

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Construcción de Electrodos de Plata/Cloruro de Plata para Medición de Potenciales Eléctricos en Estructuras Sumergidas"

INFORME DE PROYECTO DE GRADUACIÓN

Previo a la obtención del Título de:

INGENIERO MECÁNICO

Presentada por:

Alejandro David Agama Mosquera

GUAYAQUIL – ECUADOR

Año: 2013

AGRADECIMIENTO

En primer lugar a Dios gracias por todas tus bendiciones concedidas en el transcurso de mi vida, a mi familia, mi hijo y todas las personas que de una u otra manera colaboraron en la realización de este trabajo, especialmente al Ing. Julián Peña, Director del Proyecto, por su invaluable ayuda.

DEDICATORIA

A MI MADRE.

A MI PADRE

A MI HIJO

A MIS HERMANOS

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Informe de Proyecto de Graduación, me corresponde exclusivamente; y el patrimonio intelectual del mismo a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Alejandro David Agama Mosquera

TRIBUNAL DE GRADUACIÓN

Dr. Kléber Barcia V., Ph.D. DECANO DE LA FIMCP. PRESIDENTE Ing. Julián Peña E. DIRECTOR

Ing. Omar Serrano V. VOCAL

RESUMEN

En este proyecto se logró construir en el laboratorio de materiales un electrodo experimental plata/cloruro de plata para medición de potenciales eléctricos estructuras sumergidas. Utilizando un procedimiento en electrolisis experimental llamado se formo sobre el electrodo. específicamente en la rejilla del electrodo experimental una capa fina de cloruro de plata. A continuación se realizo los cálculos pertinentes de la masa de cloruro de plata que se formo durante el proceso de electrolisis aplicando las leyes de Faraday.

Seguidamente utilizando una simulación instalada en el laboratorio se toman los valores de potenciales eléctricos sobre una placa de acero ASTM A-588 sumergida en agua de mar y protegida catódicamente con un ánodo de zinc. Se comparan las lecturas de dichos potenciales eléctricos utilizando un voltímetro, el electrodo patrón y el electrodo experimental de plata cloruro de plata construido, para así poder determinar su grado de exactitud y error. A continuación se realizo el correspondiente análisis estadístico de los potenciales registrados para los días 1, 5, 10 y 15 utilizando el diagrama de Gauss. Y por ultimo se determino el error porcentual respecto a la media tomando un total de 30 mediciones para cada electrodo, desde el día 1 hasta el día 15 que se realizo el monitoreo sobre la estructura sumergida.

ÍNDICE GENERAL

RESUMEN	II
ÍNDICE GENERAL	
ABREVIATURAS	VI
SIMBOLOGÍA	VII
ÍNDICE DE FIGURAS	VIII
ÍNDICE DE TABLAS	x
ÍNDICE DE PLANOS	XI
INTRODUCCIÓN	1

CAPÍTULO 1

1.	MON	NITOREO DE SISTEMAS CATÓDICOS	. 3
	1.1	Tipos de corrosión	. 7
		1.1.1 Galvánica	13
		1.1.2 Electroquímica	14
	1.2	Sistemas de protección Catódica en Estructuras Metálicas	18
		1.2.1 Por ánodos galvánicos	19
		1.2.2 Por corriente impresa	25
	1.3	Tipos de electrodos de referencia	29
		1.3.1 Estándar de hidrogeno	33

	1.3.2 Cobre/Sulfato de Cobre	36
	1.3.3 Plata/Cloruro de Plata	39
	1.3.4 Potencial estándar de electrodos	40
1.4	Potenciales electroquímicos para estructuras sumergidas en	
	agua de mar	41

CAPÍTULO 2

2.	CON	ISTRU	CCIÓN EXPERIMENTAL DE ELECTRODOS DE PLATA	
	CLC	RURO	DE PLATA POR MEDIO DE ELECTROLISIS	49
	2.1	Metoc	lología del proceso de electrolisis	49
		2.1.1	Electrodeposición por oxidación	49
		2.1.2	Materiales y equipos utilizados	50
	2.2	Contro	ol del proceso	51
	2.3	Const	rucción del electrodo experimental	51
		2.3.1	Tecnología empleada en la construcción	59
		2.3.2	Proceso de ensamble	60

CAPÍTULO 3

3.	ANÁ	LISIS DE RESULTADOS	61
	3.1	Criterio para Elección de Potenciales de Corrosión versus Patrón	63
	3.2	Potenciales según la velocidad del agua de mar y su salinidad	63

3.3	Medición de Potenciales con un Electrodo de Plata Cloruro de	
	Plata comercial versus Electrodo Construido en el Laboratorio	63
3.4	Tabla comparativa de Lecturas de Potenciales Eléctricos	81
3.5	Margen de Exactitud y Error en las mediciones de potenciales	
	Eléctricos	.82

CAPÍTULO 4

4.	CONCLUSIONES Y RECOMENDACIONES	. 94	ļ
----	--------------------------------	------	---

APÉNDICES

BIBLIOGRAFÍA

ABREVIATURAS

NACE	National Assosiation of Corrosion Engineer.
MIL 1800 I	Military Specification Anodes, Corrosion
	preventative, Zinc Slab Disc, and Rod Shaped
ASTM B418	Standard Specification for Cast and Wrought
	Galvanic Zinc Anodes
Cu / Cu S0 ₄	Cobre / Sulfato de Cobre
Ag / AgCl	Plata / Cloruro de Plata.
Kg	Kilogramos
Kg /A - Año	Kilogramo / Amperio – Año
Ω	Ohmio
$\Omega - cm$	Ohmio – Centímetro
Ω / cm	Ohmio por centímetro
mV	Mili voltio
AC	Corriente Alterna
DC	Corriente Directa
mA / m ²	Miliamperio por metro cuadrado
A / m ²	Amperio por metro cuadrado
°C	Grado Centígrado
рН	Potencial Hidrogeno
СТ	Corriente Teórica
V _{ue}	Vida útil esperada
CP	Corriente de Protección
ρ	Resistividad del medio
n _a	Eficiencia del ánodo
R	Resistencia
R _i	Resistencia inicial ánodo electrolito
T	Corriente
l _{ai}	Corriente inicial del ánodo.
Φ	Diámetro
F	Faraday
С	Coulomb
E^0	Potencial Electrolítico del Hidrogeno

SIMBOLOGÍA

- µep Media electrodo patrón
- µexp Media electrodo Experimental
- σ Varianza
- σ2 Desviación Estándar
- %: Porcentaje
- s.: Segundos
- Min: Minutos

ÍNDICE DE FIGURAS

Figura 1.1	Buque Mercante de Navegación	3
Figura 1.2	Protección Catódica con Ánodos de Sacrificio	5
Figura 1.3	Corrosión Química de un Buque	8
Figura 1.4	Corrosión por Picadura	9
Figura 1.5	Corrosión por Fisuras	9
Figura 1.6	Corrosión Intergranular Sensibilización por soldadura	. 10
Figura 1.7	Corrosión por Erosión	.11
Figura 1.8	Corrosión Intergranular Bajo Tensiones	.12
Figura 1.9	Corrosión Galvánica	.13
Figura 1.10	Diagrama de Potencial pH para el Hierro	.17
Figura 1.11	Protección Catódica por Ánodos Galvánicos	19
Figura 1.12	Ánodo Comercial de Zinc	21
Figura 1.13	Ánodo Comercial de Aluminio	23
Figura 1.14	Ánodo Comercial de Magnesio	.24
Figura 1.15	Protección Catódica por Corriente Impresa	.25
Figura 1.16	Generador de Corriente DC	26
Figura 1.17	Ánodos Inertes de Cobre y Aluminio Para Corriente	
	Impresa	.27
Figura 1.18	Bioincrustaciones en Tuberías marinas	. 28
Figura 1.19	Instalación de Ánodos para Corriente Impresa	.29
Figura 1.20	Electrodos de Referencia Comerciales	30
Figura 1.21	Electrodo Estándar de Hidrogeno	.36
Figura 1.22	Electrodo de Cobre/Sulfato de Cobre	. 38
Figura 1.23	Electrodo de Plata/Cloruro de Plata	40
Figura 1.24	Corrosión Electroquímica de un Muelle	41
Figura 1.25	Medida del Potencial Electroquímico	43
Figura 1.26	Placas de Acero ASTM A588 Sumergidas en Agua	
	De Mar Para Medición de Potenciales Eléctricos	
	Placa A(Con Corrosión) Placa B(Con Protección Catódica)43
Figura 1.27	Medición de Potencial Eléctrico Placa A	44
Figura 1.28	Medición de Potencial Eléctrico Placa B	44
Figura 2.1	Soldadura alambre de Plata al esparrago	52
Figura 2.2	Aplicación de la resina Epoxy	53
Figura 2.3	Rejilla de Plata Sumergida a) 100% Sumergida	
	b) Sumergida entre 80-85%	. 54
Figura 2.4	Ensamble de la celda electrolítica	55
Figura 2.5	Selección de Voltaje de Operación	. 56
Figura 2.6	Revisión de Conexión Eléctrica	56
Figura 2.7	Electrolisis para la Formación del Cloruro de Plata	

Figura 2.8	a) Rejilla de Plata b) Varilla de Plata
	a) Reiilla de Plata Electrodo b) Varilla de Plata
Figura 2.9	Aplicación sobre la Soldadura de Resina Epoxy junto
	con el Cloruro de Plata59
Figura 3.1	Medición de Potencial sobre una Placa de Acero ASTM A
	588 Sumergida en agua de mar63
Figura 3.2	Distribución Normal Electrodo Patrón Día 166
Figura 3.3	Distribución Normal Electrodo Experimental Día 168
Figura 3.4	Distribución Normal Electrodo Patrón Día 5
Figura 3.5	Distribución Normal Electrodo Experimental Día 5
Figura 3.6	Distribución Normal Electrodo Patrón Día 10
Figura 3.7	Distribución Normal Electrodo Experimental Día 1076
Figura 3.8	Distribución Normal Electrodo Patrón Día 1578
Figura 3.9	Distribución Normal Electrodo Experimental Día 15 80
Figura 3.10	Potencial Electrodo Patrón82
Figura 3.11	Potencial Electrodo Experimental
Figura 3.12	Salinidad "A" 93
Figura 3.13	Salinidad "B"

ÍNDICE DE TABLAS

Pág.

Tabla 1	Serie Electroquímica de Metales	33
Tabla 2	Potencial Estándar Electrodos de Referencia	41
Tabla 3	Potenciales Eléctrico Electrodo Patrón Día 1	64
Tabla 4	Valores Estadísticos Electrodo Patrón Día 1	65
Tabla 5	Potenciales Eléctrico Electrodo Experimental Día 1	67
Tabla 6	Valores Estadísticos Electrodo Experimental Día 1	68
Tabla 7	Potenciales Eléctrico Electrodo Patrón Día 5	69
Tabla 8	Valores Estadísticos Electrodo Patrón Día 5	70
Tabla 9	Potenciales Eléctrico Electrodo Experimental Día 5	71
Tabla 10	Valores Estadísticos Electrodo Experimental Día 5	72
Tabla 11	Potenciales Eléctrico Electrodo Patrón Día 10	73
Tabla 12	Valores Estadísticos Electrodo Patrón Día 10	74
Tabla 13	Potenciales Eléctrico Electrodo Experimental Día 10	75
Tabla 14	Valores Estadísticos Electrodo Experimental Día 15	76
Tabla 15	Potenciales Eléctrico Electrodo Patrón Día 15	77
Tabla 16	Valores Estadísticos Electrodo Patrón Día 15	78
Tabla 17	Potenciales Eléctrico Electrodo Experimental Día 15	79
Tabla 18	Valores Estadísticos Electrodo Experimental Día 15	80
Tabla 19	Tabla Comparativa de Medición de Potenciales Eléctricos	81
Tabla 20	Electrodo Patrón Día 1	84
Tabla 21	Electrodo Experimental Día 1	85
Tabla 22	Electrodo Patrón Día 5	86
Tabla 23	Electrodo Experimental Día 5	87
Tabla 24	Electrodo Patrón Día 10	88
Tabla 25	Electrodo Experimental Día 10	89
Tabla 26	Electrodo Patrón Día 15	90
Tabla 27	Electrodo Experimental Día 15	91
Tabla 28	Exactitud Electrodo Experimental Respecto a la Media del	
	Electrodo Patrón	92

ÍNDICE DE PLANOS

Pág.

PLANO 1	Electrodo de Plata-Cloruro de Plata Experimental	98
PLANO 2	Partes Electrodo Plata-Cloruro de Plata Experimental	99

INTRODUCCIÓN

En la actualidad es muy importante llevar un correcto control de los niveles de corrosión para reducir costos por paradas o trabajos correctivos en estructuras sumergidas total o parcialmente en agua de mar tales como: El casco de un buque, la hélice, así como en tanques, tuberías marinas, e intercambiadores de calor, en estructuras, compuertas, plataformas marinas. Es necesario utilizar algún tipo de protección contra la corrosión, esto se puede realizar por medio de diferentes métodos para así garantizar una vida útil prolongada de cada elemento o estructura.

En el Capitulo 1, se presenta de manera introductoria conceptos relevantes respecto a la corrosión en agua de mar, así como los sistemas de protección utilizados, para tuberías estructuras y superficies de acero. Además se especifica los diferentes tipos de electrodos para medición de potenciales y como se toman las lecturas.

En el Capitulo 2, se seleccionan los materiales y equipos necesarios y se aplica el método experimental de electrolisis para la construcción del electrodo de plata/cloruro de plata.

