

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño y Simulación de un Puente Grúa de Cinco Toneladas"

TESIS DE GRADO

Previa la obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

Oscar Jamil Tenelema Quitio

GUAYAQUIL - ECUADOR

AÑO 2013

AGRADECIMIENTO

Infinitamente a Dios por su amor y su misericordia y por darme una salida a cada prueba puesta en mi camino, ya que apartado de él nada puedo hacer.

A mis padres que siempre estuvieron inculcándome el temor a Dios. A mis hermanos, que han estado siempre juntos a mí apoyándome y motivándome a ser mejor cada día.

A mi director de tesis Ing. Ernesto Martínez y a cada uno de mis profesores.

Oscar Jamil Tenelema Quitio

DEDICATORIA

A Dios, a mis padres, a mis abuelos y a toda mi familia, también a todos mis amigos y a todos aquellos que siempre han estado apoyándome durante mi carrera universitaria.

TRIBUNAL DE SUSTENTACIÓN

Dr. Kleber Barcia V., Ph.D.
DECANO DE LA FIMCP
PRESIDENTE

Ing. Ernesto Martínez L, MBA.
DIRECTOR

Ing. Marcelo Espinosa L, MSc. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

(Reglamento de Graduación de la Espol)

Oscar Jamil Tenelema Quitio

RESUMEN

El presente proyecto abarca el diseño, construcción y simulación estática de un sistema de Puente Grúa de 5 Toneladas de capacidad en el taller Industrial, cumpliendo el requisito más importante que solicita el área de producción que es mover las estructuras finalizadas, así como sus partes en el proceso de ensambles de estructuras.

El PUENTE GRÚA posee movimiento transversal controlado por el trolley, el mismo que se desliza sobre las alas de una viga cajón, que fue diseñada bajo la norma CMMA 70, y el criterio de flexión máxima estática y dinámica.

El movimiento vertical lo realiza por medio de un tecle eléctrico con capacidad de 5 toneladas, que se selecciono' de acuerdo a la características del puente grúa. El movimiento de avance de la viga central es ejecutado por un carro transversal que tiene forma de una viga omega acarteladas en sus alas, acoplada a un motorreductor de 3 Hp, directamente al eje de la llanta, por medio de una brida cuadrada.

Las llantas del testero fue diseñado del tamaño óptimo, que permita mover al testero a una velocidad de 35m/min, de un material que desgaste su garganta antes de que se desgaste las rieles.

ÍNDICE GENERAL

		Pág
RE	SUMI	EN II
ĺΝ	DICE	GENERAL III
ΑE	REVI	ATURASV
SII	MBOL	OGÍAVI
ĺΝ	DICE	DE FIGURAS VIII
ĺΝ	DICE	DE TABLAS X
ĺΝ	DICE	DE PLANOS XII
IN [.]	TROD	UCCIÓN 1
A١	ITECE	EDENTES3
CA	\PÍTU	LO 1
1.	DES	CRIPCIÓN DEL TALLER 5
	1.1	Proceso de Construcción11
	1.2	Plantamiento del Problema
	1.3	Objetivos19
	1.4	Justificacion
C	APÍTU	JLO 2
2	ALTE	RNATIVAS DE SOLUCIÓN23
	2.1.	Tipos de Equipo para Movimiento de Carga

	2.2.	Pórtico n	nas Tecle	26
	2.3.	Grúa To	rre	29
	2.4	Grúa Pó	rtico	37
	2.5	Puente 0	Grúa	40
	2.6	Grúa Gir	atoria	53
	2.7	Selecciór	n del Tipo de Grúa a Utilizar	57
CA	NPÍTU	LO 3		
3	DISI	EÑO DEL	PUENTE GRÚA	59
	3.1	Parámet	ros de Construcción	60
	3.2	Diseño d	le Forma	61
	3.3	Selecció	n del Sistema de Elevación de Carga	62
	3.4	Dimensi	onamiento de la Viga Principal	66
	3.5	Dimensi	onamiento de VIgas Transportadoras	93
	3.6	Selecció	n de llantas para Traslación en Direccion xx	102
		3.6.1 D	eflexion del Eje	119
		3.6.2 S	elección de Rodamiento	131
		3.6.3	Selección de Chumacera	139
	3.7	Validac	ión de Columnas	140
	3.8	Diseño	de Yugo de Carga	146
	3.9	Análisis	utilizando un Programa Computacional	149
CA	PÍTU	LO 4		
4.	ANÁ	LISIS EC	ONÓMICO	153

	4.1	Costo de Equipo153
	4.2	Costo de Materiales154
	4.3	Costo de Mano de Obra156
CA	PÍTUL	_O 5
5.	PLAN	NIFICACIÓN DE LA CONSTRUCCIÓN 160
	5.1 P	Planos de Construcción160
	5.2 L	istado de Materiales161
	5.3 C	Cronograma de Construcción162
	5.4 D	eterminación de Horas-Hombres Reales167
СА	PÍTUL	LO 6
6.	CON	CLUSION Y RECOMENDACIÓN169
BIE	BLIOG	RAFÍA
ΑP	ÉNDIC	CES

ABREVIATURAS

- m Metro
- cm Centímetro
- m² Metro cuadrado
- m³ Metro cubico
- Kg Kilogramo
- ton Tonelada
 - r Radio
- h Altura
- D,d Diámetro
 - ft Pie
- plg Pulgada
 - e Espesor
 - t Tiempo
 - T Temperatura
 - I Longitud
 - v Velocidad
- V Volumen
- rpm Revoluciones por minuto
 - Pa Pascal
 - π Рі
 - σ Esfuerzos Normales
 - p Densidad
 - T Esfuerzos Cortantes

SIMBOLOGÍA

- °C Grado centígrados
- ^oK Grado Kelvin
- m Metro
- cm Centímetro
- mm Milímetro
- Kg Kilogramo
 - t Tiempo
- Kw Kilowatts
- m² Metro cuadrado
- m³ Metro Cubico
- kg/m^3 Kilogramo por metro cubico
 - pz Densidad del solido
 - pm Densidad del material
 - *m*/s Metro por segundo
 - m/s^2 Metro por segundo
 - cuadrado
 - plg Pulgada
 - Psi Libra sobre pulgadas
 - cuadradas
 - Pa Pascal
 - A Área
 - v Velocidad
 - Kpa Kilopascal
 - MPa Megapascal
 - D Diámetro
 - M Momento
 - f Factor de fricción

ÍNDICE DE FIGURAS

Figura 1.1	Terreno Baldío donde se construyó el Taller	4
Figura 2.1	Pórtico mas Tecle en Taller Automotriz Grúa	27
Figura 2.2	Grúa Torre con Cabina Incluida	30
Figura 2.3	Grúa Torre y sus Partes	31
Figura 2.4	Base de la Grúa torre	32
Figura 2.5	La Torre o Mastil de la Grúa	33
Figura 2.6	La Contra Pluma Montada sobre la Torre	34
Figura 2.7	Pluma Dividida en Tres Tramos	34
Figura 2.8	Grúa Pórtico, Construido en China	38
Figura 2.9	Puente Grúa y sus Partes	43
Figura 2.10	Viga Tranversal del Puente Grúa	
Figura 2.11	Viga Testero con Acoplamiento de Ruedas	45
Figura 2.12	Viga Carrilera Acoplada al carro Transportador	
Figura 2.13	Columna con Serchas dibujada en Solid Works	46
Figura 2.14	Ensamble del Trolley en Solid Works	47
Figura 2.15	Desmonte del Tecle Eléctrico	48
Figura 2.16	Motorreductor Importado desde Solid Works	48
Figura 2.17	Ensamble de Cadena Gancho y Yugo	49
Figura 2.18	Yugo Tranversal desde Solid Works	50
Figura 2.19	Grúa Giratoria	54
Figura 2.20	Puente Grúa Funcionando en Adelca Quito	58
Figura 3.1	Diseño de Forma del Puente Grúa	61
Figura 3.2	Estructura del Puente Grúa	61
Figura 3.3	Partes del Sistema de Elevacion	64
Figura 3.4	Partes del Tecle Eléstrico	65
Figura 3.5	Perfil de la Viga Cajón en Solid Works	69
Figura 3.6	Curva para el Cálculo de Factor de Temperatura	78
Figura 3.7	Estado de Esfuerzo de la Viga para Diferentes Ψ	83
Figura 3.8	Distribución de Esfuerzo Cortante	84
Figura 3.9	Partes del Trolley	92
Figura 3.10	Ensamble del Carro Transversal	101
Figura 3.11	Carro Transversal con Motorreductor	103
Figura 3.12	Recciones en el Carro Transversal	105
Figura 3.13	Diagrama de Cuerpo Libre de la Rueda	106
Figura 3.14	Ruedas Torneadas con sus Ejes de Coordenadas	107

Figura 3.15	Diagrama Equivalente de la Rueda	110
Figura 3.16	Cálculo de Momento de Inercia de la Rueda	111
Figura 3.17	Simulacion de la Deformación en el Testero en Ansys	117
Figura 3.18	Simulación del Esfuerzo de Von Misses en el Testero	
	(Ansys)	117
Figura 3.19	Simulación para Factor de Seguridad del Testero	118
Figura 3.20	Vida del Testero en ANSYS	119
Figura 3.21	Eje Sometido a Esfuerzo Combinado	126
Figura 3.22	Eje Sometido a Esfuerzo en Diferentes Puntos	126
Figura 3.23	Circulo de Mohor del Eje	129
Figura 3.24	Peso Soportado por el Carro sin Carga	134
Figura 3.25	Peso Soportado por el Carro con Carga	135
Figura 3.26	Condiciones de Trabajo del Rodamiento	137
Figura 3.27	Radio Mínimo y Máxio del Eje	138
Figura 3.28	Rodamiento Encontrado por el Programa	138
Figura 3.29	Diagrama de Cuerpo Libre de la Columna	140
Figura 3.30	Curva de Euler para Columnas largas	141
Figura 3.31	Cálculo de Momentos de Inercia de Área en Solid Works	145
Figura 3.32	Momentos de Inercia de la Selección	147
Figura 3.33	Simulación de la Deformación Viga Cajón en el Programa	a
	Ansys®	149
Figura 3.34	Equivalente de Von Mises de la Viga Cajón en Ansys®	150
Figura 3.35	Factor de Seguridad de la Viga Cajón en Ansys®	151
Figura 3.36	Vida de la Viga Caión en Ansys®	152

ÍNDICE DE TABLAS

	Pág.
Tabla 1	Matriz de Decisión
Tabla 2	Dimensiones y Especificaciones del Tecle Eléctrico
Tabla 3	Características del Tecle Eléctrico
Tabla 4	Dimensiones del Plain Trolley
Tabla 5	Factor de Carga
Tabla 6	De Acabado Superficial77
Tabla 7	De Cálculo de Factor de Confiabilidad
Tabla 8	Dimensiones de Viga que Cumple con Norma CMAA74 90
Tabla 9	Esfuerzos Máximo y Mínimos en la Viga Carrilera 98
Tabla 10	Factores de Corrección de la Viga Carrilera 100
Tabla 11	Catalogo N.1 Banfiglioli de Motorreductores sin Fin Corona 109
Tabla 12	Catálogo N.2 de Motorreductores de Eje Hueco Marca Etcsa113
Tabla 13	Diámetros de Ruedas del Testero y Torque para
	Velocidad=40m/min
Tabla 14	Diámetros de Ruedas del Testero y Torque para
	Velocidad=30m/min115
Tabla 15	Deflexión del Eje del Testero a Diferentes Diámetros
Tabla 16	Esfuerzo del Eje Sometido a Flexión
Tabla 17	Esfuerzo del Eje Sometido a Cortante
Tabla 18	Esfuerzo del Eje Sometido a Esfuerzos Combinados130
Tabla 19	Catálogo de Rodamiento NTN132
Tabla 20	Tabla de Factores de Seguridad de Rodamiento NTN133
Tabla 21	Dimensiones y Características de los Rodamientos136
Tabla 22	Catálogo de Chumacera NTN139
Tabla 23	Longitud efectiva para cada tipo de apoyo142
Tabla 24	Costos de Equipos
	Costo de Materiales154
Tabla 26	Consumibles
Tabla 27	Costo de Mano de Obra

Tabla 28	Total Costo de Personal (Viga Cajón)	156
Tabla 29	Costo de Personal en Montaje	157
Tabla 30	Total de Costo de Personal en Montaje	157
Tabla 31	Costo de Personal en Construcción de Columnas	158
Tabla 32	Total de Costo de Personal en Construcción de	
Columnas	S	158
Tabla 33	Costo Total del Puente Grúa	159
Tabla 34	Listado de Materiales	161
Tabla 35	Cronograma de Construcción	162
Tabla 36	Cronograma de Construcción	163
Tabla 37	H/Hombre en Construcción de las Columnas	167
Tabla 38	Horas/Hombre en la Construcción de la Viga Transversal	. 167
Tabla 39	Horas/Hombre en el Montaje del Puente Grúa	168
Tabla 40	Resultado de Horas Hombres Totales	168

ÍNDICE DE PLANOS

Construcción de Columnas

Detalle de Chapa del testero

Montaje de Viga-Carro-Viga Carrilera

Detalle del carro transversal

Partes del tecle eléctrico

Partes del Puente Grúa

INTRODUCCIÓN

El taller dedicado a la construcción de estructuras metalmecánica, necesita construir un puente grúa, que va a soportar 5 toneladas, que servirá para trasladar maquinaria, materiales, así como estructura metálica. El puente grúa va ser muy importante a la hora de trabajar en producciones largas y medianas, porque se requiere mover carga de forma rápida y segura, con el uso de poco recurso humano, para poder llegar a fecha establecidas con los clientes.

Unos de los factores más importantes, por lo que se decide construir un puente grúa, y no se adquiere montacargas con igual capacidad, es porque brindará de espacio suficiente para poder trabajar con facilidad, además la adquisición de un montacargas, requiere la contratación de un personal entrenado.

El puente grúa contará con tres movimientos indispensable, para su desempeño que son:

El movimiento vertical o izaje, que los ejecutará el tecle eléctrico, con la ayuda de motor a bajas revoluciones, El movimiento de profundidad o recorrido que lo ejecutará el testero con los motorreductores acopladas a

llantas y piñones, y por último el movimiento horizontal, que lo realizará el trolley, el cual tendrá un rango de acción de 14 metros que es la luz del puente grúa.

El diseño del puente grúa, incluirá el diseño de la viga cajón, con las dimensiones establecidas por la NORMA CMAA especificación 74, selecciones de tecles eléctricos, diseño de las ruedas impulsoras e impulsadas, selección de motorreductores, así como las vigas carrileras, testeros, y evaluación de las columnas que ya se encuentran construidas en el taller de metalmecánica.

ANTECEDENTE

Debido a la creciente necesidad de participar como proveedor de diferentes empresas constructoras y de estructuras metálicas, se ha visto en la necesidad de implementar un sistema de levantamiento de carga que ocupe poco espacio en el área de trabajo, ya que cuenta con mil metros cuadrado correspondiente al área de producción.

Año tras año, las empresas subcontratadas, se ven en la obligación de renovar su infraestructuras, maquinarias, etc. Debido a la creciente demanda de construcción en el país. Es por esta razón que el taller debe tener en cuenta el espacio en el que se va trabajar y el terreno donde se va a construir las estructuras.

En el taller de construcción industrial, cada vez las demandas son más exigentes y las dimensiones de la estructura son mayores, la cual va relacionado con el peso, por lo que se requiere mover estos elementos durante el proceso de construcción, y al término de la construcción para embarcarlos en vehículos pesados que finalmente lo llevara´ a la empresa donde se va ejecutar el montaje del mismo.

Fuente:stspevigilancia.blogspot.com

FIGURA 1.1 TERRENO BALDÍO DONDE SE CONSTRUYÓ EL TALLER.

CAPÍTULO 1

1. DESCRIPCIÓN DEL TALLER

Taller que se dedica a la construcción de estructura metálica, tales como tanque de presión, galpones, silos, escaleras, ascensores, compuerta mecánica, etc.

El tema de estudio tiene un terreno de dos mil metros cuadrados, de los cuales mil metros cuadrados corresponde al área de producción, es un taller que se dedica específicamente a la construcción de estructuras metálicas, es la razón principal, por el cual se necesitó un terreno amplio, porque se desconoce el tamaño de la estructura a construir y mucho menos se sabe la magnitud del proyecto en el cual se va´ a ejecutar. Como industrial se requiere la construcción de un sistema de izaje para facilitar la construcción y reparación de estructuras.

En el taller para la construcción de una estructura metálica, sigue determinados procedimientos, como son:

- La recepción de requerimientos.
- El diseño de la estructura.
- Presentación de ofertas.
- Aceptación de ofertas.
- Elaboración de pedido.
- Recepción de orden de compra en el taller.
- Construcción.
- Traslado de estructura al lugar de montaje.
- La ejecución de la obra.
- El montaje de la estructura

El taller tiene identificado dos trabajos muy en claros, el trabajo de taller, y el trabajo en obras, son dos escenarios totalmente diferentes, en el cual se necesita trabajadores diferentes, con destrezas muy en claras para cada trabajo, la diferencia en un trabajo y el otro se lo explicará en las siguientes líneas.

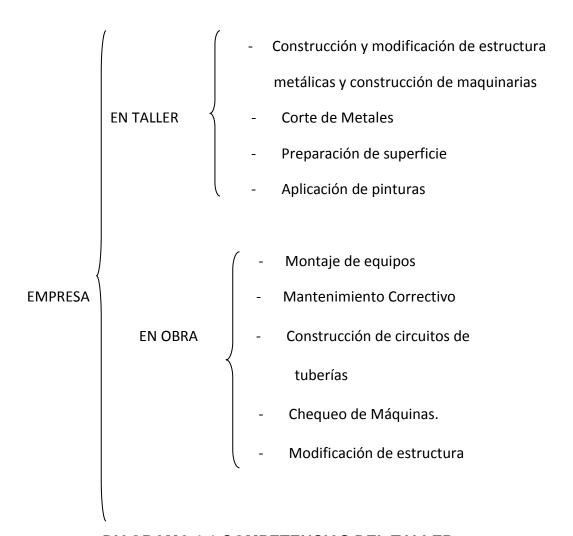


DIAGRAMA 1.1 COMPETENCIAS DEL TALLER.

En la ejecución de la obra, un proceso importante es la soldadura, razón suficiente, por el cual el taller cuenta con instalaciones eléctricas industriales alimentadas, por una la subestación más cercanas. La instalación eléctrica cuenta con alimentación de energía de 220v polarizada, acometida, y varilla de cobre, etc.

Las soldadoras que se utilizan, son muy resistente a la hora de trabajar continuamente, se puede trabajar 5 - 6 horas continuas, pero el único inconveniente con estas soldadoras es el calentamiento de la carcasa, por el cual una vez terminada un trabajo de soldadura las máquinas se las deja en el área de trabajo, no se guarda dentro del contenedor.

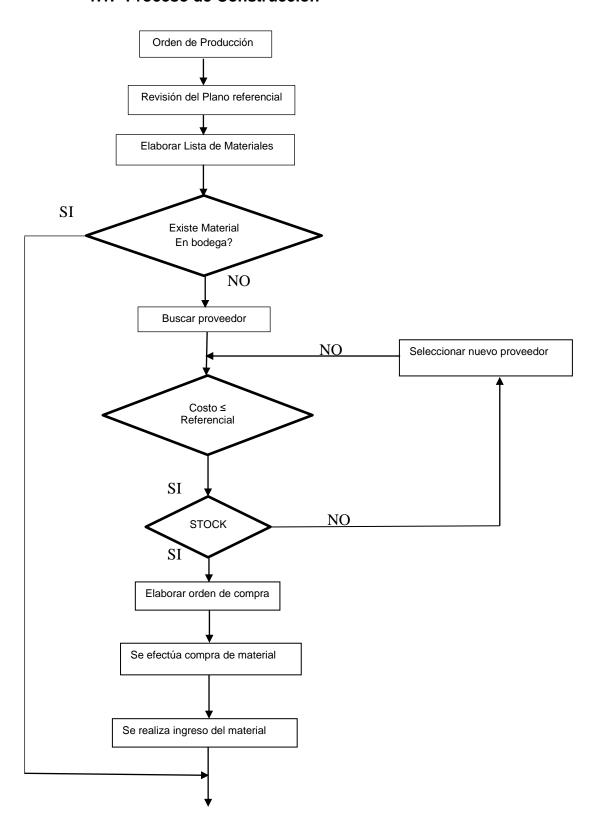
El taller cuenta con ciertas áreas cementadas o fundidas, y con ciertas áreas sin pavimentar, esto es muy importante porque se necesita de los dos escenarios para poder trabajar en la construcción de estructura, la parte donde esta cementado, sirve para los armadores tener un nivel o referencia, a la hora de armar una estructura, es más fácil tirar la plomada desde una superficie lisa y nivelada.

El área sin fondeo, sirve de mucho para la recepción de materiales, y para almacenar momentáneamente los trabajos terminados, lo importante en este escenario es proteger las estructura de la corrosión, es por eso que una vez terminado el trabajo de soldadura, se prepara la superficie, posteriormente se procede inmediatamente a aplicar una mano de pintura anticorrosiva con soplete y compresor, después se pasan dos manos más de pintura. Terminado el trabajo de pintura, se procede a almacenar las estructuras no sobre el piso, sino que se los hace sobre pallets de madera, para así evitar problemas con la corrosión.

Los baños, vestidores y casilleros, son indispensables en este oficio, porque así se da la comodidad a los trabajadores, el uso de servicios básicos y de higiene sirve de mucho en una organización como la del taller, los vestidores son de ayuda a la hora que se tiene que hacer montaje y cada personal debe llevar los implementos de seguridad establecida por el taller.

Los dos contenedores acondicionados tanto para bodega, como para oficina son de ayuda en el taller, en la oficina se cuenta con una computadora, impresora, demás papelería y equipos de oficina, este sector sirve para el contacto con el cliente, y la recepción de los requerimientos, planos de construcción y para el dialogo con el trabajador.

El contenedor establecido para bodega, cuenta con máquinas herramientas, arnés de seguridad, tecles mecánicos, cadena, tronzadoras, juego de llaves de bocas, llaves Allen, francesas, electrodos de soldaduras, cascos, botas entre otros equipos de trabajo, se controla las herramientas que salen de bodega, como las que llegan de regreso, este control se lo hace por una orden de pedido, así se puede ejecutar fácilmente un inventario, sin tomarnos mucho tiempo.


Siguiendo por el recorrido del taller, se encuentra también con un pórtico más un tecle mecánico, que es el sistema de levantamiento de carga actual con la que cuenta el taller, este pórtico más tecle mecánico, es de mucha ayuda cuando se quiere elevar materiales pesados, estructuras pesadas o simplemente cuando se quiere cambiar de posición a las máquinas, como una prensa mecánica por ejemplo.

En la ejecución de una obra se cuenta siempre con los mismos pasos o procedimientos que son los siguientes:

- Recepción de Material
- Preparación del material, como es el corte o rolado de material.
- Armado de estructura.
- Soldadura.
- Preparación de superficie.
- Pintura anticorrosiva.

Como un taller completo de metalmecánica, el taller cuenta con todo los equipo de protección para los trabajadores, extintores contraincendios, y tanque elevado, incluido sistema contra incendios.

1.1. Proceso de Construcción

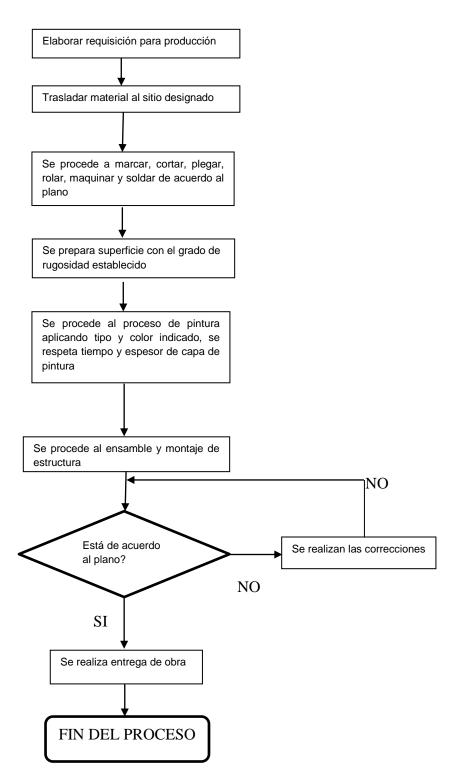


DIAGRAMA 1.2 PROCESO DE CONSTRUCCIÓN DEL TALLER.

El proceso de construcción empieza con la orden de producción, es donde se receptan los requerimientos de los proyectos; ideas en general, en otras palabras, las necesidades de los clientes. En segundo lugar se procede a la revisión y chequeo del plano referencial. Una vez revisado el plano referencial, se realiza la lista de materiales; una vez realizada la lista, se consulta con bodega para ver si existe el material requerido para el proyecto, por lo general bodega siempre tiene una parte de los materiales, la otra parte de los materiales se busca dentro la base de datos de los proveedores, dentro del cual se selecciona al proveedor más indicado. Una vez seleccionado el proveedor se ejecuta la compra de materiales.

Comprado los materiales, se realiza el ingreso de los materiales al taller, para contabilizar y establecer un control de los materiales que se ingresan y se almacenan en la bodega, siguiendo con el procedimiento de construcción, se elabora el plan de construcción, es aquí donde se decide dónde construir, si construir en el taller o en situs.

Por lo general, si es un proyecto grande se construye dentro del taller, por que presentan todas las facilidades, y se cuenta con todos los recursos (Máquinas herramientas, espacio, personal). Si

se construye en situs, se traslada todo el material al sitio designado para el proyecto.

El siguiente punto es la manufactura, es aquí donde se procede a marcar, cortar, plegar, rolar, maquinar y soldar de acuerdo al plano establecido por el cliente, o realizado por la empresa.

Una vez terminado la manufactura del proyecto se procede a dar el grado de terminado establecido por el proyecto, después se ejecuta el acabado superficial que es la pintura, aplicando tipo y color indicado, aquí en este proceso se respeta tiempo y espesor de capa de pintura.

Después de la pintura se procede al ensamble y montaje de la estructura, en este punto se debe ser cuidadoso, y se debe de tomar todas las normas de seguridad correspondientes.

En este último paso se debe asegurar que el montaje de la estructura está de acuerdo al plano, si en el caso de no estar de acuerdo al plano, se procede a realizar las correcciones del caso, una vez realizadas las correcciones, se ejecuta la entrega de la obra al cliente.

1.2 Planteamiento del Problema

En años recientes, la creciente demanda de construcción de estructura metálicas y servicios de mantenimiento en las empresas de la ciudad de Guayaquil ha incrementado. Esto debido a la facilidad con la que el gobierno otorga permisos a los empresarios en respuesta a la necesidad de generar fuentes de empleos en el Ecuador.

