ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"ANÁLISIS E IMPLEMENTACIÓN DE UN SERVIDOR DE PROTOCOLO DE MENSAJERÍA ESCRITA PUNTO A PUNTO (SMPP) VERSIÓN 3.4 EN LINUX QUE INTERACTÚE CON UN CLIENTE SMPP EN EL ENVÍO Y RECEPCIÓN DE MENSAJES CORTOS (SMS's) Y QUE GENERE ARCHIVOS DE REGISTROS DE DATOS DE LLAMADAS, CDRs"

INFORME DE MATERIA DE GRADUACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE: INGENIERO EN ELECTRÓNICA Y TELECOMUNICACIONES

Presentado por:

CÉSAR ALEJANDRO MACÍAS DUARTE
HENRRY DANILO VARGAS MONGE

GUAYAQUIL – ECUADOR AÑO 2015

AGRADECIMIENTO

Agradezco a Dios, y mi familia por sus bendiciones que me permitieron lograr y cumplir mis metas.

A la Universidad Escuela Superior Politécnica del Litoral por brindarme la oportunidad de estudiar y ser un profesional.

A mis profesores, quienes durante mi etapa de estudios aportaron a la formación de mi carrera universitaria.

A todas las personas que han formado parte de mi vida profesional por su amistad, apoyo y compañía.

César

Agradezco a Dios, que ante tantas circunstancias, ha estado iluminándome en todo momento para poder afrontar las adversidades que se me ha presentado en la vida y así poder lograr mis metas.

Mi familia, que amo con todo mi corazón, mi papá Klever y mi mamá Nancy son los pilares fundamentales de este logro. Mis hermanos que siempre han estado ahí y son el reflejo de lo que soy.

Mis amigos y profesores que siempre fueron un apoyo para cualquier situación que se me haya presentado.

La Escuela Superior Politécnica del Litoral por haberme formado como un profesional en todas las áreas, académicas y personales.

Henrry

DEDICATORIA

Mi proyecto lo dedico a mi amada esposa **Diana**, por su amor, por creer en mis capacidades, por sus palabras de aliento y su confianza en mí. Por ayudarme a ser perseverante y no dejarme decaer, para seguir adelante y cumplir mis ideales.

A mi Madre, hermanas, tías y primos porque en todo momento me han brindado su cariño incondicional y su apoyo para realizarme profesionalmente.

A mis amigos, quienes sin esperar nada a cambio me compartieron sus conocimientos, experiencias y de alguna manera contribuyeron al logro de mis objetivos.

César

Dedico este proyecto y mi gran esfuerzo principalmente a mis padres, que son los que me han sabido guiar y gracias a ellos he llegado a ser un profesional. Mi recompensa es esta, el triunfo es de ellos y la alegría es mía.

Mis hermanos, porque siempre son un apoyo y un incentivo al ser yo un ejemplo a seguir.

Henrry

TRIBUNAL DE SUSTENTACIÓN

MSc. José Miguel Menéndez

PROFESOR DE LA MATERIA DE GRADUACIÓN

Ing. Jorge Rodríguez

PROFESOR DELEGADO POR LA UNIDAD ACADÉMICA

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Informe, nos corresponde exclusivamente; y el patrimonio intelectual de la misma a la Escuela Superior Politécnica del Litoral"

- all

César Alejandro Macías Duarte

Henrry Danilo Vargas Monge

RESUMEN

El presente proyecto está dirigido para cualquier estudiante o profesor de ingeniería en telecomunicaciones que desee entender el protocolo SMPP de una forma didáctica, detallando los procesos principales, su funcionamiento y mostrando resultados puntuales.

Se detalla el protocolo SMPP desde el punto de vista del servidor, es decir una implementación limitada de una central de servicios de mensajes cortos (SMSC) y para realizar pruebas se interactúa con una entidad externa (ESME).

Los dos primeros capítulos relatan los antecedentes del protocolo SMPP, los objetivos del proyecto, las limitaciones y el marco teórico del protocolo SMPP v3.4 para posteriormente con los conocimientos adquiridos llegar a una implementación del SMSC en una máquina virtual mediante lenguajes de programación que se detallan en el capítulo 3. Por último, en el capítulo 4 se detalla un análisis de los mensajes enviados entre ESME y SMSC observándose los resultados de toda la implementación limitada del SMSC.

ÍNDICE GENERAL

AGRADECIMIENTO	II
DEDICATORIA	IV
TRIBUNAL DE SUSTENTACIÓN	VI
DECLARACIÓN EXPRESA	VII
RESUMEN	VIII
ÍNDICE GENERAL	IX
ABREVIATURAS Y SIMBOLOGÍA	XII
ÍNDICE DE FIGURAS	XIV
INTRODUCCIÓN	XVII
CAPÍTULO 1	1
1 ANTECEDENTES Y JUSTIFICACIÓN	1
1.1 Antecedentes de SMPP	1
1.2 Objetivo General	2
1.3 Objetivo Específico	2
1.4 Justificación	2
1.5 Alcance	4
1.6 Limitaciones	4
1.7 Metodología	5
CAPÍTULO 2	6
2 DESCRIPCIÓN DE SMPP	6
2.1 Definición SMPP	6

	2.1.1 SMSC	7
	2.1.2 ESME	7
	2.2 Aplicaciones de SMPP	8
	2.3 Sesiones SMPP	9
	2.3.1 Tipos de Sesión ESME	9
	2.3.2 Iniciando una Sesión SMPP	10
	2.3.3 Asíncrono	13
	2.4 Operaciones PDUs de SMPP	14
	2.4.1 Definiciones de los PDUs de SMPP	14
	2.5 Formato PDU de SMPP	19
	2.5.1 Comandos de la Cabecera PDU de SMPP	20
	2.5.2 Parámetros SMPP Mandatorios – Cuerpo PDU	23
	2.6 Ejemplos de Sesiones SMPP	31
	2.7 Máquinas Virtuales y su utilidad para el proyecto	32
C	CAPÍTULO 3	34
3	3 IMPLEMENTACIÓN DE UN SMSC	34
	3.1 Breve descripción de las herramientas utilizadas	34
	3.1.1 Servidor Linux Ubuntu Server 14.04	35
	3.1.2 Lenguaje Perl – Programación del Protocolo SMPP	35
	3.1.3 Lenguaje PHP –Interfaz Gráfica	36
	3.1.4 Base de datos MariaDB	36
	3.1.5 Requisitos y versiones de lenguajes de programación	37
	3.2 Instalación de la Máquina Virtual VMWare Player	37
	3.3 Descripción General de la Implementación del SMSC	42

3.4 Funcionamiento del SMSC	45
CAPÍTULO 4	53
4 ANÁLISIS DERESULTADOS	53
4.1 Análisis General	53
4.1.1 Conexión del ESME hacia el SMSC en modo bind_receiver	54
4.1.2 Conexión del ESME hacia el SMSC en modo bind_transmitter	54
4.1.3 Desconexión de un ESME con Unbind	55
4.2 Pruebas de Errores	56
4.3 Detalle de Parámetros de mensajes PDU	58
CONCLUSIONES Y RECOMENDACIONES	63
BIBLIOGRAFÍA	66
ANEXO	70

ABREVIATURAS Y SIMBOLOGÍA

ACK Acknowledgement (Acuse de recibo)

CCITT Comité Consultivo Internacional Telegráfico y Telefónico

ESME External Short Message Entity (Entidad Externa de Mensajes

Cortos)

GPS Global Positioning System (Sistema de Posicionamiento Global)

IP Internet Protocol (Protocolo de Internet)

ITU-T International Telecommunication Union-Telecommunication

(Unión Internacional de Telecomunicaciones -

Telecomunicaciones)

MS Mobile Station (Estación Móvil)

NACK Negative Acknowledgement (Acuse de recibo Negativo)

NPI Numeric Plan Indicator (Indicador del Plan Numérico)

PDU Protocol Data Unit (Unidad de Datos del Protocolo)

PERL Practical Extraction and Report Language (Lenguaje Práctico de

Extracción y de Informes)

PHP Personal Home Page (Página Personal)

SMPP Short Message Peer to Peer (Mensaje Corto Punto a Punto)

SME Short Messaging Entity (Entidad de Mensajería Corta)

SMS Short Message Service (Servicio de Mensajería Corta)

SMSC	Short Message Service Center (Centro de Servicios de
	Mensajes Cortos)
SS7	Signaling System #7 (Sistema de Señalización #7)
TCP	Transmission Control Protocol (Protocolo de Control de
	Transmisión)
TON	Type Of Number (Tipo de Número)

Unión Internacional de Telecomunicaciones

UIT

ÍNDICE DE FIGURAS

Figura 2.1. Formato PDU de SMPP [12] [13]	19
Figura 2.2. PDUs del campo command_id [6]	21
Figura 2.3. Comandos de Errores SMPP [6] [15]	22
Figura 2.4. Parámetros bind [6]	23
Figura 2.5. Parámetros bind_resp [6]	23
Figura 2.6. Parámetros Outbind [6]	24
Figura 2.7. Parámetros submit_sm y delivery_sm [6]	25
Figura 2.8. Parámetros submit_sm_resp y delivery_sm_resp [6]	25
Figura 2.9. Parámetros submit_multi [6]	26
Figura 2.10. Parámetros submit_multi_resp [6]	26
Figura 2.11. Parámetros data_sm [6]	27
Figura 2.12. Parámetros data_sm_resp [6]	27
Figura 2.13. Parámetros alert_notification [6]	28
Figura 2.14. Parámetros query_sm [6]	28
Figura 2.15. Parámetros query_sm_resp [6]	29
Figura 2.16. Parámetros cancel_sm [6]	29
Figura 2.17. Parámetros replace_sm [6]	30
Figura 2.18. Ejemplo de una sesión SMPP Transmitter [5]	31
Figura 2.19. Ejemplo de una sesión SMPP Receiver [5]	31
Figura 2.20. Ejemplo de una sesión SMPP Transceiver [5]	32
Figura 3.1. Creación de Máguina Virtual VMWare Player	38

Figura 3.2. Selección de ISO Ubuntu Server 14.04.1	38
Figura 3.3. Datos del usuario administrador Linux	39
Figura 3.4. Selección de tamaño del disco virtual	39
Figura 3.5. Información de la Máquina Virtual antes de crear	40
Figura 3.6. Instalación en curso de la Máquina Virtual	40
Figura 3.7. Instalación de herramientas de VMWare	41
Figura 3.8. Máquina Virtual instalada con éxito	42
Figura 3.9. Ubuntu 14.04	42
Figura 3.10. Máquina Virtual VMware	43
Figura 3.11. Descripción General del Proyecto	43
Figura 3.12. tb_sh_codes	44
Figura 3.13. tb_esme	45
Figura 3.14. Diagrama del funcionamiento del SMSC	45
Figura 3.15. Proceso Escuchar (Listen)	46
Figura 3.16. Código del Proceso Escuchar (Listen)	46
Figura 3.17. ESME hizo conexión como transmitter	47
Figura 3.18. ESME hizo conexión como receiver o transceiver	48
Figura 3.19. Tipos de PDU programados en Perl	48
Figura 3.20. Código del manejo de conexión con el ESME	49
Figura 3.21. Código del manejo de desconexión	50
Figura 3.22. Código del manejo de envío de mensajes al ESME	50
Figura 4.1. Conexión de un ESME tipo bind_receiver	5 1

Figura 4.2. Conexión de un ESME tipo bind_transmitter	55
Figura 4.3. Desconexión de un ESME	56
Figura 4.4. Resumen de mensajes PDU del proyecto	56
Figura 4.5. Falla de estado bind (bind failed)	57
Figura 4.6. Clave incorrecta (invalid password)	57
Figura 4.7. Parámetros bind_transceiver	58
Figura 4.8. Parámetros bind_transceiver_resp	59
Figura 4.9. Parámetros submit_sm	60
Figura 4.10. Parámetros submit_sm_resp	60
Figura 4.11. Parámetros deliver_sm	61
Figura 4.12. Parámetros deliver_sm_resp	61
Figura 4.13. Parámetros enquire_link	62
Figura 4.14. Parámetros enquire link resp	62

INTRODUCCIÓN

Este proyecto está basado principalmente en la explicación del funcionamiento del protocolo de Mensaje Corto Punto a Punto (Short Message Peer to Peer, SMPP) mediante la implementación de un Centro de Servicios de Mensajes Cortos (Short Message Service Center, SMSC) limitado, es decir, algo didáctico para un mejor entendimiento.