En el Capitulo 3, se tomarán algunas lecturas de potenciales eléctricos en el laboratorio en una placa sumergida en agua de mar con protección catódica utilizando un ánodo de zinc, y se registrarán los valores de potenciales eléctricos, así como también se verificará dicho valor utilizando un electrodo patrón.

En el Capitulo 4, se dará las respectivas conclusiones y recomendaciones sobre el electrodo de plata cloruro de plata construido, así como también se analizarán algunos gráficos estadísticos y valores de potenciales utilizando tablas o diagramas normalizados.

CAPÍTULO 1

1. MONITOREO DE SISTEMAS CATÓDICOS

⁽¹⁾<u>http://guillerdolf.com/index_productos.html</u> FIGURA 1.1 BUQUE MERCANTE⁽¹⁾ A continuación se presentará la teoría que precede la elaboración de este proyecto, el mismo que incluye: La identificación de los tipos más importantes de corrosión en agua de mar, así como donde se pueden detectar, llevar un control para prevenir o disminuir la corrosión, así como los sistemas de protección más utilizados para el efecto que se puede encontrar instalados en barcos o buques mercantes o cualquier otro tipo de estructura metálica.

Además se especifica los diferentes tipos de electrodos para medición de potenciales eléctricos de corrosión y como se toman las lecturas.

También se puede verificar que el sistema de protección se encuentra instalado en el interior de barcos para diferentes dispositivos como son: Tuberías, intercambiadores de calor, tomas y filtros de agua de mar así como en otras superficies de acero.

En un sistema catódico, la protección catódica se define como: "el método de reducir o eliminar la corrosión de un metal, haciendo que la superficie de este funcione completamente como cátodo cuando se encuentra sumergido o enterrado en un electrólito". Esto se logra haciendo que el potencial eléctrico del metal a proteger se vuelva más electronegativo mediante la aplicación de una corriente directa o la unión

de un material de sacrificio (comúnmente magnesio, aluminio o zinc). Normalmente, el Método es aplicable a estructuras de acero, como por ejemplo el casco de un buque junto con su hélice y paleta del timón. Ver figura 1.2

⁽¹⁾http://guillerdolf.com/index_productos.html

FIGURA 1.2 PROTECCIÓN CATÓDICA CON ÁNODOS DE SACRIFICIO⁽¹⁾

Se debe recordar que el cátodo es aquel electrodo donde se desarrolla la reacción de reducción y prácticamente no ocurre corrosión alguna.

Antes de aplicar la protección catódica, las estructuras corrosibles presentan áreas catódicas y anódicas (estas son aquellas donde la

estructura se corroe). Por lo tanto, si todas las áreas anódicas se pudieran convertir en catódicas, la estructura completa funcionaría como un cátodo y la corrosión sería eliminada.

Para proteger catódicamente a las estructuras enterradas o sumergidas, se debe cumplir con el siguiente criterio según la **Norma NACE – RP-01-69, Párrafo 6.2.2.1 Pág. 13**

La Norma NACE RP-01-69, en su párrafo 6.2.2.1 pág. 13 dice:

Un potencial negativo (catódico) mínimo de -850 mV con la protección catódica aplicada. Este potencial se mide con respecto al electrodo Cu/CuSO₄ en contacto con el electrolito. Deben tomarse en consideración las caídas de voltaje ⁽²⁾ diferentes a las que se produce en la interface estructura-electrolito para una interpretación valida del potencial.

La experiencia ha demostrado que cuando se alcanza una lectura de estructura metálica a electrolito de -0.85 V o más negativo (tomando en cuenta las caídas de voltaje) relativa al electrodo de Cu/CuSO₄ producto de la aplicación de la corriente de protección catódica, la corrosión sustancialmente cesa en estructuras de acero en suelos naturales y agua (mar, lagos, ríos, fangos).

Caída IR: Voltaje a través de la resistencia de un medio (en este caso, agua o suelo), de acuerdo con la ley de Ohm (V = I x R).

El criterio del potencial mínimo se basa en los estudios realizados por Michael Pourbaix (1939) quien estableció a través de un diagrama de potencial de electrodo vs pH del medio un potencial mínimo equivalente a - 850 mV, de CD, medido respecto de un electrodo de referencia de cobre/sulfato de cobre saturado (Cu/CuSO₄), observando una zona definida por la inmunidad del acero.

1.1 Tipos de Corrosión.

Existen varios criterios para distinguir los tipos de corrosión más frecuente son:

Corrosión Uniforme: La corrosión uniforme puede ser descrita como una reacción de corrosión que ocurre por igual en toda la superficie del material, causando una pérdida general del metal.

Corrosión Metálica: Consiste básicamente en dos procesos de transferencia de electrones en lugares físicamente diferentes de la estructura metálica (procesos anódicos y catódicos) El proceso de corrosión implica:

- Generación y transferencia del catión metálico a la solución
- Transferencia del oxígeno al cátodo metálico
- Transferencia electrónica del metal al oxígeno
- Paso de los electrones del ánodo al cátodo
- Difusión de los iones Fe⁺² y OH⁻ en el electrolito.

Corrosión Química: El metal reacciona con un medio no iónico, por ejemplo la oxidación de un metal en aire a altas temperaturas. Ver figura 1.3

FIGURA 1.3 CORROSIÓN QUÍMICA DE UN BUQUE

Corrosión por picadura (Pitting): Las picaduras ocurren como un proceso de disolución local anódica donde la pérdida del metal es aumentada por la presencia de un ánodo pequeño y un cátodo

grande, las picaduras suelen ser de pequeño diámetro (decimas de milímetro) Ver figura 1.4

FIGURA 1.4 CORROSIÓN POR PICADURA

Corrosión por fisuras (Crevice): Alrededor del hueco formado por contacto con otra pieza de metal igual o diferente a la primera o con un elemento no metálico. Ver figura 1.5

FIGURA 1.5 CORROSIÓN POR FISURAS

Corrosión Intergranular: La corrosión intergranular ocurre preferentemente a lo largo de los límites de grano de algunas aleaciones en ambientes específicos y, como consecuencia, la muestra se desintegra a lo largo de los límites de grano. Este tipo de corrosión predomina en algunos aceros inoxidables que, cuando se calientan a temperaturas entre los 500 y 800 ⁰ C durante periodos de tiempo suficientemente largos, se sensibilizan para el ataque intergranular.

En la soldadura del acero inoxidable, la corrosión intergranular se convierte en un problema grave, denominado sensibilización por soldadura Ver Figura 1.6

FIGURA 1.6 CORROSIÓN INTERGRANULAR SENSIBILIZACIÓN POR SOLDADURA

Corrosión por erosión: La corrosión por erosión se suele presentar en tuberías, especialmente en codos ángulos y cambios bruscos de diámetro: Posiciones donde el fluido cambia de dirección y suele convertirse en turbulento. Ver figura 1.7

FIGURA 1.7 CORROSIÓN POR EROSIÓN

Corrosión bajo tensiones: La acción combinada de un esfuerzo de tracción aplicado y de un ambiente corrosivo produce corrosión bajo tensiones. Se forman pequeñas grietas que luego se propagan en dirección perpendicular al esfuerzo y, como consecuencia puede aparecer el fallo.

A continuación se presenta una corrosión bajo tensiones intergranular de un latón. El esfuerzo que genera la corrosión bajo tensiones no solamente suele ser aplicado externamente., sino que puede ser una tensión residual, resultada de un cambio súbito de temperatura y su posterior contracción o, en el caso de aleaciones bifásicas resultado de distintos coeficientes de dilatación. Su esquema se presenta en la figura 1.8

FIGURA 1.8 CORROSIÓN INTERGRANULAR BAJO TENSIONES

1.1.1. Galvánica

Los metales con distintos potenciales electroquímicos que están en contacto forman células galvánicas. El metal de la célula galvánica con el potencial inferior será anódico y se corroerá. El mismo efecto puede producirse en zonas con diferente potencial electroquímico en una sola pieza de metal, como una placa de acero. Cualquier nave que atraque y navegue en aguas dulces, saladas o estearinas corre el riesgo de sufrir corrosión y sus efectos costosos. A continuación se presenta la corrosión galvánica del magnesio moldeado alrededor de un núcleo de acero. Ver figura 1.9

FIGURA 1.9 CORROSIÓN GALVÁNICA

Se puede incluir en este tipo de corrosión el caso de la asociación de un conducto viejo (oxidado) con uno nuevo. El metal oxidado (pasivado) es siempre más noble que el metal nuevo, ya que tiene un potencial más elevado; Por lo tanto este último sufrirá los efectos de la corrosión. Hay que señalar, desde el punto de vista práctico, que este fenómeno es válido para metales tan parecidos como el acero y la fundición.

1.1.2. Electroquímica.

La corrosión electroquímica es un proceso espontaneo que denota siempre la existencia de una zona anódica (la que sufre la corrosión), una zona catódica y un electrolito, y es imprescindible la existencia de estos tres elementos, además de una buena unión eléctrica entre ánodos y cátodos, para que este tipo de corrosión pueda tener lugar. La corrosión más frecuente es de naturaleza electroquímica y resulta de la formación sobre la superficie metálica de multitud de zonas anódicas y catódicas; El electrolito en caso de no estar sumergido o enterrado el metal es el agua condensada de la atmosfera, para lo cual la humedad relativa deberá ser del 70%.

El proceso de disolución de un metal en un acido es igualmente un proceso electroquímico. La infinidad de burbujas que aparecen sobre la superficie metálica revela la existencia de infinitos cátodos, mientras que en los ánodos se va disolviendo el metal. A simple vista es imposible distinguir entre una zona anódica y una zona catódica, dada la naturaleza microscópica de las mismas (micro pilas galvánicas) Al cambiar continuamente de posición las zonas anódicas y catódicas, llega un momento en el cual el metal se disuelve totalmente.

Las reacciones que tiene lugar en las zonas anódicas y catódicas son las siguientes:

$$Me \rightarrow Me n^+ + ne^-$$
 (1)

$$Anodo: 2H^+ + 2e^- \rightarrow H_2$$
 (2)

Medio Ácido (Oxidación)

Cátodo:
$$0_2 + 2H_20 + 4e^- \rightarrow 40H^-$$
 (3)
Medio Neutro y Alcalino (Reducción)

Ya que la corrosión de los metales en ambientes húmedos es de naturaleza electroquímica, una aproximación lógica para parar la corrosión seria mediante métodos intentar electroquímicos. Los métodos electroquímicos para la protección contra la corrosión requieren de un cambio en el potencial del metal para prevenir o al menos disminuir su disolución. La protección catódica, en este sentido, es un tipo de protección (electroquímico) contra la corrosión, en el cual el potencial del electrodo del metal en cuestión se desplaza en la dirección negativa. Los principios de la protección catódica pueden ilustrarse mediante un diagrama termodinámico potencial pH de Pourbaix como se muestra en la figura 1.10 para el caso del Hierro.

⁽²⁾<u>http://www.aiu.edu/publications/student/spanish/131-179/Corrosion-Engineering-Catodic-Protection.htm</u>

FIGURA 1.10 DIAGRAMA DE POTENCIAL pH PARA EL HIERRO⁽²⁾

De acuerdo con el diagrama, ver figura 1.10 hay un camino para prevenir la corrosión mediante un cambio de potencial. Aplicando una corriente catódica, el potencial del espécimen de acero se desplazará en la dirección negativa, hacia la zona de inmunidad, en la cual el metal, termodinámicamente se encuentra estable (no se puede corroer). Para lograr este desplazamiento del potencial en la dirección negativa, el objeto que se corroe se une eléctricamente a un metal más negativo en la serie electroquímica, un ánodo, formando una celda galvánica en la que actuará como cátodo. Para que el metal este protegido catódicamente, el valor de su potencial de electrodo tiene que quedar por debajo de su potencial de corrosión en la solución mencionada. Su disolución será así prevenida totalmente (protección catódica completa) o al menos disminuirá (protección catódica incompleta).

1.2. Sistemas de Protección Catódica en Estructuras Metálicas.

La protección catódica consiste en obligar a la estructura a funcionar como un cátodo en una celda de corrosión, mediante la manipulación o modificación de factores electroquímicos. Un ánodo galvánico, también llamado ánodo de sacrificio, si se conecta directamente a una estructura sumergida descargará una corriente que fluirá a través del electrolito hasta la estructura que se pretende proteger. Para cumplir con este objetivo, los ánodos deben cumplir con ciertas características de peso, dimensiones, forma geométrica, composición del material o aleaciones.

⁽¹⁾<u>http://guillerdolf.com/index_productos.html</u>

FIGURA 1.11 PROTECCIÓN CATÓDICA POR ÁNODOS GALVÁNICOS⁽¹⁾

La realización de la protección catódica con ánodos de sacrificio o galvánicos se lleva a cabo normalmente con tres metales característicos: zinc (Zn), Magnesio (Mg), Aluminio (Al) y sus aleaciones. El Zinc ha sido siempre un material anódico clásico, y es el pionero en la protección catódica, ánodos de aleaciones de magnesio han sido también utilizados con éxito; Principalmente se utilizan para la protección de estructuras que requieren de una polarización rápida en medios agresivos de resistividad elevada, como los

suelos y el agua de mar. El aluminio es un material anódico de gran interés por sus características electroquímicas. Sin embargo la obtención de aleaciones de aluminio adecuadas requiere la utilización de más tiempo en comparación a los otros metales utilizados. Ver figura de ánodos de sacrificio utilizados en protección catódica. (Especificaciones técnicas Apéndice A)

Ánodos de Zinc: El valor relativamente elevado de su potencial de disolución implica un alto rendimiento de corriente, una disminución muy controlada de su potencial de la estructura a proteger y una alcalinización muy pequeña del medio en contacto con esa estructura.

