

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño de maquinarias para la elaboración de placas térmicas de un calentador de aire regenerativo tipo Ljungström para plantas de vapor"

TESIS DE GRADO

Previo a la obtención del título de:

INGENIERO MECÁNICO

Presentada por:

Lady Susana Merchán Aguilar

GUAYAQUIL - ECUADOR

2012

AGRADECIMIENTO

A todas las personas que ayudaron de alguna u otra forma a realizar este proyecto de graduación.

DEDICATORIA

A Dios por guiarme siempre, a mi esposo e hijos por robarles el tiempo valioso que comparto con ellos, a mis padres y a mis hermanos por su infinito amor y comprensión.

TRIBUNAL DE GRADUACIÓN

Ing. Gustavo Guerrero M. PRESIDENTE DE LA FIMCP Ing. Manuel Helguero G. DIRECTOR

Ing. Jorge Duque R. VOCAL

DECLARACIÓN EXPRESA

La responsabilidad del contenido de esta l'esis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la Escuela Superior Politècnica del Litoral

(Reglamento de Graduación de la ESPOL)

Lady Susana Merchán Aguilar

RESUMEN

Ante la necesidad de mantener la eficiencia de las plantas generadoras de vapor, se debe prevenir paradas de planta que pueden incurrir en elevados costos y racionamientos eléctricos. La degradación de las placas térmicas de un Calentador de Aire Regenerativo (CAR) tipo Ljungström, debido a los componentes producidos en la combustión que generan ácido, la obstrucción al flujo, suciedad y erosión, es una de las causas principales de estos inconvenientes. Generalmente, lo que se realiza es la importación de estos elementos lo cual eleva aun más los costos alarga los tiempos de entrega e instalación de estas placas.

El objetivo de este proyecto es la nacionalización de la fabricación de las placas térmicas, mediante el diseño de maquinarias para producir cada uno de los elementos que conforman las canastas térmicas del Calentador de Aire Regenerativo tipo Ljungström. Con esto, se busca desarrollar un campo de la industria que permitirá el desarrollo de pequeñas y medianas empresas metalmecánicas, favoreciendo la producción nacional, el uso de mano de obra local y reduciendo las importaciones.

Al inicio del presente proyecto, se establecen los componentes básicos de una máquina conformadora de placas térmicas. Para el inicio del diseño es importante establecer un diseño de forma, donde el material a ser conformado, velocidad de giro, tipo de ensamblaje y forma de los elementos son primordiales para esta etapa. Para el diseño del partes móviles que soportan cargas críticas, se considera la relación entre la geometría de la pieza y propiedades mecánicas del material; aplicando criterio de carga dinámica y fatiga. Con el sistema de transmisión de potencia, según los resultados obtenidos en los sistemas anteriores, se realiza la selección del motor-reductor, en base a la velocidad de giro y torque aplicado. La estructura de apoyo se evaluó por medio de un análisis de la ecuación de la curva elástica. Finalmente, se propuso además un cronograma que presenta el tiempo necesario para la entrega, fabricación de los materiales y ensamble de las maquinarias, en donde el tiempo estimado por máquina es de 19 días para que esté en su 100% operable.

ÍNDICE GENERAL

RE	SUMENV
INI	DICE GENERALVIII
ΑE	BREVIATURASX
SII	MBOLOGÍAXI
INI	DICE DE FIGURASXV
INI	DICE DE TABLASXVI
INI	DICE DE PLANOSXVII
IN ⁻	TRODUCCIÓN1
CA	APITULO 1
1.	CALENTADOR DE AIRE REGENERATIVO TIPO LJUNGSTRÖM 3
	1.1. Generalidades
	1.2. Definición del calentador de aire regenerativo
	1.3. Descripción del calentador de aire regenerativo 6
	1.4. Aplicaciones a plantas energéticas
CA	APITULO 2
2.	PLACAS TÉRMICAS DEL CALENTADOR DE AIRE REGENERATIVO
	LJUNGSTRÖM9
	2.1 Definición de las placas térmicas

2.2. Diseño de las placas térmicas
2.2.1. Características funcionales de las placas térmicas 13
2.2.1.1. El punto de vista térmico
2.2.1.2. Fugas
2.2.1.3. Caídas de presión
2.2.2. Tipos de inconvenientes en las placas térmicas 19
2.2.2.1. Corrosión
2.2.2.2. Obstrucción y limpieza
2.2.2.3. Erosión
2.2.2.4. Incendios
CAPITULO 3
3. DISEÑO DE MAQUINARIAS PARA LA ELABORACIÓN DE PLACAS
TÉRMICAS DE UN CALENTADOR DE AIRE REGENERATIVO
LJUNGSTRÖM28
3.1. Parámetros de diseño
3.2. Diseño de forma
3.3. Diseño detallado
3.3.1. Sistema de rodillos
3.3.2. Sistema de rodadura
3.3.3. Tornillos de regulación

	3.	.3.5.	Estructura	77
	3.4. Dia	agram	a de GANNT sugerido	81
CA	PITULO	O 4		
4.	ANALI	SIS D	E COSTOS	. 84
	4.1.Co	stos c	de Materiales	. 84
	4.2. Co	stos c	de Mano de Obra	. 85
CA	PITULO	O 5		
	5. COI	NCLU:	SIONES Y RECOMENDACIONES	. 86
	5.1.	Conc	clusiones	86
	5.2.	Reco	mendaciones	87
AF	PENDIC	ES		
BII	BLIOGR	RAFÍA		

ABREVIATURAS

°A Amperaje

°C Grados Centígrados

h Horas

hp Horse Power
Kh Kilo Horas
KPa Kilo Pascales

Kg/m Kilogramo Por Metro Kg/s Kilogramo Por Segundo

Kg Kilogramos
Lb ft Libra Pie
Lb in Libra Pulgada

*Lb/pulg*² Libra Por Pulgada Cuadrada

Lb Libras

MPa Mega Pascales

m Metro

*m*² Metros Cuadrados

min Minuto

m/seg Metros Por Segundo

mm Milímetro

mm⁴ Milímetro A La Cuarta

N NewtonNm. Newton MetroPa Pascales

ft Pie

pulgPulgadasRadRadianes

Rad / seg Radianes Por Segundo rpm Revoluciones Por Minuto

Seg Segundos Watts Vatios

SIMBOLOGÍA

a, b Acabado Superficialα Aceleración Angular

h Altura

x Ancho A Doblar Por Sección

F Ancho De Cara

b Ancho Útil De La Lámina

L Ángulo De Avanceθ Ángulo De Giro

 A_1, A_2 Área Azufre

 C_{pa} Calor Específico Del Aire C_{pg} Calor Específico Del Gas

C_r Capacidad Básica De Carga Axial

 $\begin{array}{lll} \omega_t & & \text{Carga Transmitida} \\ \mu & & \text{Coeficiente De Fricción} \\ C_p & & \text{Coeficiente Elástico} \\ D_p, \, D_m & & \text{Diámetro De Paso} \\ d & & \text{Diámetro Del Rodillo} \end{array}$

D Diámetro Del Rodillo Maquinado

d_r Diámetro menor SO₂ Dióxido de azufre

DHP Diseño De Los Caballos De Poder

K_e Efectos Diversos Q Eficiencia Térmica

σ_{cp} Esfuerzo De Compresión

τ Esfuerzo Cortante

T_{cmax} Esfuerzo Cortante Máximo T_c Esfuerzo De Cortante Medio

σ_f Esfuerzo De Flexión

σ_{max} Esfuerzo De Flexión Máximo

 σ_{tpa} Esfuerzo De Tracción Esfuerzo Von Misses

t, h Espesor Máximo De La Placa Metálica

κ_c Factor De Carga

κ_R Factor de Confiabilidad

 $\begin{array}{lll} K_m & & Factor \ De \ Distribución \ De \ Carga \\ K_B & Factor \ De \ Espesor \ De \ Orilla \\ J & Factor \ De \ Geometría \ Por \ Flexión \\ I & Factor \ De \ Geometría \ Por \ Picadura \\ C_{pf} & Factor \ De \ Proporción \ Del \ Engrane \end{array}$

κ_f Factor De Reducción De Resistencia A La Fatiga

C_H Factor De Relación De Durezas

Z_N Factor De Resistencia A La Picadura Por Número De

Ciclos De Esfuerzos

Y_N Factor De Resistencia Flexionante Por Ciclos De

Esfuerzos

 $\begin{array}{lll} \textit{n} & & & \text{Factor De Seguridad} \\ \textit{SF} & & & \text{Factor De Servicio} \\ \textit{K}_o & & & \text{Factor De Sobrecarga} \\ \textit{K}_a & & & \text{Factor De Superficie} \\ \textit{K}_b, \, \textit{K}_s & & \text{Factor De Tamaño} \\ \textit{K}_d & & \text{Factor De Temperatura} \end{array}$

κ_ν Factor Dinámico

C_{ma} Factor Por Alineamiento De Engranado

κ_{ts} Factor Teórico De Concentración De Esfuerzos Por

Torsión

F_D Fuerza De Doblado

F_{DT}, F_{D2}, F_{D3}, F_{Dn} Fuerza De Doblado Puntual F_{DT} Fuerza De Doblado Total

F, Pr, RA, RB, RC, RD Fuerzas De Reacción De Apoyos

1, 11, 12 Inercia

S_y Límite De Fluencia

S_{sy} Límite De Fluencia Elástico Al Cortante S_e Límite De Resistencia A La Fatiga

S_e' Límite De Resistencia A La Fatiga En Viga Rotatoria

M Masa Módulo

E Módulo De Elasticidad

Z Módulo Plástico (Sección Rectangular)
T_s Momento De Torsión Contra Carga

 $\begin{array}{ll} \text{ML} & \text{Momento Limite} \\ \text{M}_{\text{total}} & \text{Momento Total} \end{array}$

número De Aplicaciones De Carga Por Revolución

Q_v Número De Calidad

 N_c Número De Ciclos De Carga Esperado S_c Número De Esfuerzo De Contacto S_t Número De Esfuerzo Flexionante

P Paso

P_d Paso Diametral W_{rodillos} Peso De Los Rodillos

P, P_{eléctrica} Potencia Elétrica Del Motor P_{mecánica} Potencia Mecánica Del Motor

r Radio

m_B Relación De Respaldo R Relación De Velocidad S_{ut} Resistencia Última

q Sensibilidad A La Muesca

A Superficie De intercambio Térmico

Temperatura Corregida De Salida De Los Gases Del

Calentador De Aire

Temperatura De Entrada Del Aire Al Calentador

T_{2m} Temperatura Media De Salida Del Aire

t Tiempo T Torque

 $\begin{array}{lll} T_{\text{rodillo}} & Torque \ Del \ Rodillo \\ SO_3 & Tri\'oxido \ de \ azufre \\ \omega & Velocidad \ Angular \\ n & Velocidad \ De \ Entrada \\ n' & Velocidad \ De \ Giro \end{array}$

Vt Velocidad De La Línea De Paso L Vida De Diseño Del Engrane

L_{10h} Vida Nominal Básica a 10 Revoluciones

INDICE DE FIGURAS

Figura 1.1.	Calentador de Aire Regenerativo Ljungström	7
Figura 2.1.a.	Perfiles de placas caliente e intermedia para carbón, aceite	у
	gas, espesor de 0.5 a 1mm	. 12
Figura 2.1.b.	Perfiles de placas caliente e intermedia para carbón, aceite	у
	gas, espesor de 0.5 a 1mm	. 12
Figura 2.1.c.	Perfil de placa fría, aceite pesado y carbón bituminoso,	
	ensuciamiento medio, espesor de 1.27mm	12
Figura 2.1.d.	Perfil de placa fría lignito y carbón sub-bituminoso,	
	ensuciamiento severo, espesor de 1.27 mm	12
Figura 2.2.	Temperatura mínima de metal en el lado frío de un calentad	lor
	de aire regenerativo, cuando se queman combustibles con	
	azufre (S)	21
Figura 3.1.	Forma de las places metálicas perfil tipo DU	29
Figura 3.2.	Diseño de forma de los rodillos conformadores	29
Figura 3.3.	Curva Tensión-Deformación	31
Figura 3.4.	Esquema de las fuerzas de doblado puntuales que los rodill	os
	ejercen sobre la placa metálica	33
Figura 3.5.	Placa metálica como una viga con apoyos simples	34
Figura 3.6.	Diagrama de cuerpo libre de la placa metálica para el cálcul	lo
	de las reacciones en su carga máxima	34
Figura 3.7.	Gráfica de sensibilidad a la muesca de aceros y aleaciones	de
	aluminio forjado UNS A92024-T sometidas a cargas invertid	las
	de flexión y axial	44
Figura 3.8.	Eje rotatorio montado sobre cojinetes	46
Figura 3.9.	Tornillo de fuerza o potencia	49
Figura 3.10.a	a. Diagrama de fuerzas Al subir la carga	52
Figura 3.10.b	o. Diagrama de fuerzas Al bajar la carga	52
Figura 3.11.	Esquema del sistema de transmisión de potencia para la	
	selección de cadena-piñones	58
Figura 3.12.	Factor de geometría J	65
Figura 3.13.	Factor de geometría I para engranes rectos	65
Figura 3.14.	Factor de proporción del engrane, C _{pf}	66
Figura 3.15.	Factor de alineamiento del engranado, C _{ma}	67
Figura 3.16.	Factor de espesor de borde. K _B	68

Figura 3.17.	Factor de dinámico, K _v	69
Figura 3.18.	Vida de diseño recomendada	70
Figura 3.19.	Factor de resistencia flexionante por ciclos de esfuerzo,	
	Y_{N}	71
Figura 3.20.	Factor de resistencia a la picadura por número de ciclos de	
	esfuerzo, Z _N	72
Figura 3.21.	Número de esfuerzo flexionante admisible, Sat para engrane	es
	de acero templado total	74
Figura 3.22.	Número de esfuerzo de contacto admisible, Sac, para engra	nes
	de acero templado total	75
Figura 3.23.	Números de esfuerzo admisibles para materiales de engrar	es
	de acero templado	76
Figura 3.24.	Sistema de transmisión de potencia para cadena-piñones	.76
Figura 3.25.	Estructura del sistema de rodillos	77
Figura 3.26.	Sistema de apoyo y separación entre ejes	77
Figura 3.27.	Diagrama de esfuerzos	80
Figura 3.28.	Soporte de apoyo y separación entre rodillos	81

INDICE DE TABLAS

Tabla 3.1.	Moto-reductor seleccionado	55
Tabla 3.2.	Factores de sobrecarga sugeridos, K _o	60
Tabla 3.3.	Coeficiente elástico, Cp	63
Tabla 3.4.	Números de calidad AGMA recomendados	64
Tabla 3.5.	Facotres de tamaño sugeridos, K _s	67
Tabla 3.6.	Factor de confiabilidad, K _R	70
Tabla 3.7.	Diagrama de Gannt para la construcción de las maquinarias conformadoras	02
T 11 44		ဝ၁
Tabla 4.1.	Costos de materiales de los sistemas de conformado	0.4
	metálico	84
Tabla 4.2.	Costo total de las maquinarias para conformado	
	metálico	85

INDICE DE PLANOS

Plano 1.1	Rodillos conformadores Forma ondulada
riano i.i	Noullos conformadores i offia officiada
Plano 2.1	Rodillos conformadores Forma diente de sierra
Plano 3.1	Estructura para rodillos conformadores
Plano 4.1	Caja para rodillo superior
Plano 5.1	Placa superior
Plano 6.1	Engranaje
Plano 7.1	Máquina con rodillos conformadores tipo diente de sierra
Plano 8.1	Máquina con rodillos conformadores tipo dientes ondulados

INTRODUCCIÓN

Para producir económicamente energía en centrales generadoras de vapor se necesita utilizar la máxima cantidad de calor a partir de una buena combustión.

Las aplicaciones en calderas de generación de vapor requieren precalentadores de aire de una gran eficiencia y fiabilidad para garantizar un rendimiento óptimo de la caldera.

El componente principal del precalentador es la superficie de intercambio de calor que está compuesto por múltiples placas de metal denominadas elementos o placas térmicas. A medida que el precalentador va rotando a una velocidad reducida (de 1 a 4 rpm), los elementos captan el calor de la corriente de gases calientes que salen de la caldera y lo transfieren a la corriente de aire frío que ingresan para la combustión. Dado que se emplean las dos superficies de la placa de elementos para transferir calor de forma simultánea, este tipo de intercambiador resulta muy eficiente, compacto y especialmente adecuado para trabajar con grandes cantidades de gas caliente y aire frío.

Las placas térmicas que participan directamente en la transferencia de calor están formadas por finas placas de acero laminado que son

procesadas para darle un conformado y que presentan una gran superficie de transferencia.

El objetivo es diseñar las máquinas para poder lograr el conformado que requieren las placas térmicas del calentador de aire regenerativo Ljungström, ya que por medio de éste se produce turbulencia tanto en los gases como en el aire respectivamente, produciéndose una mejor transferencia de calor.

Dichas máquinas constan de un par de rodillos maquinados con la forma que deben obtener las placas; posee un sistema de cojinetes que permiten la rotación de los rodillos, además una estructura de soporte y un sistema de engranaje para transmitir el movimiento de los mismos. El sistema motriz es operado por un moto - reductor, donde cada máquina da la forma a las placas metálicas, según el diseño.