El proceso de construcción de estructura antes se limitaba a la construcción y rectificación de la misma, hoy en día se necesita mucha más visión en este mercado, ya que los clientes requieren más facilidad a la hora de montaje de máquinas y de construcción de estructura dentro de la planta de producción, hoy en día los dueños de la empresas no quieren perder, ni siquiera un día en su producción, porque el día les representa miles de dólares perdidos, en su trabajo, entonces ellos requieren servicio inmediato y de calidad, la única manera que se puede lograr esto es reducir el tiempo que se toma en la construcción de estructura, es posible reducir el tiempo con el uso de maquinaria como el puente grúa.

La competencia, están mucho más equipadas que el taller, es por eso que contar con sistema de elevación de carga y de izaje, es muy importante en este medio, se debe asegurar que este sistema de elevación de carga sea en lo posible, lo más seguro y robusto, porque la caída de una máquina pesada, costará mucho dinero en repararla, además se debe usar los materiales más resistente y asegurar el sistema de elevación de carga, con un bloqueo, para evitar accidentes.

Entre las posibles soluciones a este problema de transportar cargas en distancias cortas, existe muchos opciones para satisfacer esta problemática, pero es el deber de seleccionar la solución satisfactoria, la que se apegue más a los requerimientos económicos, como también la solución debe ir en función del uso de todos los recursos posibles con los que cuenta actualmente la empresa, las posible soluciones son las siguientes: Montacargas, Grúa giratoria, Pórtico más tecle, Torre-grúa, y puente grúa, que más adelante se va a ir descartando hasta quedarse con la mejor solución, con la que requiere el taller.

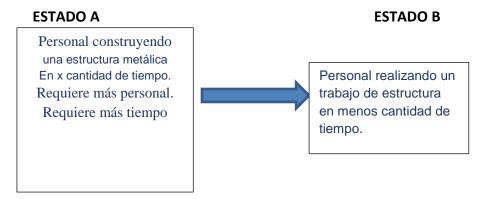
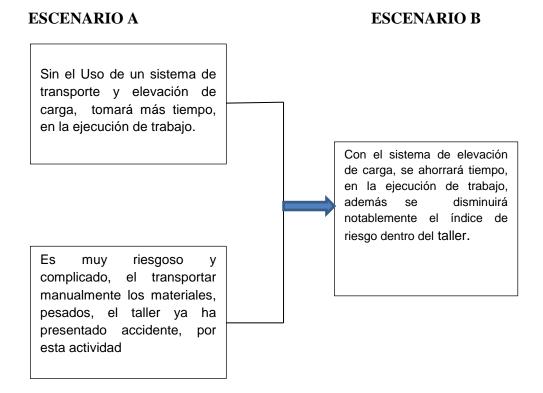



DIAGRAMA 1.3 ANTES Y DESPUÈS DE LA CONSTRUCIÓN
DEL PUENTE GRUA.

Como se ve en el diagrama, el uso de un elevador de carga, ahorraría mucho tiempo cuando toque construir estructura pesadas, y mover materiales de cierta característica imposible de manejar con recursos humanos, pues la necesidad se ha creado con el pasar del tiempo, con las nuevas exigencias en el mercado.

Una prueba de estos ya experimentó el taller, cuando el precio de las bobinas de chapas de acero bajó en un veinte por ciento, porque su importación habría sobrepasado su stock; en el taller para poder mover esas bobinas es imposible hacerlo con dos personas, y se corre el riesgo que el trabajador sufra accidentes.

A continuación se presenta otro problema a la hora de mover las bobinas de acero, por esta razón que el taller, semana tras semana mueve sus maquinarias y sus materiales para poder construir estructuras requerida por los clientes.

DIAGRAMA 1.4 VENTAJAS CON LA CONSTRUCIÓN DE UN SISTEMA DE ELEVACIÓN DE CARGA.

Se necesita mover cargas en distancias cortas de forma segura y correcta, elevar carga para posicionamiento sobre la plataforma, una vez terminado el trabajo de construcción, este sistema de elevación y carga debe soportar como máximo 5 toneladas, que

servirá para trasladar maquinaria, así como estructura metálica, el sistema de elevación va ser muy importante a la hora de trabajar porque brindará de espacio suficiente para poder ejecutar el trabajo con facilidad. El diseño del sistema de elevación, debe ayudar para construir estructura mucho más grande, que en ocasiones se ha rechazado, por no tener un sistema de elevación de carga.

Al no contar con sistema de elevación de carga, se ha detenido la ejecución de trabajos de gran escala, el taller actualmente cuenta con un pórtico más tecle mecánico, el cual tienes su limitación, es que fue diseñada para 1 tonelada de carga, presenta un travesaño de 2.5 metros de largo, y una altura de 3.0 metros; razones suficiente para no realizar proyectos mucho más grande.

1.3 Objetivos

Diseñar un puente grúa resistente para la capacidad de cinco tonelada, de catorce metros de claro, seis metros de altura, y con un recorrido de cuarenta metros, con tecle eléctrico, trolley, carro para el movimiento longitudinal, acoplado a moto-reductores de bajo rpm, selección de cadena apropiada, así como también el diseño del yugo correspondiente.

Seleccionar correctamente cada una de las partes que constituirán el puente grúa. Viga central, viga carrilera, trolley, llantas y motorreductor.

La viga transversal tipo cajón, como las vigas carrileras son diseñadas para que estas no fallen ni por flexión, torsión, muchos menos por el efecto flexo torsión. La viga debe ser diseñada, por medio del criterio de fluencia, de esfuerzo cortante máximo, criterio de esfuerzos cíclicos (fatiga), además de ser probado, por un programa de computación, para corroborar el resultado y asegurar de que la estructura no fallará y mucho menos estará sobredimensionado.

Existen restricciones por cuanto las columnas de seis metros de altura ya se encuentran construidas donde va descansar por medio de sus hombros, la viga transversal y la viga carrilera. Por la que estas deben ser validadas por medio del criterio de pandeo, así como también de un programa computacional ANSYS ®.

1.4 Justificación

Unas de las necesidades más apremiantes en los establecimientos llamados talleres de estructuras metálicas, debería ser la transportación de los materiales pesados y el fácil manejo de las

estructura metálicas durante el proceso de construcción, y al final para su montaje en el transporte de carga.

En Guayaquil, son pocos los talleres, que tienen el financiamiento suficiente para montar un puente dentro de su planta de fabricación, los diferentes ingresos del taller, no están asignadas para esta área, sino para la compra de materiales, y máquinas requerida, útiles para los proyectos venideros

En la actualidad el aumento de los proyectos de construcción metálicas en el país, hacen posibles a los dueños de los talleres, invertir en la construcción de puentes grúas, pues no es una decisión fácil de tomar, porque requiere una alta inversión, pero esto se hace posible, con las nuevas exigencias en el mercado de metalmecánica en el país.

El interés de construir puentes grúas en el país, nace de la necesidad básica del taller, cuando se presentan proyectos de mayores magnitudes, que en los posible es muy difícil, realizar sin un sistemas de elevación y carga, como es el puente grúa, hoy los pequeños empresarios dueños de talleres metalmecánicos, piensan en el crecimiento de sus empresas, así como también en la satisfacción de sus clientes, que requieren trabajos muchos más rápidos, con mejores acabados.

Los empresarios ecuatorianos, saben que construyendo un puente grúa dentro del establecimiento de la empresa, es un paso muy importante, para fabricación masiva de estructuras, pues ya no existe el inconveniente del peso de las estructuras, además construyendo un puente grúa, el respaldo de los cliente no se harán esperar, con la asignación de nuevas obras y contratos, pues esta decisión es un primer paso para la ampliación de los galpones, talleres, plantas industriales, etc.

Actualmente las nuevas disposiciones del gobierno, con respecto a la seguridad y salud ocupacional del trabajador permiten y exige, que en lo posible se elimine el índice de riesgo de los trabajadores, con equipos de protección personal, además de usar los procedimientos más seguros y confiables en la transportación de materiales. Es un problema mucho mayor tener que transportar materiales pesados, con el uso del personal, pues resulta muy riesgoso y lento, realizar esta transportación manualmente, pues es de esperarse accidentes que se podría evitar con el uso de sistema de elevación sofisticado, pues al decir verdad se reduciría el índice de accidentes laborales y decesos de trabajadores dentro de los talleres industriales.

CAPÍTULO 2

2. ALTERNATIVAS DE SOLUCIÓN

La tendencia de la humanidad a disminuir su fatiga y reducir el riesgo en acciones operativas de manipulación de cargas, es obvia. El ahorro de la intervención humana en las diversas manifestaciones se puede lograr por medio del automatismo, el cual está destinado a producir, a igual esfuerzo físico o mental un mayor volumen de trabajo, con un alto nivel de reducción de riesgo para el hombre.

En este medio hoy en día las industrias cuentan con sistema de carga sofisticada, donde se encuentra entre otros, elevadores hidráulicos o ascensores de carga, desarrollados para diversas aplicaciones, con el fin de satisfacer las necesidades tanto de la industria como del comercio en general.

A continuación se define el problema, de la manera más sencilla, se requiere mover carga dentro del taller, como materia prima, productos en proceso, productos terminados, mover este tipo de carga resulta muy peligroso, para los trabajadores, como a su vez también requiere utilizar mucho personal para ejecutar una actividad, a continuación, se muestra un cuadro sinóptico en forma de resumen, para una mejor comprensión.

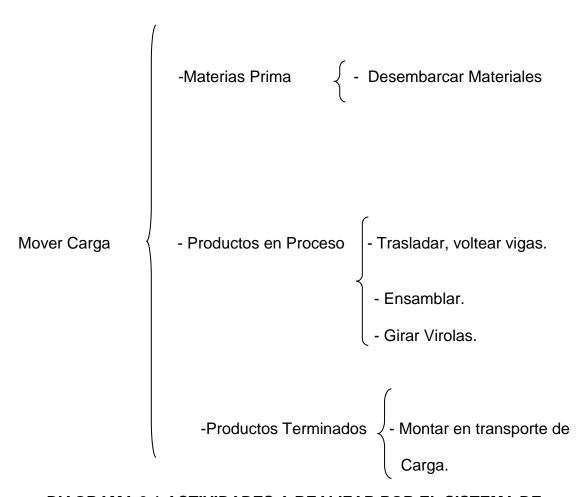


DIAGRAMA 2.1 ACTIVIDADES A REALIZAR POR EL SISTEMA DE ELEVACIÓN DE CARGA.

2.1 Tipos de Equipos para Movimiento de Carga

En la actualidad existe muchos equipos para movimiento de carga pero todos ellos están limitados por su capacidad de carga, y el espacio donde se va a desempeñar el equipo, los equipos de carga siempre presenta una forma característica que son: Una base rígida, una viga que va a soportar la carga en flexión y un sistema de elevación o izaje, que es el que se encarga de levantar la carga. En todo sistema para movimiento de carga se va a ver esta configuración a excepción de la grúa torre.

Los equipos de cargas principalmente que se conoce en la industria son los siguientes:

- Pórtico más tecle
- Grúa Torre
- Puente grúa
- Grúa pórtico
- Grúa giratoria

2.2 Pórtico más Tecle

El pórtico más tecle, consta de una estructura metálica rígida, y de un tecle mecánico, que es manejado manualmente por el operador, tiene ruedas en su inferior acoplada a la estructura, que le permite moverse con facilidad dentro de la planta, busca una posición cómoda donde pueda realizar su trabajo sin ningún problema, presenta un sistema de cadena prefabricada en caliente acoplada al tecle.

Por lo general la estructura superior es una viga IPE o una IPN, que permite el fácil acople al tecle, las columnas son muy variables, puede ser un tubo redondo, dos canales soldadas por el medio, como también un tubo cuadrado o por lo consiguiente una viga prefabricada tipo cajón.

Este tipo de estructura, son utilizadas en los talleres automotrices, para bajar motores de carro de diferentes cilindraje, en talleres mecánicos de mantenimiento de máquinas, en los talleres de estructuras metálicas sirve para levantar cargas no mayores a una tonelada, como también en la industria cementera entre otros simplemente para levantar mucho más carga con menos esfuerzos.

Este tipo equipo de elevación de carga presenta sus limitaciones, que puede usarse solo dentro de planta, presenta una altura limitada, además de ser diseñada para capacidad bajas de carga.

El motivo por el cual se diseña para baja capacidad de carga, es porque debe ser portátil dentro de la empresa, además de presentar rueda, para su fácil movimiento, razón por el cual, si se coloca mayores cargas, el pórtico empezará a desplazarse.

Fuente: Catálogo de ABUSGRUA,2000.

FIGURA 2.1. PÓRTICO MAS TECLE EN TALLER AUTOMOTRIZ.

Ventajas

- Resulta fácil, el poder construir un pórtico más tecle, por que presenta mucha facilidad a la hora de armar la estructura, en el caso que se requiera realizar un trabajo, fuera de la empresa o el taller de estructura metálica.
- Fácil transportación, porque presenta ruedas de metal, para facilitar su movilidad.
- Las llantas contra marchas (seguros), y la forma estructural de las columnas, formando una A, de manera triangular le da mayor estabilidad y rigidez a la estructura.
- Facilidad de construcción, es muy fácil construir un pórtico más tecle, cuando las necesidades así lo requiere, por ejemplo cuando se tiene que dar mantenimiento de Máquinas, fuera de la ciudad, nosotros como mecánicos, se puede improvisar un pórtico, si se tiene material que preste la rigidez necesaria.

Desventajas

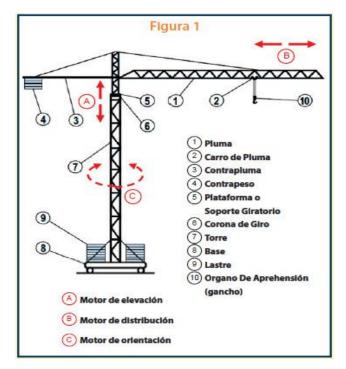
Presenta baja capacidad de carga, por el motivo de que presenta rueda, que al sobrepasar el límite de carga, el pórtico por exceso de peso, procederá a vencerse por algún lado donde se incline la carga, mas no presenta deformación la viga transversal.

- No presentas grandes dimensiones, ni tampoco mucha altura, porque al soportar la carga con una altura considerable, se complica el manejo de la carga, además de que si se diseña de una gran dimensión, va ser muy complicado mover el pórtico.
- No presenta tecle eléctrico, lo cual quiere decir, que se demora en el proceso de elevar la carga, además de que un tecle eléctrico para capacidades muy bajas es muy difícil de encontrar.

2.3 Grúa Torre

La grúa torre es un aparato de elevación de funcionamiento discontinuo, destinado a elevar y distribuir las cargas mediante un gancho suspendido de un cable, desplazándose por un carro a lo largo de una pluma.

La grúa es orientable y su soporte giratorio se monta sobre la parte superior de una torre vertical, cuya parte inferior se une a la base de la grúa. La grúa torre suele ser de instalación temporal, y está concebida para soportar frecuentes montajes y desmontajes, así


como traslados entre distintos emplazamientos. Se utiliza sobre todo en las obras de construcción.

Está constituida esencialmente por una torre metálica, con un brazo horizontal giratorio, y los motores de orientación, elevación y distribución o traslación de la carga.

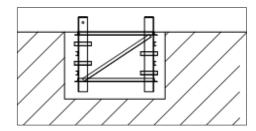
Fuente:spanish.alibaba.com/product-gs/topless-tower-crane-298409328.html

FIGURA 2.2 GRÚA TORRE CON CABINA INCLUIDA

Fuente: www.acerosarequipa.com

FIGURA 2.3. GRÚA TORRE Y SUS PARTES

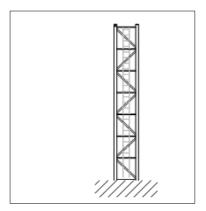
El montaje de la grúa se realizará por partes, ya que este tipo de grúa es auto armables, pero se debe tener cuidado con la seguridad del operario, y las personas que están debajo del montaje. Los encargados de los montajes, van con tareas especificadas guiándose para ello de las instrucciones.


Dispondrá de una orden de trabajo, donde vendrán indicados los datos de la grúa y características del montaje. Dicho personal dependerá de un técnico titulado, quien planificará y se

responsabilizará del trabajo a realizar, extendiendo al finalizar el montaje el certificado correspondiente.

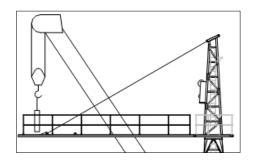
La grúa torre cuentas con las siguientes partes:

- Base.
- Torre.
- Contra pluma.
- Pluma.
- Contrapeso.
- Carro de Pluma.


La base: Es muy importante cuando se va instalar una grúa torre, debe tener la cimentación apropiada, y en el caso de contar con la cimentación correspondiente, se procede hacer una nueva cimentación; en todo caso, antes de empezar el montaje de la grúa se comprobará la nivelación de la zapata de apoyo.

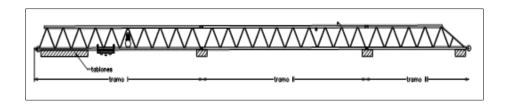
Fuente:http://www.monografias.com/trabajos32/grua-torre/grua-torre.shtml

FIGURA 2.4. BASE DE LA GRÚA TORRE


La Torre: Es una de las partes mas importante de la grúa torre, por que es la que distribuirá todo la carga y los esfuerzo por medio de sus cerchas, además sirve para alcanzar la altura deseada.

Fuente:http://www.monografias.com/trabajos32/grua-torre/grua-torre.shtml

FIGURA 2.5 LA TORRE O MASTIL DE LA GRÚA.


La contrapluma: Es la estructura, que va en el sentido contrario a la carga y a la pluma, esta parte realiza una funcion importante, por que es la equilibra el momento flector de la pluma, asi dando mayor seguridad a la estructura.

Fuente:http://www.monografias.com/trabajos32/grua-torre/grua-torre.shtml

FIGURA 2.6 LA CONTRA PLUMA MONTADA SOBRE LA TORRE.

La pluma: La pluma se sujeta entre la contrapluma y la torre, esta estructura además de estar bien segura, por medio de la sujeción que existe en la torre, también va sujeta de la parte superior, por medio de cables.

Fuente:http://www.monografias.com/trabajos32/grua-torre/grua-torre.shtml

FIGURA 2.7 PLUMA DIVIDIDA EN TRES TRAMOS.

Ventajas

 La ventaja de la grúa torre es el gran alcance que tiene por medio de su pluma, además por llegar a lugares complicado con mucha facilidad, de la misma manera queda demostrado que la grúa torre, no tiene un gran peso, por el cual la hace más fácil de manejar y de maniobrar en casos de accidentes no esperados.

- Otra ventaja que se puede mencionar, es su contrapeso, que permite facilitar y equilibrar la carga que se está levantando, pues si no fuera por el contrapeso, la grúa fija tendría que disponer de motores y sistemas de izajes muchos más potentes.
- Una razón por el cual utilizar una grúa torre en las construcciones de gran escala, es porque remplaza el alquiler de grúas pequeñas
 - En cuanto a seguridad, este tipo de grúa, se adhiere muy bien a la superficie terrestre, evitando un volteo o un accidente catastrófico, la grúa requiere de muchos componentes mecánicos, que hacen su trabajo independientemente además requiere de una serie de arreglos estructurales, elemento los cuales le dan gran estabilidad a toda la estructura de la grúa.
- Esta grúa está diseñada para soportar frecuentes montajes y desmontajes en la estructura.

Este tipo de grúa presenta cuatro movimientos muy importantes para el cual es fundamental para la construcción: Elevación, distribución, orientación y traslación.

Desventajas

- Resulta verdaderamente una desventaja utilizar una grúa torre, si el operario no está plenamente capacitado, y no toma las medidas de seguridad que se requiere.
- Resulta muy caro, para las construcciones pequeñas y medianas, por el cual se sugiere, este tipo de grúa para construcciones grandes o de gran escala.
- Unas desventajas que presenta esta grúa, es que es muy difícil de trabajar en lugares cercanos donde se presenta tornados o viento fuertes.
- Se puede mencionar una desventaja más de la grúa torre, el problema de la sobre carga, debido a que si se pasa la carga de diseño, la gura se vuelve muy inestable.
- Desplome de la grúa por ruptura del cable de tracción, o fallos en los husillos

- Otra desventaja que se puede mencionar es que en el montaje y desmontaje, que son las partes más difíciles de todos los procesos, ya que el mínimo error en cualquiera de sus participantes, podrían significar una colisión segura.
- La desventaja a la cual siempre estará sometida este tipo de grúa, es la fuerza del viento, ya que ella puede hacer que la grúa se desplome.
- Cuando se daña el sistema giratorio de la grúa torre, el mantenimiento es muy costoso y complicado, porque son piezas son muy difíciles de encontrar y manufacturar.
- No puede trabajar en galpón cubierto.

2.4 Grúa Pórtico

La grúa pórtico es un tipo especial de grúa que eleva la carga mediante un polipasto instalado sobre una viga, que a su vez es rígidamente sostenida mediante dos o más columnas. Estas columnas generalmente pueden desplazarse sobre unos rieles horizontales al nivel del suelo. En algunas fábricas y naves se utiliza la llamada Puente-grúa que tiene el mismo funcionamiento que la grúa pórtico con la diferencia de que la viga descansa directamente sobre las vigas carrileras. Tanto la una como la otra tienen un

sistema de elevación similar que puede recorrer la viga completamente, y un pórtico apoyado sobre rieles que recorre todo el largo del área de trabajo.

La grúas del tipo pórtico como se dijo anteriormente son aquellas grúas que están montadas sobre columnas de variadas secciones y perfiles que se mueven por ríeles anclados al suelo. Las mismas presentan ventajas y desventajas en su diseño:

Fuente: ve.all.biz/gras-portico-g11168

FIGURA 2.8. GRÚA- PÓRTICO, CONSTRUIDO EN CHINA.

Ventajas del Grúa Pórtico

 Son capaces de soportar hasta grandes cantidades de carga según su configuración.

- No depende de tensores ni contrapeso para mantener su estabilidad, ya que la viga transversal junto a su carga, descansa sobre una columna de tipo A, que da una mayor estabilidad y rigidez al sistema.
- Se puede desplazar largas distancias en el plano horizontal con mucha facilidad, porque la viga transversal, soporta todo el peso de la carga, y se necesita de un motor reductor robusto, para un funcionamiento continuo.
- Puede ser accionada manualmente por medio de manivelas.
- Son de fácil construcción y de mantenimiento, algunas son desarmables por partes, pero la mayoría presentan restricciones, con el piso que esta fijo con una placa base.

Desventajas del Grúa pórtico

- No presentan desplazamientos de forma radial, por lo que la grúa pórtico fue diseñado para quedarse en estado estático, con la opción de que solo se mueva el trolley y la cadena del tecle eléctrico, que se acopla a la rueda dentada especial.
- No puede tener mucha altura por que pierden estabilidad, es decir si se diseña una grúa pórtico de mayor altura de lo normal,

es más difícil de operar, y obviamente es mal complicado su mantenimiento.

- Pueden producirse el efecto de pandeo en las columnas, debido a que la estructura descansa sobre dos columnas, los columnas deben ser verificada, antes de empezar el montaje del grúa pórtico.
- Están fijos a un carril.
- Molesta el área de trabajo.

2.5 Puente Grúa

Un puente-grúa, es un tipo de grúa que se utiliza en fábricas e industrias, para izar y desplazar cargas, permitiendo que se puedan movilizar piezas de gran porte en forma horizontal y vertical. Un puente-grúa se compone de un par de rieles paralelos ubicados a gran altura sobre los laterales de un galpón con un puente metálico (viga) desplazable que cubre el espacio entre columnas. El tecle, el dispositivo de izaje de la grúa, se desplaza junto con el puente a lo largo del eje horizontal; el tecle a su vez se encuentra alojado sobre las alas de la viga cajón, que le permite moverse para ubicarse en posiciones dentro del claro.

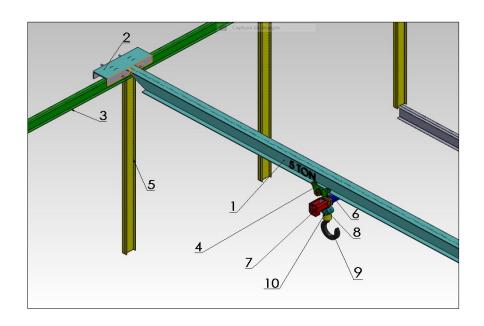
Si el puente se encuentra rígidamente sostenido por dos o más columnas que se desplazan sobre rieles fijados a nivel del piso, entonces se lo denomina grúa pórtico.

El puente grúa en este medio, cada vez tiene mayor aplicaciones, últimamente se lo usa en la industria naval, para retirar motores de combustión interna, para su correspondiente mantenimiento, también se lo usa para el traslado de la planchas dobladas, para embarcarlas a transporte correspondientes.

El puente grúa consta de tres movimientos fundamentales que son:

- Movimiento transversal.
- Movimiento Longitudinal.
- Movimiento de altura.

Con estos tres movimientos, se podrá cubrir todos los espacios del taller, donde se necesita mover la carga o materiales, sin duda que toda y cada una de las partes del puente grúa contribuye con su funcionamiento, y con su movimiento que es lo más importante.

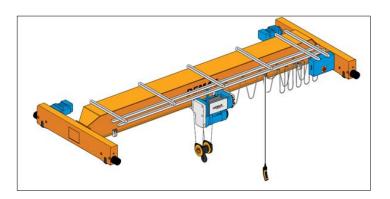

A diferencia de las grúas móviles o de construcción, los puentesgrúa son utilizados por lo general en fábricas o galpones industriales estando limitados a operar dentro del galpón o nave industrial donde se encuentran instalados.

El uso de este tipo de grúa se aplica en la industria del acero, para mover productos terminados, tal como, bobinas, columnas y vigas, tanto para su almacenamiento, como para la carga a los transportes convenientes.

En la industria subsidiaria del cemento, para facilitar la fabricación de columnas, postes, vigas, entre otros productos de gran peso.

En la industria del automóvil y de maquinarias pesadas, se utilizan puentes grúa para el manejo de materias primas y en otros casos para el ensamblado de grandes piezas.

Casi todas las fábricas de papel utilizar las grúas de puente para el mantenimiento regular que requiere los rodillos y otros equipos pesados.



Autor: Oscar Tenelema, ESPOL, FIMCP(2013).
FIGURA 2.9 PUENTE GRÚA Y SUS PARTES

El puente grúa consta de las siguientes partes:

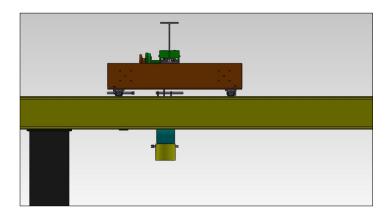
- 1. Viga Transversal.
- 2. Carro Transportador Dirección ZZ.
- 3. Vigas Carrileras.
- 4. Trolley Dirección XX.
- 5. Columna.
- 6. Motor Trifásico.
- 7. Reductor de Velocidad.
- 8. Polipasto.
- 9. Gancho.
- 10. Collarín.

