

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"COORDINACIÓN DE LAS PROTECCIONES DE LA SUBESTACIÓN DE DISTRIBUCIÓN DEL SISTEMA GUAYAS-LOS RIOS"

INFORME DE MATERIA DE GRADUACIÓN

Previo a la obtención del título de:

INGENIERO EN ELECTRICIDAD

ESPECIALIZACIÓN POTENCIA

Presentado por:

Carlos Cristóbal Carreño Muñoz.

Edwin Fernando Alegría Macías.

GUAYAQUIL – ECUADOR

2015

AGRADECIMIENTO

Agradecemos ante todo a DIOS, a nuestros padres, a los profesores y a los amigos, quienes durante toda esta instancia universitaria nos apoyaron de una u otra forma en todo tipo de aspecto.

Al Ingeniero Johnny Erazo, por guiarnos y apoyarnos de manera desinteresada en este trabajo, prestando parte de su tiempo para compartir sus conocimientos con nosotros.

Agradecemos de una manera especial al Instructor del Seminario, Ing. Juan Saavedra, por su constante orientación, por su calidad de enseñanza y por su constante predisposición, para que el presente documento de trabajo final se haya cumplido en su totalidad.

DEDICATORIA

Primero a DIOS, ser supremo que sin el nada es posible; en especial a mi madre, que por su forma de ser y actuar, me ha dado ese ejemplo de garra y fuerza ante las adversidades de la vida.

A mi familia, de manera especial a mi tía Betty Barboto y mi tío Jorge Macías que siempre conté con su apoyo desinteresado e incondicional. A la familia Coloma Pereira personas que me han sabido brindar su apoyo y abrirme las puertas de su casa. A los profesores, a mis compañeros de estudio y demás que me acompañaron en este camino forzado pero fructífero que es la universidad, Finalmente también a mi esposa Betsabé Merino, persona con la que decidí forjar una familia y pasar la vida junto a ella.

Edwin Fernando Alegría Macías

Agradezco mucho a Dios por bendecirme e iluminarme en todo el camino recorrido para alcanzar una de mis metas.

A mis padres por su apoyo constante que desde pequeño me inculcaron lo importante que es el estudio, a valorar el esfuerzo, su tenacidad y lucha insaciable han hecho de ellos el gran ejemplo a seguir y destacar.

Agradezco a toda mi familia por estar presente y preocuparse por mí en todo momento.

También agradezco a mis compañeros (futuros colegas) por su apoyo y a los profesores que han colaborado en mi formación profesional.

Muchísimas gracias.

Carlos Cristóbal Carreño Muñoz

TRIBUNAL DE SUSTENTACIÓN

r

MSc. Juan Saavedra Mera Profesor de la Materia de Graduación

MSc. Gustavo Bermúdez Flores

Profesor Delegado por la Unidad Académica

DECLARACIÓN EXPRESA

La responsabilidad del contenido de este Informe, nos corresponde exclusivamente; y el patrimonio intelectual de la misma, a la "ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

20100 20100

Carlos Cristóbal Carreño Muñoz

Edwin Fernando Alegría Macías

RESUMEN

El objetivo principal de la materia de graduación, es realizar la coordinación de protecciones de la subestación de distribución Juan Bautista Aguirre que pertenece al sistema GUAYAS-LOS RIOS mediante métodos computarizados, para calcular los ajustes de una manera rápida y confiable.

Se escogió esta S/E debido a frecuentes interrupciones que se han presentado últimamente ya sea por mala coordinación de equipos de protección o por fallas en las zonas que abarca la subestación.

La coordinación fue realizada con el fin de comparar los ajustes reales y proponer a CNEL E.P. la utilización de nuevos equipos de protección avanzados (Relés numéricos) debido a que brindan mayor rapidez y confiablidad al sistema, ya que estos relés entre una de sus ventajas es que se puede realizar un ajuste inmediato (tiempo real) de las protecciones.

Para alcanzar los objetivos del presente trabajo se debe realizar un estudio exhaustivo tanto en mínima como en máxima carga (Estudio de cortocircuito, Estudio de flujo de carga).

ÍNDICE GENERAL

AGRADECIMIENTO II
DEDICATORIA III
TRIBUNAL DE SUSTENTACIÓNV
DECLARACIÓN EXPRESA VI
RESUMENVII
ÍNDICE GENERALVIII
ABREVIATURAS Y SIMBOLOGÍASXIII
ÍNDICE DE FIGURASXV
ÍNDICE DE TABLASXVIII
INTRODUCCIÓNXXII
CAPÍTULO 1 1
1. DESCRIPCIÓN DE LAS INSTALACIONES 1
1.1 SUBESTACIÓN JUAN BAUTISTA AGUIRRE 1
1.2 UBICACIÓN GEOGRÁFICA1
1.3 INFRAESTRUCTURA CIVIL
1.4 INFRAESTRUCTURA ELÉCTRICA Y EQUIPOS4
1.4.1 Red de Subtransmisión 4
1.4.2 Patio de 69 KV5

1.4.3 Patio de 13.8 KV	15
1.4.4 Cuarto de Control	22
CAPÍTULO 2	27
2. ESTUDIOS DE FLUJO DE CARGA	27
2.1 INTRODUCCIÓN	27
2.2 CRITERIOS APLICADOS EN EL ESTUDIO	28
2.2.1 Flexibilidad Operacional.	28
2.2.2 Niveles de confiabilidad	28
2.2.3 Niveles de Sobrecarga	29
2.2.4 Regulación de voltaje	29
2.3 ANÁLISIS DE CASOS	29
2.3.1 Estudios de Flujo de Carga – Caso Base Carga Máxima	30
2.3.2 Estudios de Flujo de Carga – Caso Base Carga Mínima	30
2.4 DATOS DEL SISTEMA	31
2.4.1 Datos de Transformadores de Fuerza	31
2.4.2 Datos de Líneas y Conductores	32
2.4.3 Datos de Barras de Carga	33
2.5 RESULTADOS DE LOS ESTUDIOS DE FLUJO DE CARGA	36
2.5.1 Caso Base	37
2.6 CONCLUSIONES DEL ESTUDIO DE FLUJO DE CARGA	43

CAPÍTULO 3	45
3. ESTUDIOS DE CORTOCIRCUITO	45
3.1 INTRODUCCIÓN	45
3.2 ALCANCE DE LOS ESTUDIOS DE CORTOCIRCUITO	46
3.3 DATOS DEL SISTEMA	47
3.3.1 Impedancias equivalentes en la barra de la subestación	48
3.3.2 Datos de Transformadores de Fuerza	50
3.4 RESULTADOS DE LOS ESTUDIOS DE CORTOCIRCUITO	50
3.4.1 Caso base	51
3.5 CONCLUSIONES Y RECOMENDACIONES	55
CAPÍTULO 4	58
4. PROTECCIÓN DE LA SUBESTACIÓN DE DISTRIBUCIÓN	58
4.1 ESQUEMA DE PROTECCIONES	58
4.2 Protección Transformador de Potencia	61
4.2.1 Protección Diferencial 87	64
4.2.2 Protección de Sobrecorriente Temporizada de Secuencia Negati	va
(46)	79
4.2.3 Funciones 51-G del TPU 2000R	81
4.2.4 Función 51-P del TPU 2000R	81
4.2.5 Función 50-P del TPU 2000R	83

4.3 Protección a las alimentadoras de la Subestación Juan Bautista Aguirre 8-	4
4.4 CONCLUSIONES	4
CAPÍTULO 5	7
5. COORDINACIÓN DE LAS PROTECCIONES	7
5.1 INTRODUCCIÓN	7
5.2 ESQUEMA DE PROTECCIONES	9
5.3 CRITERIOS GENERALES DE COORDINACIÓN	0
5.4.COORDINACIÓN DE LAS PROTECCIONES DEL SISTEMA D	E
DISTRIBUCIÓN9	1
5.4.1 Protección de Alimentadoras92	2
5.5 PROTECCIÓN DEL TRANSFORMADOR	7
5.5.1 Curva de daño del Transformador9	7
5.5.2 Ajuste de la Protección Diferencial 87	9
5.5.3 Protección de Sobrecorriente 10	0
5.6 RESULTADOS DE LA COORDINACIÓN DE LOS DISPOSITIVOS D	E
PROTECCIÓN	8
5.6.1 Coordinación de la alimentadora JUAN BAUTISTA AGUIRRE 10	8
5.6.2 Coordinación de la alimentadora VERNAZA 11	1
5.6.3 Coordinación de la alimentadora SALITRE 11	4
5.7 Conclusiones	4

CONCLUSIONES Y RECOMENDACIONES	115
BIBLIOGRAFÍA	118
ANEXOS	120

ABREVIATURAS Y SIMBOLOGÍAS

Amp	Amperio
Bil	Nivel básico de aislamiento
CA	Corriente Alterna
СС	Corriente Continua
СТ	Transformador de Corriente
Cu	Cobre
FA	Transformador en aceite con aire forzado
Fig	Figura
Fp	Factor de Potencia
IH	Corriente en alta
IHS	Corrientes en alta referida al lado secundario del CT
IL	Corriente en baja
ILS	Corrientes en baja referida al lado secundario del CT
KA	Kiloamperios
Kv	Kilovoltios
Kva	Kilovoltios - Amperios
KVAR	Kilovoltios - Amperios - Reactivos
KW	Kilovatios

- m metro
- Mcm Miles de CircularsMils
- Mva Megavoltios Amperios
- Mvar Megavoltios Amperios Reactivos
- OA Transformador en aceite con enfriamiento natural
- PT Transformador de Potencial
- SF6 Hexafluoruro de Azufre
- TH Tap del relé en alta
- TL Tap del relé en baja
- Vnom Voltaje Nominal

ÍNDICE DE FIGURAS

Figura 1.1 Ubicación Geográfica- Subestación Juan Bautista A2
Figura 1.2 Vista Satelital – Subestación Juan Bautista A
Figura 1.3 Vista Superior-Instalaciones de la Subestación Juan B A4
Figura 1.4 Estructura Metálica en el lado de 69KV6
Figura 1.5 Aisladores 69 KV7
Figura 1.6 Seccionador de Apertura Tripolar8
Figura 1.7 Interruptor en Gas SF610
Figura 1.8 Pararrayos en estructura 69KV12
Figura 1.9 Transformador de potencia 69000/13800 V, marca PAUWELS 14
Figura 1.10 Patio de 13.8 KV16
Figura 1.11 Transformador Auxiliar21
Figura 1.12 Cargador Desico y batería Bosch22
Figura 1.13 Medidores Schneider en la S/E Juan Bautista Aguirre24
Figura 1.14 Panel de Control con el relé SPAJ140C25
Figura 2.1 Carga Máxima total en el lado de Baja del Transformador en el
período de 4 meses
Figura 2.2 Carga Mínima total en el lado de Baja del Transformador en el
período de 4 meses
Figura 2.3 Parámetros para el flujo de carga máxima

Figura 2.4	Parámetros para el flujo de carga mínima
Figura 4.1	Esquema de Protección del transformador de Potencia59
Figura 4.2	Esquema de Protección de la Subestación Juan Bautista Aguirre61
Figura 4.3	Esquema del relé TPU2000R63
Figura 4.4	Esquema de protección de TPU2000R64
Figura 4.5	Protección diferencial de un transformador66
Figura 4.6	Curva de operación del relé diferencial68
Figura 4.7	Característica de la pendiente % ajustable de la protección
diferencial	del relé TPU 2000R69
Figura 4.8	Característica de disparo de la Protección Diferencial77
Figura 4.9	Rango de corriente de Irrupción del transformador78
Figura 5.1	Esquema de protecciones de la S/E Juan Bautista Aguirre89
Figura 5.2	Intervalo de tiempo entre curva de la alimentadora y curva en BT del
transforma	dor109
Figura 5.3	Intervalo de tiempo entre curva de BT y curva en AT del
transforma	dor110
Figura 5.4	Intervalo de tiempo entre curva de BT y curva en AT (RELE TPU
2000R) de	I transformador110
Figura 5.5	Intervalo de tiempo entre curva del fusible y del relé de la
alimentado	ora112

Figura 5.6 Intervalo de tiempo entre curva de BT y curva en AT (Relé SPAJ	
140C) del transformador	.112
Figura 5.7 Intervalo de tiempo entre curva de BT y curva en AT (Relé SPAJ	
140C) del transformador	.113
Figura 5.8 Intervalo de tiempo entre curva de BT y curva en AT (Relé TPU	
2000R) del transformador	.113

ÍNDICE DE TABLAS

Tabla 1 Características Técnicas – Aisladores y Herrajes
Tabla 2 Características del seccionador Tripolar de S/E Juan Bautista9
Tabla 3 Características Técnicas – Interruptor en Gas10
Tabla 4 Características Técnicas – Pararrayos en estructura 69KV11
Tabla 5 Características de los conductores a Nivel de 69 kV12
Tabla 6 Datos de placas del Transformador de Potencia 13
Tabla 7 Datos del seccionador de aire principal de 13.8 KV
Tabla 8 Datos del Interruptor en vacío18
Tabla 9 Características de los Fusibles. 19
Tabla 10 Conductores usados en 13.8 KV 19
Tabla 11 Datos de placa de los transformadores de corriente20
Tabla 12 Parámetros del transformador auxiliar21
Tabla 13 Datos del banco de batería 22
Tabla 14 Datos de los medidores 24
Tabla 15 Protección de las alimentadora 26
Tabla 16 Características del Transformador Trifásico 31
Tabla 17 Características de los conductores 33
Tabla 18 Carga Máxima en las Alimentadoras34
Tabla 19 Carga Mínima en las Alimentadoras35

Tabla 20	Voltajes en barras para carga máxima40
Tabla 21	Voltajes en barras para carga mínima40
Tabla 22	Consumo en barras para carga máxima40
Tabla 23	Consumo en barras para carga mínima41
Tabla 24	Potencias entre barras para carga máxima41
Tabla 25	Potencias entre barras para carga mínima41
Tabla 26	Potencia recibida para carga máxima42
Tabla 27	Potencia recibida para carga mínima42
Tabla 28	Ajuste del Tap del Transformador42
Tabla 29	Impedancias Equivalentes máxima generación para 69 KV48
Tabla 30	Impedancias Equivalentes mínima generación para 69 KV48
Tabla 31	MVA de cortocircuito máxima generación49
Tabla 32	MVA de cortocircuito mínima generación50
Tabla 33	Corrientes y MVA de Cortocircuito en barra 69 [KV]52
Tabla 34	Corrientes y MVA de Cortocircuito en barra 13,8 [KV]53
Tabla 35	Corrientes y MVA de Cortocircuito en 1er fusible de protección a lo
largo de l	a alimentadora J.B.AGUIRRE54
Tabla 36	Corrientes y MVA de Cortocircuito en primer fusible de protección a lo
largo de l	a alimentadora SALITRE54

Tabla 37 Corrientes y MVA de Cortocircuito en primer fusible de protección a lo
largo de la alimentadora VERNAZA55
Tabla 38 Porcentajes de restricciones 76
Tabla 39 Parámetros del 4681
Tabla 40 Parámetros del 51G 82
Tabla 41 Parámetros de la función 50P 83
Tabla 42 Máxima corriente continua de tira fusibles tipo K
Tabla 43 Selección de fusible alimentadora JUAN BAUTISTA AGUIRRE95
Tabla 44 Categoría de transformadores de acuerdo a la norma ANSI/IEEE
C57.12
Tabla 45 Ajustes del relé diferencial 87 del transformador 99
Tabla 46 Ajustes del relé diferencial 87 del transformador102
Tabla 47 Ajustes de la función 46106
Tabla 48 Ajustes del 51 en las alimentadoras107
Tabla 49 Ajustes del 50 en las alimentadoras108
Tabla 50 Histórico de carga de la S/E Juan Bautista Aguirre120
Tabla 51 Potencias Máximas y Mínimas de las Alimentadoras de la S/E Juan
Bautista Aguirre125
Tabla 52 Resumen de flujo de potencia a carga mínima 134
Tabla 53 Resumen de flujo de potencia a carga máxima 135

Tabla 54	Clasificación de los Transformadores según sus categorías1	38
Tabla 55	Puntos de la curva de daño del Transformador1	40
Tabla 56	Impedancias de los Transformadores según su Potencia nominal 1	41
Tabla 57	Punto de corriente de Magnetización del Transformador1	42
Tabla 58	Constantes de las Características de Sobrecorriente Temporizada .1	44

INTRODUCCIÓN

Con la finalidad de garantizar la continuidad y confiabilidad del sistema eléctrico de distribución, se realiza este trabajo debido a que la energía eléctrica se ha vuelto un recurso indispensable para la vida cotidiana de los seres humanos, ya que una interrupción debido a fallas o falsas operaciones de los equipos debido a su mala coordinación de los mismos produce molestias en los abonados y perdidas económicas para la empresa eléctrica local.

Tomando en cuenta las normas IEE, ANSI e IEC actuales en el sistema eléctrico se procede a realizar los ajustes y coordinación de las protecciones de la subestación de distribución Juan Bautista Aguirre, por medio de métodos computarizados tales como CYMTCC 4.5 y CYMDIS

CAPÍTULO 1

1. DESCRIPCIÓN DE LAS INSTALACIONES

1.1 SUBESTACIÓN JUAN BAUTISTA AGUIRRE

La Subestación JUAN BAUTISTA AGUIRRE suministra energía eléctrica a la población tanto en la parte rural como urbana en el cantón Daule.