Se requiere de una Entidad Externa de Mensajes Cortos (External Short Message Entity, ESME) o un cliente SMPP para realizar las pruebas de los envíos y recepción de mensajes cortos. Sin embargo, este análisis se enfoca en el servidor SMSC y adicionalmente se ha realizado una simulación de un sencillo ESME para probar la implementación del SMSC.

CAPÍTULO 1

1 ANTECEDENTES Y JUSTIFICACIÓN

1.1 Antecedentes de SMPP

SMPP fue desarrollado con el objetivo de hacer la comunicación sencilla entre entidades o empresas, enviando mensajes cortos y que soporta tecnologías celulares [1] [2].

Muchas personas en la actualidad están familiarizadas con la recepción de mensajes escritos a sus celulares, sean estos promociones o información que alguna empresa les envíe [3]. De estas empresas, se destaca Acision, que en el 2010 fue reconocida como número uno del mundo en servicios de mensajería [4].

1.2 Objetivo General

El objetivo principal es dar una explicación didáctica del uso del protocolo SMPP como un servidor mediante la utilización de una plataforma SMSC limitada.

1.3 Objetivo Específico

Los objetivos específicos son:

- Describir el funcionamiento y operación del protocolo SMPP v3.4 de una forma sencilla para una comprensión rápida de cualquier estudiante o profesor de ingeniería en telecomunicaciones.
- Implementar una plataforma que actúe como Centro de Servicio de Mensajería Corta (SMSC) para la interacción con un ESME o cliente SMPP v3.4.

1.4 Justificación

Hoy en día la mensajería es usada cada vez más y esto se refleja en el hecho de que es una de las grandes fuentes de ingresos para las empresas telefónicas.

En la actualidad la mensajería sigue siendo la principal fuente de los ingresos de datos para los operadores móviles, e Informa Telecoms&Media prevé que los ingresos por mensajería seguirán creciendo en los próximos cinco años, donde solo con los SMS se generarán 73.000 millones de libras esterlinas (118.300 millones de dólares estadounidenses) para 2014 [4].

La citación realizada en el párrafo anterior nos da un indicativo acerca de la importancia de este servicio de mensajería, no solo para las operadoras, sino para el usuario que de algún modo por ejemplo tiene la necesidad de estar informado mediante mensajes cortos de texto al suscribirse a una entidad externa ESME.

Por lo tanto, el protocolo SMPP sirve como solución para dar una buena administración del flujo de los mensajes enviados por entidades externas, tales como: proveedores de contenidos, notificaciones de la banca, noticias, entre otros.

Para el estudio del Protocolo SMPP y de un análisis e implementación de un SMSC del presente trabajo, es dar una explicación sencilla del funcionamiento de estos, porque actualmente se utiliza protocolos de mensajería escrita corta como SMPP y resulta ser un ingreso económico muy bueno para las operadoras telefónicas y entidades externas.

1.5 Alcance

El alcance de la implementación del SMSC está dado por la explicación del funcionamiento del protocolo SMPP empleándose sobre sistema operativo Ubuntu una aplicación en Lenguaje Práctico de Extracción y de Informes (Practical Extraction and Report Language, PERL) y otra en lenguaje dinámico para Páginas Personales (Personal Home Page, PHP). Ambas aplicaciones están interconectadas mediante una base de datos MariaDB, que es una derivación de MySQL.

1.6 Limitaciones

En las limitaciones encontramos principalmente lo siguiente:

- Solo se consideran los siguientes mensajes de Unidad de Datos del Protocolo (Protocol Data Unit, PDU) de SMPP: Transmitter, Receiver, Transceiver, Submit_sm, Deliver_sm, Unbind y Enquire_link.
- Los errores considerados por el ESME son los siguientes: no hay error, clave incorrecta y falla de estado de enlace (bind).
- Para fines de explicación del protocolo SMPP, se considera que todos los SMS recibidos por este protocolo ya han sido tarifados y pueden ser enviados a su destinatario.
- Para la decisión de a que ESME se debe enviar un SMS, se implementó una tabla de rutas dentro de la base de datos.

 Los SMS recibidos por el SMSC se los procesa con la metodología de almacenar y luego enviar.

1.7 Metodología

El estudio realizado en el presente trabajo tiene una investigación descriptiva, puesto que no se modifica lo observado y se ha hecho uso de fuentes de páginas web y también de recursos brindados por el tutor para ampliar los conocimientos del uso del protocolo SMPP y así poder explicarlo de manera fácil mediante una implementación básica de lo que es un SMSC.

Este trabajo tiene un fin didáctico y no busca cambiar ningún enunciado, por tal motivo en el capítulo 2 se detalla teóricamente el protocolo SMPP, en el capítulo 3 se procede a la implementación básica del SMSC con una breve descripción de las herramientas utilizadas para su propósito y por último, los capítulos 4 y 5 relatan los análisis, resultados, conclusiones y recomendaciones de toda la investigación descriptiva de SMPP e implementación SMSC.

CAPÍTULO 2

2 DESCRIPCIÓN DE SMPP

2.1 Definición SMPP

El protocolo de Mensajes Cortos Punto a Punto (Short Message Peer to Peer) más conocido como SMPP, es un protocolo abierto y estándar de las telecomunicaciones, para la comunicación de mensajes cortos fuera de la red móvil entre entidades, tales como, Entidades Externas de Mensajes Cortos (ESME) que se conectan con el Centro de Servicios de Mensajes Cortos (SMSC). El SMSC es el servidor y el ESME el cliente [5] [6].

Para que exista la comunicación, se la realiza mediante una conexión del Protocolo de Control de Transmisión/Protocolo de Internet (Transmission Control Protocol/Internet Protocol, TCP/IP) o similar, en cual el protocolo SMPP hace la función de intercambiar mensajes cortos entre ESME y SMSC con los llamados PDU. Cada petición PDU que se envía de una entidad tiene su respectiva respuesta PDU [5] [6].

2.1.1 SMSC

El SMSC (Short Message Service Center) es la central de mensajería corta de una red celular que realiza la organización de todos los mensajes escritos que se envían por parte de los usuarios o alguna entidad externa ESME. Este SMSC recibe los mensajes y se encarga de enviarlos a su destinatario siempre que esté disponible. Por lo tanto, un mensaje queda almacenado en el SMSC por un cierto tiempo, el cual es configurado por el administrador o también el usuario puede dar este límite de tiempo si así lo desea [7].

2.1.2 **ESME**

El ESME es una entidad de red externa que puede enviar y recibir mensajes, pero primero el ESME debe conectarse a un SMSC con una conexión TCP/IP o similar y mediante un protocolo que pueda intercambiar mensajes (petición/respuesta) que puede ser SMPP [8].

Un ESME es considerado también una entidad no móvil. Unos ejemplos de ESME, son las empresas que envían anuncios, concursos de trivia, votaciones, entre otros. Un usuario probablemente reconocería que un ESME le ha enviado un mensaje, cuando el número de procedencia no es un número celular habitual o el mensaje escrito no es deseado.

2.2 Aplicaciones de SMPP

Con SMPP se puede tener un sin número de aplicaciones de mensajería. Algunos ejemplos de estas se nombran a continuación [5] [6]:

- Alerta de mensajes de voz.
- Servicios de posicionamiento o localización (GPS).
- Mensajería Instantánea.
- Servicios de Información.
- Mensajes de difusión (Broadcast).

2.3 Sesiones SMPP

La sesión se establece entre el ESME y el SMSC. Esta sesión es iniciada normalmente por el ESME, quien emite una solicitud de enlace (Bind Request) para abrir una sesión SMPP. La conexión se trabaja en la capa de aplicación TCP/IP o similar [9].

2.3.1 Tipos de Sesión ESME

Un ESME envía y recibe mensajes estableciendo dos conexiones de redes que pueden ser TCP/IP o similares y dos sesiones de SMPP que son el Transmitter y el Receiver. En la versión 3.4 del protocolo SMPP, un ESME puede establecer una sesión SMPP Transceiver sobre una sola conexión de red [10].

En resumen hay tres formas en que el ESME inicia sesión:

- Transmitter.
- Receiver.
- Transceiver.

Transmitter

El inicio de sesión como Transmitter, hace que el ESME pueda enviar mensajes cortos al SMSC.

Receiver

El inicio de sesión como Receiver, hace que el ESME pueda recibir mensajes cortos del SMSC.

Transceiver

El inicio de sesión como Transceiver, hace que el ESME pueda enviar y recibir mensajes cortos del SMSC. La diferencia con respecto a los otros inicios de sesión donde para un Transmitter hacen una conexión y para un Receiver hacen otra conexión, con Transceiver se hace ambas en una sola conexión.

2.3.2 Iniciando una Sesión SMPP

Como ya se mencionó, para que exista una sesión SMPP, el ESME normalmente debe conectarse con el SMSC. Este ESME puede enviar una serie de peticiones al SMSC que se mantiene escuchando las conexiones por uno o más puertos de TCP/IP o similar (El puerto 2775 normalmente se usa, pero esto puede variar dependiendo del vendedor del SMSC), y el SMSC enviará al ESME las respuestas adecuadas a cada una de estas peticiones. El SMSC

también puede hacer peticiones al ESME, y este también responderá de forma adecuada [9].

Estados de una Sesión SMPP

Estos estados son [9]:

- Open.
- Bound_TX.
- Bound_RX.
- Bound_TRX.
- Closed.
- Outbind.

Open

En este estado el ESME establece una conexión de red TCP/IP o similiar con el SMSC, pero aún no se realiza la solicitud de enlace (bind_request).

Una vez realizada la conexión, vienen los estados Bound según el tipo de sesión del ESME.

Bound_TX

El ESME ha iniciado sesión como un Transmitter. ESME envió una solicitud (bind_request) para unirse (bind_transmitter PDU fue enviado al SMSC) y recibió la respuesta a esta solicitud (bind_transmitter_resp PDU fue recibido del SMSC).

Bound_RX

El ESME ha iniciado sesión como un Receiver. ESME envió una solicitud (bind_request) para unirse (bind_receiver PDU fue enviado al SMSC) y recibió la respuesta a esta solicitud (bind_receiver_resp PDU fue recibido del SMSC).

Bound_TRX

El ESME ha iniciado sesión como un Transceiver. ESME envió una solicitud (bind_request) para unirse (bind_transceiver PDU fue enviado al SMSC) y recibió la respuesta a esta solicitud (bind_transceiver_resp PDU fue recibido del SMSC).

Closed

Este estado se da cuando se ha solicitado el cierre de conexión de red entre el ESME el SMSC.

Outbind

Se ha mencionado que normalmente el ESME es quien inicia sesión, pero en este estado lo ha realizado el SMSC (recordando que el SMSC también puede iniciar una sesión SMPP) enviando un mensaje outbind al ESME. El objetivo que se persigue es hacer que el ESME tenga una conexión de red como un Receiver (bind_receiver) para que el SMSC pueda entregar los mensajes pendientes que tiene hacia el ESME.

2.3.3 Asíncrono

El protocolo SMPP es asíncrono. Esto ayuda a las entidades externas ESME o al SMSC enviar varias solicitudes al mismo tiempo. Existe un campo llamado sequence_number en la cabecera PDU de SMPP (ver en subcapítulo 2.5 sobre formato PDU de SMPP), el cual lleva un número de secuencia para poder correlacionar cada solicitud con su respectiva respuesta, logrando así un protocolo asíncrono [5].

2.4 Operaciones PDUs de SMPP

Las operaciones son las siguientes [11]:

- PDU Bind.
- PDU OutBind.
- PDU Unbind.
- PDU Generic_Nack.
- PDU Enquire_link.
- PDU Submit_sm.
- PDU Submit_Multi.
- PDU Deliver_sm.
- PDU Data_sm.
- PDU Alert_Notification.
- PDU Cancel_sm.
- PDU Query_sm.
- PDU Replace_sm.

2.4.1 Definiciones de los PDUs de SMPP

Se presentan a continuación la definición de cada PDU de SMPP.

PDU Bind

PDU Bind hace el registro de una instancia entre el ESME con el SMSC y así establecer una sesión SMPP.

El PDU Bind se divide en tres PDU según el tipo de inicio de sesión del ESME:

- bind_transmitter.
- bind_receiver.
- bind_transceiver.