Viga Principal transversal: Es la viga que soporta la mayoría de la carga, y es la que está sometida a mayores esfuerzos, justamente cuando la carga pasa por medio del claro de la viga, esta viga pueden ser de diferentes formas, como una IPE, IPN, viga W de alas anchas, doble canal, Viga cajón prefabricada, etc.

Fuente:navarra.es/NR/rdonlyres/775A941B-AFBA-4A8E-AA9B-8E84507C12C4/145866/GuaPuentesGrua.pdf

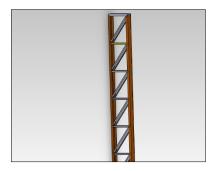
FIGURA 2.10 VIGA TRANVERSAL DEL PUENTE GRÚA.

Vigas testeros: Esta viga en la mayoría de los casos son prefabricadas, son tipos cajón, o también pueden tomar la forma de una viga omega, o en el peor de los casos también sirven dos canales soldados de espalda, todo depende del diseño y de la carga que va a soportar, se debe tomar en cuenta, que en esta viga


va acoplada las rueda de transportación, como chumaceras y rodamientos.

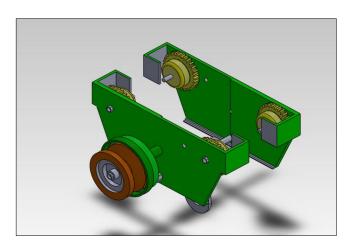
Fuente: http://dim.usal.es/areaim/guia%20P.%20I/puente%20grua.htm

FIGURA 2.11 VIGA TESTERO CON ACOPLAMIENTO DE RUEDAS


Vigas Carrileras: Están sometida a flexión y cortante, pero los esfuerzos son mínimos, ya que va reforzados con columnas cada seis metros, esta viga soporta el peso de la cargas, más la carga distribuida de la viga central, en están viga es donde van acoplada las ruedas, las cuales se desplazan por medio de una riel.

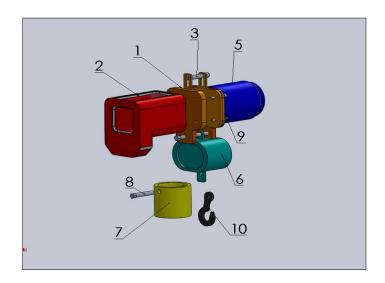
Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 2.12 VIGA CARRILERA ACOPLADA AL CARRO TRANSPORTADOR.


Columnas: Se debe verificar que las columnas soportan el peso de las vigas carrileras más el peso de la viga cajón, además debe resistir a los esfuerzos que están sometido, esta columna no debe fallar ni por pandeo, ni aplastamiento, se valida en el caso de que existan columnas ya construidas en el taller.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 2.13 COLUMNA CON SERCHAS DIBUJADA EN SOLID WORKS.


Trolley: El trolley se encarga del movimiento transversal de la carga, se debe de tener en cuenta, que cuando se selecciona un tecle eléctrico el mismo viene con un trolley correspondiente, que de acuerdo al diseño lo puede utilizar dependiendo de la longitud de la ala de la viga central (cajón).

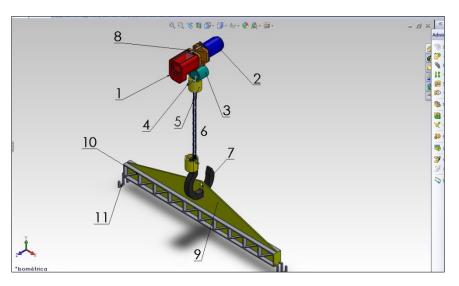
Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 2.14 EMSAMBLE DEL TROLLEY EN SOLID WORKS


Tecle Eléctrico: Es el encargado y correspondiente del movimiento vertical de la carga, esta se selecciona por el criterio de velocidad a la cual se requiere trasladar la carga, y la capacidad de diseño del puente grúa.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

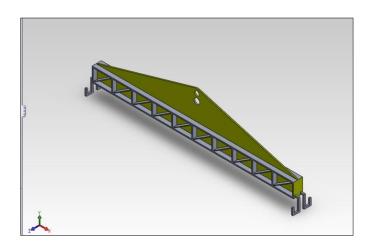
FIGURA 2.15. DESMONTE DEL TECLE ELÉCTRICO


Motoreductores: Se selecciona de acuerdo a la velocidad a la cual quiere moverse la viga transversal, por lo general son 35m/min, esta velocidad permite a la carga estar en pequeños oscilaciones, las cuales reducen el riesgo de accidente dentro del taller o planta de construcción.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 2.16. MOTOREDUCTOR IMPORTADO DESDE SOLID WORKS.

Gancho y cadena: El gancho se lo manda a fundir, si es que es un mosquetón. Si es un gancho pequeño se lo puede comprar fabricado, la cadena se la selecciona de acuerdo su paso, a la distancia entre diente del engrane, y de acuerdo a la altura del puente grúa, lo más importante de la cadena es que no se puede hacer empates o acoples, porque estas se pueden romper ocasionando accidente irreparables.



Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 2.17 ENSAMBLE DE CADENA GANCHO Y YUGO.

Yugo: Se lo diseña con el criterio de esfuerzo de flexión máxima, para la construcción del yugo, también se cuenta con un sinnúmero de elementos estructural, no se debe diseñar muy pesada porque

altera a la elevación de la carga, se debe doblar dos ganchos a sus extremos para que se pueda entrelazar la cadena.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 2.18 YUGO TRANVERSAL DESDE SOLID WORKS.

Ventajas del Puente Grúa

- Una de las grandes ventajas que tiene el puente grúa, es que permite muchos espacios de trabajo, teniendo a la vez una gran herramienta de trabajo para la elevación de maquinarias y estructuras pesadas.
- Otra ventaja que brinda el puente grúa, es que en la planta donde se quiera instalar este tipo de grúa, se pueden aprovechar las

- columnas existentes, siempre y cuando soporten la carga estructural de la grúa.
- El trasladar la carga en las tres posiciones básicas(X, Y, Z), a una velocidad relativamente baja cuando se tiene carga, y una velocidad moderadamente alta cuando no se tiene carga.
- La facilidad del montaje del puente grúa, es decir acople de trolley a la viga, acople del tecle eléctrico, y finalmente acople del carro transversal a las vigas transportadoras.
- Los equipos tanto como del tecle eléctrico, motorreductores y trolley, se lo puede encontrar con facilidad en el mercado, además los perfiles brindan una excelente condición para poder acoplar estos equipos.
- Pueden operar en cualquier temporada del año, sea esta en invierno o verano, además bajo cualquier inconveniente del clima, ya que el puente se encuentra dentro de un galpón o un taller industrial.
- Otra ventaja que se puede mencionar, es que este tipo de estructura motorizada, está bajo los últimos cambios tecnológicos, y cada vez la manufactura de estos equipos eléctricos y electrónicos, están bajando de precios, porque se desarrolla nuevas tecnologías, y con ellos cada vez existe mas empresas que

se dedican a perfeccionar esta máquina de gran utilidad en la industria.

Desventajas del Puente Grúa

- Atrapamiento en los puntos de contacto como son: en los cables, poleas, o engrane.
- Cada vez que se deja de utilizar el puente grúa se debe dejar sin carga, sin gancho, y con la cadena no tensionada, pues esto puede provocar un accidente al accionamiento del puente grúa.
- Una desventaja del puente grúa, es que está limitado a trabajar dentro del galpón, taller o nave industrial, donde se encuentran instalados.
- Un punto en contra en el puente grúa es la poca variedad de cadena en virtud de su longitud, es decir la mayoría de tecles, vienen con cadena prefabricadas, y pre dimensionadas, razones por la que se debe seleccionar cadenas de mucha más longitud e inutilizable.
- La falla por fatiga en el gancho; Este gancho dentro de un determinado tiempo se debe chequear, para revisar y

asegurarnos de que no tenga picaduras, hendiduras, o discontinuidades en el material.

2.6 Grúa Giratoria

La grúa giratoria de un brazo está montada sobre una plataforma circular provista de ruedas, o más probablemente de rodamientos, que permitirían un transporte rápido del material. El peso se eleva mediante un tecle. La manivela va unida a un engranaje provisto de un trinquete, que impide que el peso caiga durante el trabajo o que oscile demasiado.

Las grúas giratorias de columna con un ángulo de giro de 360° se pueden instalar prácticamente en cualquier lugar. Son totalmente independientes y son ideales para puestos de trabajo, almacenes a la intemperie, rampas de carga y naves.

Las necesidades de espacio para la columna son mínimas. Los pescantes giratorios de columna permiten aprovechar al máximo la altura de elevación disponible, incluso en espacios de altura reducida.

Fuente:www.directindustry.es/prod/abus/gruas-plumas-giratorias-columna-14275-33464.html

FIGURA 2.19. GRÚA GIRATORIA

Ventajas de la Grúa Giratoria

- La ventaja de la grúa giratoria, es que se puede mover en los 360 grados, rápidamente sin ningún tipo de problema.
- Presta la facilidad de acople a un tecle eléctrico, porque el brazo de la grúa giratoria es un perfil estructural (IPE o IPN), se recomienda que sea un perfil de acero con ala corta.

- Este tipo de grúa es económico, para fabricar, además no requiere de mucho espacio, es óptimo, para un taller mediano o para una nave industrial que no requiere levantar mucha carga.
- La facilidad de montar en cualquier taller, porque cuenta con una placa empotrada al piso y con pernos de anclaje, también se encuentra reforzado por cartela.

Desventajas de la Grúa Giratoria

- La limitación de la carga, es una de las grandes desventajas, además de los pernos de anclaje debe tener una muy buena resistencia, para cargas superiores a las 3.5 toneladas.
- La muy poca aplicación que se tiene dentro de la industria, está limitada por su tamaño, por su capacidad y por su solo movimiento giratorio.
- Solo tiene un radio de acción.

TABLA 1
MATRIZ DE DECISIÓN.

	VENTAJAS	DESVENTAJAS	PUNTOS
	Ahorro de esoacio de trabajo		
	Se pueden aprovechar columnas Podemos mover carga X,Y,Z	Atrapamiento en los cables	
PUENTE GRUA	Facilidad de Montaje	Trabajo dentro del galpon	4
	Equipos electricos facil de Encontrar		
	Opera en caulquier Temporada del año	Atrapamiento en los cables	
	Tiene lo ultino en tecnologia		
	No depende de tensores ni contrapeso para mantener	No presentan desplazamientos de	
	su estabilidad	forma radial	
	Son de fácil construcción y de mantenimiento		
		No puede tener mucha altura por que	
GRUA PORTICO	Son capaces de soportar hasta 10 toneladas de peso	pierden estabilidad.	3
	Se puede desplazar largas distancias en el plano horizontal		
	Puede ser accionada manualmente por medio de manivelas		
	Gran altura y alcance		
	Equilibra la carga con contrapeso	Es muy caro	
GRUA TORRE			2
GROA TORRE	Mantaisandannataisa	Fuerza del viento	_
	Montajes y desmontajes	Fuerza dei Viento	
	Presenta cuatro movimiento		
	Se mueve en 360 grados		
	Facil acople de tecle Electrico	Limitacion por su carga	
GRUA GIRATORIA			1
GROA GIRATORIA	La anadamento de constitución	Limite day b	-
	La construccion es economica	Limitacion por su brazo	
	Sujeta a la cimentacion	No es desmontable	
	·		
	Fácil, el poder construir un pórtico más tecle	Presenta baja capacidad de carga.	
	racii, ei poder constrair un portico mas tecle	i resenta baja capacidad de carga.	
	Fácil transportación,	No presentas grandes dimensiones.	
			1
PORTICO MAS TECLE			T
	Las llantas contra marchas (seguros)	No presenta tecle eléctrico.	
	December to the control of the contr		
	Desmontable y tranportable.		

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

Se le da el valor de uno a cada ventaja, y se le quita el valor de uno a cada desventaja, que presenta los diferentes tipos de grua.

2.7 Selección del Tipo de Grúa a Utilizar

Se ha seleccionado el puente grúa por tener las mejores características para un buen trabajo en el taller, y la razón más importante es porque este tipo de grúa, permite un mayor espacio dentro del taller, estos aspectos motiva a construir un puente grúa dentro de la planta de producción. Es porque el puente grúa puede soportar carga de 5 tonelada, sin ningún problema, la facilidad de poder fijarse en las columnas sólidas, además cuando se traslada una carga de un lugar a otro, se lo realiza con seguridad. El puente grúa, tiene la capacidad de trasladar esta carga sin oscilaciones algunas, y así reducir el riesgo con los operarios.

La velocidad máxima con la que se puede mover el trolley del puente grúa es de 12 m/min, esto garantiza un buen manejo, con una posibilidad de accidente nula por motivo de traslación de carga, a continuación se observa el puente grúa.

Fuente:quito.olx.com.ec/puentes-grua-elevadores-de-carga-montacargas-iid-11052911#

FIGURA 2.20. PUENTE GRÚA FUNCIONANDO EN ADELCA, QUITO.

CAPÍTULO 3

3. DISEÑO DEL PUENTE GRÚA

En este capítulo se tratará el diseño del puente grúa, y selección de sus elementos bajo el criterio de diseño mecánico, además cumpliendo con la normas establecida por CMAA 74.

Se diseñará para la viga transversal, una viga tipo cajón con las siguientes dimensiones b= 377mm y h= 580 mm, la cual cumple con las normas de diseño, se diseña viga tipo cajón, por ser muy resistentes a la flexión, torsión, flexo torsión que es ocasionada por las fuerzas inerciales, y por la carga a levantar.

También se diseñará las vigas carrileras en este capítulo, así como los testeros, dado que el proyecto ya ha sido iniciado se validarán las columnas ya construidas, las misma que estarán ubicadas cada 5 metros entre sí, se procederá a seleccionar motorreductores, con la suficiente

60

potencia para poder mover la viga transversal con su carga a velocidades

moderadas, la trasmisión se realizará por un piñón y engrane acoplado

directo a la rueda impulsora.

3.1. Parámetros de Construcción

Se quiere implementar un puente grúa con capacidad de 5 toneladas de carga, con tecle eléctrico y trolley incorporado, que tenga las siguientes características de diseño:

Velocidad de Elevación= 3.1m/min

Velocidad transversal controlada por trolley = 12 m/min

Velocidad del carro transportador= 35m/min

Peso del Tecle Eléctrico = 243 Kg

N. Columna de Cadena= 2

Carga Máxima permitida= 6250Kg

3.2. Diseño de Forma

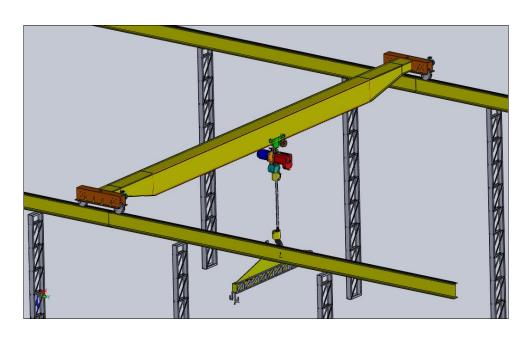


FIGURA 3.1 DISEÑO DE FORMA DEL PUENTE GRÚA.

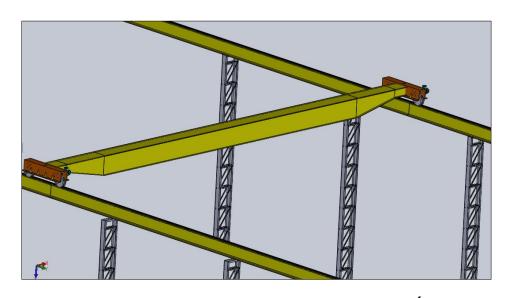


FIGURA 3.2 ESTRUCTURA DEL PUENTE GRÚA

62

3.3. Selección del Sistema de Elevación de carga

Se quiere mover la carga con una velocidad transversal de 12m/min, y se desea levantar carga hasta 5000kg, con una velocidad de izaje de 3.1m/min. Para el cual, se selecciona un tecle eléctrico de marca KITO, de KD-2M.

El tecle eléctrico que se selecciona, tiene las siguientes características:

Carga Máxima= 6250 Kg

Velocidad de Elevación= 3.1m/min

Velocidad transversal= 12 m/min

Peso del Tecle Eléctrico= 243 Kg

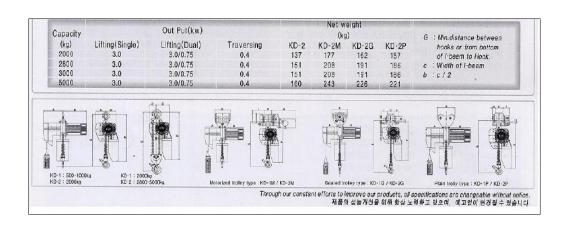
Diámetro de la Cadena= 11.2mm.

N. Columna de Cadena= 2

Potencia de Elevación= 3.0 Kw

Potencia Transversal= 0.4 Kw

TABLA 2

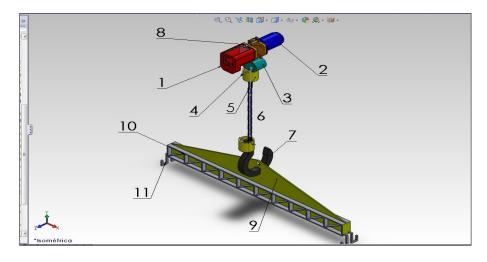

DIMENSIONES Y ESPECIFICACIONES DEL TECLE ELÉCTRICO

Dime.	nsion																
	Capacity			THE PERSON NAMED IN		JAN STATE		S PRINTS	STATE OF THE PARTY	MESSESSI.	10000		#50055	Std	.I-Beam	Min.Radius	
Model	(kg)	G	Α	В	C	D	F ₁	Н	- 1	K	L	М	P	Wic	lth(mm)	for Cu	irve(mm)
KD-2	2000	790	305	340	168	168	33						805				
KD-2	2800	970	305	340	113	223	41						895				
KD-2	3000	970	305	340	113	223	41						895				
KD-2	5000	1095	305	340	113	223	48						970				
KD-2M	2000	755	305	340	100,125,1		33	314	184	296	31	100	770	100,	125,150		1500
KD-2M	2800	925	305	340	100,125,1	50	41	323	193	337	38	115	900	100,	125,150	17	1500
KD-2M	3000	925	305	340	100,125,1		41	323	193	337	38	115	900	100,	125,150		500
KD-2M	5000	1054	305	340	125, 150, 1	75	48	332	202	384	45	135	0.50	400	100 475	STATE OF THE PARTY OF	
-	0000	1034	303	340	123, 130, 1	13	46	332	202	904	40	100	950	120,	150,175	Market Company	2000
	1	The state of the s		340	123,130,1		40	332	202	304	40	100	950	120,	150,1/5	-	000
	lard Spe	The state of the s		340	125, 150, 1					304	40	100	950	120,	150,175		000
	1	The state of the s	ition		(25,150,1		Spee	(m/m		304	45	100	950	120,	150,175		000
	lard Spe	ecifica	tion Duty	rating		Liftir	Speed og Speed	(m/m						SEALOR			
	dard Spe	ecifica Lift	ntion Duty (m	rating	Sin	Liftir gle	Speed ng Speed	d (m/m Dual	in)	Trave	rsing	Speed	Load C	nain	No.of Co	olumns	Test Loa
Stand	dard Spe Capacity (kg)	ecifica	Duty (m Single	rating in) Dual	Sin 50Hz	Liftir gle 60Hz	Speed ng Speed 50Hz	d (m/m Dual 6	in) OHz		rsing		Load C	nai n m)		olumns	Test Loa
Stand Model	dard Spe	ecifica Lift (m)	ntion Duty (m	rating in) Dual 15/5	Sin; 50Hz 6.2	Liftir gle 60Hz 7.4	Speed og Speed 50Hz 6.2/1.6	0 (m/m Dual 6	in) OHz 4/1.8	Trave	rsing	Speed	Load Cl Dia.(m	nai n m)	No.of Co	olumns	Test Loa (kg) 2500
Stand Model KD-2	Capacity (kg) 2000 2800	Lift (m)	Duty (m Single	rating in) Dual 15/5 15/5	Sin; 50Hz 6.2 4.5	Liftir gle 60Hz 7.4 5.4	Speed ng Speed 50Hz 6.2/1.6 4.5/1.1	0 (m/m Dual 6 7	0Hz 4/1.8 4/1.3	Trave	rsing	Speed	Load Cl Dia.(m 11.2 9.5	nai n m)	No.of Co	olumns	Test Loa (kg) 2500 3500
Stand Model KD-2 KD-2	Capacity (kg) 2000 2800 3000	Lift (m)	Duty (m Single 30	rating in) Dual 15/5 15/5	Sin: 50Hz 6.2 4.5 4.5	Liftir gle 60Hz 7.4 5.4 5.4	Speed og Speed 50Hz 6.2/1.6 4.5/1.1	0 (m/m Oual 6 7 5 5	0Hz 4/1.8 4/1.3 4/1.3	Trave	rsing	Speed	Load Cl Dia.(m 11.2 9.5 9.5	nain m)	No.of Co of Load 1 2 2	olumns	Test Loa (kg) 2500 3500 3750
Model KD-2 KD-2 KD-2	Capacity (kg) 2000 2800	Lift (m) 4 4	Duty (m Single 30 30 30	rating in) Dual 15/5 15/5	Sin; 50Hz 6.2 4.5	Liftir gle 60Hz 7.4 5.4	Speed 50Hz 6.2/1.6 4.5/1.1 4.5/1.1 2.6/0.6	Oual 6 7. 5. 5. 3.	0Hz 4/1.8 4/1.3 4/1.3 1/0.8	Trave 50H	rsing	Speed 60Hz	Load Cl Dia.(m 11.2 9.5 9.5 11.2	nain m)	No.of Co	olumns	Test Loa (kg) 2500 3500 3750 6250
Model KD-2 KD-2 KD-2 KD-2 KD-2	Capacity (kg) 2000 2800 3000 5000	Lift (m) 4 4 4 4	Duty (m Single 30 30 30 30	rating in) Dual 15/5 15/5 15/5	Sin: 50Hz 6.2 4.5 4.5 2.6 6.2	Liftir gle 60Hz 7.4 5.4 5.4 3.1 7.4	Speed 50Hz 6.2/1.6 4.5/1.1 4.5/1.1 2.6/0.6 6.2/1.6	Oual 6 7. 5. 5. 3. 7.	0Hz 4/1.8 4/1.3 4/1.3 1/0.8 4/1.8	Trave 50H	rsing	Speed 60Hz	Load C Dia.(m 11.2 9.5 9.5 11.2 11.2	nain m)	No.of Co of Load 1 2 2 2 2	olumns	Test Loa (kg) 2500 3500 3750 6250 2500
Model KD-2 KD-2 KD-2 KD-2 KD-2 KD-2	Capacity (kg) 2000 2800 5000 2000	Lift (m) 4 4 4 4	Duty (m Single 30 30 30 30 30	rating in) Dual 15/5 15/5 15/5 15/5	Sin: 50Hz 6.2 4.5 4.5 2.6	Liftir gle 60Hz 7.4 5.4 5.4 3.1	Speed 50Hz 6.2/1.6 4.5/1.1 4.5/1.1 2.6/0.6	Dual 6 7 5 3. 7 5	0Hz 4/1.8 4/1.3 4/1.3 1/0.8	Trave 50H	rsing	Speed 60Hz	Load Cl Dia.(m 11.2 9.5 9.5 11.2	nain m)	No.of Co of Load 1 2 2	olumns	Test Loa (kg) 2500 3500 3750 6250

Fuente: Catalogo de Polipasto/tecle Eléctrico KITO series ER2-NER2 (2002)

TABLA 3

CARACTERÍSTICAS DEL TECLE ELÉCTRICO

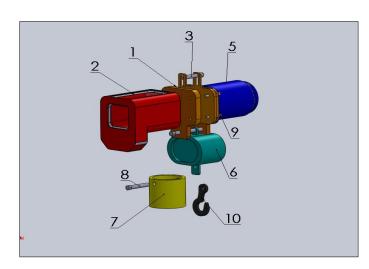


Fuente: Catalogo de Polipasto/tecle Eléctrico KITO series ER2-NER2 (2002)

KPT type (PLAIN TROLLEY) Min. Radius of curve Packing measurement (L×M×H) Dimension (mm) C H F recommended(mm)
M E(min) A B C I S 35 25 230 212 198 100 3 35 25 254 255 231 120 3 45 30 294 302 278 140 3 55 35 344 344 338 175 3 75 45 360 378 393 210 4.5 90 60 0.5 0.9 0.63 $26 \times 8 \times 23$ 64~140 12 1.0 12 34×8×27 64~140 2.50 22 30 35×9×28 38×16×29 76~165 76~203 55 40×20×32 Please adjust the beam width by the suitable the washer according to the following table(mm) В С D G H 0.5 76 87.5 87.5 93.8 100 106.3 112.5 118.8 127 1 76 87.5 87.5 93.8 100 106.3 112.5 118.8 127 2 101 112.5 112.5 118.8 125 131.8 137.5 143.8 153 3 101 112.5 112.5 118.8 125 131.8 137.5 143.8 153 5 127 137.5 137.5 143.8 150 156.3 162.5 168.8 178

TABLA 4
DIMENSIONES DEL PLAIN TROLEY

Fuente: Catalogo de Polipasto/tecle Eléctrico KITO series ER2-NER2 (2002)



Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.3 PARTES DEL SISTEMA DE ELEVACIÓN.

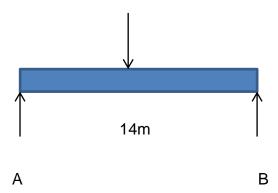
El sistema de elevación seleccionado consta de las siguientes partes:

- 1. Reductor de Velocidad.
- 2. Motor Eléctrico Trifásico 220V.
- 3. Tecle Eléctrico Marca KITO.
- 4. Perno de Sujeción.
- 5. Collarín de Sujeción.
- 6. Cadena de eslabones.
- 7. Gancho.
- 8. Soporta Tecle.
- 9. Yugo.
- 10. Cerchas del Yugo.
- 11. Gancho, para sujeción de cadenas.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.4 PARTES DEL TECLE ELÉCTRICO.

- 1. Soporte del Tecle
- 2. Reductor de Velocidad
- 3. Perno del Soporte
- 4. Pasador del Soporte
- 5. Motor Eléctrico Trifasico
- 6. Polipasto
- 7. Soporte del Gancho
- 8. Pasador del Gancho
- 9. Tuerca de Perno del motor
- 10. Gancho o Mosqueton.