CAPITULO 1

1. CALENTADOR DE AIRE REGENERATIVO LJUNGSTRÖM

1.1. Generalidades

La optimización de una planta usando métodos tradicionales como aumentar la temperatura inicial del aire, usando el calentador de aire regenerativo como una forma de aumentar la energía, ha demostrado ser una de las técnicas de mejoramiento de la eficiencia en ciclos de poder convencionales.

Las ventajas del uso del calentador de aire regenerativo se basa en que se procura utilizar energía restante de fuentes que ya han participado en el proceso de generación de poder como son los gases de la combustión, pero conservando parte de la capacidad para incrementar la energía de la sustancia de trabajo, en este caso el aire de combustión.

1.2. Definición del calentador de aire regenerativo

Aunque no están incluidos dentro de la termodinámica del ciclo, estos aparatos mejoran la combustión en la caldera, disminuyendo de esta manera el consumo del combustible y por lo tanto mejorando la eficiencia de la planta de la energía térmica utilizando recursos del tipo regenerativo.

El calor se transfiere indirectamente, ya que disponen de un determinado medio de almacenamiento de calor que, periódica y alternativamente, por rotación o con dispositivos de válvulas de inversión, se expone a los flujos caliente y frío, utilizándose como medio de almacenamiento una gran variedad de materiales.

En estas unidades de generadores de vapor de plantas termoeléctricas, se emplean paquetes de elementos ensamblados, muy tupidos, de placas de acero corrugado que utilizan la rotación, como procedimiento para sumergir el medio en los respectivos flujos en los que se han utilizado con profusión para calentar el airecomburente de las plantas termoeléctricas.

Una característica de operación es la cantidad de aire-comburente que fuga hacia el flujo de gases, debido a la rotación, que exige siempre una holgura entre las partes móviles y fijas. Esta característica también

se representa en el otro sentido, es decir, gases que fugan hacia el aire.

El uso de este tipo de equipo presenta las siguientes ventajas:

- Mejor aprovechamiento de la energía.
- Combustión mejorada.
- Quemar con éxito combustible de baja calidad.
- Aumento del rendimiento.
- Aumento de la capacidad de generación.

Los calentadores de aire se utilizan para precalentar el airecomburente y mejorar el proceso de la combustión en las plantas generadoras de vapor. Los gases constituyen la fuente energética, y el calentador recoge y utiliza el calor residual de los mismos, lo que incrementa la eficiencia global de la caldera un 5 - 10%.

1.3. Descripción del calentador de aire regenerativo

Este calentador tiene una carcasa cilíndrica y un rotor que lleva acoplados paquetes de elementos ensamblados de superficies de caldeo, que gira atravesando los flujos de aire y gases, dispuestos en contracorriente, figura 1.1; el rotor está alojado en una carcasa que tiene conectados a ambos extremos de sus bases cilíndricas, los conductos de aire y de gases.

El flujo de aire atraviesa la mitad del rotor, y el de gases la otra mitad. Para minimizar las fugas de aire hacia los gases, y evitar el bipaso del rotor por los flujos de aire y gases, se dispone de cierres metálicos de láminas axiales, radiales y circunferenciales.

El eje de giro horizontal o vertical cuenta con dos cojinetes, uno de empuje y otro guía, apoyados en las vigas soporte.

La velocidad del rotor es de 1 a 3 rpm, y se consigue por medio de un piñón accionado por un motor eléctrico que engrana en una cremallera que rodea al rotor.

Para poderse acoplar a los diversos sistemas de flujos de aire y gases, se utilizan diseños de eje vertical y de eje horizontal, siendo los verticales los más comunes.

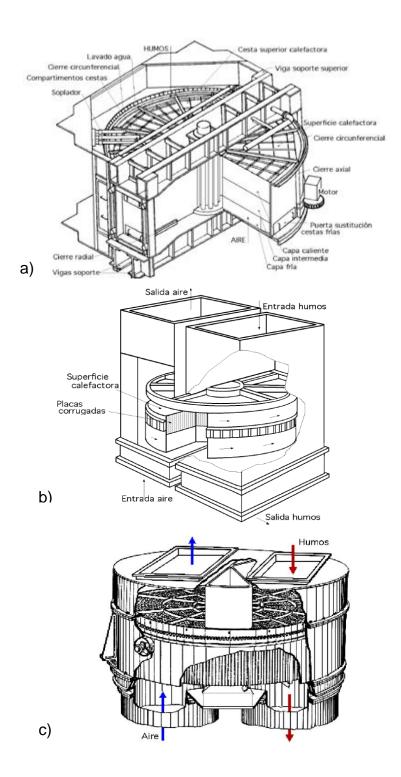


Figura 1.1. a), b) y c) Calentador de Aire Regenerativo Ljungström

1.4. Aplicaciones a plantas energéticas

Los calentadores de aire son una parte esencial del funcionamiento eficiente de las plantas de energía, los cuales pueden utilizar otras fuentes térmicas, como el vapor procedente de la extracción de una turbina, dependiendo de la aplicación particular de que se trate.

Además, en las unidades que queman carbón pulverizado, este aire caliente se emplea para el secado y transporte del combustible molido.

Son utilizados en las centrales termoeléctricas de producción de electricidad para mejorar su eficiencia, atender a diversos tipos de combustión y conseguir la máxima disponibilidad de la unidad. Ayuda a reducir la demanda de potencia del ventilador de tiro forzado y de este modo se eleva la potencia de salida neta.

Sin duda el calentador de aire regenerativo tipo Ljungström es uno de los que más se usa en las plantas térmicas, debido a que la transferencia de calor es indirecta, exponiendo alternativamente el fluido calefactor.

Independientemente del tipo de combustible, las plantas de gran potencia usan calentadores regenerativos, porque son de menor tamaño y requieren una inversión global más baja.

CAPÍTULO 2

2. PLACAS TÉRMICAS DEL CALENTADOR DE AIRE REGENERATIVO LJUNGSTRÖM

2.1. Definición de las Placas Térmicas

Los elementos de superficie de acumulación de calor de tipo regenerativo, son disposiciones de dos tipos de placas metálicas muy compactas, especialmente conformadas.

El objetivo de los perfiles ondulados es mantener las placas despegadas, con el fin de ofrecer espacios para:

- Facilitar unos canales de flujo a cada uno de los fluidos operativos.
- Maximizar la transferencia de calor incrementando la superficie calefactora.

 Lograr el mayor intercambio térmico creando turbulencias en los flujos.

El espesor de las placas de acero varía entre 0,5 - 1,27 mm, y se encuentran espaciadas entre 5 - 10 mm.

Con disposiciones compactas, se tienen:

- Altos regímenes de transferencia térmica.
- Elevada caída de presión.
- Gran ensuciamiento.

Con disposiciones espaciados amplios, se obtiene:

- Una transferencia de calor más baja.
- Una caída de presión más modesta.
- Un reducido ensuciamiento potencial.

Cuando se combinan el perfil y el material con el que está construido el espesor de la placa, se pretende:

- Maximizar la transferencia de calor y minimizar la caída de presión.
- Alcanzar una buena limpieza.
- Lograr una alta resistencia a la corrosión.

Los elementos de la superficie calefactora se apilan y empaquetan en módulos individuales, que se instalan en el rotor/estator dispuestos en dos o más capas, como se ilustra en la Figura 2.1.

La capa que se encuentra en el lado de entrada del aire es la fría, susceptible de corrosión y ensuciamiento, y tiene una profundidad de 300 mm, con el objeto de que se pueda sustituir fácil y económicamente.

Para aumentar la resistencia a la corrosión y mejorar la limpieza, se utilizan placas con espesores grandes y perfiles abiertos. Todos los elementos de la capa fría son de acero de baja aleación, resistente a la corrosión; si hay posibilidad de una elevada corrosión se utilizan aceros revestidos de esmaltes de porcelana. Las capas intermedia y caliente son más compactas que la fría, y utilizan placas mucho más delgadas.

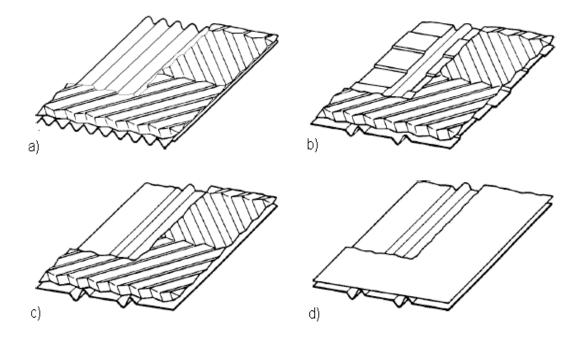


Figura 2.1. a) y b) Perfiles de placas caliente e intermedia para carbón, aceite y gas, espesor de 0.5 a 1 mm. c) Perfil de placa fría, aceite pesado y carbón bituminoso, ensuciamiento medio, espesor de 1.27 mm. d) Perfil de placa fría lignito y carbón sub-bituminoso, ensuciamiento severo, espesor de 1.27 mm.

2.2. Diseño de placas térmicas

El diseño de las placas térmicas se base en los siguientes parámetros:

- Características funcionales.
- Tipos de inconvenientes.

2.2.1. Características funcionales de las placas térmicas

Los calentadores de aire se diseñan para cumplimentar una serie de requisitos relacionados con sus características de funcionamiento, agrupándose respecto:

- El punto de vista térmico.
- Las fugas.
- Las caídas de presión.

Cualquier deficiencia en estas características de funcionamiento, implica:

- Incrementar los costos de operación de la caldera.
- Reducir la carga de la unidad.

La característica funcional es el rendimiento térmico del calentador, en el que influyen diversos parámetros y de ahí la importancia de tener en cuenta los requisitos citados; cuando se trata de verificar el funcionamiento del calentador de aire, basta con comprobar su rendimiento térmico.

.

2.2.1.1. El punto de vista térmico

La eficiencia térmica se caracteriza comparando la temperatura de salida de los gases del calentador, con el valor que se adoptó en el diseño. La temperatura real de salida de los gases se obtiene a partir de la temperatura media, teniendo en cuenta las correcciones debidas a las fugas y las desviaciones respecto al diseño.

Desde el punto de vista térmico la superficie de intercambio de un calentador regenerativo se calcula en la forma:

Superficie de intercambio térmico:

$$A = \frac{Q}{UF} \tag{2.1}$$

El coeficiente global de transmisión de calor U incluye los coeficientes de convección y radiación, y los factores de ensuciamiento del lado de gases y del lado de aire, siendo su valor del orden de 17 - 57 W/m² oK.

Para las fugas se asume que se deben al aire entrante, se proporciona una ecuación de la forma:

$$T_2 = T_{2m} + \frac{\% Fugas}{100} \frac{C_{pa}}{c_{pg}} (T_{2m} - T_1)$$
 (2.2)

En la que:

T₂ es la temperatura corregida de salida de los gases del calentador de aire.

 T_{2m} es la temperatura media de salida del aire.

T₁ es la temperatura de entrada del aire al calentador.

% Fugas, es el porcentaje de aire que interviene en las fugas, respecto a los gases, a la entrada del calentador.

 C_{pa} y C_{pg} son los calores específicos del aire y de los gases.

La temperatura media de salida de los gases se corrige debido a las desviaciones, respecto a sus valores adoptados en el diseño, de algunos parámetros como el flujo másico o las temperaturas de funcionamiento.

2.2.1.2. Fugas

Las fugas son el aire que pasa del lado de aire al de gases, y se mide en kg/s, o como un porcentaje del flujo de gases.

Las fugas son indeseables porque:

- Representan una energía gastada en ventiladores para impulsar el aire que bipasa la zona de combustión de la caldera.
- Pueden reducir la eficiencia térmica del calentador de aire.

Las unidades regenerativas comienzan a operar con fugas nulas, pero se presentan al cabo de un tiempo; con un mantenimiento normal, las fugas en los calentadores de aire regenerativos se pueden mantener por debajo del 3%.

Existen dos tipos de fugas:

- De holgura
- De arrastre

Las fugas de holgura son consecuencia de la mayor presión existente en el lado de aire, que se filtra al lado de gases (a menor presión), a través de las holguras existentes entre las partes móviles y fijas.

Las fugas de arrastre consisten en el aire desplazado hacia el flujo de gases por cada sector compartimental del rotor (o del estator), y es directamente proporcional:

- Al volumen de cada sector.
- A la velocidad de rotación de la superficie calefactora del calentador de aire.

La fuga de diseño correspondiente a un calentador de aire regenerativo, a consecuencia del desgaste de los cierres, es del 5 - 15%, aumentando con el tiempo de funcionamiento de la unidad.

La fuga de aire de un calentador es la diferencia entre los flujos de entrada y salida, del aire y gases, que se estima a partir de sus velocidades. Como es difícil medir con precisión velocidades en conductos de gran sección, la fuga del calentador resulta más exacta cuando se basa en

el cálculo del peso de los gases presentes, teniendo en cuenta su análisis, la eficiencia de la caldera y los datos del análisis del combustible

2.2.1.3. Caída de Presión

Las caídas de presión se deben:

- A la fricción del fluido.
- A las pérdidas por cambios de sección en las entradas y salidas del calentador de aire.
- A las pérdidas por curvas y codos en los conductos de los flujos.

En los calentadores de aire regenerativos, la principal causa de fricción radica en la superficie calefactora de intercambio térmico. A plena carga, los valores típicos están entre 0,5 - 1,7 kPa.

Las caídas de presión, en el lado de gases y en el de aire, son la diferencia entre las presiones estáticas manométricas de entrada y salida.

Debido a las posibles desviaciones de flujo y temperatura respecto a las de diseño, hay que corregir las caídas de presión medidas, antes de proceder a su comparación con los valores de diseño.

Los calentadores de aire requieren mucha atención durante su funcionamiento, si las unidades consumen combustibles con altos contenidos de ceniza o de azufre (S), en comparación con unidades que quemen combustibles limpios, como el gas natural.

2.2.2. Tipos de inconvenientes en las placas térmicas

2.2.2.1. Corrosión

Los calentadores de aire que se emplean en unidades que queman combustibles con azufre (S), están sujetos a corrosión en el lado frío de los elementos calefactores y de las estructuras más próximas.

En una caldera, parte del dióxido de azufre (SO₂) producido se convierte en trióxido de azufre (SO₃) y éste se combina con la humedad para formar vapor de ácido sulfúrico (SO₄H₂); este vapor condensa en las superficies que tengan temperaturas inferiores a la del punto de rocío, entre 120 - 150°C; la temperatura del metal, en el lado frío

del calentador, es de 93°C, por lo que existe riesgo de corrosión.

Una solución sería operar siempre con temperaturas del metal superiores a la del punto de rocío, pero se inducen unas pérdidas considerables e inaceptables en el balance térmico de la caldera.

Cuando se queman combustibles que contienen azufre (S), la mayoría de los calentadores de aire se diseñan para operar con una temperatura mínima del metal inferior a la del punto de rocío, porque la eficiencia que se alcanza compensa los costes que se plantean en el mantenimiento de la instalación, Figura 2.2.

La temperatura mínima del metal recomendada puede ser inaceptable, cuando se presenta alguna de las siguientes circunstancias:

- Combustible con excesivo contenido en azufre (S).
- Temperatura ambiente demasiado baja.
- Funcionamiento de la unidad a carga muy reducida.

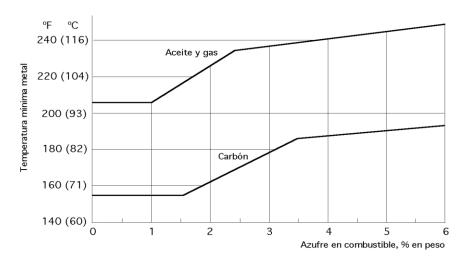


Figura 2.2. Temperatura mínima de metal en el lado frío de un calentador de aire regenerativo, cuando se queman combustibles con azufre (S).

Estas situaciones implican la utilización de métodos activos y pasivos, para controlar la posible corrosión en el lado frío del calentador de aire.

Los métodos activos para elevar la temperatura mínima del metal son:

 Precalentamiento del aire de entrada al calentador, mediante precalentadores con serpentines de vapor o de agua.

- Bipaso de aire frío, por el que una porción del aire de entrada al calentador le circunvala.
- Recirculación de aire caliente, mediante el cual una parte del aire caliente que sale del calentador se lleva a la entrada de los ventiladores de aire comburente.

Los métodos pasivos de control de la corrosión, comprenden:

- Espesores mayores en el lado frío: 1 mm para las placas de la superficie regenerativa.
- Materiales de las placas del lado frío de aleaciones altas o bajas, que tienen una vida doble de la del acero al carbono.
- Revestimientos no metálicos en los elementos del lado frío, como esmaltes de porcelana o teflón, resinas epoxy, etc.

2.2.2.2. Obstrucción y limpieza

La obstrucción es el ensuciamiento y taponamiento de los pasos por los que circulan los fluidos, provocados por la ceniza en polvo que arrastran los gases y por los productos de la corrosión. Esto se puede presentar en el lado caliente del calentador, pero lo más normal es que se desarrolle en el lado frío, en donde las partículas de ceniza en polvo se adhieren a la superficie calefactora con más facilidad, por estar humedecida con ácido.

La obstrucción incrementa la caída de presión en el calentador, y puede provocar una limitación de la carga en la unidad generadora de vapor, haciéndola funcionar a una carga menor que la nominal cuando los ventiladores alcanzan su máxima capacidad.

