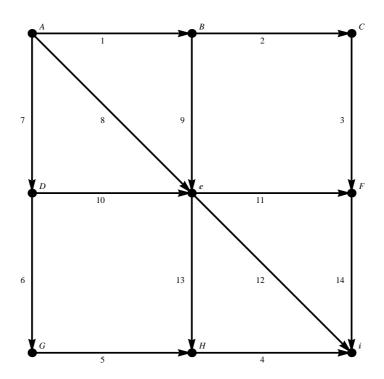


## Escuela Superior Politécnica del Litoral

## Examen de la segunda evaluación Modelización y gestión de flota y transporte

29 de agosto de 2011


| Profesor: Erwin Delgado B. |       |  |
|----------------------------|-------|--|
| Nombre                     | Firma |  |

1. (25 %): A continuación se presenta un conjunto de 8 viajes realizados entre 4 estaciones y los tiempos de interconección entre las diferentes estaciones. Formule un modelo MIP que permita establecer el mínimo número de vehículos requeridos para satisfacer las necesidades de transporte.

| Viaje | Terminal de | Tiempo de | Terminal de | Tiempo de |
|-------|-------------|-----------|-------------|-----------|
|       | partida     | partida   | llegada     | llegada   |
| 1     | a           | 7:00      | b           | 7:25      |
| 2     | d           | 7:00      | a           | 7:35      |
| 3     | b           | 7:15      | c           | 8:15      |
| 4     | c           | 7:30      | d           | 8:35      |
| 5     | a           | 7:35      | d           | 8:00      |
| 6     | d           | 8:00      | a           | 8:30      |
| 7     | a           | 8:35      | d           | 9:05      |
| 8     | С           | 9:05      | d           | 10:00     |

| destino | a  | b  | c  | d  |
|---------|----|----|----|----|
| a       | 0  | 15 | 30 | 25 |
| b       | 20 | 0  | 40 | 30 |
| c       | 25 | 35 | 0  | 45 |
| d       | 20 | 25 | 30 | 0  |

2. (25%)A continuación se muestra un grafo G=(V,E) que representa una red de transporte en una ciudad dividida en 9 zonas representadas por los nodos del conjunto V. Los costos de cada arco  $e \in E$  se muestran en la parte superior del mismo.



Si se conoce que la matriz origen-destino indica que 100 viajes se realizan desde el nodo A al nodo i, establezca el flujo a través de cada arco de la red, aplicando el algoritmo de STOCH.

3. (50%)Sea  $V = \{v_0, v_1, v_2, ..., v_n\}$  un conjunto de nodos, siendo  $v_0$  el depósito y  $\{v_1, v_2, ..., v_n\}$  un conjunto de n clientes, cada uno de ellos con una demanda diaria  $d_i$ , i = 1, ...n, la misma que debe ser satisfecha. Se posee una flota de m vehículos situados en el depósito  $v_0$  cada uno de ellos con una capacidad máxima Q. Sin embargo, la demanda  $d_2 > Q$  por lo que se hace necesario visitarlo tres veces en el día. Sea  $c_{ij}$  el costo en ir desde el nodo i al nodo j para  $i, j = 0, 2, ...n, i \neq j$ . Formule un MIP que permita crear un conjunto de r rutas  $(r \leq m)$  a un mínimo costo.

**Nota**: Por cuestiones prácticas, suponga que la demanda del cliente  $v_2$  en cada visita es  $\frac{d_2}{3}$