3.4. Dimensionamiento de la Viga Principal

Para proceder al diseño estructural se revisa la norma de la asociación de fabricantes de puentes grúa americana, la cual recomienda usar el 125% de la carga nominal, debido a los siguientes factores de cargas.

- Factor de carga Muerta
- Factor de carga del Trolley
- Factor de carga de Izaje
- Factor de carga de Fuerzas Inerciales

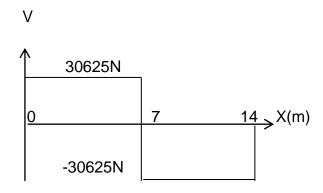
- Factor de carga de Viento
- Factor de fuerza de colisión.
- Factor de Fuerzas debido al sesgado.
- Factor de Cargas extraordinarias
- Factor de Fuerzas Inerciales Verticales

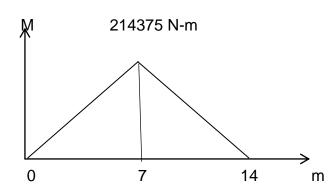
 $W=6250kgx(9.8m/s^2)=61250N$

ΣFY=0

RA+RB-W=0

RA+RB=W

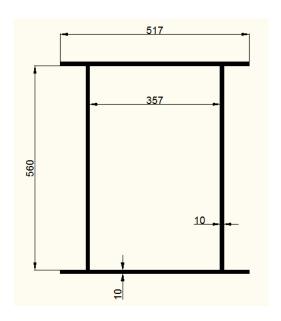

 $\Sigma MA=0$


RB(14)-W(7)=0

RB=W/2

RB=30625N

RA=30625N


$$n = \frac{S_y}{\sigma}$$

Sy= 250 MPa (36Ksi)

$$\sigma = \frac{Mmax}{Z} \qquad \qquad \sigma = \frac{Mmax}{\frac{I}{C}}$$

Para poder calcular el esfuerzo de flexión, se requiere hallar primero la inercia de la viga prefabricada, esta viga va a soportar la carga de diseño, la carga del trolley y también debe soportar las fuerzas inerciales a la cual está sometida la viga.

La viga será diseñada en forma de cajón, para tener una mayor rigidez, además tendrá una gran resistencia a la torsión y flexo torsión.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.5 PERFIL DE LA VIGA CAJÓN EN SOLIDWORKS 2011®

I mayor =
$$\frac{1}{12}$$
 bh³

b=377mm

h=580mm

I mayor =
$$\frac{1}{12}$$
 (0.377)(0.580)³

I mayor = $6.129 \times 10^{-3} \text{ m}^4$

Imenor= $5.23x10^{-3}m^4$

Itotal= $8.99 \times 10^{-4} \text{ m}^4$

$$\sigma = \frac{\text{Mmax C}}{I}$$

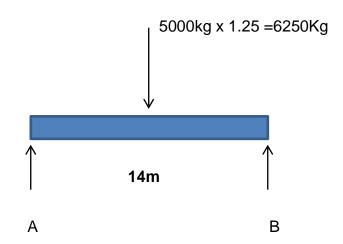
 σ = 238.46 M Pa

Ahora se procede, ha determinar el factor de seguridad de la viga.

$$n = \frac{S_y}{\sigma}$$

$$n = \frac{250MPa}{238.46MPa}$$

$$n = 1.04$$


Se observa que la viga cajón prefabricado, cumple con el diseño de vigas sometidas a flexión, pero hay algunas alternativas para la viga

principal, como la Viga IPN 500, HEB 400, y por último la construcción de una viga IPE 500 en el taller, con flejes de acero estructural y con soldadura SAW (Arco Sumergido). Debido a que los perfiles IPN son una de las alternativas se la descarta por tener las alas corta, y esto dificulta la graduación del trolley, se descarta también las vigas HEB, debido a que las vigas HEB 400 son escasas en el mercado y por lo general se debe importar la viga.

Se puede seleccionar también cualquier de los 2 tipos de vigas: IPE 500 o la HEB 400, pero si se analiza el acoplamiento de la viga central a los testeros, conviene utilizar la viga cajón.

De acuerdo a la resistencia, y facilidad de montaje, se ve la necesidad de fabricar una viga localmente, para el cual se ha considerado una viga de doble alma o viga cajón, de acuerdo a la carga establecida, a la luz que tiene la viga central, y además de acuerdo a la norma CMAA 74, se decide fabricar la viga de doble alma por tener una gran resistencia a la torsión.

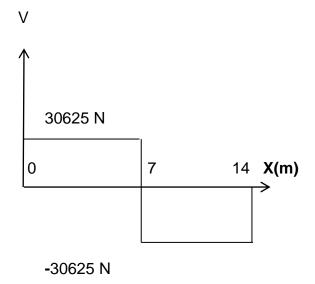
Diseño a la Fatiga

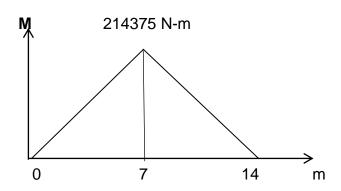
 $W=6250kgx(9.8m/s^2) = 61250N$

ΣFY=0

RA+RB-W=0

RA+RB=W


ΣΜΑ=0


RB(14)-W(7)=0

RB=W/2

RB=30625N

RA=30625N

Confiabilidad= 90%

Temperatura= 100 C

Propiedades Mecánica del Acero A36

Sy = 207MPa

Sut=379 MPa

Sut= 55Kpsi

$$\sigma m = \frac{\sigma \max + \sigma \min}{2}$$

$$\sigma a = \frac{\sigma \max - \sigma \min}{2}$$

 $\sigma m = Esfuerzo de flexion media$

σa =Esfuerzo a la flexion alterna

σmax= 37MPa

σmax= 37MPa ; σmin= 0 MPa

$$\sigma m = \frac{37MPa + 0MPa}{2}$$

 $\sigma a=18.5MPa$

$$\sigma a = \frac{\sigma \max - \sigma \min}{2}$$

 $\sigma a = 18.5 \text{ MPa}$

Esfuerzo Cortante

$$\text{TXY} \!\!=\!\!\! \frac{V}{A} \; ; \quad \! A \!\!=\!\! 0.0294 \; m^2$$

$$TXY = \frac{30625 \text{ N}}{0.0294 \text{m}^2} \quad ;$$

тху= 1.041 MPa

Von Mises

$$\sigma a' = \sqrt{\frac{(\sigma xa)^2 + (\sigma ya)^2 - (\sigma xa)(\sigma ya) + 3(\tau xya)^2}{1}}$$

$$\sigma a' = \sqrt{\frac{(18.5 \text{MPa})^2 + (0)^2 - (53.3160 \text{MPa})(0) + 3(1.041 \text{MPa})^2}{1}}$$

 $\sigma a' = 18.58 \text{ MPa}$

$$\sigma m' = \sqrt{\frac{(\sigma x m)^2 + (\sigma y m)^2 * (\sigma x m)(\sigma y m) + 3(\tau x y m)^2}{1}}$$

$$\sigma m' = \sqrt{\frac{(18.5MPa)^2 + (0)^2 - (53.3160MPa)(0) + 3(1.041MPa)^2}{1}}$$

$$\sigma m' = 18.58MPa$$

Factores de Corrección

Sf=(CCarga)(Ctamaño)(CSuperficie)(CTemperatura)

(Confiabilidad)Sf'

Sf'=0.5 Sut; Para el Acero

Sf'=0.5(379MPa)

Sf'= 189.5MPa.

TABLA 5
DE FACTOR DE CARGA

	1	flexión
Kc	0.85	axial
	0.59	torsión

Fuente: Diseño de máquinas, Robert I. Norton, tercera edición

Como se observa en la tabla el factor de carga, el valor que corresponde al factor de carga es Kc= 1, para flexion, cabe indicar que en los texto de diseño se usa otras nomenclaturas por ejemplo KC=Ccarga, se recomienda hacer estas aclaraciones, por que esa nomenclatura se la va a guardar.

C carga=1; Para flexión

El factor de tamaño se lo determina en base que no es un cuerpo circular no rotativo, por ende se determina el diámetro equivalente, pero dado que la viga cajón tienen dimensiones mayores a las que están tabuladas en la tabla del libro de diseño de máquinas de Robert L. Norton, se sigue las especificaciones de diseño del mismo libro, la cual indica lo siguiente:

C Tamaño= 1.189 $(d)^{-0.097}$; para 8mm ≤d≤ 250mm.

En el texto Diseño de Máquinas de Norton, recomienda usar el C tamaño= 0.6, si el valor de deq>250 mm.

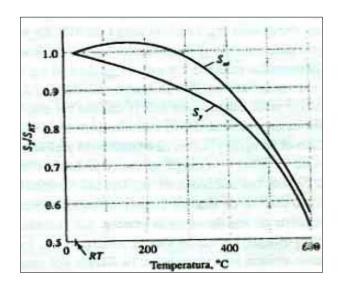
C Tamaño=0.6.

TABLA 6
DE ACABADO SUPERFICIAL

Acabada Suparficial	Fact	Evnananta b		
Acabado Superficial	Ksi	Мра	Exponente b	
Esmerilado	1.34	1.58	-0.085	
Maquinado o estirado en frio	2.70	4.51	-0.265	
Rolado en caliente	14.40	57.70	-0.718	
Forjado	39.90	272.00	-0.995	

Fuente: Diseño de máquinas, Robert I. Norton, tercera edición

El proceso tendrá un esmerilado como acabado superficial, remplazando los valores se obtiene el factor de acabado superficial


C Superficie

C Superficie= A(Sut)^b; Para Perfiles Rolado en Caliente

A=57.7 b=-0.718

C Superficie= $57.7(379MPa)^{-0.718}$

C Superficie= 0.8122

Fuente: Diseño de máquinas, Robert I. Norton, tercera edición

FIGURA 3.6 CURVA PARA EL CÁLCULO DE FACTOR DE TEMPERATURA

Cabe indicar que se toma una temperatura considerable para este diseño, en este caso se va a tomar T= 100°C, el cual corresponde un factor de temperatura, C temperatura = 0.98

C Temperatura=0.98 ; T≤145°C

Estos son los parámetros que recomienda el libro de diseño de máquinas.

TABLA 7

DE CÁLCULO DE FACTOR DE CONFIABILIDAD.

Factor de Confiabilidad ke									
Confiabilidad (%)	Variable Za	Variable de Confiabilidad Ke							
50	0	1.000							
90	1.288	0.897							
95	1.645	0.868							
99	2.326	0.814							
99.9	3.091	0.753							
99.99	3.719	0.702							
99.999	4.265	0.659							
99.9999	4.753	0.620							

Fuente: Diseño de máquinas, Robert I. Norton, tercera edición

Para el diseño se va a seleccionar un factor de confiabilidad que corresponde al 90% de confiabilidad, para el cual tenemos:

Confiabilidad= 0.897

Sf=(CCarga)(Ctamaño)(CSuperficie)(CTemperatura)

(CConfiabilidad)Sf'

Sf=(1)(0.6)(0.8122)(0.98)(0.897)(189.5MPa)

Sf=82.83 MPa

Factor de Seguridad para Fatiga

Nf=
$$\frac{Sf}{\sigma a'}$$
 [1- $\frac{\sigma m'}{Sut}$]

$$Nf = \frac{82.83Mpa}{53.49Mpa} \left[1 - \frac{18.58MPa}{379MPa} \right]$$

Nf=1.47

El diseño de la viga cajón, si cumple para el diseño a la fatiga.

Para Cálculos posteriores, y para el diseño de las vigas carrileras solo se presentará la tabla de resultados del diseño, para así evitar repetir el mismo procedimiento, que para el lector ya ha quedado muy en claro.

La viga cajón estará sometida a esfuerzos que van pandear la estructura por el efecto del esfuerzo cortante y por el efecto del esfuerzo a flexión, por el cual la norma CMAA especificación 74, Literal 3.4.8.1 Pandeo Local, recomienda validar el diseño de la viga bajo el efecto de pandeo local en las planchas de acero, para el cual se necesita hallar el esfuerzo de pandeo de Euler:

$$\sigma_k = K_\sigma \ \sigma_e$$
 $\tau_k = K_\tau \sigma_e$

Donde:

 K_{σ} =Coeficiente de Pandeo por compresion

 K_{τ} =Coeficiente de Pandeo por cortante

 σ_e = Esfuerzo de pandeo de Euler.

$$\sigma_e = \frac{\pi^2}{12(1-\mu^2)}$$
 E. $(\frac{t}{b})^2 = 26.21 \times 10^6 (\frac{t}{b})^2$

La norma nos recomienda utilizar las unidades inglesa, de lo contrario los valores de diseño se verán afectados, por el cual se convertirá los valores hasta ahora obtenidos de MKS a unidades inglesa.

E= Modulo de Elasticidad (Para el acero= 29000Ksi)

μ= Relación de Poisson (Para acero=0.3)

t=espesor de las planchas

b=anchura de las placas a perpendicular a las fuerzas de compresiones (in)

$$\sigma_e = \frac{\pi^2}{12(1-\mu^2)} E. \left(\frac{t}{b}\right)^2 = 26.21 \text{ x} 10^6 \left(\frac{t}{b}\right)^2$$

t= 10mm=0.3937in

b=377mm= 14.84 in

$$\sigma_e = 26.21 \text{ x} 10^6 \left(\frac{0.3937 \text{ in}}{14.84 \text{ in}} \right)^2$$

 σ_e =4199 Lbs.

Si se producen esfuerzo de compresión y cortante al mismo tiempo, se procede a calcular el esfuerzo crítico al respecto:

$$\sigma_{1k} = \frac{\sqrt{\sigma^2 + 3\tau^2}}{\left(\frac{1+\Psi}{4}\right) \left(\frac{\sigma}{\sigma_k}\right) + \sqrt{\left(\frac{3-\Psi}{4}\frac{\sigma}{\sigma_k}\right)^2 + \left(\frac{\tau}{\tau_k}\right)^2}}$$

σ=Esfuerzo de Compresión real

 τ = Esfuerzo cortante real

 σ_k =Esfuerzo de Compresión critico

 τ_k = Esfuerzo de cortante Crítico

Ψ= Relación de Esfuerzo

 σ_{1k} =Esfuerzo Critico Combinado

Se aplica la fórmula para determinar el esfuerzo crítico a la cual está sometida la viga cajón que se está diseñando.

$$\sigma_{1k} = \frac{\sqrt{-\sigma^2 + 3\tau^2}}{\left(\frac{1+\Psi}{4}\right)\left(\frac{\sigma}{\sigma_k}\right) + \sqrt{-\left(\frac{3-\Psi}{4}\frac{\sigma}{\sigma_k}\right)^2 + -\left(\frac{\tau}{\tau_k}\right)^2}}$$

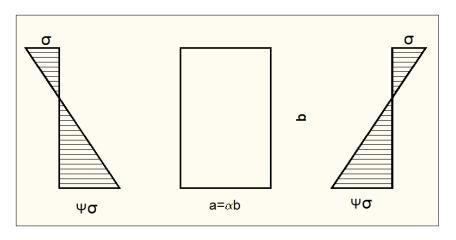
$$\sigma = 4502. \frac{Lbs}{in^2}$$

$$\tau = 151.32 \, \frac{Lbs}{in^2}$$

Ψ≤-1

$$\sigma_{\mathbf{k}} = 100440 \, \frac{\mathrm{Lb}}{\mathrm{pg}^2}$$

$$\tau_k = 39218.6 \, \frac{\text{Lbs}}{\text{in}^2}$$


$$\sigma_{1k} = 95957 \frac{Lbs}{in^2}$$

De acuerdo a la norma CMAA 74, en la tabla No.3.4.8.2.1, este caso particular de diseño es el Caso 3 y Caso 4. Que indica lo

siguiente:

Caso 3:

Las tensiones de compresión y tracción, variando como una línea recta, con valores iguales de borde, Ψ = -1 o con tensiones de tracción predominantemente Ψ <-1.

Fuente: Norma CMMA 74. Scribd.

FIGURA 3.7 ESTADO DE ESFUERZO DE LA VIGA PARA DIFERENTES Ψ (CMAA74)

Con Ψ≤ -1

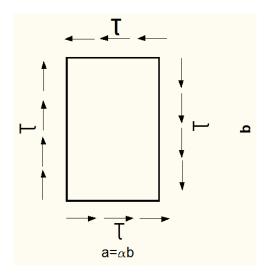
Esfuerzo de Pandeo

 $\sigma_k = K_\sigma \sigma_e$

Rango de Aplicación

α≤2/3

 $\alpha = 0.65$


Coeficiente de pandeo

 $K_{\sigma} = 23.92$

 σ_k =23.92 x 4199Lbs.= 100440 $\frac{Lb}{pg^2}$

Caso 4

Los esfuerzos cortantes distribuidos uniformemente Ψ = 1.

Fuente: Norma CMMA 74. Scribd.

FIGURA 3.8 DISTRIBUCIÓN DE ESFUERZO CORTANTE

Esfuerzo de Pandeo

 $\tau_k = K_T \sigma_e$

Rango de Aplicación

α≤1

Coeficiente de Pandeo

$$K_T = 4.00 + \frac{5.34}{\alpha^2}$$

K_T=Coeficiente de pandeo debido al cortante.

$$\alpha = 0.7$$

$$K_T = 4.00 + \frac{5.34}{0.7^2} = 9.34$$

$$\tau_k$$
= 9.34 x 4199 $\frac{Lbs}{in^2}$ = 39218.6 $\frac{Lbs}{in^2}$

Debido a que se conoce los esfuerzos a los que va a ser sometido la viga cajón, se procede a determinar el factor de diseño \mathfrak{Z}_B de acuerdo a la noma de fabricantes de puentes grúas CMAA74.(literal 3.4.8.3 Design Factor).

El Factor de diseño 3B es calculado de la siguiente manera En el caso de Pandeo Elástico

$$g_B = \frac{\sigma_{1k}}{\sqrt{\sigma^2 + 3 \tau^2}} \ge DFB$$

DFB= Factor de seguridad de pandeo.

En el caso de pandeo Inelástico

$$g_B = \frac{\sigma_{1KR}}{\sqrt{\sigma^2 + 3 \tau^2}} \ge DFB$$

De acuerdo a la norma CMAA 74 tabla 3.4.5.3-1, caso 3.

DFB=
$$1.35+0.05x(\Psi -1)$$

 Ψ =1, entonces DFB=1.35.

Se encuentra primero la inercia de la sección de la viga cajón, con el siguiente procedimiento, para proceder encontrar posteriormente σ :

$$\sigma = \frac{MC}{I}$$
;

$$\sigma = \frac{1896845 \text{Lbs-in} (13.78 \text{ in})}{5806 i n^4}$$

 σ =4502.Psi

Pandeo Elástico

$$\sigma_{1k} = 95957 \frac{Lbs}{in^2}$$

$$\sigma=4502 \frac{Lbs}{in^2}$$

$$\tau = 151.32 \, \frac{Lbs}{in^2}$$

$$g_B = \frac{\sigma_{1k}}{\sqrt{\sigma^2 + 3 \tau^2}} \ge DFB$$

$$z_{B} = \frac{95957 \frac{Lbs}{in^{2}}}{\sqrt{4502^{2} + 3(151.32)^{2}}}$$

$$g_B = 2.1$$

$$2.1 \ge 1.35$$

Cumple con la norma de Fabricantes de Puentes grúas Americanas

CMAA 74

$$n = \frac{Sy}{\sigma}$$

Sy=36000Ksi ;
$$\sigma$$
= 4502 $\frac{Lbs}{in^2}$

$$n = \frac{36000 \frac{Lbs}{in^2}}{4502 \frac{Lbs}{in^2}}$$

n=7.99, si Cumple con la norma CMAA 74, además cumple con las normas de diseño de vigas sometidas a flexión.

En la norma CMAA, en la sección 74 en el literal 3.5 (Design Limitations) nos indica las limitaciones del diseño de la viga cajón, la cual debe cumplir con el siguiente parámetro:

L/h no debe de exceder de 25.

L/b no debe de exceder de 65.

L= Claro

b=Ancho de la viga cajón.

h=Altura de la viga Cajón

t=Espesor de las planchas

L= 14000mm= 551.20 in

h=580= 22.83 in

b=377=14.84

$$L/h = \frac{551.2 \text{ in}}{22.83 \text{in}} = 24.14$$

$$L/b = \frac{551.2 in}{14.84 in} = 37.14$$

La viga cajón también cumple con las especificaciones 3.5 (Design Limitations) que se refiere a las limitaciones de L/h y L/b.

Debido que en el proceso de fabricación de la viga cajón, existen muchos parámetros, que afecta la buena manufactura de la viga, la norma recomienda colocar rigidizadores en el interior de la viga cajón, no se la puede colocar en el exterior que es lo más apropiado, porque molestaría el paso del trolley, además se coloca rigilizador para reforzar los placas sometidas a compresión, así como las planchas laterales, que al tener una longitud de 14000 mm, necesita rigilizador para que no se pandee las planchas laterales.

La Norma CMAA 74, en el literal 3.5.2 (Longitudinal Stiffeners) recomienda colocar rigilizadores, que cumplan con ciertas características y ciertas ubicaciones dentro de la viga cajón.

Los rigilizadores no deben ser menor a I_o , que es el momento de inercia del rigilizador, da libre opción para poder colocar ángulos, o platinas, siempre y cuando respeten las normas CMAA 74.

$$I_0 = 1.2 \left[0.3 + 0.4 \frac{a}{h} + 1.3 \left(\frac{a}{h}\right)^2 + 14 \frac{A_S a}{h^2 t}\right] ht^3$$

Dónde:

a=Distancia entre fondo de la plancha y refuerzo transversal

As=Área del refuerzo longitudinal

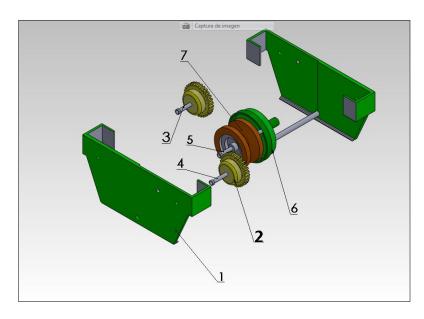
Ic=Momento de inercia.

$$I_0$$
= 1.2 [0.3 +0.4 $\frac{15.15in}{6.88in}$ + 1.3 $(\frac{15.15in}{6.88in})^2$ + 14 $\frac{77.16in(15,15in)}{6.88^2 0.078}$]
6.88in(0.078)³

$$I_o$$
= 1.2[0.3+0.88 +6.30+ 4432] 4.74x10⁻⁴

$$I_o = 2.52 in^4$$

Como es un valor no tan alto, se puede colocar ángulos desde 1 pulgada, pero para evitar problemas con la soldadura en las plancha superior, se recomienda utilizar placas pequeñas a 45 grados, desde 10mm de espesor a una determinada distancia, y crucetas (de 10mm) en el interior del cajón, para así poder soldar sin problemas, y aumentar la rigidez de la viga.

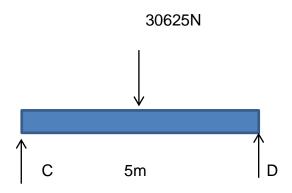

TABLA 8

DIMENSIONES DE VIGAS QUE CUMPLE CON NORMA CMAA74

331,5	510	10	610511917	0,000610512	214375	0,255	89540635,5	89,5406355	250	2,792	27,45098	42,23	0	1	NO CUMPLE
338	520	10	647958667	0,000647959	214375	0,26	86020147,4	86,02014738	250	2,9063	26,92308	41,42	0	1	NO CUMPLE
344,5	530	10	686906417	0,000686906	214375	0,265	82703223,6	82,70322364	250	3,0229	26,41509	40,64	0	1	NO CUMPLE
351	540	10	727384667	0,000727385	214375	0,27	79574470,9	79,57447091	250	3,1417	25,92593	39,89	0	1	NO CUMPLE
357,5	550	10	769422917	0,000769423	214375	0,275	76619923,5	76,61992348	250	3,2629	25,45455	39,16	0	1	NO CUMPLE
364	560	10	813050667	0,000813051	214375	0,28	73826887,4	73,82688738	250	3,3863	25	38,46	0	1	NO CUMPLE
370,5	570	10	858297417	0,000858297	214375	0,285	71183803,9	71,1838039	250	3,512	24,5614	37,79	1	1	CUMPLE
377	580	10	905192667	0,000905193	214375	0,29	68680130	68,68012998	250	3,6401	24,13793	37,14	1	1	CUMPLE
383,5	590	10	953765917	0,000953766	214375	0,295	66306232,9	66,3062329	250	3,7704	23,72881	36,51	1	1	CUMPLE
390	600	10	1004046667	0,001004047	214375	0,3	64053297,7	64,05329766	250	3,903	23,33333	35,9	1	1	CUMPLE
396,5	610	10	1056064417	0,001056064	214375	0,305	61913245	61,91324503	250	4,0379	22,95082	35,31	1	1	CUMPLE
403	620	10	1109848667	0,001109849	214375	0,31	59878659,1	59,87865913	250	4,1751	22,58065	34,74	1	1	CUMPLE
409,5	630	10	1165428917	0,001165429	214375	0,315	57942723,1	57,94272309	250	4,3146	22,22222	34,19	1	1	CUMPLE
416	640	10	1222834667	0,001222835	214375	0,32	56099161,9	56,09916195	250	4,4564	21,875	33,65	1	1	CUMPLE
422,5	650	10	1282095417	0,001282095	214375	0,325	54342191,8	54,34219177	250	4,6005	21,53846	33,14	1	1	CUMPLE
429	660	10	1343240667	0,001343241	214375	0,33	52666474,3	52,66647426	250	4,7469	21,21212	32,63	1	1	CUMPLE
435,5	670	10	1406299917	0,0014063	214375	0,335	51067076,2	51,0670762	250	4,8955	20,89552	32,15	1	1	CUMPLE
442	680	10	1471302667	0,001471303	214375	0,34	49539433,1	49,53943308	250	5,0465	20,58824	31,67	1	1	CUMPLE
448,5	690	10	1538278417	0,001538278	214375	0,345	48079316,6	48,07931659	250	5,1997	20,28986	31,22	1	1	CUMPLE
455	700	10	1607256667	0,001607257	214375	0,35	46682805,3	46,68280528	250	5,3553	20	30,77	1	1	CUMPLE

b	h	t	I mm4	l m4	Mmax(N-	С	σ(Pascal)	σ(Mpa)	Sy(Mpa)	n	L/h	L/b	L/h<25	L/b<65	CUMPLE CON NORMA
130	200	10	33206666,7	3,32067E-05	214375	0,1	645578197	645,5781971	250	0,3872	70	107,7	0	0	NO CUMPLE
136,5	210	10	38754416,7	3,87544E-05	214375	0,105	580820896	580,8208957	250	0,4304	66,66667	102,6	0	0	NO CUMPLE
143	220	10	44888666,7	4,48887E-05	214375	0,11	525327477	525,3274769	250	0,4759	63,63636	97,9	0	0	NO CUMPLE
149,5	230	10	51638916,7	5,16389E-05	214375	0,115	477413675	477,4136754	250	0,5237	60,86957	93,65	0	0	NO CUMPLE
156	240	10	59034666,7	5,90347E-05	214375	0,12	435760909	435,7609088	250	0,5737	58,33333	89,74	0	0	NO CUMPLE
162,5	250	10	67105416,7	6,71054E-05	214375	0,125	399325067	399,3250669	250	0,6261	56	86,15	0	0	NO CUMPLE
169	260	10	75880666,7	7,58807E-05	214375	0,13	367270758	367,2707585	250	0,6807	53,84615	82,84	0	0	NO CUMPLE
175,5	270	10	85389916,7	8,53899E-05	214375	0,135	338923214	338,923214	250	0,7376	51,85185	79,77	0	0	NO CUMPLE
182	280	10	95662666,7	9,56627E-05	214375	0,14	313732630	313,7326299	250	0,7969	50	76,92	0	0	NO CUMPLE
188,5	290	10	106728417	0,000106728	214375	0,145	291247411	291,2474107	250	0,8584	48,27586	74,27	0	0	NO CUMPLE
195	300	10	118616667	0,000118617	214375	0,15	271093860	271,0938598	250	0,9222	46,66667	71,79	0	0	NO CUMPLE
201,5	310	10	131356917	0,000131357	214375	0,155	252960604	252,9606042	250	0,9883	45,16129	69,48	0	0	NO CUMPLE
208	320	10	144978667	0,000144979	214375	0,16	236586532	236,5865323	250	1,0567	43,75	67,31	0	0	NO CUMPLE

Partes Del Trolley



Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.9 PARTES DEL TROLLEY

- 1. Chapa Metálica del Trolley.
- 2. Ruedas Transversales.
- 3. Perno Izquierdo de la rueda.
- 4. Perno Derecho de la rueda.
- 5. Pasador de la Polea.
- 6. Porta poleas.
- 7. Polea.