Hay que controlar y evaluar cualquier material que se deposite en el calentador de aire; para ello se cuenta con:

- El sistema de soplado.
- El control de temperatura del lado frío.
- El diseño de la superficie calefactora.

 La limpieza, cuando la unidad esté retirada de servicio o parada.

2.2.2.3. Erosión

Las superficies calefactoras y otras partes del calentador de aire pueden sufrir erosión, a causa del impacto de las partículas de ceniza en polvo que arrastran los gases a alta velocidad. La erosión se presenta en zonas próximas a la entrada de gases, que es donde las velocidades resultan máximas, y en los calentadores regenerativos en áreas junto a las holguras de los cierres, porque la ceniza en polvo se acelera al pasar por las mismas.

Las consecuencias indeseables de la erosión, son:

- Debilitación estructural.
- Reducción de la superficie para la transferencia de calor.
- Perforación de componentes y fugas de aire hacia los gases.

La intensidad de la erosión es función de:

- La velocidad másica del flujo de gases.
- La carga de ceniza en los gases.
- La naturaleza física de las partículas de ceniza en polvo.
- El ángulo de impacto de las partículas.

La erosión se puede controlar:

- Reduciendo la velocidad de los gases.
- Eliminando los elementos abrasivos del flujo de gases.
- Utilizando materiales sacrificables.
- Empleando materiales resistentes a la erosión.

Los calentadores de aire que se vayan a utilizar en unidades con combustibles de ceniza altamente erosiva, se diseñan para limitar la velocidad a 15 m/s.

Los conductos de entrada al calentador de aire se diseñan para suprimir altas velocidades; también hay que diseñar sistemas para eliminar algo de ceniza aguas arriba de los calentadores de aire, como colectores de polvo, tamices o tolvas estratégicamente situadas.

2.2.2.4. Incendios

En los calentadores de aire son raros los incendios, pero de existir pueden ser tan severos que llevan a su destrucción.

La mayoría de los fuegos ocurren durante la puesta en servicio de la unidad generadora de vapor, porque el aceite combustible no quemado que se encuentra depositado en las superficies calefactoras atoradas por la ceniza, otras fuentes de riesgo de incendio pueden ser fugas en el sistema de lubricación de cojinetes o grandes acumulaciones de polvo.

Los incendios se evitan:

- Manteniendo limpio de combustible no quemado la totalidad del calentador de aire.
- Disponiendo de un ajuste apropiado en el equipo de combustión del generador de vapor.
- Soplando el calentador de aire durante la puesta en servicio de la unidad generadora de vapor.
- Soplando antes de la retirada de servicio del generador de vapor.

CAPÍTULO 3

3. DISEÑO DE MAQUINARIAS PARA LA ELABORACIÓN DE PLACAS TÉRMICAS DE UN CALENTADOR DE AIRE REGENERATIVO LJUNGSTRÖM

3.1. Parámetros de diseño

El diseño de las maquinarias estará basado en los siguientes aspectos:

- Material a conformarse: La disponibilidad del acero ASTM A36
 en planchas, además el espesor el cual puede variar de
 acuerdo a las necesidades de las plantas térmicas entre 0.5 1
 mm.
- Velocidad de giro: Las maquinarias a diseñar requieren de una velocidad de 10 rpm para la producción.
- *Tipo de ensamblaje:* El ensamblaje a utilizar es de tipo desmontable, para posteriores mantenimientos.
- Forma de los rodillos conformadores: Los rodillos deben de conformar a las placas metálicas como se muestra en la figura 3.1.

Figura 3.1 Forma de las places metálicas perfil tipo DU.

3.2. Diseño de forma

Una vez considerado los parámetros, se hace el diseño de forma de las maquinarias acorde a la disponibilidad de área donde va a estar ubicada. En la figura 3.2 se muestran sus partes que constituyen todo el sistema.

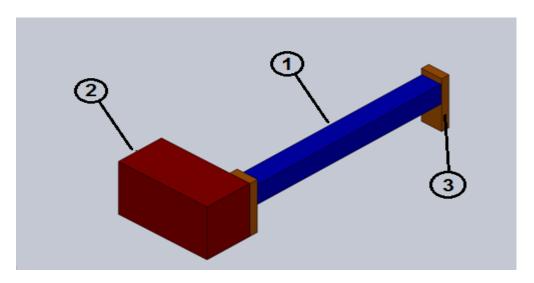


Figura 3.2 Diseño de forma de los rodillos conformadores

Las maquinarias se componen de las siguientes secciones que se explican las acciones de cada una:

- Rodillos conformadores (1).
- Sistema de transmisión de potencia (2).

Soporte para los rodillos conformadores (3).

Rodillos conformadores: esta es la parte inicial del proceso que comprende la base con rodillos donde se meten las placas metálicas para que sean conformadas de acuerdo a la forma deseada, estarán conectados con el sistema de transmisión de potencia.

Sistema de transmisión de potencia: esta parte del sistema está conectado con los rodillos conformadores. Estará conformado por cojinetes, piñones, engranes, cadena, un motor-reductor y un variador de velocidad.

Soporte para los rodillos conformadores: esta estructura es la que soportará el peso y el movimiento que realizan los rodillos conformadores. El diseño de la estructura debe de dar la posibilidad al rodillo conformador superior de regular la altura para que pueda ser modificado en base al espesor de la plancha metálica.

3.3. Diseño detallado

3.3.1. Sistema de rodillos

Para diseñar el sistema de rodillos, se debe considerar la relación entre la geometría de la pieza y las propiedades mecánicas del material; ya que es de especial interés para la obtención del momento límite (por flexión).

El doblado se produce gracias a la deformación plástica del material bajo una solicitación de flexión como se encuentra en la figura 3.3. Una representación idealizada se muestra en el diagrama en la cual una vez alcanzada la fluencia en el punto "y", la deformación continúa sin ningún aumento posterior de la tensión aplicada.

Un material que se ajusta a esta curva se considera elastoplástico y bajo esta hipótesis, el estudio se ve facilitado, pues las tensiones serán proporcionales a las deformaciones, hasta cuando la tensión máxima alcanza el valor del límite de fluencia.

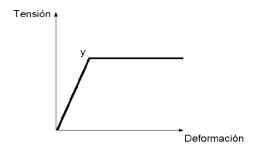
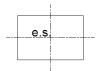


Figura 3.3 Curva Tensión-Deformación


Posteriormente todo incremento del momento aplicado, tendrá como contra partida no un incremento de la tensión máxima, sino una propagación de la fluencia de afuera hacia adentro. Correspondiéndose con la propagación de la fluencia o toda la sección transversal, teniéndose un valor límite para el momento interno generado en la sección transversal, a partir de la cual,

toda deformación adicional se consigue sin aumento de momento aplicado.

Los parámetros obtenidos son:

Para una sección rectangular, el momento límite es:

$$ML = z * S_v (3.1)$$

$$z = \frac{b * h^2}{4} \tag{3.2}$$

Reemplazando la ecuación (3.2) en ecuación (3.1), se obtiene:

$$ML = \frac{b * h^2}{4} * S_y \tag{3.3}$$

Tal que:

ML: momento límite

z: módulo plástico (sección rectangular).

Sy: límite de fluencia

b: ancho útil de la lámina

t = h: espesor máximo de la placa metálica

Para los cálculos se parte de los siguientes datos:

Material a rolar: acero ASTM A36

Ancho útil lámina: b = 1200 mm

Ancho de doblado: x = 15 mm

Espesor máximo: t = h = 1 mm

Límite de fluencia: Sy = 290 MPa

Reemplazando en la ecuación (3.3), se tiene:

$$ML = \frac{(1200 * 10^{-3}) * (1 * 10^{-3})^{2}}{4} * (290 * 10^{6})$$

$$ML = 87 N * m$$

Con el momento límite se puede calcular la fuerza necesaria para doblar la placa metálica sin deformarla.

A la placa metálica se le aplicará pequeñas fuerzas de doblado puntuales, como se muestra en la figura 3.4

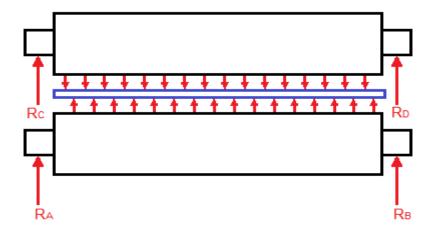


Figura 3.4 Esquema de las fuerzas de doblado puntuales que los rodillos ejercen sobre la placa metálica.

Para el análisis se toma en cuenta la placa metálica como una viga con apoyos simples.

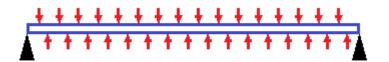


Figura 3.5 Placa metálica como una viga con apoyos simples

El desglose de las fuerzas se las representa de la siguiente manera:

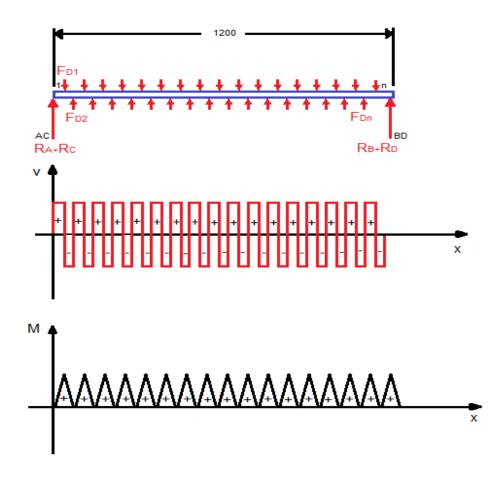


Figura 3.6. Diagrama de cuerpo libre de la placa metálica para el cálculo de las reacciones en su carga máxima

Con el diagrama de cuerpo libre se determina que:

$$R_A + R_C = R_B + R_D = \frac{F_{D1} + F_{D2} + \dots + F_{Dn-1} + F_{Dn}}{2}$$
 (3.4)

Tal que,

$$F_{D1} = F_{D2} = \dots = F_{Dn-1} = F_{Dn}$$
 (3.5)

$$F_{D1} + F_{D2} + \dots + F_{Dn-1} + F_{Dn} = 30F_{D1} = F_{D}$$
 (3.6)

Reemplazando (3.5) y considerando la relación de igualdad obtenida en la ecuación (3.6) en la ecuación (3.4), se tiene:

$$R_A + R_C = R_B + R_D = \frac{^{30}F_{D1}}{^2}$$
 (3.7)

El momento que es ejercido en cada área tal como se muestra en la figura 3.5 es:

$$M_{AC1} = \frac{F_{D1}}{2} x_1 \tag{3.8}$$

$$M_{12} = \frac{F_{D2}}{2} x_2 \tag{3.9}$$

$$M_{(n-1)n} = \frac{F_{Dn-1}}{2} x_{n-1}$$
 (3.10)

$$M_{nBD} = \frac{F_{Dn}}{2} x_n \tag{3.11}$$

$$ML = M_{AC1} + M_{12} + \dots + M_{(n-1)n} + M_{nBD}$$
(3.12)

Se tiene una igualdad en las áreas reflejadas del momento en la figura 3.5, tal que:

$$M_{AC1} = M_{12} = \dots = M_{(n-1)n} = M_{nBD}$$
 (3.13)

Simplificando la ecuación (3.12), se tiene:

$$ML = \frac{30F_{D1}}{2}X \tag{3.14}$$

De donde:

$$x = x_1 = x_2 = \dots = x_{n-1} = x_n$$
 (3.15)

Despejando la fuerza de doblado puntual F_{D1} en la ecuación (3.14) y considerando que x es el ancho que se va a doblar por sección en la plancha metálica, se tiene:

$$F_{D1} = \frac{2ML}{30x} \tag{3.16}$$

Reemplazando valores en la ecuación (3.16), se obtiene:

$$F_{D1} = \frac{2(87)}{30*(30*10^{-3})} = 193.33 \text{ N}$$

Con este resultado obtenido se reemplaza en la ecuación (3.6), de donde se obtendrá el valor correspondiente a la fuerza de doblado, tal que:

$$F_D = 30F_{D1} = 30 * 193.33$$

$$F_D = 5800 \text{ N}$$

Para que esta fuerza de doblado sea una fuerza total, se debe considerar el peso de los rodillos; para un rodillo de diámetro 83 mm se considera un peso de 38.98 (kg/m), tal que:

$$W_{\text{rodillos}} = 2 * w * l \tag{3.17}$$

$$W_{\text{rodillos}} = 2 * 38.98 * (1500 * 10^{-3}) = 116.94 \text{ N}$$

$$F_{DT} = F_D + W_{rodillos} (3.18)$$

Reemplazando valores obtenidos en la ecuación (3.17):

$$F_{DT} = 5800 + 116.94 = 5916.94 \text{ N}$$

Esta es la fuerza de doblado que los rodillos ejercerán sobre la placa metálica sin deformarla. Se debe calcular el momento total por flexión total de los rodillos, tal que:

$$M_{\text{Total}} = \frac{F_{\text{DT}}*b}{2} \tag{3.19}$$

Reemplazando valores,

$$M_{\text{Total}} = \frac{5916.94}{2} * (1200 * 10^{-3}) = 3550.16 \text{ Nm}$$

El sistema de rodillos presenta esfuerzos combinados, por lo que para el diseño de un eje adecuado, se debe aplicar Von Misses. Para esto se considera como dato el diámetro del rodillo, d=83mm.

Primero se diseña en modo estático,

$$\sigma'_{f} = \frac{MC}{I}$$

$$\sigma'_{f} = \frac{M(\frac{d}{2})}{\pi(\frac{d^{4}}{64})}$$
(3.20)

Simplificando:

$$\sigma'_{f} = \frac{32M_{DTotal}}{\pi d^{3}} \tag{3.21}$$

Reemplazando valores

$$\sigma'_{f} = \frac{32(3550.16)}{\pi (83 * 10^{-3})^{3}} = 63.24 \text{ MPa}$$

$$\tau = \frac{T * r}{J}$$

$$\tau = \frac{T(\frac{d}{2})}{\pi (\frac{d^{4}}{32})}$$
(3.22)

Simplificando:

$$\tau = \frac{16T}{\pi d^3} \tag{3.23}$$

El torque T es igual a:

$$T = (F_{DT} * r) + T_{rodillo}$$
(3.24)

El T_{rodillo} es el torque que se debe considerar para vencer la inercia de la masa, tal que:

$$T_{\text{rodillos}} = 2 * I * \alpha \tag{3.25}$$

$$T_{rodillos} = 2 * \frac{1}{2}r^2 * m * \frac{\omega}{t} = (83 * 10^{-3})^2 * 58.2 * 0.0349 = 0.14 Nm$$

Reemplazando valores:

$$T = 5916.94 * \left(\frac{83*10^{-3}}{2}\right) + 0.14 = 245.69 \text{ Nm}$$

Con el valor obtenido del torque se reemplaza en la ecuación (3.23):

$$\tau = \frac{16(245.55)}{\pi(83*10^{-3})^3} = 2.18 \text{ MPa}$$

El esfuerzo principal de Von Misses es:

$$\sigma' = \sqrt{\sigma_f^2 + 3\tau^2}$$
 (3.26)
$$\sigma' = \sqrt{(63.24 * 10^6)^2 + 3(2.18 * 10^6)^2} = 63.35 \text{ MPa}$$

Con este resultado se debe realizar el diseño del rodillo por resistencia a la fatiga, ya que una ruptura por esta causa no da señal alguna, es repentina y total y sobretodo peligrosa.

Diseño de los rodillos por resistencia a la fatiga

Cuando las piezas de una máquina fallan estáticamente, por lo general sufren una deformación muy grande debido a que el esfuerzo está excedido a la resistencia de fluencia.

40

Entonces debe reemplazarse antes de que ocurra la ruptura. El

diseño de la maquinaria contra fallas estáticas es relativamente

sencillo, pues los conocimientos actuales sobre ellos son

bastantes completos. Pero la fatiga es un fenómeno mucho más

complicado, solo se encuentra explicado parcialmente.

Para los cálculos de diseño en fatiga, se debe considerar al

análisis de los rodillos individualmente (los cálculos y resultados

serán los mismos) y que la carga es totalmente invertida,

entonces:

$$S_{e}' = 0.67 S_{ut}$$
 (3.27)

Se considera los siguientes datos:

Material del rodillo: SAE 1018: S_y= 370 MPa, S_{ut}= 440 MPa

Reemplazando valores en ecuación (3.26):

$$S'_e = 0.67(440 * 10^6) = 294.8 \text{ MPa}$$

Para el diseño por resistencia a la fatiga se ha propuesto una

clasificación de algunos de los factores que modifican el límite a la

fatiga:

$$S_{e} = k_{a} * k_{b} * k_{c} * k_{d} * k_{e} * S_{e}'$$
(3.28)

Donde ka: Factor de superficie

kb: Factor de tamaño

kc: Factor de carga

kd: Factor de temperatura

ke: Factor de efectos diversos

Se': límite de resistencia a la fatiga en viga rotatoria

Se: límite de resistencia a la fatiga en la ubicación crítica de una parte de máquina en la geometría y condición de uso.

El factor de superficie k_a se calcula de la siguiente manera:

$$k_a = a * S_{ut}^b$$
 (Sut en MPa) (3.29)

El valor a y b consiste en el acabado superficial que se debe considerar en los rodillos. En este caso se considera un acabado superficial de maquinado, en donde a = 4.45 MPa y b = -0.265.

