LA CORRELACION DE GLASO, O.		
Presión, lpca	20 - 3573	
Presión de burbujeo, lpca	20 – 3573	
Temperatura, ⁰F	74 - 240	
Factor volumétrico del petróleo, BY/BN	1.032 – 1.997	
Factor volumétrico total, BY/BN	1.032 – 6.982	
Razón de gas disuelto-petróleo, PCN/BN	26 – 1602	
Gravedad del petróleo, ºAPI	19.4 – 44.6	
Gravedad específica del gas, (aire=1)	0.752 – 1.367	
N ₂ en gases de superficie, % molar	0.0 – 3.89	
CO ₂ en gases de superficie, % molar	0.0 – 16.38	
H ₂ S en gases de superficie, % molar	0.0 – 16.13	

D) VISCOSIDAD DEL PETROLEO, μ_o

Las siguientes correlaciones permiten determinar la viscosidad de crudos sin gas en solución (muertos), μ_{od} en cp., a presión atmosférica y temperatura del yacimiento.

1. Correlación de Beal. C.⁵

Esta correlación se presenta en la siguiente formula, donde la viscosidad del petróleo libre de gas (muerto) está en función de la gravedad API del petróleo y a varias temperaturas.

$$\mu_{od} = \left[0.32 + \frac{1.8 \times 10^7}{\gamma_{API}^{4.53}} \right] \left[\frac{360}{T + 200} \right] (5.15)$$
$$a = anti \log \left[0.43 + \frac{8.33}{\gamma_{API}} \right] (5.16)$$

Donde;

 μ_{od} : Viscosidad del petróleo libre de gas a 1 atm. Y T, cp

T : Temperatura del yacimiento, °F

A_{PI} : Gravedad del petróleo, ºAPI

RANGO DE LOS DATOS PARA LA CORRELACIONES DE BEAL, C. Y DE GLASO, O.

	Beal, C.	Glaso, O.
Temperatura, ºF	98 – 250	50 - 300
Gravedad del petróleo, ºAPI	10 - 52.5	20.1 - 48.1
Viscosidad, cp	0.865 - 15.5	0.616 - 39.1

2. Correlación de Beggs, H.D. Y Robinson, J.R.⁶

$$\mu_{od} = 10^x - 1$$
 (5.25)

Donde;

- x : yT^{-1.163}
- y : 10^z
- z : $3.0324-0.02023\gamma_{API}$
- $\mu_{\scriptscriptstyle od}$: Viscosidad del petróleo libre de gas a 1 atm. Y T, cp
- T : Temperatura del yacimiento, °F
- A_{PI} : Gravedad del petróleo, ºAPI

RANGO DE LOS DATOS PARA LA CORRELACION DE BEGGS, H.D. Y		
ROBINSON, J.R		
Presión, lpca	15 - 5265	
Razón de gas disuelto-petróleo, PCN/BN	20 - 2070	
Gravedad del petróleo, ºAPI	16 - 58	
Temperatura, °F	70 - 295	

3. Correlación de Glaso, O.³

$$\mu_{od} = 3.141 x 10^{10} T^{-3.444} (\log \gamma_{API})^{(10.313 \log T - 36.447)}$$
(5.17)

Donde;

- $\mu_{\scriptscriptstyle od}$: Viscosidad del petróleo libre de gas a 1 atm. Y T, cp
- T : Temperatura del yacimiento, °F
- A_{PI} : Gravedad del petróleo, ºAPI

BIBLIOGRAFÍA

- ALVARADO DOUGLAS Ph.D. Manual de análisis de pruebas de presión en pozos. 2004.
- AMANAT U. CHAUDHRY. Advanced TWPSOM Petroleum Systems, Inc.Houston, Texas. Oil well testing Handbook. 2003.
- 3. C.S MATTHEWS. Pressure buildup and flow tests in wells. 1967.
- DOMINIQUE BOURDET. Consultant Paris France. Well test analysis: The use of advance interpretation models. 2002.
- FIKRI J. KUCHUK. SPE, Schlumberger Technical Services Inc.Well testing and interpretation for horizontal wells.
- 6. FREDDY HUMBERTO ESCOBAR MACUELO, Ph.D. Análisis moderno de presiones de pozo. 2003.

- GILLES BOURDAROT. Engineer, Elf Aquitaine. Well testing: Interpretation Methods. 1988.
- JOHN LEE JOHN B. ROLLINS JOHN P. SPIVEY. SPE textbook series vol.9 Pressure transient testing. 1997.
- L.P DAKE. Fundamentals of Reservoir Engineering. 1998.
- 10. NOTAS DEL INGENIERO BOLÍVAR MIRANDA. Director de la tesina. 2010.
- ROLAND N.HORNE. Stanford University. Modern well test analysis. A computer aided approach.
 1990.
- 12. SADA D. JOSHI, Ph.D. Horizontal well technology. 1991.
- 13. SCHLUMBERGER WIRELINE & TESTING. INTRODUCTION TO WELL TESTING. 1998

14. SCHLUMBERGER. WELL PERFORMANCE MANUAL. 1998.

15. TAREK AMED. Reservoir Engineering Handbook. Second edition. 2001.