Uno de los factores que más puede limitarla utilización del zinc es la resistividad del medio agresivo, y por ello es aconsejable que su empleo quede limitado para resistividades inferiores a los 1000 Ω cm. También debe cuidarse su utilización en presencia de aguas dulces a temperaturas por encima de 65 ⁰ C ya que en estas condiciones puede invertir su polaridad y hacerse catódico

con relación al acero, o en todo caso quedar pasivado por los carbonatos precipitados.

Como ánodo de sacrificio se utiliza masivamente, sobre todo por la realización de la protección catódica en agua de mar: buques, andenes marítimos, refuerzos metálicos, diques flotantes, boyas, plataformas petrolíferas, depósitos de agua, condensadores. Y también se utilizan en suelos de baja resistividad. Ver figura 1.12 de un ánodo comercial de zinc.

⁽¹⁾<u>http://guillerdolf.com/index_productos.html</u>

FIGURA 1.12 ÁNODO COMERCIAL DE ZINC⁽¹⁾

Ánodos de Aluminio: El aluminio es el metal más idóneo para la realización de la protección catódica por su ubicación en la serie electroquímica, se encuentra intermedio entre el zinc y el magnesio con una elevada capacidad de corriente (Ver Tabla Apéndice A.
Su utilización es en el campo naval, su elevada capacidad de corriente hace que un solo ánodo de aluminio pueda ejercer la acción de tres de zinc de iguales características, para una misma duración del ánodo. Estas circunstancias han motivado que estos ánodos estén siendo muy utilizados para la protección catódica de tanques de lastre y carga-lastre de petroleros.

Aunque el precio del aluminio es más elevado que el del zinc, al necesitar menos ánodos, esta diferencia se compensa: Pero además si se considera el ahorro en mano de obra de colocación de los ánodos, el aluminio incluso puede llegar a ser relativamente más económico.

El campo de utilización de estos ánodos es en principio semejante al de los de zinc, siendo su comportamiento altamente satisfactorio en la protección catódica de estructuras sumergidas en aguas dulces sobre todo el de la aleación aluminio-indio de la cual se tiene una gran experiencia. Ver figura 1.13 de un ánodo comercial de aluminio.

⁽¹⁾<u>http://guillerdolf.com/index_productos.html</u>

FIGURA 1.13 ÁNODO COMERCIAL DE ALUMINIO⁽¹⁾

Ánodos de Magnesio: El magnesio es un elemento muy reactivo lo que implica la capacidad de proporcionar una elevada densidad de corriente, a costa de consumirse con gran rapidez. Por ello su principal aplicación es en el caso de ánodos enterrados en suelos de resistividades muy elevadas entre (2000 a 50000 Ω - cm).

Otro importante campo de aplicación son los acumuladores de agua caliente sanitaria, aunque suele limitarse a depósitos pequeños y bien revestidos. Ver figura 1.14 ánodo de magnesio.

⁽¹⁾<u>http://guillerdolf.com/index_productos.html</u>

FIGURA 1.14 ÁNODO COMERCIAL DE MAGNESIO⁽¹⁾

Método de fijación de los ánodos de sacrificio: Los ánodos se fijan en la estructura a proteger por distintos procedimientos, con la ayuda del alma que los atraviesa, tipo platina, varilla o barra de acero que se suelda, o con grapas, espárragos, o simplemente atornillados; En este caso la corriente calculada disminuirá en un 20 o 25 % aproximadamente. Su distribución está en función del área que protege cada ánodo, en batería.

⁽³⁾<u>http://www.1and1.cathelco.com/language/es/cathelco/af/af_elecprocess.htm</u>

FIGURA 1.15 PROTECCIÓN CATÓDICA POR CORRIENTE IMPRESA ⁽³⁾

En este sistema de protección catódica se utiliza la corriente suministrada por una fuente continua para imprimir la corriente necesaria para la protección de una estructura. Ver figura 1.16

⁽³⁾http://www.1and1.cathelco.com/language/es/cathelco/af/af_elecprocess.htm

FIGURA 1.16 GENERACIÓN DE CORRIENTE ⁽³⁾

Este procedimiento consiste en unir eléctricamente la estructura que se trata de proteger con el polo negativo de una fuente de alimentación de corriente continua (pura o rectificada) y el positivo con un electrodo auxiliar que cierra el circuito. Es completamente indispensable la existencia del electrolito (medio Agresivo) que completa el conjunto para que se realice el proceso electrolítico.

La aplicación de la corriente negativa al metal que hay que proteger y el polo positivo al electrolito (o sea el agua de mar), es con el fin de conseguir rebajar el potencial del metal a proteger hasta llegar al potencial de inmunidad de ese metal sin necesidad de ánodos de sacrificio, solamente aplicando la corriente continua. Este sistema transforma la o las partes de la estructura que se desea proteger en cátodos induciéndoles una corriente inversa desde un ánodo inerte Ver figura 1.17

⁽³⁾<u>http://www.1and1.cathelco.com/language/es/cathelco/af/af_elecprocess.htm</u>

FIGURA 1.17 ÁNODOS INERTES DE COBRE Y ALUMINIO PARA CORRIENTE IMPRESA ⁽³⁾

Los ánodos suelen estar montados en pares en las tomas de agua marina o filtros. En funcionamiento, el ánodo de cobre produce iones que impiden las bioincrustaciones. El ánodo de aluminio produce iones que reaccionan con el agua marina para producir una capa anticorrosiva en las superficies internas de las tuberías.

En los buques de cruceros suele ser necesario proteger un gran número de tomas de agua marina para los sistemas de refrigeración de los motores y del equipo auxiliar, como sistemas de aire acondicionado y bombas de contraincendios. Ver figura 18 bloqueos de tuberías provocadas por lapas y mejillones.

⁽³⁾<u>http://www.1and1.cathelco.com/language/es/cathelco/af/af_elecprocess.htm</u>

FIGURA 1.18 BIOINCRUSTACIONES EN TUBERÍAS MARINAS⁽³⁾

Los sistemas de tuberías en los buques de cruceros suelen estar fabricados en materiales de cuproníquel. Así pues, se suministra pares de ánodos de cobre y hierro para eliminar las bioincrustaciones y evitar la corrosión en las tuberías. Ver figura 1.19

⁽³⁾http://www.1and1.cathelco.com/language/es/cathelco/af/af_elecprocess.htm

FIGURA 1.19 INSTALACIÓN DE ÁNODOS PARA CORRIENTE IMPRESA ⁽³⁾

1.3 Tipos de Electrodos de Referencia

Los electrodos de referencia, son dispositivos importantes que permiten medir el potencial de una superficie metálica expuesta a un electrolito. Por ejemplo, mediciones de potencial estructurasuelo, o estructura agua de mar. Ver figura 1.20 de algunos electrodos comerciales de cobre sulfato de cobre (Cu/CuSO4), y plata cloruro de plata (Ag/AgCl).

FIGURA 1.20 ELECTRODOS DE REFERENCIA COMERCIALES

Los potenciales estructura-suelo se miden con respecto a un electrodo. Lo que generalmente se llama potencial estructuraelectrolito es en realidad el potencial medido entre la estructura y el electrodo de referencia. El electrolito en sí mismo no tiene un valor de potencial con respecto al cual medir el potencial de una estructura independientemente del potencial del electrodo de referencia utilizado.

Los procesos que tienen lugar en la interface metal-solución de cualquier metal en contacto con un electrolito (medio agresivo), no se pueden medir de una manera absoluta (tiene que ser tan sólo relativa). El metal en contacto con el electrolito tiene, por un lado, tendencia a disolverse, con lo que queda cargado negativamente.

 Me^+ + Me (4) ne Y, por otro lado, a que iones del electrolito se depositen sobre el metal:

Me⁺ ne Me (5) + Con lo que se alcanza el equilibrio en un determinado momento: Me $Men^+ +$ (6)

ne

Se ha creado, pues, una diferencia de potencial entre el metal y el electrolito. Para poder medir esta diferencia de potencial se adoptó un electrodo patrón que es el electrodo normal de hidrógeno, al cual, por convención y a cualquier temperatura, se le asignó el valor cero.

Tomando como referencia el electrodo de hidrógeno, el potencial de un metal cualquiera sumergido en una solución de sus iones de actividad igual a la unidad, corresponde a la fuerza electromotriz de una pila, en la cual el semielemento metal/solución de sus iones actúa como polo positivo, o sea de cátodo, y el electrodo de H2

como polo negativo, o ánodo, según la convención propuesta por la Unión Internacional de Química Pura y Aplicada (IUPAC).

La diferencia de potencial entre metales expuestos a soluciones que contienen los respectivos iones con una concentración unitaria (actividad unitaria) se representa en la serie Standard de fem (fuerza electromotriz). En esta serie, los metales se disponen desde el más noble (por ejemplo, oro) hasta el más activo, por ejemplo magnesio.

De esta forma se construye la serie electroquímica de los metales, representada en la tabla 1

TA	BL	Α.	1

SERIE ELECTROQUÍMICA DE LOS METALES.⁽⁴⁾

iones en solución	potencial (voltios)	iones en solución	potencial (voltios)
Li ⁺	-3022	Co++	-0.29
Rb⁺	-2924	Ni ⁺⁺	-0.22
K+	-2925	Sn++	-0.136
Ca ⁺⁺	-2.87	Pb++	-0.129
Na⁺	-2715	H⁺	0.000
Mg ⁺⁺	-1866	Bi***	+0.226
Al***	-1.67	Cu ⁺⁺	+0.344
Zn++	-0.762	Te++++	+0.588
Cr⁺	-0.71	Hg ⁺⁺	+0.798
Fe ⁺⁺	-0.441	Ag⁺	+0.799
Cd⁺	-0.397	Pt ⁺⁺	+1.2
Ti+	-0.336	Au ⁺⁺⁺	+1.12

1.3.1 Estándar de Hidrógeno

Un electrodo estándar de hidrógeno también llamado electrodo normal de hidrógeno es un electrodo redox que forma la base de la tabla estándar de potenciales de electrodos. Su potencial absoluto se estima en 4.40 ± 0.02 V a 25 °C, pero para realizar una base de comparación con

⁽⁴⁾ http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/079/htm/sec_9.htm

cualquier otra reacción electrolítica, el potencial electrolítico del hidrógeno (E^0) se fija como 0 en todas las temperaturas.

El electrodo de hidrógeno se basa en la semicelda redox:

$$2H^+(aq) + 2e^- \rightarrow H_2(g)$$

(7)

Esta reacción de oxidación-reducción ocurre en un electrodo de platino. El electrodo es sumergido en una solución ácida y se bombea hidrógeno gaseoso a través de él. La concentración de formas oxidadas y reducidas se mantiene como una unidad. Esto implica que la presión de hidrógeno gaseoso es igual a 1 bar y la concentración de hidrógeno en la solución es 1 mol.

La ecuación de Nernst debe desarrollarse así:

$$E = \frac{RT}{F} \ln \frac{a_{H^+}}{(p_{H_2}/p^0)^{1/2}}$$
(8)

$$E = -\frac{2.303 \text{ RT}}{F} pH - \frac{RT}{2F} ln \frac{P_{H2}}{P_0}$$
(9)

Donde:

aH⁺ : Actividad de los iones de hidrógeno.

pH₂: Presión parcial del hidrógeno gaseoso, en pascales Pa

R : Constante universal de los gases ideales.

T: Temperatura, en Kelvin.

F: Constante de Faraday

 P_0 : Presión estándar 1 Atmósfera (10⁵ Pa)

El uso de platino para el electrodo de hidrógeno se debe a varios factores:

- Material inerte, que no se corroe.
- Capacidad para catalizar la reacción de reducción de protones.
- Alto intercambio intrínseco de densidad para la reducción de protones.
- Excelente reproducción del potencial igual o menor que 10 µV cuando dos electrodos bien construidos se comparan con otros.

La superficie del platino se platiniza, es decir, se cubre con una capa de negro de platino por lo que se requiere:

Emplear un electrodo con gran superficie real. Cuanto mayor es la superficie real, mayor es la cinética del electrodo. Emplear un material que pueda absorber hidrógeno como interface. Ver figura 1.21 electrodo estándar de Hidrogeno.

⁽⁵⁾<u>http://es.wikipedia.org/wiki/Electrodo_est%C3%A1ndar_de_hidr%C3%B3geno</u>

FIGURA 1.21 ELECTRODO ESTÁNDAR DE HIDRÓGENO⁽⁵⁾

1.3.2 Cobre/Sulfato de Cobre

Es necesario hacer notar que la fem de una celda de corrosión no necesariamente es predecible a partir de la serie de fem Standard porque:

- La serie fem se confecciona en base a condiciones ambientales normalizadas.
- Los metales se polarizan al conectarlos entre sí y esto afecta el voltaje entre ellos.

Por lo expuesto anteriormente sumado a las dificultades operativas que se presentan en el manejo de un electrodo de hidrógeno, el cual es demasiado frágil para la mayoría de las aplicaciones prácticas, han dado lugar a la utilización de otros electrodos de referencia que lógicamente deben de reunir determinadas condiciones. Aparte de ser manejables y de construcción sencilla, la condición fundamental es que el potencial de equilibrio de la reacción de óxido-reducción (redox) que tenga lugar en ellos, permanezca constante respecto al electrodo de hidrógeno. En estas condiciones, en cualquier momento se podría referir un potencial al del electrodo de hidrógeno o viceversa.