Reemplazando estos valores en la ecuación (3.29), da como resultado:

$$k_a = (4.45 * 10^6) * (530 * 10^6)^{-0.265}$$

$$k_a = 0.88$$

El factor de tamaño k_{b} se obtiene de las siguientes condiciones:

$$k_b = \begin{pmatrix} \left(\frac{d}{0.3}\right)^{-0.107} = 0.879d^{-0.107} & 0.11 \le d < 2 \text{ pulg} \\ 0.859 - 0.02125d & 2 < d \le 10 \text{ pulg} & (3.30) \\ \left(\frac{d}{7.62}\right)^{-0.107} = 1.24 d^{-0.107} & 2.79 \le d \le 51 \text{ mm} \\ 0.859 - 0.000837d & 51 < d \le 254 \text{ mm} \end{pmatrix}$$

Se escoge el siguiente intervalo 51<d≤254 mm ya que el diámetro que se escogió para el rodillo es de 83 mm, tal que:

$$k_b = 0.859 - 0.000837(83) = 0.78$$

En el cálculo del factor de carga k_c se considera la carga que ejerce el rodillo como flexión pura, tal que:

$$k_c=1$$

El cálculo del factor de temperatura k_d se considera que el rodillo trabaja a temperatura ambiente:

$$k_{\text{d}}=1$$

Para determinar el factor de reducción de resistencia a la fatiga, se considera una carga totalmente invertida, de tal manera que:

$$k_f = 1 + q(k_{ts} - 1)$$
 (3.31)

Para el cálculo del k_{ts} , factor teórico (o geométrico) de concentración de esfuerzos por torsión, y q sensibilidad a la muesca:

$$k_{ts} = 0.78 + 0.2 \left(\frac{D}{d}\right)^{-10} + \left(\frac{r}{d}\right)^{-0.46} \sqrt{\frac{-0.002 - 0.125 \left(\frac{D}{d}\right)^2 + 0.123 \left(\frac{D}{d}\right)^4}{1 - 2.75 \left(\frac{D}{d}\right)^2 + 2.55 \left(\frac{D}{d}\right)^4}}$$
 (3.32)

Se da como dato un radio de muesca r= 4 mm:

$$\frac{D}{d} = \frac{83 \text{ mm}}{50 \text{ mm}} = 1.66$$

$$\frac{r}{d} = \frac{4 \text{ mm}}{50 \text{ mm}} = 0.08$$

Reemplazando los valores se tiene:

$$k_{ts} =$$

$$0.78 + 0.2(1.66)^{-10} + (0.008)^{-0.46} \sqrt{\frac{-0.002 - 0.125(1.66)^2 + 0.123(1.66)^4}{1 - 2.75(1.66)^2 + 2.55(1.66)^4}} =$$

1.23

De la figura 3.7 se obtiene el valor de la sensibilidad a la muesca q, tal que q = 0.8.

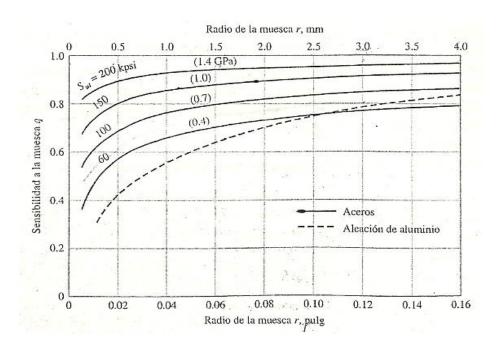


Figura 3.7 Gráfica de sensibilidad a la muesca de aceros y aleaciones de aluminio forjado UNS A92024-T sometidas a cargas invertidas de flexión y axial.

Reemplazando estos valores en la ecuación (3.31), se tiene:

$$k_f = 1 + 0.8(1.23 - 1) = 1.18$$

En consecuencia, el factor de modificación por la concentración de esfuerzo es:

$$k_e = \frac{1}{k_f}$$
 (3.33)

Reemplazando los valores obtenidos anteriormente, se tiene:

$$k_e = \frac{1}{1.18} = 0.84$$

Por lo tanto, de los valores de los factores por diseño de fatiga se reemplazan en la ecuación (3.28), en donde el límite de resistencia a la fatiga en la ubicación crítica de una parte de máquina en la geometría y condición de uso S_e, es:

$$Se = 0.88 * 0.78 * 1 * 1 * 0.84 * (294.8 * 10^{6})$$

$$Se = 174.074 MPa$$

Se halla el factor de seguridad para el diseño de fatiga, tal que:

$$\eta = \frac{S_e}{\sigma'} \tag{3.34}$$

Reemplazando los valores obtenidos en las ecuaciones (3.28) y (3.26), se tiene:

$$\eta = \frac{174.07*10^6}{63.35*10^6}$$

$$\eta = 2.74$$

Con n>2 indica que el sistema es confiable, el sistema de rodillos tendrá este factor de seguridad igual a 2.74 para los dos tipos de diseños de maquinarias que se desea llevar a cabo.

3.3.2. Sistema de rodadura

Constituye un problema constructivo importante el dimensionamiento de los cojinetes. Una aplicación típica del diseño de los cojinetes es la que se ilustra en la figura 3.8, la cual

se usará para el sistema de rodadura de los rodillos superiores e inferiores para los dos tipos de maquinarias.

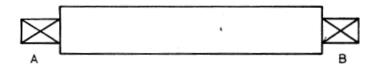


Figura 3.8 Eje rotatorio montado sobre cojinetes.

Se trata de un eje rotatorio que debe sostener unos cojinetes montados en A y B, y en los que actúan las cargas radiales.

Para la selección del sistema de rodadura se basará en lo siguiente:

- El tipo de carga que soportará el cojinete, en este caso carga radial.
- La vida nominal básica.
- Tipo de cojinete, en este caso cojinete de bolas.
- La capacidad básica de carga dinámica (C_r).

La vida nominal básica se emplea por la mayoría de los fabricantes de cojinetes. La vida de un grupo de cojinetes de bolas o de rodillos prácticamente idénticos se define como el

número de revoluciones (u horas a una velocidad constante) que 90% del grupo logra o excede, antes de que se desarrolle el criterio de falla.

El tipo de aplicación para la vida de los cojinetes se la selecciona de acuerdo a la operación de la maquinaria en este caso operación corta o intermitente, donde la interrupción del servicio resulta de poca importancia con $L_{10h}=4{\sim}8~kh$, del que se escoge el promedio $L_{10h}=4~kh$.

La capacidad de carga dinámica muestra la capacidad de un cojinete de asimilar carga dinámica. Dicha capacidad expresa la carga contante que un cojinete puede soportar por un periodo de 1 millón de revoluciones. La misma se expresa como carga radial pura para los cojinetes radiales y carga axial pura para los cojinetes axiales. Son indicadas como "capacidad básica de carga dinámica (Cr)" y "capacidad básica de carga dinámica axial (Ca)".

La capacidad básica de carga dinámica se la calcula de la siguiente manera:

$$C_{r} = \left(\frac{60*\eta*L_{10h}}{10^{6}}\right)^{1/P} * P_{r}$$
(3.35)

n: velocidad de giro, 10 rpm.

P= 3, Cojinete de bolas.

$$Pr = RA = RB = \frac{F_{DT}}{4} = 1462.33$$

$$C_r = \left(\frac{60 * 10 * 4000}{10^6}\right)^{1/3} * 1462.33 = 1343.97 \text{ N}$$

Con este valor, se selecciona el cojinete adecuado para el rodillo con un diámetro maquinado d= 50 mm. Como este valor no está en la tabla, entonces se selecciona un valor inmediato mayor tal que para un eje de 50 mm se tiene un cojinete de bolas con capacidad básica de carga dinámica de 1370 N.

Este es el cojinete que se usará en ambas maquinarias.

3.3.3. Tornillos de regulación

Los tornillos de fuerza son dispositivos que se utilizan en las máquinas para convertir un movimiento angular en movimiento lineal y transmitir así generalmente fuerza o potencia.

En la figura 3.9 se muestra un tornillo de potencia de rosca cuadrada, de un solo filete, que tiene un diámetro medio d_m , un paso p, un ángulo de avance L y un ángulo de hélice que soporta una carga axial de compresión F_{DT} . Se transmite una fuerza F_{DT} a una tuerca y a través de un tornillo de rosca cuadrada. Ahora se determinará los esfuerzos producidos en la rosca de la tuerca y en

la rosca del tornillo las cuales podrían ocasionar las fallas en ellas, por ejemplo por fluencia.

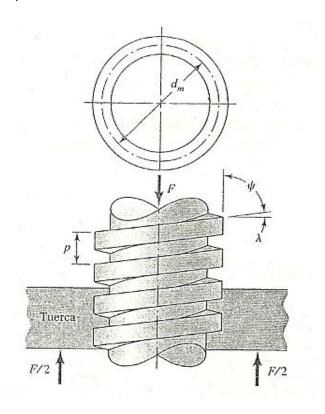


Figura 3.9 Tornillo de fuerza o potencia

Se supone que los hilos de la rosca del tornillo fallarán por cortante sobre el diámetro menor, entonces el esfuerzo cortante medio en esta rosca es:

$$T_{\rm c} = \frac{2F}{\pi d_{\rm r}h} \tag{3.36}$$

Se da como dato de diseño:

h = 136 mm (valor asumido para el diseño)

 $F = F_{DT}/2$

Material Acero 1010 CD

 $\eta = 2.3$

Se debe tomar en cuenta que estos esfuerzos son esfuerzos medios y por lo tanto se debe usar coeficientes de seguridad n > 2.

Sustituyendo en la ecuación (3.35), se tiene:

$$T_{c} = \frac{2*F_{DT}/2}{\pi d_{r}h} = \frac{2*(5916.94/2)}{\pi*d_{r}*0.136}$$
(3.37)

$$n = \frac{s_{sy}}{\sigma_{max}} \tag{3.38}$$

$$S_{s_y} = 0.5S_y$$
 (3.39)

Reemplazando (3.38) en (3.37)

$$n = \frac{0.5S_y}{T_{c_{max}}} \tag{3.40}$$

$$T_{c_{\text{max}}} = \frac{0.5S_y}{n}$$
 (3.41)

Reemplazando la ecuación (3.37) en la ecuación (3.41):

$$\frac{2*(5916.94/2)}{\pi*d_r*0.136} = \frac{0.5S_y}{n}$$

Despejando d_r, se tiene:

$$d_r = \frac{(2.3)*(5916.94)}{0.5*(308*10^6)*\pi*(0.136)} = 22.5 \text{ mm}$$

La profundidad y el ancho de la rosca son iguales a la mitad del paso según la figura 3.9, y el paso que se usará en esta selección del tornillo de potencia será de paso fino tal que p = 1.5.

$$d = d_r + p/2$$

$$d = 22.5 + \frac{2}{2} = 23.5 \text{ mm}$$
(3.42)

Este es el diámetro mayor nominal d, con el que se selecciona un valor igual o inmediato mayor a este resultado, tal que:

El diámetro de paso d_m es igual a:

d = 24 mm.

$$d_{\rm m} = d - p/2$$
 (3.43)
 $d_{\rm m} = 24 - \frac{2}{2} = 23 \text{ mm}$

Con los resultados obtenidos se recalcula el diámetro menor d_r, tal que:

$$d_r = d - p \tag{3.44}$$

$$d_r = 24 - 2 = 22 \text{ mm}$$

$$l = n * p \tag{3.45}$$

l = 1 * 2 = 2 mm

Aplicando la ecuación de torsión para tornillos de rosca cuadrada, se tiene que el momento de torsión requerido para hacer que el tornillo gire contra la carga es:

$$T_{s} = \frac{Fd_{m}}{2} \left(\frac{1 + \pi \mu d_{m}}{\pi d_{m} - \mu l} \right) \tag{3.46}$$

De donde:

$$F = R_A = R_B = 2958.47 \text{ N}$$

$$d_m = 23 \text{ mm} = 0.023 \text{ m}$$

$$I = 136 \text{ mm} = 0.136 \text{ m}$$

Se ha determinado el intervalo de coeficientes de fricción entre el collarín y rosca en los tornillos de fuerza como:

Superficie sin lubricación 0.40 a 0.80

Superficies lubricadas 0.005 a 0.20

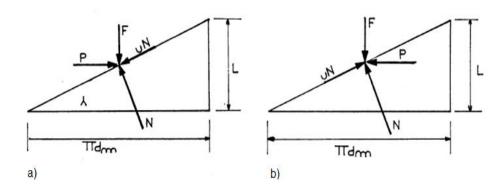


Figura 3.10 Diagrama de fuerzas: a) Al subir la carga, b) Al bajar la carga.

Se selecciona superficie lubricada con un valor de μ = 0.08.

Reemplazando estos valores en la ecuación (3.46), se tiene como resultado:

$$T_s = \frac{2958.47*0.023}{2} \left(\frac{1+\pi*0.08*0.023}{\pi*0.023-0.08*0.136} \right) = 473.78Nm$$

Aplicando la ecuación de torsión para tornillo de rosca cuadrada, se tiene que el momento de torsión requerido o necesario para descender la carga, es decir, para hacer que el tornillo gire a favor de ella es:

$$T_{s} = \frac{Fd_{m}}{2} \left(\frac{\pi \mu d_{m} - l}{\pi d_{m} + \mu l} \right) \tag{3.47}$$

Reemplazando los valores dados anteriormente, se tiene como resultado:

$$T_s = \frac{^{2958.47*0.023}}{^2} \left(\frac{(\pi*0.08*0.023) - 0.002}{\pi*0.023 + 0.08*0.002} \right) = 0.86 \text{ Nm}$$

3.3.4. Sistema de transmisión de potencia.

En casi todas las máquinas hay transmisión de movimiento de rotación de un eje a otro, los engranajes (o ruedas dentadas) constituyen una de los mejores medios disponibles para hacerlo.

Para el sistema de transmisión de potencia se requiere calcular la potencia del motor, en donde se selecciona una velocidad de rotación de 10 rpm para cada rodillo.

$$\omega = 10 \frac{\text{rev}}{\text{min}} * \frac{2\pi \, \text{rad}}{1 \, \text{rev}} * \frac{1 \, \text{min}}{60 \text{s}} = 1.047 \, \frac{\text{rad}}{\text{seg}}$$

Potencia mecánica del motor es igual a:

$$P_{\text{mecánica}} = T * \omega \tag{3.48}$$

Reemplazando valores, se tiene:

$$P_{\text{mecánica}} = 245.69 * 0.5236 = 257.24 \text{ W} = 0.34 \text{ hp}$$

Asumiendo un 70% de eficiencia en el proceso, entonces la potencia eléctrica será:

$$P_{\text{elécrica}} = \frac{P_{\text{mecánica}}}{0.6}$$

$$P_{\text{elécrica}} = \frac{0.34}{0.7} = 0.48 \text{ hp} \sim 0.5 \text{ hp}$$
(3.49)

La relación de velocidad entre el motor y el reductor se refleja en los cálculos de la ecuación (3.50).

Ratio =
$$\frac{\text{Conductor rpm}}{\text{conducido rpm}}$$
 (3.50)
Ratio = $\frac{1800 \text{ rpm}}{70 \text{ rpm}} = 25.71$

Este resultado indica que la selección de los piñones sería muy costosa y muy grande en tamaño, y es lo que se desea evitar.

Para esto es necesario un moto-reductor puesto que la velocidad de salida real debe ser de 10 rpm, las características del moto-reductor necesario para este sistema, se lo detalla a continuación en la tabla 3.1

Moto-reductor seleccionado					
Motor	Baldor				
Modelo	Totalmente Cerrado, Enfriado por Ventilador, Montaje con Brida C VM3531				
Frame	56° C				
Fases	Trifásico				
Velocidad	1800 rpm				
Potencia	0.5 HP				
Par	1.15 lb-ft				
Voltaje	230 / 460				
Amperaje	1 A				

Eficiencia	68%		
Marca del Reductor	Quantis – Baldor		
Tipo	Angular		
Vel. de entrada	1800 rpm		
Vel. de salida	70 rpm		
Torque	7258 lb-in / 820.15 Nm		
Φ Eje de salida	1.625 x 3.15 in		
Código del Reductor	B B 68 3 C N 56C		

Tabla 3.1 Moto-reductor seleccionado.

Es conveniente para este diseño seleccionar un variador de velocidad, ya que la relación de velocidad entre el eje conductor y el eje conducido (rodillos conformadores) es:

Ratio =
$$\frac{\text{eje conductor RPM}}{\text{eje conducido RPM}} = \frac{70 \text{ rpm}}{10 \text{ rpm}} = 7$$

Como todo sistema de reducción de velocidades debe estar en cierta forma protegido. Para lo cual, se escogerá una relación de velocidad de 2.5:1, tal que la velocidad adecuada que saldrá del variador será de 25 rpm y la del eje conducido que es la deseada es de 10 rpm.

Esta relación servirá de gran ayuda para poder hacer la selección de la cadena, piñones y engranes que van a transmitir el movimiento a 10 rpm.