PDU OutBind

Con esta operación el SMSC informa al ESME para que inicie sesión como bind_receiver en caso de que el SMSC tenga mensajes pendientes que entregar al ESME.

PDU Generic Nack

Se origina un NACK a un mensaje PDU de SMPP que ha sido enviado con una cabecera inválida. Este PDU generic_nack se produce cuando el campo command_length es demasiado corto o

tiene demasiada longitud, o cuando el campo command_id es desconocido (ver en subcapítulo 2.5 sobre formato PDU de SMPP).

PDU UnBind

PDU UnBind cierra la sesión SMPP y la conexión TCP o similar. Esta solicitud de desenlace UnBind puede ser enviado por el ESME o SMSC.

PDU Enquire_link

Esta operación realiza una revisión de la conexión a nivel de aplicación entre el ESME y SMSC, con el objetivo de verificar si existe comunicación entre ellos. La entidad que recibe esta petición, ESME o SMSC, responderá con un enquire_link_resp.

PDU Submit_sm

PDU Submit_sm es el mensaje SM que envía el ESME hacia el SMSC. Su respectiva respuesta es el PDU submit_sm_resp indicando que el mensaje ha sido recibido por el SMSC, quien posteriormente se encargará de enviar este SM a su destino.

Este PDU Submit_sm es usado cuando el ESME inicia sesión como un Transmitter o un Transceiver.

PDU Submit_Multi

La operación PDU submit_multi envía un mensaje SMPP a múltiples destinatarios.

PDU Deliver_sm

PDU Deliver_sm es el mensaje SM que envía el SMSC hacia el ESME. Su respectiva respuesta es el PDU deliver_sm_resp indicando que el mensaje ha sido recibido por el ESME, el destino final, ya que normalmente este tipo de SM tiene como origen en una terminal o estación móvil y es el SMSC quien direcciona estos mensajes. Se lo utiliza cuando el ESME inicia sesión como un Receiver o un Transceiver.

PDU Data_sm

Sirve para transferir datos entre ambas entidades SMSC y ESME.

Este PDU fue añadido para el uso de aplicaciones interactivas. Es una alternativa para los PDUs submit_sm y delivery_sm.

PDU Alert_Notification

Este PDU es enviado por el SMSC al ESME cuando se ha detectado que un subscriptor móvil en particular está disponible y una bandera pendiente de entregar ha sido establecido por el subscriptor de un PDU data_sm anterior.

PDU Cancel_sm

Sirve para cancelar uno o más mensajes que hayan sido enviados anteriormente (aquellos mensajes enviados con el PDU submit_sm) por el ESME hacia el SMSC. Es el ESME quien emite este PDU Cancel_sm.

PDU Query_sm

Utilizado para consultar el estado de un mensaje que ha sido enviado anteriormente por el ESME hacia el SMSC. Es el ESME quien emite este PDU Query_sm.

PDU Replace_sm

Reemplaza un mensaje que ha sido enviado anteriormente por el ESME hacia el SMSC. Es el ESME quien emite este PDU Replace_sm.

2.5 Formato PDU de SMPP

A continuación, se describe el formato PDU de SMPP mostrado en la Figura 2.1:

Cabecera PDU (Mandatorio)			Cuerpo PDU		
command	command	command	sequence	Parámetros	Parámetros
length	id	status	number	mandatorios	opcionales

Figura 2.1. Formato PDU de SMPP [12] [13]

La cabecera PDU de SMPP contiene 4 campos, los cuales tienen los parámetros mandatorios que deben estar siempre presentes en cada PDU de SMPP. El cuerpo PDU de SMPP es una parte opcional del formato.

Cada campo de la cabecera PDU de SMPP tiene de longitud 4 octetos (4 bytes o 32 bits). El cuerpo PDU de SMPP tiene longitud variable dependiendo lo que indique el campo command_id, ya que este campo indica el tipo de operación PDU de SMPP (bind, submit, unbind, entre otros) y por lo tanto los parámetros varían.

En esta sección se mencionan solo los parámetros mandatorios del cuerpo PDU de SMPP. Los parámetros opcionales con más detalle en SMPP Developers Forum [6].

2.5.1 Comandos de la Cabecera PDU de SMPP

A continuación, se describen los comandos o campos de la cabecera PDU de SMPP:

Command_length

Este campo indica la longitud en octetos de todo el mensaje SMPP (cabecera y cuerpo), incluyéndose a sí mismo. Debe ser mayor o igual que 16 octetos, ya que los 4 campos de la cabecera deben estar presentes siempre en el mensaje SMPP y suman 16 octetos [14].

Conociendo la longitud en octetos del mensaje SMPP dado por command_length, si se desea conocer la longitud en octetos del cuerpo PDU de SMPP, se la puede deducir de la siguiente forma:

Longitud cuerpo = Longitud mensaje SMPP – 16 octetos (2.1)

Command_id

Indica el tipo de operación PDU de SMPP, puede ser un PDU bind, submit, unbind, entre otros. El listado de los posibles valores de este campo se muestra en la Figura 2.2.

Campo command_id	valor en hexadecimal
generic_nack	0x80000000
bind_receiver	0x00000001
bind_receiver_resp	0x80000001
bind_transmitter	0x00000002
bind_transmitter_resp	0x80000002
query_sm	0x00000003
query_sm_resp	0x80000003
submit_sm	0x00000004
submit_sm_resp	0x80000004
deliver_sm	0x00000005
deliver_sm_resp	0x80000005
unbind	0x00000006
unbind_resp	0x80000006
replace_sm	0x00000007
replace_sm_resp	0x80000007
cancel_sm	0x00000008
cancel_sm_resp	0x80000008
bind_transceiver	0x00000009
bind_transceiver_resp	0x80000009
outbind	0x0000000B
enquire_link	0x00000015
enquire_link_resp	0x80000015
submit_multi	0x00000021
submit multi resp	0x80000021

Figura 2.2. PDUs del campo command_id [6]

Command_status

Indica si una solicitud PDU de SMPP es exitosa o con algún error. Los tipos de errores se detallan en la Figura 2.3.

Tipo de Error	Valor en Hex	Descripción
ESME_ROK	0x00000000	No hay error
ESME_RINVMSGLEN	0x00000001	Longitud del mensaje inválido
ESME_RINVCMDLEN	0x00000002	Command Length es inválido
ESME_RINVCMDID	0x00000003	Command ID es inválido
ESME_RINVBNDSTS	0x00000004	Bind incorrecto por un comando dado
ESME_RALYBND	0x00000005	ESME ya en estado Bound
ESME_RSYSERR	0x00000008	Error del sistema
ESME_RINVSRCADR	0x0000000A	Dirección de origen inválido
ESME_RINVDSTADR	0x0000000B	Dirección de destino inválido
ESME_RINVMSGID	0x0000000C	Message ID es inválido
ESME_RBINDFAIL	0x0000000D	Fracaso de Bind
ESME_RINVPASWD	0x0000000E	Clave inválida
ESME_RINVSYSID	0x0000000F	System ID es inválido
ESME_RCANCELFAIL	0x00000011	Fracaso de Cancel SM
ESME_RREPLACEFAIL	0x00000013	Fracaso de Replace SM
ESME_RINVSRCTON	0x00000048	Dirección de origen TON inválido
ESME_RINVSRCNPI	0x00000049	Dirección de origen NPI inválido
ESME_RINVDSTTON	0x00000050	Dirección de destino TON inválido
ESME_RINVDSTNPI	0x00000051	Dirección de destino NPI inválido
ESME RQUERYFAIL	0x00000067	Fracaso de query sm

Figura 2.3. Comandos de Errores SMPP [6] [15]

Sequence_number

Recordando que el protocolo SMPP es asíncrono, con este campo sequence_number se tiene el número de secuencia de cada solicitud y respuesta PDU de SMPP.

Si una solicitud tiene como número de secuencia un valor n, la respuesta será con el mismo número de secuencia de la solicitud realizada.

2.5.2 Parámetros SMPP Mandatorios - Cuerpo PDU

A continuación, se describen los parámetros del cuerpo para cada PDU de SMPP:

Bind

Los parámetros bind se describen en la Figura 2.4.

Cuerpo PDU SMPP - Parámetros bind		
Nombre del Parámetro	Tamaño en octetos	Descripción
system_id	Varía, máx. 16	Identifica al ESME haciendo bind ya sea como transmitter, receiver o transceiver
password	Varía, máx. 9	SMSC usa una clave por razones de seguridad y así autentica al ESME que solicita una operación bind
system_type	Varía, 13	Tipo de sistema del ESME haciendo bind
interface_version	1	Indica la versión del protocolo SMPP que tiene el ESME
addr_ton	1	Indica el tipo de número TON de la dirección del ESME. Si no lo conoce, envía NULL
addr npi	1	Indica que tipo de plan es el número NPI para la dirección del ESME. Si no lo conoce, envía NULL
address range	Varía, máx. 41	Dirección del ESME. Si no lo conoce, envía NULL

Figura 2.4. Parámetros bind [6]

Los parámetros en respuesta a bind se describen en la Figura 2.5.

Cuerpo PDU SMPP - Parámetros bind_resp		
Nombre del Tamaño en Bassination		
Parámetro	octetos	Descripción
		Identificador SMSC. Da una
system id	Varía, máx. 16	identificación del SMSC al ESME

Figura 2.5. Parámetros bind_resp [6]

Outbind

Los parámetros Outbind se describen en la Figura 2.6.

Cuerpo PDU SMPP - Parámetros Outbind		
Nombre del Parámetro	Tamaño en octetos	Descripción
system id	Varía, máx. 16	Identificador SMSC. Da una identificación del SMSC al ESME
-		La contraseña es usada por el ESME por razones de seguridad para autenticar al SMSC que está enviando
password	Varía, máx. 9	un outbind

Figura 2.6. Parámetros Outbind [6]

Unbind

Tanto la operación unbind como el unbind_resp, no tiene cuerpo PDU de SMPP, solo contiene la cabecera PDU de SMPP. En el campo command_id se especifica el tipo de operación PDU: unbind o unbind_resp.

Generic_Nack

No tiene cuerpo PDU de SMPP, solo contiene la cabecera PDU de SMPP.

Submit_sm y Delivery_sm

Los parámetros Submit_sm y Delivery_sm se describen en la Figura 2.7.

Cuerpo PDU SMPP - Parámetros submit sm y delivery sm		
•	Tamaño en	
Nombre del Parámetro	octetos	Descripción
		Identifica el servicio de aplicación SMS
		asociado con el mensaje. Por defecto
		se pone en NULL en la configuración
service_type	Varía máx. 6	SMSC.
		TON para dirección origen. Si no se
source_addr_ton	1	conoce se pone en NULL.
		NPI para dirección origen. Si no se
source_addr_npi	1	conoce se pone en NULL.
		Dirección SME quien origina ese
		mensaje. Si no se conoce se pone en
source_addr	Varía máx. 21	NULL.
dest_addr_ton	1	TON para destino.
dest_addr_npi	1	NPI para destino.
destination_addr	Varía máx. 21	Dirección destino del mensaje corto.
protocol_id	1	Identificador de protocolo.
sm_length	1	Longitud en octetos de short_message
		Se permite hasta 254 octetos de
short_message	Varía de 0 - 254	mensaje corto de datos del usuario.

Figura 2.7. Parámetros submit_sm y delivery_sm [6]

Los parámetros en respuesta a submit_sm y delivery_sm se describen en la Figura 2.8.

Cuerpo PDU SMPP - Parámetros submit_sm_resp y delivery_sm_resp		
Nombre del	Tamaño en	
Parámetro	octetos	Descripción
		Este campo contiene el message id
	Máx. 65 en	SMSC del mensaje enviado. Este
	submit y solo 1	campo no es usado por delivery_sm y
message_id	con delivery.	se debe poner en NULL en tal caso.

Figura 2.8. Parámetros submit_sm_resp y delivery_sm_resp [6]

Submit_Multi

Los parámetros Submit_Multi se describen en la Figura 2.9.