La subestación Juan Bautista Aguirre se encuentra ubicada afueras del cantón salitre a pocos metros de la carretera con dirección E485.

1.2 UBICACIÓN GEOGRÁFICA

La Subestación de la unidad de negocios CNEL GUAYAS LOS RÍOS "Juan Bautista Aguirre" se encuentra ubicada en la región costa, provincia del Guayas, Cantón Daule, Dispone de un área total de 625 m². Se encuentra ubicada junto a la carretera que va entre la parroquia Juan Bautista Aguirre y Salitre

A continuación se presentara la ubicación geográfica y vista satelital de la subestación Juan Bautista Aguirre en las figuras 1 y 2 respectivamente.

Figura 1.1 Ubicación Geográfica- Subestación Juan Bautista A.

Figura 1.2 Vista Satelital – Subestación Juan Bautista A.

1.3 INFRAESTRUCTURA CIVIL

La Subestación Juan Bautista Aguirre consta de una entrada principal constituida por una puerta metálica abatible para acceso vehicular y una puerta metálica para el acceso personal.

En el interior de las instalaciones se encuentra la garita para la guardianía, cuarto de control de $28,9 \text{ m}^2$ y un patio de maniobras con suelo recubierto con piedra chispa.

Figura 1.3 Vista Superior-Instalaciones de la Subestación Juan B A.

1.4 INFRAESTRUCTURA ELÉCTRICA Y EQUIPOS

1.4.1 Red de Subtransmisión

La Subestación Juan Bautista Aguirre es alimentada a nivel de 69 KV mediante una línea de transmisión aérea a través de la subestación DOS CERRITOS, con conductores 477 MCM 26/7 ACSR 72 MVA, con una longitud de 26,7 km.

1.4.2 Patio de 69 KV

El patio de 69kv de la subestación se conecta a la entrada o alimentación de la subestación Juan Bautista Aguirre, dándole servicio continuo a través de las estructuras, aisladores y equipos que serán detallados exhaustivamente a continuación.

1.4.2.1 Estructuras

Se disponen 2 torres metálicas de 10 metros cada una, separadas a una distancia de 6 metros. Las torres se encuentran sobre una base de hormigón con dimensiones 1.22 X 1.22 m, sujetados con pernos de hierro.

Las torres se unen mediante barras colectoras para sostener los aisladores, pararrayos, al seccionador de 69 kV.

Figura 1.4 Estructura Metálica en el lado de 69KV

1.4.2.2 Aisladores y Herrajes

Los aisladores sostienen al conductor y soportan la carga mecánica que el conductor ejerce sobre ellos. Aíslan al conductor eléctricamente de tierra y de otros conductores para evitar fallas en el sistema.

Los aisladores soportan niveles de voltajes tanto normales como anormales que se puedan presentar repentinamente en el sistema eléctrico. Por lo general cada aislador viene asegurado a la torre con su correspondiente herraje. A continuación se mencionan los aisladores instalados en la subestación.

 Tabla 1
 Características Técnicas – Aisladores y Herrajes

Descripción	Cantidad
Tipo poste, 69 KV,para estructura	9
tangente.	
Tipo pin, 69 KV, para estructura	-
tangente.	
Aisladores 69 kv de suspensión	18

En la figura 1.5 se muestra los aisladores instalados en la

Subestación de Distribución.

Figura 1.5 Aisladores 69 KV

1.4.2.3 Seccionador de Apertura Tripolar

El seccionador de apertura tripolar se encuentra dentro de la S/E Juan Bautista Aguirre, cuya función principal es aislar o realizar un corte entre diferentes elementos internos.

El seccionador no puede realizar la apertura de las cuchillas cuando el sistema se encuentra energizado, en otras palabras el seccionador puede soportar corrientes de cortocircuito pero no puede interrumpirlas. A continuación se presenta el seccionador instalado con sus características respectivas.

Figura 1.6 Seccionador de Apertura Tripolar

Las características del seccionador se muestran a continuación.

 Tabla 2
 Características del seccionador Tripolar de S/E

Marca	Morpac		
Тіро	Apertura columna		
Voltaje Nominal	72.5 KV		
Mecanismo	Motorizado		
l nom	600 A		

Juan Bautista

1.4.2.4 Interruptor en gas SF6 (GCB)

El interruptor automático SF6 (Hexafluoruro de Azufre) es un dispositivo de mayor importancia en la subestación de distribución, ya que el interruptor tiene la función de liberar fallas y brindar seguridad al momento de realizar un mantenimiento al transformador de potencia.[7]

Sin embargo al momento de abrir el circuito debido a una falla o mantenimiento se produce un arco eléctrico por efecto a altas tensiones. El hexafluoruro de azufre es usado como medio de aislamiento para la extinción del arco eléctrico.

Tabla 3 Características Técnicas – Interruptor e	en Gas.
--	---------

INTERRUPTOR EN GAS SF6 (GCB)							
Marca	Тіро	serie	Bil (KV)	l cont(A)	KV Max	I intermax (KA)	Año
Siemens	-	-	350	1200	72,5	20	2002

Figura 1.7 Interruptor en Gas SF6

1.4.2.5 Pararrayos en estructura 69 KV

Los pararrayos son dispositivos de protección sobre sobretensión causados por impactos de rayos o fenómenos transitorios, Se los colocan lo más cerca al elemento a proteger, Donde el pararrayos contribuye en la confiabilidad de la Subestación y la calidad de suministro eléctrico.

En la subestación Juan Bautista Aguirre se encuentran instalados pararrayos de la marca WESTINGHOUSE en cada una de las fases en lado de alta tensión, cuyas características se presentan en la siguiente tabla:

 Tabla 4
 Características Técnicas – Pararrayos en

estructura 69KV

	PARARRAYOS (69KV)							
Fase	Marca	ld Max (kA)	Vnom (KV)	MC OV (KV)	# Unidad aplicada			
Α	WESTINGHOUSE	32	60	48	1			
В	WESTINGHOUSE	32	60	48	1			
С	WESTINGHOUSE	32	60	48	1			

Figura 1.8 Pararrayos en estructura 69KV

1.4.2.6 Conductores

Los conductores que se utilizan para la interconexión entre la subestación Dos cerritos y Juan Bautista Aguirre que satisfacen los requerimientos de la carga, se presenta en la siguiente tabla resumida.

Tabla 5 Características de los conductores a Nivel de 69

kV

Desc	Descripción de la línea de Alimentación				
Descripción de la línea		Dos Cerritos- Juan Bautista Aguirre	Transmisión		
Configu	ıración	Radial			
Voltaje	69 KV	Longitud Km	26,7		
Conductor	Calibre	477 MCM			
Conductor	Amperios	480 A			

El transformador de potencia es el equipo más importante en la S/E, cuya función es reducir niveles de voltajes y suministrar potencia a las cargas en cada alimentador.

La S/E Juan Bautista Aguirre cuenta con un transformador de potencia de 10/12,5 MVA a nivel de voltaje 69000/13800 voltios. El transformador de potencia se encuentra sobre una base de hormigón reforzado con dimensiones 3,22 x 2,22 m.

A continuación se presenta una tabla con todos los parámetros presentes en el transformador de potencia.

PAUWELS TRAFO BELGIUM						
#	93.2.401	Temp. Aceite	55k			
Año de Fabricación	1999	Temo. Bobina	55k			
Normas	IEC 76	Posist al	Cuba			
	OA	Nesisi di	Conservador			
	10 MVA	Vacio	Radiador			
Capacidad	FA	Aceite	IEC 296			
	12,5 MVA	Peso	Total	21%		
Frecuencia	60 Hz		Aceite	5%		

 Tabla 6
 Datos de placas del Transformador de Potencia

POS	A.T	B.T	MVA	%Z
1	72450	13800	10	6,63
2	69000	13800	10	6,46
5	65550	13800	10	6,69

Р	Volt	Amperios	MVA	Con. De Conmutador
1	72450	99,6	12,5	5-6
2	70725	102	12,5	5-4
3	69000	104,6	12,5	4-7
4	67275	107,3	12,5	7-3
5	65550	110,1	12,5	3-8

Figura 1.9 Transformador de potencia 69000/13800 V,

marca PAUWELS
1.4.3 Patio de 13.8 KV

En el patio de 13,8 KV se ubican tanto las protecciones como las alimentadoras. En donde el alimentador Juan Bautista Aguirre y el S/E alimentador salitre salen de la de 2 postes de aproximadamente 19 metros, a una separación de 5 metros. Los postes se unen por medio de barras colectoras en donde van instalados los seccionadores de 13,8Kv y los pararrayos de 12Kv. En cambio el alimentador Vernaza sale de la S/E por medio de un poste de aproximadamente 8 metros.

Las protecciones de las alimentadoras se encuentras dentro de una cabina metálica (Metalclad). Actualmente las protecciones de las tres alimentadoras se las realiza con interruptores en vacío controlados por relés de sobre corrientes electromecánicos.

Al momento de producirse una falla en la S/E se debe realizar un reset manualmente al interruptor para cerrarlo. En la Figura 1.9 se observa los 2 alimentadores que salen de la S/E.

Figura 1.10 Patio de 13.8 KV

1.4.3.1 Seccionador de las alimentadoras (13.8KV)

El seccionador de las alimentadoras cumple con la función de realizar maniobras de operación el cual tiene las siguientes características que se resumen en la siguiente tabla.
 Tabla 7
 Datos del seccionador de aire principal de 13.8

ΚV

Alimentadora	Bil (KV)	I Cont (A)	l inst (KA)	Marca
Juan Bautista Aguirre	110	600	40	MEMCO
Salitre	110	600	40	MEMCO

1.4.3.2 Interruptores de las Alimentadoras.

Las alimentadoras de la subestación Juan Bautista Aguirre disponen de interruptores en vacío ubicados a la salida de cada una de ellas, permitiendo la desconexión total en toda la troncal principal en caso de falla.

Los interruptores de las alimentadoras no se encuentran a la intemperie debida que se encuentran ubicados en una cabina metálica.

A continuación se presenta una tabla con las características de los interruptores de las Alimentadoras.

Interruptores de las Alimentadoras				
Alimentadora	Juan Bautista A			
Marca	Mitsubishi			
Medio				
Aislante	Vacío			
Kv Max	15			
Bil KV	110			
I cont(A)	600			
I inst Max KA	18			

 Tabla 8
 Datos del Interruptor en vacío

1.4.3.3 Fusibles y Portafusibles

En la S/E Juan Bautista Aguirre se disponen de fusibles y portafusibles en 2 alimentadoras. En donde los fusibles operaran en caso de sobrecargas y corrientes de falla.

El fusible consiste en dos secciones separadas, la sección de baja corriente y sección de alta corriente, el cual la sección de baja corriente proporciona despejes confiables debido a corrientes altas que funden el elemento, y la sección de alta corriente que controla los niveles del arco de voltaje y limita los niveles de corrientes. Las características de los fusibles se presentan a continuación.

 Tabla 9
 Características de los Fusibles.

FUSIBLES-PORTAFUSIBLES			
MARCA TIPO AMPERIOS			
S&C	K	100	

1.4.3.4 Conductores

Los conductores que se utilizan en las alimentadoras de la subestación Juan Bautista Aguirre que satisfacen los requerimientos de la carga, se presenta en la siguiente tabla resumida.

Tabla 10 Conductores usados en 13.8 KV

Conductores en las Alimentadoras				
Alimentedere Calibre Tine				
Annentauora	FASES	NEUTRO	про	
Juan Bautista Aguirre	3/0	1/0	ACSR	
Vernaza	2/0	1/0	ACSR	
Salitre	3/0	1/0	ACSR	

1.4.3.5 Transformadores de corriente

Los transformadores de corriente se los utilizan en mediciones o en protecciones. Nos enfocaremos en las protecciones de la S/E. Debido que las corrientes de fallas son muy elevadas, el transformador de corriente obtiene señales reducidas y aislada al sistema enviándolas al circuito de protecciones.

En la subestación Juan bautista Aguirre se encuentran instalados transformadores de corriente marca ABB cuyos parámetros se especifican en la siguiente tabla.

 Tabla 11
 Datos
 de placa de los transformadores de

corriente.

	Transformador de Corriente				
Fase	Тіро	Relación (Multi relación)	BIL(KV)	Precisión	
Α	ABB	600/5	110	C.200	
В	ABB	600/5	110	C.200	
С	ABB	600/5	110	C.200	

Se dispone de un transformador monofásico auxiliar dentro de la S/E Juan Bautista Aguirre para el uso de luminarias y tomacorrientes generales. A continuación se presentas las siguientes características del transformador.

Tabla 12 Parámetros del transformador auxiliar

Marca	Tipo	Serie	Relación	Capacidad(KVA)
CNEL.	ACEITE	050511	7620/120- 240 V	15

Figura 1.11 Transformador Auxiliar

1.4.4 Cuarto de Control

1.4.4.1 Banco de Baterías y Cargador

La S/E Juan Bautista Aguirre posee solo una sola batería de 12 v con su respectivo cargador, En la Figura 1.12 se presenta tanto el cargado y la batería de la subestación y los datos de la batería en la tabla respectivamente.

Figura 1.12 Cargador Desico y batería Bosch

|--|

Baterías BOSCH		
# 1		
Voltaje[V]	12	
Ah	100	

1.4.4.2 Tableros

La S/E Juan Bautista Aguirre poseen varios tableros en cual la mayoría se encuentran en el cuarto de control, tanto para los breakers AC y DC y los circuitos de protección, alarma y relés de protección de sobre corriente.

1.4.4.3 Medidores

Las mediciones de la S/E se encuentran en:

- El lado de alta tensión.
- En cada alimentadora.

Los medidores instalados actualmente en la S/E son modernos, por lo cual se puede realizar monitoreo, mediciones reales (Potencia, voltaje y corriente) y almacenamiento de datos en un periodo.

Tabla 14Datos de los medidores

Medidor	Servicio	Marca	Тіро	Voltaje
	Salida del Transformador	Schneider	7650	
ION	Juan Bautista A	Schneider	6200	120 V
	Salitre	Schneider	6200	
	Vernaza	Power M	6200	

Figura 1.13 Medidores Schneider en la S/E Juan Bautista

Aguirre

1.4.4.4 Protección Del Transformador de Potencia.

Actualmente el transformador de potencia no se encuentra protegido contra fallas internas, debido a que se encuentra instalado un relé SPAJ140C marca siemens en el lado de alta tensión. Donde este relé carece de la función de protección diferencial. Las funciones específicas de este dispositivo de protección instalado en la parte de alta tensión se detallarán más adelante en el Capítulo 4, en la Figura 1.14 se observa el relé SPAJ140C.

Figura 1.14 Panel de Control con el relé SPAJ140C

Las protecciones de las alimentadoras disponen de los siguientes equipos de protección:

Relés de las alimentadoras			
Alimentadora	Тіро	Marca	Funciones
Juan Bautista Aguirre	Electromecánico	Mitsubishi	50/51
Salitre	Electromecánico	Mitsubishi	50N/51N
Vernaza	Electromecánico	Mitsubishi	

Tabla 15 Protección de las alimentadora

CAPÍTULO 2

2. ESTUDIOS DE FLUJO DE CARGA

2.1 INTRODUCCIÓN

En este capítulo se muestra los estudios de flujo de carga del sistema eléctrico de distribución de la subestación JUAN BAUTISTA AGUIRRE, para lo cual es de suma importancia y necesario el uso de la herramienta computacional CYME V.5.04 ANALISIS BÁSICO DE CYMDIST.

El módulo "flujo de carga" de CYME proporciona al usuario algoritmos para redes equilibradas y desequilibradas, En nuestro caso utilizaremos el método de cálculo de caída de tensión- desequilibrada, ya que generalmente todos los sistemas de distribución del Ecuador presentan redes desequilibradas, Dicho análisis nos permite obtener resultados óptimos para el presente estudio de flujo de carga. El análisis de flujo de carga tiene como objetivo principal el comportamiento en estado estable del sistema de distribución bajo diversas condiciones de operación.

En dicho flujo de carga se obtiene un análisis base para el planeamiento diseño y operación, de tal forma que se puede determinar la potencia que fluye atreves de los transformadores, tensión en las barras y verificar la existencia de sobrecarga en el sistema.

2.2 CRITERIOS APLICADOS EN EL ESTUDIO

2.2.1 Flexibilidad Operacional.

El sistema podrá funcionar mediante un suministro de energía de la línea de subtransmision DAULE NUEVA- J.B. AGUIRRE que viene desde la subestación de transmisión DOS CERRITOS ubicada al norte de la ciudad de Guayaquil sin ninguna restricción.

2.2.2 Niveles de confiabilidad

El sistema debe de proveer la continuidad de servicio y la alimentación a la zona urbana que se alimentan en nivel de voltaje

de 13,8[KV] en forma prioritaria ante la existencia de falla de un elemento dentro del sistema.