Para la selección de la cadena adecuada para el sistema de transmisión de potencia, se debe seleccionar el factor de servicio que las máquinas cumplirán, en este caso el factor de servicio (SF) será:

$$SF = 1.3$$

Luego, se determina el diseño de los caballos de poder (DHP), en base a:

DHP = HP * SF (3.51)
DHP =
$$0.5 * 1.3 = 0.65$$

Con el valor del diseño de los caballos de poder (DHP) y la velocidad de salida del motoreductor 25 rpm, se selecciona la cadena, que da una cadena # 80 con 15 dientes el piñón del lado del motoreductor.

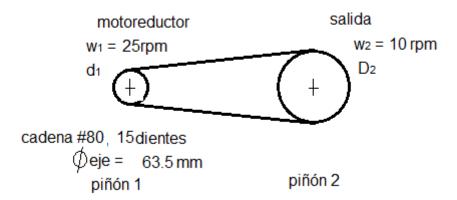


Figura 3.11 Esquema del sistema de transmisión de potencia para la selección de cadena-piñones.

Con la relación de velocidad (Ratio) igual a 2.5, se escoge una relación igual o mayor a esta y da un piñón de 40 dientes con distancia entre centros de 399.95 mm y una longitud de cadena de 1524 mm.

Para transmitir el movimiento del rodillo inferior al rodillo superior se debe colocar dos engranajes, estos dos engranajes deben tener las mismas características y la misma velocidad angular.

Para diseñar estos engranes rectos, se considera lo siguiente:

Potencia del motor seleccionado (P) = 0.5 hp = 372.85

 $Velocidad\ de\ entrada = 10\ rpm$

 $Velocidad\ de\ salida = 10\ rpm$

Relación de engrane = 1

 $Distancia\ entre\ centros = 84\ mm$

Diámetro de paso = 84 mm

Para iniciar el proceso de diseño de engranes, se debe calcular lo siguiente:

Velocidad de la línea de paso (Vt)

$$V_t = \frac{\pi D_p n}{60000} \tag{3.52}$$

En donde D_p es el diámetro de paso que está en milímetros y n es la velocidad de entrada que está en revoluciones por minuto, reemplazando los valores se tiene:

$$V_t = \frac{\pi * 84 * 10}{60000} = 0.044 \frac{m}{s}$$

La carga transmitida W_t se la calcula de la siguiente manera:

$$W_t = \frac{P * k_0}{V_t} \tag{3.53}$$

De donde:

P = Potencia del motor seleccionado

 $V_t = Velocidad de la línea de paso$

 $k_0 = Factor de sobrecarga$

El factor de sobrecarga K_o considera la probabilidad de que variaciones de carga, vibraciones, choques, cambios de velocidad

y otras condiciones específicas de la aplicación , puedan causar cargas máximas mayores que la carga transmitida W_{t} , aplicada a los dientes del engrane durante el funcionamiento.

Este factor de sobrecarga se lo obtiene de la tabla 3.2:

Tabla 3.2	Factores de sobrecarga sugeridos, K ₀						
	Máquina impulsada						
Fuente de potencia	Uniforme	Choque ligero	Choque moderado	Choque pesado			
Uniforme	1.00	1.25	1.50	1.75			
Choque ligero Choque	1.20	1.40	1.75	2.25			
moderado	1.30	1.70	2.00	2.75			

De donde se selecciona el valor 1.25 con una fuente de potencia uniforme y una máquina impulsada de choque ligero; se reemplaza los valores obtenidos en la ecuación (3.53):

$$W_t = \frac{372.85 \times 1.25}{0.044} = 14829.26 \, N$$

Para calcular el módulo (m) el número de dientes debe ser mínimo de 14 para evitar interferencia, tal que;

$$m = \frac{D_p}{\text{# de dientes}} \tag{3.54}$$

Reemplazando los valores en la ecuación (3.54), se tiene:

$$m = \frac{84}{14} = 6$$

Siendo este resultado el módulo más grande que se le puede dar.

Se debe especificar el ancho de cara (F) dentro del intervalo recomendado para engranes de transmisión en maquinaria en general:

$$\frac{8}{P_d} < F < \frac{16}{P_d} \tag{3.55}$$

En donde P_d (paso diametral) es igual a:

$$P_{\rm d} = \frac{25.4}{\rm m} \tag{3.56}$$

El límite superior de la inecuación (3.55) tiende a minimizar los problemas de alineamiento y a asegurar que haya una carga razonablemente uniforme en toda la cara.

Cuando el ancho de cara es menor que el límite inferior, es probable que se pueda tener un diseño más compacto con un paso diferente. Además, el ancho normal de la cara es menor que el doble de diámetro de paso del engrane.

Tomando el límite superior de la inecuación (3.55) y simplificando esta inecuación por lo obtenido en la ecuación (3.56), se tiene:

$$F = 16 m \tag{3.57}$$

F = 16(6) = 96 mm

Con este valor haciendo referencia que el ancho normal de la cara es menor que el doble de diámetro de paso del engrane, se tiene:

$$\frac{F}{D_p} \le 2 \tag{3.58}$$

$$\frac{96}{84} \le 2$$

$$1.14 \le 2$$

Los valores obtenidos si cumplen con lo señalado anteriormente.

Además de esto, se debe escoger el coeficiente elástico C_p , de la tabla 3.3, tal que:

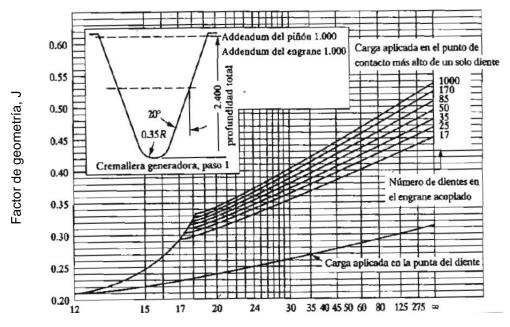
$$C_p = 191 MPa$$

Naturalmente, el sistema no debe fabricarse con mayor precisión que la necesaria, debido al costo.

Por esta razón, los fabricantes han recomendado números de calidad (Q_v) , que dan como resultado un funcionamiento satisfactorio con un costo razonable, en gran variedad de aplicaciones. La tabla 3.4 es una lista de estas recomendaciones.

Tabla 3.3	Coeficiente e	lástico, C _r)					
			Mate	rial y módu	ılo de elast	ticidad		
	E _g , lb/pulg² (MPa), del engrane							
Material	Módulo de	Acero	Hierro maleable	Hierro	Hierro colado	Bronce de aluminio 17.5 x	Bronce de estaño	
del piñón	elasticidad, E _p , lb/pulg ²	30 x 10 ⁶	25×10^6	24 x 10 ⁶	22 x 10 ⁶	10 ⁶	16 x 10 ⁶	
·	(MPa)	$(2x10^5)$	$(1.7x10^5)$	$(1.7x10^5)$	(1.5x10 ⁵)	(1.2x10 ⁵)	$(1.1x10^5)$	
Acero	30×10^6	2300	2180	2160	2100	1950	1900	
	(2×10^5)	(191)	(181)	(179)	(174)	(162)	(158)	
Hierro	25 v 10 ⁶	2400	2000	2070	2020	1000	1050	
maleable	25 x 10 ⁶	2180	2090	2070	2020	1900	1850	
Hierro	(1.7×10^5)	(181)	(174)	(172)	(168)	(158)	(154)	
modular	24 x 10 ⁶	2160	2070	2050	200	1880	1830	
Hierro	(1.7×10^5)	(179)	(172)	(170)	(166)	(156)	(152)	
colado	22 x 10 ⁶	2100	2020	2000	1960	1850	1800	
	(1.5×10^5)	(174)	(168)	(166)	(163)	(154)	(149)	
Bronce de aluminio	17.5 x 10 ⁶	1950	1900	1880	1850	1750	1700	
G. G	(1.2×10^5)	(162)	(158)	(156)	(154)	(145)	(141)	
Bronce de estaño	16 x 10 ⁶	1900	1850	1830	1800	1700	1650	
	(4.4.405)	(450)	(454)	(450)	(4.40)	(4.44)	(407)	

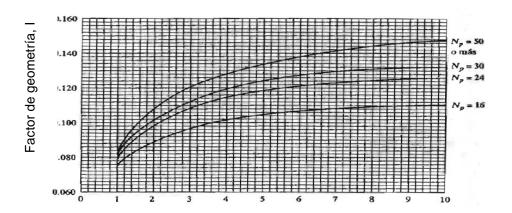
 (1.1×10^5) (158) (154) (152) (149) (141) (13) Fuente: Tomado de la norma AGMA 2001-C95: Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Tear.


Nota: Relación de Poisson = 0.30 unidades de C_p , $(lb/pulg^2)^{0.5}$ o $(MPa)^{0.5}$

De lo que con el resultado obtenido por la velocidad de la línea de paso 0.044~m/s se selecciona el número de calidad $Q_v = 6$.

Tabla 3.4	Números de	calidad AGMA recomend	ados
	Número de		Número de
Aplicación	calidad	Aplicación	calidad
Accionamiento de tambo	or		
mezclado de cemento	3-5	Taladro pequeño	7-9
Horno de cemento	5-6	Lavadora de ropa	8-10
Impulsores de			
laminadoras de acero	5-6	Prensa de impresión	9-11
		Mecanismo de	
Cosechadora de granos	5-7	cómputo	10-11
Grúas	5-7	Transmisión automotriz	10-11
		Accionamiento de	
Prensas de punzado	5-7	antena de radar	10-12
		Accionamiento de	
Transportador de mina	6-8	propulsión marina	10-12
Máquina para fabricar		Accionamiento de	
cajas de papel	6-8	motor de avión	10-13
Mecanismo de			
medidores de gas	7-9	Giroscopio	12-14
Accionamientos de máq	uinas herrami	entas y de otros sistemas	mecánicos
de alta calidad			
Velocidad de la línea de			
paso	Número de	Velocidad de la línea de l	paso
(pies/min)	calidad	(m/s)	
0-800	6-8	0-4	
800-2000	8-10	4-11	
2000-4000	10-12	11-22	
Más de 4000	12-14	Más de 22	

Para continuar con el diseño de engranes es necesarios involucrar a los factores, tales como:


Factor de geometría para flexión (J), que se lo obtiene de la figura 3.12.

Número de dientes para el cual se desea el factor de geometría: Engrane recto 20º, addendum normal.

Figura 3.12 Factor de geometría J.

En donde para un engrane con 14 dientes el factor de geometría para flexión es J = 0.25. El factor de geometría para picadura (I), se lo obtiene de la figura 3.13.

Relación de engranes. Ángulo de presión 20°, profundidad completa (addendum normal = 1/P_d

Figura 3.13 Factor de geometría I para engranes rectos.

El factor de distribución de carga K_m , es uno de los factores más difíciles de especificar, éste se obtiene a partir de la ecuación (3.59):

$$K_m = 1.0 + C_{pf} + C_{ma} (3.59)$$

Donde C_{pf} = factor de proporción del engrane (ver figura 3.14)

C_{ma}= factor por alineamiento de engranado (ver figura 3.15)

$$C_{pf} = 0.1$$

$$C_{ma}=0.264\,$$

Reemplazando en la ecuación (3.59):

$$K_m = 1.0 + 0.1 + 0.264 = 1.364$$

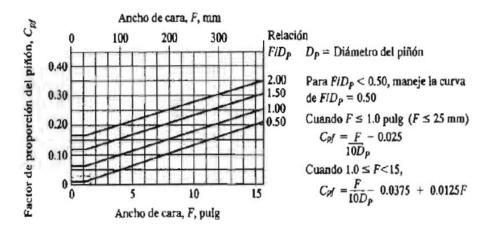


Figura 3.14 Factor de proporción del engrane, C_{pf}.

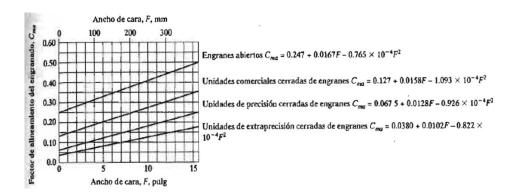


Figura 3.15 Factor de alineamiento del engranado, C_{ma}.

Para el factor de tamaño K_s, la AGMA indica que se puede suponer el factor de tamaño como 1.00 para la mayoría de los engranes. Pero para engranes con dientes grandes o grandes anchos de caras, se recomienda manejar un valor mayor que 1. Para dientes más grandes se pueden manejar los valores de referencia de la tabla 3.5

Tabla 3.5 Factores de tam	año sugeridos, K _s	
Paso diametral,	Módulo métrico,	Factor de tamaño,
P_d	m	K _s
≥5	≤5	1.00
4	6	1.05
3	8	1.15
2	12	1.25
1.25	20	1.40

Tal que con un módulo métrico 6 que es el módulo más grande que se le puede dar al sistema, el factor de $K_s = 1.05$.

El factor de espesor de orilla K_B , indica que si la orilla del engrane es muy delgada, se puede deformar, y causa que el punto de

esfuerzo máximo se mueva, desde el área del chaflán del diente basta un punto interior a la orilla.

Para estimar la influencia del espesor de la orilla, se puede emplear la figura 3.16. El parámetro geométrico principal se llama relación de respaldo m_B, tal que para m_B>1.2, la orilla es bastante fuerte para soportar al diente. También el factor K_B se puede usar cerca de un cuñero, donde existe poco espesor de metal entre la parte superior del cuñero y la parte inferior del espacio entre dientes.

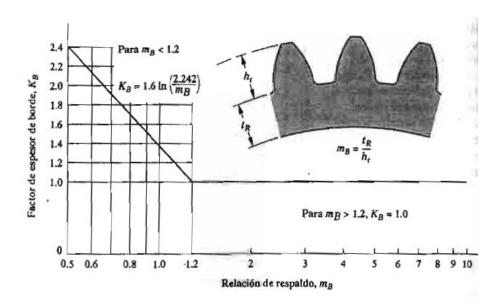


Figura 3.16 Factor de espesor de borde, K_B.

Con m_B = 1, se tiene un factor de espesor de borde K_B = 1.4.

El factor dinámico K_{ν} , considera que la carga es resistida por un diente, con cierto grado de impacto, y que la carga real sobre el

diente es mayor que la carga transmitida sola. El valor de K_{ν} depende de la exactitud del perfil del diente, sus propiedades elásticas y la velocidad con la cual se ponen en contacto los dientes.

La figura 3.17 muestra la gráfica de valores de K_{ν} recomendada por AGMA.

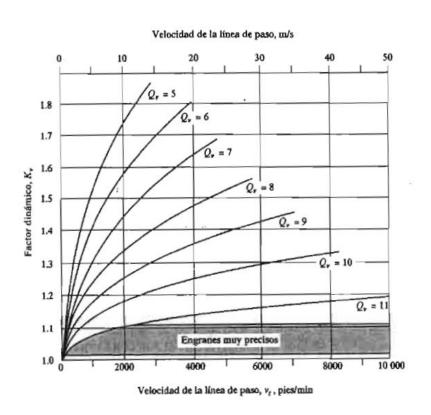


Figura 3.17 Factor de dinámico, K_v.

Tal que con una velocidad de la línea de paso de 0.044 m/s y con un número de calidad $Q_v = 6$, se tiene un factor dinámico $K_v = 1$.

Para el valor del factor de relación de durezas C_H , se recomienda empelar un valor de C_H = 1.00.

La tabla 3.6, presenta datos que ajustan a la confiabilidad de diseño que se desee. El valor del factor de confiabilidad $K_R=1.00\,$

Tabla 3.6 Factor de confiabilidad,	K_R
Confiabilidad	K_R
0.90, una falla en 10	0.85
0.99, una falla en 100	1.00
0.999, una falla en 1000	1.25
0.9999, una falla en 10000	1.50

La vida de diseño del engrane (DL) se considera de unas 3000 horas, según la figura 3.18.

Aplicación	Vida de diseño (h)
Electrodomésticos	1000-2000
Motores de avión	1000-4000
Automotriz	1500-5000
Equipo agrícola	3000-6000
Elevadores, ventiladores industriales, transmisione de usos múltiples	es 8000-15 000
Motores eléctricos, sopladores industriales,	
maquinaria industrial en general	20 000-30 000
Bombas y compresores	40 000-60 000
Equipo crítico en funcionamiento continuo	
durante 24 h	100 000-200 000

Handbook for Mechanical Engineers, 9º edición. Nueva York: McGraw-Hill, 1986
Figura 3.18 Vida de diseño recomendada.

Fuente: Eugene A. Avallone y Theodore Baumeister III, editores. Marks' Standard

El cálculo del número de ciclos de carga esperado se puede efectuar mediante:

$$N_c = 60 * DL * n * q (3.60)$$

Donde N_c = número de ciclos de carga esperado

DL = vida de diseño, en horas

n = velocidad de giro del engrane, en rpm

q = número de aplicaciones de carga por revolución

Reemplazando valores se tiene:

$$N_c = 60 * 3000 * 10 * 1 = 1.8 * 10^6$$

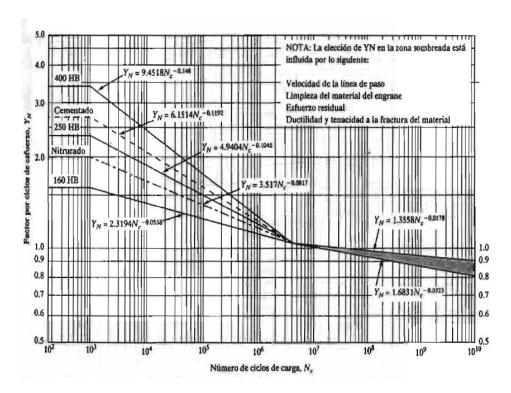


Figura 3.19 Factor de resistencia flexionante por ciclos de esfuerzo, Y_N .