Cuerpo PDU SMPP - Parámetros submit_multi		
Nombre del Parámetro	Tamaño en octetos	Descripción
service type	Máx. 6	Identifica el servicio de aplicación SMS asociado con el mensaje. Por defecto se pone en NULL en la configuración SMSC
source_addr_ton	1	TON para dirección origen. Si no se conoce se pone en NULL.
source_addr_npi	1	NPI para dirección origen. Si no se conoce se pone en NULL.
source addr	Máx. 21	Dirección SME quien origina ese mensaje. Si no se conoce se pone en NULL.
number of dests	1	Números de direcciones destino. Indica el número de estructura de dest address que se van a seguir.
dest address	2-24	Contiene una o más (number_of_dests) direcciones SME y/o una lista de distribución.
·		:
protocol_id	1	Identificador de protocolo.
sm_length	1	Longitud en octetos de short_message
short message	Varía de 0 - 254	Se permite hasta 254 octetos de mensaje corto de datos del usuario.

Figura 2.9. Parámetros submit_multi [6]

Los parámetros en respuesta a submit_multi se describen en la Figura 2.10.

Cuerpo PDU SMPP - Parámetros submit_multi_resp		
Nombre del Parámetro	Tamaño en octetos	Descripción
message_id	Máx. 65	Es el mensaje identificador SMSC del mensaje enviado.
		Es el número de mensajes a direcciones SME destinos que fueron
no_unsuccess	1	enviados sin éxito al SMSC. Contiene una o más (no_unsuccess)
unsuccess sme	7-27	direcciones ESME o lista de distribución cual envío fue sin éxito.

Figura 2.10. Parámetros submit_multi_resp [6]

Data_sm

Los parámetros Data_sm se describen en la Figura 2.11.

Cuerpo PDU SMPP - Parámetros data sm		
Nombre del Parámetro	Tamaño en	Descripción
service_type	Máx. 6	Identifica el servicio de aplicación SMS asociado con el mensaje.
source_addr_ton	1	TON para dirección origen. Si no se conoce se pone en 0x00.
source_addr_npi	1	NPI para dirección origen. Si no se conoce se pone en 0x00.
source_addr	Máx. 65	Dirección SME quien originó ese mensaje.
dest_addr_ton	1	TON para destino.
dest_addr_npi	1	NPI para destino.
destination_addr	Máx. 65	Dirección destino del mensaje corto.
esm_class	1	Indica el modo de mensaje y tipo de mensaje.
registered_delivery	1	Indica si un SMSC delivery receipt o un SME acknowledgement es requerido.
data_coding	1	Define el esquema de codificación de los datos de carga útil.

Figura 2.11. Parámetros data_sm [6]

Los parámetros en respuesta a data_sm se describen en la Figura 2.12.

Cuerpo PDU SMPP - Parámetros data_sm_resp		
Nombre del Parámetro	Tamaño en octetos	Descripción
message id	Máx. 65	Este campo contiene el message_id SMSC del mensaie corto.

Figura 2.12. Parámetros data_sm_resp [6]

Alert_Notification

Los parámetros Alert_Notification se describen en la Figura 2.13.

Cuerpo PDU SMPP – alert notification		
	Tamaño en	_
Nombre del Parámetro	octetos	Descripción
		TON para la MS que cambió a
		disponible. Si no se conoce se pone en
source_addr_ton	1	NULL.
		NPI para la MS que cambió a
		disponible. Si no se conoce se pone en
source_addr_npi	1	NULL.
		Dirección de la MS que cambió a
source_addr	Máx. 65	disponible.
		TON para la dirección de destino que
		solicitó una alerta sobre una MS en
		particular que cambió a disponible. Si
esme_addr_ton	1	no se conoce se pone en NULL.
		NPI para la dirección de destino que
		solicitó una alerta sobre una MS en
		particular que cambió a disponible. Si
esme_addr_npi	1	no se conoce se pone en NULL.
		Dirección del ESME que solicitó una
		alerta sobre una MS en particular que
esme_addr	Máx. 65	cambió a disponible.

Figura 2.13. Parámetros alert_notification [6]

Nota: alert_notification no tiene una respuesta PDU.

Query_sm

Los parámetros Query_sm se describen en la Figura 2.14.

Cuerpo PDU SMPP - Parámetros guery sm				
Nombre del Parámetro	Tamaño en octetos	Descripción		
message_id	Máx. 65	Identificación del mensaje que se va a consultar su estado		
source_addr_ton	1	TON de mensaje originador. Es utilizado para fines de verificación, Si no se conoce se establece en NULL.		
source_addr_npi	1	NPI de mensaje originador. Es utilizado para fines de verificación, Si no se conoce se establece en NULL.		
source addr	Máx. 21	Dirección de mensaje originador. Es utilizado para fines de verificación, Si no se conoce se establece en NULL.		

Figura 2.14. Parámetros query_sm [6]

Los parámetros en respuesta a query_sm se describen en la Figura 2.15.

Cuerpo PDU SMPP - Parámetros query sm resp				
Nombre del Parámetro	Tamaño en octetos	Descripción		
message_id	Máx. 65	Identificación del mensaje que se va a consultar su estado.		
final_date	1 o 17	Es la fecha y hora cuando el mensaje requerido llegó a un estado final.		
message_state	1	Especifica el estado del mensaje corto requerido.		
error code	1	Código de error de la red que define la razón de la falta de mensaje de entrega.		

Figura 2.15. Parámetros query_sm_resp [6]

Cancel_sm

Los parámetros Cancel_sm se describen en la Figura 2.16.

Cuerpo PDU SMPP - Parámetros cancel sm				
Nombre del Parámetro	Tamaño en	Descripción		
annia tuma	Máx. 6	Identifica el servicio de aplicación SMS si la cancelación de un grupo de aplicaciones SMS es deseada, de lo contrario se establece en NULL.		
service_type message id	Máx. 65	Identificación del mensaje a ser cancelado. Se establece en NULL si se cancela un grupo de mensajes.		
source_addr_ton	1	TON de mensaje origen. Si no se conoce se pone en NULL.		
source_addr_npi	1	NPI de mensaje origen. Si no se conoce se pone en NULL.		
source_addr	Máx. 21	Dirección de mensaje origen a ser cancelado.		
dest_addr_ton	1	TON de mensaje destino SME a ser cancelado. Puede ser NULL si se proporciona el message_id.		
dest addr npi	1	NPI de mensaje destino SME a ser cancelado. Puede ser NULL si se proporciona el message id.		
destination addr	Máx. 21	Dirección de mensaje destino a ser cancelado. Puede ser NULL si se proporciona el message id.		

Figura 2.16. Parámetros cancel_sm [6]

Nota: Cancel_sm tiene respuesta Cancel_sm_resp, pero la respuesta no tiene cuerpo PDU de SMPP.

Replace_sm

Los parámetros Replace_sm se describen en la Figura 2.17.

Cuerpo PDU SMPP - Replace sm				
	Tamaño en	· -		
Nombre del Parámetro	octetos	Descripción		
		Identificación del mensaje que va a ser		
message_id	Max. 65	reemplazado		
		TON para mensaje origen. Si no se		
source_addr_ton	1	conoce se pone en NULL.		
		NPI para mensaje origen. Si no se		
source_addr_npi	1	conoce se pone en NULL.		
		Dirección del mensaje origen que será		
source_addr	1 - 21	reemplazado.		
		Nuevo calendario de entrega para el		
		mensaje corto. Se establece en NULL		
		si la actualización del mensaje original		
schedule_delivery_time	1 o 17	no es deseada.		
		Nuevo tiempo de expiración para el		
		mensaje corto. Se establece en NULL		
		si la actualización del mensaje original		
validity_period	1 o 17	no requiere de tiempo de expiración.		
		Nuevo registro de configuración del		
registered_delivery	1	parámetro de entrega.		
		Nuevo pre-definido del mensaje		
sm_default_msg_id	1	identificador.		
		Nuevo longitud en octetos de		
sm_length	1	short_message.		
		Nuevo mensaje corto que reemplaza al		
short_message	Varía de 0 - 254	mensaje existente.		

Figura 2.17. Parámetros replace_sm [6]

Nota: Replace_sm tiene respuesta Replace_sm_resp, pero solo tiene cabecera PDU de SMPP.

Enquire_link

Tanto la operación enquire_link como el enquire_link_resp, no tiene cuerpo PDU de SMPP, solo contiene la cabecera PDU de SMPP. En el campo command_id se especifica el tipo de operación PDU: enquire_link o enquire_link_resp.

2.6 Ejemplos de Sesiones SMPP

El inicio de sesión como Transmitter se describe en la Figura 2.18.

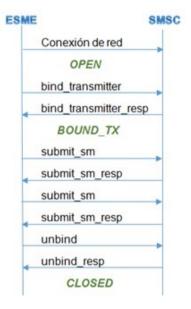


Figura 2.18. Ejemplo de una sesión SMPP Transmitter [5]

El inicio de sesión como Receiver se describe en la Figura 2.19.

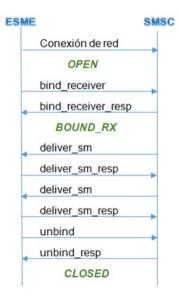


Figura 2.19. Ejemplo de una sesión SMPP Receiver [5]

Conexión de red

OPEN

bind_transceiver

bind_transceiver_resp

BOUND_TRX

deliver_sm

deliver_sm_resp

submit_sm

submit_sm_resp

unbind

unbind_resp

CLOSED

El inicio de sesión como Transceiver se describe en la Figura 2.20.

Figura 2.20. Ejemplo de una sesión SMPP Transceiver [5]

2.7 Máquinas Virtuales y su utilidad para el proyecto

La máquina virtual es un programa que se instala en cualquier computadora y emula características de una computadora real. La persona que hace la instalación, le da características según su conveniencia a la máquina virtual. Se puede tener más de una máquina virtual en una computadora y son compatibles con Windows y Linux [18].

Existen algunos programas para crear máquinas virtuales, entre ellos, VMWare. Este permite crear y configurar máquinas con diferentes sistemas operativos. VMWare es de utilidad para este proyecto debido a

la necesidad de tener otras PCs para hacer pruebas de los mensajes PDU de SMPP. Esto se logra con una conexión de una red entre la máquina virtual y PC. La versión gratuita es VMWare Player y se la puede descargar de la página web www.vmware.com.

CAPÍTULO 3

3 IMPLEMENTACIÓN DE UN SMSC

3.1 Breve descripción de las herramientas utilizadas

Se requiere un ambiente de programación sobre un servidor Ubuntu 14.04. Este servidor es una máquina virtual instalada en una computadora.

El SMSC se implementó como un servicio (demonio) el cual realiza las funciones por medio del protocolo SMPP. Adicionalmente, se implementó una aplicación para la visualización de los mensajes SMPP y su administración. Ambas aplicaciones interactúan con la misma base de datos.

Los lenguajes de programación utilizados son: Lenguaje Práctico de Extracción y de Informes (Practical Extraction and Report Language, Perl) para la implementación del SMSC y el lenguaje dinámico para Páginas Personales (Personal Home Page, PHP) para la aplicación web que transmite y recibe los mensajes PDU. La base de datos utilizada es MariaDB.

3.1.1 Servidor Linux Ubuntu Server 14.04

Este sistema operativo Ubuntu esta basado en Linux y es un software de codigo abierto. La versión 14.04 fue liberada en abril del 2014 y tiene soporte de escritorio y servidor [16].

Para la implementacion de este proyecto, se puede usar cualquier distribucion y version de Linux, siempre que sea compatible con las versiones de los lenguajes de programacion y sus librerias usadas.

3.1.2 Lenguaje Perl – Programación del Protocolo SMPP

Perl es un lenguaje de interpretación basado en el lenguaje C, que tiene un alto desarrollo desde 1987. Además, consume menos recursos que otros de su tipo y tiene un amplio desarrollo de librerías realizados por su comunidad.

Se usa el lenguaje Perl para la implementación del demonio que realiza las funciones de un SMSC por medio del protocolo SMPP.

3.1.3 Lenguaje PHP –Interfaz Gráfica

PHP es un lenguaje de desarrollo web con ejecución del código en el servidor y envío de la página web resultante. Fue creado en 1995 y tiene una gran aceptación a nivel mundial, y es usado en sitios como Facebook.

Se usa el lenguaje PHP para la implementación de la aplicación web, donde se visualiza los mensajes PDU de SMPP, y se puede administrar algunas funciones del servicio SMSC como:

- Desconectar un ESME conectado.
- Visualizar, modificar y crear los datos de conexión de los ESME.
- Manipular la tabla de rutas, que determina el ESME responsable de código corto de SMS.

3.1.4 Base de datos MariaDB

La base de datos MariaDB es una continuidad en código abierto de la base de datos Mysql que fue adquirida por Oracle.