Debido a que la subestación JUAN BAUTISTA AGUIRRE no cuenta con doble alimentación la confiabilidad del sistema sería muy baja, y no se cumpliría con lo expuesto anteriormente.

2.2.3 Niveles de Sobrecarga

No se aceptan sobrecarga en los Elementos de Distribución del Sistema mayores a la cargabilidad establecida en las especificaciones técnicas. Para el caso de los Transformadores Convencionales de Fuerza, la carga no debe exceder su capacidad OA (capacidad con enfriamiento por aceite y aire natural).

2.2.4 Regulación de voltaje

Los voltajes a nivel de barras del Sistema no deben exceder del 2,5% del valor de la tensión nominal y tampoco pueden estar por debajo de un 2,5%, ante cualquier contingencia operativa.

2.3 ANÁLISIS DE CASOS

En el presente trabajo se consideran los siguientes casos para el estudio:

CASO 1

• Estudios de flujo de carga – caso base carga máxima.

CASO 2

• Estudios de flujo de carga – caso base carga mínima.

2.3.1 Estudios de Flujo de Carga – Caso Base Carga Máxima

La Empresa pública CNEL GUAYAS-LOS RÍOS nos facilitó una base de datos con información de los medidores en los alimentadores de la S/E Juan bautista Aguirre en un periodo de 4 meses que comprende desde febrero hasta mayo del 2014, con un tiempo de muestreo de cada 15 minutos permitiendo de esta forma obtener las cargas máximas para cada una de los alimentadores (Juan bautista Aguirre, Vernaza y Salitre) y así realizar el estudio de flujo de carga máxima

2.3.2 Estudios de Flujo de Carga – Caso Base Carga Mínima

En este caso de carga mínima al igual que para carga máxima, se tomó la Información de los medidores de la S/E Juan Bautista Aguirre en un periodo de 4 meses que comprenden los meses de febrero a mayo, y así realizar el estudio de flujo de carga mínima.

2.4 DATOS DEL SISTEMA

Para el estudio del comportamiento de una subestación de distribución se debe ajustar de manera correcta los valores de los parámetros iníciales de cada uno de sus componentes.

Esta sección contiene las características de equipos, tales como: transformador de fuerza, conductores, líneas y barras, a fin de que estos datos constituyan la base sólida para realizar los respectivos cálculos que permitirán obtener resultados precisos para el buen funcionamiento de todo el sistema y la coordinación de protecciones de los equipos.

2.4.1 Datos de Transformadores de Fuerza

PARÁMETROS DEL TRANSFORMADOR TRIFÁSICO.			
Subestación	Juan Bautis	sta Aguirre	
Marca	Pauwels		
Potencias			
Potencia OA	10/12,5	MVA	
Potencia FOA			
Voltaje Nominal			
Alta	69	kV	

 Tabla 16
 Características del Transformador Trifásico

Baja	13,8	kV	
Grupo de	Conexión		
Alta	D		
Baja	Yn		
Indicativo*30°	1		
/Fase			
Impedancias			
Impedancia	6,48 %		
Ubicación de los Taps			
Alta	Х		
Baja			
TAPS	4		
Posición	67275 V		

2.4.2 Datos de Líneas y Conductores

Para la alimentadora Juan Bautista Aguirre se utilizó un conductor ACSR 3/0 para todas sus fases y un conductor ACSR 1/0 para el neutro.

Para la alimentadora Salitre se utilizó un conductor ACSR 336,4 para todas sus fases y un conductor ACSR 3/0 para el neutro.

Finalmente para la alimentadora Vernaza se utilizó un conductor ACSR 2/0 para todas sus fases y un conductor de igual tipo para el neutro. La siguiente tabla muestra los datos técnicos de cada uno de los conductores utilizados para las alimentadoras de la S/E Juan Bautista Aguirre.

Área de Aluminio	Trenzado Al/St	Diámetro Exterior (Pulg)	GMR (Pies)
336,4 MCM		0,741	0,0255
3/0 AWG	6/1	0.502	0,0066
2/0 AWG	6/1	0,447	0,0051
1/0 AWG	6/1	0,398	0,00446
Corriente	Resist	tencia	Reactancia
Α	(Ohm/Mi)		Inductiva
	25C	50C	
530	0,278	0,306	0,445
300	0,56	0,4493	0,621
270	0,706	0,5562	0,641
230	0,888	0,696	0,656

 Tabla 17
 Características de los conductores

2.4.3 Datos de Barras de Carga

2.4.3.1 Carga Máxima

Ya se ha mencionado que se utilizó un periodo de cuatro meses para hacer los análisis de flujo de carga, no obstante se recalca que esto se lo hizo bajo el supuesto de que el mismo patrón de comportamiento de la demanda es año a año, por lo cual con la información proporcionada por la E.P. CNEL GUAYAS- LOS RIOS se obtuvieron las respectivas cargas máximas y mínimas de las S/E Juan Bautista Aguirre.

A continuación se presenta las cargas máximas en cada alimentador de la S/E de distribución Juan bautista Aguirre.

 Tabla 18
 Carga Máxima en las Alimentadoras

Carga Máxima				
Alimentadoras	P Max(KW)	Q max(KVAR)	S max(KVA)	
Juan Bautista Aguirre	146,748124	59,096248	158,200	
Salitre	1988,04046	772,123652	2132,7165	
Vernaza	2837,79142	1017,3301	3014,634	

Transformador en el período de 4 meses

2.4.3.2 Carga Mínima

A continuación se presenta las cargas mínimas en cada alimentador de la S/E de distribución Juan Bautista Aguirre.

Tabla 19 Carga Mínima en las Alimentadora	as
---	----

Carga Mínima					
Alimentadoras	P Max(KW)	Q max(KVAR)	S max(KVA)		
Juan Bautista Aguirre	41,874	25,0732	48,8067		
Salitre	158,6836	91,64098	183,2445		
Vernaza	88,1575	46,9927	99,9		

Figura 2.2 Carga Mínima total en el lado de Baja del

Transformador en el período de 4 meses

2.5 RESULTADOS DE LOS ESTUDIOS DE FLUJO DE CARGA

Los resultados de Flujo de carga serán presentados en forma gráfica por ser el método más conciso y usualmente más informativo. El flujo del sistema puede ser rápidamente analizado con la presentación gráfica y relacionar la configuración del sistema, condiciones operativas y resultados.

- El análisis del flujo de carga muestra lo siguiente:
- a) Voltaje en barras.
- b) Factor de Potencia. Requerimientos de potencia Reactiva.

- c) Carga sobre todos los conductores y transformadores, verificar que la carga este dentro de la capacidad de transmisión para condiciones normales y contingencias operativas.
- d) Ajustes de TAPS de los Transformadores.

2.5.1 Caso Base

A continuación se presentan los resultados del flujo de potencia realizado en la S/E Juan Bautista Aguirre, tanto para máxima carga y mínima carga.

Se observa en la figuras 2.3 los parámetros ingresados a la simulación para realizar el flujo de Potencia tanto como en máxima y mínima carga. (Para una mejor presentación visual de los parámetros del sistema se utilizó el simulador POWERWORLD).

Al finalizar la simulación de flujo de potencia, se observa las potencias tanto activas como reactivas en cada alimentador y en el lado de baja Tensión en el Transformador de potencia como se observa en la Figura 2.3.

El Transformador de Potencia en máxima carga tiene un factor de utilización de 53,96% dejando así una reserva del 46,04%.

El Transformador de Potencia en mínima carga tiene un factor de utilización de 3,41% dejando así una reserva del 96,59%.

A continuación se observa los valores de los parámetros ajustados en la simulación de flujo de potencia en máxima carga.

Figura 2.3 Parámetros para el flujo de carga máxima

En la siguiente figura 2.4 se observa los valores de los parámetros ajustados en la simulación de flujo de potencia en mínima carga.

Figura 2.4 Parámetros para el flujo de carga mín

2.5.1.1 Voltajes en Barras

Tabla 20 Voltajes en barras para carga máxima

N	1	2
Nombre	Barra 69 Kv	Barra 13,8 Kv
V Nom (Kv)	69	13,8
Voltaje (p.u)	0,975	0,988
Fase	-3,12	-34,93
Voltaje (Kv)	67,3	13,6

|--|

N	1	2
Nombre	Barra 69 Kv	Barra 13,8 Kv
V Nom (Kv)	69	13,8
Voltaje (p.u)	0,984	1,008
Fase	-2,48	-32,58
Voltaje (Kv)	67,9	13,9

2.5.1.2 Consumo

 Tabla 22
 Consumo en barras para carga máxima

Consumo para carga máxima				
J.B.AGUIRRE 147 [kW] 59 [kVAR]				
SALITRE	1988 [KW]	772 [KVAR]		
VERNAZA	2838 [KW]	1017 [KVAR]		

Consumo p	oara carga	mínima
J.B.AGUIRRE	42 [KW]	25 [kVAR
	159	

[KW]

88 [KW]

92 [kVAR]

47 [kVAR]

 Tabla 23
 Consumo en barras para carga mínima

2.5.1.3 Carga de Transformadores

SALITRE

VERNAZA

	Tabla 24	Potencias entre	barras j	para carga	máxima
--	----------	-----------------	----------	------------	--------

Desde	Barra 69
Hasta	Barra 13,8
MW	5,98
MVAR	2,035
MVA	5,396
MVA Lim	10
%lim	53,96
Perd Mw	0,025
Perd MVAR	0,189

 Tabla 25
 Potencias entre barras para carga mínima

Desde	Barra 69
Hasta	Barra 13,8
MW	0,29
MVAR	0,164
MVA	0,341
MVA Lim	10
%lim	3,41
Perd Mw	0,01
Perd MVAR	0,01

2.5.1.4 Potencia Activa y Reactiva Recibida del Sistema

Tabla 26 Potencia recibida para carga máxima

Potencia recibida para carga máxima			
Barra 69	4,997 MW	2,035 MVAR	

Tabla 27 Potencia recibida para carga mínima

Potencia recibida para carga mínima			
Barra 69	0,299 MW	0,164 MVAR	

2.5.1.5 Tap del Transformador de Potencia

 Tabla 28
 Ajuste del Tap del Transformador

Transformador	TAP en alta tensión	
SIEMENS		
67/13,8KV 18/24	97,5%	
OA/FA		

2.6 CONCLUSIONES DEL ESTUDIO DE FLUJO DE CARGA

El flujo de Potencia realizado en la Subestación Juan Bautista Aguirre a permitido determinar y concluir en base a los criterios antes señalados, tales como:

- La potencia que se consume la Subestación tanto en máxima y mínima carga, es suplida constantemente en operaciones normales por el sistema nacional interconectado (SNI) del Ecuador, en nuestro caso la fuente de suministro proviene de Dos Cerritos (DCE_LT5).
- Los voltajes de las barras son 0,975 [p.u.] en la barra de 69 [KV] y 0,988 [p.u.] en la de 13.8 [KV] para la condición de carga máxima. Los voltajes de las barras son 0.984 [p.u.] y 1,008 [p.u.] respectivamente. para la condición de carga mínima. Estos voltajes se encuentran dentro del rango de regulación de voltaje permitido del 2,5% [67,275-70,725(KV)].
- El ajuste del TAP del transformador se encuentra en la posición 4, es decir el ajuste corresponde a una relación de transformación 67275:13800.

- 4. Se verifica que el transformador de potencia no presenta ningún inconveniente para demanda máxima, puesto que utiliza solo el 53,96% de su capacidad OA, dicho esto se pueden tener dos análisis: el primero que el transformador no está operando de forma eficiente, o segundo, que al momento de instalar dicho transformador en la S/E se pensó en los estudios de crecimiento de carga del sector, y de esta forma abastecer el servicio durante un largo periodo de años posteriores a su instalación.
- Se observa que la carga no es similar para todas las alimentadoras, sin embargo por normalización se utiliza el mismo tamaño del conductor.
- 6. Para el caso de la alimentadora Vernaza que es la más cargada y la que cubre una mayor área, se puede dar la situación de que al final de la línea la regulación de voltaje no sea la óptima, puesto que el voltaje en la barra de 13,8 KV es de 0,988 p.u., y se tendría que optar por métodos de regulación de voltaje para asegurar el voltaje adecuado como se especificó en la norma.

CAPÍTULO 3

3. ESTUDIOS DE CORTOCIRCUITO

3.1 INTRODUCCIÓN

En el análisis de cortocircuito, las fallas del sistema se manifiestan como condiciones anormales de operación que nos podrían conducir a uno de los siguientes fenómenos:

- ✓ Indeseables flujos de Corrientes.
- Presencia de Corrientes de magnitudes exageradas que podrían dañar los equipos.
- Caída de Voltaje en la vecindad de la falla que puede afectar adversamente la operación de las maquinas rotatorias.

Creación de condiciones peligrosas para la seguridad del personal.

Este capítulo se centra en los estudios de corto circuito del sistema de la Subestación Juan Bautista Aguirre para resolver las situaciones críticas señaladas y obtener la información básica para la coordinación de las protecciones. Los estudios tienen los siguientes objetivos:

 Determinar el efecto de las corrientes de falla en los componentes del sistema tales como cables, barras y transformadores durante el tiempo que persista la misma.

 ✓ Los estudios determinan las zonas del sistema en donde la falla puede resultar en depresión inaceptable de voltajes.

 Determinar el ajuste de los equipos de protección, los cuales son establecidos considerando el sistema bajo condiciones de falla.

3.2 ALCANCE DE LOS ESTUDIOS DE CORTOCIRCUITO

Considerando que el sistema de la Subestación Juan Bautista Aguirre se caracteriza por ser un sistema típicamente aterrizado el estudio de cortocircuito considera los siguientes tipos de falla como las principales a analizar:

- Falla Trifásica a tierra
- Falla de línea a línea
- Falla de línea a tierra

La falla trifásica a tierra es a menudo, para este tipo de sistema, la más severa de todas, por ello es costumbre de simular solamente la falla trifásica cuando se busca las magnitudes máximas de corriente de falla; sin embargo en la Subestación Juan Bautista Aguirre se verificará todos los tipos de corrientes de fallas, pero se verificará primordialmente que la Corriente de Falla a Tierra no exceda la corriente trifásica.

3.3 DATOS DEL SISTEMA

A continuación se detallaran cada uno de los parámetros del sistema que se necesitan para realizar los estudios de corto circuito de la Subestación Juan Bautista Aguirre:

3.3.1 Impedancias equivalentes en la barra de la subestación

La empresa pública CNEL E.P. nos proporcionó información de la impedancia equivalente de Thevenin vista desde la barra de 69 KV aguas arriba a todo el SIN de la subestación Juan Bautista Aguirre, tanto para máxima y mínima generación.

Los datos en (p.u.) de las impedancias de las tablas siguientes están referenciadas a una base de 100 [MVA] y 69 [KV].

3.3.1.1 Impedancias Equivalentes

 Tabla 29
 Impedancias Equivalentes máxima generación para 69

ΚV

Tipo de	R	Х	R	X	
impedancia	ohmios	Ohmios	(p.u.)	(p.u.)	X/R
Positiva	3,39	16,213	0,0713	0,3405	4,76
Negativa	3,39	16,213	0,0713	0,3405	4,76
Cero	10,39	46,679	0,2183	0,9804	4,49

 Tabla 30
 Impedancias Equivalentes mínima generación para 69

ΚV

Tipo de	R	Х	R	Х	X/R

impedancia	ohmios	Ohmios	(p.u.)	(p.u.)	
Positiva	3,39	16,213	0,0713	0,3405	4,76
Negativa	3,39	16,213	0,0713	0,3405	4,76
Cero	10,39	46,679	0,2183	0,9804	4,49

3.3.1.2 MVA de cortocircuito

También la empresa pública CNEL E.P. nos proporcionó información de los [MVA] de cortocircuito en la barra de 69 [KV] de la Subestación Juan Bautista Aguirre para las fallas trifásica y una fase a tierra, tanto para máxima como para mínima generación, que a continuación se muestran en las tablas:

 Tabla 31
 MVA de cortocircuito máxima generación

Tipo de	Potencia de		
Falla	Falla (MVA)		
LLL	291,13		
LG	177,47		
LL	252,05		
LLG	260,65		

Tipo de Falla	Potencia de Falla (MVA)
LLL	276,19
LG	173,65
LL	239,26
LLG	248,34

T I I AA	B 43 7 A 1			• •
1 abla 32	MVA d	e cortocircu	lito minima	deneracion

3.3.2 Datos de Transformadores de Fuerza

Igual que en el caso de los conductores los transformadores son elementos pasivos en el análisis de cortocircuito, sus características técnicas son análogas a las utilizadas en los estudios de flujo de carga.

3.4 RESULTADOS DE LOS ESTUDIOS DE CORTOCIRCUITO

Las corrientes de cortocircuito han sido calculadas considerando los criterios técnicos indicados en la sección 2.3. Todos los tipos de fallas serán simulados en cada una de las barras del sistema.

Además no se hace un estudio separado de cortocircuito a demanda máxima y demanda mínima, puesto que el cortocircuito no depende de la directamente carga, pero sí de las impedancias del sistema y en nuestro caso el equivalente thevenin a demanda máxima y mínima son relativamente iguales.
También se cómo tensión de pre falla no se tomó en cuenta para este estudio la tensión nominal del sistema, sino la tensión de servicio, puesto que esto nos permite obtener resultados más precisos en nuestro estudio de cortocircuito.