3.5. Dimensionamiento de la Viga Transportadora

ΣFY=0

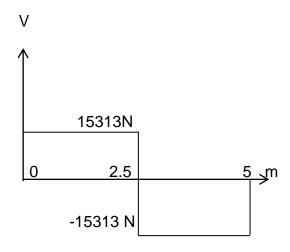
RC+RD-W=0

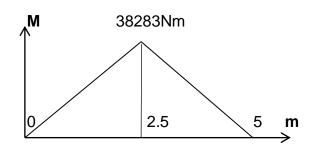
RC+RD=W

 $\Sigma MC=0$

RD(5)-W(2.5)=0

RD=W/2


RD=15313N


ΣMD=0

W(2.5)- RC(5)-=0

RC=W/2

RC=15313N

$$\sigma = \frac{Mmax}{Z}$$
 ; $Z = \frac{I}{C}$

$$n = \frac{Sy}{\sigma}$$

Sy=250 MPa

$$\sigma = \frac{Mmax}{Z} \qquad \qquad \sigma = \frac{Mmax}{\frac{I}{C}}$$

$$n = \frac{Sy}{\sigma}$$

$$n = \frac{Sy}{\frac{Mmax}{Z}}$$

 $Z = \frac{n*Mmax}{Sy}$; Se toma un factor de seguridad elevado, para ser

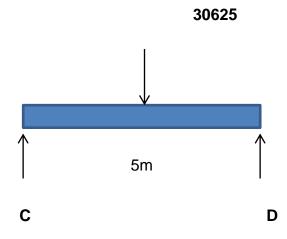
conservativo n=5

$$Z = \frac{(5)*(38283 \text{ Nm})}{250 \text{ x} 10^6 \text{ N/m}^2}$$

 $Z=1.06866x10^{-3}m^3$

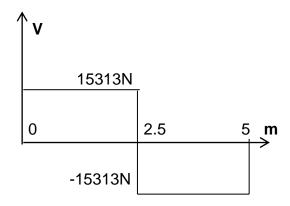
Z=1.06866x
$$10^{-3}$$
 m³ $x \frac{(100 \text{ cm})^3}{1 \text{ m}^3}$ = 1068,6 cm³.

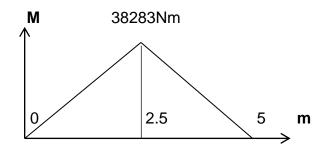
Con este Momento resistor, se selecciona la viga IPE 400, con un Momento resistor de $1160~{
m cm}^3$


Una vez seleccionado la viga, se analiza el factor de seguridad, para comprobar que la viga satisface para momento resistor calculado.

$$n = \frac{Sy}{\frac{Mmax}{Z}}$$

$$n = \frac{250 \times 10^6 \frac{N}{m^2}}{\frac{44527 Nm}{1.0686 \times 10^{-3} m^3}}$$


n= 4.90


Análisis de Fatiga para la viga transportadora

RA=15313N

RB=15313N

Confiabilidad= 90%

Temperatura= 100 C

Propiedades Mecánica del Acero A36

Sy = 207MPa

Sut=379 MPa

Sut= 55Kpsi

$$\sigma m = \frac{\sigma \max + \sigma \min}{2}$$

$$\sigma a = \frac{\sigma \max - \sigma \min}{2}$$

TABLA 9
ESFUERZOS MÁXIMO Y MÍNIMOS EN LA VIGA CARRILERA

ESFUERZOS EN LA VIGA CARRILERA	A mínima Carga	A máxima Carga
Esfuerzo Normal σ	16.091MPa	46.062 MPa
Esfuerzo Cortante тху	0.73 MPa	2.1078 MPa

$$\sigma m = \frac{46.062 MPa + 16.091 MPa}{2}$$

$$\sigma m = 31.08MPa$$

$$\sigma a = \frac{\sigma \max - \sigma \min}{2}$$

$$\sigma a = \frac{46.062 MPa - 16.091 MPa}{2}$$

$$\sigma a = 14.9855 \text{ MPa}$$

Esfuerzo Cortante

$$\text{TXY} = \frac{\text{V}}{\text{A}}$$
; A=84.5cm²(IPE 400) ;V=17811N

$$\text{TXY} = \frac{15313\text{N}}{84.5\text{cm}^2}$$
; $84.5\text{cm}^2 \times \frac{1\text{m2}}{(100\text{cm})^2} = 8.45\text{x}10^{-3} \text{ m}^3$

$$TXY = \frac{15313N}{8.45x10^{-3} \text{ m}^3}$$

тху= 2.1078 MPa

тху min=0.73 MPa.

Von Mises

$$\sigma a' = \sqrt{\frac{(\sigma xa)^2 + (\sigma ya)^2 - (\sigma xa)(\sigma ya) + 3(\tau xya)^2}{1}}$$

$$\sigma a' = \sqrt{\frac{(14.9855MPa)^2 + (0)^2 - (14.9855MPa)(0) + 3(2.1078MPa)^2}{1}}$$

 $\sigma a' = 15.42 \text{ MPa}$

$$\sigma m' = \sqrt{\frac{(\sigma x m)^2 + (\sigma y m)^2 * (\sigma x m)(\sigma y m) + 3(\tau x y m)^2}{1}}$$

$$\sigma m' = \sqrt{\frac{(31.08 \text{ MPa})^2 + (0)^2 - (31.08 \text{MPa})(0) + 3(2.1078 \text{MPa})^2}{1}}$$

 $\sigma m' = 31.29 MPa$

TABLA 10

FACTORES DE CORRECCIÓN DE LA VIGA CARRILERA

FACTORES DE CORRECCIÓN	VALOR				
Sf´	189.5 Mpa				
Ccarga	1				
C Tamaño	0.7056				
C Superficie	0.8122				
C Temperatura	1				
C Confiabilidad	0.897				

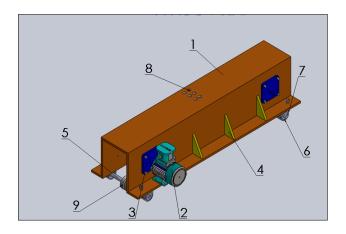
Sf=(CCarga)(Ctamaño)(CSuperficie)(CTemperatura)

(CConfiabilidad)Sf

Sf=(1)(0.7056.)(0.8122)(1)(0.897)(189.5MPa)

Sf=97.41 MPa

Factor de Seguridad para Fatiga


Nf=
$$\frac{Sf}{\sigma a'}$$
[1- $\frac{\sigma m'}{Sut}$]

$$Nf = \frac{97.41Mpa}{15.42Mpa} \left[1 - \frac{31.29MPa}{379MPa} \right]$$

Nf=5.79

Este Perfil Seleccionado IPE 400, Cumple con el diseño a la fatiga, pero aún está sobredimensionado, razón por el cual se procederá a afinar esta sección de perfil IPE.

Sobre la viga carrilera va ir acoplada por medio de una riel, el carro transportador, que es una viga omega acoplada por moterreductores, y ruedas torneadas parecida a una polea, para que esta no se descarrile, más bien siga la dirección de la riel, a continuación, se presenta las parte del carro transportador.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.10 ENSAMBLE DEL CARRO TRANSVERSAL

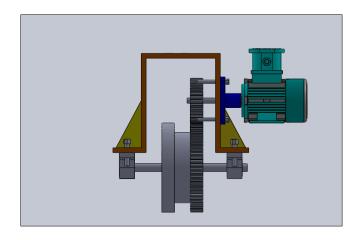
- 1. Carcasa del Carro (Perfil Omega).
- 2. Motoreductor Banfiglioli de 3.0 Hp.
- 3. Brida Cuadrada.
- 4. Cartela de Fijación.
- 5. Eje de la Llanta.
- 6. Rodamiento radial NTN.
- 7. Chumacera NTN Tipo puente.
- 8. Perforaciones para perno de Viga Transversal.
- 9. Rueda Torneada del Carro Transversal.

3.6. Selección de Llanta para Traslación en Dirección XX

Determinación de α:

$$\omega f = \omega o + \alpha t$$

Se necesita que la aceleración del carro sea tal que alcance la velocidad de 37.7 rev/min en 3 segundos, entonces tenemos lo siguiente:


$$\omega f = \omega o + \alpha t$$
; $\omega f = 37.7 \frac{\text{rev}}{\text{min}}$

$$\omega f = 37.7 \frac{\text{rev}}{\text{min}} \times \frac{\text{min}}{60 \text{seg}} \times \frac{2\pi \text{ rad}}{1 \text{ rev}} = 3.94 \frac{\text{rad}}{\text{seg}}.$$

$$\omega f = \omega o + \alpha t$$
; t=3seg

$$3.94 \frac{\text{rad}}{\text{seg}} = 0 + \alpha (3)$$

$$\alpha = 1.31 \frac{\text{rad}}{\text{s}^2}$$

FIGURA 3.11 CARRO TRANSVERSAL CON MOTORREDUCTOR.

El carro transversal se moverá a 40m/min

Vf=
$$35 \frac{m}{min} \times \frac{1 min}{60 seg} = 0.58 \frac{m}{seg}$$

$$Vf = \omega f \times r$$

$$0.58 \frac{m}{\text{seg}} = 3.94 \frac{\text{rad}}{\text{seg}} \times r$$

$$r = 0.14 \text{ m}.$$

Entonces la aceleración tangencial es:

$$a = \alpha x r$$

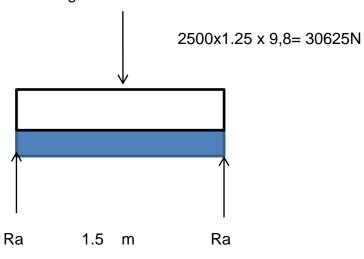
$$a = 1.31 \frac{\text{rad}}{\text{s}^2} \text{ x} \quad (0.14 \text{ m})$$

$$a = 0.18 \frac{m}{s^2}$$

Con Formulas de Cinemática.

$$V0^2 + Vf^2 = 2as$$

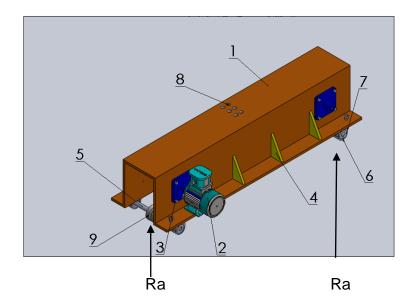
Nuestra condición V0=0 ; la velocidad vf= $\frac{35m}{min}$


$$Vf^2$$
=2as ; Vf=0.58 $\frac{\text{m}}{\text{s}}$; 0.3 m

$$(0.58)^2 = 2(a)(0.3m)$$

$$a=0.56.\frac{m}{s^2}$$

ΣF=ma


m= Masa de la viga transversal

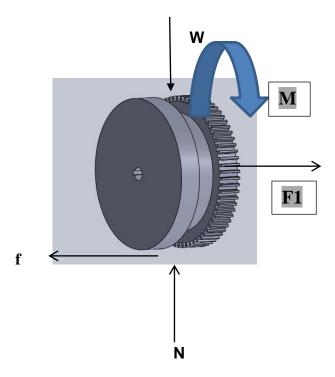
Ra=15312 N

Rb=15312N

Masa a = 1562.5 Kg

FIGURA 3.12 REACCIONES EN EL CARRO TRANSVERSAL.

ΣF=ma

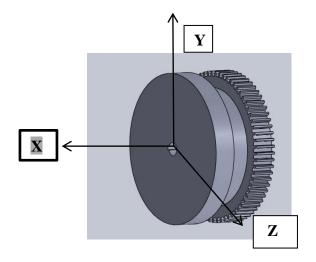

F1-f=ma;

F1-(Us. N)=1562.5 Kg $(0.56\frac{m}{s^2})$;Us=0.74 ; N=15312N

F1=(0.74x 15312)N +1124N

F1=12455

F1=12455 N


FIGURA 3.13 DIAGRAMA DE CUERPO LIBRE DE LA RUEDA.

T=F1 x r

T=12455 N x 0.14m.

T= 1743 N-m

$$I = \frac{1}{2} M R^2$$

FIGURA 3.14 RUEDAS TORNEADAS CON SUS EJES DE COORDENADAS

Tanto las llantas, como el piñón son hecho de acero AISI 43-40, que es de clase AGMA A1-A5, que tiene un tratamiento térmico de nitrurizado, y que cuenta con una dureza de 80-100 HB, con una resistencia a la fatiga de250-325 Mpa, la norma también indica que puede ser cementado solos los dientes, para elevar la dureza de los dientes y parte de la envoluta, que es donde falla los engranes y piñones.

$$I = \frac{1}{2}M (R^2 + R^{-2}).$$
 p =7.87 $\frac{g}{cm^3}$; Acero AISI-SAE 4340

$$p = \frac{m}{v}$$
; $m = p \times V$

$$V = \pi \times r^2 \times h$$

$$V = \pi \times (0.14^2)$$
 (0.13)

$$V= 8. \times 10^{-3} \text{ m}^3.$$

m =
$$(7870 \frac{Kg}{m^3}) \times (8. \times 10^{-3} \text{ m}^3.)$$

$$m=6.29 \text{ kg}$$

$$I=\frac{1}{2}mr^2$$

$$I=\frac{1}{2}$$
 (6.29Kg)(0.14² m^2)

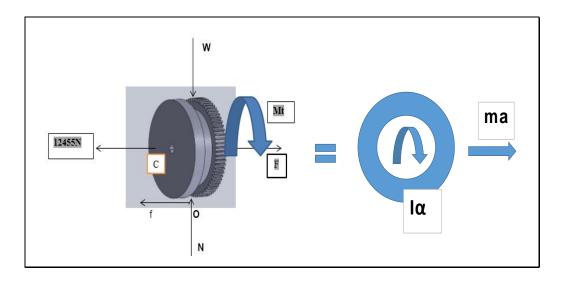

$$l = 0.06 \text{ kg m}^2$$
.

TABLA 11

CATÁLOGO N.1 BANFIGLIOLI DE MOTORREDUCTORES SIN FIN

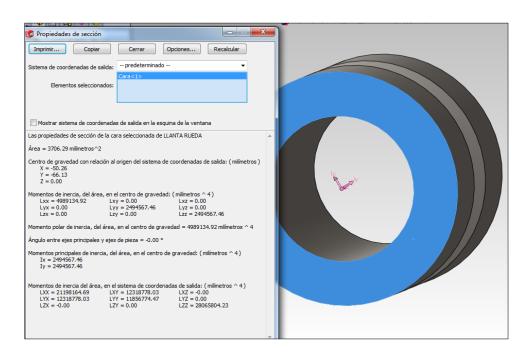
CORONA

	1.0	0 HP	1.00 HP						2	HP	
RPM	RED	MODELO	FSERV	RPM	RED	MODELO	FSERV	RPM	RED	MODELO	F SERV
246	7:1	MVF 49	2.20	245	7:1	MVF 49	1.47	241	7:1	MVF 49	1.10
246	7:1	MW 63	4.79	245	7:1	MW 63	3.19	241	7:1	MW 63	2.40
173	10:1	MVF 49	1.73	172	10:1	MVF 49	1.15	169	10:1	MW 63	2.00
173	10:1	MW 63	3.75	172	10:1	MW 63	2.67	112	15:1	MW 63	1.48
123	14:1	MVF 49	1.41	114	15:1	MW 63	1.97	112	15:1	MW 75	2.41
115	15:1	MW 63	2.96	90	19:1	MW 63	1.60	89	19:1	MW 63	1.20
96	18:1	MVF 49	1.03	88	20:1	MW 75	2.47	84	20:1	MW 75	1.85
91	19:1	MW 63	2.40	71	24:1	MW 63	1.35	84	20:1	MW 86	2.34
72	24:1	MW 63	2.03	69	25:1	MW 75	2.05	73	23:1	MW 86	2.09
58	30:1	MW 63	1.77	57	30:1	MW 63	1.18	67	25:1	MW 75	1.54
58	30:1	MW 75	2.87	57	30:1	MW 75	1.91	58	30:1	MW 75	1.44
45	38:1	MW 63	1.43	43	40:1	MW 75	1.45	58	30:1	MW 86	2.00
43	40:1	MW 75	2.18	43	40:1	MW 86	1.80	42	40:1	MW 75	1.09
38	45:1	MW 63	1.18	43	40:1	MW 110	3.61	42	40:1	MW 86	1.35
38	48:1	MW 86	2.49	37	48:1	MW 86	1.68	42.1	40:1	MW 110	2.71
35	50:1	MW 75	1.59	37.3	48:1	MW 110	2.89	36.6	46:1	MW 86	1.25
31	58:1	MW 86	1.88	34.3	50:1	MW 75	1.08	36.6	46:1	MW 110	2.17
30.8	58:1	MW 110	3.66	30.6	58:1	MW 86	1.25	30.1	56:1	MW 110	1.83
28.8	60:1	MW 75	1.26	30.6	58:1	MW 110	2.44	26.3	64:1	MW 110	1.46
27.0	64:1	MW 86	1.58	26.8	64:1	MW 86	1.05	21.1	80:1	MW 110	1.10
27.0	64:1	MW 110	2.91	26.8	64:1	MW 110	1.94				
21.6	80:1	MW 86	1.22	21.4	80:1	MW 110	1.48				
21.6	80:1	MW 110	2.19	17.2	100:1	MW 110	1.21				
17.3	100:1	MW 110	1.82								
	3	HP			5	HP			7.	5 HP	
RPM	RED	MODELO	FSERV	RPM	RED	MODELO	FSERV	RPM	RED	MODELO	F SER
247	7:1	MW 75	2.47	245	7:1	MW 75	1.48	245	7:1	MW 110	2.63
173	10:1	MW 75	2.14	245	7:1	MW 86	1.97	172	10:1	MW 110	2.07
115	15:1	MW 75	1.61	172	10:1	MW 75	1.28	114	15:1	MW 110	1.58
115	15:1	MW 86	2.12	172	10:1	MW 86	1.62	88	20:1	MW 110	1.11
87	20:1	MW 75	1.23	172	10:1	MW 110	3.11				
87	20:1	MW 86	1.58	114	15:1	MW 86	1.27				
87	20:1	MW 110	2.78	114	15:1	MW 110	2.34		10) HP	
75	23:1	MW 86	1.39	86	20:1	MW 110	1.67	RPM	RED	MODELO	FSER
75	23:1	MW 110	2.32	75	23:1	MW 110	1.39	245	7:1	MW 110	1.97
58	30:1	MW 86	1.33	57	30:1	MW 110	1.49	172	10:1	MW 110	1.55
58	30:1	MW 110	2.48	43	40:1	MW 110	1.08	114	15:1	MW 110	1.17
43	40:1	MW 110	1.81								
38	48:1	MW 110	1.44								

FIGURA 3.15 DIAGRAMA EQUIVALENTE DE LA RUEDA.

ΣF=ma

F-f - 3446 N=m a;


F-(Us. N)
$$- 12455N = 1562.5Kg (0.56 \frac{m}{s^2})$$
 ;Uk=0.74 ; N=15312N

F- (0.74 x 15312N)
$$-$$
 12455N = 1562 Kg (0.56 $\frac{m}{s^2}$) ;Uk=0.09 ;

N=35622N

F- (0.74 x 15312N) – 12455N = 1562 Kg (0.72
$$\frac{m}{s^2}$$
)

F= 24912N.

FIGURA 3.16 CÁLCULO DE MOMENTO DE INERCIA DE LA RUEDA

Izz= 28065804.23 mm⁴

$$Izz=28065804.23 \text{ mm}^4 \text{x} \frac{1m^4}{(1000mm)^4}$$

$$|zz=2.80 \times 10^{-5} m^4$$
.

Se procede a realizar la sumatoria de momento con respecto al centro de la rueda.

Sumatoria de Momentos con respecto a su eje de rotación.

$$\Sigma$$
Mc= Fx r = Ix α

fxr- Mt =
$$\frac{\pi r^4}{4}$$
 x α

(0.74 x 15312N x 0.18m) - Mt =
$$2.80 \times 10^{-5} m^4 x 1.31 \frac{rad}{s^2}$$

Mt=1039N-m

$$Par(Nm) = \frac{9550 \times rendimiento \times Pot(Kw)}{Revoluciones(RPM)}$$

$$1039\text{N-m} = \frac{9550 \times 1.48 \times Pot}{37.7 \frac{\text{rev}}{\text{min}}}$$

Pot= 2.51 Kw.

Se necesita un reductor de 3 Hp en cada carro transversal, para poder mover la carga sin problema. Como en este catálogo, no se encuentra reductores con esa potencia y con RPM de salida a 37.7 rev/min, sólo se tiene un motorreductor de 3HP, con 38rev/min pero con un factor de servicio de 1.44.