⁽⁶⁾<u>http://www.aiu.edu/publications/student/spanish/131-179/Corrosion-Engineering-Catodic-</u> Protection.htm

FIGURA 1.22 ELECTRODO COBRE/SULFATO DE COBRE⁽⁶⁾

Los electrodos de cobre-sulfato de cobre (CSE) son los electrodos de referencia más comúnmente usados para medir potenciales de estructuras enterradas o expuestas a agua dulce. El electrodo se compone de una varilla de cobre, inmersa en una solución saturada de sulfato de cobre, dentro de un cilindro no conductor con un tapón poroso en un extremo, como muestra la Figura 1.22 Los iones cobre en la solución saturada evitan la corrosión de la varilla de cobre y estabilizan el electrodo de referencia.

La reacción de electrodo es la siguiente:

 $Cu - Cu^{+2} + 2e^{-}$ (10)

Con la solución saturada de CuSO4, se tiene E = +0,318 Volt vs electrono normal de hidrógeno (ENH), pero para uso práctico se considera un valor de 0.30 V. Este tipo de electrodo puede utilizarse en cualquier ambiente, sea en el suelo o agua de mar, aguas dulces o saladas. Entre otras ventajas, presenta la sencillez de su preparación y su gran estabilidad. Cuando se utiliza en agua de mar, puede contaminarse con cloruros, por lo cual es aconsejable más bien en el suelo, en aguas dulces y en salmueras.

1.3.3 Plata/Cloruro de Plata

El electrodo de plata-cloruro de plata típico consiste en un alambre de plata que se encuentra en contacto con iones cloruro en solución. El alambre de plata se encuentra cubierto por una capa delgada de cloruro de plata sólido que se produce por electrólisis. La reacción de este electrodo se puede representar por:

$$AgCl_{(s)} + 1e^{-} \leftrightarrow Ag_{(s)} + Cl^{-}$$
(11)

La ecuación de Nernst que la representa:

$$E Ag/AgCI = E^{\circ} Ag/AgCI - 0.05916 \log [CI^{-}]$$
(12)

Donde E° Ag/AgCI = 0.222 V, es decir el potencial del electrodo depende de la concentración del ion CI⁻ de la solución. Ver figura 1.23 de un electrodo patrón Plata Cloruro de Plata.

FIGURA 1.23 ELECTRODO PLATA/CLORURO DE PLATA

1.3.4 Potencial Estándar de Electrodos

Para la determinación del potencial estándar de electrodos de referencia es el electrodo de hidrógeno. Ver la tabla 2

TABLA 2 POTENCIAL ESTÁNDAR ELECTRODOS DE REFERENCIA

Electrodo	Potencial	
(hemi-pila)	(Voltios)	
Estándar de hidrogeno	0,000	
Cobre-Sulfato de Cobre	+0,316	
Plata-Cloruro de Plata	+0,222	

1.4 Potenciales Electroquímicos para Estructuras Sumergidas en Agua de Mar.

⁽¹⁾<u>http://guillerdolf.com/index_productos.html</u> FIGURA 1.24 CORROSIÓN ELECTROQUÍMICA DE UN MUELLE⁽¹⁾ La medición de potenciales electroquímicos de este tipo de estructuras persigue dos objetivos fundamentales:

- Medición del potencial de la estructura protegida, para verificar que el criterio termodinámico de inmunidad se cumple en todos los puntos.
- Medición del potencial de algunos ánodos de sacrificio representativos, para verificar su buen comportamiento (la ausencia de polarización excesiva).

En la figura 1.25 se presenta el principio de medida del potencial electroquímico. La estructura protegida se conecta al polo negativo de un voltímetro, mientras que el electrodo de referencia, sumergido en el electrolito por el cual circula la corriente de protección, se conecta al polo positivo. La posición exacta del electrodo de referencia en el campo eléctrico establecido entre el ánodo y el cátodo es de suma importancia. En efecto, el potencial leído corresponde a la superficie equipotencial sobre la cual se sitúa el electrodo de referencia. El circuito 1 corresponde a la medida del potencial en el punto A de la estructura, mientras en el circuito 2 corresponde a la medida del potencial del ánodo. El circuito 3 representa una situación intermedia.

(6) http://www.aiu.edu/publications/student/spanish/131-179/Corrosion-Engineering-Catodic-Protection.htm

FIGURA 1.25 MEDIDA DEL POTENCIAL ELECTROQUÍMICO⁽⁶⁾

Adicionalmente se presenta dos placas de acero (placa A) y (placa

B) sumergidas en agua de mar en la figura 1.26

FIGURA 1.26 PLACAS DE ACERO ASTM A588 SUMERGIDAS EN AGUA DE MAR PARA MEDICIÓN DE POTENCIALES ELÉCTRICOS PLACA A (CON CORROSIÓN) PLACA B (CON PROTECCIÓN CATÓDICA) En la figura 1.27 y 1.28 respectivamente se presenta la medición del Potencial Eléctrico de la placa A (sin protección catódica) y la placa B (Con protección catódica).

FIGURA 1.27 MEDICIÓN POTENCIAL ELÉCTRICO PLACA "A"

FIGURA 1.28 MEDICIÓN POTENCIAL ELÉCTRICO PLACA "B"

Las estructuras de acero sumergidas que se encuentran con mayor frecuencia son de dos tipos: Fijas y móviles.

Las fijas más comunes, se usan en obras portuarias, tuberías de transporte, compuertas y plataformas marinas y las Estructuras fijas sumergidas en agua. Conocidas las dimensiones que la estructura tiene sumergida, se conocerá su superficie. A esta superficie se le aplica la densidad de corriente adecuada.

Tratándose de agua de mar, abra que tener en cuenta el efecto protector de las incrustaciones y su calidad, que está en función de la densidad de corriente aplicada. En efecto, una superficie de acero sumergida en agua de mar puede ser protegida catódicamente aplicando cantidades comprendidas entre 2 mA/m² y 60 mA/m². Con altas densidades de corriente, la formación de incrustaciones, constituida principalmente por hidróxido de magnesio (Mg (OH)₂), es instantánea, voluminosa, muy porosa y se desprende fácilmente incluso con los movimientos del agua de poca velocidad.

Con densidades de corriente bajas, la formación de incrustaciones, constituida principalmente por carbonato de calcio (CaCO₃), es muy lenta; se forma una película muy delgada, dura y compacta,

fuertemente adherida a la superficie metálica, y que por lo tanto la protege mucho.

La instalación de protección catódica será tanto más económica cuanto los elementos constituyentes sean más pequeños y entren en menor número; las densidades de corriente óptimas están comprendidas entre los 60 y los 200 mA/m². Con 100 mA/m² inicialmente, la capa incrustante tardaría entre 45 y 60 días en formarse definitivamente; estará constituida principalmente por carbonato de calcio y así la instalación quedará protegida, una vez formada dicha capa, con una densidad de corriente de 40 mA/m², es decir, que la corriente de mantenimiento equivaldría a un 40 % de la inicial.

Los casos y cifras anteriores se refieren a superficies de acero desnudas. Pero si la estructura a proteger está pintada, deberá aplicarse un factor de eficiencia de la pintura en función de los deterioros que haya sufrido durante el montaje. Para obras portuarias como pantalanes de pilotes o tablestacados, los factores de eficiencia de las pinturas oscilan entre el 80 y 90%, es decir que la superficie que queda descubierta del acero será del 20 al 10% de la total. Por lo tanto, si se tiene una estructura de 10.000 m² de

superficie sumergida, pintada con una buena pintura submarina, y que los deterioros sufridos en el montaje han sido del 10% (eficiencia del recubrimiento 90%) y se aplicará una densidad de corriente de 100 mA/m², la cantidad de corriente que se debería suministrar para protegerla catódicamente será igual a:

$$10.000 \text{ m}^2 \text{ x} 100 \text{ mA/m}^2 \text{ x} 0.1 = 100.000 \text{ mA} = 100 \text{ Amperes.}$$

Este tipo de estructuras sumergidas fijas suele tener una parte enterrada en el fondo, la cual va a demandar una corriente de protección que, por lo tanto, debe ser calculada.

La fijación de los componentes de la estructura, como pilotes o tablestacas, se hace por hincado en el fondo marino por lo que esta tipo de estructuras se debe considerar desnudas y de hecho se instalan desnudas, sin ningún tipo de recubrimiento, ya que si lo tuvieran, lo perderían casi todo en la operación del hincado. El acero desnudo en los fondos marinos puede demandar para su protección catódica una densidad de corriente que va de 20 a 60 mA/m².

Siguiendo con el ejemplo anterior, si la estructura (de 10.000 m²) tiene una parte enterrada de 5000 m², estimando una demanda de 40 mA/m^2 , la corriente consumida seria de:

5.000 m² x 40 mA/m² = 200.000 mA = 200 Amperes

La corriente total demandada por esta estructura será 300 amperes, que se deberán suministrar por uno de los dos métodos posibles: Ánodos galvánicos o corriente impresa.

CAPÍTULO 2

2. CONSTRUCCIÓN EXPERIMENTAL DE ELECTRODOS DE PLATA/CLORURO DE PLATA POR MEDIO DE ELECTRÓLISIS.

2.1 Metodología del Proceso de Electrólisis.

En el presente capitulo se realiza un procedimiento de laboratorio llamado electrolisis el cual es un método de separación de los elementos que forman un compuesto aplicando electricidad. Consiste en llevar a cabo una reacción química no espontanea en la que la fuerza impulsora externa es la corriente eléctrica. Ver Apéndice G Electrolisis y Leyes de Faraday-

2.1.1. Electrodeposición por Oxidación.

La preparación de un electrodo de plata-cloruro de plata se puede llevar a cabo por oxidación de un hilo de plata en acido clorhídrico, aplicando una diferencia de potencial de 9 Voltios hasta que se observa la formación de una capa fina oscura de cloruro de plata AgCl_(s) sobre el alambre de plata aproximadamente al haber transcurrido entre 8 a 10 minutos.

Las reacciones al llevar a cabo este procedimiento experimental son las siguientes:

Ox:
$$2Ag_{(s)} + 2HCI_{(l)} \rightarrow 2AgCI_{(s)} + 2H^{+} + 2e^{-}$$
 (17)

Red:
$$2H^+ + 2e^- \rightarrow H_2$$
 (18)

Suma:
$$2Ag_{(s)} + 2 HCI_{(l)} \rightarrow 2 AgCI_{(s)} + H_{2(g)}$$
 (19)

2.1.2. Materiales y Equipos Utilizados.

- 1. Generador de Corriente Continua serie B33381ESPOL
- 2. Varilla o alambre de plata (con rejilla soldada).
- 3. Varillas de Acero inoxidable (2)
- 4. Solución de Acido Clorhídrico 0.1 M (500 ml)
- 5 Solución de Acido Nítrico (diluido)
- 6. Barra de Cobre $\phi = 8 \text{ mm}$
- 7. Solución de Cloruro de Potasio 0.3 M (100 ml)
- 8. Vaso de Precipitado (250 ml)
- Soporte base para Varillas de Acero Inoxidable y alambre de plata.

- 10. Barra redonda de Teflón (blanco) D= 3.2 cm L= 25 cm
- Cloruro de Plata fabricado en el Laboratorio de Ciencias Químicas I.C.Q ESPOL
- 12. Barra redonda de PVC (rojo) D=3.1cm L= 15 cm.

2.2 Control del Proceso.

Para llevar un correcto control del proceso es necesario conocer las variables y condiciones requeridas para no cometer ningún error o algún tipo de desviación no deseada.

Se requiere utilizar un disolvente apropiado para preparar la solución de Acido Clorhídrico diluido de concentración 0.1 M. Además de contar con una temperatura ambiente de 20 a 25 ⁰ C dentro del laboratorio. Seleccionar el Amperaje correctamente desde el generador de corriente continúa al inicio del proceso. Un control exacto de los tiempos requeridos durante el proceso de electrolisis para la formación del cloruro de plata sobre la rejilla o varilla de plata para obtener buenos resultados en la fabricación del electrodo.

2.3 Construcción del Electrodo Experimental.

El electrodo de referencia de plata cloruro de plata para medición de potenciales (electrodo portátil) está formado por una varilla de plata pura, dentro de una formación cristalina de Cloruro de Plata (AgCl).