Las funciones de la base de datos son:

 Registrar los mensajes de interacción del SMSC con los diferentes ESME.

• Maneja el estado de las conexiones de los ESME con el SMSC.

 Almacena la tabla de rutas, que se usa para decidir a que ESME se debe enviar un SMS.

3.1.5 Requisitos y versiones de lenguajes de programación

Para poder realizar este proyecto, se tienen los siguientes requisitos:

Lenguaje Perl; versión 5.18 o superior.

• Lenguaje PHP; versión 5.5.

Librerías de Perl: Net::SMPP 1.19 y DBI.

• Librerías de PHP: MySQL.

3.2 Instalación de la Máquina Virtual VMWare Player

La instalación de la máquina virtual se detalla a continuación:

 Para la creación de la máquina virtual se usó la plataforma de virtualización gratuita VMWare Player 7.1 x64bit. Para crear una nueva máquina virtual se presiona sobre la opción de *Create New Virtual Machine* como se describe en la Figura 3.1.

Figura 3.1. Creación de Máquina Virtual VMWare Player

 Ahí aparecerá una nueva ventana donde se debe indicar la ubicación del ISO del sistema a instalar (Figura 3.2), para este proyecto se usóubuntu-14.04.1-server-amd64.iso.

Figura 3.2. Selección de ISO Ubuntu Server 14.04.1

 Como es una versión soportada por VMWare, automáticamente se inicia la instalación fácil. Donde nos solicitan los datos del usuario administrador antes de iniciar la instalación, Figura 3.3.

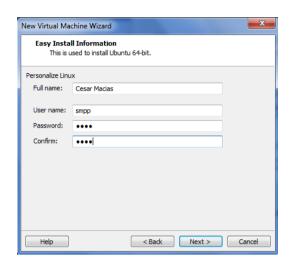


Figura 3.3. Datos del usuario administrador Linux

 El último paso para la creación de la máquina, es definir el tamaño del disco y como se describe en la Figura 3.4, se seleccionó un solo archivo de 8GB que es suficiente para el proyecto.

Figura 3.4. Selección de tamaño del disco virtual

 Antes de iniciar la instalación, se muestra la información de la máquina a crear, Figura 3.5.

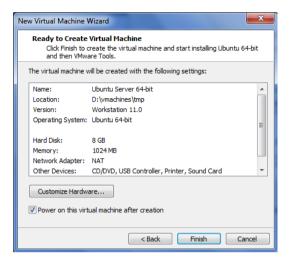


Figura 3.5. Información de la Máquina Virtual antes de crear

 La instalación se inicia automáticamente sin necesidad de intervención del usuario (Figura 3.6), ya que es administrada por VMWare directamente. Se debe esperar que la instalación termine.

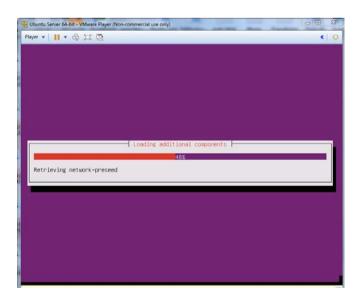


Figura 3.6. Instalación en curso de la Máquina Virtual

Terminada la instalación, automáticamente se inicia el sistema operativo e inicia el proceso de instalación de las herramientas de VMWare (VMWare Tools) como se observa en la Figura 3.7. Esto permite una mejor comunicación e interacción entre la máquina virtual y la máquina física.

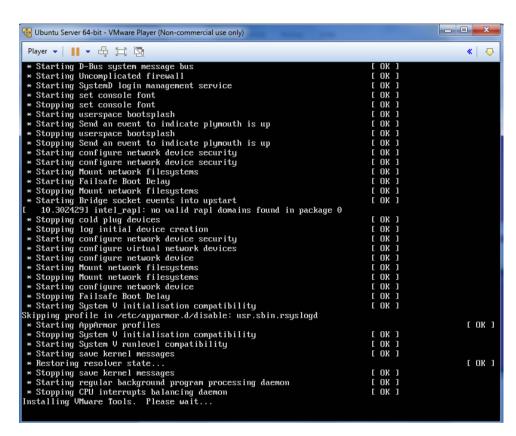


Figura 3.7. Instalación de herramientas de VMWare

 La creación e instalación de la máquina virtual ha terminado y está operativa completamente, Figura 3.8.

Figura 3.8. Máquina Virtual instalada con éxito

3.3 Descripción General de la Implementación del SMSC

Una vez realizada una breve explicación de las herramientas utilizadas para la implementación del proyecto, en esta sección se explica un marco general de cómo está estructurado.

El sistema operativo Ubuntu se muestra en la Figura 3.9.

```
Using username "kamui".
Welcome to Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)

* Documentation: https://help.ubuntu.com/
Last login: Sun Jan 25 12:43:44 2015 from 192.168.179.1
kamui@ubuntu:~$
```

Figura 3.9. Ubuntu 14.04

La máquina virtual que se ejecuta sobre la plataforma de VMWare se muestra en la Figura 3.10.

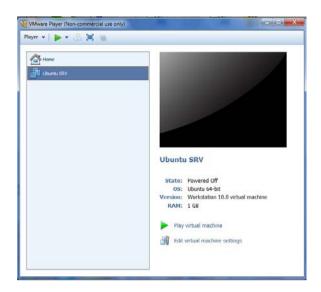


Figura 3.10. Máquina Virtual VMware

En la Figura 3.11 se presenta un gráfico en donde se tiene un ESME, un bloque de color rojo que representa el servicio SMSC, un bloque de color verde que representa la aplicación web y la base de datos MariaDB.

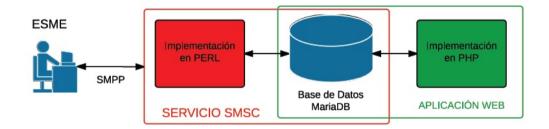


Figura 3.11. Descripción General del Proyecto

El ESME es cualquier cliente que se conecte a este SMSC vía SMPP. Se ha considerado el bloque del ESME en la Figura 3.11 con el fin de ilustrar la estructura de la comunicación entre ESME y SMSC.

El dominio total del SMSC lo tiene el servicio implementado en PERL, Figura 3.11. Para el efecto, se ha hecho uso de una librería en Perl para el manejo de los mensajes SMPP. Esta librería es Net::SMPP y se la encuentra en la página web de CPAN [17], donde se pueden encontrar alguna librerías de Perl para otros usos.

En la base de datos se guarda la información del número corto del ESME (short code), claves de ESME e interacción entre el programa de manejo del protocolo SMPP y el ambiente visual de gestión.

La decisión de qué ESME es el destinatario del SMS recibido y almacenado en el SMSC, se lo realiza por medio de la tabla *tb_sh_codes* en la base de datos, Figura 3.12. Ahí se realiza una relación del número corto de destinatario al identificador numérico del ESME creado en la tabla *tb_esme*, Figura 3.13.

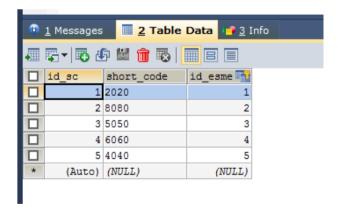


Figura 3.12. tb sh codes

Tabla tb_esme:

Figura 3.13. tb_esme

La aplicación web se implementó usando el lenguaje PHP, esta se conecta con la base de datos como se observa en el bloque de color verde en la Figura 3.11.

3.4 Funcionamiento del SMSC

El servicio implementado en Perl es la parte más importante del proyecto y se puede dividir en cuatro procesos o tres niveles detallados en la Figura 3.14.

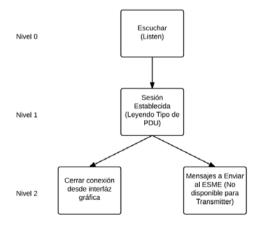


Figura 3.14. Diagrama del funcionamiento del SMSC

El proceso Escuchar (Listen) o también llamado Nivel 0, es el primer proceso en donde el SMSC está escuchando por el puerto 2251 esperando por una conexión de algún ESME (Figura 3.15), esto se implementó haciendo uso de la librería para SMPP.

Figura 3.15. Proceso Escuchar (Listen)

En la figura 3.15, se puede observar el servicio en ejecución y un segmento del código se detalla en la Figura 3.16.

Figura 3.16. Código del Proceso Escuchar (Listen)

Se ha denominado también al proceso Escuchar como proceso Padre, porque en el momento en que un ESME hace conexión con el SMSC se derivan y crean más sub-procesos.

En el proceso Hijo o Nivel 1 ya se ha establecido una conexión con algún ESME específico. Este se encuentra leyendo el tipo de PDU, maneja el envío/recepción de mensajes en esa sesión y dependiendo del tipo de conexión del ESME crea hasta dos procesos.

Estos dos procesos están en el Nivel 2 y se detallan a continuación:

- Proceso Cerrar Conexión: Maneja la desconexión del ESME por medio del cambio de un estado en la base de datos, cambio que es realizado en la aplicación de administración.
- Envío de Mensajes: Maneja el envío de mensajes al ESME conectado como tipo receiver o transceiver. Estos mensajes han sido enviados por otro ESME ya sea previamente o durante la conexión del ESME destinatario.

Si el ESME se conecta como un transmitter, solo se desglosa el proceso de desconexiones. La razón se da porque el ESME como transmitter envía mensajes al SMSC y no las recibe. Se ha enmarcado de color verde el proceso de nivel 1 y 2 respectivamente en la Figura 3.17.

```
kamui@ubuntu:~$ ps aux | grep smsc
kamui 1959 0.0 1.1 132564 11940 pts/0 S+ 14:23 0:00 perl smsc-v9.pl
kamui@ubuntu:~$ ps aux | grep smsc
kamui 1977 0.0 0.0 11744 916 pts/1 S+ 14:26 0:00 grep --color=auto smsc
kamui@ubuntu:~$ ps aux | grep smsc
kamui@ubuntu:~$ ps aux | grep smsc
kamui 1959 0.0 1.1 132564 11940 pts/0 S+ 14:23 0:00 perl smsc-v9.pl
kamui 1978 0.0 0.9 132564 9832 pts/0 S+ 14:26 0:00 perl smsc-v9.pl
kamui 1980 0.0 0.9 132564 9464 pts/0 S+ 14:26 0:00 perl smsc-v9.pl
kamui 1982 0.0 0.0 11744 916 pts/1 S+ 14:26 0:00 grep --color=auto smsc
```

Figura 3.17. ESME hizo conexión como transmitter

Por otro lado, si el ESME se conecta como un receiver o transceiver, se desglosa los dos procesos que están en el Nivel 2. Se ha enmarcado de color verde el proceso de nivel 1 y 2 respectivamente en la Figura 3.18.

```
kamui@ubuntu:~$ ps aux | grep smsc
kamui 1959 0.0 1.1 132564 11940 pts/0 S+ 14:23 0:00 perl smsc-v9.pl
kamui 1985 0.0 0.9 132564 9832 pts/0 S+ 14:27 0:00 perl smsc-v9.pl
kamui 1986 0.0 0.9 132564 9456 pts/0 S+ 14:27 0:00 perl smsc-v9.pl
kamui 1987 0.0 0.9 132564 9464 pts/0 S+ 14:27 0:00 perl smsc-v9.pl
kamui 1989 0.0 0.0 11744 916 pts/1 S+ 14:27 0:00 grep --color=auto smsc
kamui@ubuntu:~$
```

Figura 3.18. ESME hizo conexión como receiver o transceiver

A continuación, se presenta en la Figura 3.19 los tipos de PDU utilizados en el programa Perl:

```
{
    generic_nack', reply => undef, },
    'bind_receiver', reply => _receiver, },
    'bind_receiver_resp', reply => undef, },
    'bind_transmitter', reply => _transmitter, },
    'bind_transmitter_resp', reply => undef, },
    'query_sm', reply => undef, },
    'query_sm_resp', reply => undef, },
    'submit_sm', reply => _submit_sm, },
    'deliver_sm', reply => undef, },
    'submit_sm _resp', reply => undef, },
    'submit_sm _resp', reply => undef, },
                                                      cmd =>
                                                      cmd =>
                                                      cmd =>
                                                       cmd =>
                                                       cmd =>
                                                                                'deliver_sm resp', reply => undef,
'unbind', reply => _unbind, },
'unbind_resp', reply => undef, },
                                                       cmd =>
                                                                              'replace_sm', reply => undef, },
'replace_sm_resp', reply => undef, },
'cancel_sm', reply => undef, },
'cancel_sm_resp', reply => undef, },
                                                       cmd =>
                                                       cmd =>
                                                                               'bind_transceiver', reply => _transceiver, },
'bind_transceiver_resp', reply => undef, },
                                                       cmd =>
                                                      cmd =>
                                                     cmd => 'outbind', reply => undef, },
cmd => 'enquire_link', reply => _enquire_link, },
cmd => 'enquire_link_resp', reply => undef, },
0x80000015 =>
```

Figura 3.19. Tipos de PDU programados en Perl

Para una fácil selección de que función se debe ejecutar al recibir un PDU, se creo la tabla cmd_tab en la base de datos, lo que hace la relación código en hexadecimal del PDU con su nombre de código y la función que manejará el PDU recibido.