3.4.1 Caso base

En el Anexo 2 se adjunta los resultados gráficos de las simulaciones de cortocircuito del Caso base, que se resume a continuación:

3.4.1.1 Corrientes de Falla en cada barra:

Para el cálculo de la corriente en (p.u.) se obtiene la corriente base para el lado de 69 [KV] y 13,8 [KV] respectivamente:

1. Corriente Base 69 KV:

I(base) 69 KV=
$$\frac{100000 \text{ KVA}}{\sqrt{3}*69}$$
 = 836,74 A (3.1)

2. Corriente Base 13,8 KV:

I(base) 13,8 KV=
$$\frac{100000 \text{ kVA}}{\sqrt{3}*13,8 \text{ KV}} = 4183,70 \text{ [A]}$$
 (3.2)

En la Tabla 3.5 se presentan los cálculos resultantes de las corrientes de cortocircuito en Amperios y en p.u. y los MVA de cortocircuito para los diferentes tipos de fallas en la barra de 69 [KV]:

 Tabla 33
 Corrientes y MVA de Cortocircuito en barra 69

[[]KV]

I _{falla}	lcc barra 69[KV] (A)	lcc barra 69[KV] (p.u.)	Capacidad de cortocircuito (MVA)
LLL	2440	2,9161	296
LG	1498	1,7903	182
LL	2113	2,5253	256
LLG	2186	2,6125	131

En la Tabla 36 se presentan los cálculos resultantes de las corrientes de cortocircuito en Amperios y en p.u. y los MVA de cortocircuito para los diferentes tipos de fallas en la barra de 13,8 [KV]: Tabla 34 Corrientes y MVA de Cortocircuito en barra

Ifalla	I _{falla} I _{cc} barra I _{cc} barra 13,8[KV] 13,8[KV		Capacidad de cortocircuito
	(A)	(p.u.)	(MVA)
LLL	4301	1,028	107
LG	4888	1,1683	122
LL	3725	0,8904	93
LLG	4736	1,132	141

13,8 [KV]

3.4.1.2 Corrientes de falla a lo largo de la alimentadora:

En esta sección se mostraran las corrientes de fallas en el punto en donde se encuentra el primer fusible de protección a lo largo de las alimentadoras que fueron simuladas en el programa CYME V.5.04 ANALISIS BÁSICO DE CYMDIST, para lo cual arrojo los valores mostrados a continuación para cada alimentadora.
 Tabla 35
 Corrientes y MVA de Cortocircuito en 1er fusible

L	lcc [KV]	lcc	Capacidad de
Ifalla			cortocircuito
	(A)	(p.u.)	(MVA)
LLL	0	0	0
LG	4182	0,9996	104
LL	0	0	0
LLG	0	0	0

de protección a lo largo de la alimentadora J.B.AGUIRRE

Tabla 36 Corrientes y MVA de Cortocircuito en primer

fusible de protección a lo largo de la alimentadora

SALITRE

Ifalla	Icc [KV]	lcc	Capacidad de cortocircuito
	(A)	(p.u.)	(MVA)
LLL	4279	1,0228	106
LG	4842	1,1573	120
LL	3706	0,8858	92
LLG	4689	1,1208	139

Tabla 37 Corrientes y MVA de Cortocircuito en primer

fusible de protección a lo largo de la alimentadora

Ifalla	Icc [KV]	lcc	Capacidad de cortocircuito
	(A)	(p.u.)	(MVA)
LLL	4206	1,0053	105
LG	4708	1,1253	117
LL	3643	0,8708	91
LLG	4547	1,0868	133

VERNAZA

Es de notar que en la alimentadora J.B. AGUIRRE solo se detalla una corriente de cortocircuito de una fase a tierra, esto es debido a que el primer fusible de protección posterior al interruptor en la alimentadora se encuentra en una ramal monofásico (VEASE Grafica 2.a.1_anexo 2) y no en la troncal principal (trifásico) como sucede en las otras dos alimentadoras (VERNAZA Y SALITRE).

3.5 CONCLUSIONES Y RECOMENDACIONES

El presente Estudio de Cortocircuito en la Subestación JUAN BAUTISTA AGUIRRE ha permitido cumplir los siguientes objetivos: 1. Determinar el efecto de las corrientes de falla en los componentes del sistema tales como cables, barras y transformadores en el tiempo de duración de la misma.

2. El estudio de cortocircuito considera los siguientes tipos de falla:

Falla Trifásica a tierra

Falla de línea a tierra

Falla de línea a línea

Falla de dos líneas a tierra

3. Las corrientes de cortocircuito han sido calculadas considerando el estándar IEEE aplicables para el cálculo de falla para voltajes media y alta tensión. I Standard IEEE Std C37.010-1979, IEEE Std C37.5-1979, IEEE Std 141-1993, IEEE Std 241-1990, y IEEE Std 242-1986.

Los diferentes tipos de falla fueron aplicadas a cada una de las barras del sistema, los resultados se muestran gráficamente en el ANEXO 2, los cuales permiten establecer y concluir lo siguiente:

4. Se observa que la corriente de falla de línea a tierra y de dos líneas a tierra en la barra de 13,8 [KV] tiene valores superiores a la corriente de falla trifásica, es decir, no se limitó estos tipos de falla por medio de ninguna instalación de resistencia a tierra.

5. Se producen efectos de sobrecarga transitorios y permanentes en cada uno de los equipos del sistema, alterando las condiciones normales de operación del sistema y produciendo averías severas en caso de no despejarse en forma adecuada la falla.

6. El interruptor a gas SF6 que está montado en la Subestación JUAN BAUTISTA AGUIRRE tiene una capacidad de interrupción de corriente de cortocircuito de 40[kA] que es el mínimo valor normalizado para ese voltaje.

7. Las corrientes de cortocircuito calculadas en las alimentadoras tienen valores inferiores a las corrientes de cortocircuito en la barra de la subestación, haciendo más confiable nuestro estudio, puesto que por teoría de análisis de cortocircuito, mientras más alejado este el punto de falla de la fuente menor será su valor.

8. Logramos obtener las corrientes de falla máxima y mínimas en el sistema de la Subestación JUAN BAUTISTA AGUIRRE, con lo cual se pueden establecer los ajustes de los equipos de protección, los cuales son determinados considerando el sistema bajo condiciones de falla, y serán estudiados en el Capítulo 4 de este estudio.

CAPÍTULO 4

4. PROTECCIÓN DE LA SUBESTACIÓN DE DISTRIBUCIÓN

4.1 ESQUEMA DE PROTECCIONES

En la figura 4,1 se presenta el esquema de protección de la subestación Juan Bautista Aguirre, Conformada con un interruptor GCB (Gas Circuit Breaker) en el lado primario del transformador de potencia (69KV), un interruptor VCB en el lado secundario del transformador de potencia (13,8KV).

Como protección en la subestación se encuentra un relé digital SPAJ140C para la protección de sobre corriente en el lado de alta tensión, y en el lado de baja tensión se encuentran relés electromecánicos de sobre corriente e instantáneo.

En la actualidad la Subestación Juan Bautista Aguirre no cuenta con la protección para fallas internas en el transformador de potencia.

Figura 4.1 Esquema de Protección del transformador de Potencia

Para efectos de brindar a los abonados un mejor servicio y a su vez aumentar la seguridad del transformador de potencia, Se propone a CNEL GUAYAS LOS RIOS cambiar y adicionar elementos de protección para aumentar la confiabilidad de la subestación Juan Bautista Aguirre. Se consideró adicionar la protección diferencial para fallas internas del transformador de potencia de la Subestación, Cambiar la protección del lado de baja tensión del transformador por relés digitales con las mismas funciones a los instalados actualmente en la Subestación y cambiar la protección en los tres alimentadores, así mismo por relés digitales.

Puesto que el relé TPU-2000R tiene incluido la protección diferencial tanto para el lado de alta tensión (69 KV) como para el lado de baja tensión (13,8 KV) y la subestación Juan Bautista Aguirre cuenta actualmente con un relé de protección en el lado de alta (relé SPAJ 140C), esta condición nos permite tener una protección de respaldo en el lado de alta tensión, en caso de que una de las dos protecciones no actué.

Los elementos de protección propuestos se detallan a continuación:

- ✓ RELE TPU2000R para protección en el transformador de potencia.
- ✓ RELE SPAJ140C para protección en los alimentadores de la Subestación.

Figura 4.2 Esquema de Protección de la Subestación Juan Bautista

Aguirre

4.2 Protección Transformador de Potencia

La protección del transformador de potencia de la subestación se la realizara con el relé TPU2000R de la empresa ABB, En donde este relé

digital está enfocado en la administración y protección interna de los transformadores.

En la figura 4.3 se muestra el esquema de protecciones propuesto para el transformador de potencia instalado.

Las funciones principales del relé digital para la protección del transformador son las siguientes:[3]

Protección de fases:

- ✓ Protección diferencial.
- ✓ Sobre-corriente instantáneo.
- ✓ Sobre-corriente de tiempo inverso.
- ✓ Sobre-corriente temporizada de secuencia negativa.

Protección de Tierra:

- ✓ Sobre-corriente temporizada: 51N y 51G.
- ✓ Sobre-corriente instantánea: 50N.

Figura 4.3 Esquema del relé TPU2000R

En la figura 4.4 muestra la conexión del TPU2000R el cual tiene una configuración Δ -Yn.

Figura 4.4 Esquema de protección de TPU2000R

4.2.1 Protección Diferencial 87

4.2.1.1 Características de la función 87T

La Protección Diferencial se lo realiza a través del relé 87T, el cual es un dispositivo microprocesador de protección contra cortocircuitos internos del transformador que se conecta a los secundarios de los transformadores de corriente (TC's), situados en ambos lados del elemento del transformador y su principio se basa en comparar la magnitud y ángulo de fase de las corrientes que entran y salen del transformador de potencia por medios de sus TC's de baja y alta tensión, corrientes que normalmente oscilan entre 1A y 5A,para nuestro caso la medida de los CT's será de 5A. [2]

Puesto que los relés a través de los años han ido mejorando con respecto a la tecnología, no requieren que la compensación de ángulos debido a la conexión del transformador de potencia se corrija mediante una conexión adecuada de los transformadores de corriente, sino que en su lugar, una vez que se identifique el ángulo de desfase entre el lado de alta y baja tensión, dentro del relé diferencial se realizará la compensación. Por sencillez, los CT's generalmente se conecta en estrella en ambos lados [3], caso contrario a lo que sucede de los relés electromecánicos que se los conectan en delta-Y ó Y-delta dependiendo de la conexión del transformador de potencia a proteger [6]. A continuación en la figura 4.4 se muestra un esquema simplificado de la protección diferencial del transformador.

Figura 4.5 Protección diferencial de un transformador

Este tipo de protección no debe operar si las corrientes referidas a niveles de 5[A] son iguales, tanto para el lado de alta tensión como el lado de baja tensión, pero esto no se puede lograr porque existen errores o desplazamientos de fase, que hacen que el relé opere en forma inadecuada.

El relé diferencial moderno se encarga de calcular la corriente de operación como la suma fasorial (considerando la magnitud y ángulo el de fase) de las corrientes de restricción como factor del TAP del transformador de potencia por medio de sus CT's de alta y

baja tensión, su disparo se da instantáneamente al detectar que la corriente diferencial es mayor que un porcentaje de la mínima corriente de puesta en trabajo (I Pick–Up), la cual da la orden de abrir los contactos de los interruptores.

A continuación se muestra en la figura 4.5 la característica de disparo de la protección diferencial.

Además se debe tomar en cuenta que existen diferencias que no son imputables a una falta. Estas corrientes diferenciales que corresponden a valores de la operación normal son las siguientes:

- La corriente de magnetización (o carga) del elemento protegido. Esto es un valor constante. Ver figura 4.6.
- El error de relación en los transformadores de corriente que es una diferencia casi proporcional a los valores de la corriente. Si la protección diferencial se aplica a un transformador de potencia que tiene diferentes tomas

(taps), el error de los transformadores de corriente será del mismo tipo por esta causa.

 El error debido a la saturación de los transformadores de corriente, el cual prácticamente no existe con pequeñas corrientes, pero que se hace mayor con elevadas corrientes.

La suma de estas 3 componentes da una corriente diferencial sin errores de mala operación del relé.

A continuación se muestra en la figura 4.5 la característica de disparo de la protección diferencial.

Figura 4.6 Curva de operación del relé diferencial

Para realizar el ajuste de la función 87 T, se toma en cuenta la pendiente de la curva de disparo del relé diferencial ajustable con pasos de 5%, la cual se escogió por simplificación.

En esta curva el punto de operación se alcanza cuando la diferencia entre las dos corrientes de restricción, expresada como porcentaje de la menor corriente de restricción, excede el ajuste de la pendiente de %

Menor Corriente de Restricción por TAP

Figura 4.7 Característica de la pendiente % ajustable de

la protección diferencial del relé TPU 2000R

Para determinar el ajuste de la curva se requiere tomar en cuenta diferentes parámetros que detallaremos a continuación.

• Máximas corrientes de carga

Para calcular las corrientes de carga máxima tanto en el lado de alta y baja del transformador de potencia, Se considera la capacidad del transformador (FA) y el nivel de tensión.

$$I_{\rm H} = \frac{\rm KVA(FA)}{\sqrt{3}\rm KV_{\rm H}} = \frac{12500}{\sqrt{3}\ 69} = 104,59\ [A]$$
(4.1)

$$I_{L} = \frac{KVA(FA)}{\sqrt{3}KV_{L}} = \frac{12500}{\sqrt{3}\ 13,8} = 522,96\ [A]$$
(4.2)

• Elección de Relación de Transformación para CT's

La elección de relación de los CT'S fue en base a la norma C37.110-1998, la cual nos indica que bajo condiciones de máxima carga, la corriente en el lado secundario del CT no debe de exceder 20 veces la corriente nominal. El Capítulo 3 presenta el estudio de cortocircuito, Dando como resultado en el lado de alta y baja del transformador de potencia una corriente máxima de falla de I_{HF} =2440 A yI_{LF} =4888[A] como se puede observar en las tablas 3.5 y 3.6 respectivamente.

Para la elección de los CT se toma en cuenta las corrientes de fallas máximas para máxima y mínima generación. Por lo cual la corriente de falla máxima reflejada al secundario del CT tiene que ser menor a 100 A, Para así evitar la saturación del CT debido a una corriente excesiva mucho mayor a la nominal.

$$I_{\rm HF} \frac{5}{200} = 2440 \ \frac{5}{200} = 61 \ [A] < 100 \ [A]$$
 (4.3)

$$I_{\rm LF} \frac{5}{800} = 4888 \frac{5}{800} = 30,55 [A] < 100[A]$$
 (4.4)

Con los análisis realizados anteriormente, se escogió para el lado de alta tensión un transformador de corriente de 600:5 MR (200:5) y para el lado de baja tensión un transformador de corriente de 1200:5 MR (800:5); comprobando que la elección es correcta mediante las ecuaciones (4.3) y (4.4).

Corrientes máximas de carga en secundarios de CT's

Así, la corriente máxima de carga en los lados secundarios del CT es:

$$I_{\rm HS} = 104,59 \frac{5}{200} = 2,61 \,[{\rm A}]$$
 (4.5)

$$I_{\rm LS} = 522,96 \frac{5}{800} = 3,2685 \,[{\rm A}] \tag{4.6}$$

• Porcentaje por error de los CT'S.

El porcentaje de error en los CT's se presenta en la zona no lineal de la curva de saturación.

Mientras más se aproxime al codo de operación, el error va ir aumentando. Para eso se considera como factores límites de precisión a la magnitudes de las corrientes de fallas y a las relaciones de transformación de los CT'S. El porcentaje de error permitido de los CT'S debido a la norma IEC 60044 para la protección diferencial es del 5% al 10%.

• Porcentaje de Regulación de Voltaje Tap.

En todos los transformadores de potencia existen intercambiadores de derivación, Por lo cual se puede realizar cambios de relaciones de transformación más conocido como cambio de TAP del transformador de potencia.

La protección diferencial debe asimilar el cambio de relación del transformador, en donde el porcentaje de regulación del Tap se lo encuentra en la placa del transformador, en nuestro caso la regulación es +/- 5%, por lo tanto el porcentaje de regulación será 10%.

• Porcentaje de error intrínseco Mismatch.

El porcentaje de error Mismatch nos otorga un margen de seguridad para los errores producidos por los desajustes de los CT'S.

Para determinar dicho margen, es necesario determinar las corrientes de restricción usadas en el relé luego de la compensación interna de fase programada. De este modo la corriente se ve afectada por un factor que depende de la conexión del transformador de corriente, al que llamaremos HSICF para el lado de alta y LSICF para el lado de baja tensión.