PROCEDIMIENTO:

1. Se arma el electrodo junto con el cuerpo del electrodo en la base plástica de teflón, realice el procedimiento de soldadura de la varilla o alambre de plata antes de realizar el proceso de electrolisis y antes de aplicar la resina epoxy en el cuerpo del electrodo. Ver figura 2.2

FIGURA 2.1 SOLDADURA DEL ALAMBRE DE PLATA AL ESPÁRRAGO

2. Se aplica la resina epoxy desde la parte inferior del agujero, por donde sale el alambre de plata, apliqué una rotación del alambre para que la resina pueda fluir más rápidamente sin que se forme gotas y se vaya adhiriendo en las paredes, luego volteé el electrodo y apliqué la resina desde la parte superior, donde se encuentra el esparrago de cobre. Añadir sobre la soldadura del esparrago resina epoxy y comience a enroscar el espárrago en sentido horario dentro del porta electrodo para evitar que queden burbujas de aire dentro del electrodo evitar filtraciones y proteger la soldadura la cual es una aleación de plata y cobre. Deje secar la resina epoxy por un lapso de 12 horas. Ver figura 2.3

FIGURA 2.2 APLICACIÓN DE LA RESINA EPOXY

3. Se limpia el electrodo antes del proceso de electrolisis, debe sumergir la varilla de plata junto con la rejilla de plata por algunos segundos en ácido nítrico (diluido), se saca y se lava posteriormente con abundante agua destilada y se deja secar al aire. 4. Existen 2 alternativas para realizar la electrolisis para la formación del cloruro de plata sobre la rejilla de plata:

Caso A sumergir completamente la rejilla de plata, Figura 2.4 a)Caso B sumergir parcialmente la rejilla de plata Figura 2.4 b).Por simplicidad elegimos el caso B ya que si existe contacto con

la soldadura que posee el electrodo en la rejilla de plata se formarán los siguientes compuestos: Cloruro de Cobre y el Cloruro de Zinc, al sumergir la rejilla como se muestra en la Figura 2.4 a) Si solo se sumerge la rejilla de plata parcialmente se formará únicamente el Cloruro de Plata en un 80 a 85 % del Volumen de la rejilla de plata sumergida. Ver Figura 2.4 b)

FIGURA 2.3 REJILLA DE PLATA SUMERGIDA

a) SUMERGIDA 100% b) SUMERGIDA ENTRE 80-85%

5. Dentro de un vaso de precipitado de 250 ml añadir Ácido clorhídrico (diluido) 0.1 M, coloque en la base las 2 varillas de Acero Inoxidable a continuación, se sumerge el electrodo de plata ya ensamblado dentro de su porta electrodo, como puede verse en la figura 2.4 a) o b) solo la rejilla donde se quiere formar la capa fina de cloruro de plata debe encontrarse sumergida. A continuación conecte el polo positivo del generador DC al esparrago del electrodo y los polos negativos (2) del generador DC a las varillas de Acero Inoxidable (2). Ensamble la celda electrolítica como se muestra a continuación en la Figura 2.4

FIGURA 2.4 ENSAMBLE DE LA CELDA ELECTROLÍTICA

6. Antes de activar el switch de encendido o paso de corriente hacia el ánodo y cátodo de la celda electrolítica. Seleccione el Voltaje 9V por medio del potenciómetro para realizar el proceso de electrolisis, Ver Figura 2.5

FIGURA 2.5 SELECCIÓN DEL VOLTAJE DE OPERACIÓN

7. A continuación se verifica la conexión de los cables eléctricos que no exista contacto entre el polo positivo y negativo, es decir entre el ánodo y cátodo ya que se podría producir un corto y daño en el equipo. Ver figura 2.6

FIGURA 2.6 REVISIÓN DE CONEXIÓN ELÉCTRICA

8. Se Activa el switch encendido y tome el tiempo que tarda en formarse la capa oscura fina de cloruro de plata sobre el electrodo positivo de varilla o alambre de plata junto con la rejilla. Ver Figura 2.7

FIGURA 2.7 ELECTROLISIS PARA LA FORMACIÓN DEL CLORURO DE PLATA a) REJILLA DE PLATA. b) VARILLA DE PLATA.

9. Seguidamente se observa la reacción de oxidación de la varilla o rejilla de plata dentro de la celda electrolítica y así mismo la formación de una capa fina oscura de cloruro de plata en los casos a) y b), luego se apaga el generador de corriente continua. Ver figura 2.8 a) y b)

FIGURA 2.8 FORMACIÓN CAPA OSCURA DE CLORURO DE PLATA. a) REJILLA DE PLATA b) VARILLA DE PLATA

- 10. La varilla o rejilla de plata se retira de la celda electrolítica y se lava con abundante agua destilada y se deja secar al aire libre.
- 11. Prepare la resina junto con el cloruro de plata fabricado en el laboratorio para adherirlo en las partes de la soldadura de la rejilla de plata, para así cubrir del 10 al 15 % restante que no se sumergió durante el procedimiento de electrolisis, es decir donde no se formo el cloruro de plata. Deje secar la resina por el lapso de 12 horas. Ver figura 2.9

FIGURA 2.9 APLICACIÓN SOBRE LA SOLDADURA DE RESINA EPOXY JUNTO CON EL CLORURO DE PLATA (AgCI) a) RESINA EPOXY Y AgCI_(s) b) APLICACIÓN RESINA EPOXY Y AgCI_(s)

 Por último se almacena en una solución saturada de Cloruro de Potasio (KCI 0.3 M), para conservar la capa fina de cloruro de plata formada por el método de electrolisis.

2.3.1 Tecnología Empleada en la Construcción

Dentro de una celda electrolítica, y aplicando el procedimiento de electrolisis se logro construir los dos tipos de Electrodos de Plata Cloruro de Plata para medición de potenciales eléctricos.

2.3.2 Proceso de Ensamble

Para el ensamble del electrodo de Plata Cloruro de Plata para medición de potenciales se utilizará el Plano 1 y el Plano 2 ubicado en el índice de planos.

CAPÍTULO 3

3. ANÁLISIS DE RESULTADOS.

En este capítulo se aplica la fórmula de Faraday ubicada en el Apéndice G para calcular la masa (m) de cloruro de plata que se formo durante el proceso de electrolisis.

A continuación se sumerge una placa de acero ASTM A588 en agua de mar protegida catódicamente con un ánodo de zinc, se toman las lecturas de potenciales eléctricos con el electrodo patrón y con el electrodo experimental para mediante estas lecturas de potenciales eléctricos realizar un análisis estadístico.

Por último se calcula el error porcentual de las 30 mediciones para cada día a partir del día 1 al 15 que se realizó el monitoreo para medir los potenciales eléctricos de la placa de acero ASTM A588 sumergida en agua de mar.

Cálculo de masa formada de Cloruro de Plata durante la Electrólisis:

Aplicando la ecuación de Faraday ubicada en el Apéndice G se determina la masa de Cloruro de Plata (AgCl) que se forma durante la electrólisis:

Datos: I = 1.5 A t = 600 s $M_{(AgCI)} = 142.7 \text{ g}$ n = 2 F = 96.500 C Ecuación de Faraday :

$$m = \frac{I t M}{n F}$$
(20)

Sustituyendo en la ecuación de Faraday se tiene:

$$m = \frac{(1.5)x (600)x (142.7)}{(2)x (96500)}$$
$$m = \frac{128.430}{193.000}$$

m = 0.665 g AgCl

3.1 Criterio para Elección de Potenciales de Corrosión versus Patrón

Aplique la Norma NACE RP-01-69, párrafo 6.2.2.1 pág. 13.

- 3.2 Potenciales según la Velocidad del Agua de Mar y su Salinidad Como referencia utilice la tabla VIII y IX ubicada en el Apéndice I y J respectivamente para conocer su grado de salinidad y seleccionar el potencial eléctrico utilizado en agua de mar.
- 3.3 Mediciones de Potenciales con un Electrodo de Plata Cloruro
 de Plata Comercial versus Electrodo Construido en el
 Laboratorio

FIGURA 3.1 MEDICIÓN DE POTENCIAL SOBRE UNA PLACA DE ACERO ASTM A588 SUMERGIDA EN AGUA DE MAR

POTENCIALES ELÉCTRICOS ELECTRODO PATRÓN DÍA 1

Medición	X	F(X)
1	-0.987	52.24961779
2	-0.997	14.88306401
3	-1	7.14881884
4	-1.008	0.4525102
5	-1.006	1.006753584
6	-0.998	11.87080631
7	-0.991	39.3743569
8	-0.994	26.28363395
9	-0.98	42.40271047
10	-0.979	38.25390321
11	-0.976	25.16974594
12	-0.98	42.40271047
13	-0.985	53.93548751
14	-0.986	53.57339154
15	-0.984	53.31624084
16	-0.985	53.93548751
17	-0.984	53.31624084
18	-0.982	49.31825255
19	-0.984	53.31624084
20	-0.983	51.74922835
21	-0.985	53.93548751
22	-0.983	51.74922835
23	-0.981	46.14991729
24	-0.982	49.31825255
25	-0.983	51.74922835
26	-0.982	49.31825255
27	-0.982	49.31825255
28	-0.98	42.40271047
29	-0.981	46.14991729
30	-0.983	51.74922835

A partir de las medidas de potencial de la tabla 3.1 se calculan algunos indicadores estadísticos tales como: La media, la varianza y la desviación estándar cuyos valores se registran en la tabla 3.2 Donde:

La media (u) es:

$$u = \sum_{i=1}^{n} X_i \tag{21}$$

La Varianza (σ 2) es:

$$\sigma^{2} = \sum_{i=1}^{n} \frac{(X_{i} - u)^{2}}{n}$$
(22)

La Desviación Estándar (σ) es:

$$\sigma = \sqrt{\sigma^2} \tag{23}$$

Y la función F(x) de la Distribución Normal de Gauss es:

$$F(x) = \frac{1}{\sigma\sqrt{2*\pi}} * e^{-\frac{(x-u)^2}{2*\sigma^2}}$$
(24)

VALORES ESTADÍSTICOS ELECTRODO PATRÓN DÍA 1

Media (u)	Varianza (σ²)	Desviación Estándar (σ)
-0.985	5.4693E-05	0.007395486

FIGURA 3.2 DISTRIBUCIÓN NORMAL ELECTRODO

PATRÓN DÍA 1

POTENCIALES ELÉCTRICOS ELECTRODO

EXPERIMENTAL DÍA 1

Medición	X (Voltios)	F(x)
1	-0.981	39.48335301
2	-0.995	19.44462328
3	-1	9.289197296
4	-1.006	2.731690943
5	-1.008	1.673861087
6	-0.997	14.92088981
7	-0.989	33.66852889
8	-0.99	31.52026158
9	-0.96	2.664888732
10	-0.98	38.46601268
11	-0.977	33.45177333
12	-0.95	0.151284221
13	-0.983	40.34261182
14	-0.986	38.59043447
15	-0.984	40.15846828
16	-0.985	39.56844882
17	-0.982	40.11526269
18	-0.981	39.48335301
19	-0.983	40.34261182
20	-0.982	40.11526269
21	-0.985	39.56844882
22	-0.981	39.48335301
23	-0.983	40.34261182
24	-0.982	40.11526269
25	-0.983	40.34261182
26	-0.979	37.09360743
27	-0.984	40.15846828
28	-0.975	28.95837906
29	-0.98	38.46601268
30	-0.981	39.48335301

VALORES ESTADÍSTICOS ELECTRODO EXPERIMENTAL DÍA 1

Media (u)	Varianza (σ²)	Desviación Estándar (σ)
-0.984	9.58386E-05	0.009789719

FIGURA 3.3 DISTRIBUCIÓN NORMAL

ELECTRODO EXPERIMENTAL DÍA 1

POTENCIALES ELÉCTRICOS ELECTRODO PATRÓN DÍA 5

Medición	X (Voltios)	F(x)
1	-0.964	16.65561482
2	-0.965	35.11179343
3	-0.966	63.63433403
4	-0.966	63.63433403
5	-0.966	63.63433403
6	-0.967	99.14621524
7	-0.966	63.63433403
8	-0.967	99.14621524
9	-0.968	132.8027058
10	-0.968	132.8027058
11	-0.967	99.14621524
12	-0.968	132.8027058
13	-0.969	152.926889
14	-0.969	152.926889
15	-0.97	151.3933957
16	-0.969	152.926889
17	-0.969	152.926889
18	-0.97	151.3933957
19	-0.971	128.8475465
20	-0.971	128.8475465
21	-0.971	128.8475465
22	-0.971	128.8475465
23	-0.971	128.8475465
24	-0.973	59.29977402
25	-0.973	59.29977402
26	-0.974	32.06717492
27	-0.973	59.29977402
28	-0.972	94.27391059
29	-0.974	32.06717492
30	-0.975	14.90783267

VALORES ESTADÍSTICOS ELECTRODO PATRÓN DÍA 5

Media (u)	Varianza (ơ2)	Desviación Estándar (σ)
-0.969	6.61491E-06	0.002571947

FIGURA 3.4 DISTRIBUCIÓN NORMAL ELECTRODO PATRÓN DÍA 5

POTENCIALES ELÉCTRICOS ELECTRODO EXPERIMENTAL DÍA 5

Medición	X _i (Voltios)	F(x)
1	-0.965	13.83022058
2	-0.969	51.57789244
3	-0.97	63.37560797
4	-0.969	51.57789244
5	-0.967	29.4717829
6	-0.967	29.4717829
7	-0.971	74.13113595
8	-0.974	88.29904871
9	-0.974	88.29904871
10	-0.971	74.13113595
11	-0.968	39.95995732
12	-0.971	74.13113595
13	-0.978	55.96408806
14	-0.98	33.15934588
15	-0.978	55.96408806
16	-0.972	82.54659082
17	-0.97	63.37560797
18	-0.978	55.96408806
19	-0.979	44.15172825
20	-0.971	74.13113595
21	-0.972	82.54659082
22	-0.98	33.15934588
23	-0.983	10.45443376
24	-0.985	3.786140612
25	-0.975	84.82315486
26	-0.97	63.37560797
27	-0.974	88.29904871
28	-0.979	44.15172825
29	-0.979	44.15172825
30	-0.977	67.52912534

VALORES ESTADÍSTICOS ELECTRODO EXPERIMENTAL DÍA 5

Media (u)	Varianza (σ2)	Desviación Estándar (σ)
-0.974	2.03131E-05	0.004507005

FIGURA 3.5 DISTRIBUCIÓN NORMAL ELECTRODO EXPERIMENTAL DÍA 5

POTENCIALES ELÉCTRICOS ELECTRODO PATRÓN DÍA 10

г — т		
Medición	X _i (Voltios)	F(x)
1	-0.964	15.45897527
2	-0.967	22.4308323
3	-0.969	30.40711243
4	-0.974	48.31527934
5	-0.972	42.24661722
6	-0.971	38.50969481
7	-0.974	48.31527934
8	-0.977	52.01701183
9	-0.981	45.2398486
10	-0.978	51.53056702
11	-0.974	48.31527934
12	-0.973	45.56486408
13	-0.979	50.18809585
14	-0.978	51.53056702
15	-0.98	48.05657249
16	-0.974	48.31527934
17	-0.971	38.50969481
18	-0.976	51.62287114
19	-0.978	51.53056702
20	-0.972	42.24661722
21	-0.973	45.56486408
22	-0.98	48.05657249
23	-0.981	45.2398486
24	-0.982	41.87027077
25	-0.974	48.31527934
26	-0.971	38.50969481
27	-0.974	48.31527934
28	-0.977	52.01701183
29	-0.978	51.53056702
30	-0.975	50.36805573

	17	ABLA 12				
VALORES	ESTADÍSTI	COS ELECTR	ODO PAT	RÓN [DÍA 1	0

..