La Figura 3.20, muestra el código del proceso hijo de nivel 1 que establece la conexión con el ESME, crea los 2 procesos hijos por medio

de *fork* y entra en un lazo infinito que espera recibir los mensajes de PDU del ESME ya conectado.

Figura 3.20. Código del manejo de conexión con el ESME

Se usa la tabla cmd_tab para ejecutar la función que procesará el PDU recibido. De esta manera no es necesario crear una condición por cada tipo de PDU para procesar la respuesta. Lo que reduce el código, su tiempo de ejecución y uso de recursos de CPU.

La figura 3.21, muestra el código del proceso hijo de nivel 2 que maneja las desconexiones del ESME. Esto se realiza por medio de una consulta a la base de datos, preguntando por el estado de la conexión que maneja. Si el estado es 2 indica que se debe desconectar este ESME, y la desconexión se la realiza matando al proceso padre por medio de una interrupción. El otro sub-proceso, al quedar huérfano se cierra, así evitado que queden procesos en ejecución que ya no son usados.

Figura 3.21. Código del manejo de desconexión

La figura 3.22, muestra el proceso hijo de nivel 2 de envío de SMS al ESME conectado. Esto se realiza por medio un lazo infinito donde se realiza una consulta a la base de datos, por si existen mensajes que tiene como destinatario el ESME a cargo. En ese caso se envían los mensajes por medio del PDU deliver_sm y se actualiza la tabla de mensajes cambiando el estado ha enviado, para que no se vuelva a procesar dichos mensajes. La única manera de que este proceso se termine es por la muerte o finalización de su proceso padre, que es el proceso de nivel 1.

```
# proceso child1-L2, envio de SNS a ESME
# y $dbh = db_connect(\%conf);
wisle (1) {
    unless (kill 0, $conf{'pid'}) { exit; }
    sleep 1;
# proceso child1-L2, envio de SNS a ESME
# y $dbh = db_connect(\%conf);
wisle (1) {
    unless (kill 0, $conf{'pid'}) { exit; }
    sleep 1;
# proceso kill 0, $conf{'pid'}) { exit; }
# proceso child1-L2, envio de SNS a ESME
# y $sleep 1;
# proceso child1-L2, envio de SNS a ESME
# y $sleep 1;
# proceso child1-L2, envio de SNS a ESME
# proceso connect()
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de SNS a ESME
# proceso connect()
# proceso child1-L2, envio de SNS a ESME
# proceso connect()
# proceso child1-L2, envio de SNS a ESME
# proceso connect()
# proceso child1-L2, envio de Sid }
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de Sid }
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de Sid }
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de Sid }
# proceso child1-L2, envio de Sid }
# proceso child1-L2, envio de SNS a ESME
# proceso child1-L2, envio de Sid }
# proceso child1-L2, envio de SNS a ESME
```

Figura 3.22. Código del manejo de envío de mensajes al ESME

En resumen los pasos a seguir para la implementación del SMSC son:

- 1. Instalación del servidor Linux.
- 2. Instalación de Perl 5.8 o superior.
- 3. Instalación de la librería de perl Net::SMPP.
- 4. Instalación de la librería de perl DBI:MySQL.
- 5. Instalación de apache 2.2 o 2.4.
- 6. Instalación de PHP 5 o superior con soporte a MySQL.
- 7. Instalación de MariaDB 5.5 o superior.
- Creación de base de datos, y tablas necesarias para el funcionamiento del demonio.
- a. Tabla de los diferentes ESME, system_id y contraseña.
- b. Tabla de números cortos, donde relaciona a cada uno con un ESME.
- c. Tabla de registro de los mensajes SMPP enviados y recibidos.
- Aplicación o servicio en PERL usando la librería Net::SMPP, para creación del demonio SMSC.
 - a. Iniciar el protocolo SMPP, con la función smpp_start indicando el puerto sobre el que se trabajará.
 - b. Cuando exista el inicio de conexión de un ESME se debe dar un listen->accept.
 - c. Para recibir los PDU se usa la función read_pdu.
 - d. Para validar el system_id y contraseña del ESME, se realiza una consulta a la base de datos a la tabla de ESME.

- e. La librería ya cuenta con una función de cada tipo de mensaje del protocolo SMPP, por lo que se debe programar es que función usar en caso de recibir un PDU especifico.
- f. Para poder hacer varias acciones en paralelo, como esperar PDU, enviar SMS, aceptar la conexión de otro ESME, se crean nuevos procesos por medio de la función fork.
- 10. Aplicación en PHP, para ambiente Web que permite la administración del demonio SMSC.
 - a. El programa en PHP debe visualizar 3 tablas antes especificadas.
 - b. Debe permitir el editar y crear registros en la tabla de ESME y de números cortos.

CAPÍTULO 4

4 ANÁLISIS DERESULTADOS

4.1 Análisis General

Para un análisis de resultados sobre la implementación del SMSC y su buen funcionamiento mediante el protocolo SMPP, se utiliza la herramienta Wireshark, para analizar el tráfico del protocolo SMPP.

Para el presente trabajo, el análisis se realizó con un ESME de prueba configurado en una computadora con dirección ip 192.168.179.1 y un SMSC implementado en una maquina virtual VMware instalado en la misma computadora donde se encuentra el ESME de prueba pero que tiene dirección ip 192.168.179.131.

4.1.1 Conexión del ESME hacia el SMSC en modo bind receiver

En la Figura 4.1observamos que el ESME ha solicitado un inicio de sesión de tipo bind_receiver en el paquete 26 y su respuesta consecuentemente es un bind_receiver_resp en el paquete 28 enviado por el SMSC. Posteriormente, el ESME esta a la espera de algún mensaje y envía enquire_link para verificar que aún haya conexión entre ESME y SMSC. Para cada enquire_link existe su enquire_link_resp y esto asegura que la conexión aún existe.

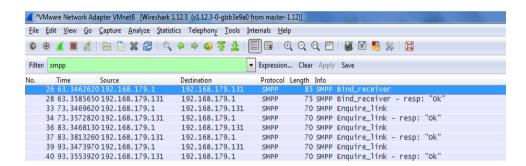


Figura 4.1. Conexión de un ESME tipo bind_receiver

4.1.2 Conexión del ESME hacia el SMSC en modo bind_transmitter

Podemos observar en la Figura 4.2, que el ESME genera otra conexión para hacer un inicio de sesión ahora como bind_transmitter en el paquete 56 y su respectiva respuesta bind_transmitter_resp está dada en el paquete 58 que emite el SMSC, lo cual indica un ESME como transmitter exitoso. Ahora en la misma Figura 4.2, en el paquete 63 se muestra un mensaje PDU

de tipo submit_sm por parte del ESME. El SMSC recibe este mensaje submit_sm y le responde con un submit_sm_resp con el paquete 65. Este SMSC se encarga ahora de enviar el mensaje al mismo ESME mencionado (así se configuró para esta prueba) mediante el mensaje PDU deliver_sm con el paquete 67 y su respectiva respuesta deliver_sm_resp por parte del ESME es dada por el paquete 68. Como aún no se cierra la conexión, el ESME sigue verificando que aún haya dicha conexión con enquire_link en el paquete 70.

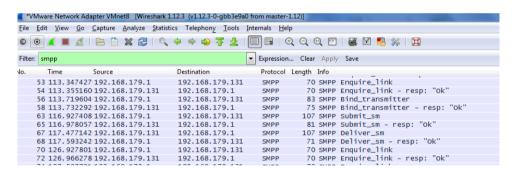


Figura 4.2. Conexión de un ESME tipo bind_transmitter

4.1.3 Desconexión de un ESME con Unbind

En la Figura 4.3 se muestra el intercambio de mensajes de la desconexión. El ESME ha solicitado la desconexión hacia el SMSC mediante el mensaje PDU unbind, y esta SMSC le responde con un unbind_resp indicando desconexión exitosa.

```
175432 285.790790 192.168.179.1 192.168.179.131 SMPP 70 SMPP Unbind 175433 285.800298192.168.179.131 192.168.179.1 SMPP 70 SMPP Unbind - resp: "Ok"
```

Figura 4.3. Desconexión de un ESME

Como un breve resumen de lo detallado en este análisis, se hizo un diagrama explicativo de lo revisado en todo este subcapítulo, Figura 4.4.

Figura 4.4. Resumen de mensajes PDU del proyecto

4.2 Pruebas de Errores

Como se mencionó en las limitaciones del proyecto, se analizan tres tipos de errores: no hay error, clave incorrecta y falla de estado de enlace (bind). Cuando no hay error se ha venido mencionando con la palabra

OK en las respuestas a cada mensaje PDU, por lo tanto ya se ha analizado este punto.

Se analizan ahora los otros dos errores restantes. Como se observa en la Figura 4.5, existe ya un ESME conectado como bind_receiver e intencionalmente se envió otro bind_receiver con el objetivo de que el SMSC responda con un mensaje de error, en este caso el error de falla de estado bind (bind failed).

```
175293 227.343777 192.168.179.1
                                             192.168.179.131
                                                                                 87 SMPP Bind_receiver
17530 227.355514 192.168.179.131
175305 227.355514 192.168.179.131
175312 227.368027 192.168.179.131
175317 227.369805 192.168.179.1
                                                                                 75 SMPP Rind receiver - resp: "Bind failed"
                                             192.168.179.1
                                                                    SMPP
                                             192.168.179.131
                                                                                 87 SMPP Bind_receiver
                                                                                 75 SMPP Bind_receiver - resp: "Bind failed"
                                             192,168,179,1
                                                                     SMPP
                                             192.168.179.131
                                                                                 87 SMPP Bind_receiver
175324 227.379964 192.168.179.131
                                             192.168.179.1
                                                                     SMPP
                                                                                 75 SMPP Bind receiver - resp: "Bind failed"
175329 227.381638·192.168.179.1
175336 227.391916 192.168.179.131
                                             192.168.179.131
                                                                     SMPP
                                                                                  87 SMPP Bind_receiver
                                                                                 75 SMPP Bind_receiver - resp: "Bind failed"
                                                                     SMPP
                                             192.168.179.1
175341 227.393899 192.168.179.1
                                             192.168.179.131
                                                                                 87 SMPP Bind_receiver
```

Figura 4.5. Falla de estado bind (bind failed)

Para el análisis del error de conexión de un ESME por clave incorrecta, en la Figura 4.6, se muestra en el paquete 183565 que el SMSC responde con un bind_receiver_resp indicando en uno de sus parámetros que la clave ha sido incorrecta (invalid password) por parte del ESME.

Figura 4.6. Clave incorrecta (invalid password)

4.3 Detalle de Parámetros de mensajes PDU

A continuación, se presenta y analiza un detalle breve de los parámetros de algunos de los mensajes PDU que se han utilizado en el presente trabajo.

PDU bind_transceiver

En la Figura 4.7, se observa los parámetros del PDU bind_transceiver. En estos parámetros estan incluidos los comandos de la cabecera PDU y los parámetros mandatorios del cuerpo PDU. Los parámetros observados son: Length, Operation, Sequence, System ID, Password, Version, Type of Number (TON), Numbering plan indicator (NPI).