El porcentaje de error intrínseco otorga un margen de seguridad

$$I_{HR} = I_{HS} * HSICF = 2,61 * 1 = 2,61$$
 (4.7)

$$I_{LR} = I_{LS} * LSICF = 3,2685 * \sqrt{3} = 5,6612$$
 (4.8)

Con los valores de corrientes obtenidos, se escogen los TAP tanto en el lado de alta y baja tensión, Donde el rango del TAP va de 2 a 9 [A] en pasos de 0,1 A. Por lo cual el TAP de alta es 2,7 A y el TAP de baja tensión es 5,9A, Se tomaron estos valores debido a la restricción física del dispositivo de protección. A continuación se calcula el porcentaje de error intrínseco:

$$M = \frac{100 \left(\frac{I_{HR}}{I_{LR}} - \frac{TAP_{H}}{TAP_{L}}\right)}{S} = 0,744\%$$
(4.9)

 Porcentaje de Restricción de Armónicas por la corriente de magnetización (INRUSH)

Se considera un porcentaje de restricción de Armónicos, por la corriente de magnetización y de cortocircuito en el ajuste del relé diferencial, para evitar falsas operaciones.

La diferencia entre la corriente de magnetización y la de cortocircuito es la forma de onda sinusoidal, debida a que la corriente de magnetización presenta armónicos. En base a esta diferencia el relé podrá determinar que se encuentra frente a una falla.

Debido a la construcción del transformador de potencia, se presenta una intensidad muy baja de armónicos, por lo cual el porcentaje máximo es 5% para la restricción del relé. A continuación se muestra la tabla de porcentajes de restricciones para la selección de la pendiente de la curva de disparo del relé diferencial.

PORCENTAJE DE RESTRICCIONES				
ERROR	PORCENTAJE	NORMA		
ERROR DE				
CT's	5%	IEC 60044		
MISSMATCH	0,744%	BLACKBURN		
		ANSI-		
INRUSH	5%	C57.110		
TAP	10%	IEC 60044		
SUMA:	20,744%			

 Tabla 38
 Porcentajes de restricciones

La suma total nos da 20,744% sin embargo el Std.C37.91-2008 recomienda dejar un margen. Por lo tanto, el valor de la pendiente de la curva de operación de 30%.

A continuación se determina la corriente de puesta en trabajo del 87T:

$$I_{\text{pick-up}} = 0.2 * \left(\frac{I_{\text{HR}}}{\text{TAP}_{\text{H}}} + \frac{I_{\text{LR}}}{\text{TAP}_{\text{L}}}\right) \cong 0,38 \text{ A}$$
(4.10)

La figura 4.8 muestra la característica de disparo de la protección diferencial.

Figura 4.8 Característica de disparo de la Protección

Diferencial

4.2.1.3 Características de la función 87H

La función 87H es una protección instantánea sin restricción de armónicos en el lado de alta tensión, lo que permite que no se dispare al momento que se presente la corriente de arranque (Inrush) del transformador.

Según la norma ANSI IEEE para transformadores de 10 a 12,5 MVA la corriente de inrush es entre 6 a 7,5 veces mayor que la corriente nominal, como se muestra en la figura 4.9.

Figura 4.9 Rango de corriente de Irrupción del transformador

Se recomienda dejar un margen, por lo tanto la corriente de irrupción es 8 veces la corriente en OA del transformador de potencia. La corriente secundaria de los TC del lado de 69 KV en su capacidad OA es:

$$I = \frac{10000}{\sqrt{3}^*69^*40} = 2,091 \ [A] \tag{4.11}$$

Por lo tanto el ajuste de la función 87H es la siguiente:

$$87H=2,091*\frac{8}{TAP}=2,091*\frac{8}{2,7}=6,19$$
 A (4.12)

4.2.2 Protección de Sobrecorriente Temporizada de Secuencia Negativa (46)

4.2.2.1 Características de la función 46

La Función del 46 (Protección de Sobre-corriente temporizada de secuencia negativa) nos aumenta la sensibilidad ante fallas de fases (fase – fase).

Todas las funciones del 46 disponen del mismo rango de arranque, Selecciones de curvas y rango de dial de tiempo que las selecciones de 51P.[2] La función de secuencia negativa se define por debajo de la corriente de carga debido a que las corrientes nominales de carga equilibrada no generan corriente de secuencia negativa.

Cuando se presenta una falla de línea a línea la corriente la = lb e lc=0, En donde la corriente de secuencia negativa será igual al 58% de la corriente la.

Se dispone de 2 modos para realizar la reposición de las funciones del 46.[2]

Modo de reposición instantánea.

En este modo la función del 46 se repone inmediatamente cuando la corriente de falla se encuentra por debajo del ajuste del arranque durante medio ciclo [2].

Modo de reposición retardada.

En este modo la función del 46 sigue una característica de reposición lenta. La duración depende de la condición de sobre-corriente y de la magnitud de la corriente de carga [2].

Parámetros de 46-1/46-2/46-3	Rango	Incremento
Ajuste de Arranque,TC de 5 ^a	1 a 12 A	0,1 A
Ajuste de Arranque,TC de 1 ^a	0,2 a 2,4 A	0,002A
Ajuste de Arranque,MOCT 0,1 A	0,02 a 0,24 A	0,002 A

Tabla 39 Parámetros del 46

4.2.3 Funciones 51-G del TPU 2000R

La función 51-G es aplicada para secuencia cero o residual. Se ajusta bajo la norma C37.91.2008 que indica que debe ser 10% de la corriente de plena carga. Se escoge una curva extremadamente inversa para que su operación sea rápida.[5]

4.2.4 Función 51-P del TPU 2000R

La función 51-P (Sobre-corriente Temporizada) protege al transformador de potencia contra fallas, mandando una señal al

interruptor para que este actué con un retardo de tiempo, aislando la falla.[3]

Las funciones 51-P disponen de dos modos de reposición:

Modo de reposición instantánea.

La función se repone inmediatamente cuando la corriente cae por debajo del ajuste de arranque durante medio ciclo.

Modo de reposición retardada,

La función sigue una característica de reposición lenta que depende de la duración de la condición de sobre-corriente y de la magnitud de la corriente de carga luego de la condición de sobre-corriente.

Tabla 40	Parámetros d	el 51G
----------	--------------	--------

Parámetros de 51 N-1/51G-2 (2d)		Rango	Incremento
Par.	De 51N-1/51N-2/51N- 3/51G(3d)	range	
Ajuste de Arranque (TC 5A)		1 a 12 A	0,1 A
Ajuste de Arranque (TC 1A)		0,2 a 2,4 A	0,02
Pickup setting (TC 0,1 A)para usar con TC ópticos de ABB		0,02 a 0,24 A	0,002A
Curvas:	Curva tipo inverso	0 a 10 dial	0,1
	Curva de tiempo definido	0 a 10 seg	0,1 seg

4.2.5 Función 50-P del TPU 2000R

La función 50-P (Sobrecorriente Instantánea) es una protección instantánea para el transformador de potencia.

Los ajustes de arranque de la función 50-P de sobrecorriente instantánea son múltiplos de los ajustes de arranque de sobrecorriente temporizada del 51-P.

Tanto para el lado de alta y baja tensión el 50-P se ajusta en base a la norma C37.91. 2008. Se escoge una corriente del 120% de la corriente de falla máxima.

Parámetros de 50P- 1/50P-2/50P-3		Rango	Incremento
Ajus	te de arranque	0,5 a 20 veces	0,1 veces
	Curva Instantánea	sin retardo	
Curvas	Curvas Instantánea inversa, Inversa de corto tiempo y Ext.Inv.de Corto Tiempo	1 a 10 del tiempo	0,1

Tabla 41 Parámetros de la función 50P

Curva de Tiempo	0 a 9,99	0.01.500
Definido	seg	0,01 seg

4.3 Protección a las alimentadoras de la Subestación Juan Bautista Aguirre

En la protección de las alimentadoras primarias de la Subestación, se dispone de un relé digital (SPAJ140C).

Esta protección fue recomendada por nosotros en conjunto con el director de la materia de graduación. Por lo cual la subestación de distribución contara con varios relés digitales (SPAJ140C), Uno en el lado de alta tensión del transformador de potencia y otros en las alimentadoras de la Subestación, En donde el funcionamiento será exactamente el mismo.

Las funciones a usar del relé digital SPAJ140 C son las siguientes:

Funciones 51-P, 50-P, 51N y 50-N.

4.4 CONCLUSIONES

1. Se verifica que nuestra recomendación de sustituir relés numéricos por los relés electromecánicos que se están usando actualmente en la S/E, conllevan una serie de beneficios, entre los que están: a) Se reduce el costo por mantenimiento a estos equipos. b) Se reduce el tiempo de ajuste de los equipos, además de que se los puede hacer de forma remota. c) La precisión de la coordinación se la puede hacer más fina y precisa, puesto que en caso de que un equipo de protección no opere correctamente ante una falla, el siguiente equipo de respaldo pueda actuar con un margen de tiempo más pequeño (alrededor de los 0,2 segundos); cosa que no era posible con los relés electromecánicos que se estaban usando.
CAPÍTULO 5

5. COORDINACIÓN DE LAS PROTECCIONES

5.1 INTRODUCCIÓN

En este capítulo se tiene como objetivo realizar una correcta coordinación de protección de los elementos de la S/E Juan Bautista Aguirre como la ayuda de los capítulos anteriores del presente trabajo, los cuales son el estudio de cortocircuito y el estudio de flujo de carga y también haciéndose uso de la herramienta computacional CYMTCC 4.4 Rev8, software que sirve para hacer estudios de protección contra sobre corriente en todo tipo de red eléctrica, siendo nuestro caso una red de distribución eléctrica.

Dicho software contiene una base de datos muy extensa que incluye más de 1500 dispositivos de protección de más de 100 fabricantes diferentes

con sus respectivas curvas características tiempo-corriente, dado esto se puede hacer una coordinación muy exitosa para la protección de nuestra subestación.

Para lograr los criterios de selectividad, estabilidad, rapidez y seguridad, la coordinación debe realizarse desde el dispositivo más alejado a coordinar siguiendo aguas arriba hacia la S/E; de tal forma que se evitan aperturas del circuito por falsos disparos, logrando proveer respaldo y aumentando la continuidad y confiabilidad del suministro de energía.

Figura 5.1 Esquema de protecciones de la S/E Juan Bautista Aguirre

Se debe puntualizar que en nuestro nuevo esquema de protecciones como se explicó en el capítulo 4 tenemos una protección de respaldo (RELE SPAJ 140C) en el lado de alta del transformador, por lo cual existirá en nuestras curvas de protección finales de las alimentadoras una curva adicional, que puesto que su ajuste es igual para los dos relés (RELE SPAJ 140C y TPU 2000R) estarán prácticamente una encima de otra, esto lo verificaremos al final de este capítulo.

5.3 CRITERIOS GENERALES DE COORDINACIÓN

Para la protección contra cortocircuitos en un sistema se emplean unidades de sobre corriente que cumplan con los siguientes requisitos:[4]

- Selectividad: Cada relé o elemento de protección (en este caso fusible) debe operar en su respectiva zona de acción.
- Simplicidad: Se debe cumplir este criterio para evitar en una misma zona redundancia en la protección.
- Tiempo de operación: El tiempo de operación se ha ajustado para cumplir los criterios de selectividad y respaldo.

 Respaldo: Los equipos de protección (relés y fusibles) dan protección primaria en la zona protegida y, de respaldo a la zona adyacente y así sucesivamente.

5.4 COORDINACIÓN DE LAS PROTECCIONES DEL SISTEMA DE DISTRIBUCIÓN

De forma general la coordinación se la debe hacer desde el punto más alejado de la carga hasta llegar a la subestación, puesto que esta disposición es la recomendable al momento de hacer ajustes en ella.

Se considera el Std IEEE 242-2001 para la coordinación de relés de sobre corriente, de la cual por criterio seleccionaremos un intervalo de entre 0.15 a 0.3 segundos en el punto de coordinación correspondiente a la contribución de la corriente de falla en la ubicación del relé [4].

Expuesto lo anterior el primer dispositivo a coordinar será el fusible que protege la troncal, seguido del relé de sobre corriente que controla el interruptor en cada alimentadora, luego seguirán el relé de sobre corriente en baja y alta tensión del transformador de potencia de la subestación.

De cada uno de estos dispositivos de protección se habló en detalle en el CAPITULO 4.

Cada una de las curvas de los dispositivos de protección tendrá que estar coordinadas tomando como referencia de protección la curva de daño del transformador.

5.4.1 Protección de Alimentadoras

Para el caso de esta subestación están protegidas con interruptores VCB controlados por relés SPAJ-140C y aguas abajo por fusibles ya sea en la troncal o en sus ramales. La empresa pública CNEL EP emplea fusibles tipo K, los mismos que cumplen las normas ANSI C37.42-1989 [5].

5.4.1.1 Criterios para selección de fusibles

Para determinar el correcto fusible se deberá tomar en cuenta la corriente de la carga, voltaje del sistema, tipo del sistema y máxima corriente de falla en el lugar donde se coloquen [3]. Además:

- La corriente de carga no debe exceder la máxima corriente continua que puede pasar por el fusible sin que éste se vea afectado.
- Un fusible puede llegar a proteger de sobrecargas, sin embargo se debe tener claro que su objetivo principal es proteger de corrientes de cortocircuito [3].

5.4.1.2 Selección de los Fusibles

Los fusibles de clase K soportan una corriente continua de 1.5 veces la corriente nominal como se observa en la Tabla 5.1.

Nominación K	Corriente continua	Nominación K	Corriente continua
	(A)		(A)
6	9	40	60
8	12	50	75
10	15	65	95
12	18	80	120
15	23	100	150
20	30	140	190
25	38	200	200
30	45		

 Tabla 42
 Máxima corriente continua de tira fusibles tipo K

La corriente de carga del circuito es necesaria para determinar el correcto fusible en los ramales, la cual debe ser hallada considerando los parámetros antes mencionados y mediante las siguientes formulas:

$$I_{1\emptyset} = \frac{s}{v} \tag{5.1}$$

$$I_{3\emptyset} = \frac{S}{\sqrt{3} \times V} \tag{5.2}$$

Específicamente la formula (5.1) se utiliza para seleccionar el fusible de la alimentadora Juan Bautista Aguirre que es un ramal monofásico, para las otras dos alimentadoras (Vernaza y Salitre) puesto que el primer fusible está a la salida de la troncal principal, estos ven la corriente total de la alimentadora, y esos datos de corriente ya lo obtuvimos del flujo de carga.

Además se admitirá una sobrecarga del 25% en cada una de las alimentadoras en la selección del fusible.

5.4.1.3 Alimentadora Juan Bautista Aguirre

Puesto que tenemos una carga de 25 KVA (asumiendo que el transformar del ramal ópera a plena carga), es un ramal monofásico y admitimos una sobrecarga del 25%, tenemos lo siguiente:

$$I_{1\emptyset} = \frac{25000}{7620} * 1,25 = 4,1 \text{ A}$$
 (5.3)

En resumen:

 Tabla 43
 Selección de fusible alimentadora JUAN

BAUTISTA AGUIRRE

Ramal	Monofásico	Sobrecarga	25%
Voltaje V	7620	I (A)	4,1
Potencia KVA	25	Fusible	6 K

Aquí se muestra la curva seleccionada del fusible marca S&C proporcionada por el software, pero debido a que es una protección "secundaria" con respecto al resto no se la tomara en cuenta en nuestra grafica de coordinación final, puesto que su curva queda muy por de las demás curvas de protección y su visualización no sería la apropiada. Como mencionamos anteriormente este fusible se encuentra a unos cuantos metros a la salida de la alimentadora, entonces tenemos que:

$$I_n = 128 * 1,25[A] = 160[A]$$
(5.4)

Como usaremos fusibles tipo K que soportan una corriente continúa de 1.5 veces la corriente nominal, tenemos:

Fusible
$$=$$
 $\frac{I_n}{1,5} = \frac{160 \text{ A}}{1,5} = 106,67$ (5.5)

En base a los cálculos este valor se aproxima tanto al fusible 65K como al 80K, bajo nuestro criterio seleccionaremos el fusible 65 K.

5.4.1.5 Alimentadora Salitre

Puesto que la corriente de operación de la alimentadora SALITRE es muy aproximada a la alimentadora VERNAZA, y basándonos en los criterios de distribución que se pretende estandarizar los equipos, se procederá a la selección del mismo fusible que el de la alimentadora VERNAZA (fusible 65K).

La Figura A7.2 muestra la curva de corriente vs tiempo seleccionado para las alimentadoras SALITRE y VERNAZA.

5.5 PROTECCIÓN DEL TRANSFORMADOR

5.5.1 Curva de daño del Transformador

Para fines de coordinación de protecciones se debe graficar la curva ANSI del transformador en las hojas de coordinación, para lo cual se clasifican los transformadores en categorías de la siguiente tabla:

Tabla 44 Categoría de transformadores de acuerdo a la norma

CATEGORIAS	KVA NOMINALES DE PLACA TRANSFORMADORES TRIFASICOS	
I	15-500	
II	501-5.000	
III	5001-30.000	
IV	ARRIBA DE 30.000	

ANSI/IEEE C57.12

El transformador de potencia de la S/E Juan Bautista Aguirre se construyó bajo la norma ANSI/IEEE C57.12. 00-2000, de tal forma que haciéndose uso de la tabla 5.4 se puede determinar que es un transformador curva ANSI/IEEE de categoría III por ser trifásico y tener una capacidad de 10.000 [KVA] en OA.