40

Media (u)	Varianza (σ2)	Desviación Estándar (σ)
-0.969	6.61491E-06	0.002571947

FIGURA 3.6 DISTRIBUCIÓN NORMAL ELECTRODO PATRÓN DÍA 10

POTENCIALES ELÉCTRICOS ELECTRODO

EXPERIMENTAL DÍA 10

NA		
Medicion	X _i (Voltios)	⊢(X)
1	-0.985	37.79521861
2	-0.987	44.57118016
3	-0.99	50.50409548
4	-0.989	49.24055077
5	-0.989	49.24055077
6	-0.988	47.23153724
7	-0.992	50.5909239
8	-0.995	44.87848489
9	-0.996	41.73679794
10	-0.991	50.96161317
11	-0.99	50.50409548
12	-0.992	50.5909239
13	-0.998	34.37317346
14	-1.001	22.73091616
15	-0.993	49.41000849
16	-0.99	50.50409548
17	-0.997	38.18677139
18	-0.996	41.73679794
19	-0.992	50.5909239
20	-0.992	50.5909239
21	-0.999	30.43961761
22	-1	26.51988456
23	-0.998	34.37317346
24	-0.993	49.41000849
25	-0.989	49.24055077
26	-0.994	47.47556265
27	-0.997	38.18677139
28	-0.998	34.37317346
29	-0.995	44.87848489
30	-0.991	50.96161317

TABLA 14

VALORES ESTADÍSTICOS ELECTRODO EXPERIMENTAL DÍA 10

Media (u)	Varianza (σ2)	Deviation Estándar (σ)
-0.991	6.12794E-05	0.007828113

FIGURA 3.7 DISTRIBUCIÓN NORMAL ELECTRODO EXPERIMENTAL DÍA 10

POTENCIALES ELÉCTRICOS ELECTRODO PATRÓN DÍA 15

Medición	X _i (Voltios)	F(x)
1	-0.915	7.601337256
2	-0.914	6.748941036
3	-0.913	5.961537973
4	-0.917	9.495763372
5	-0.919	11.62192211
6	-0.921	13.93587469
7	-0.922	15.14355856
8	-0.924	17.60947894
9	-0.925	18.84392472
10	-0.924	17.60947894
11	-0.928	22.39279057
12	-0.929	23.47692801
13	-0.929	23.47692801
14	-0.931	25.41198056
15	-0.93	24.48789007
16	-0.937	28.50226818
17	-0.939	28.42558739
18	-0.941	27.77459073
19	-0.943	26.58851509
20	-0.941	27.77459073
21	-0.939	28.42558739
22	-0.942	27.24472017
23	-0.946	23.96578021
24	-0.949	20.62920535
25	-0.948	21.79758976
26	-0.944	25.81563811
27	-0.943	26.58851509
28	-0.949	20.62920535
29	-0.955	13.31204167
30	-0.95	19.42377202

TABLA 16

VALORES ESTADÍSTICOS ELECTRODO PATRÓN DÍA 15

Media (u)	Varianza (σ2)	Desviacion Estandar (σ)
-0.938	0.000195368	0.013977425

FIGURA 3.8 DISTRIBUCIÓN NORMAL ELECTRODO PATRÓN DÍA 15

POTENCIALES ELÉCTRICOS ELECTRODO EXPERIMENTAL DÍA 15

Medición	X _i (Voltios)	F(x)
1	-0.95	28.83393028
2	-0.949	24.02347805
3	-0.948	19.59676749
4	-0.95	28.83393028
5	-0.951	33.88350444
6	-0.952	38.98426185
7	-0.952	38.98426185
8	-0.952	38.98426185
9	-0.953	43.91438714
10	-0.953	43.91438714
11	-0.952	38.98426185
12	-0.955	52.29876076
13	-0.956	55.29151111
14	-0.956	55.29151111
15	-0.956	55.29151111
16	-0.955	52.29876076
17	-0.956	55.29151111
18	-0.958	58.0018882
19	-0.96	55.9103063
20	-0.96	55.9103063
21	-0.959	57.55177775
22	-0.956	55.29151111
23	-0.96	55.9103063
24	-0.963	45.1533895
25	-0.964	40.30784242
26	-0.963	45.1533895
27	-0.959	57.55177775
28	-0.959	57.55177775
29	-0.964	40.30784242
30	-0.969	16.63923211

TABL	.A 1	8
------	------	---

VALORES ESTADÍSTICOS ELECTRODO EXPERIMENTAL DÍA 15

Media (u)	Varianza (σ2)	Desviacion Estandar (σ)
-0.958	4.72908E-05	0.006876832

FIGURA 3.9 DISTRIBUCIÓN NORMAL ELECTRODO EXPERIMENTAL DÍA 15

3.4 Tabla Comparativa de Lectura de Potenciales Eléctricos.

		Electrodo plata
Medición	Electrodo plata	cloruro de plata
	cioruro de plata	construido en
4	patron dia 1(V)	
1	-0.987	-0.981
2	-0.997	-0.995
3	-1	-1
4	-1.008	-1.006
5	-1.006	-1.008
6	-0.998	-0.997
7	-0.991	-0.989
8	-0.994	-0.99
9	-0.98	-0.96
10	-0.979	-0.98
11	-0.976	-0.977
12	-0.98	-0.95
13	-0.985	-0.983
14	-0.986	-0.986
15	-0.984	-0.984
16	-0.985	-0.985
17	-0.984	-0.982
18	-0.982	-0.981
19	-0.984	-0.983
20	-0.983	-0.982
21	-0.985	-0.985
22	-0.983	-0.981
23	-0.981	-0.983
24	-0.982	-0.982
25	-0.983	-0.983
26	-0.982	-0.979
27	-0.982	-0.984
28	-0.98	-0.975
29	-0.981	-0.98
30	-0.983	-0.981
	0.000	0.001

TABLA 19

3.5 Margen de Exactitud y Error en las Mediciones de Potenciales Eléctricos.

Como se puede ver a continuación tanto en la figura 3.10 y 3.11 respectivamente, se toman en ambos casos la medida del potencial eléctrico en el mismo punto y como resultado se tiene una lectura precisa en ambos electrodos ósea un valor exacto de la medida y por lo tanto un margen de error cero.

FIGURA 3.10 POTENCIAL ELECTRODO PATRÓN

FIGURA 3.11 POTENCIAL ELECTRODO EXPERIMENTAL.

Cálculo del error porcentual respecto a la media. Para las 30 primeras mediciones del día 1, día 5, día 10 y día 15 para el electrodo patrón. Y el electrodo experimental respectivamente.

$$\text{Error Porcentual} = \left| \frac{L_i - u}{u} \right| * 100\%$$
(25)

TABLA	20
-------	----

ELECTRODO PATRÓN DÍA 1

	M (M - 14')	Error Porcentual
Medicion	X _i (Voltios)	(%)
1	-0.987	0.1
2	-0.997	1.1
3	-1	1.4
4	-1.008	2.2
5	-1.006	2.0
6	-0.998	1.2
7	-0.991	0.5
8	-0.994	0.8
9	-0.98	0.6
10	-0.979	0.7
11	-0.976	1.1
12	-0.98	0.6
13	-0.985	0.1
14	-0.986	0.0
15	-0.984	0.2
16	-0.985	0.1
17	-0.984	0.2
18	-0.982	0.4
19	-0.984	0.2
20	-0.983	0.3
21	-0.985	0.1
22	-0.983	0.3
23	-0.981	0.5
24	-0.982	0.4
25	-0.983	0.3
26	-0.982	0.4
27	-0.982	0.4
28	-0.98	0.6
29	-0.981	0.5
30	-0.983	0.3

ELECTRODO EXPERIMENTAL DÍA 1

		Error Porcentual
Medición	X _i (Voltios)	(%)
1	-0.981	0.3
2	-0.995	1.1
3	-1	1.7
4	-1.006	2.3
5	-1.008	2.5
6	-0.997	1.3
7	-0.989	0.5
8	-0.99	0.6
9	-0.96	2.4
10	-0.98	0.4
11	-0.977	0.7
12	-0.95	3.4
13	-0.983	0.1
14	-0.986	0.2
15	-0.984	0.0
16	-0.985	0.1
17	-0.982	0.2
18	-0.981	0.3
19	-0.983	0.1
20	-0.982	0.2
21	-0.985	0.1
22	-0.981	0.3
23	-0.983	0.1
24	-0.982	0.2
25	-0.983	0.1
26	-0.979	0.5
27	-0.984	0.0
28	-0.975	0.9
29	-0.98	0.4
30	-0.981	0.3

TABLA 22	•
----------	---

ELECTRODO PATRÓN DÍA 5

		Error Porcentual	
Medición	X _i (Voltios)	(%)	
1	-0.964 0.6		
2	-0.965 0.5		
3	-0.966 0.4		
4	-0.966	0.4	
5	-0.966	0.4	
6	-0.967	0.3	
7	-0.966	0.4	
8	-0.967	0.3	
9	-0.968	0.1	
10	-0.968	0.1	
11	-0.967	0.3	
12	-0.968	0.1	
13	-0.969 0.0		
14	-0.969	0.0	
15	-0.97	0.1	
16	-0.969	0.0	
17	-0.969 0.0		
18	-0.97 0.1		
19	-0.971	0.2	
20	-0.971	0.2	
21	-0.971	0.2	
22	-0.971 0.2		
23	-0.971	0.2	
24	-0.973	0.4	
25	-0.973	0.4	
26	-0.974	0.5	
27	-0.973	0.4	
28	-0.972	0.3	
29	-0.974	0.5	
30	-0.975	0.6	

ELECTRODO EXPERIMENTAL DÍA 5

Madiaián	X_i	Error Porcentual
weatcion		(76)
1	-0.965	0.8
2	-0.968	0.5
3	-0.969	0.4
4	-0.969	0.4
5	-0.969	0.4
6	-0.97	0.3
7	-0.971	0.2
8	-0.971	0.2
9	-0.972	0.1
10	-0.972	0.1
11	-0.971	0.2
12	-0.972	0.1
13	-0.973	0.0
14	-0.973	0.0
15	-0.973	0.0
16	-0.973	0.0
17	-0.973	0.0
18	-0.974	0.1
19	-0.975	0.2
20	-0.975	0.2
21	-0.975	0.2
22	-0.975	0.2
23	-0.975	0.2
24	-0.974	0.1
25	-0.975	0.2
26	-0.977	0.4
27	-0.977	0.4
28	-0.977	0.4
29	-0.976	0.3
30	-0.975	0.2

ELECTRODO PATRÓN DÍA 10

		Error Porcentual	
Medición	X _i (Voltios)	(%)	
1	-0.964	0.6	
2	-0.965	0.5	
3	-0.966	0.4	
4	-0.966	0.4	
5	-0.966	0.4	
6	-0.967	0.3	
7	-0.966	0.4	
8	-0.967	0.3	
9	-0.968	0.1	
10	-0.968 0.1		
11	-0.967 0.3		
12	-0.968	0.1	
13	-0.969	0.0	
14	-0.969	0.0	
15	-0.97	0.1	
16	-0.969	0.0	
17	-0.969	0.0	
18	-0.97	0.1	
19	-0.971	0.2	
20	-0.971	0.2	
21	-0.971 0.2		
22	-0.971	0.2	
23	-0.971	0.2	
24	-0.973	0.4	
25	-0.973	0.4	
26	-0.974	0.5	
27	-0.973 0.4		
28	-0.972	0.3	
29	-0.974	0.5	
30	-0.975	0.6	

TABLA 25

ELECTRODO EXPERIMENTAL DÍA 10

Medición	X. (Voltios)	Error Porcentual (%)	
1	-0.085		
2	-0.903	0.0	
2	-0.907	0.0	
3	-0.99	0.3	
-	-0.909	0.4	
5	-0.989	0.4	
0	-0.966	0.5	
/	-0.992	0.1	
8	-0.995	0.2	
9	-0.996	0.3	
10	-0.991	0.2	
11	-0.99	0.3	
12	-0.992	0.1	
13	-0.998	0.5	
14	-1.001	0.8	
15	-0.993	0.0	
16	-0.99	0.3	
17	-0.997	0.4	
18	-0.996 0.3		
19	-0.992	0.1	
20	-0.992	0.1	
21	-0.999 0.6		
22	-1	0.7	
23	-0.998	0.5	
24	-0.993	0.0	
25	-0.989	0.4	
26	-0.994	0.1	
27	-0.997 0.4		
28	-0.998 0.5		
29	-0.995 0.2		
30	-0.991 0.2		