TABLA 12
CATÁLOGO N. 2 DE MOTOREDUCTORES DE EJE HUECO MARCA
ETCSA

	n ₁ R.	P.M. DE ENT INPUT R.P.	.500 0	n ₁ R.P.M. DE ENTRADA: 1.500 INPUT R.P.M.: 1500										
Potencia Motor Motor power	ng rp.m. galida ng output	Relación do Reducción IN Reduction rate	R %	Par m.kg. Torque m.kg.	Modelo Model	Potencia Motor Motor	ng t.p.m. solide ng output	Reloción de Reducción IN Reduction rete	R % <i>R</i> %	Per m.kg. Torque m.kg.	Modelo			
					La Mode	4 C.V.		National States	Parasas.		mouar			
	10,0 100 00 04	80,8	18,6	91	32,3	5-M								
	15,4	97,5	76	53	5-M	(S KW)	112	13,4	92	23,5	-			
	20,5	73	81	42,3			10,4	143,6	77	290	8-M			
1.5 C.V.	C.V. 26,7 56,3 80 32,2			12,4	121,3	85	271							
(1,1 Kw)	37	40,5	82	23,8	4-M	5,5 C.V. 3-M (4 Kw)	4-M		15,1	99,2	82	214		
	43,4	34,5	86	21,2				-			21,3	70,3	84	155
	57,1	26,3	88	16,5			26,4	56,7	85	126	-			
	71,4	21	89	13,4	3-M		(4 Kw)	37,5	40	85	89			
	95,2	15,7	90	10			43,4	34,5	90	82	6-M			
	3,17	473	70	316	8-MT		56,2	26,7	91	64				
	4,44	338	80	258	J		80,8	18,6	90	44	5-M			
	5,88	255	69	168	7-MT		112	13,4	92	32,3				
	6,32	237,5	67	152	7-M		16,2	92,5	85	282	8-M			
	7,56	198,5	69	131	7.141		20,9	71,8	87	224	O-IVI			
	10,1	148	71	100			26,4	56,7	85	172 .				
2011	13,1	114,4	72	79	6-M	7,5 C.V.	37,1	40,4	87	126	7-M			
2 C.V.	15,1	99,2	80	76		(5,5 Kw)	45,7	32,8	90	106				
(1,5 Kw)	20,5	73	81	56	5-M		56,2	26,7	91	87	1			
	27,6	54,4	82	42,6	5-IVI		80,3	18,7	92	62	6-M			
	37	40,5	82	31,7	-		109	13,7	92	45				

	13,1	114,4	72	118			35,2	42,6	91	231	O-IVI	
2011	15,1	99,2	80	114		6-M 12,5 C,V,	45,7	32,8	90	176		
3 C.V. (2,2 Kw)	20,3	74.	82	87	O-IVI		56,7	26,4	91	144	7-M	
	26,2	57,2	83	68		(9 Kw)	79,5	18,9	92	104	/-IVI	
	37,7	39,8	83	47,3	5-M		109	13,7	93	76		
	44	34,1	88	43	9-IVI		35,2	42,6	91	278	0.11	
	57,1	26,3	88	33		15 C.V.	45,4	33,1	92	218	8-M	
	79,4	18,9	89	24,1	4-M (11 Kw)	56,7	26,4	91	172			
	107	14	91	18,2			(11 KW)	79,5	18,9	92	124	7-M
	8,1	185	75	265	8-M		109	13,7	93	91		
	10,7	140,6	72	193	7-M	7-M		45,4	33,1	92	290	8-M
	13,2	113,3	75	162			20 C.V.	63,1	23,8	93	211	8-IVI
	15,1	99,2	82	155		(15 Kw).	79,5	18,9	92	166	7-M	
4 C.V.	20,3	74	82	116			109	13,7	93	122	7-101	
(3 Kw)	26,2	57,2	83	91	6-M	25 C.V.	63,1	23,8	93	264	0.04	
	37,5	40	85	65	0-141	(18 Kw)	89	16,9	94	190	8-M	
	43,4	34,5	90	59		30 C.V.	89	16,9	94	220	0.84	
	59,1	25,4	91	44	5-M	(22 Kw)	89	10,9	94	228	8-M	

TABLA 13

DIÁMETROS DE RUEDAS DEL TESTERO Y TORQUE PARA

VELOCIDAD=40m/min

VELOCIDAD DEL					
TESTERO	VEL(m/s)	W(RPM)	W(rad/s)	R(rueda)	TOR(N-m)
	0,666	10	1,047172	0,63599867	714,862506
	0,666	20	2,094344	0,31799934	357,431253
	0,666	30	3,141516	0,21199956	238,287502
	0,666	40	4,188688	0,15899967	178,715626
	0,666	50	5,23586	0,12719973	142,972501
	0,666	60	6,283032	0,10599978	119,143751
	0,666	70	7,330204	0,09085695	102,123215
	0,666	80	8,377376	0,07949983	89,3578132
	0,666	90	9,424548	0,07066652	79,4291673
	0,666	100	10,47172	0,06359987	71,4862506
	0,666	110	11,518892	0,05781806	64,9875005
	0,666	120	12,566064	0,05299989	59,5718755
	0,666	130	13,613236	0,04892297	54,9894235
	0,666	140	14,660408	0,04542848	51,0616076
	0,666	150	15,70758	0,04239991	47,6575004
40 m/min	0,666	160	16,754752	0,03974992	44,6789066
	0,666	170	17,801924	0,03741169	42,0507356
	0,666	180	18,849096	0,03533326	39,7145837
	0,666	190	19,896268	0,03347361	37,6243424
	0,666	200	20,94344	0,03179993	35,7431253
	0,666	210	21,990612	0,03028565	34,0410717
	0,666	220	23,037784	0,02890903	32,4937503
	0,666	230	24,084956	0,02765212	31,0809785
	0,666	240	25,132128	0,02649994	29,7859377
	0,666	250	26,1793	0,02543995	28,5945002
	0,666	260	27,226472	0,02446149	27,4947118
	0,666	270	28,273644	0,02355551	26,4763891
	0,666	280	29,320816	0,02271424	25,5308038
	0,666	290	30,367988	0,02193099	24,6504312
	0,666	300	31,41516	0,02119996	23,8287502
	0,666	310	32,462332	0,02051609	23,0600808
	0,666	320	33,509504	0,01987496	22,3394533
	0,666	330	34,556676	0,01927269	21,6625002
	0,666	340	35,603848	0,01870584	21,0253678
	0,666	350	36,65102	0,01817139	20,424643

TABLA 14

DIÁMETROS DE RUEDAS DEL TESTERO Y TORQUE PARA

VELOCIDAD=30m/min

VELOCIDAD DEL TESTERO	VEL(m/s)	W(RPM)	W(rad∕s)	R(rueda)	TOR(N-m)
	0,5	10	1,047172	0,47747648	536,683563
	0,5	20	2,094344	0,23873824	268,341781
	0,5	30	3,141516	0,15915883	178,894521
	0,5	40	4,188688	0,11936912	134,170891
	0,5	50	5,23586	0,0954953	107,336713
	0,5	60	6,283032	0,07957941	89,4472605
	0,5	70	7,330204	0,06821093	76,6690804
	0,5	80	8,377376	0,05968456	67,0854454
	0,5	90	9,424548	0,05305294	59,631507
	0,5	100	10,47172	0,04774765	53,6683563
	0,5	110	11,518892	0,04340695	48,7894148
	0,5	120	12,566064	0,03978971	44,7236302
	0,5	130	13,613236	0,03672896	41,283351
	0,5	140	14,660408	0,03410546	38,3345402
	0,5	150	15,70758	0,03183177	35,7789042
30m/min	0,5	160	16,754752	0,02984228	33,5427227
	0,5	170	17,801924	0,02808685	31,5696214
	0,5	180	18,849096	0,02652647	29,8157535
	0,5	190	19,896268	0,02513034	28,2465033
	0,5	200	20,94344	0,02387382	26,8341781
	0,5	210	21,990612	0,02273698	25,5563601
	0,5	220	23,037784	0,02170348	24,3947074
	0,5	230	24,084956	0,02075985	23,334068
	0,5	240	25,132128	0,01989485	22,3618151
	0,5	250	26,1793	0,01909906	21,4673425
	0,5	260	27,226472	0,01836448	20,6416755
	0,5	270	28,273644	0,01768431	19,877169
	0,5	280	29,320816	0,01705273	19,1672701
	0,5	290	30,367988	0,01646471	18,5063298
	0,5	300	31,41516	0,01591588	17,8894521
	0,5	310	32,462332	0,01540247	17,312373
	0,5	320	33,509504	0,01492114	16,7713613
	0,5	330	34,556676	0,01446898	16,2631383
	0,5	340	35,603848	0,01404343	15,7848107
	0,5	350	36,65102	0,01364219	15,3338161

116

Una parte importante dentro del puente grúa, que no se va a

realizar los cálculos de diseño, son los testeros, para entenderse

mejor los carros trasportadores de la viga central (Viga Cajón),

estos testero son diseñado bajo el mismo criterio que la viga central,

el criterio de falla por flexión, cortante y esfuerzos combinados,

basándonos en la norma CMAA 74, los testeros son elementos

mecánicos sometidos a esfuerzo, debido al peso de la carga y viga

central, que debido a sus refuerzos laterales (cartelas) no van a

deformarse considerablemente, es por eso, que bajo la ayuda del

Programa ANSYS 13 ®, se puede observar claramente la

deformaciones, del material, el esfuerzo combinado de Von Misses,

así como también la vida y el factor de seguridad, bajo el concepto

de fatiga de los materiales.

Los testeros son de Acero A36, pero también se puede construir

testero de un material ASTM A572 grado 50, que tiene las

siguientes propiedades:

Resistencia a la fluencia: 345 MPa(50000 PSI).

Resistencia a la tracción:450MPa(65000 PSI).

Elongacion: 18%.

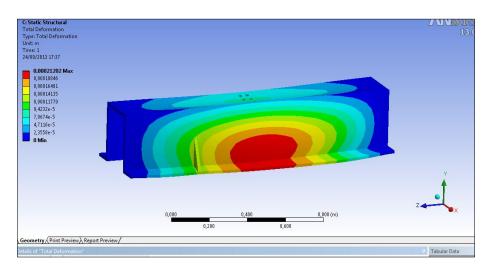


FIGURA 3.17 SIMULACIÓN DE LA DEFORMACIÓN EN EL TESTERO EN ANSYS ®

Se observa una deformación muy baja pero el punto crítico es donde se ejecuta la junta empernada, porque está sometida a esfuerzo cortante.

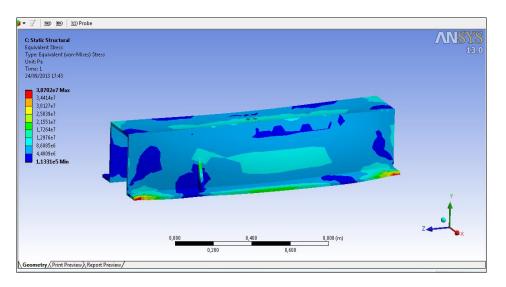


FIGURA 3.18 SIMULACION DEL ESFUERZO DE VON MISSES EN EL TESTERO (ANSYS ®) .

Se observa que el testero tiene un esfuerzo critico de Von misses de 38.7 MPa y con esto se obtiene un factor de seguridad mayor a 6, debido al espesor de la plancha se realiza refuerzos con cartelas en el interior.

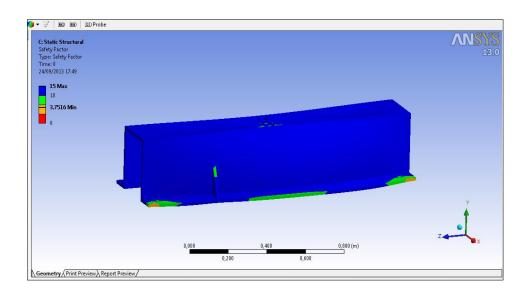


FIGURA 3.19 SIMULACIÓN PARA FACTOR DE SEGURIDAD DEL TESTERO.

En el programa ANSYS® versión 13, se puede determinar que el factor de seguridad máximo del testero es 15 y el mínimo es 3.75, se decide hacer el diseño del testero en un programa computacional como ANSYS, porque es un herramienta, que evita los cálculos mecánico y repetitivo anteriormente además ayuda a comprender mejor el diseño.

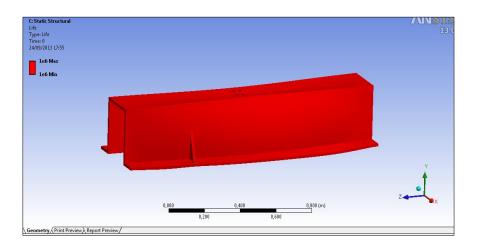
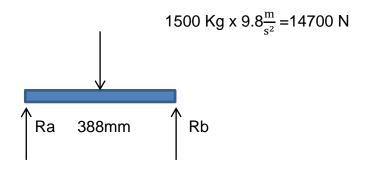



FIGURA 3.20 VIDA DEL TESTERO EN ANSYS ®

Se obtiene una vida de 7 millones de ciclos, ejecutado bajo el criterio de fatiga, con el método de Goodman, con un esfuerzo reversible, el cual indica la seguridad del diseño.

3.6.1 Deflexión del Eje

Para determinar la deflexión del eje, se va a utilizar el método de integración, el cual consiste en integrar dos veces, para determinar el valor de la deflexión máxima, además como información necesaria se tiene la reacción Ra, Rb, el material es de acero A36 y tiene una sección circular de diámetro de ϕ = 40 mm.

7350N

7350 N

$$EI\frac{d^2y}{dx^2} = M(X)$$

EI
$$\frac{d^2y}{dx^2}$$
 = Ra(x-0) - 14700(x-0.194)

$$\mathsf{EI} \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{7350 \; (\mathrm{x} - 0)^2}{2} - \frac{14700 \; (\mathrm{x} - 0.194)^2}{2} + \mathsf{K1}$$

$$\mathsf{EIY}(\mathsf{x}) = \frac{7350 \; (\mathsf{x} - 0)^3}{6} - \frac{14700 \; (\mathsf{x} - 0.194)^3}{6} + \mathsf{K1x} + \mathsf{K2}$$

Condiciones de borde

$$\begin{cases} Y(0)=0\\ \frac{dy(0)}{dx}=0 \end{cases}$$

$$0 = \frac{7350 (0-0)^3}{6} - \frac{14700 (x-0.075)^3}{6} + K1(0) + K2 - K2 = 0$$

$$0 = \frac{7350 (0-0)^2}{2} - \frac{14700 (x-0.075)^2}{2} + K1 - - - - K1 = 0$$

EIY(x) =
$$\frac{7350 (x-0)^3}{6}$$
 - $\frac{14700 (x-0.075)^3}{6}$ Ecuación de Deflexión.

Se evalúa la mayor deflexión, en el centro es decir a 0.194m del extremo izquierdo del eje.

$$EIY(0.194m) = \frac{7350N (0.075)^3}{6} - \frac{14700 (0.075 - 0.075)^3}{6}$$

EI Y(0.194m) =0.5167 Nm
3
 ; donde E= 19.5X $10^{10}\,\frac{\text{N}}{\text{m}^2}$

Se calcula la inercia

$$I = \frac{\pi D^4}{64}$$

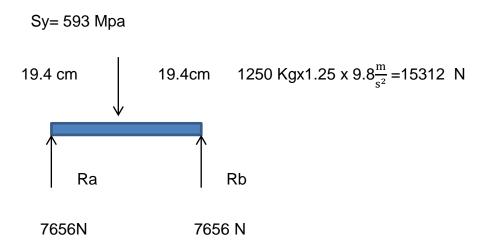
$$I = \frac{\pi \ 0.075^4}{64}$$

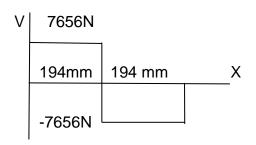
$$EIY(0.194m) = 0.5167 Nm^3$$

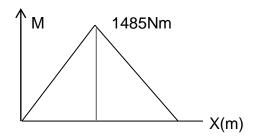
19.5X
$$10^{10} \frac{N}{m^2} x$$
 1.1984 X10⁻⁹ m⁴ Y(0.194)= 0.5167 Nm³

$$Y(0.194) = 2.21 \times 10^{-3} \text{ m}$$

$$Y(0.194) \le \frac{L}{500}$$


TABLA 15


DEFLEXIÓN DEL EJE DEL TESTERO A DIFERENTES DIÁMETROS


	DIAM(mm)	L(mm)	INERCIA m4	y(mm)	L/500	VALIDACION
	10	388	4,90862E-10	180,762052	0,776	NO VALIDO
	20	388	7,85379E-09	11,2976283	0,776	NO VALIDO
	25	388	1,91743E-08	4,62750854	0,776	NO VALIDO
	30	388	3,97598E-08	2,23163027	0,776	NO VALIDO
380mm	35	388	7,366E-08	1,20457844	0,776	NO VALIDO
	40	388	1,25661E-07	0,70610177	0,776	VALIDO
	45	388	2,01284E-07	0,44081586	0,776	VALIDO
	50	388	3,06789E-07	0,28921928	0,776	VALIDO
	55	388	4,49169E-07	0,19754066	0,776	VALIDO
	60	388	6,36157E-07	0,13947689	0,776	VALIDO
	65	388	8,76219E-07	0,10126371	0,776	VALIDO

Si cumple, con el criterio de deflexión.

Se analiza ahora si el eje, soporta la carga de 1562kg, con un diámetro de 40mm, con un material de acero 1040, templado y revenido a 400 F.

$$\sigma = \frac{Mmax}{Z}$$
 ; $Z = \frac{I}{C}$

$$n=\frac{Sy}{\sigma}$$

$$\sigma = \frac{Mmax}{Z} \qquad \qquad \sigma = \frac{Mmax}{\frac{I}{C}}$$

$$=\frac{\pi r^4}{4}$$

$$I = \frac{\pi \ 0.0125^4}{4}$$

C=0.02m

$$\sigma = \frac{\text{Mmax x C}}{I}$$

$$\sigma = \frac{1485 \text{ N m x } 0.02\text{m}}{1.1984 \text{ X} 10^{-8} \text{ m}^4}$$

$$n = \frac{Sy}{\sigma}$$

$$n = \frac{593 Mpa}{236Mpa}$$

n = 2.5

TABLA 16
ESFUERZO DEL EJE SOMETIDO A FLEXIÓN

DIAM(mm)	L(mm)	I(m4)	С	σ(Mpa)	n	VAL
10	388	4,909E-10	0,005	15130,529	0,0165229	NO VALIDO
20	388	7,854E-09	0,01	1891,3162	0,3135383	NO VALIDO
25	388	1,917E-08	0,0125	968,35388	0,6123794	NO VALIDO
30	388	3,976E-08	0,015	560,38998	1,0581917	VALIDO
35	388	7,366E-08	0,0175	352,89864	1,6803692	VALIDO
40	388	1,257E-07	0,02	236,41452	2,5083062	VALIDO
45	388	2,013E-07	0,0225	166,04147	3,5713969	VALIDO
50	388	3,068E-07	0,025	121,04423	4,8990355	VALIDO
55	388	4,492E-07	0,0275	90,942325	6,5206162	VALIDO
60	388	6,362E-07	0,03	70,048747	8,4655333	VALIDO
65	388	8,762E-07	0,0325	55,095237	10,763181	VALIDO

El Eje No Falla por flexión.

Ahora se analiza el eje para el Esfuerzo cortante.

$$xy = \frac{VQ}{It} = \frac{4V}{3Area}$$
; Area= $\pi r^2 = 0.00125 \text{ m}^2$

$$xy = \frac{4(7656N)}{3 \text{ Area}}$$

$$xy = \frac{7656N X 4}{3X \ 0.00125m^2}$$

$$xy = 8.12M Pa$$

$$N = \frac{SY}{T xy}$$

$$N = \frac{593 \text{ MPa}}{8.12 \text{M Pa}}$$

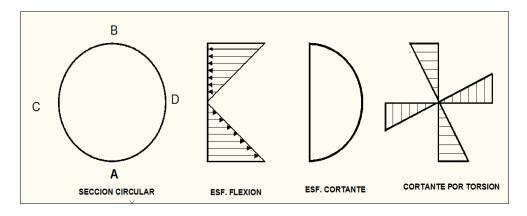
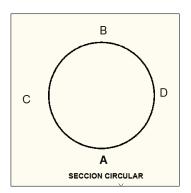

$$N = 72$$

TABLA 17
ESFUERZO DEL EJE SOMETIDO SOMETIDO A CORTANTE

DIAM(mm)	C(m)	I(m4)	A(m2)	T(Mpa)	n	VAL
10	0,005	4,9086E-10	7,85379E-05	129,992441	1,92319	VALIDO
20	0,01	7,8538E-09	0,000314152	32,4981103	18,2472	VALIDO
25	0,0125	1,9174E-08	0,000490862	20,7987906	28,5113	VALIDO
30	0,015	3,976E-08	0,000706841	14,4436046	41,0562	VALIDO
35	0,0175	7,366E-08	0,000962089	10,6116278	55,8821	VALIDO
40	0,02	1,2566E-07	0,001256606	8,12452756	72,9889	VALIDO
45	0,0225	2,0128E-07	0,001590392	6,4193798	92,3765	VALIDO
50	0,025	3,0679E-07	0,001963448	5,19969764	114,045	VALIDO
55	0,0275	4,4917E-07	0,002375771	4,29727078	137,995	VALIDO
60	0,03	6,3616E-07	0,002827364	3,61090114	164,225	VALIDO
65	0,0325	8,7622E-07	0,003318226	3,07674417	192,736	VALIDO

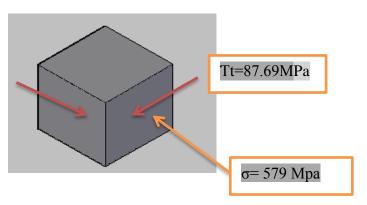

El eje tampoco falla por cortante.

Ahora se analizará el eje a Esfuerzo combinados.

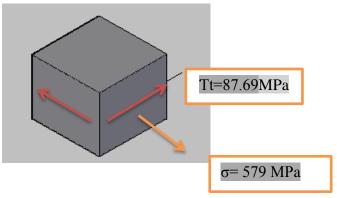
FIGUA 3.21 EJE SOMETIDO A ESFUERZO COMBINADO

$$\sigma = \frac{M \max x C}{I}$$
 $T xy = \frac{V Q}{I t}$ $Tt = Tr/J$

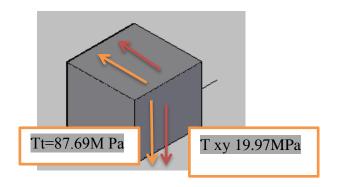
Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

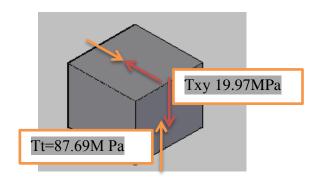

FIGURA 3.22 EJE SOMETIDO A ESFUERZO EN DIFERENTES PUNTOS

$$Tt = \frac{Tr}{J}$$
 ; **T= 134 N-m**

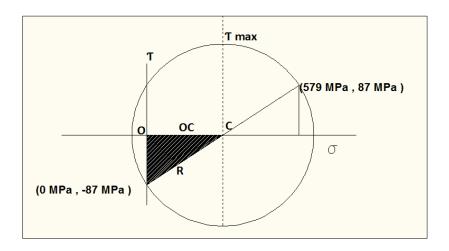

$$J = \frac{\pi r^4}{4}$$

$$J = \frac{\pi 0.0125^4}{4} = 1.91 \times 10^{-8}$$


$$Tt = \frac{134 \text{ N-m } (0.0125)}{1.91 \text{x} 10^{-8}}$$
 Tt=87.69 M Pa


Estado de Esfuerzos en B

Estado de Esfuerzos en A



Estado de Esfuerzo en C

Estado de Esfuerzo en D.

Se selecciona el punto más crítico, que son los puntos A y B, que están en las mismas condiciones, siempre que el material resista lo mismo en compresión y tensión.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.23 CÍRCULO DE MOHOR DEL EJE.

$$OC = \frac{\sigma x + \sigma y}{2}$$

$$OC = \frac{579 \text{ MPa} + 0 \text{MPa}}{2}$$

OC= 289.5 MPa.

$$\max = \sqrt{\left(\frac{\sigma x - \sigma y}{2}\right)^2 + \tau x y^2}$$

$$max = \sqrt{(\frac{579 \text{ MPa} - 0 \text{MPa}}{2})^2 + 87 \text{ MPa}^2}$$

max=R= 300,35 MPa.

σmax= OC+ T max

σmax= 289.5 MPa+300,35 MPa

σmax=589.85 MPa

Von Misses

$$\sigma' = \sqrt{\frac{(\sigma x)^2 + (\sigma y)^2 * (\sigma x)(\sigma y) + 3(\tau x y)^2}{1}}$$

$$\sigma' = \sqrt{\frac{(579 \text{ MPa})^2 + (0\text{MPa})^2 * (579 \text{ MPa})(0) + 3(87)^2}{1}}$$

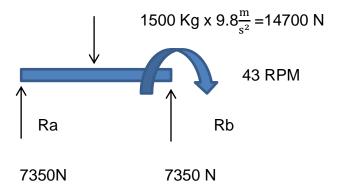
$$\sigma' = 592 \text{ Mpa}$$

$$N = \frac{SY}{\sigma max}$$

$$N = \frac{593 \text{ MPa}}{592 \text{ MPa}}$$

N=1.001

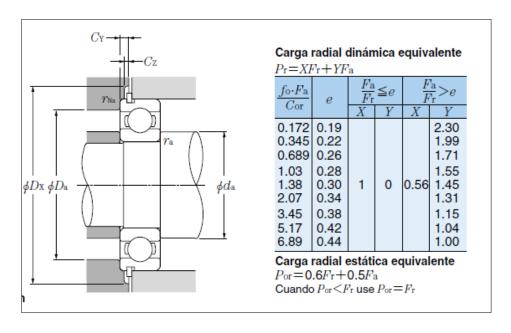
TABLA 18
ESFUERZO DEL EJE SOMETIDO A ESFUERZOS COMBINADO


DIAM(mm)	C(m)	I(m4)	J(m4)	A(m2)	σ(Mpa)	Тху(Мра)	Ţt(Mpa)	T(Mpa)	σ`(Mpa)	n	VAL
10	0,005	4,9086E-10	9,81724E-10	7,8538E-05	15136,641	129,992441	8403,58604	8533,5785	15137,487	0,02	NO VALIDO
20	0,01	7,8538E-09	1,57076E-08	0,00031415	1892,08013	32,4981103	1050,44825	1082,9464	1892,9385	0,13	NO VALIDO
25	0,0125	1,9174E-08	3,83486E-08	0,00049086	968,745026	20,7987906	537,829507	558,6283	969,60962	0,26	NO VALIDO
30	0,015	3,976E-08	7,95196E-08	0,00070684	560,616335	14,4436046	311,243927	325,68753	561,48708	0,45	NO VALIDO
35	0,0175	7,366E-08	1,4732E-07	0,00096209	353,04119	10,6116278	196,002007	206,61363	353,91796	0,71	NO VALIDO
40	0,02	1,2566E-07	2,51321E-07	0,00125661	236,510016	8,12452756	131,306032	139,43056	237,39267	1,05	VALIDO
45	0,0225	2,0128E-07	4,02568E-07	0,00159039	166,108544	6,4193798	92,2204229	98,639803	166,99691	1,5	VALIDO
50	0,025	3,0679E-07	6,13577E-07	0,00196345	121,093128	5,19969764	67,2286883	72,428386	121,98701	2,05	VALIDO
55	0,0275	4,4917E-07	8,98339E-07	0,00237577	90,9790596	4,29727078	50,5099086	54,807179	91,878239	2,72	VALIDO
60	0,03	6,3616E-07	1,27231E-06	0,00282736	70,0770418	3,61090114	38,9054909	42,516392	70,981272	3,52	VALIDO
65	0,0325	8,7622E-07	1,75244E-06	0,00331823	55,1174913	3,07674417	30,6002223	33,676966	56,0265	4,46	VALIDO

El eje de las llantas del testero de diámetro igual a 40 milímetros, soporta el esfuerzo combinado, de flexión, y el esfuerzo cortante.

Esfuerzo cortante debido a la torsión. Y debido a la fuerza cortante, este eje tiene sus puntos críticos en el punto A y punto B del eje.

3.6.2 Selección de Rodamientos


Se debe seleccionar, los rodamientos correspondientes, para que pueda soportar las cargas del eje, este diagrama muestra un eje que está sometido a cargas radiales, mas no a cargas axiales

Carga radial Estática

El eje va tener de diámetro φ= 40mm, y de longitud L=388 mm, se selecciona el rodamiento más adecuado, para el cual se va a valer de la tabla de rodamiento NTN.

TABLA 19
CATÁLOGO DE RODAMIENTO NTN

Por= 0.6 Fr + 0.5Fa

Fr= 7350 N , Fa= 0N

Por= 0.6 (7350 N)

Por= 4410 N

A continuación se vale de la siguiente fórmula de rodamiento y tabla correspondiente.

$$So = \frac{Co}{Po}$$

Donde,

So= Factor de seguridad

Co= Capacidad básica de carga estática, N (Kgf)

(Rodamientos radiales: Cor, rodamientos axiales: Coa)

Po= Carga equivalente estática, N(Kgf)

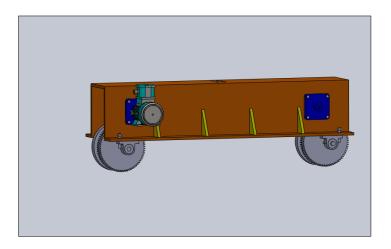
(Radial: Por, axial: Por, axial: Poa)

Se Usa la tabla de factores de seguridad del catálogo de rodamiento NTN.