En el ANEXO 5 se muestra como calcular los puntos de dicha curva de daño del transformador de manera analítica, esto mostramos a fin de que se tenga una idea de que parámetros juegan en su construcción y que es lo que hace el software para calcularla en su algoritmo.

La figura A5.1 nos muestra la curva de daño del transformador proporcionada por el software CYMTCC 4.4 Rev8 para la S/E Juan Bautista Aguirre.

Las curvas de los demás dispositivos de protección quedarán a la izquierda y por debajo de la curva de daño del transformador de la S/E, de esta manera se protege el transformador de potencia, que en si es el principal equipo a proteger en la coordinación.

Previamente en el capítulo 4 se realizó el ajuste del relé de protección diferencial para transformadores (87), la siguiente tabla nos da los valores obtenidos de manera resumida.

Ajuste del Relé Diferencial (87)		
Transformador PAUWELS		
Alta Tensión		
Conexión en alta	DELTA	
Corriente nominal en alta	104,592 A	
Relación de CT	200/5(mr)	
Corriente en el sec del CT	2,61 A	
Corriente de Pick Up en alta(TAP)	2,7	
Baja Tensión		
Conexión en baja	Y a tierra	
Corriente nominal en baja	522,96	
Relación de CT	800/5 (mr)	
Corriente en el sec del CT	3,2685	
Corriente de Pick Up en baja(TAP)	5,9	
Error		

 Tabla 45
 Ajustes del relé diferencial 87 del transformador

Error por TAP			0,1
Error por el CT			0,05
Error Mismatch			0,00744
Error por Inrush			0,05
Ajuste Final			
Pick Up mínimo 87 T			0,3
Pend.calc 87	20,70%	Pend.Sel. 87	30%
Ajuste del 87	Г		6,19

5.5.3 Protección de Sobrecorriente

5.5.3.1 Ajuste de la función 51-P

En el capítulo 4 se detalló sobre la característica del relé de protección de sobrecorriente temporizado (51). Como resultado se tiene una curva de corriente vs tiempo (I vs t) definida, la cual nos sirve para un buen ajuste dependiendo de los parámetros de coordinación obtenidos. Dicho esto es necesario calcular las corrientes en el lado de alta (69 kV) y en el lado de baja (13,8 kV) del transformador.

$$I = \frac{12500}{\sqrt{3} * 69} = 104,59 \,A \tag{5.6}$$

$$I = \frac{12500}{\sqrt{3} * 13.8} = 522,96 [A]$$
(5.7)

Para ajustar el relé 51-P, necesitamos conocer las corrientes de carga en el secundario de los TC´s. Además se permite una corriente con un porcentaje de sobrecarga del 10%.

Las corrientes referidas en alta (69 kV) y en baja (13,8 kV) que serán los ajustes finales del 51-P son las siguientes:

$$I_{sH} = \frac{1.1 * I_{H}}{RTC_{H}} = \frac{1.1 * 104.59}{200/5} = 2.88[A]$$
(5.8)

$$I_{sL} = \frac{1.1 * I_L}{RTC_L} = \frac{1.1 * 522.96}{800/5} = 3.56[A]$$
(5.9)

Se seleccionara una curva tipo extremadamente inversa (EI) puesto que se lo coordinara con una curva también EI del relé SPAJ-140C en las alimentadoras de la Subestación. El ajuste del dial de tiempo (TD) en el lado de alta (69 kV) será de 0,5 seg y en el lado de baja (13,8 kV) será de 0,2 seg, con esto se garantiza en cumplimiento de los dos objetivos primordiales, estar por debajo de la curva de daño del transformador y mantener un intervalo de coordinación entre los relés de aproximadamente 0,2 seg. La siguiente tabla muestra el ajuste final de 51-P:

 Tabla 46
 Ajustes del relé diferencial 87 del transformador

Ajustes 51-P	Lado De Alta	Lado De Baja	
lpick-up			
PRIMARIO	115,05 [A]	575,26 [A]	
lpick-up			
SECUNDARIO	2,87 [A]	3,6 [A]	
TC´s	200/5	800/5	
TD	0,5	0,2	

5.5.3.2 Ajuste de la función 50-P

El ajuste del relé de sobrecorriente instantáneo de fase (50-P) se lo realiza a partir de los valores máximos de corrientes de falla en el transformador, estos datos fueron obtenidos anteriormente en el capítulo 3. El ajuste lo realizamos a partir de la siguiente expresión:

$$I_{\text{pick-up(ins)}} = 1,2 I_{\text{max-falla}}$$
(5.10)

En el lado de alta tensión del transformador tenemos que la máxima corriente de falla es 2440 [A] entonces tenemos que:

$$I_{pick-up(ins)} = 1,2 * 2440 = 2928 A$$
 (5.11)

Por lo cual la corriente referida al secundario será:

$$I_{\rm sec} = \frac{2928}{200/5} = 73.2 \, \text{A} \tag{5.12}$$

De igual forma en el lado de baja tensión del transformador tenemos que la máxima corriente de falla es 4888 [A] entonces tenemos que:

$$I_{\text{pick-up(ins)}} = 1,2 * 4888 = 5865,6 \text{ A}$$
 (5.13)

Por lo cual la corriente referida al secundario será:

$$I_{sec} = \frac{5865.6}{800/5} = 36,66 \text{ A}$$
(5.14)

5.5.3.3 Ajuste de la función 51-G

En el capítulo 4 se detalló sobre la característica del relé de protección de sobrecorriente temporizada de tierra o (51-G).

El ajuste del TAP del 51-G se lo realiza de acuerdo a la norma C37.91.2008, la cual nos sugiere un valor del 10% de la corriente de plena carga.

Entonces en nuestro caso tenemos que:

$$I_{tap-51G} = 0,10 * I_{pc} = 52,3$$
 (5.15)

Puesto que este porcentaje de corriente se supone que es el que circula a través del neutro, tenemos que tomar en cuenta el TC del transformador de potencia, que tiene una relación de 200:5, entonces tenemos que la corriente en el secundario del CT es:

$$I_{\text{sec}} = \frac{52,3}{200/5} = 1,3 \text{ A}$$
(5.16)

En el capítulo 4 se detalló sobre la característica de la función de sobrecorriente temporizada de secuencia negativa o (46).

La norma C37.91.2008 sugiere tomar un 58% de la corriente máxima de carga,

Debido a que en las fallas de línea a línea, la corriente de secuencia negativa es el 58% de la corriente de la línea.

Dicho esto tenemos que las corrientes en el lado de alta (69 KV) y en el lado de baja (13,8 KV) son las siguientes:

$$I_{\rm H} = \frac{12500}{\sqrt{3} * 69} * 0,58 = 60,66 \, \text{A}$$
(5.17)

$$I_{\rm L} = \frac{12500}{\sqrt{3} * 13.8} * 0.58 = 303.32 \,\text{A} \tag{5.18}$$

Estas corrientes deben de referirse al secundario de los CT´s y tenemos que:

$$I_{\rm sec-H} = \frac{60,66}{200/5} = 1,52 \, \text{A} \tag{5.19}$$

$$I_{\text{sec}-L} = \frac{303,32}{800/5} = 1,89 \text{ A}$$
 (5.20)

Esta tabla muestra el resumen del ajuste de la función 46:

Ajustes 46Lado De Alta 46-1I primario60,66 [A]I secundario1.52 [A]		Lado De Baja 46-2	
l primario	60,66 [A]	303,32[A]	
I secundario	1,52 [A]	1,89 [A]	

 Tabla 47
 Ajustes de la función 46

5.5.3.5 Ajuste de los relés SPAJ-140C en las alimentadoras

Para ajustar los relés SPAJ-140C en las alimentadoras, se elegirá la curva tipo extremadamente inversa, y procedemos a seleccionar las corrientes máximas en cada una de las alimentadoras y la multiplicamos por un factor de sobrecarga permitido, el cual lo seleccionamos de un valor de 10%.

La siguiente tabla nos da el resumen detallado del ajuste de sobrecorriente de tiempo inverso (51) del Relé SPAJ-140C en cada una de las alimentadoras.
 Tabla 48
 Ajustes del 51 en las alimentadoras

Ajuste Relé Spaj-140ei			
Alimentadora Juan Bautista Aguirre			
Ajustes 51	Valores		
Ipick-Up PRIMARIO+ 10% Sobrecarga	7,37 [A]		
Ipick-Up SECUNDARIO	0,737 [A]		
TC´S	50/5		
Td	0,4		
Alimentadora Salitre			
Ajustes 51	Valores		
Ipick-Up PRIMARIO+ 10%	140,8		
Sobrecarga	[A]		
Ipick-Up SECUNDARIO	3,52 [A]		
TC´S	200/5		
Td	0,6		
Alimentadora Vernaza			
Ajustes 51	Valores		
Ipick-Up PRIMARIO+ 10%	140,8		
Sobrecarga	[A]		
Ipick-Up SECUNDARIO	3,52 [A]		
TC´S	200/5		
TD	0,6		

De igual manera también se calcularon los ajustes para el relé instantáneo de las alimentadoras (50), la siguiente tabla nos da un resumen de estos ajustes:

Tabla 49 Ajustes del 50 en las alimentadoras

Ajuste Relé Spaj-140c			
Alimentadora Juan Bautista Aguirre			
Ajustes 50 Valores			
Ipick-Up PRIMARIO	5865,6 [A]		
Ipick-Up SECUNDARIO	586,56[A]		
TC´S	50/5		
Alimentadora Salitre			
Ajustes 50	Valores		
Ipick-Up PRIMARIO	5865,6 [A]		
Ipick-Up SECUNDARIO	146,64 [A]		
TC´S	200/5		
Alimentadora Ve	ernaza		
Ajustes 50	Valores		
Ipick-Up PRIMARIO	5865,6 [A]		
Ipick-Up SECUNDARIO	146,64 [A]		
TC´S 200/5			

5.6 RESULTADOS DE LA COORDINACIÓN DE LOS DISPOSITIVOS DE PROTECCIÓN

5.6.1 Coordinación de la alimentadora JUAN BAUTISTA AGUIRRE

En la figura A8.1 se muestran los resultados de la coordinación de los equipos de protección de la alimentadora JUAN BAUTISTA

AGUIRRE, sus respectivas curvas reflejan un cuadro de dialogo en el que se presentan sus ajustes.

Las figuras 5.2, 5.3 y 5.4 nos muestran respectivamente el intervalo de tiempo en el que actúan las protecciones, justo cuando se produce la máxima corriente de falla 4888 [A], tanto para la curva de las alimentadoras con la curva de baja tensión (13,8 kV) y la curva de baja tensión (13,8 kV) con la curva de alta tensión (69 kV).

argen del dispositivo		×
Modo seguimiento: Definido por el usu	iario	Reporte
Tiempo:	no	
Dispositivo	Segundos	Corriente [A]
2:RELAY ABB SPAJ140C EI 3:RELAY ABB SPAJ 140 EI 4:RELAY ABB SPAJ 140 EI 7:RELAY ABB DPU 2000R EI 1:TRANSFORMER(Damage)	0.1000 0.2941 0.5613 0.6159 3.4679	No encontradol No encontradol No encontradol No encontradol No encontradol
Dibujar en trazado	írculo Margen del disposit	No encontrado
Mostrar ✓ Dispositivo no encontrado ✓ Dibujar círculo(s) ✓ Dibujar línea horizontal ✓ Dibujar línea vertical	No mostrar los dispositivos o Ciclos Cambio en la curva Pulse 1r Cambio en la curva Pulse 2c	cultados Color Precisión Io 9.9999 V

Figura 5.2 Intervalo de tiempo entre curva de la alimentadora y

curva en BT del transformador

	×
	▼ Reporte
Segundos	Corriente [A]
0.1000	iNo encontrado!
0.2941	jNo encontradol
0.5613	jNo encontrado!
0.6159	jNo encontrado!
Margen del dispositi	vo
dT: 0.2672 [s]	No encontrado
r <mark>ar los dispositivos o</mark> en la curva Pulse 1ro en la curva Pulse 2d	Color Precisión 9.9999
	Segundos 0.1000 0.2541 0.5513 0.6159 3.4679 Margen del dispositi dT: 0.2672 [s] rar los dispositivos or en la curva Pulse 1r en la curva Pulse 2d

CYMTCC 4.5R13 - [JBAGUIRREFINAL.tcc]			
👫 Archivo Modificar Crear Ver Modo	Opciones Reportes	análisis A	rcFlash Herra
Margen del dispositivo			X
Modo seguimiento: Definido por el usuario		•	Reporte
Tiempo: Fino Corriente: 4888 Calc			
Dispositivo	Segundos	Corriente [A]	
2-RELAY ABB SPAJ140C EI	0.1000	jNo encontrado	!
3-RELAY ABB DPU 2000R EI	0.2941	jNo encontrado	!
4-RELAY ABB SPAJ 140 EI	0.5613	jNo encontrado	1
7-RELAY ABB DPU 2000R EI	0.6159	jNo encontrado	!
Dibuiar en trazado	targen del dispositivo		
Línea vertical Línea horizontal Círculo	dT: 0.3218 [s]	No enc	ontrado
Mostrar ✓ Dispositivo no encontrado ✓ Dibujar círculo(s) ✓ Dibujar línea horizontal ✓ Dibujar línea vertical ✓ Cambio en	r los dispositivos ocultad n la curva Pulse 1ro n la curva Pulse 2do	los 9.9	Color Precisión 999 🗨

del transformador

Figura 5.4 Intervalo de tiempo entre curva de BT y curva en AT

(RELE TPU 2000R) del transformador

En la figura A8.2 se muestran los resultados de la coordinación de los equipos de protección de la alimentadora VERNAZA, sus respectivas curvas reflejan un cuadro de dialogo en el que se presentan sus ajustes.

Las figuras 5.5, 5.6, 5,7 y 5.8 nos muestran el intervalo de tiempo en el que actúan las protecciones, justo cuando se produce la máxima corriente de falla 4888 [A], tanto para la curva de las alimentadoras con la curva de baja tensión (13,8 kV), la curva de baja tensión (13,8 kV) con la curva de alta tensión (69 kV) y finalmente entre la curva del fusible y la curva de la alimentadora.

rgen del dispositivo			
Modo seguimiento: Definido por el usu	Jario	▼ Re	eporte
Tiempo:	no		
Dispositivo	Segundos	Corriente [A]	
7-FUSE S&C SMU K(min)	0.0100	jNo encontrado!	
7-FUSE S&C SMU K(max)	0.0305	jNo encontrado!	
3-RELAY ABB SPAJ 140 EI 3-RELAY ABB DPU 2000B EI	0.2004	iNo encontrado!	
6-RELAY ABB SPAJ 140 EI	0.5613	iNo encontrado!	
8-RELAY ABB DPU 2000R EI	0.6517	No encontrado!	
I-I KANSFURMER(Damage)	3.4893	jNo encontrado!	
Dibujar en trazado	- diarargen del dispositi	vo	
Línea vertical Línea horizontal Ci	írculo dT: 0.1699 [s]	No encontra	obe
Mostrar			
🔽 Dispositivo no encontrado 🛛 📃	No mostrar los dispositivos oc	cultados Cole	or
✓ Dibujar círculo(s)	Ciclos	Preci	sión
Dibujar línea horizontal	Cambio en la curva Pulse Tro Cambio en la curva Pulse 2d	9.9999	•
I vibujar linea vertical	Campio en la Cuiva Fuise 20	10.0000	

rgen del dispositivo			×
Modo seguimiento: Definido por el usuario		•	Reporte
Tiempo:			
Dispositivo	Segundos	Corriente [A]	
7-FUSE S&C SMU K(min) 7-FUSE S&C SMU K(max)	0.0100 0.0305	jNo encontrado! iNo encontrado!	
2-RELAY ABB SPAJ 140 EI 3-RELAY ABB DPU 2000R EI	0.2004 0.4016	jNo encontrado! jNo encontrado!	
6-RELAY ABB SPAJ 140 EI 8-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage)	0.5613 0.6517 3.4893	jNo encontrado! jNo encontrado! jNo encontrado!	
Dibujar en trazado	Margen del disposit dT: 0.2012 [s	No enco	ontrado
Mostrar			
Dispositivo no encontrado	trar los dispositivos o	cultados	Color
 ✓ Dibujar círculo(s) ✓ Dibujar línea horizontal ✓ Cambio 	en la curva Pulse 1n	P	recisión
🔽 Dibujar línea vertical 🔲 Cambio	en la curva Pulse 2c	lo 9.99	999 💌

la alimentadora

Figura 5.6 Intervalo de tiempo entre curva de BT y curva en AT

(Relé SPAJ 140C) del transformador

viodo seguimiento: U prinido por	el usuario		
liempo:	🗖 Fino		
Corriente: 4888	Calc		
Dispositivo		Segundos	Corriente [A]
2-RELAY ABB SPAJ140C EI		0.1000	jNo encontrado!
3-RELAY ABB DPU 2000R EI		0.2941	jNo encontrado!
		0 5010	(Managementer del
4-RELAY ABB SPAJ 140 EI		0.5613	INO encontrado!
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage)		0.5513 0.6159 3.4679	jNo encontrado! jNo encontrado! jNo encontrado!
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage)		0.6159 3.4679	No encontradol No encontradol
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage) Dibujar en trazado	d or a d	0.6159 3.4679	No encontrado!
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage) Dibujar en trazado Línea vertical	Círculo	0.05139 3.4679 Margae del disposit dT: 0.3218 [s	No encontrado
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage) Dibujar en trazado Línea vertical	al <u>Círculo</u>	0.6159 3.4679 Marcen del disposi dT: 0.3218 [s	No encontradol
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage) Dibujar en trazado Línea vertical Línea horizonta Mostrar V Dispositivo no encontrado	Círculo	Margae del disposit dT: 0.3218 (s	No encontrado No encontrado No encontrado No encontrado cultados
4-RELAY ABB SPAJ 140 EI 7-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage) Dibujar en trazado Línea vertical Línea horizonta Mostrar ✓ Dispositivo no encontrado ✓ Dibujar cínculo(s)	Círculo	Marces del disposit dT: 0.3218 (s	No encontrado No encontrado No encontrado No encontrado Color Precisión

