

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

PRIMERA EVALUACIÓN DE MÉTODOS ESTADÍSTICOS PARA LA INDUSTRIA II

Guayaquil, Noviembre 29 del 2011

Nombre

Tema 1: (10 Puntos) Defina:

- a) Error Tipo I
- b) Estimador Insesgado
- c) Eficiencia de un Estimador
- d) Estadístico de Prueba

Tema 2: (10 Puntos)

Si X_1 , X_2 ,..., X_n es una muestra aleatoria de tamaño n tomada de una población cuya función de densidad es $f(x) = e^{-(x-\theta)}$ $x > \theta$ donde θ es una constante positiva desconocida. Determinar un estimador para θ mediante el método de los momentos.

Tema 3: (15 Puntos)

El número de unidades defectuosas producidas por hora en una fábrica es una variable aleatoria Poisson con parámetro λ . Se afirma que en promedio se producen cuando mas 3 unidades con defectos por hora, para verificar esto se ha realizado el siguiente procedimiento:

- a) Se registra el número de unidades defectuosas producidas en una hora y si estas exceden las 5 unidades se rechaza la hipótesis nula. Determine α.
- b) Se registra el número de unidades defectuosas producidas en un lapso de dos horas y si estas exceden las 10 unidades se rechaza la hipótesis nula. Determine α.
- c) Se registra el número de unidades defectuosas producidas en un lapso de 49 horas y si estas exceden las 172 unidades se rechaza la hipótesis nula. Determine α.

Tema 4: (15 Puntos)

El pH de cierto producto es una variable aleatoria normal con desviación estándar de 0.05. Se plantea el siguiente contraste de hipótesis para la media

$$H_0: \mu=7 \text{ vs } H_1: \mu>7$$

Se define el siguiente conjunto como su Región Crítica:

$$C(\mathbf{X}) = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \quad / \quad \overline{x} > k \right\}$$

Si se fija α =0,01 y $\beta \phi$ (7,05)=0,98 determine el valor de k y n que hacen posible cumplir dichas condiciones y bosqueje el gráfico de $\beta \phi(\mu)$

Tema 5: (10 Puntos)

Se conoce que cierta característica tiene distribución normal con desviación estándar 4. Se desea construir un intervalo con 98% de confianza para la media con una longitud de 3, ¿Cuánto debería ser el tamaño de muestra que se debería tomar para cumplir el objetivo?

Tema 6: (15 Puntos)

Se tienen dos máquinas y de desea comparar la proporción de unidades con fallas producidas en cada máquina. Para ello se toma una muestra aleatoria de 300 unidades de la máquina uno y 5 de estas tuvieron fallas; de las máquina dos se tomaron 250 unidades y 4 presentaron fallas. Construya un intervalo con 98% de confianza para la diferencia de la proporción de fallas entre las dos máquinas.

Tema 7: (15 Puntos)

Una máquina produce varillas metálicas usadas en el sistema de suspensión de un automóvil, y se afirma que el diámetro medio de estas varillas es de cuando más 8.2. Se selecciona una muestra aleatoria de 15 varillas y se mide el diámetro. Los resultados se muestran continuación:

8,24	8,23	8,20
8,21	8,20	8,28
8,23	8,26	8,24
8,25	8,19	8,25
8,26	8,23	8,24

¿Existe evidencia estadística para concluir que el diámetro medio excede los 8.2 mm? **Indique supuesto que necesita de requerirlo.**

Tema 8: (10 Puntos) Se afirma que la variabilidad de cierto proceso medida a través de la desviación estándar es menor a 4, para verificar esto se toma una muestra aleatoria de tamaño 3 y se obtiene una desviación estándar de 3. ¿Los datos apoyan la afirmación planteada? *Establezca supuestos de ser necesarios*.