Con este valor del número de ciclos de carga esperado N_C , y en base a la nota que se encuentra en la figura 3.19, se determina el factor por ciclos de esfuerzo Y_N , tal que:

$$Y_N = 6.1514 * N_c^{-0.1192}$$
 (3.61)
 $Y_N = 6.1514 * (1.8 * 10^6)^{-0.1192} = 1.10$

El factor de resistencia a la picadura por número de ciclos de esfuerzo Z_N , se lo obtiene a partir de la figura 3.20.

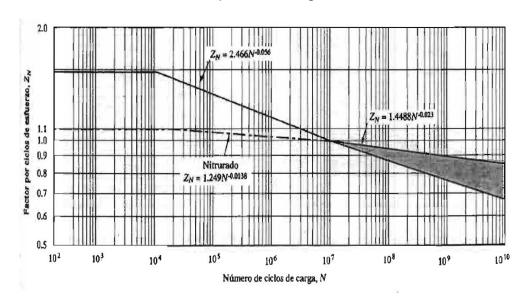


Figura 3.20 Factor de resistencia a la picadura por número de ciclos de esfuerzo, $Z_{\rm N}$.

Tal que;

$$Z_N = 2.466 * N^{-0.056}$$
 (3.62)
 $Z_N = 2.466 * (1.8 * 10^6)^{-0.056} = 1.10$

Una vez obtenido estos valores, se determina el número de esfuerzo flexionante S_{t} , tal que:

$$S_t = \frac{W_t}{FmI} K_o K_s K_m K_B K_V \tag{3.63}$$

Donde K_o = factor de sobrecarga para resistencia flexionante

K_s = factor de tamaño para la resistencia flexionante

K_m = factor de distribución de carga para la resistencia flexionante

K_B = factor de espesor de orilla

K_V = factor dinámico para la resistencia flexionante

Reemplazando todos los valores de los coeficientes en la ecuación (3.63), se tiene:

$$S_t = \frac{_{14829.26}}{_{(96*6*0.25)}} * 1.25 * 1.05 * 1.364 * 1.4 * 1 = 258.10 \ MPa$$

Además, se determina el número de esfuerzo de contacto:

$$S_c = C_p \sqrt{\frac{W_t K_o K_S K_m K_V}{F D_p I}} \tag{3.64}$$

Anteriormente, se ha calculado los respectivos coeficientes del número de esfuerzo de contacto, reemplazando estos valores, se tiene:

$$S_c = 191 * 10^6 \sqrt{\frac{_{14829.26*1.25*1.05*1.364*1}}{_{96*84*0.075}}} = 1265.44 \, MPa$$

Con estos valores obtenidos, se realiza el análisis de flexión y de contacto admisible (picadura), tal que:

Análisis de flexión

$$S_{at} \geq 258.1*10^6 \left(\frac{1*1}{1.1}\right) = 235 \; MPa \; (34.1 \; ksi) \; ; \; S_{at} = requerido$$

Análisis de contacto admisible

$$S_{ac} \ge 1265.44*10^6 \left(\frac{1*1}{1.1}\right) = 1150.4 \, MPa \, (167 \, ksi); \, S_{at} = requerido$$

Con estos valores y de la figura 3.21 y 3.22 se escoge el grado de dureza de la superficie, el cual nos da un engrane de acero templado de grado 1.

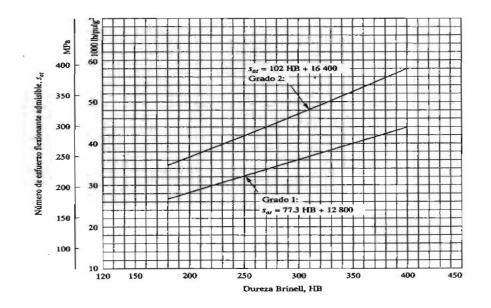


Figura 3.21 Número de esfuerzo flexionante admisible, S_{at} para engranes de acero templado total.

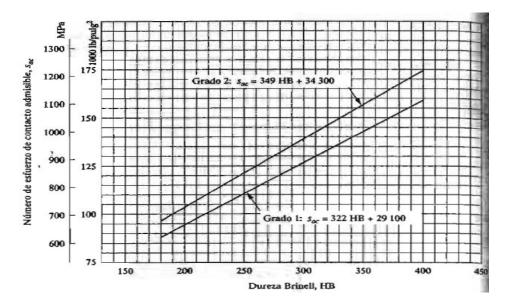


Figura 3.22 Número de esfuerzo de contacto admisible, S_{ac}, para engranes de acero templado total.

Con lo obtenido de la figura 3.21 y de la figura 3.22, ayuda a obtener el material que va a resistir en flexión y a la picadura que se muestra en la figura 3.23, el cual da un engrane cementado y templado don dureza en la superficie 55-64 HRC de grado 1. El límite de flexión de este material es de 379.03 MPa (55 ksi) y en picadura 1240.5 MPa (180 ksi), lo que quiere decir que los cálculos realizados si están dentro de los límites de este material seleccionado.

		mero de esfue nte admisible		Número de esfuerzo de contacto admisible, s_{ac} (ksi)			
Dureza en la superficie	Grado 1	Grado 2	'Grado 3	Grado I	Grado 2	Grado 3	
Templado por llan	na o por induc	ción:					
50 HRC	45	55		170	190		
54 HRC	45	55		175	195		
Cementado y temp	plado						
55-64 HRC	55			180			
58-64 HRC	55	65	75	180	225	275	
Aceros templados	totales y nitru	rados:					
83.5 HR15N	v	ea la figura 9-	14	150	163	175	
84.5 HR15N	v	ea la figura 9-	-14	155	168	180	
Nitrurados, nitrall	oy 135M:*						
87.5 HR15N	v	ea la figura 9-	-15				
90.0 HR 15N	v	ea la figura 9-	-15	170	183	195	
Nitrurados, nitrall	loy N:3						
87.5 HR15N	V	ea la figura 9.	-15				
90.0 HR15N	V	ea la figura 9-	-15	172	188	205	
Nitrurados, 2.5%	de cromo (sin	aluminio)					
87.5 HR15N	V	ea la figura 9-	-15	155	172	189	
90.0 HR15N	V	ea la figura 9	-15	176	196	216	

Fuente: Tomado de la norma AGMA 2001-C95: Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth, con autorización del editor, American Gear Manufacturers Association, 1500 King Street, Suite 201, Alexandria, VA 22314.

Figura 3.23 Números de esfuerzo admisibles para materiales de engranes de acero templado.

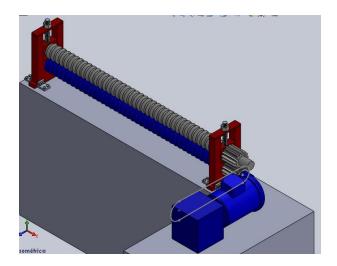


Figura 3.24 Sistema de transmisión de potencia para cadenapiñones

3.3.5. ESTRUCTURA

La estructura para los rodillos representa más bien un sistema de apoyo que se encuentra formado por dos soportes y cajas en donde se encuentran los cojinetes de bolas que soportan a los rodillos conformadores, estos soportes serán diseñados asumiendo las dimensiones, para luego comprobar la seguridad del mismo.

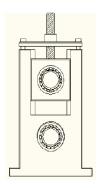


Figura 3.25 Estructura del sistema de rodillos.

El dimensionamiento es el siguiente:

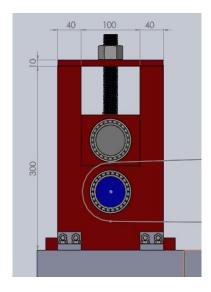


Figura 3.26 Sistema de apoyo y separación entre ejes.

Las secciones transversales con sus respectivos momentos de inercia son los siguientes:

Placa superior:

$$A_1 = 10mm * 40mm$$

$$I_1 = 53333.33 \text{mm}^4$$

Postes:

$$A_2 = 40mm * 40mm$$

$$I_2 = 213333.33 \text{ mm}^4$$

Se determina los momentos flectores que soportan los postes, teniendo en cuenta una fuerza actuante de F_D = 5916.94 Nm.

Realizando una modificación de la ecuación diferencial de la línea elástica [4], se tiene en la sección un ángulo de giro $\theta = 0$, tal que:

$$\theta = \int \frac{Mx}{EIx} \frac{\delta Mx}{\delta M_1} dx = 0 \tag{3.53}$$

De lo que se tiene:

$$Mx = \frac{F_D}{2} * y - M_1$$

$$\frac{\delta Mx}{\delta M_1} = -1$$
(3.54)

Reemplazando la ecuación (3.54) en la ecuación (3.53) se tiene:

$$\int \left(\frac{F_D}{2} * y - M_1\right) \frac{\delta x}{I_X} = 0$$

$$M_1 = \frac{F_D}{2} * \left[\frac{\int y * \frac{dx}{Ix}}{\int \frac{dx}{Ix}} \right]$$
 (3.55)

Para los postes se tiene que: $y = l_1/2$ y para la placa superior y = x, en donde:

$$M_{1} = \frac{F_{D}}{2} * \frac{\frac{1}{I_{1}} \int_{0}^{l_{1}/2} x dx + \frac{1}{I_{2}} \int_{0}^{l_{2}l_{1}} dx}{\frac{1}{I_{1}} \int_{0}^{l_{1}/2} dx + \frac{1}{I_{2}} \int_{0}^{l_{2}} dx}$$
(3.56)

Entonces:

$$M_1 = \frac{F_D*l_1}{4}*\frac{\frac{l_1}{4l_1} + \frac{l_2}{l_2}}{\frac{l_1}{2l_1} + \frac{l_2}{l_2}} = \frac{5916.94*180}{4}*\frac{\frac{180}{4*5333333} + \frac{310}{213333333}}{\frac{180}{2*5333333} + \frac{310}{21333333333333}}$$

$$M_1 = 194.73 \ Nm$$

$$M_2 = \frac{F_D * l_1}{4} - M_1 \tag{3.57}$$

$$M_2 = 71.53 Nm$$

Con estos datos se calculan los esfuerzos.

Placa superior

$$\sigma_{CPa} = -\frac{M_1 * c}{I_1} \quad (compresión) \tag{3.58}$$

$$\sigma_{TPa} = \frac{M_1 * c}{I_1} \quad (tracción) \tag{3.59}$$

Postes

$$\sigma_{CP} = \frac{F_D}{2A_2} - \frac{M_2 * C_1}{I_2} \quad (compresión)$$
 (3.60)

$$\sigma_{TP} = \frac{F_D}{2A_2} + \frac{M_2 * C_2}{I_2} \quad (tracción)$$
 (3.61)

Para calcular el desplazamiento del eje neutro en los postes se hace las siguientes semejanzas a partir del siguiente triángulo:

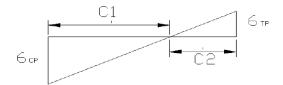


Figura 3.27 Diagrama de esfuerzos

De lo que se tiene:

$$C_1 + C_2 = 40 \ mm \tag{3.62}$$

$$\frac{\sigma_{TP}}{\sigma_{CP}} = \frac{C_1}{C_2} \tag{3.63}$$

$$\frac{\frac{F_D}{2A_2} + \frac{M_2 \cdot C_1}{I_2}}{\frac{F_D}{2A_2} - \frac{M_2 \cdot C_2}{I_2}} = \frac{1.85 + 0.3352C_1}{1.85 - 0.3352C_2} = \frac{C_1}{C_2}$$
(3.64)

$$\frac{1.85 + 0.3352C_1}{1.85 - 0.3352(40 - C_1)} = \frac{C_1}{40 - C_1} \tag{3.65}$$

$$C_1 = 37.41 \, mm$$

Los esfuerzos máximos son:

Para la placa superior se utiliza la ecuación (3.59):

$$\sigma_{PAmax} = \frac{M_1 * c}{I_1} = \frac{194730 * 20}{53333.33}$$

$$\sigma_{PAmax} = 42.22 MPa$$

Para el poste se utiliza la ecuación (3.61):

$$\sigma_{Pmax} = \frac{F_D}{2A_2} + \frac{M_2 \cdot C_1}{I_2} = \frac{5916.94}{2 \cdot 1600} + \frac{71530 \cdot 37.41}{213333.33}$$

$$\sigma_{Pmax} = 14.39 MPa$$

Estos soportes serán construidos de hierro fundido, siendo $Sy = 100.062 \, MPa$, entonces el factor de seguridad será:

$$n_{s} = \frac{sy}{\sigma_{max}}$$

$$n_{s} = \frac{100.062*10^{6}}{42.22*10^{6}} = 2.37$$
(3.66)

Con este factor de seguridad se tiene una confiabilidad suficiente para los soportes.

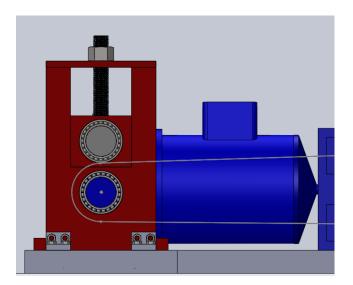


Figura 3.28 Soporte de apoyo y separación entre rodillos.

3.4. Diagrama de GANNT sugerido

Se presentará un diagrama de Gannt u organigrama en el que se presentará el tiempo necesario para la entrega del material y el pedido de la pre-fabricación de materiales, y el ensamble de la máquina hasta dejarla cien por ciento completa, como se puede observar en la tabla 3.7.

En esta figura se puede apreciar el tiempo que demora en ensamblar la maquinaria. Este tiempo considerado es por maquinaria. El día laboral es considerado como 8 horas diarias, es decir una jornada diaria. Estos datos son considerados a partir de un taller de proceso de mecanizado general en el cual el 96.7% de las piezas son elaboradas en este lugar. El tiempo estimado desde la recepción del material hasta la entrega de la maquinaria en su 100% operable es de 19 días.

Tabla 3.7 Diagrama de Gannt para la construcción de las maquinarias conformadoras.

	0	Nombre de tarea	Duration	Start	Finish	Predecesso	Res		an '12 1 T W T F	29 Jan 112 S S M T W T	05 Feb 112 F S S M T W T	12 Feb 12 F S S M T W T F
1		□ Diseño de Maquinaria rodillos conformadores con diente de sierra	19 days	Fri 20/01/12	Wed 15/02/12							
2	1	Entrega de Material	0 days	Sat 28/01/12	Sat 28/01/12				(28/01		
3		Pedido de pre-fabricación de materiales	0 days	Fri 20/01/12	Fri 20/01/12			♦ 20/01	$\overline{}$			
4	ī	Entrega de materiales pre-fabricados	0 days	Thu 26/01/12	Thu 26/01/12	3			26/0	4		
5		☐ Montaje del Sistema	12 days	Mon 30/01/12	Tue 14/02/12	4)		
6		⊞ Montaje estructura lado izquierdo	2 days	Mon 30/01/12	Tue 31/01/12	4				•		
9		Montaje rodillo inferior	1 day	Wed 01/02/12	Wed 01/02/12	6				<u> </u>		
10		⊞ Montaje estructura lado derecho	2 days	Thu 02/02/12	Fri 03/02/12	9				Ų.		
13		Montaje rodillo superior	1 day	Mon 06/02/12	Mon 06/02/12	10					<u> </u>	
14		Montaje de cajas	1 day	Tue 07/02/12	Tue 07/02/12	13					a	
15		Montaje de tornillos de regulación	1 day	Wed 08/02/12	Wed 08/02/12	14					<u> </u>	
16		Montaje de rodamientos	1 day	Thu 09/02/12	Thu 09/02/12	15					ă	
17		☐ Montaje Sistema de Transmisión de Potencia	3 days	Fri 10/02/12	Tue 14/02/12	16,2					Ţ	
18		Montaje de engranes en extremo derecho de rodillos conformadores	1 day	Fri 10/02/12	Fri 10/02/12	2						
19		Montaje de piñoñes y cadena	1 day	Mon 13/02/12	Mon 13/02/12	2,18						
20		Montaje de motoreductor y variador	1 day	Tue 14/02/12	Tue 14/02/12	2,19						*
21		Calibración y puesta a punto	1 day	Wed 15/02/12	Wed 15/02/12	20						Ď
							_					100000000000000000000000000000000000000

CAPÍTULO 4

4. ANÁLISIS DE COSTOS

Una vez hecho el diseño y el tiempo estimado en la elaboración de este sistema, se procede a estimar costos tanto de los materiales utilizados para la construcción del mismo y la mano de obra empleada con sus horas-hombres necesarias para construir y poner a punto todo el sistema.