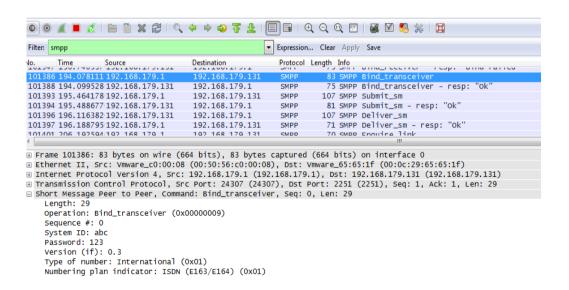


Figura 4.7. Parámetros bind_transceiver

La respuesta a este PDU bind_transceiver se observa en la Figura 4.8. Los parámetros se limitan a los siguientes: Length, Operation, Result, Sequence y System ID.

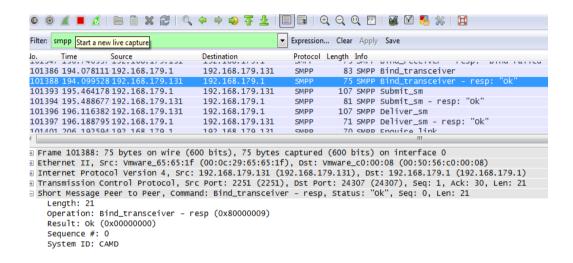


Figura 4.8. Parámetros bind_transceiver_resp

PDU Submit sm y Deliver sm

Los parámetros para estos PDU submit_sm (Figura 4.9) y deliver_sm (Figura 4.11) son más que para cualquier otro PDU. Esto se debe a que aquí se encuentra el mensaje corto y el tamaño del campo length tiene 53 octetos, comparado con otros PDU en que su tamaño es alrededor de 20 octetos.

Las respuestas para estos PDU son submit_sm_resp(Figura 4.10) y deliver_sm_resp (Figura 4.12) respectivamente y tienen menos tamaño

en sus mensajes. Este hecho se da porque una respuesta no lleva el mensaje corto, sino que puede ser un aviso de éxito o de fracaso de que el mensaje ha llegado al SMSC.

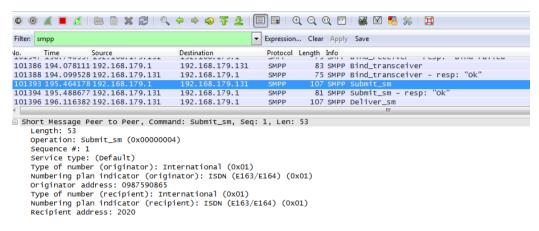


Figura 4.9. Parámetros submit_sm

A continuación, se muestran los parámetros en respuesta a submit_sm en la Figura 4.10:

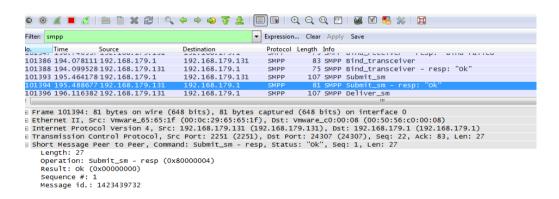


Figura 4.10. Parámetros submit_sm_resp

Los parámetros deliver_sm se describe en la Figura 4.11.

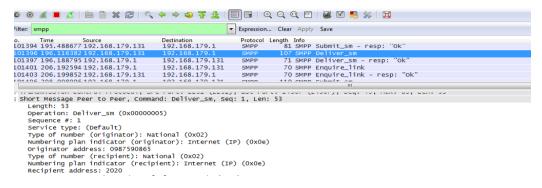


Figura 4.11. Parámetros deliver_sm

A continuación, se muestran los parámetros en respuesta a deliver_sm en la Figura 4.12.

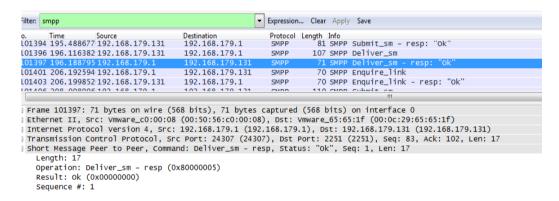


Figura 4.12. Parámetros deliver_sm_resp

PDU Enquire_link

El PDU enquire_link y PDU enquire_link_resp no presentan el campo cuerpo, es decir que solamente tiene cabecera como se mencionó en la teoría, esto se comprueba observando la Figura 4.13 y Figura 4.14 respectivamente. Al no tener el mensaje PDU un cuerpo y solamente la

cabecera, se hace mas fácil saber el tamaño de ese mensaje PDU, porque cada campo de la cabecera tiene 4 octetos, y la cabecera consta de 4 campos. Por lo tanto, el tamaño del mensaje PDU enquire_link y su respuesta, tiene 16 octetos.

Figura 4.13. Parámetros enquire_link

Los parámetros en respuesta a enquire_link se muestran en la Figura 4.14.

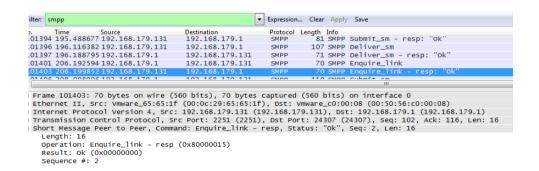


Figura 4.14. Parámetros enquire_link_resp

CONCLUSIONES Y RECOMENDACIONES

Las conclusiones se detallan a continuación:

- 1. El objetivo principal en la explicación del protocolo SMPP como un servidor (SMSC) se ha detallado de una forma entendible y rápida. Su explicación didáctica proporciona las herramientas básicas que ayudarán al entendimiento del protocolo SMPP. Esta tesis es útil para estudiantes de ingeniería relacionados en el campo de las telecomunicaciones e interesados en el desarrollo de sistemas de envío y recepción de mensajes de texto por medio del protocolo SMPP.
- Las operadoras celulares manejan mensajes cortos punto a punto mediante su SMSC. Desde un esquema de la red celular, el protocolo SMPP es usado fuera de la red móvil entre un SMSC y un ESME.
- Este trabajo sólo tiene un alcance didáctico y no comercial, debido a que el SMSC es parte de los equipos dentro de una operadora de telefonía

- celular. Para un completo funcionamiento requiere el manejo de otros protocolos de SMS para la recepción de los mensajes internos a la operadora, donde este trabajo solo se enfoca al protocolo SMPP y no cubre lo antes indicado.
- 4. El protocolo SMPP tiene un gran uso por las empresas telefónicas y proveedores de contenidos. Desde entidades externas que buscan algún negocio en particular, hasta aquellas que lo usan para informar a cierta población.
- 5. La implementación de protocolos de comunicación con un enfoque didáctico, es viable usando lenguajes de programación que tengan una gran comunidad como soporte, como se lo realizó en este trabajo usando PERL y la librería Net::SMPP.
- 6. Este trabajo permite que otros estudiantes puedan entender claramente el funcionamiento del protocolo SMPP, debido a que se implementó el uso del protocolo y se muestra en un entorno web de fácil entendimiento el flujo de los mensajes entre el SMSC y el ESME.
- 7. La herramienta WireShark, es de gran apoyo y utilidad para el entendimiento y análisis de tramas IP, esencial en la docencia para que los estudiantes visualicen los protocolos de comunicación revisados en clases. En el ámbito laboral, es de suma ayuda para el análisis de problemas más complejos donde se requiere revisar a nivel de paquetes el problema.

Las recomendaciones se detallan a continuación:

- Para un mejor análisis de los mensajes SMPP y su entendimiento con la herramienta WireShark, se puede hacer esta implementación con 3 máquinas virtuales, para que 2 hagan la función de ESME y una de SMSC y así se puede identificar el tráfico de cada uno por la IP fuente.
- Para una implementación física se puede usar las minicomputadoras "raspberry pi", debido a su bajo costo y que funcionan con Linux y es totalmente compatible con los requisitos de este trabajo.
- Para poder realizar este trabajo, se recomienda tener altos conocimientos sobre el sistema operativo Linux, debido a la necesidad de la implementación del entorno web y lenguajes de programación.
- 4. Para la realización de futuros trabajos similares, se puede usar otros lenguajes de programación como "nodejs" y "python", que son de mayor facilidad para el programador y también tiene un alto soporte de comunidad y librerías específicas.

BIBLIOGRAFÍA

- [1] ActiveXperts software, SMPP Introductionhttp://www.activexperts.com/sms-component/smpp-specifications/introduction/#smpp_overview, fecha de consulta noviembre 2014.
- [2] Solares Juan, Desarrollo de un diccionario de la lengua española en línea accesado vía mensajes cortos (sms) en la red celular GSM de COMCEL (TIGO), http://biblioteca.usac.edu.gt/tesis/08/08_0346_EO.pdf, fecha de consulta noviembre 2014, pág. 58.
- [3] Computer Información, Especificaciones para el protocolo SMPP,http://ordenador.wingwit.com/Redes/other-computer-networking/78036.html#.VNltj_mG9zY, fecha de consulta noviembre 2014.
- [4] lasprovincias.es, Acision es reconocido como el número uno del mundo en servicio de mensajería, http://www.lasprovincias.es/20100209/mas-actualidad/tecnologia/acision-reconocido-como-numero-201002091906.html, fecha de consulta noviembre 2014.
- [5] Protocolo SMPP, http://infotelecommil.webcindario.com/manuales/SMPP_Intro.pdf, fecha de consulta noviembre 2014.

- [6] SMPP Developers Forum, Short Message Peer to Peer Protocol Specification v3.4, http://www.smstrade.de/pdf/smpp.pdf, fecha de consulta noviembre 2014.
- [7] Logix Mobile, Whatis SMSC?, http://www.logixmobile.com/faq/show.asp?catid=1&faqid=4, fecha de consulta diciembre 2014.
- [8] Solares Juan, Desarrollo de un diccionario de la lengua española en línea accesado vía mensajes cortos (sms) en la red celular GSM de COMCEL (TIGO), http://biblioteca.usac.edu.gt/tesis/08/08_0346_EO.pdf, fecha de consulta diciembre 2014, pág. 59.
- [9] ActiveXperts software, SMPP SessionDescription, http://www.activexperts.com/sms-component/smpp-specifications/overview/#smpp_session_description, fecha de consulta diciembre 2014.
- [10] ActiveXperts software, SMPP Protocol Definition, http://www.activexperts.com/sms-component/smpp-specifications/overview/#smpp_protocol_definition, fecha de consulta diciembre 2014.

- [11] ActiveXperts software, SMPP PDU Definition, http://www.activexperts.com/sms-component/smpp-specifications/smpp-pdudefinition/, fecha de consulta diciembre 2014.
- [12] ActiveXperts software, SMPP PDU Format Overview, http://www.activexperts.com/sms-component/smpp-specifications/pdu-type-format-definitions/#smpp_pdu_format, fecha de consulta diciembre 2014.
- [13] Nuruddin Ashr, SMPP, http://es.slideshare.net/uudashr/smpp-presentation, fecha de consulta diciembre 2014.
- [14] AddPac Technology, SMPP (Short Message Peer to Peer) Protocol, http://www.google.com.ec/url?sa=t&rct=j&q=&esrc=s&source=web&cd=23&c ad=rja&uact=8&ved=0CGgQFjAMOAo&url=http%3A%2F%2Fwww.addpac.co m%2Faddpac_eng2%2Fdown.php%3Ffile%3D663_f16.pdf&ei=jo9uVJf2Jcmb gwS4mYTYDw&usg=AFQjCNGT31qCB_koVoK0JxCD9avvPUuH5g&bvm=bv .80185997,d.eXY, fecha de consulta diciembre 2014.
- [15] ActiveXperts software, SMPP Error Codes, http://www.activexperts.com/activsms/sms/smpperrorcodes/, fecha de consulta diciembre 2014.
- [16] LinuxZone, Ubuntu, http://linuxzone.es/distribuciones-principales/ubuntu/, fecha de consulta enero 2015.

[17] CPAN, Net::SMPP, http://search.cpan.org/~sampo/Net-SMPP/SMPP.pm, fecha de consulta enero 2015.

[18] Sagástegui Lescano Walter, Máquinas virtuales (VMWare, Virtual PC, Sandbox). Qué son y para que sirven. (DV00402A), http://www.aprenderaprogramar.com/index.php?option=com_attachments&ta sk=download&id=139, fecha de consulta febrero 2015.