ELECTRODO PATRÓN DÍA 15

		Error Porcentual	
Medición	X _i (Voltios)	(%)	
1	-0.915	2.0	
2	-0.914	2.1	
3	-0.913	2.2	
4	-0.917	1.8	
5	-0.919	1.6	
6	-0.921	1.3	
7	-0.922	1.2	
8	-0.924	1.0	
9	-0.925	0.9	
10	-0.924	1.0	
11	-0.928	0.6	
12	-0.929	0.5	
13	-0.929	0.5	
14	-0.931	0.3	
15	-0.93	0.4	
16	-0.937	0.4	
17	-0.939	0.6	
18	-0.941	0.8	
19	-0.943	1.0	
20	-0.941	0.8	
21	-0.939	0.6	
22	-0.942	.942 0.9	
23	-0.946	1.3	
24	-0.949 1.7		
25	-0.948	1.5	
26	-0.944	1.1	
27	-0.943	1.0	
28	-0.949	1.7	
29	-0.955	2.3	
30	-0.95	1.8	

TABLA 27

ELECTRODO EXPERIMENTAL DÍA 15

Medición	X. (Voltios)	Error Porcentual	
1	-0.95	0.7	
2			
3	-0.948	0.9	
4	-0.95	0.7	
5	-0.951	0.6	
6	-0.952	0.5	
7	-0.952	0.5	
8	-0.952	0.5	
9	-0.953	0.3	
10	-0.953	0.3	
11	-0.952	0.5	
12	-0.955	0.1	
13	-0.956	0.0	
14	-0.956	0.0	
15	-0.956	0.0	
16	-0.955	0.1	
17	-0.956	0.0	
18	-0.958	0.2	
19	-0.96	0.4	
20	-0.96	0.4	
21	-0.959	0.3	
22	-0.956	0.0	
23	-0.96	0.4	
24	-0.963	0.7	
25	-0.964	0.8	
26	-0.963	0.7	
27	-0.959	0.3	
28	-0.959	0.3	
29	-0.964	0.8	
30	-0.969	1.3	

Considerando que este electrodo patrón proporciona una medida exacta de la lectura de potenciales eléctricos para la placa sumergida en agua de mar y protegida catódicamente con un ánodo de sacrificio de zinc, tomando como valor referencial las medias para los 15 días se calculará la exactitud del electrodo construido en el laboratorio respecto al electrodo patrón. Ver tabla 28

TABLA 28

EXACTITUD DEL ELECTRODO EXPERIMENTAL RESPECTO A LA MEDIA DEL ELECTRODO PATRÓN

DÍA	MEDIA (u _p) ELECTRODO PATRÓN	MEDIA (u₀) ELECTRODO EXPERIMENTAL	EXACTITUD (Error) %
1	-0.985	-0.984	99.89(0.11)
2	-0.972	-0.970	99.79(0.21)
3	-0.975	-0.970	99.48(0.52)
4	-0.980	-0.978	99.79(0.21)
5	-0.969	-0.974	100
6	-0.902	-0.914	100
7	-0.958	-0.970	100
8	-0.970	-0.974	100
9	-0.964	-0.962	99.79(0.21)
10	-0.977	-0.991	100
11	-0.988	-0.985	99.69(0.31)
12	-0.914	-0.980	100
13	-0.926	-0.969	100
14	-0.948	-0.973	100
15	-0.938	-0.958	100

Una vez finalizado los 15 días de prueba esta es la apariencia de la placa sumergida en agua de mar con protección catódica. Ver figura 3.12

FIGURA 3.12 SALINIDAD "A"

A partir del día 15 se aumenta la salinidad dentro de la celda electrolítica, añadiendo cloruro de sodio (sal común). A continuación se analiza la reacción que ocurre durante otros 15 días más de prueba. Y ocurre lo que puede verse en la figura 3.13 Formación de una capa de oxido sobre y alrededor de la placa de acero sumergida. Para mantener el nivel de protección catódica.

FIGURA 3.13 SALINIDAD "B"
CAPÍTULO 4

4. CONCLUSIONES Y RECOMENDACIONES.

Conclusiones:

- La ecuación de Faraday para calcular la masa (m) que se produce durante la electrolisis para formar la capa fina de cloruro de plata sobre el electrodo, solo nos brinda una base cuantitativa, pero no una base cualitativa las cuales son: Durabilidad y adherencia.
- Al tomar las mediciones con el electrodo patrón sobre una placa de acero ASTM A-588 sumergida en agua de mar y protegida catódicamente con un ánodo de zinc, el potencial eléctrico al inicio (Día 1) nos dio un valor de -0.915 V y con el electrodo experimental exactamente el mismo valor.

- 3. Al tomar las 30 mediciones del Día 1 para cada uno de los electrodos se obtuvieron los siguientes valores para la media $u_{ep} = -0.985$ y $u_{exp} = -0.984$ por lo tanto, se puede concluir que la precisión del electrodo experimental fue del 99.89 % y por lo tanto un margen de error de tan solo el 0.11%.
- 4. Para los días 1, 5, 10 y 15 se realiza el monitoreo del sistema catódico para una placa de acero sumergida en agua de mar y protegida catódicamente, las medidas de potenciales eléctricos con ele electrodo experimental admiten valores de hasta el 3.4 % para el calculo de errores porcentuales respecto a la media. Y para el electrodo patrón un valor de hasta el 2.3 % respecto a la media. En ambos casos un error aceptable dentro del rango de mediciones.
- 5. La máxima desviación estándar que admite la medición de potenciales eléctricos en el sistema de protección catódica monitoreado durante los días 1, 5, 10 y 15 del electrodo patrón fue del 0.01397 y para el electrodo experimental fue del 0.009789 respecto de la media utilizando la grafica de Campana de Gauss para cada electrodo.

Recomendaciones:

- En vista que se utiliza un proceso electrolítico para la obtención del electrodo experimental, se recomienda verificar cada 3 meses su confiabilidad respecto al electrodo patrón.
- 2. No realice el procedimiento de electrolisis sin primero haber soldado la varilla de Plata al esparrago de cobre, ni tampoco coloque la resina sin haber antes realizado el procedimiento de soldadura antes mencionado, dado que la soldadura utilizada en ele electrodo se realiza a elevadas temperaturas que pueden afectar a la capa fina de cloruro de plata así como a la resina utilizada.
- Se recomienda utilizar materiales con buenas propiedades tanto físicas como químicas, para así poder garantizar su durabilidad en los diferentes medios de operación.
- 4. Para futuras prácticas de laboratorio se recomienda utilizar el procedimiento experimental de electrolisis descrito anteriormente en la construcción de electrodos de referencia de Plata/Cloruro de Plata para medición de potenciales eléctricos.

5. Y como otra practica de laboratorio se recomienda la utilización del electrodo experimental para monitorear el sistema de protección catódica instalado en el laboratorio de materiales para determinar el nivel de protección contra la corrosión de la placa de acero ASTM A-588 sumergida en agua de mar y protegida catódicamente.

INDICE DE PLANOS

		LISTA DE MATERIALES	
No	TAMAÑO(mm)	DESCRIPCION	CANTIDAD
1	6	TUERCA PLASTICA	2
5	6	ARANDELA PLASTICA	1
3	6 X 35 x 1.75	ESPARRAGO DE COBRE	1
4	1.5 X 86	ALAMBRE DE PLATA	1
5	8,6 X 30	CILINDRO DE PLATA	1

SCALAI Electrodo de Plata Cloruro de Plata Experimental		Dibujado pori Aprobado pori	Nombre: David Agama Ing.Julian Peña	Fecha: 16/01/2013	ESPOL		
	scala:	Electrodo	de Plata Clorur	o de Plata Expe	erimental	No,	1

	Dibujado por: Aprobado por:	Nombre: David Agama Ing.Julian Peña	Fecha: 16/01/2013	ESPOL		
scala	Partes El	ectrodo de Plata	/Cloruro de Pla	ta Experimental	No.	
1:1						2

.....

APÉNDICES

APÉNDICE A

TABLA I EFECTOS DISOLVENTES Y DEGRADATIVOS
DE AGENTES QUÍMICOS SOBRE POLÍMEROS

				ł	Agente	químico	5									
Polímero	Disol	ventes	Disol	ventes	Disol	ventes	Este	res y	Ba	ises	Ba	ses	Áci	dos	Oxid	lantes
Tonnero	ama	ucos	arom	aucos	cior	atos	ceit	mas	det	billes	Tue	nes	Tue	nes	Tue	nes
Acrílico	В	С	E	Е	E	Е	E	Е	A	С	В	Е	D	Е	E	Е
Acrilonitrilo-butadieno-estireno (ABS)	Α	Е	D	Е	E	Е	Е	Е	Α	С	А	С	В	Е	Ð	Е
Acetato de celulosa	A	В	Α	С	A	D	Е	Е	A	С	С	Е	C	Е	С	Е
Epoxis (reforzadas con fibra de vidrio)	Α	В	А	В	Α	С	В	С	A	А	В	С	В	С	D	D
Poliamida	А	А	А	А	Α	В	А	А	Α	В	В	С	Е	Е	Е	Е
Polibenzoimidazol	А	А	А	А	Α	А	А	А	A	А	А	В	Α	В	А	С
Policarbonato	Α	А	Α	А	Е	Е	Е	Е	Α	Е	Е	Е	А	А	А	А
Poliéster (reforzado con fibra de vidrio)	Α	В	А	С	В	D	С	С	В	С	С	Е	В	В	В	С
Polietileno	C	Е	С	Е	D	Е	D	Е	Α	А	А	А	A	А	А	А
Polipropileno	А	D	В	D	В	D	А	С	A	А	А	А	А	С	А	D
Polisulfona	А	А	D	D	Е	Е	С	D	Α	А	А	А	Α	А	А	А
Poliestireno	D	Е	D	Е	Е	Е	D	Е	Α	Е	Α	Е	D	Е	D	Е
Poly (tetrafluoretileno)	Α	А	Α	А	Α	А	Α	А	А	А	Α	А	А	А	А	А
Policloruro de vinilo	Α	Е	D	Е	Е	Е	D	Е	Α	Е	Α	Е	Α	Е	В	Е
Silicona	В	С	D	D	D	Е	В	D	A	В	D	Е	C	D	D	Е

La primera columna a 25°, la segunda a 90°

A = no efecto, inerte D = reblandecimiento o hinchamiento B = débil efecto C = efecto medio

E = deterioro severo, degradación

APÉNDICE B

Dolímano	Resistividad en	Rigidez	Constante di	ieléctrica (ε)	Factor de potencia (cos ø)		
Polimero	volumen (Ωm)	(kV/cm)	60 Hz	10 ⁶ Hz	60 Hz	10º Hz	
P.T.F.E.	> 10 ²⁰	180	2,1	2,1	< 0,0003	< 0,0003	
Polietileno (LD)	1020	180	2,3	2,3	< 0,0003	< 0,0003	
Poliestireno	1020	240	2,5	2,55	< 0,0003	< 0,0003	
Polipropileno	> 10 ¹⁹	320	0,15	2,15	0,0008	0,0004	
P.M.M.A.	1016	140	3,7	3,0	0,06	0,02	
P.V.C.	1017	240	3,2	2,9	0,013	0,016	
P.V.C. (plastificado)	1015	280	6,9	3,6	0,082	0,089	
Nylon 66 *	1015	145	4,0	3,4	0,014	0,04	
Policarbonato	1018	160	3,17	2,96	0,0009	0,01	
Fenólicas	1013	100	5,0-9,0	5,0	0,08	0,04	
Urea-formaldehído	1014	120	4,0	4,5	0,04	0,03	

TABLA II PROPIEDADES ELÉCTRICAS DE ALGUNOS MATERIALES POLIMÉRICOS A 20 º C

* Contenido de agua, 0,2%

APÉNDICE C

CÁLCULOS PROTECCIÓN CATÓDICA

PLACA DE ACERO ASTM A-588 SUMERGIDA EN AGUA DE MAR MEDIDAS 20 x 30 x 1.3 cm

MÉTODO DEL PESO

Datos:

L₁= 20 cm

L₂= 30 cm

e = 1.3 cm

1. CÁLCULO DEL ÁREA SUMERGIDA.

 $A_1 = L_1 \times L_2$ $A_1 = 20 \times 30$ $A_1 = 600 \text{ cm}^2$ $A_1 = 0.06 \text{ m}^2$

2 CÁLCULO DE LA CORRIENTE DE PROTECCIÓN (CP)

Datos:

Medición del pH para seleccionar correctamente el material de protección catódica a utilizar:

Estamos trabajando con agua salada pH = 8 Seleccionamos un ánodo de zinc para trabajar en este medio. Densidad de corriente según el medio: Agua de Mar = 100 mA/m² ver Apendice J Tabla IX

CP = Área sumergida x % Área sin revestimiento x Densidad de corriente

$$\mathsf{CP} = \mathsf{A}_{\mathsf{T}} \mathsf{x} \mathsf{A}_{\mathsf{sr}} \mathsf{x} \mathsf{D}_{\mathsf{c}}$$

Reemplazando los valores en la ecuación 16 se obtiene: $CP = 0.06 \times 1 \times 100$ CP = 6 mACP = 0.006 Amperios

3. PESO DEL MATERIAL ANÓDICO (PMA)

 $PMA = CT \times CP \times V_{ue} / \eta_a$

Donde:

CT : Corriente teórica.

Vue : Vida útil esperada

 \mathbf{j}_a : Eficiencia de ánodo seleccionado para la protección.