4.1 Costos de Materiales

Se presentará en detalle todos los materiales usados en el diseño de ambas maquinarias con su respectivo costo en la siguiente tabla 4.1

ITEM	UNIDAD	CANTIDAD	DESCRIPCIÓN	PRECIO UND	TOTAL
1	Kg	44,4	Estructura para soporte de todos los componentes	\$ 31,53	\$ 1400,00
2	Und	2	Motoreductores 1/2 HP, Frame 56 C, 1800 rpm de entrada, 70 rpm de salida, trifásico	\$ 838,35	\$ 1676,70
3	Und	8	Rodamiento de bolas #6810 para eje de 50mm	\$ 110,00	\$ 880,00
4	Und	2	Variadores de velocidad	\$ 410,50	\$ 821,00
5	Und	2	Piñones para cadena 80, tipo A, 15 dientes	\$ 12,80	\$ 25,60
6	Und	2	Piñones para cadena 80, tipo A, 40 dientes	\$ 30,20	\$ 60,40
7	Kg	335,4	Ejes de transmisión acero SAE 1018 de = 95mm L = 1500mm	\$2,51	\$ 841,85
8	ft	50	Cadena Simple No.80	\$ 2,75	\$ 137,50
9	Und	48	Pernos M8 x 40mm, tuercas, anillos de presión	\$ 2,25	\$ 108,00
10	Und	4	Tornillos de regulación de potencia M24 x 136mm	\$ 7,75	\$ 31,00
11	Und	8	Platinas inmovilizadoras acero A-36	\$3,37	\$26,96

12	Und	1	Prefabricación de materiales varios	\$ 1.500,00	\$ 1.500,00
	TOTAL MATE	RIALES			\$ 7.509,01

Tabla 4.1 Costos de materiales de los sistemas de conformado metálico.

4.2 Costos de Mano de Obra

Con estos costos de los materiales a usarse para ambas maquinarias, se presenta en la siguiente tabla 4.2 los costos tanto de la mano de obra, el diseño y el valor total del sistema.

TOTAL COSTO MATERIALES		\$ 7.509,01
COSTO DEL DISEÑO DEL SISTEMA		\$ 2.000,00
COSTO DE MANO DE OBRA		\$ 1.300,00
MARGEN GANANCIA 20%		\$ 2.161,80
IMPREVISTOS 5%		\$540,45
	GRAN TOTAL	\$ 13,511.26
	PRECIO INDIVIDUAL	\$ 6.755,63

Tabla 4.2 Costo total de las maquinarias para conformado metálico.

CAPÍTULO 5

5. CONCLUSIONES Y RECOMENDACIONES.

5.1. Conclusiones

La aplicación del presente trabajo en la industria metalmecánica permitirá diseñar un eficiente y económico sistema de conformado mecánico de placas de acero, con espesores desde 0,5 mm hasta 1 mm, lo cual permitirá la fabricación local de placas térmicas de calentadores de aire regenerativos tipo Ljungström, para plantas de vapor.

En lo que respecta a la ingeniería de la máquina de conformado de placas, la selección de equipos para la operación de la máquina tiene un factor crítico: la selección del motor eléctrico. Ésta debe realizarse en base al torque que debe vencer el motor para poder deformar la placa de acero a través de los rodillos de conformado. Para controlar las variables del giro del motor (torque y velocidad angular), se implementó un variador de velocidad del motor por motivos de costos y espacio físico, al reducirse la necesidad de costosos sistemas de reducción por engranajes o mecanismos de poleas y bandas. Todo lo anterior permite utilizar el mismo criterio de diseño para máquinas de

conformado de cualquier tipo de placas inclusive de mayores espesores y de diferentes materiales.

Esta tesis aporta al desarrollo de la industria metalmecánica del país al demostrarse que es posible construir máquinas simples con aplicaciones importantes. Esto permite reducir la dependencia en las importaciones de placas térmicas e inclusive máquinas de conformado, ahorrando costos de producción, tiempos de fabricación y permitiendo mayor agilidad de respuesta ante los desafíos de la industria, lo cual se traduce en alta competitividad y capacidad de generar trabajo.

5.2. Recomendaciones

Se recomienda mantener el paralelismo del rodillo superior con respecto al rodillo inferior para evitar vibraciones o excentricidades en el movimiento de los mismos. Para controlar esta variable, es necesario que el ajuste mecánico entre los rodillos, cojinetes y carcasa sea verificado correctamente.

Por la forma de operar la máquina, las dimensiones y la ubicación de los elementos a ser maniobrados, deberán adaptarse al operador de manera que la operación pueda darse de forma segura.

APENDICES

APENDICE A

TABLA ESPECIFICACIÓN ACERO ASTM A-36

ASTM: American Society for Testing Materials (Sociedad Estadounidense Para Prueba de Materiales)

ASTM A-36
El numero 36 que es la resistencia mínima, significa 36 kilo libras por pulgadas cuadradas (36,000 libras por pulgada cuadradas)

COMPOSICIÓN QUÍMICA Y PROPIEDADES MECÁNICAS DEL ACERO ASTM A-36

COMPONENTE	С	Cu	Fe	Mn	Р	S
%	0.26	0.2	99	0.75	Máx. 0.04	Máx. 0.05

PROPIEDADES FÍSICAS	Métrico	Ingles	Comentario		
Densidad	7.85 kg/ dm ³	0.284 lb/in ³			
PROPIEDADES MECÁNICAS					
Fuerza tensión, última	400 - 550 MPa	58000 - 79800 psi			
Fuerza tensión, rendimiento	250 MPa	36300 psi			
Alargamiento	20 %	20 %	en 200 mm		
Módulo de Elasticidad	200 GPa	29000 ksi			
Fuerza compresión,	152 MPa	22000 psi	Fuerza de compresión aceptable		

Calidad	Norma	Limite de Fluencia (N/mm²)	Resistencia a la Tracción (Kg/cm²)	Alargamiento (%)	Doblado a 180°
Estructural	ASTM-A36	290	4080-5610	20	Sin fisura (**)

(**) El ensayo de doblado es opcional y se realiza sobre la cara estirada.

Buena resistencia estructural, vigas soldadas, bases columnas, variedad de aplicaciones para fines de ingeniería.

APENDICE B

5AE 1018 Eje de transmisión - Tolerancias h10-h11

GENERALIDADES: Acero de bajo contenido de carbono.

· ANÁLISIS TÍPICO %

	0	Mn	P	5
SAE 1018	0.15-0.20	0.60-0.90	0.040	0.050

PROPIEDADES MECÁNICAS

Suministrado laminado en frío (medidas pequeñas hasta 2 1/2) o torneado (medidas hasta 6"). Las medidas 7",8",9" y 10" son suministradas laminadas en caliente o torneado de desbaste.

Propiedad: Laminado en Frío	
Esfuerzo de cedencia, kg/mm²	min.31
Resistencia a la tracción, kg/mm2	51-71
Elongación, A5	20%
Reducción de área, Z	57%
Dureza	163 HB

APLICACIONES

Donde se requiera aplicaciones con cargas mecánicas no muy severas, pero con ciertos grados de tenacidad importantes, como por ej.: pernos y tuercas, piezas de máquinas pequeñas, ejes, bujes, pasadores, grapas, etc. Factible de cementación con buena profundidad de penetración debido a su alto contenido de manganeso. Excelente soldabilidad.

MEDIDAS EN STOCK

REDONDO

	PESO		
PULGADAS	APROX.		
	kg/m		
1/4	0.28		
5/16	0.4		
3/8	0.6		
1/2	1.0		
5/8	1.6		
3/4	2.2		
7/8	3.0		
1	4.0		
1 1/8	5.0		
1 1/4	6.2		
1 3/8	7.5		
1 1/2	8.9		
1 3/4	12.2		
2	15.9		
2 1/4 /	20.1		
2 1/2	24.8		
2 3/4	30.0		
3	35.8		
3 1/4	42.0		
3 1/2	48.7		
3 3/4	55.9		
4	63.6		
4 1/2	80.5		
5	99.4		
5 1/2	120.2		
6	143.1		
7	197.0		
8	255.0		
9	328.5		
10	397.0		

APENDICE C

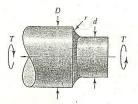
	k _a = aS _a	, LN(1, C)		
Acabado superficial	kpsi	a MPa	Ь	Coeficiente de variación, C
Esmerilado* Maquinado o laminado en frío Laminado en caliente Como sale de forja	1.34 2.67 14.5 39.8	1.58 4.45 56.1 271	-0.086 -0.265 -0.719 -0.995	0.120 0.058 0.110 0.145

^{*}Debido a la amplia dispersión en los datos de superficie esmerilado, una función alterna es $k_a = 0.878LN(1, 0.120)$. Nota: S_{ur} en kpsi o MPa.

APENDICE D

			, LN(1, C)			1
Modo de carga	kpsi	MPa	β.	c	Promedi k.	
Flexión	1	1	0	0	1	
Axial	1.23	1.43	-0.078	0.125	Q.85	
Torsión	0.328	0.258	0.125	0.125	0.59	

APENDICE E


Temperatura, °C	S _T /S _{RT}	Temperatura, °F	S,/Sar
20	1.000	70	1.000
50	1.010	100	1.008
100	1.020	200	1.020
150	1.025	300	1.024
200	1.020	400	1.018
250	1.000	500	0.995
300	0.975	600	0.963
350	0.943	700	0.927
400	0.900	800	0.872
450	0.843	900	0.797
500	0.768	1 000	0.698
550	0.672	1 100	0.567
600	0.549		-24

^{*} Fuente de datos: Fig. 5-11.

APENDICE F

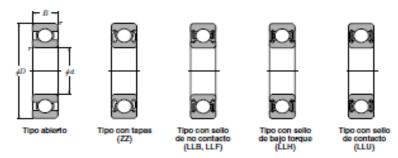
Figure E-15-8

The red and o con entalle en el lumbro en torsión, $\tau_0 = Tc/J$ donde d/2 y $J = \pi \sigma^4/32$.*

El factor de concentración de esfuerzo K_{ts} está relacionado con el esfuerzo principal máximo ordenado $(\sigma_1)_{máx} = K_{ts} \, \tau_0$ o bien con el esfuerzo von Mises $(\sigma')_{máx} = K_{ts} \, \sigma_0 = \sqrt{3} K_{ts} \, \tau_0$,

$$K_{ts} = 0.78 + 0.2 \left(\frac{D}{d}\right)^{-10} + \left(\frac{r}{d}\right)^{-0.46} \sqrt{\frac{0.002 - 0.125(D/d)^2 + 0.123(D/d)^4}{1 - 2.75(D/d)^2 + 2.55(D/d)^4}}$$

				r/d			
D/d	0.02	0.05	0.10	0.15	0.20	0.25	0.30
1.01	1.288	1.176	1.117	1.091	1.074	1.063	1.055
1.05	1.588	1.352	1.229	1.174	1.140	1.117	1.100
1.10	1.753	1.445	1.284	1.212	1.168	1.137	1.115
1.50	2.059	1.620	1.392	1.288	1.226	1.183	1.150
2.00	2.101	1.647	1.410	1.303	1.238	1.194	1.160
6.00	2.109	1.652	1.414	1.306	1.241	1.196	1.162


^{*} R. D. Rolovic, S. M. Tipton y J. R. Sorem, Jr., "Multiaxial Stress Concentration in Filleted Shafts", enviado a ASME Journal of Mechanical Design, marzo del 2000 (en revisión).

APENDICE G

Rodamientos Rígidos de Bolas

 $= 40 \sim 60 \text{mm}$

d 4	0~	60	mm														
Dir	mensio	nes p	rincipa	alos			distras de cargo distraira, está		•	Velocida	des limite	s	Núr	neros	de roc	lamier	tos
					Ulas II.a	wante	Unante visa	-		r.p	m.				000	con	con
		mm			R	N	kgf		grasa	acete					salo	salio	salio
d	D	В	Description of the last	THE .	C.	C _w	Cr Cu	. 6	ZZ LLB	Z LB	LLH	ш	aborto		de no contacto		
-	40	40	-	-	5.04	C/M	DF CH	, ,.	42 000	E LU	LLI	220		_	OUT FRANCIS	nor que	
40	52 62 68 68 90 90 110	7 12 9 15 18 23 27	0.3 0.6 0.3 1 1.1 1.5 2	0.3 0.5 0.5 0.5 0.5	5.10 12.2 12.6 16.8 29.1 40.5 63.5	4.40 8.90 9.65 11.5 17.8 24.0 38.5	520 444 1 240 91 1 290 98 1 710 1 17 2 970 1 82 4 150 2 45 6 500 3 75	0 15.8 5 16.0 0 15.2 0 14.0 0 13.2	12 000 11 000 10 000 10 000 8 700 7 800 7 000	14 000 13 000 12 000 12 000 10 000 9 200 8 200	7 300 6 700 6 400	6 700 6 300 — 6 100 5 600 5 300	6808 6908 16008 6008 6208 6308 6408	ZZ ZZ ZZ ZZ ZZ	LLB LLB LLB LLB		
45	58 68 75 75 85 100 120	7 12 10 16 19 25 29	0.3 0.6 0.6 1 1.1 1.5	0.3 0.5 0.5 0.5 0.5	5.35 13.1 12.9 21.0 32.5 53.0 77.0	4.95 10.4 10.5 15.1 20.4 32.0 45.0	550 50 1 330 1 08 1 320 1 07 2 140 1 54 3 350 2 08 5 400 3 25 7 850 4 60	0 16.1 0 16.2 0 15.3 0 14.1 0 13.1	11 000 9 800 9 200 9 200 7 800 7 000 6 300	12 000 12 000 11 000 11 000 9 200 8 200 7 400	6 500 6 200 5 600	5 900 5 600 5 400 5 200 4 700	6809 6909 16009 6009 6209 6309 6409	ZZ ZZ ZZ ZZ	LLB LLB LLB LLB	LLH LLH LLH	
50	65 72 80 80 90 110 130	7 12 10 16 20 27 31	0.8 0.6 1 1.1 2	0.3 0.5 0.5 0.5 0.5	6.60 13.4 13.2 21.8 35.0 62.0 83.0	6.10 11.2 11.3 16.6 23.2 38.5 49.5	670 62 1 370 1 14 1 350 1 15 2 230 1 60 3 600 2 37 6 300 3 90 8 450 5 05	0 16.3 0 16.4 0 15.5 0 14.4 0 13.2	9 600 8 900 8 400 8 400 7 100 6 400 5 700	11 000 11 000 9 800 9 800 8 300 7 500 6 700	6 000 5 700 5 000	5 300 5 100 5 000 4 700 4 200	6810 6910 16010 6010 6210 6310 6410	ZZ ZZ ZZ ZZ ZZ	LLB LLB LLB LLB LLB	LUH LUH LUH	
55	72 80 90 90 100 120 140	9 13 11 18 21 29 33	0.3 1 0.6 1.1 1.5 2 2.1	0.3 0.5 0.5 0.5 0.5	8.80 16.0 18.6 28.3 43.5 71.5 89.0	8.10 13.3 15.3 21.2 29.2 45.0 54.0	900 82 1 630 1 35 1 900 1 56 2 880 2 17 4 450 2 98 7 300 4 60 9 050 5 50	0 16.2 0 16.2 0 15.3 0 14.3 0 13.2	8 700 8 200 7 700 7 700 6 400 5 800 5 200	10 000 9 600 9 000 9 000 7 600 6 800 6 100	_ _ _ _	4 800 4 600 4 500 4 300 3 900	6811 6911 16011 6011 6211 6311 6411	ZZ ZZ - ZZ ZZ ZZ	LLB LLB LLB LLB	=	LLU LLU LLU LLU -
60	78 85 95 95 110 130 150	10 13 11 18 22 31 35	0.3 1 0.6 1.1 1.5 2.1 2.1	0.3 0.5 0.5 0.5 0.5	11.5 16.4 20.0 29.5 52.5 82.0 102	10.6 14.3 17.5 23.2 38.0 52.0 64.5	1 170 1 08 1 670 1 45 2 040 1 78 3 000 2 37 5 350 3 70 8 350 5 30 10 400 6 55	0 16.4 0 16.3 0 15.6 0 14.3 0 13.2	8 000 7 600 7 000 7 000 6 000 5 400 4 800	9 400 8 900 8 300 8 300 7 000 6 300 5 700	=	4 400 4 300 4 100 3 800 3 600	6812 6912 16012 6012 6212 6312 6412	ZZ ZZ ZZ ZZ ZZ	LLB LLB LLB LLB	=	TTD TTD TTD

Dimensión mínima permitida para el chaffán r.

APENDICE H

Tabla 8-1

Diámetros y áreas de roscas métricas de paso basto y fino: (Todas las dimensiones en milímetros) *

	Se	rie de paso ba	sto	5	erie de pasc	fino
Diámetro mayor nominal d	Paso P	Área de esfuerzo de tensión <i>A</i> ,	Área al diámetro menor A,	Paso P		Área o al diámetro A, menor A,
1.6	0.35	1.27	1.07	6 9		-
2	0.40	2.07	1.79			
2.5	0.45	3.39	2.98			
3	0.5	5.03	4.47			
3.5	0.6	6.78	6.00			
4	0.7	8.78	7.75			
5	0.8	14.2	12.7			
6	1	20.1	17.9			
8	1.25	36.6	32.8	1	39.2	36.0
10	-1.5	- 58.0	52.3	1.25	61.2	56.3
12	1.75	84.3	76.3	1.25	92.1	86.0
14	2	115	104	1.5	125	116
16	2	157	144	1.5	167	157
20	2.5	245	225	1.5	272	259
24	3	353	324	2	384	365
30	3.5	561	519	2	621	596
36	4	817	759	2	915	884
42	4.5	1 120	1 050	2	1 260	1 230
48	5	1 470	1 380	2	1 670	1 630
56	5.5	2 030	1910	2	2 300	2 250
64	6	2 680	2 520	2	3 030	2 980
72	6	3 460	3 280	2	3 860	3 800
80	6	4 340	4140	1.5	4 850	4 800
90	6	5 590	5 360	2	6 100	6 020
100	6	6 990	6 7 4 0	2	7 560	7 470
110				2	9 180	9 080

^{*} Los ecuaciones y los datos utilizados para elaborar esta tabla se obtuvieron de la norma ANSI B1.1-1974 y B18.3.1-1978. El diámetro menor se determinó mediante la ecuación $d_r = d - 1.226$ 869 p_r y el diámetro de paso a partir de $d_m = d - 0.649$ 519 p_r . La media del diámetro de paso y el diámetro menor se usaran para calcular el área de esfuerzo de tensión.