(Relé SPAJ 140C) del	transformador
----------------------	---------------

Margen del dispositivo		×
Modo seguimiento: Definido por el usuario		▼ Reporte
Tiempo: Fino Corriente: 4888 Calc		
Dispositivo	Segundos	Corriente [A]
7-FUSE S&C SMU K(min) 7-FUSE S&C SMU K(max) 2-RELAY ABB SPAJ 140 EI 3-RELAY ABB SPAJ 2000R EI 6-RELAY ABB SPAJ 140 EI	0.0100 0.0305 0.2004 0.4016 0.6175	No encontrado! No encontrado! No encontrado! No encontrado! No encontrado!
8-RELAY ABB DPU 2000R EI 1-TRANSFORMER(Damage)	0.6338 3.4893	¡No encontrado! ¡No encontrado!
Dibujar en trazado Línea vertical Línea horizontal Círculo	Margen der dispositi dT: 0.2322 [s]	No encontrado
Mostrar Dispositivo no encontrado Dibujar círculo(s) Dibujar línea horizontal Dibujar línea vertical Cambio	rar los dispositivos o en la curva Pulse 1 ro en la curva Pulse 2d	Color Precisión 9.9999 -
		/

Figura 5.8 Intervalo de tiempo entre curva de BT y curva en AT

(Relé TPU 2000R) del transformador

5.6.3 Coordinación de la alimentadora SALITRE

Puesto que las características de carga de la alimentadora SALITRE y la alimentadora VERNAZA son parecidas, las curvas de coordinación son las mismas, y a fin de estandarizar las alimentadoras, se pueden utilizar sus mismas curvas sin que haya ningún inconveniente en la coordinación.

5.7 Conclusiones

- En la alimentadora JUAN BAUTISTA AGUIRRE no se coordinó la curva del fusible, puesto que esta no se encontraba en la troncal principal, sino en un ramal, y dicha coordinación sería mejor realizarla al momento de coordinar ramales, más no al momento de coordinar la S/E como tal.
- Las curvas de coordinación que se obtuvieron en el presente capitulo son producto del resultado final del trabajo en el que se tomó en cuenta toda la información suministrada, como objetivo de tener la coordinación más precisa posible.

CONCLUSIONES Y RECOMENDACIONES

- 1. Se verifica que nuestra recomendación de sustituir relés numéricos por los relés electromecánicos que se están usando actualmente en la S/E, conllevan una serie de beneficios, entre los que están: a) Se reduce el costo por mantenimiento a estos equipos. b) Se reduce el tiempo de ajuste de los equipos, además de que se los puede hacer de forma remota. c) La precisión de la coordinación se la puede hacer más fina y precisa, puesto que en caso de que un equipo de protección no opere correctamente ante una falla, el siguiente equipo de respaldo pueda actuar con un margen de tiempo más pequeño (alrededor de los 0,2 segundos); cosa que no era posible con los relés electromecánicos que se estaban usando.
- 2. La capacidad del transformador de potencia es de 10 [MVA], que en comparación de la carga máxima que se maneja (F.U. del 53,96%)

operando sus tres alimentadoras, se puede determinar un crecimiento de carga en la S/E, y por ende un cambio en la configuración de la coordinación de protección; tomando en cuenta esto se utilizó transformadores de corriente con multi-taps a fin de poder cambiar también su relación y ajustar los relés numéricos con los nuevos parámetros.

- 3. Teniendo una conexión Delta-Estrella aterrizada en el transformador, el valor de corriente más elevado para caso de fallas, obtenido mediante el análisis del flujo, fue el correspondiente a una falla trifásica en el lado primario y una falla de línea a tierra en el secundario, ya que en esta S/E no se hace uso de una resistencia a tierra para limitar dicha corriente de falla de línea a tierra a la corriente de falla trifásica.
- 4. Se recomienda hacer el cambio de los relés electromecánicos a relés numéricos, ya que nos brindan una serie de beneficios tanto para el sistema, como para las personas que operan con dichos equipos.
- Incluir el relé PU-2000R para la protección diferencial del transformador Incluir en las alimentadoras los relés SPAJ-140C reemplazando a los relés Mitsubishi electromecánicos que están instalados actualmente en la S/E.

- Hacer una adecuada instalación de un sistema de puesta a tierra de las S/E, ya que actualmente no cuenta con una debida instalación, lo que puede poner en riesgo a los equipos y al personal de la S/E.
- 7. Se recomienda la instalación de una resistencia a tierra en el lado del secundario del transformador de potencia, a fin de limitar la corriente de falla de línea a tierra con la corriente de falla trifásica.

BIBLIOGRAFÍA

 [1] Cyme International T&D Inc, Análisis básico de CYMDIST – Guía de Usuario CYME 5.04, <u>http://cyme.com</u>, fecha de consulta Abril 2014.

[2] ABB Inc, Manual de Instrucciones TPU2000R Unidad de Protección de Transformadores,<u>http://es.scribd.com/doc/57486120/tpu2000R-Unidad-de-</u> <u>Proteccion-de-Transformadores#scribd</u>, edición Diciembre 2001, fecha de consulta Abril 2014.

[3] J. Lewis Blackburn, Protective Relaying: Principles and applications, tercera edición, fecha de consulta Mayo 2014.

[4] Enrique Harper, Protección de instalaciones eléctricas industriales y comerciales, Segunda Edición, fecha de consulta Mayo 2014.

[5] ABB Inc, Manual ABB Relé combinado de sobre corriente y falla a tierra, Versión C 2007-04-04

http://www09.abb.com/global/scot/scot229.nsf/veritydisplay/417130481fd1cb 0cc125730000351eb8/\$file/FM_SPAJ140C_750208_EScab.pdf, fecha de consulta Mayo 2014. [6] IEEE Southern Alberta Section, IEEE Guide for Protecting Power Transformers,http://sas.ieee.ca/pesias/SAS_Nov_Seminar_Part1Revg1.pdf ,30 mayo 2008, fecha de consulta junio 2014.

[7] ABB Inc, Gas insulated switch-disconnectors.
 <u>https://library.e.abb.com/public/889544de255d596bc12576dd00574ae8/LE_</u>
 <u>SHS2(EN)F_1VCP0000471003.pdf?filename=LE_SHS2(EN)F_1VCP00004</u>
 <u>7-1003.pdf,</u> fecha de consulta julio 2014.

ANEXOS

ANEXO 1

Histórico De Carga De La Subestación De Distribución Juan Bautista Aguirre

En este anexo se presenta los históricos de demanda de los meses marzo y mayo del 2014 de la S.E de distribución Juan Bautista Aguirre y de sus 3 alimentadoras con sus demandas máximas y mínimas.[10]

DATOS REGISTRADOS				FP MAX
HORA	kW	kVAR	kVA	FP
0:00:00	2608,61	1106,73	2833,69	0,921
0:10:00	2582,83	1107,18	2810,15	0,919
0:20:00	2548,57	1097,69	2774,92	0,918
0:30:00	2524,74	1092,44	2750,96	0,918
0:40:00	2499,59	1076,27	2721,45	0,918
0:50:00	2477,83	1062,86	2696,17	0,919
1:00:00	2459,09	1059,12	2677,48	0,918
1:10:00	2447,72	1058,48	2666,78	0,918
1:20:00	2436,28	1055,94	2655,27	0,918
1:30:00	2436,01	1066,96	2659,43	0,916
1:40:00	2425,00	1059,16	2646,22	0,916
1:50:00	2392,84	1038,68	2608,56	0,917
2:00:00	2392,06	1042,68	2609,43	0,917

 Tabla 50
 Histórico de carga de la S/E Juan Bautista Aguirre

2:10:00	2388,81	1047,16	2608,25	0,916
2:20:00	2390,17	1048,87	2610,18	0,916
2:30:00	2393,61	1050,88	2614,14	0,916
2:40:00	2380,23	1047,98	2600,73	0,915
2:50:00	2377,06	1057,69	2601,76	0,914
3:00:00	2368,64	1042,39	2587,87	0,915
3:10:00	2372,26	1049,02	2593,86	0,915
3:20:00	2368,93	1050,84	2591,55	0,914
3:30:00	2355,69	1037,75	2574,14	0,915
3:40:00	2345,60	1023,09	2559,02	0,917
3:50:00	2356,24	1030,26	2571,64	0,916
4:00:00	2383,10	1045,03	2602,17	0,916
4:10:00	2385,27	1037,68	2601,21	0,917
4:20:00	2404,19	1041,16	2619,96	0,918
4:30:00	2404,29	1013,91	2609,36	0,921
4:40:00	2448,42	1023,09	2653,58	0,923
4:50:00	2499,41	1039,24	2706,86	0,923
5:00:00	2582,53	1064,17	2793,20	0,925
5:10:00	2661,64	1060,57	2865,20	0,929
5:20:00	2739,10	1039,78	2929,83	0,935
5:30:00	2844,72	1049,58	3032,18	0,938
5:40:00	2962,24	1047,18	3141,92	0,943
5:50:00	3095,17	1048,16	3267,85	0,947
6:00:00	3203,17	1046,24	3369,72	0,951
6:10:00	3230,68	1049,58	3396,91	0,951
6:20:00	3215,56	1064,21	3387,09	0,949
6:30:00	3131,60	1053,32	3304,00	0,948
6:40:00	3086,76	1066,77	3265,91	0,945
6:50:00	3024,39	1072,07	3208,79	0,943
7:00:00	2937,30	1074,87	3127,82	0,939
7:10:00	2856,81	1082,59	3055,09	0,935
7:20:00	2796,95	1096,77	3004,31	0,931
7:30:00	2750,76	1098,11	2961,86	0,929
7:40:00	2714,17	1109,87	2932,34	0,926
7:50:00	2709,90	1131,39	2936,63	0,923
8:00:00	2710,42	1166,50	2950,80	0,919

8:10:00	2762,75	1195,20	3010,21	0,918
8:20:00	2762,12	1162,07	2996,64	0,922
8:30:00	2757,74	1159,98	2991,77	0,922
8:40:00	2795,74	1205,82	3044,72	0,918
8:50:00	2809,05	1212,52	3059,58	0,918
9:00:00	2810,11	1193,31	3052,99	0,920
9:10:00	2833,67	1225,47	3087,37	0,918
9:20:00	2862,73	1254,43	3125,52	0,916
9:30:00	2861,31	1235,32	3116,60	0,918
9:40:00	2878,14	1233,91	3131,52	0,919
9:50:00	2687,89	1111,36	2908,60	0,924
10:00:00	2695,49	1109,72	2915,00	0,925
10:10:00	2700,65	1101,71	2916,74	0,926
10:20:00	2726,49	1102,79	2941,08	0,927
10:30:00	2782,54	1108,89	2995,37	0,929
10:40:00	2848,32	1141,54	3068,58	0,928
10:50:00	2876,14	1156,36	3099,92	0,928
11:00:00	2873,59	1171,89	3103,38	0,926
11:10:00	2878,07	1176,60	3109,30	0,926
11:20:00	2891,91	1173,09	3120,81	0,927
11:30:00	2927,32	1176,01	3154,72	0,928
11:40:00	2926,36	1175,25	3153,54	0,928
11:50:00	2906,17	1160,80	3129,43	0,929
12:00:00	2905,96	1161,43	3129,48	0,929
12:10:00	2892,65	1183,65	3125,46	0,926
12:20:00	2892,24	1184,54	3125,42	0,925
12:30:00	2881,27	1179,73	3113,44	0,925
12:40:00	2896,87	1197,94	3134,80	0,924
12:50:00	2893,25	1198,13	3131,53	0,924
13:00:00	2907,26	1194,75	3143,19	0,925
13:10:00	2920,37	1193,33	3154,79	0,926
13:20:00	2927,29	1189,85	3159,87	0,926
13:30:00	2949,59	1181,86	3177,57	0,928
13:40:00	2957,39	1178,79	3183,67	0,929
13:50:00	2985,69	1177,59	3209,53	0,930
14:00:00	2994,41	1198,89	3225,51	0,928
14:10:00	2956,91	1184,10	3185,19	0,928
----------	---------	---------	---------	-------
14:20:00	2979,19	1190,11	3208,12	0,929
14:30:00	2958,88	1173,02	3182,94	0,930
14:40:00	2990,72	1230,48	3233,97	0,925
14:50:00	3018,64	1237,96	3262,64	0,925
15:00:00	3012,51	1234,36	3255,60	0,925
15:10:00	3015,09	1250,70	3264,21	0,924
15:20:00	2929,16	1212,14	3170,05	0,924
15:30:00	2769,39	1175,92	3008,70	0,920
15:40:00	2720,84	1170,66	2962,01	0,919
15:50:00	2791,85	1195,58	3037,09	0,919
16:00:00	2779,12	1173,33	3016,67	0,921
16:10:00	2773,92	1182,29	3015,39	0,920
16:20:00	2753,77	1192,88	3001,05	0,918
16:30:00	2763,32	1198,97	3012,22	0,917
16:40:00	2743,61	1209,53	2998,41	0,915
16:50:00	2858,40	1284,01	3133,55	0,912
17:00:00	2885,65	1300,79	3165,29	0,912
17:10:00	2862,85	1297,66	3143,23	0,911
17:20:00	2890,00	1302,22	3169,85	0,912
17:30:00	2869,57	1316,60	3157,19	0,909
17:40:00	2905,02	1327,91	3194,14	0,909
17:50:00	2997,99	1362,90	3293,25	0,910
18:00:00	3060,41	1376,33	3355,67	0,912
18:10:00	3155,12	1385,28	3445,88	0,916
18:20:00	3365,16	1401,86	3645,61	0,923
18:30:00	3865,79	1486,03	4141,68	0,933
18:40:00	4349,44	1543,98	4615,67	0,942
18:50:00	4736,23	1504,99	4969,69	0,953
19:00:00	4996,42	1492,14	5214,53	0,958
19:10:00	5137,96	1463,39	5342,35	0,962
19:20:00	5196,69	1461,24	5398,22	0,963
19:30:00	5196,36	1470,24	5400,55	0,962
19:40:00	5330,00	1633,13	5574,63	0,956
19:50:00	5211,35	1503,20	5423,83	0,961
20:00:00	5156,40	1468,99	5361,58	0,962

20:10:00	5076,82	1433,80	5275,41	0,962
20:20:00	4951,92	1430,84	5154,52	0,961
20:30:00	4844,94	1361,03	5032,49	0,963
20:40:00	4770,24	1344,88	4956,20	0,962
20:50:00	4685,80	1330,38	4871,01	0,962
21:00:00	4618,94	1328,91	4806,34	0,961
21:10:00	4496,40	1295,29	4679,26	0,961
21:20:00	4332,40	1262,63	4512,66	0,960
21:30:00	4169,53	1239,10	4349,77	0,959
21:40:00	4037,63	1234,65	4222,22	0,956
21:50:00	3878,06	1241,66	4072,00	0,952
22:00:00	3738,20	1230,17	3935,42	0,950
22:10:00	3563,57	1209,87	3763,36	0,947
22:20:00	3429,81	1203,26	3634,79	0,944
22:30:00	3303,77	1210,08	3518,45	0,939
22:40:00	3208,04	1216,00	3430,78	0,935
22:50:00	3115,85	1213,70	3343,91	0,932
23:00:00	3057,91	1229,81	3295,97	0,928
23:10:00	2992,30	1222,36	3232,34	0,926
23:20:00	2931,00	1198,66	3166,66	0,926
23:30:00	2866,66	1171,70	3096,90	0,926
23:40:00	2836,02	1199,90	3079,43	0,921
23:50:00	2808,31	1198,54	3053,39	0,920

	MA	RZO	MAYO		
Alimentadoras	Pmax (Kw)	Qmax (kvar)	Pmin (Kw)	Qmin (Kvar)	
	4972,58	1848,55	288,716	163,707	
Juan Bautista Aguirre	146,7	59,0962	41,875	25,073	
Salitre	1988,0	772,124	158,68	91,641	
Vernaza	2837,8	1017,330	88,158	46,993	

 Tabla 51
 Potencias Máximas y Mínimas de las Alimentadoras de la S/E Juan

Bautista Aguirre

Estudio de corto circuito

El estudio de Corto Circuito se realizó utilizando la herramienta computacional CYME V.5.04 ANALISIS BÁSICO DE CYMDIST, la cual nos proporcionara las corrientes para cada tipo de falla descrita en la sección 3.2, y se obtuvieron los resultados mostrados en los gráficos correspondientes a las figuras A2.1 y A2.2.

