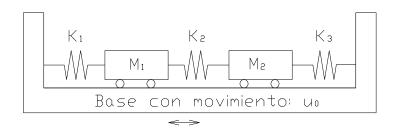
Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y RR. NN.

VIBRACIONES DEL BUQUE

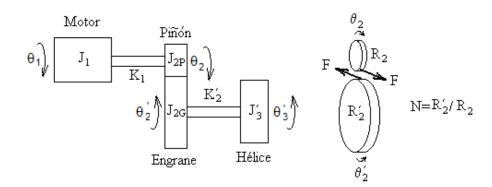
EXAMEN DE	2 ^{DA}	EVAL	.UAC	IÓN
-----------	-----------------	-------------	------	-----

Septiembre, 3, 2014

Estudiante:

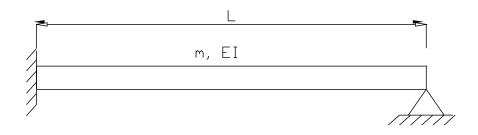

COMPROMISO DE HONOR

Reconozco que el presente examen está diseñado para ser resuelto de manera individual, y no se permite la ayuda de fuentes no autorizadas ni copiar.


Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.

Firma de Compromiso del Estudiante

1.- Deduzca las ecuaciones de movimiento del siguiente sistema compuesto por dos bloques de masas M_1 y M_2 , que se desplazan horizontalmente sobre una base, y que están conectadas con resortes, como se muestra en la figura. La base tiene movimiento harmónico horizontal: $u_O = Ue^{i\omega t}$. (25)


2.- Considere el modelo simplificado de un sistema propulsor marino que incluye un engranaje de reducción. El diámetro del piñón es de 20 cm y su Inercia polar es de 0.01 kg m s², y, la razón de Reducción es de 2.5:1.

En la siguiente tabla se ha analizado la respuesta forzada del sistema equivalente (considerando la reducción) para una frecuencia de 20 rad/seg. Si la amplitud del Torque excitador actuando en la hélice es de 2000 kg-m, calcule la Fuerza de contacto entre los dientes del piñón y del engrane, (30):

ω:	20	1/s										
i	J_{i}	Ci	θ_i Real	θ_i Imag	(-Jω²+iωC)θi R	(-Jω ² +iωC)θi I	Σ Real	Σ Imag	K	G	Σ/(K+iωG) R	Σ/(K+iωG) I
	kg m s ²	kg m s			kg-m	kg-m	kg-m	kg-m	kg -m			
1	2.00	0	-0.0102	-0.0293	8.13	23.42	8.1	23.4	159345	0	5.10E-05	1.47E-04
2	0.07	0	-0.0102	-0.0294	0.30	0.85	8.4	24.3	4249	0	1.98E-03	5.71E-03
3	20.32	1270	-0.0122	-0.0351	991.58	-24.27	1000.0	0.0				

- **3.-** Explique cuál es el origen de las Fuerzas Vibratorias generadas por una hélice propulsora, operando en la popa de un buque (20)
- **4.-** Se va a analizar la vibración libre de una viga prismática de longitud L, con un extremo empotrado y el otro SS, como se muestra en la figura. Se ha estimado que un Valor principal $(\beta_i L)$ es 7.06858. A qué modo de vibración corresponde? (25)

jrml/2014