TABLA 20
TABLA DE FACTORES DE SEGURIDAD DE RODAIENTO NTN

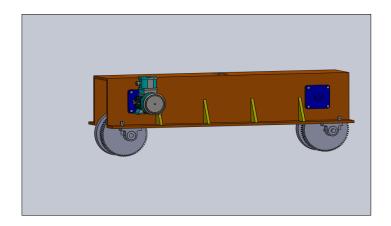
Condiciones de operación	Rodtos. de bolas	Rotos. de rodillos
Requerimiento de alta precisión rotacional	2	3
Requerimiento de precisión rotacional normal (Aplicación universal)	1	1.5
Permite ligero deterioro de la precisión rotacional (Baja velocidad, altas cagas, etc.)	0.5	1

$$So = \frac{Cor}{Por}$$


$$1 = \frac{\text{Co}}{4410}$$

Cor= 4410 N

Cor= 4.41K N


Carga radial Dinámica

En esta parte se analizará a las cargas dinámicas, que soportan los rodamientos.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.24 PESO SOPORTADO POR EL CARRO SIN CARGA.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.25 PESO SOPORTADO POR EL CARRO CON CARGA

Utilizando la tabla del catálogo NTN se tiene:

Pr= X Fr + YFa ; Fa=0 ; fo= 13.9

$$\frac{\text{fo Fa}}{\text{Cor}} = \frac{13.9 (0)}{4410 \text{ N}}$$

$$\frac{\text{fo Fa}}{\text{Cor}} = 0$$

Entonces:

$$\frac{Fa}{Fr} = 0$$

$$\frac{Fa}{Fr} \le e$$

$$X=1$$
; $Y=0$; $Fr=9780$ N

$$Pr= 1 Fr + 0 (Fa)$$

Pr= 9.78 KN

Se utiliza el factor de seguridad, de los rodamientos de bolas

$$So = \frac{Cor}{Pr}$$

$$1 = \frac{Cr}{Pr} \qquad , Cr = 9.78 \text{ KN}$$

Se selecciona el rodamiento de bolas 6305 con capacidad básica de carga:

TABLA 21
DIMENSIONES Y CARACTERÍSTICAS DE LOS
RODAMIENTOS NTN

	0~				∉D (1	ablerto	sd.	. (Ol on tap	d	Tipo con sie no cont	acto F)	de baj	on sello o torque LH)		de d	con secontaci	to
Din	nensio	nes p	rincipa	eles		estática			Factor	•	Velocida	des límite	8	Núr	neros	de ro	damle	ntos
d	D	mm	Pamin ¹⁾	7765 min	k Cr	ίN Cur	Cr	ıgt Cır	ſs	grasa tipo ablerto ZZ LLB	r.p. acette tpo ablerto Z LB	.m. LLH	LLU	tipo ablerto	con tapas	con sello de no contacto		
20	72	19	1.1	_	28.5	13.9	2 900	1 420	11.4	12 000	14 000	_	_	6404	_	-	-	_
22	44 50 56	12 14 16	0.6 1 1.1	0.5 0.5 0.5	9.40 12.9 18.4	5.05 6.80 9.25	955 1 320 1 880	515 690 945	13.9 13.5 12.4	17 000 14 000 13 000	20 000 17 000 15 000	13 000 12 000 11 000	10 000 9 700 9 200	60/22 62/22 63/22	ZZ ZZ ZZ	LLB LLB LLB	LLH LLH LLH	LLU LLU
25	32 37 42 47 47 52 62 80	4 7 9 8 12 15 17 21	0.2 0.3 0.3 0.3 0.6 1 1.1	0.3 0.3 0.5 0.5 0.5	1.10 4.30 7.05 8.35 10.1 14.0 21.2 34.5	0.840 2.95 4.55 5.10 5.85 7.85 10.9 17.5	112 435 715 855 1 030 1 430 2 160 3 550	86 300 460 520 595 800 1 110 1 780	15.8 16.1 15.4 15.1 14.5 13.9 12.6 11.6	4 000 18 000 16 000 15 000 15 000 13 000 12 000 10 000	4 600 21 000 19 000 18 000 18 000 15 000 14 000 12 000	11 000 11 000 9 700	10 000 9 800 9 400 8 900 8 100	6705 6805 6905 16005 6005 6205 6305 6405		LLF LLB LLB LLB LLB LLB	- - - LLH LLH LLH	
28	52 58 68	12 16 18	0.6 1 1.1	0.5 0.5 0.5	12.5 17.9 26.7	7.40 9.75 14.0	1 270 1 830 2 730	755 995 1 430	14.5 13.4 12.4	14 000 12 000 11 000	16 000 14 000 13 000	10 000 9 700 8 900	8 400 8 100 7 400	60/28 62/28 63/28	ZZ ZZ ZZ	LLB LLB LLB	LLH LLH LLH	LLU LLU LLU
30	37 42 47 55 55 62 72 90	4 7 9 13 16 19 23	0.2 0.3 0.3 0.3 1 1 1.1	0.3 0.3 0.5 0.5 0.5	1.14 4.70 7.25 11.2 13.2 19.5 26.7 43.5	0.950 3.65 5.00 7.35 8.3 11.3 15.0 23.9	480 740 1 150 1 350 1 980 2 720	97 370 510 750 845 1 150 1 530 2 440	15.7 16.5 15.8 15.2 14.8 13.8 13.3	3 300 15 000 14 000 13 000 13 000 11 000 10 000 8 800	3 800 18 000 17 000 15 000 15 000 13 000 12 000 10 000	9 200 8 800 7 900	8.800 8 400 7 700 7 300 6 600	6706 6806 6906 16006 6006 6206 6306 6406	7Z 7Z 7Z 7Z 7Z 7Z	LLF LLB LLB LLB LLB LLB	LLH LLH LLH	
32	58 65 75	13 17 20	1 1 1.1	0.5 0.5 0.5	11.8 20.7 29.8	8.05 11.6 16.9	1 200 2 110 3 050	820 1 190 1 730	15.4 13.6 13.1	12 000 11 000 9 500	15 000 12 000 11 000	8 700 8 400 7 700	7 200 7 100 6 500	60/32 62/32 63/32	ZZ ZZ ZZ	LLB LLB LLB	LLH LLH LLH	LLU LLU

Usando el Programa Computacional.

Paso 1

Selección de característica de la carga y característica de rodamiento.

FIGURA 3.26 CONDICIONES DE TRABAJO DEL RODAMIENTO.

Paso 2

Dimensionamiento del interior y exterior de rodamiento, así como también la capacidad básica de carga estática y dinámica.

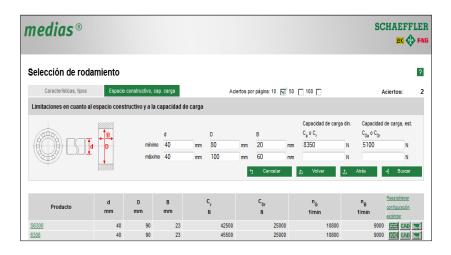


FIGURA 3.27 RADIO MÍNIMO Y MÁXIMO DEL EJE.

Paso 3
Soluciones encontradas

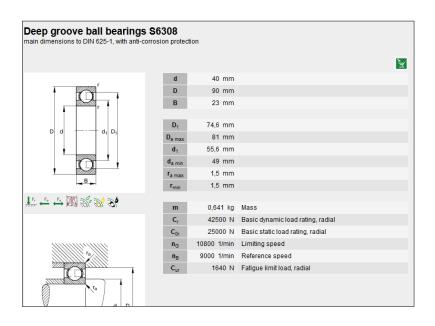
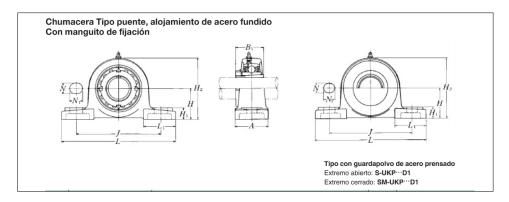



FIGURA 3.28 RODAMIENTO ENCONTRADO POR EL PROGRAMA

3.6.3 Selección de Chumacera

Se selecciona una chumacera tipo puente, alojamiento de acero fundido, con manguito de fijación, con las siguientes características.

TABLA 22 CATÁLOGO DE CHUMACERA NTN

Diámetro del eje			Dimensiones nominales						Tamaño del perno	Número ^{2) 3)} del rodamiento			
mm pulg.		Н	L	J	mı A	n N	pulg Ni	<i>Н</i> т	H_2	B_1	Lı	mm pulg.	
20 3⁄4	UKP205D1;H2305X UKP205D1;HE2305	36.5 1 ⁷ / ₁₆	140 5½	105 4½	38 1½	13 ½	16 %	15 19/ ₃₂	71 2 ²⁵ ⁄ ₃₂	35 1.378	42 1 ²¹ ⁄ ₃₂	M10 ¾	UK205D1;H2305X UK205D1;HE2305
25 7/8 1	UKP206D1;H2306X UKP206D1;HS2306 UKP206D1;HE2306X	42.9 1 ¹¹ / ₁₆	165 6½	121 4 ³ ⁄ ₄	48 1¾	17 21/ ₃₂	20 25/ ₃₂	17 21/ ₃₂	83 3 ⁹ / ₃₂	38 1.496	54 2½	M14	UK206D1;H2306X UK206D1;HS2306 UK206D1;HE2306X
30 1½	UKP207D1;H2307X UKP207D1;HS2307	47.6 1 ⁷ / ₈	167 6 ⁹ / ₁₆	127 5	48 1%	17 21/ ₃₂	20 25/32	18 23/ ₃₂	93 3 ²¹ / ₃₂	43 1.693	54 2½	M14	UK207D1;H2307X UK207D1;HS2307
35 1½ 1¾ 1¾	UKP208D1;H2308X UKP208D1;HE2308X UKP208D1;HS2308X	49.2 1 ¹⁵ / ₁₆	184 7½	137 5 ¹³ ⁄ ₃₂	54 2½	17 21/ ₃₂	20 ²⁵ ⁄ ₃₂	18 ²³ ⁄ ₃₂	98 3 ²⁷ / ₃₂	46 1.811	52 2½	M14	UK208D1;H2308X UK208D1;HE2308X UK208D1;HS2308X
40 1½ 1½ 1½ 1%	UKP209D1;H2309X UKP209D1;HA2309 UKP209D1;HE2309X UKP209D1;HS2309X	54 2½	190 7 ¹⁵ ⁄ ₃₂	146 5¾	54 2½	17 ²¹ / ₃₂	20 25/32	20 25/ ₃₂	106 4 ³ / ₁₆	50 1.969	60 2¾	M14	UK209D1;H2309X UK209D1;HA2309 UK209D1;HE2309X UK209D1;HS2309X
45 15/8 111/16 13/4	UKP210D1;H2310X UKP210D1;HS2310 UKP210D1;HA2310 UKP210D1;HE2310X	57.2 2½	206 8½	159 6½	60 2¾	20 25/ ₃₂	23 29/ ₃₂	21 13/16	114 4½	55 2.165	65 2 ⁹ / ₁₆	M16	UK210D1;H2310X UK210D1;HS2310 UK210D1;HA2310 UK210D1;HE2310X

3.7. Validación de Columna

Debido a que el establecimiento cuenta con columnas robustas, en forma de cerchas, se ha pensado en aprovecharlos, para poder montar sobre ellos las vigas carrileras, para el cual se debe comprobar que no falle, ni por pandeo, ni por aplastamiento, entonces se tiene lo siguiente:

La columna soporta una carga de 15312N, de manera, que la carga está concentrada en el centro de la columna, entonces:

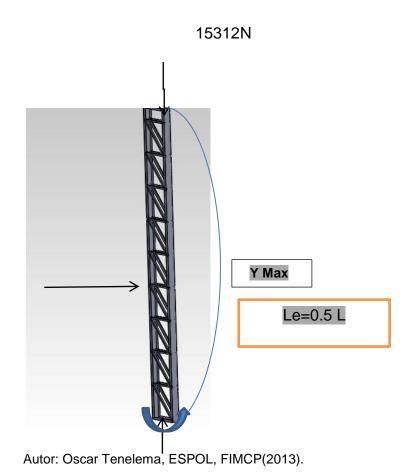
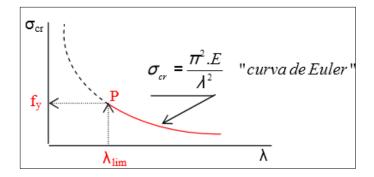



FIGURA 3.29 DIAGRAMA DE CUERPO LIBRE DE LA COLUMNA

Para cumplir con la condición de columna larga, y para poder utilizar la ecuación de EULER, debe cumplir con el siguiente criterio de la relación de esbeltez.

Fuente: ocw.usal.es/ensenanzas-tecnicas/resistencia-de-materiales-ingeniero-tecnico-en-obras-publicas/contenidos/Tema10-Pandeo.pdf

FIGRA 3.30 CURVA DE EULER PARA COLUMNAS LARGAS

Se aplica la siguiente Fórmula, para determinar la esbeltez en una columna

$$r = \sqrt{\frac{I}{A}}$$
 donde:

r= Radio de Giro de la columna.

I = Inercia dirección YY de la Columna.

A= Área de la Sección Transversal del Perfil.

$$r = \sqrt{\frac{23130 \ cm^4}{84.5 \text{cm}}}$$

$$r = 16.54$$

$$\frac{L}{r} \ge 100$$

$$\frac{6000}{16.54} \ge 100$$

362.65≥100

Ahora se determina la longitud efectiva de la columna con la siguiente fórmula.

Le= k(L), Donde:

Le= Es la longitud efectiva

K= Constante de acuerdo al tipo de apoyo.

L= Es la longitud de la Columna.

TABLA 23
LONGITUD EFECTIVA PARA CADA TIPO DE APOYO

Longitud de pandeo de barras canónicas: L _k						
Condiciones	biarticulada	biempotrada	empotrada	empotrada	biempotrada	
de extremo		•	articulada	libre	desplazable	
L_k	1,0.L	0,5.L	0,7.L	2,0.L	1,0.L	

Fuente:ocw.usal.es/ensenanzas-tecnicas/resistencia-de-materiales-ingeniero-tecnico-en-obras-publicas/contenidos/Tema10-Pandeo.pdf

$$Le= 0.5(L) = 05(6000) \text{ mm}$$

Le=3000mm

A continuación se va a determinar, la carga máxima, que puede soportar una viga IPE 400, la cual es una referencia, para poder partir desde ese dato con los cálculos.

$$Pcr = \frac{EI\pi^2}{Le^2Fs}$$

Pcr= La Carga critica máxima que soporta la columna.

E= Módulo de elasticidad del acero.

l= Inercia del perfil de acero.

Le= Longitud efectiva de la Columna.

Fs= Factor de seguridad.

$$P = \frac{200 \text{ GPa x } 604 \text{ cm}^4 x \text{ } \pi^2}{6^2 x \text{ 3}}$$

$$P = \frac{200 \text{ GPa x } 6.04 \text{ x } 10^{-6} \text{m}^4 \text{x } \pi^2}{6^2 \text{ x3}}$$

P=110.39KN

Este es el valor de carga crítica, es el que determina hasta donde puede soportar mi columna sin pandearse.

$$I = \frac{P Le^2}{E\pi^2}$$

Ahora bien, la carga de trabajo, multiplicada por el factor de seguridad 3, da una carga crítica de 44100N, aplicando la fórmula de Euler y despejando I.

$$I = \frac{15312 \text{N x } (0.5 \text{x 6})^2}{200 \text{x} 10^9 \text{x} \pi^2}$$

$$I=6.61 \times 10^{-7} \text{ m}^4$$

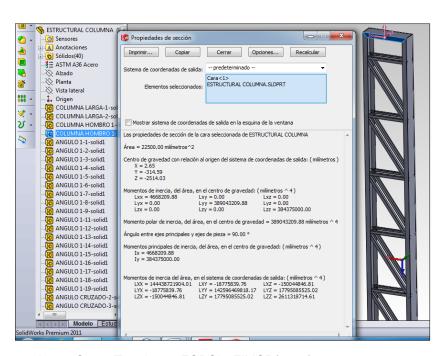
$$I=6.61 \times 10^{-7} \text{ m}^4 \times \frac{(100 \text{ cm})^4}{1 \text{ m}^4} =$$

Ahora bien la esbeltez es $\frac{L}{r} \ge 100$. Por tanto, el radio de giro mínimo va ser.

$$r \le \frac{L}{100}$$

$$r \le \frac{6000}{100} = 60 \text{ mm}$$

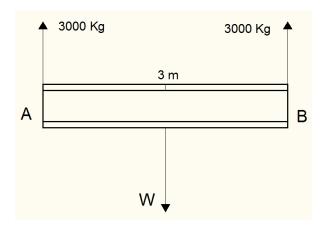
Así pues acorde con estos criterios, la sección debe tener un momento de inercia mínimo mayor que $66.1~{
m cm}^4$ y un radio de giro mínimo menor de $60~{
m mm}$.


La columna construida con cerchas, cumple, por tener las siguientes características.

I yy=384337 cm⁴

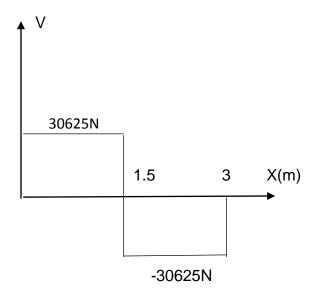
 $A = 91351 \text{ cm}^2$

r = 30.22 mm.


Por lo tanto estas columnas soportan la carga, sin deformarse lateralmente, ya que tiene un momento resistor mayor a 66.1 cm⁴, y un radio de giro menor a 60 mm.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3.31 CÁLCULO DE MOMENTO DE INERCIA DE ÁREA EN SOLIDWORKS.


3.8. Diseño del Yugo de carga.

 $W=5000kgx1.25 x(9.8m/s^2) =61250N$

RA=30625N

RB=30625N

Diagrama de Fuerza cortante

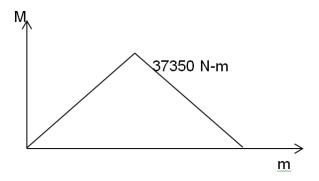
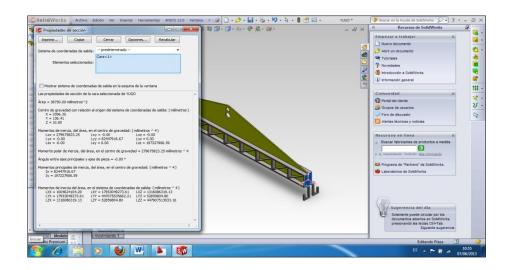



Diagrama de Momento Flector

$$\sigma = \frac{Mmax}{Z}$$
 ; $Z = \frac{I}{C}$

A continuación, se va a validar el yugo, ya construido en el mismo taller, por lo que se necesita hallar el momento de Inercia de la sección, para verificar su factor de seguridad. El momento de inercia de la sección se lo encuentra con la ayuda del programa solid Works.

Autor: Oscar Tenelema, ESPOL, FIMCP(2013).

FIGURA 3. 32 MOMENTO DE INERCIA DE LA SECCIÓN

 $l = 0.447 \text{ m}^4$

C=0.25 m

 $A = 1,75 \text{ m}^2$

Se procede a la validación del Yugo

Sy=204 MPa

$$n = \frac{Sy}{\sigma}$$

$$n = \frac{Sy}{MC}$$

$$n = \frac{204 \times 10^6 \text{ Mpa}}{\frac{37350 \text{ Nmx } 0.25 \text{ m}}{0.447 \text{m}^4}}$$

n≥15

Diseño por Fatiga del Yugo

Factor de Seguridad para Fatiga

Nf=
$$\frac{Sf}{\sigma a'}$$
[1- $\frac{\sigma m'}{Sut}$]

Nf=
$$\frac{82.83 \text{Mpa}}{53.49 \text{Mpa}}$$
 [1- $\frac{53.49 \text{MPa}}{379 \text{MPa}}$] Nf=6.23

3.9. Análisis Utilizando un Programa Computacional

ANÁLISIS ESTÁTICO

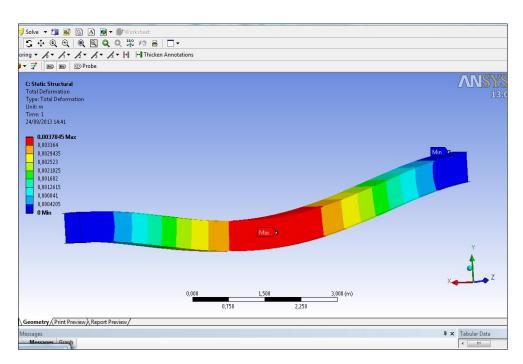


FIGURA 3.33 SIMULACIÓN DE LA DEFORMACIÓN VIGA CAJÓN EN EL PROGRAMA ANSYS 13®

En esta gráfica se puede observar que la viga cajón tiene una deformación de 3.78 mm, cuando la norma permite hasta 28mm,

con esto queda indicado la seguridad ante la deformación de la viga.

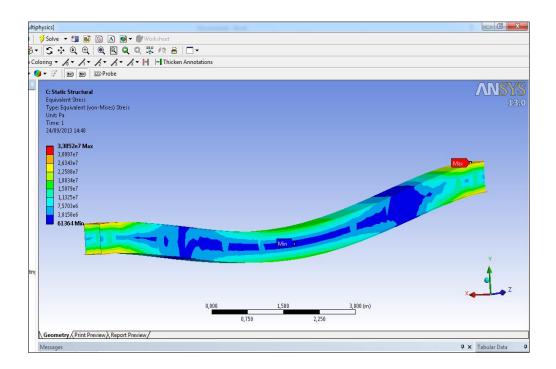


FIGURA 3.34 EQUIVALENTE DE VON MISES DE LA VIGA CAJÓN EN ANSYS®

Se puede observar el equivalente de Von Misses es muy bajo, y tiene un valor de 34 Mpa, y se encuentra ubicado en sus extremos, debido al esfuerzo remanente provocada por la soldadura de la viga cajón a los testeros. Este valor de 34 Mpa da un factor de seguridad mayor a 7, esto es debido al esfuerzo cortante que soporta la soldadura, la misma que se ejecuta bajo la norma AWS D 14.1.

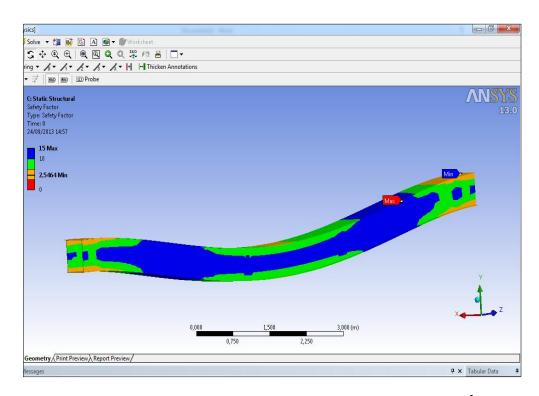


FIGURA 3.35 FACTOR DE SEGURIDAD DE LA VIGA CAJÓN EN ANSYS®

Se observa el factor de seguridad el máximo de 15, y el mínimo de 2,54, las ubicaciones donde va a ser más conservativo el diseño es muy referencial, debido a que los flejes son de 10mm de espesor, y el máximo espesor depende de los esfuerzos.

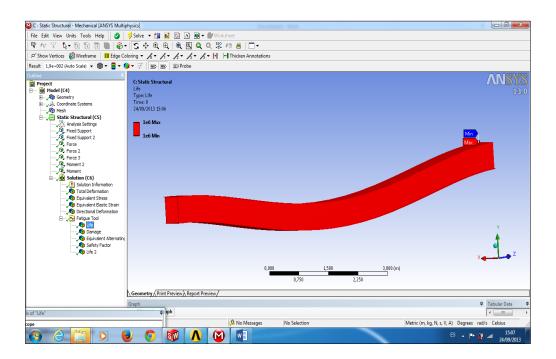


FIGURA 3.36 VIDA DE LA VIGA CAJÓN EN ANSYS®

El programa ANSYS VERSION13 ® muestra una vida de la viga cajón de 8 millones de vida, esto indica que si el puente grúa se usa 100 veces al día, y se trabaja los 360 días al año, la viga va a durar 200 años aproximadamente.

CAPÍTULO 4

4 ANÁLISIS ECONÓMICO.

Los costos de equipos, materiales y mano de obra son basados en precio del medio

4.1 Costo de Equipos.

TABLA 24
COSTOS DE EQUIPOS

		EQUIPOS	
DESCRIPCION	CANTIDAD	PRECIO UNI(\$)	PRECIO TOTAL (\$)
Trolley Eléctrico			
5T	1	4444.60	4444,6
Tecle Eléctrico a			
cadena	1	4945.00	4945
Cadena	10	108,1	1081
Cable Eléctrico	6	12,14	72,84
Motorreductores			
de 3Hp	2	550,32	1100,64
Gancho	1	112,02	112,02
Llantas			
Torneadas	4	120	480
		TOTAL	12236,1

4.2 Costo de Materiales

TABLA 25
COSTO DE MATERIALES

	COSTO DE MATERIALES							
DESCRIPCION	UNIDA	CANTIDAD	PRECIO UNIT(\$	TOTAL (\$)				
Planchas 10mmx1220x6000	m ²	5	676,9	3384,5				
Viga IPE 400	Un	14	700	9800				
Canal 160	Un	40	32	1280				
Angulo de 1 pg	Un	80	12	960				
Plancha de 6mm	m ²	2	153,38	306,76				
Eje de transmicion Ø 40 mm	Un	4	45	180				
Pernos Ø 20 mm	Un	16	3	48				
Plancha de 8mm	m ²	2	204,52	409,04				
Chumacera Puente con rodami	Un	8	25	200				
_			TOTAL	16568,3				

TABLA 26 CONSUMIBLES

	CONSUMIBLES							
DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	PRECIO TOTAL				
Electrodo E6011 1/8	Kg	50	4,9	245				
Electrodo E7018 1/8	Kg	20	4,75	95				
Disco de Corte	Un	40	4,5	180				
Disco de Pulir	Un	10	4,5	45				
Oxigeno	m3	30	5,5	165				
Acetileno	Kg	30	15	450				
Pintura de fondo	GI	2	20,15	40,3				
Pintura Anticorrosiva	Gl	6	22	132				
Catalizador	GI	1	15	15				
Desoxidante	GI	1	15,5	15,5				
			TOTAL	1382,8				

4.3 Costo de Mano De Obra

TABLA 27
COSTO DE PERSONAL EN VIGA CAJON

COSTO DE PERSONAL(viga cajón)								
PERSONAL	CANT	FABRICACIÓN (\$/h)	SEG (\$/h)	COSTO UNIT (\$/h)	TOTAL (\$/h)			
Soldadores	4	4,52	1,25	5,77	23,08			
Armadores	2	3,16	0,45	3,61	7,22			
Ayudantes	2	2,89	0,45	3,34	6,68			
Supervisor	1	6,32	0,38	6,7	6,7			
			TOTAL(\$)	19,42	43,68			

TABLA 28.

TOTAL COSTO DE PERSONAL (VIGA CAJÓN)

Días Laborables	6
Hora de Trabajo	48
Total Personal(\$)	2096,64

TABLA 29.

COSTO DE PERSONAL EN MONTAJE

		COSTO DE MONTAJE			
DESCRIPCIÓN	CANTIDAD	MONTAJE	SEG	COSTO UNIT	TOTAL (\$/h)
SOLDADOR	4	4,52	1,25	5,77	23,08
ARMADOR	2	3,16	0,45	3,61	7,22
AYUDANTE	2	2,89	0,45	3,34	6,68
SUPERVISOR	1	6,32	0,38	6,7	6,7
		·		T0TAL	43,68

TABLA 30
TOTAL DE COSTO DE PERSONAL EN MONTAJE

Días Laborables	12
Hora de Trabajo	96
Total Personal Montaje(\$)	4193,28
Alquiler de grúa	2800
TOTAL MONTAJE	6993,28

TABLA 31

COSTO DE PERSONAL EN CONSTRUCCIÓN DE COLUMNAS.