Se utiliza como tensión de pre falla la tensión de servicio que se midió en la barra de 69[KV].

En el estudio de corto circuito para cada tipo de falla se realizó una medición en cada fase: A, B y C.

Figura A2.1 Estudio de Corto Circuito

Figura A2.2 Cortocircuito en Alimentadora J. B. Aguirre

Cuadro de cortocircuito RAMAL 58759_MTA CALIBRE CONDUCTOR ACSR.3/0,ACSR.3/0,DEFAU CORD X 629175,087 COORD Y 979685,650 R0 ohm 0,1081 X0 ohm 1,2576 R1 ohm 0,2449 X1 ohm 1,9218 LLL 4279 LLG 4689 LL 3706 LG 4842 LLG 4279,11 MVAcc-LLT 139 MVAcc-LL 92 MVAcc-SF 106	Entrar en vista
MVAcc-LL 92 MVAcc-1FT 120 MV/acc-2F 100	
SE_JBAGU	

Figura A2.3Cortocircuito en Alimentadora Salitre

Figura A2.4 Cortocircuito en Alimentadora Vernaza

Estudio de Flujo de Carga

El estudio de Flujo de Carga se realizó utilizando la herramienta computacional CYME V.5.04 ANALISIS BÁSICO DE CYMDIST, la cual nos proporcionara voltajes, corrientes y potencias en las barras de 69 y 13,8 Kv en condiciones de máxima y mínima carga.

A continuación se presentan detalladamente los resultados del flujo de carga tanto en mínima como en máxima carga en la subestación de distribución Juan Bautista Aguirre.

Figura A3.1 Flujo de Potencia para máxima carga

Figura A3.2 Flujo de Potencia para carga mínima.

Flujo de Potencia a Carga Mínima				
		Barra de	69 KV	
Easo	Voltaio	Corrignto	Potencia	Potencia
rase		Comence	Activa	reactiva
	r.v	A	KW	KVAR
Α	67,9	2,9	99,6	54,8
В	67,9	2,9	99,6	54,8
С	67,9	2,9	99,6	54,8
		Barra de 1	13,8 KV	
Face	Valtaia	Corrignto	Potencia	Potencia
газе	voltaje	Corriente	Activa	reactiva
	r.v	A	KW	KVAR
Α	13,9	13,8	96,2	54,6
В	13,9	13,8	96,2	54,6
С	13,9	13,8	96,2	54,6
	Alimen	tadora Juan	Bautista A	guirre
Easo	Voltaio	Corrignto	Potencia	Potencia
газе		Corriente A	Activa	reactiva
	r v	~	KW	KVAR
Α	13,8	2	14	8,4
В	13,8	2	14	8,4
С	13,8	2	14	8,4
		Alimentado	ra Salitre	
Faso	Voltaio	Corriente	Potencia	Potencia
1 430	KV	Δ	Activa	reactiva
		<u>^</u>	KW	KVAR
Α	13,9	7,6	52,9	30,5
В	13.9	76	52.9	30.5
^	,.	1,0	02,0	00,0
U U	13,9	7,6	52,9	30,5
	13,9	7,6 Alimentador	52,9 a Vernaza	30,5
Fase	13,9 Voltaie	7,6 Alimentador	52,9 a Vernaza Potencia	30,5 Potencia
Fase	13,9 Voltaje	7,6 Alimentador Corriente	52,9 a Vernaza Potencia Activa	30,5 Potencia reactiva
Fase	13,9 Voltaje KV	7,6 Alimentador Corriente A	52,9 a Vernaza Potencia Activa KW	30,5 Potencia reactiva KVAR
Fase	13,9 Voltaje KV 13,9	7,6 Alimentador Corriente A 4,1	52,9 a Vernaza Potencia Activa KW 29,4	30,5 Potencia reactiva KVAR 15,7
Fase A B	13,9 Voltaje KV 13,9 13,9	7,6 Alimentador Corriente A 4,1 4,1	52,9 a Vernaza Potencia Activa KW 29,4 29,4	30,5 Potencia reactiva KVAR 15,7 15,7

 Tabla 52
 Resumen de flujo de potencia a carga mínima

Flujo de Potencia a Carga Máxima					
		Barra	de 69 KV		
Easo	Voltaio	Corrignto	Potencia	Potencia	
rase			Activa	reactiva	
	ΓV	A	KW	KVAR	
Α	67,3	46,3	1665,8	678,5	
В	67,3	46,3	1665,8	678,5	
С	67,3	46,3	1665,8	678,5	
		Barra d	le 13,8 KV		
Faso	Voltaio	Corrignto	Potencia	Potencia	
1 430			Activa	reactiva	
	ΝV	A	KW	KVAR	
Α	13,6	225,3	1657,5	616	
В	13,6	225,3	1657,5	616	
С	13,6	225,3	1657,5	616	
	Alime	entadora Ju	an Bautist	a Aguirre	
Fase	Voltaie	Corriente	Potencia	Potencia	
	KV	Δ	Activa	reactiva	
		~	KW	KVAR	
Α	13,6	6,7	48,9	19,7	
A B	13,6 13,6	6,7 6,7	48,9 48,9	19,7 19,7	
A B C	13,6 13,6 13,6	6,7 6,7 6,7	48,9 48,9 48,9	19,7 19,7 19,7	
A B C	13,6 13,6 13,6	6,7 6,7 6,7 Alimenta	48,9 48,9 48,9 dora Saliti	19,7 19,7 19,7 19,7 re	
A B C Fase	13,6 13,6 13,6 Voltaie	6,7 6,7 6,7 Alimenta	48,9 48,9 48,9 dora Saliti Potencia	19,7 19,7 19,7 re Potencia	
A B C Fase	13,6 13,6 13,6 Voltaje КV	6,7 6,7 Alimenta Corriente	48,9 48,9 dora Saliti Potencia Activa	19,7 19,7 19,7 re Potencia reactiva	
A B C Fase	13,6 13,6 13,6 Voltaje KV	6,7 6,7 Alimenta Corriente A	48,9 48,9 dora Saliti Potencia Activa KW	19,7 19,7 19,7 re Potencia reactiva KVAR	
A B C Fase A	13,6 13,6 13,6 Voltaje KV 13,6	6,7 6,7 Alimenta Corriente A 90,6	48,9 48,9 dora Saliti Potencia Activa KW 662,7	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3	
A B C Fase A B	13,6 13,6 13,6 Voltaje KV 13,6 13,6	6,7 6,7 Alimenta Corriente A 90,6 90,6	48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3	
A B C Fase A B C	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6	48,9 48,9 dora Salit Potencia Activa KW 662,7 662,7 662,7	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3	
A B C Fase A B C	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6 Alimentac	48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7 662,7 dora Verna	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3 257,3	
A B C Fase A B C	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6 Alimentac	48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7 662,7 dora Verna Potencia	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3 257,3 257,3 257,3	
A B C Fase A B C Fase	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6 Voltaje KV	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6 90,6 Аlimentac	48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7 662,7 dora Verna Potencia Activa	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3 257,3 za Potencia reactiva	
A B C Fase A B C Fase	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6 Voltaje KV	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6 Alimentac Corriente A	48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7 662,7 dora Verna Potencia Activa KW	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3 257,3 257,3 257,3 257,3 257,3 257,3	
A B C Fase A B C Fase A	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6 Voltaje KV 13,6	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6 Alimentac Corriente A 128	48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7 662,7 dora Verna Potencia Activa KW 945,9	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3 257,3 za Potencia reactiva KVAR 339	
A B C Fase A B C Fase A B	13,6 13,6 13,6 Voltaje KV 13,6 13,6 13,6 Voltaje KV 13,6 13,6	6,7 6,7 Alimenta Corriente A 90,6 90,6 90,6 90,6 Alimentac Corriente A 128 128	48,9 48,9 48,9 dora Saliti Potencia Activa KW 662,7 662,7 662,7 662,7 dora Verna Potencia Activa KW 945,9 945,9	19,7 19,7 19,7 re Potencia reactiva KVAR 257,3 257,3 257,3 257,3 257,3 za Potencia reactiva KVAR 339 339	

 Tabla 53
 Resumen de flujo de potencia a carga máxima

NORMA ANSI/IEEE C37.13-1990

Las normas de ANSI que se dirigen al cálculo de fallas en cortocircuito para el medio y alto voltaje son:

ANSI Std 37. 010-1979

ANSI Std 37. 5-1979

Las normas de ANSI que se dirigen al cálculo de fallas en cortocircuito para bajo voltaje son:

ANSI Std 37. 13-1990

NORMA ANSI/IEEE C57.110

Índices de armónicos para transformadores norma ANSI/IEEE c57.110 de 1998 establece los criterios de cargabilidad de transformadores de potencia que alimentan cargas no lineales. Se asume que se trata de la energización del transformador y la protección es bloqueada para evitar una operación incorrecta. el método más común para evitar estas operaciones incorrectas es el uso del contenido de armónicos para discriminar entre corrientes de magnetización y de cortocircuito, lo que se denomina restricción por armónicos

NORMA IEC 60044

Esta parte de la norma IEC 60044 se aplica a los de nueva fabricación transformadora de corriente eléctrica para su uso con instrumentos de medición y dispositivos de protección eléctrica. Los núcleos de protección en transformadores de corriente se especificarán con un factor límite de precisión (ALF), igual a 20 y clase de precisión de 5%, utilizando la denominación 5P20, según la Norma IEC – 60044. En los núcleos destinados a protección, se deberá garantizar la clase de precisión para el burden nominal y hasta 20 veces la corriente nominal. Para núcleos de protección, el proveedor deberá garantizar la clase de precisión requerida en todas las relaciones de corriente.

NORMA IEEE C37.102

Esta norma aplicada establece que la protección de carga no balanceada se efectúa detectando las corrientes de secuencia negativa (46), cuya presencia indica que se tiene asimetrías eléctricas que reflejan la existencia de una asimetría mecánica en el eje del generador; es decir, que se tiene conectada una carga no balanceada

Determinación de la Curva de Daño del Transformador

En la norma IEEE Std C57.12.00-2000 (Requisitos de normas generales para transformadores de distribución sumergidos en líquido, Poder y Regulación) son descritas las curvas de daño del transformador.

Para fines de coordinación de protecciones, se debe de graficar la curva ANSI (curva de daño del transformador) en las hojas de coordinación, para lo cual se clasifican los transformadores en las categorías de la siguiente tabla:

CATEGORIAS DE TRANSFORMADORES DE ACUERDO A LAS NORMAS ANSI					
KVA NOMINALES DE PLACA					
CATEGORIAS	TRIFASICOS				
	5-500 15-500				
I	II 501-1,667 501-5,000				
III	III 1,668-10,000 5,001-30,00				
IV	Arriba de 10,000	Arriba de 30,000			

 Tabla 54
 Clasificación de los Transformadores según sus categorías

Las categorías del transformador definen la forma de la curva de daño del transformador que se muestran a continuación:

• Para transformadores con categoría I

• Para transformadores con categoría II, III y IV

Los puntos de las curvas se calculan en base a lo indicado en la siguiente tabla, lo único que se debe verificar es que la impedancia del transformador no sea inferior a los valores indicados.

PUNTOS DE LA CURVA DE DAÑO DELTRANSFORMADOR					
PUNTO	CATEGORIAS DEL TRANSFORMADOR	TIEMPO (seg)	CORRIENTE (amp)		
		$1,250(Z_t)^2$	I_{pc}/Z_t		
	П	2	I_{pc}/Z_t		
1	III , IV	2	$I_{pc}/(Z_t+Z_s)$		
	=	4.08	$0,7 I_{pc}/Z_t$		
2	II , IV	8.0	$0,5 I_{pc}/(Z_t + Z_s)$		
	П	$2,5551/(Z_t)^2$	0,7 I_{pc}/Z_t		
3	III , IV	$5000(Z_t + Z_s)^2$	$0,5 I_{pc}/(Z_t + Z_s)$		
4	I , II , III , IV	50	5 <i>I_{pc}</i>		

Tabla 55 Puntos de la curva de daño del Transformador

Donde:

- Z_t = Impedancia del transformador en por unidad en base a los KVA en OA.
- Z_S = Impedancia de la fuente en por unidad en base a los KVA del transformador.

De forma adicional se muestra una tabla referencial de las impedancias mínimas para los transformadores.

IMPEDANCIAS MINIMAS DE TRANSFORMADORES					
MONOFASICOS (KVA)	TRIFASICOS (KVA)	IMPEDANCIAS MINIMAS EN POR UNIDAD EN BASE A LOS KVA DEL TRANSFORMADOR			
5 a 25	15 - 75	0.0250			
37.5 - 100	112.5 - 300	0.0286			
167 - 500	500.0	0.0400			

 Tabla 56
 Impedancias de los Transformadores según su Potencia nominal

Figura A5.1 Curva de daño del transformador de la S/E Juan Bautista Aguirre

DETERMINACION DEL PUNTO DE MAGNETIZACION DEL TRANSFORMADOR (INRUSH)

Este punto representa una aproximación del efecto de la corriente de magnetización del transformador, este valor de corriente se calcula con un múltiplo de la corriente nominal del transformador y varía de acuerdo con la capacidad del mismo.

Este valor puede alcanzar un valor del rango de 8 a 25 veces la corriente nominal para transformadores y el tiempo de duración de esta corriente es siempre de 0,1 segundos.

La siguiente tabla muestra los múltiplos que se usan para determinar la corriente de magnetización del transformador.

PUNTO DE CORRIENTE DEL MAGNETIZACIÓN DEL TRANSFORMADOR				
CAPACIDAD DELTRANSFORMADOR MULTIPLO				
Menores a 1,500 KVA	8			
Mayores de 1,500 KVA y menores de 3,750 KVA	10			
Mayoresde 3,750 KVA	12			

 Tabla 57
 Punto de corriente de Magnetización del Transformador

Ecuación de la Curva de Sobrecorriente Temporizada utilizada por el relé TPU-2000R.

En este anexo se encuentran las ecuaciones de la curva del relé TPU-2000R para la protección de sobrecorriente Temporizada (51), las cuales dependen de la coordinación que necesitemos realizar. Para determinar los tiempos de coordinación se utiliza las siguientes ecuaciones, cuyos coeficientes se encuentran detallados en la Tabla A5.1.

Ecuación de la curva de sobre-corriente temporizada ANSI

Tiempo de Disparo=
$$\left(\frac{A}{M^{P}-1}+B\right)\left(\frac{14n-5}{9}\right)$$
 (A5.1)

Tiempo de Reposición=
$$\left(\frac{D}{1-EM}\right)\left(\frac{14n-5}{9}\right)$$
 (A5.2)

M = Múltiplos de la corriente de arranque (I/Ipu).

n = Ajuste del Dial de Tiempo (rango de 1 a 10 en pasos de 0,1).

Curva	Α	В	С	Р	D	Е
Extremadamente Inversa	6,407	0,025	1	2	3	0,998
Muy Inversa	2,855	0,0712	1	2	1,346	0,998
Inversa	0,0086	0,0185	1	0,02	0,46	0,998
Inversa - Tiempo corto	0,00172	0,0037	1	0,02	0,092	0,998
Ext. Inversa Tiempo Corto	1,281	0,005	1	2	0,6	0,998
Ext. Inversa Tiempo Largo	64,07	0,25	1	2	30	0,998
Muy Inv. Tiempo Largo	28,55	0,712	1	2	13,46	0,998
Inversa Tiempo largo	0,086	0,185	1	0,02	4,6	0,998
Curva del Reconectador #8	4,211	0,013	0,35	1,8	3,29	1,5

 Tabla 58
 Constantes de las Características de Sobrecorriente Temporizada

Notas:

• El tiempo en segundos para la Curva Extremadamente Inversa - Tiempo Largo es 10 veces el de la Curva Extremadamente Inversa.

• El tiempo en segundos para la Curva Muy Inversa - Tiempo Largo es 10 veces el de la Curva Muy Inversa.

 El tiempo en segundos para la Curva Inversa - Tiempo Largo es 10 veces el de la Curva Inversa.

• El tiempo en segundos para la Curva Inversa - Tiempo Corto es 1/5 veces el de la Curva Inversa.

• El tiempo en segundos para la Curva Extremadamente Inversa - Tiempo

Corto es 1/5 veces el de la Curva Extremadamente Inversa. [1]

Curvas de los fusibles de la troncal y ramal de la S/E Juan

Bautista Aguirre

Figura A7.1 Curva del fusible seleccionado en el ramal del alim. Juan B. Aguirre

Figura A7.2 Curva del fusible seleccionado en la alimentadora SALITRE y VERNAZA

Coordinación de las Protecciones de la S/E de Distribución Juan

Bautista Aguirre

Figura A8.1 Coordinación de protecciones de la alimentadora J.B. AGUIRRE

Figura A8.2 Coordinación de protecciones de la alimentadora VERNAZA