P : Resistividad del medio (20 Ohm – cm)

Datos:

Se selecciona un ánodo de zinc forma: barra cilíndrica Corriente teórica (Zinc) = 10.64 Kg / Amperio Año Corriente de protección (CP) = 0.006 Amperio Vida útil esperada = 2 años Eficiencia (ánodo de Zinc) = **95%**

 $PMA = (10.64) \times (0.006) \times (2) / 0.95$

$$PMA = \frac{0.12828}{0.95}$$

PMA = 0.135 Kg

4. APLICANDO EL FACTOR DE UTILIZACIÓN (15%)

PMA = 0.15 kg

Utilizando la fórmula de Mc Coy

$$R = \frac{0.315 \,\rho}{\sqrt{A}}$$

Donde:

R: Resistencia del ánodo respecto al medio (ohm)

A: Área de la superficie expuesta del ánodo (cm²)

1. – ÁREA BARRA DE ZINC

Datos:

D = 1.6 cmL = 9.5 cm r = 0.8 cm

Reemplazando estos valores para calcular el área total (A_T): Donde:

$$A_1 = \pi x D x L$$
$$A_2 = \pi x r^2$$

Por lo tanto:

 $A_{T} = A_{1} + A_{2}$ $A_{T} = (\pi \times 1.6 \times 9.5) + [\pi \times (0.8)^{2}]$ $A_{T} = 47.75 + 2.01$ $A = 49.76 \text{ cm}^{2}$

2. UTILIZANDO LA FORMULA DE Mc COY PARA HALLAR LA RESISTENCIA R_i (ÁNODO – ELECTROLITO) SE OBTIENE:

$$R = \frac{0.315 \ (20)}{\sqrt{49.76}}$$
$$R = \frac{6.3}{7.05}$$

 $R_i = 0.89 \ Ohm$

3. CORRIENTE DE SALIDA DEL ÁNODO UTILIZANDO LA LEY DE OHM

$$V = I X R$$

$$I_{ai} = \frac{\Delta V}{R_i}$$
$$I_{ai} = \frac{0.25}{0.89}$$

 $I_{ai} = 0.28 \ Amperio$

4. ANÁLISIS DE RESULTADOS

Para poder certificar que los cálculos fueron realizados correctamente se debe cumplir la siguiente relación:

Relación N x $I_{ai} \ge CP_{inicial}$

0.28 ≥ 0.006

APÉNDICE D Tabla III PROPIEDADES DE LOS ÁNODOS DE SACRIFICIO.

	Ánodo de zinc	Ánodo de magnesio				
Propiedad	MIL-A 18001-H	MIL-A24412-A	Tipo A	Tipo B	Tipo C	
	Cd = 0.025 - 0.15	Cu = 0.1 % max	Si = 0.11 - 0.21	Si = 0.10 max	Si = 0.10 max	
	AI = 0.10 - 0.50	AI = 5 - 7	Fe = 0.10 max	Fe = 0.13 max	Fe = 0.13 max	
	Fe = 0.005 max	Si = 0.3 max	Zn = 0.3 - 0.5	Zn = 3.5 - 5	Zn = 4 - 5	
	Pb = 0.006 max	Fe = 0.003 max	Sn =	Sn =	Sn = 0.08 - 0.16	
Composición %	Cu = 0.005 max	Mn = 0.15 min	Mg =	Mg = 0.3 - 0.8	Mg =	
	Si = 0.125 max	Ni = 0.003 max	Hg = 0.02 - 0.05	Hg =	Hg =	
		Zn = 2 - 4	In =	In = 0.02 - 0.05	ln =	
		Otros = 0.3 max	Cu = 0.006 max	Cu = 0.006 max	Cu = 0.01 max	
			Otros = 0.02 max	Otros = 0.02 max	Otros = 0.02 max	
Rendimiento	0.95	0.5	0.95	0.9	0.5	
Potencial de trabajo mV vs Ag/AgCl	-1050	-1550	-1050	-1100	-1100	
Potencial vs acero protegido	-250	-700	-250	-350	-350	
Capacidad eléctrica teórica A-h/Kg (A-h/Lb)	820(368)	2210(1100)	2830(1290)	2700(1231)	variable	
Capacidad eléctrica real A-h/Kg (A-h/Lb)	780(356)	1100(503)	2689(1226) 2430(1110)		variable	
Consumo ánodo Kg / A - ano Lb / A - ano	11 23.8	8 17.5	3 6.8	10 21.9	5.5 12	
Densidad Kg / dm3 Lb / Pulg 3	7.3 0.258	1.77 0.063	2.75 0.098	2.81 0.10	2.81 0.10	

APÉNDICE E

TABLA IV INTENSIDAD MAXIMA DE ALGUNOS ÁNODOS COMERCIALES DEZINC EN AGUA DE MAR EN FUNCIÓN DE SU PESO Y SUPERFICIE

TIPO	PESO NETO (Kg)	SUPERFICIE (cm2)	INTENSIDAD (mA)	Vida media a intensidad máxima
R.21	0.9	237	130	7 meses
R.27	1.4	308	170	9 meses
WE.80Z	0.35	100	65	6 meses
WE.120Z	1.25	226	140	9 meses
WP.0	0.44	90	50	9 meses
WP.1	1.32	18	90	1.5 años
WP.2	2.25	260	150	1.5 años
W.6Z	6.5	750	300	2 años
W.11Z	11.1	1400	500	2 años

APÉNDICE F

TABLA V COMPOSICIÓN EXIGIDAS A LOS ÁNODOS DE ZINC SEGÚN ESPECIFICACIONES MILITARES NORTEAMERICANAS. ESPECIFICACIÓN MIL A 18001

Esp	ecificaciones Milit	ares (EEUU)	
Composición (%)	MIL-A-18001	MIL-A-1800IG	
Pb	0,006	0,006	max
Fe	0,0014	0,005 max	max
Cd	0,004	0,025	0,15
Cu	0,005	0,005	max
AI	0,1	0,1	0,050
Si	-	0,1	max
Zn	Resto	х	х

APÉNDICE G ELECTRÓLISIS LEYES DE FARADAY

QUÍMICA

QUÍMICA Y ELECTRICIDAD El primer científico que logró energía eléctrica a partir de una reacción química fue el italiano Alessandro Volta en el año 1800 a partir de los trabajos de otro científico llamado Galvani. Volta construyó una torre alternando discos de plata y cinc separados por un papel poroso humedecido. Lo curioso del caso es que el propio Volta nunca supuso que la corriente producida provenía de una reacción química.

Así, mientras el ánodo va perdiendo peso, el cátodo lo gana y la disolución azul de sulfato de cobre va disminuyendo su concentración, hecho detectable por la pérdida de color. Si las disoluciones poseen una concentración 1 M y la temperatura es de 25 °C, la diferencia de potencial obtenida es de 1,10 V.

ELECTRÓLISIS. LEYES DE FARADAY

Cuando una reacción red-ox no es espontánea necesita energía eléctrica para realizarse. Esta operación recibe el nombre de electrólisis. Por ejemplo, disponemos de una disolución de cloruro de hidrógeno en agua (ácido clorhídrico) con dos electrodos para gases conectados a una pila (un tubo invertido con un electrodo inerte, lleno de disolución, líquido que será desplazado por el gas desprendido). El ácido clorhídrico, como ácido fuerte que es, está disociado en sus iones que, para simplificar, diremos que son el ión cloruro y el protón (figura 7):

$$HCI \rightarrow CI^- + H^-$$

Figura 7

Cátodo (H⁻) (C) Cation Anión En el polo positivo (ánodo) tiene lugar la siguiente reacción de oxidación:

$$2 \operatorname{Cl}^- \rightarrow \operatorname{Cl}_2 + 2 e^-$$

mientras que en el polo negativo (cátodo) se realiza la reducción:

$$2 \mathrm{H}^+ + 2 e^- \rightarrow \mathrm{H}_2$$

En el tubo correspondiente al cátodo se ve fácilmente cómo el hidrógeno desplaza la disolución, siendo más difícil ver el desplazamiento en el ánodo, ya que el cloro es muy soluble en agua, pero en las inmediaciones del electrodo se puede ver la coloración amarillo-verdosa que proporciona el cloro disuelto.

La electrólisis se puede estudiar cuantitativamente teniendo en cuenta las leyes de Faraday.

 La masa de sustancia liberada es directamente proporcional a la cantidad de electricidad que ha circulado.

 Las masas de diferentes sustancias liberadas por una misma cantidad de electricidad son directamente proporcionales a la masa atómica dividida por la valencia (equivalente electroquímico).

La carga que libera a un equivalente electroquímico se le llama Faraday, es la carga de un mol de electrones e igual a aproximadamente 96.500 Coulombios. Así, la cantidad de materia depositada en un electrodo se puede calcular con la siguiente fórmula:

$$m = \frac{I t M}{nF}$$

siendo m la masa depositada en el electrodo, I la intensidad de corriente que ha circulado, t el tiempo transcurrido, M la masa molecular del compuesto o del elemento que se separa de la disolución, n el número de electrones que interviene en el intercambio y F es un Faraday (figura 8).

200

APÉNDICE H TABLA VI COMPOSICIÓN QUÍMICA DEL ACERO ASTM A 588 Y OTROS ACEROS ESTRUCTURALES (*)

	CON	IPOSICIÓN	QUÍMICA			
Calidad	Norma	С	Mn	Si	Р	S
	ASTM A 1011 SAE 1006	0.08 max	0.45 max		0.030 max	0.035 max
Comercial	ASTM A 1011 SAE 1008	0.10 max	0.50 max		0.030 max	0.035 max
	ASTM A 36	0.26 max	0.80 - 1.20	0.40 max	0.040 max	0.050 max
Estructural	ASTM A 1011 SS GRADO 50	0.25 max	1.35 max		0.035 max	0.040 max
Connormal	ASTM A 572 SS GRADO 50	0.23 max	1.35 max	0.40 max	0.040 max	0.050 max
	ASTM A 588 *	0.19 max	0.80 - 1.25	0.30 - 0.65	0.040 max	0.050 max
	JIS 3116 SG 30 - SG 295	0.20 max	1.00 max	0.35 max	0.040 max	0.040 max
Alta	JIS 3116 SG 33 - SG 325	0.20 max	1.50 max	0.55 max	0.040 max	0.040 max
presion	ASTM 283 GRADO C	0.24 max	0.90 max	0.40 max	0.035 max	0.040 max

* Ni: 0.40 max, Cr: 0.40-0.65, V: 0.02-0.10, Cu: 0.25-0.40

		PROF	PIEDADES M	MECÁNICAS		
Calidad	Norma	Designación	Fluencia	Resistencia	Elongación	Usos
Comercial	ASTM A 1011	SAE 1006 SAE 1008				Ornamentación, tubo no estructural, autopartes
	ASTM A 36	A 36	250 Mpa	400 - 550 Mpa	23 % min	Estructuras metálicas, tubos, autopartes
	ASTM A 1011	SS GRADO 50	340 MPa	450 MPa	17 % min	Acero de alta resistencia superior al A36
Estructural	ASTM A 572	SS GRADO 50	345 MPa	450 MPa	21 % min	Acero de alta resistencia superior al A36
	ASTM A 588	TS > 70	345 MPa	485 MPa	21 % min	Acero de alta resistencia con resistencia a la corrosión. Fabricación de puentes
	JIS 3116	SG 30 - SG 295	295 MPa	440 MPa	26 % min	Recipientes metálicos
Alta presión	JIS 3116	SG 33 - SG 325	325 MPa	490 MPa	22 % min	para gases licuados o comprimidos
	ASTM 283	GRADO C	205 MPa	380 - 515 Mpa	25 % min	Tanques de almacenamiento

TABLA VII PROPIEDADES MECÁNICAS DEL ACERO ASTM A 588

(*) <u>http://www.acesco.com/acesco/images/stories/fotos/PDF/CATALOGO%20DE%20PRODUCTOS/</u> CatalogoDeProductos2012.pdf

APÉNDICE I
TABLA VIII CLASIFICACIÓN
DEL AGUA
SEGÚN SU SALINIDAD

Clasificación	Salinidad (mg/l)
Dulce o fresca	< 1
Salobre	1 < x < 25
Salada o de mar	25 < x < 50
Salmuera	50 < x < 150
Salmuera dura o fuerte	x > 150

APÉNDICE J

TABLA IX DENSIDADES DE CORRIENTE PARA EL ACERO

Estado superficial	Medio agresivo	Densidad de corriente (mA/m²)
Acero desnudo	Agua de mar (Velocidad 0.5 m/s)	86-130
Acero desnudo	Agua de mar (Velocidad 1.5 m/s)	150-600
Acero pintado (epoxi, vinilica, clorocaucho)	Agua de mar	25-35
Acero pintado sujetos a roces de fondo	Agua de mar	50-210
Acero pintado (aluminio bituminoso)	Agua de mar	35-50
Tanque carga lastre petroleo	Agua de mar	100
Tanque carga lastre ligero	Agua de mar	170
Tanque carga lastre limpio	Agua de mar	190
Acero desnudo	Agua dulce estancada	56
Acero desnudo	Agua dulce en movimiento	56-66
Acero desnudo	Agua dulce Turbulenta/caliente	56-170

BIBLIOGRAFÍA

- Nace Criteria and Other Considerations for Cathodic Protection Reference Book Houston-Texas Reaffirmed 2002-04-11 Section 6: RP-01-69 párrafo 6.2.2.1 pág. 13
- 2. Mariela Medina ASTM/Instructora (2010) Manual sobre protección catódica galvánica para estructuras sumergidas disponible en: www.engizone.org
- Puri Ballus Vol. II (2001) Enciclopedia Temática Auto Evaluativa Barcelona-España pág. 200
- 4. Guillerdolf (2012) Ánodos de sacrificio para protección catódica disponible en: http://guillerdolf.com/index_productos.html
- 5. Cathelco limited (1962) The world leading anti-fouling and corrosión control system Chesterfield, United Kingdom disponible en: http://cathelco.com/