COSTO DE CONSTRUCCION DE COLUMNAS					
DESCRIPCIÓN	CANT	COLUMNA	SEG	COST UNIT	TOTAL
SOLDADOR	4	4,52	1,25	5,77	23,08
ARMADOR	2	3,16	0,45	3,61	7,22
AYUDANTE	2	2,89	0,45	3,34	6,68
SUPERVISOR	1	6,32	0,38	6,7	6,7
				TOTAL	43,68

TABLA 32

TOTAL DE COSTO DE PERSONAL EN CONSTRUCCIÓN DE COLUMNAS.

DIAS LABORABLES	12
HORAS TRABAJO	96
TOTAL	4193,28

TABLA 33
COSTO TOTAL DEL PUENTE GRUA

GLOBAL			
DESCRIPCION	PRECIO TOTALES		
EQUIPOS	12236,1		
MATERIAL	16568,3		
CONSUMIBLES	1382,8		
PERSONAL	6289,92		
MONTAJE	6993,28		
TOTAL	43470,4		

CAPÍTULO 5

5 PLANIFICACIÓN DE CONSTRUCCIÓN

Los costos de equipos, materiales y mano de obra son basados en precios del medio.

5.1 Planos de Construcción

5.2 Listado de Materiales.

TABLA 34
LISTADO DE MATERIALES

LISTADO DE MATERIALES				
DECODIDCION	CANTIDAD	1100	EXISTE EN	COMPRAD
DESCRIPCION	CANTIDAD	USO	BODEGA	COMPRAR
Cortadora	2	Estructura	SI	
Disco de Corte	40	Estructura	SI	
Disco de Pulir	10	Estructura	SI	
Extension (220v)	4	Manufactura	SI	
Tronzadora	2	Estructura	SI	S.E
Soldadora ESAB Electrodos	4	Manufactura	SI	
E6011 (Kg) Electrodos	2	Manufactura	SI	
E7018 (kg) Tanque de	2	Montaje	NO	SI
Oxigeno	6	Manufactura	SI	
Tanque de Acetileno Manguera para	3	Manufactura	SI	
Oxigeno	2	Manufactura	SI	
Manoreductores	2	Manufactura	NO	SI
Guantes (API)	4	Montaje	SI	
Mascara de soldar	4	Manufactura	SI	
Mangas	4	Manufactura	NO	SI
Mandil de Cuero	4	Estructura	SI	
Campera	2	Estructura		
Cepillo de fierro	4	Manufactura	SI	
Rache	4	Montaje	SI	
Soplete	3	Manufactura	SI	SIN
Arnes de seguridad	4	Montaje	SI	ESPECIFICAR
Cinta de Peligro (m)	20	Montaje	SI	
Conos	6	Montaje	SI	

5.3 Cronograma de Construcción

Las actividades para la construcción del puente grúa, una vez obtenido el diseño definitivo arrancará el primero de Julio del presente año.

TABLA 35
CRONOGRAMA DE CONSTRUCCIÓN

CRONOGRAMA DE CONSTRUCCIÓN					
ACTIVIDADES	FECHA DE INICIO	DURACIÓN	FECHA DE FINALIZACIÓN		
Recepción de Material	01/07/2013	2	03/07/2013		
Recepción de Equipos	03/07/2013	1	04/07/2013		
Almacenamiento del Material	04/07/2013	2	06/07/2013		
Preparación de Material	06/07/2013	3	09/07/2013		
Corte de Canales	08/07/2013	2	10/07/2013		
Corte de Ángulos	11/07/2007	2	13/07/2007		
Corte de la Viga IPE 400	12/07/2013	3	15/07/2013		
Corte de Planchas con Oxiacetilénica	15/07/2013	1	16/07/2013		
Doblado de Plancha acero (Testero)	16/07/2013	1	17/07/2013		
Soldadura de la Columnas	17/07/2013	10	27/07/2013		
Soldadura de la viga cajón	24/07/2013	2	26/07/2013		

TABLA 36
CRONOGRAMA DE CONSTRUCCIÓN

CRONOGRAMA DE CONSTRUCCIÓN				
ACTIVIDADES	FECHA DE INICIO	DURACIÓN	FECHA DE FINALIZACIÓN	
Soldadura de la viga IPE 400	26/07/2013	4	30/07/2013	
Soldadura de las cartelas en Carro	27/07/2013	1	28/07/2013	
Revisión de la Soldadura	29/07/2013	4	01/08/2013	
Preparación de Superficie en Viga				
cajón.	01/08/2013	2	03/08/2013	
Pintura en Vigas IPE 400	02/08/2013	2	04/08/2013	
Preparación de Superficie en las				
Columnas	03/08/2013	3	06/08/2013	
Pintura en Columnas	05/08/2013	3	08/08/2013	
Pintura de la Estructura	08/08/2013	2	10/08/2013	
Ubicación de Columnas en sitio	10/08/2013	4	14/08/2013	
Ubicación de las Placas Base	13/08/2013	4	17/08/2013	
Revisión de resistencia de				
Cimentación	16/08/2013	4	20/08/2013	
Montaje del puente grúa	18/08/2013	15	02/09/2013	
Pintura de Acabado	30/08/2013	2	01/09/2013	

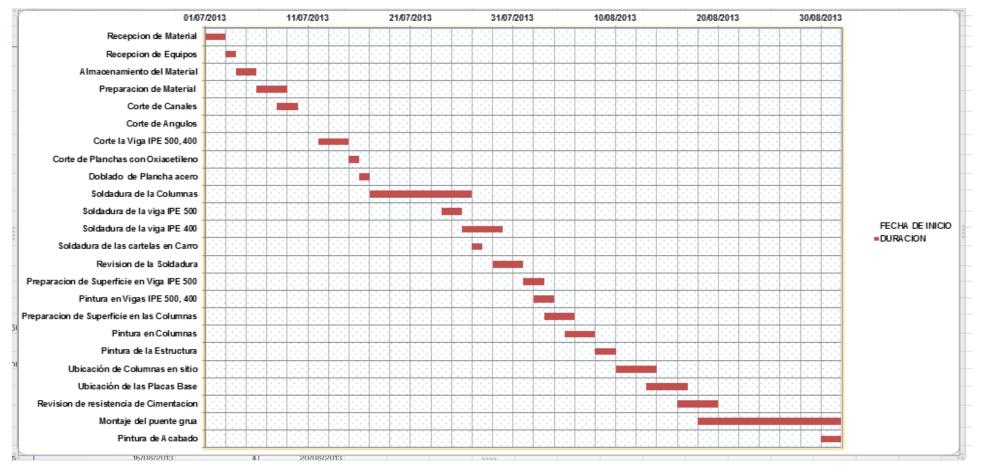
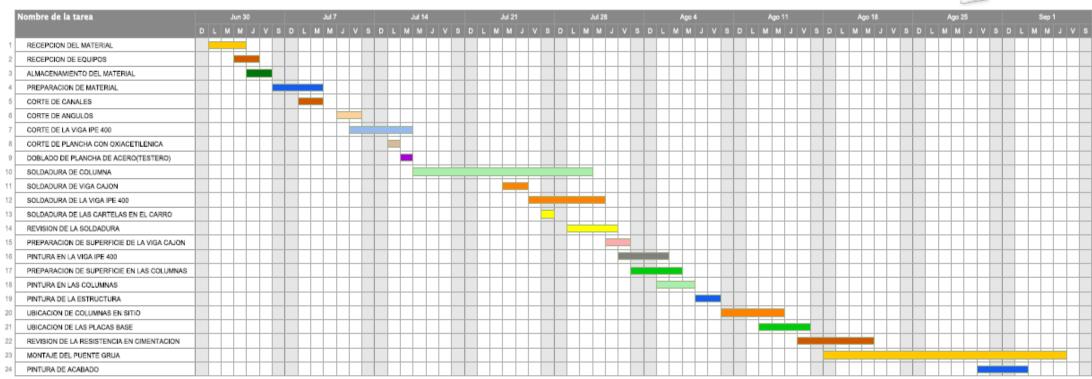



DIAGRAMA DE GANTT PARA LA CONSTRUCCIÓN DE UN PUENTE GRÚA DE 5 TONELADA

CONSTRUCCION Y MONTAJE DE UN PUENTE GRUA DE 5 TON

5.4 Determinación de Horas Hombre Reales.

TABLA 37

H/HOMBRE EN CONSTRUCCIÓN DE LAS COLUMNAS

H/ HOMBRE EN CONSTRUCCION DE LAS COLUMNAS							
PERSONAL	CANTIDAD	HORAS/DIA	HORAS/SEM	N SEMANAS	H/HOMBRE		
Soldadores	4	8	48	2	384		
Armadores	2	8	48	2	192		
Ayudante	2	8	48	2	192		
Supervisor	1	8	48	2	96		
				TOTAL HH	864		

Autor: Oscar Tenelema, ESPOL, FIMCP (2013)

TABLA 38

H/HOMBRE EN CONSTRUCCIÓN DE LA VIGA TRANSVERSAL

HORAS / HOMBRE EN LA CONSTRUCCION DE LA VIGA TRANSVERSAL								
PERSONAL	CANT	HORAS/DIA	HORAS/SEM	N DE SEMANAS	H/HOMBRE			
Soldadores	4	8	48	1	192			
Armadores	2	8	48	1	96			
Ayudante	2	8	48	1	96			
Supervisor	1	8	48	1	48			
				TOTAL HH	432			

Autor: Oscar Tenelema, ESPOL, FIMCP (2013)

TABLA 39
HORAS / HOMBRE EN EL MONTAJE DEL PUENTE GRÚA

	HORAS / HOMBRE EN EL MONTAJE DEL PUENTE GRUA								
PERSONAL	CANT	HORAS/DIA	HORAS/SEM	N DE SEMANAS	H/HOMBRE				
Soldadores	4	8	48	2	384				
Armadores	2	8	48	2	192				
Ayudante	2	8	48	2	192				
Supervisor	1	8	48	2	96				
				TOTAL H/H	864				

Autor: Oscar Tenelema, ESPOL, FIMCP (2013)

TABLA 40
RESULTADO DE HORAS HOMBRE TOTALES

DESCRIPCION	H/HOMBRE TOTAL
Construcción de la Columna	864
Construcción de la Viga Central	432
Montaje del Puente grúa	864
TOTAL	2160

Autor: Oscar Tenelema, ESPOL, FIMCP (2013)

CAPÍTULO 6

6. CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

- Los objetivos del proyecto fueron alcanzados según lo planteado.
- La aplicación del proyecto resulta factible ya que los equipos y materiales son de fácil adquisicion en el mercado.
- Gracias a la implementación del proyecto, el taller incrementará su producción, y no tendrá limitaciones para realizar sus trabajos y, se ahorraría dinero por concepto de alquiler de grúa a terceros.
- El método de diseño de la viga central (cajón), como el de las vigas carrileras o transportadoras, se realizaron con el programa ANSYS®.

- La viga Cajón en el análisis de fatiga presenta un factor de seguridad igual a 2,54.
- El diseño del puente grúa es seguro para construir, y presta la garantía necesaria.
- Las dimensiones de la Viga cajón cumple con la norma CMMA
 74.
- La viga tipo cajón, es la mejor alternativa para el uso en el puente grúa.

6.2 Recomendaciones

- Usar rigidizadores y crucetas para reforzar la viga central.
- Hacer un corte en L, en el empate de la viga central, para tener una mayor resistencia.
- En las uniones empernadas, asegurarse de que los anillos como arandelas estén planas y correctamente instaladas.
- Las juntas empernadas se las harán bajo la norma ASTM A325, la misma que describen el material del perno, y los elementos que se requiere para la junta empernada del puente grúa.
- Bajo ningún concepto cometa el error de empatar la cadena, con cadenas trabajadas en frio, así tenga las mismas dimensiones, evitando así el rompimiento de cadena y la pérdida de la maquinaria o estructura y lo más importante la lesión de un trabajador.
- En el montaje del puente grúa, se debe utilizar todo los equipos de seguridad, ya que se trata de una viga Cajón, que tiene como peso 2505 Kg, Y la prevención contra accidente será muy importante en este montaje.

- Realice todas las actividades que estén escritas en el cronograma de actividades para así evitar imprevistos.
- Se recomienda acartelar el carro transversal, para que gane una mayor rigidez, y no se deforme el carro con el peso de la viga cajón.

BIBLIOGRAFÍA

- 1. Diseño de Maquinas, Robert L. Norton, Cuarta edición.
- 2. Diseño de Elementos Mecánico, L Robert L. Mott, cuarta edición.
- Diseño de Ingeniera Mecánica, de Shigley, Octava edición Richard G, Budynas.
- 4. Resistencia de Materiales, Pytel Singer. Tercera Edición.
- 5. Mecánica de Materiales. R.C. Hibbeler. Sexta Edición.
- 6. Mecánica de Sólidos de P. Popov, segunda edición.
- 7. Catálogo de Rodamiento NTN-NTN Bearing.
- 8. Calculo de rodamientos,

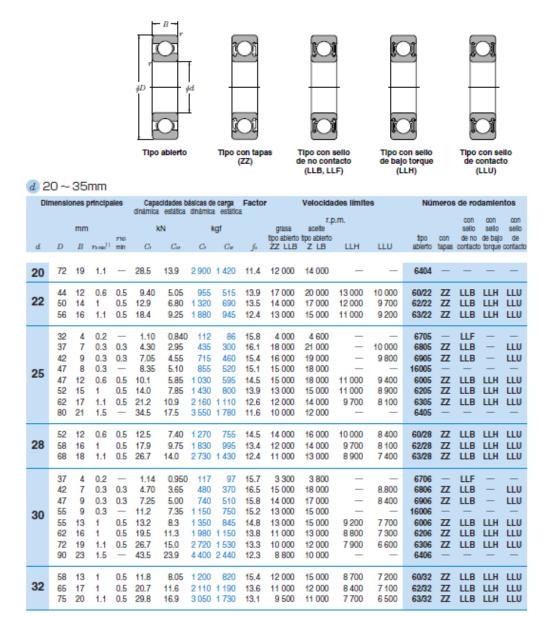
http://medias.ina.de/medias/es!hp.ec.br.pr/63*6306?mode=calc.

9. Catálogo de Motorreductores ETCSA,

http://mmmantenimiento.com/paginashtml/reductoresetcsa.html.

10. Catalogo de reductores Banfiglioli,

http://www.tecnotrans.com/productos1.php


- Norma CMAA (Crane Manufacturers Association of America)
 Especificación 70.
- 12. Norma ASTM 325.

APÉNDICES

APÉNDICE CATÁLOGO DE MOTOREDUCTORES DE EJE HUECO MARCA ETCSA

n ₁ R.P.M. DE ENTRADA: 1.500 INPUT R.P.M.: 1.500					n ₁ R.P.M. DE ENTRADA: 1,500 INPUT R.P.M.: 1500										
Potencia Motor Motor power	n ₂ rp.m. salida n ₂ output rp.m.	Refación da Reducción IN Reducción rate /N	R % R	Par m.kg. Torque m.kg.	Modela Model	Potencia Motor Motor powar	ng LpmL solida ng output opm	Reloción de Reducción IN Reduction rate	R % R %	Per m.kg. Torque m.kg.	Modelo				
	13.8	109	69	54		4 C.V.	80.8	18,6	91	32,3	DESCRIPTION OF THE PERSON OF T				
	15.4	97.5	76	53	5-M	(3 Kw)	112	13.4	92	23,5	5-M				
	20,5	73	81	42,3		Editor Sales	10,4	143,6	77	290					
	26,7	56,3	80	32,2			12,4	121,3	85	271	8-M				
1.5 C.V.	37	40,5	82	23,8	4-M - 3-M	4-м	15,1	99,2	82	214	7-M				
(1,1 Kw)	43,4	34,5	86	21,2			21,3	70,3	84	155					
	57,1	26,3	88	16,5		5,5 C.V.	26,4	56,7	85	126					
	71,4	21	89	13,4		3-M	3-M	3-M	T	(4 Kw)	37,5	40	85	89	
	95,2	15,7	90	10						43,4	34,5	90	82	6-M	
	3,17	473	70	316	8-MT		56,2	26,7	91	64					
	4,44	338	80	258	B-IVI I		80,8	18,6	90	44	5-M				
	5,88	255	69	168	7-MT		112	13,4	92	32,3	5-101				
	6,32	237,5	67	152	7-M		16,2	92,5	85	282	8-M				
	7,56	198,5	69	131	7-101		20,9	71,8	87	224	0-101				
	10,1	148	71	100			26,4	56,7	85	172 .					
2 C.V.	13,1	114,4	72	79	6-M	7,5 C.V.	37,1	40,4	87	126	7-M				
	15,1	99,2	80	76	(5,5 Kw)	45,7	32,8	90	106						
(1,5 Kw)	20,5	73	81	56	5-M		56,2	26,7	91	87					
	27,6	54,4	82	42,6	3-101		80,3	18,7	92	62	6-M				
	37	40,5	82	31,7			109	13,7	92	45					

DIMENSIONES Y CARACTERÍSTICAS DE LOS RODAMIENTOS NTN

CATÁLOGOS DE PERFILES IPE (DIPAC-ECUADOR)

IPE

Especificaciones Generales

Calidad ASTM A 36
Otras calidades Previa Consulta
Largo normal 6,00m y 12,00m
Otros largos Previa Consulta
Acabado Natural
Otro acabado Previa Consulta

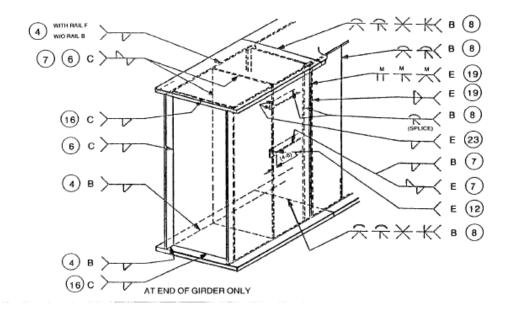
DENOMINACION		DIME	NSIONE	S		SECCION	PESOS		TIP	os	
	h	s	g	t	R	cm2	kg/mt	lx	ly	Wx	Wy
	mm	mm	mm	mm	mm			cm4	cm4	cm3	cm3
IPE 80	80	46	3.80	5.20	5	7.64	6.00	80	8.49	20.00	3.69
IPE 100	100	55	4.10	5.70	5	10.30	8.10	171	15.90	34.20	5.79
IPE 120	120	64	4.40	6.30	5	13.20	10.40	318	27.70	53.00	8.65
IPE 140	140	73	4.70	6.90	7	16.40	12.90	541	44.90		12.30
IPE 160	160	82	5.00	7.40	7	20.10	15.80	869	68.30	109.00	16.70
IPE 180	180	91	5.30	8.00	7	23.90	18.80	1320	101.00	140.00	22.20
IPE 200	200	100	5.60	8.50	9	28.50	22.40	1940	142.00	194.00	28.50
IPE 220	220	110	5.90	9.20	9	33.40	26.20	2770	205.00	252.00	37.30
IPE 240	240	120	6.20	9.80	12	39.10	30.70	3890	284.00	324.00	47.30
IPE 270	270	135	6.60	10.20	12	45.90	36.10	5790	420.00	429.00	62.20
IPE 300	300	150	7.10	10.70	15	53.80	42.20	8360	604.00	557.00	80.50
IPE 330	330	160	7.50	11.50	15	62.60	49.10	11770	788.00	713.00	98.50
IPE 360	360	170	8.00	12.70	118	72.70	57.10	16270	1040.00	904.00	123.00
IPE 400	400	180	8.60	13.50	118	84.50	63.30	23130	1320.00	1160.00	146.00
IPE 450	450	190	9.40	14.60	21	98.80	77.70	33740	1680.00	1500.00	176.00
IPE 500	500	200	10.20	16.00	21	116.00	90.70	48200	2140.00	1930.00	214.00
IPE 550	550	210	11.10	17.20	24	134.00	106.00	67120	2670.00	2440.00	254.00

CATÁLOGO BANFIGLIOLI DE MOTORREDUCTORES SIN FIN CORONA

	1.0	0 HP				
RPM	RED	MODELO	FSERV			
246	7:1	MVF 49	2.20			
246	7:1	MW 63	4.79			
173	10:1	MVF 49	1.73			
173	10:1	MW 63	3.75			
123	14:1	MVF 49	1.41			
115	15:1	MW 63	2.96			
96	18:1	MVF 49	1.03			
91	19:1	MW 63	2.40			
72	24:1	MW 63	2.03			
58	30:1	MW 63	1.77			
58	30:1	MW 75	2.87			
45	38:1	MW 63	1.43			
43	40:1	MW 75	2.18			
38	45:1	MW 63	1.18			
38	48:1	MW 86	2.49			
35	50:1	MW 75	1.59			
31	58:1	MW 86	1.88			
30.8	56:1	MW 110	3.66			
28.8	60:1	MW 75	1.26			
27.0	64:1	MW 86	1.58			
27.0	64:1	MW 110	2.91			
21.6	80:1	MW 86	1.22			
21.6	80:1	MW 110	2.19			
17.3	100:1	MW 110	1.82			
2.110						

1.5 HP							
RPM	RED	MODELO	FSERV				
245	7:1	MVF 49	1.47				
245	7:1	MW 63	3.19				
172	10:1	MVF 49	1.15				
172	10:1	MW 63	2.67				
114	15:1	MW 63	1.97				
90	19:1	MW 63	1.60				
86	20:1	MW 75	2.47				
71	24:1	MW 63	1.35				
69	25:1	MW 75	2.05				
57	30:1	MW 63	1.18				
57	30:1	MW 75	1.91				
43	40:1	MW 75	1.45				
43	40:1	MW 86	1.80				
43	40:1	MW 110	3.61				
37	46:1	MW 86	1.68				
37.3	46:1	MW 110	2.89				
34.3	50:1	MW 75	1.08				
30.6	56:1	MW 86	1.25				
30.6	56:1	MW 110	2.44				
26.8	64:1	MW 86	1.05				
26.8	64:1	MW 110	1.94				
21.4	8D:1	MW 110	1.48				
17.2	100:1	MW 110	1.21				

2 HP							
RPM	RED	MODELO	F SERV				
241	7:1	MVF 49	1.10				
241	7:1	MW 63	2.40				
169	10:1	MW 63	2.00				
112	15:1	MW 63	1.48				
112	15:1	MW 75	2.41				
89	19:1	MW 63	1.20				
84	20:1	MW 75	1.85				
84	20:1	MW 86	2.34				
73	23:1	MW 86	2.09				
67	25:1	MW 75	1.54				
56	30:1	MW 75	1.44				
56	30:1	MW 86	2.00				
42	40:1	MW 75	1.09				
42	40:1	MW 86	1.35				
42.1	40:1	MW 110	2.71				
36.6	46:1	MW 86	1.25				
36.6	46:1	MW 110	2.17				
30.1	56:1	MW 110	1.83				
26.3	64:1	MW 110	1.46				
21.1	80:1	MW 110	1.10				


17.3	100.1	IVIVY I IU	1.02					
	3 HP							
RPM	RED	MODELO	FSBRV					
247	7:1	MW 75	2.47					
173	10:1	MW 75	2.14					
115	15:1	MW 75	1.61					
115	15:1	MW 86	2.12					
87	20:1	MW 75	1.23					
87	20:1	MW 86	1.58					
87	20:1	MW 110	2.78					
75	23:1	MW 86	1.39					
75	23:1	MW 110	2.32					
58	30:1	MW 86	1.33					
58	30:1	MW 110	2.48					
43	40:1	MW 110	1.81					
38	48:1	MW 110	1.44					

	5 HP						
RPM	RED	MODELO	FSERV				
245	7:1	MW 75	1.48				
245	7:1	MW 86	1.97				
172	10:1	MW 75	1.28				
172	10:1	MW 86	1.62				
172	10:1	MW 110	3.11				
114	15:1	MW 86	1.27				
114	15:1	MW 110	2.34				
86	20:1	MW 110	1.67				
75	23:1	MW 110	1.39				
57	30:1	MW 110	1.49				
43	40:1	MW 110	1.08				

7.5 HP						
RPM	RED	MODELO	F SERV			
245	7:1	MW 110	2.63			
172	10:1	MW 110	2.07			
114	15:1	MW 110	1.58			
86	20:1	MW 110	1.11			

10 HP						
RPM	RED	MODELO	FSERV			
245	7:1	MW 110	1.97			
172	10:1	MW 110	1.55			
114	15:1	MW 110	1.17			

SIMBOLOS DE SOLDADURA DE LA VIGA CAJON

ESTADO DE ESFUERZO DE LA VIGA CAJON

Case	Loading		Buckling Stress	Range of Application	Buckling Coefficient
1	Compressive stresses, varying as a straight line. 0≤Ψ≤1	ψ_{O_1} $ _{\alpha_a = \alpha_{b_1}}$ ψ_{O_2}	$\sigma_k = K_0 \sigma_*$	1 1	$\begin{split} K_{\rm e} &= -\frac{8.4}{\Psi + 1.1} \\ K_{\sigma} &= \left[\alpha + \frac{1}{\alpha}\right]^2 \text{ (x)} \left[\frac{2.1}{\Psi + 1.1}\right] \end{split}$
2	Compressive and tensile stresses; varying as a straight line and with the compression predominating. – 1<Ψ<0	ψ_{O_1} \downarrow	$O_k = K_0O_0$		$\begin{split} K_{\sigma} &= \left[(1 + \Psi)K' \right] - (\Psi K'') + \left[10\Psi \left(1 + \Psi \right) \right] \\ \text{wherein K' is the} \\ \text{buckling coefficient for } \Psi = 0 \\ \text{(case 1) and K''} \text{ is the} \\ \text{buckling coefficient for } \Psi = -1 \\ \text{(case 3)}. \end{split}$
3	Compressive and tensile stresses, varying as a straight line, with equal edge values, $\Psi=-1$ or with predominantly tensile stresses, $^{*}\Psi<-1$	Ψσ, _{+a = αb+} Ψσ,			$K_{\sigma} = 23.9$ $K_{e} = 15.87 + \frac{1.87}{Q^{2}} + 8.6Q^{2}$
4	Uniformly distributed shear stresses. $\psi = 1.0$	+ +T+ + + + + + + + + + + + + + + + + +	$T_k = K_T O_e$	α ≥ 1 α < 1	$K_r = 5.34 + \frac{4.00}{Q^2}$ $K_r = 4.00 + \frac{5.34}{Q^2}$