ANEXO

Command_id

Campo command_id	valor en hexadecimal
generic_nack	0x80000000
bind_receiver	0x00000001
bind_receiver_resp	0x80000001
bind transmitter	0x00000002
bind_transmitter_resp	0x80000002
query_sm	0x00000003
query_sm_resp	0x80000003
submit_sm	0x0000004
submit_sm_resp	0x80000004
deliver_sm	0x0000005
deliver_sm_resp	0x80000005
unbind	0x0000006
unbind_resp	0x80000006
replace_sm	0x00000007
replace_sm_resp	0x80000007
cancel_sm	0x00000008
cancel_sm_resp	0x80000008
bind_transceiver	0x00000009
bind_transceiver_resp	0x80000009
	0x0000000A
Reserved	0x8000000A
outbind	0x0000000B 0x0000000C - 0x00000014
Reserved	0x8000000B - 0x80000014
enquire_link	0x00000015
enquire_link_resp	0x80000015
	0x00000016 - 0x00000020
Reserved	0x80000016 - 0x80000020
submit_multi	0x00000021
submit_multi_resp	0x80000021
Decemined	0x00000022 – 0x000000FF
Reserved	0x80000022 - 0x800000FF 0x00000100
Reserved	0x80000100

	0x00000101
Reserved	0x80000101
alert_notification	0x00000102
Reserved	0x80000102
data_sm	0x00000103
data_sm_resp	0x80000103
Reserved for SMPP	0x00000104 - 0x0000FFFF
extension	0x80000104 - 0x8000FFFF
	0x00010000 - 0x000101FF
Reserved	0x80010000 - 0x800101FF
	0x00010200 - 0x000102FF
Reserved for SMSC vendor	0x80010200 - 0x800102FF
Reserved	0x00010300 - 0xFFFFFFF

Command_status

Tipo de Error	Valor en Hex	Descripción
ESME_ROK	0x00000000	No hay error
ESME_RINVMSGLEN	0x00000001	Longitud del mensaje inválido
ESME_RINVCMDLEN	0x00000002	Command Length es inválido
ESME_RINVCMDID	0x00000003	Command ID es inválido
ESME_RINVBNDSTS	0x00000004	Bind incorrecto por un comando dado
ESME_RALYBND	0x00000005	ESME ya en estado Bound
ESME_RINVPRTFLG	0x00000006	Bandera de prioridad inválida
ESME_RINVREGDLVFLG	0x00000007	Inválido registro de bandera entregada
ESME_RSYSERR	0x00000008	Error del sistema
Reserved	0x00000009	Reservado
ESME_RINVSRCADR	0x0000000A	Dirección de origen inválido
ESME_RINVDSTADR	0x0000000B	Dirección de destino inválido
ESME_RINVMSGID	0x000000C	Message ID es inválido
ESME_RBINDFAIL	0x000000D	Fracaso de Bind
ESME_RINVPASWD	0x0000000E	Clave inválida
ESME_RINVSYSID	0x000000F	System ID es inválido
Reserved	0x00000010	Reservado
ESME_RCANCELFAIL	0x00000011	Fracaso de Cancel SM
Reserved	0x00000012	Reservado
ESME_RREPLACEFAIL	0x00000013	Fracaso de Replace SM
ESME_RMSGQFUL	0x00000014	Cola de mensajes lleno

ESME_RINVSERTYP	0x00000015	Tipo de servicio inválido
	0x00000016 -	,
Reserved	0x00000032	Reservado
ESME_RINVNUMDESTS	0x00000033	Número de destinos inválido
		Nombre de lista de distribución
ESME_RINVDLNAME	0x00000034	inválidos
	0x00000035 -	
Reserved	0x0000003F	Reservado
		Bandera de destino inválido
ESME_RINVDESTFLAG	0x00000040	(submit_multi)
Reserved	0x00000041	Reservado
		Solicitud de submit con replace
ESME_RINVSUBREP	0x00000042	inválido
ESME_RINVESMCLASS	0x00000043	Esm_class, campo data inválido
		Lista de distribución no puede
ESME_RCNTSUBDL	0x00000044	enviarse
FOLIE BOUBLUTEAU	0.0000045	Fracaso de submit_sm o
ESME_RSUBMITFAIL	0x00000045	submit_multi
Decembed	0x00000046 -	Deceminds
Reserved	0x00000047	Reservado Dirección de origen TON
ESME RINVSRCTON	0x00000048	Dirección de origen TON inválido
ESME_RINVSRCNPI	0x00000049	Dirección de origen NPI inválido Dirección de destino TON
ESME RINVDSTTON	0x00000050	inválido
LOWE_KINV DOTTON	0200000000	Dirección de destino NPI
ESME_RINVDSTNPI	0x00000051	inválido
Reserved	0x00000052	Reservado
ESME_RINVSYSTYP	0x00000053	
ESIME_KINVS1S11F	0x0000003	Campo system_type inválido Bandera replace_if_present
ESME RINVREPFLAG	0x00000054	inválido
ESME RINVNUMMSGS	0x00000055	Número de mensajes inválido
ESIME_KIINVINOIMINISGS	0x00000056 -	Numero de mensajes invalido
Reserved	0x00000057	Reservado
reserved	000000007	Error Throttling (EI ESME ha
		superado los límites de
ESME_RTHROTTLED	0x00000058	mensajes permitidos)
	0x00000059 -	
Reserved	0x00000060	Reservado
		Tiempo de entrega programado
ESME_RINVSCHED	0x00000061	inválido
		Período de validez del mensaje
ESME_RINVEXPIRY	0x00000062	inválido (tiempo de expiración)
FOME DIN (DETAILS)	0.00000000	Mensaje predefinido inválido o
ESME_RINVDFTMSGID	0x00000063	no encontrado

		FOME Descions (see a selector)
FOME DV T ADDN	0.0000004	ESME Receiver temporalmente
ESME_RX_T_APPN	0x00000064	en código de error
		ESME Receiver
		permanentemente en código de
ESME_RX_P_APPN	0x00000065	error
		ESME Receiver rechaza
ESME_RX_R_APPN	0x00000066	mensaje de código de error
ESME_RQUERYFAIL	0x00000067	Fracaso de query_sm
	0x00000068 -	
Reserved	0x000000BF	Reservado
		Error en la parte opcional del
ESME_RINVOPTPARSTREAM	0x000000C0	cuerpo PDU
		Parámetros opcionales no
ESME_ROPTPARNOTALLWD	0x000000C1	permitidos
ESME_RINVPARLEN	0x000000C2	Parámetro Length inválido
		Parámetro opcional esperado
ESME_RMISSINGOPTPARAM	0x000000C3	que falta
		Valor del parámetro opcional
ESME_RINVOPTPARAMVAL	0x000000C4	inválido
	0x000000C5 -	
Reserved	0x000000FD	Reservado
		Fallo en la entrega (usado por
ESME_RDELIVERYFAILURE	0x000000FE	data_sm_resp)
ESME_RUNKNOWNERR	0x000000FF	Error desconocido
	0x00000100 -	Reservado para extensión
Reservedfor SMPP extension	0x000003FF	SMPP
		Reservado para errores
	0x00000400 -	determinados por el proveedor
Reservedfor SMSC vendor	0x000004FF	SMSC
	0x00000500 -	
Reserved	0xFFFFFFF	Reservado

Submit_sm y Delivery_sm

Cuerpo PDU SMPP - Parámetros submit_sm y delivery_sm		
Nombre del Parámetro	Tamaño en	Descripción
Nombre dei Parametro	octetos	Descripción
service_type	Varía max6	Identifica el servicio de aplicación SMS asociado con el mensaje. Por defecto se pone en NULL en la configuración SMSC.
		TON para dirección origen. Si no se
source_addr_ton	1	conoce se pone en NULL.

		NDI nana dinassión svinsa. Ci na sa
source_addr_npi	1	NPI para dirección origen. Si no se conoce se pone en NULL.
		Dirección SME quien origina ese
		mensaje. Si no se conoce se pone en
source_addr	Varía max 21	NULL.
dest_addr_ton	1	TON para destino.
dest_addr_npi	1	NPI para destino.
destination_addr	Varía max 21	Dirección destino del mensaje corto.
oom olooo	1	Indica el modo de mensaje y tipo de
esm_class		mensaje.
protocol_id	1	Identificador de protocolo.
priority_flag	1	Designa el nivel de prioridad del mensaje.
pe.myag		El mensaje corto es programado por la
		SMSC para la entrega. Se establece en
		NULL para la inmediata entrega de
		mensajes. Este campo no es usado por
		delivery_sm y se debe poner en NULL
schedule_delivery_time	1 o 17	en tal caso.
		Indica el período de validez del
		mensaje. Este campo no es usado por
		delivery_sm y se debe poner en NULL
validity_period	1 o 17	en tal caso.
		Indica si un SMSC delivery receipt o un
		SME acknowledgement es requerido.
		Con delivery_sm solo indica si un
registered_delivery	1	ESME acknowledgement es requerido.
		Bandera que indica si un mensaje
		enviado debe reemplazar a un mensaje
		existente. Este campo no es usado por
roplace if present flog	1	delivery_sm y se debe poner en NULL en tal caso.
replace_if_present_flag	1	Define el esquema de codificación del
data_coding	1	mensaje corto.
		Indica el mensaje corto al enviar una
		lista predefinida de mensajes cortos
		almacenados en la SMSC. Si no se
		utiliza un mensaje predefinido de la
		SMSC, se establece en NULL. Este
ame defectly as a second		campo no es usado por delivery_sm y
sm_default_msg_id	1	se debe poner en NULL en tal caso.
sm_length	1	Longitud en octetos de short_message
1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Se permite hasta 254 octetos de
short_message	Varía de 0 - 254	mensaje corto de datos del usuario.

Cuerpo PDU SMPP - Parámetros submit_sm_resp y delivery_sm_resp		
Nombre del Parámetro	Tamaño en octetos	Descripción
	Max. 65 en submit y solo 1	Este campo contiene el message_id SMSC del mensaje enviado. Este campo no es usado por delivery_sm y
message_id	con delivery.	se debe poner en NULL en tal caso.

Submit_Multi

Cuerpo	PDU SMPP - Pa	rámetros submit_multi
	Tamaño en	_
Nombre del Parámetro	octetos	Descripción
		Identifica el servicio de aplicación SMS
		asociado con el mensaje. Por defecto
		se pone en NULL en la configuración
service_type	Max. 6	SMSC.
		TON para dirección origen. Si no se
source_addr_ton	1	conoce se pone en NULL.
		NPI para dirección origen. Si no se
source_addr_npi	1	conoce se pone en NULL.
		Dirección SME quien origina ese
aguraa addr	Max. 21	mensaje. Si no se conoce se pone en NULL.
source_addr	IVIAX. Z I	Números de direcciones destino. Indica
		el número de estructura de
number_of_dests	1	dest_address que se van a seguir.
Transci_ci_dcots	•	Contiene una o más (number_of_dests)
		direcciones SME y/o una lista de
dest_address	2-24	distribución.
_		Indica el modo de mensaje y tipo de
esm_class	1	mensaje.
protocol_id	1	Identificador de protocolo.
		Designa el nivel de prioridad del
priority_flag	1	mensaje.
		El mensaje corto es programado por la
		SMSC para la entrega. Se establece en
		NULL para la inmediata entrega de
schedule_delivery_time	1 o 17	mensajes.
		Indica el período de validez del
		mensaje. Se establece en NULL para
validity paried	1 0 17	solicitar el periodo de validez por defecto del SMSC.
validity_period	1 o 17	defecto del Siviso.

registered_delivery	1	Indica si un SMSC delivery receipt o un SME acknowledgement es requerido.
		Bandera que indica si un mensaje enviado debe reemplazar a un mensaje
replace_if_present_flag	1	existente.
		Define el esquema de codificación del
data_coding	1	mensaje corto.
sm_default_msg_id	1	Indica el mensaje corto al enviar una lista predefinida de mensajes cortos almacenados en la SMSC. Si no se utiliza un mensaje predefinido de la SMSC, se establece en NULL.
sm length	1	Longitud en octetos de short message
Sin_iongui	1	Se permite hasta 254 octetos de
short_message	Varía de 0 - 254	mensaje corto de datos del usuario.

Cuerpo PDU SMPP - Parámetros submit_multi_resp		
Nombre del	Tamaño en	
Parámetro	octetos	Descripción
		Es el mensaje identificador SMSC del
message_id	Max. 65	mensaje enviado.
		Es el número de mensajes a
		direcciones SME destinos que fueron
no_unsuccess	1	enviados sin éxito al SMSC.
		Contiene una o más (no_unsuccess)
		direcciones ESME o lista de distribución
unsuccess_sme	7-27	cual envío fue sin éxito.