APENDICE I

Class A — Steady Load Service Factor — 1.0	Class B — Pulsating Load Service Factor — 1.3	Class C — Heavy Shock Load Service Factor — 1.7
Typical Examples are: Agitators — Liquid Conveyors — Uniformly loaded or fed — Apron, assembly, belt, flight, oven, and screw Fans Generators — Electrical Line Shafts — Light service Machines — All types with uniform nonreversing loads Pumps — Centrifugal, rotary, gear Screens — Rotary (Uniformly fed) Sewage Disposal Equipment — (Uniformly fed)	Typical examples are: Clay Working Machinery — Pug mills Conveyors — Heavily loaded, not uniformly fed — Apron, assembly, belt, bucket, flight, oven, and screw Dredges Elevators, Bucket — Centrifugal discharge, positive discharge, super-capacity, continuous Food Silcers, Dough Mixers, Meat Grinders Grinders and Shredders — (Not including crushers) Laundry — Washers, tumblers Line Shafts — Heavy service Machine Tools — Drives Machines — All types with moderate shock nonreversing loads Pumps — Reciprocating, vacuum	Typical examples are: Briquetting Machinery Conveyors — Reciprocating and shaker, crusher feeders Cranes and Hoists — Heavy-duty, including loggin lumbering, and rotary drilling rigs Dredges — Cutter-head drives, jig drives Dredge Pumps — Slush pumps Hammer Mills Machine Tools — Punch presses, shears, plate planers Machines — All types with servere impact shock loads and reversing service Metal Mills — Draw benches, forming machines, slitters, rolling mill drives, wire-drawing, or flattening Mills, Rotary Type — Ball, rod mills, tumbling mills

160 (26) 51/4

140 (21) 41/4

APENDICE J

SELECTION OF CHAIN DRIVES Rex A roller chain roller chain **ANSI ROLLER CHAIN** Table 2 - Chain Numbers and DriveR Sprockets **DESIGN HORSEPOWERA** R.P.M. 10 of DriveR 1/2 11/2 Chain No. Min. Teeth on DriveR Bore, In.* Min. Teeth on DriveR n. Teeth Min. Teeth on DriveR Teeth Min. Teeth on DriveR Teeth n. Teeth DriveR n. Teeth No. , u No. ". No. * No. No. In.* No. No. No. In.* Sprocket (Usually *: ". = Chain Chain Chain Bore, Chain Bore, Chain Chain Chain Ď Min. T Bore, Chain Min. Min. Min. no Smaller) 40 (20) 17/8 40 (15) 11/4 35 (15) 35 (15) 35 (18) 13/4 35 (22) 13/8 41 (15) 15/16 41 (15) 15/16 1700-2000 41 (15) 15/16 35 (22) 1% 40 (15) 11/4 40 (17) 17/16 40 (22) 17/8 41 (15) 15/16 41 (15) 15/16 41 (15) 15/16 35 (15) 7/8 35 (16) 15/16 1400-1699 40 (15) 11/4 40 (20) 11/8 50 (15) 11/2 41 (19) 13/4 41 (22) 2 41 (15) 15/16 41 (15) 15/16 41 (15) 15/16 1150-1399 41 (15) 15/16 50 (15) 11/2 50 (16) 13/4 40 (17) 17/16 41 (15) 15/16 41 (15) 15/16 41 (15) 15/16 41 (21) 17/8 40 (15) 11/4 (15) 15/16 41 950-1149 50 (15) 11/2 50 (19) 2 40 (19) 13/4 41 (22) 2 40 (16) 13/8 41 (15) 15/16 41 (15) 15/16 41 (15) 15/16 800-949 41 (15) 15/16 40 (22) 17/8 50 (17) 11/8 50 (22) 2 41 (15) 15/16 41 (17) 11/2 40 (15) 11/4 40 (18) 11/2 650-799 41 (15) 15/16 41 (15) 15/16 60 (17) 21/4 41 (16) 1% 41 (20) 17/8 40 (17) 17/16 40 (21) 17/8 50 (15) 11/2 50 (20) 2 41 (15) 15/16 41 (15) 15/16 525-649 50 (17) 11/8 60 (15) 17/8 60 (20) 25/8 50 (15) 11/2 41 (15) 15/16 41 (15) 15/16 41 (19) 13/4 40 (15) 11/4 40 (20) 17/8 425-524 50 (16) 13/4 50 (19) 2 60 (17) 21/4 60 (23) 23/4 40 (15) 11/4 40 (22) 17/8 41 (20) 17/8 41 (15) 15/16 41 (15) 15/16 375-424 80 (15) 21/2 50 (21) 2 60 (19) 23/8 41 (16) 13% 40 (15) 11/4 40 (17) 17/16 50 (15) 11/2 50 (17) 17/8 41 (15) 15/16 325-374 60 (15) 11/8 60 (22) 23/4 80 (15) 21/2 50 (20) 2 50 (15) 11/2 41 (15) 15/16 41 (18) 1% 40 (15) 11/4 40 (19) 13/4 275-324 50 (18) 17/8 60 (15) 11/8 60 (18) 23/8 80 (15) 21/2 80 (15) 21/2 41 (15) 15/16 41 (22) 2 40 (17) 17/16 40 (22) 11/8 225-274 60 (21) 23/4 80 (15) 21/2 80 (18) 23/4 50 (15) 11/2 50 (21) 2 60 (17) 21/4 41 (22) 2 40 (20) 1% 41 (15) 15/16 185-224 80 (20) 23/4 80 (15) 21/2 80 (15) 21/2 60 (19) 2% 41 (15) 15/16 40 (16) 1% 50 (15) 11/2 50 (17) 1% 60 (15) 17/8 60 (22) 23/4 70 (15) 21/2 80 (17) 23/4 80 (22) 23/4 50 (18) 11/8 60 (16) 2 40 (18) 11/2 50 (15) 11/2 41 (17) 11/2 140-159 80 (20) 23/4 100 (15) 3 80 (15) 21/2 80 (15) 21/2 41 (19) 13/4 40 (20) 1% 50 (16) 13/4 50 (21) 2 60 (19) 23/8 120-139 80 (15) 21/2 80 (15) 21/2 80 (17) 23/4 100 (15) 3 100 (18) 3 50 (20) 2 60 (17) 21/4 90-119 40 (15) 11/4 50 (15) 11/2 80 (20) 23/4 100 (16) 3 100 (21) 3 80 (15) 21/2 80 (16) 23/4 60 (15) 17/8 60 (19) 23/8 40 (16) 1% 50 (17) 1% 75-89 80 (23) 23/4 100 (18) 3 100 (24) 3 80 (15) 21/2 80 (18) 23/4 50 (18) 1% 60 (17) 21/4 60 (22) 23/4 40 (18) 11/2 65-74 100 (15) 3 100 (20) 3 120 (17) 31/2 80 (16) 23/4 80 (21) 23/4 80 (15) 21/2 55-64 40 (21) 17/8 50 (21) 2 60 (19) 2% 120 (21) 31/2 120 (15) 31/4 80 (16) 23/4 80 (19) 23/4 100 (15) 3 100 (17) 3 60 (16) 2 60 (22) 23/4 50 (15) 11/2 45-54 140 (17) 41/4 100 (17) 3 100 (20) 3 120 (19) 31/2 100 (15) 3 (17) 17/8 60 (19) 23/8 80 (15) 21/2 80 (17) 23/4 35-44 140 (19) 41/4 100 (19) 3 120 (15) 31/4 120 (21) 31/2 60 (21) 23/4 80 (15) 21/2 80 (18) 23/4 100 (15) 3 50 (18) 17/8 31-34 120 (17) 31/2 140 (17) 41/4 140 (21) 41/4 100 (21) 3 80 (16) 23/4 80 (21) 23/4 100 (17) 3 50 (21) 2 80 (15) 21/2 26-30 120 (21) 31/2 140 (21) 41/4 160 (18) 51/4 120 (16) 31/2 80 (19) 23/4 100 (15) 3 100 (20) 3 60 (15) 17/a 80 (15) 21/2 21-25 140 (17) 41/4 160 (18) 51/4 | 160 (21) 51/4 120 (15) 31/4 120 (21) 31/2 100 (15) 3 100 (17) 3 80 (17) 23/4 16-20 60 (19) 23/8

120 (21) 31/2

120 (15) 31/4

80 (23) 23/4 | 120 (15) 31/4 | 140 (15) 41/4 | 140 (19) 41/4 | 160 (19) 51/4 | 160 (26) 51/4

140 (19) 41/4

80 (22) 23/4

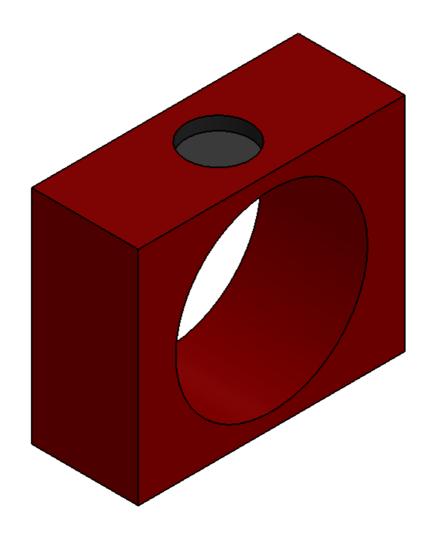
100 (18) 3

80 (15) 21/2

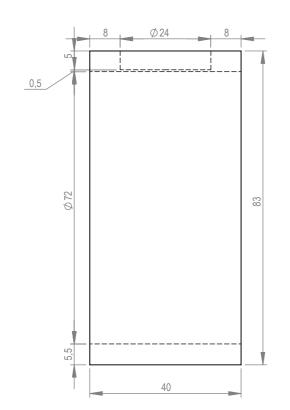
5-10

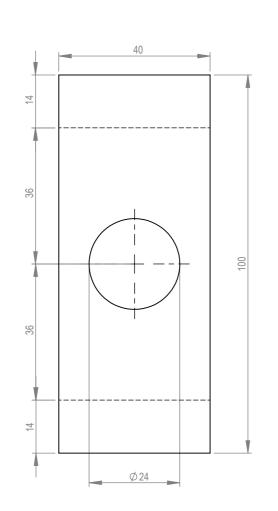
[▲] If the required horsepower is not listed, use the next higher.

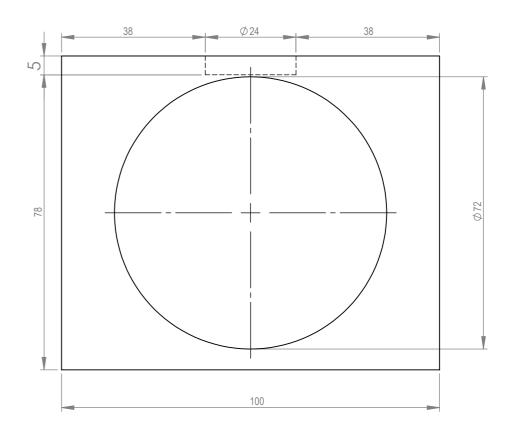
* "Bore, In." is the largest standard keyseated bore that normally can be accommodated.

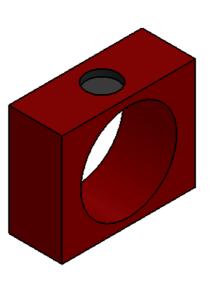

APENDICE K

						A	NSI	ROL	LER	CH	AIN				ia i		
					Table	3 — Sp	eed Rat	ios • C	enter D	istance	• Chair	n Lengt	hs				
				-					SPROC								Teeth o
2.54	2.72	2.91	35	3.27	3.64	3.82	4.09	4.36	4.91	5.45	70	72	80	84	96	112	Sprocke
0.913	11.345	12.812	13.976	13.668	15.561 58	15.983	17.139 64	18.294	19.539	21.843			Sharto			e show	11
2.33 1.723	2.50 12.161	2.66 12.597	2.92 13.761	3.00 14.495	3.34 15.349	3.50 15.773	3.75 16.930	4.00 18.085	4.50 20.396	5.00 21.637	5.83 25.834	6.00 26.244		Hora o	nutCl de	Lested	12
2.15	46 2.31	48 2.46	52 2.69	54 2.77	58 3.08	60 3.23	64 3.46	68 3.69	76 4.15	82 4.61	96 5.39	98 5.54					
1.502	11.943 46	12.379 48	13.546 52	14.279 54	15.136 58	16.605 62	16.719 64	18.925 70	20.186	22.496 84	25.628 96	26.038 98					13
2.00 1.280	2.14 12.746	2.28 13.188	2.50 14.361	2:57 14.063	2.86 15.961	3.00 16.391	3.22 17.553	3.43 18.713	3.86 19.977	4.29 22.287	5.00 25.422	5.14 25.834	5.71 28.545	6.00 30.439			14
1.87	2.00	50	2.33	2.40	2.67	62 2.80	3.00	70 3.20	76 3.60	4.00	96 4.67	98	108	114 5.60			
2.073 46	12.522 48	12.967 50	14.141 54	14.874 56	15.746 60	16.177 62	17.340 66	18.500 70	20.819 78	22.079 84	26.279 98	26.964 100	29.413 110	30.234 114		luxo nive Ni Grasia	15
1.75 11.847	1.88 12.299	2.00 ° 13.765	2.19 13.921	2.25 14.653	2.50 15.528	2.62 16.994	2.81 18.161	3.00 18.287	3.38 20.607	3.75 22.923	4.37 26.071	4.50 26.487	5.00 29.206	5.25 31.098	6.00 34.633		16
1.65	1.76	1.88	2.06	56 2.12	2.35	64 2.47	68 2.65	70 2.82	78 3.18	3.53	98	100	4.70	116	130 5.64	unse in	Since -
12.629	13.087 50	13.539 52	14.721 56	14.433 56	16.339 62	16.777	17.945 68	19.110 72	20.395 78	22.712 86	25.863 98	27.337 102	29.000 110	30.891 116	34.429 130	AMERICAN STREET	17
1.56	1.67 12.858	1.78	1.94	2.00	2.22	2.34	2.50 17.728	2.67	3.00 21.233	3.33	3.89 26.708	4.00 27.128	4.44 29.855	4.66 30.685	5.33 35.295		18
1.47	1.58	1.68	56 1.84	1.89	62 2.10	2.21	2.37	72 2.52	2.84	3.16	3.68	3.79	4.21	116 4.41	132 5.05	5.90	
12.166	13.638	14.099	15.288 58	15.006 58	16.920	17.364 66	18.536 70	18.677 72	21.008	23.332	26.498	26.918	29.647	31.539	35.088 132	40.516 152	19
1.40 12.938 50	1.50 13.406 52	1.60 13.869 54	1.75 15.061 58	1.80 15.795 60	2.00 16.697 64	2.10 17.142 66	2.25 18.317 70	2.40 19.489 74	2.70 21.827 82	3.00 23.119 88	3.50 26.287 100	3.60 27.758 104	4.00 30.493 114	4.20 31.330 118	4.80 34.882 132	5.60 40.312 152	20
1.33	1.43 13.172	1.52	1.67 14.833	1.71	1.90 16.473	2.00 17.939	2.14 18.096	2.28 19.270	2.57 21.609	2.86 23.492	3.33	3.43	3.81	4.00	4.57 35.738	5.33	01
50	52	56	58	60	64	68	70	74	82	90	102	27.547	30.283	118	134	41.177	21
1.27 13.467 52	1.36 13.942 54	1.45 14.413 56	1.59 15.613 60	1.64 15.338 60	1.82 17.262 66	1.91 17.714 68	2.04 18.895 72	2.18 20.073 76	2.46 21.392 82	2.73 23.726 90	3.18 26.910 102	3.27 27.334 104	3.64 30.073 114	3.82 31.965 120	4.36 35.531 134	5.03 40.971 154	22
1.22	1.30 13.705	1.39	1.52 15.382	1.56 16.117	1.74 17.035	1.83	1.96 18.671	2.08	2.34 22.200	2.61 23.510	3.04 26.695	3.13 28.164	3.48	3.65	4.17 35.322	4.87	23
52	54	56	60	62	66	68	72	74	84	90	102	106	116	120	134	154	23
1.17 12.985 52	1.25 14.469 56	1.33 14.946 58	1.46 16.155 62	1.50 15.886 62	1.67 17.818 68	1.75 18.275 70	1.88 19.463 74	2.00 19.628 76	2.25 21.980 84	2.50 24.323 92	2.92 27.522 104	3.00 27.951 106	3.33 30.699 118	3.50 31.544 120	4.00 36.170 136	4.67 41.622 156	24
1.12	1.20	1.28	1.40 15.921	1.44	1.60 17.588	1.68 18.047	1.80	1.92	2.16 21.760	2.40 24.104	2.80 27.306	2.88 27.736	3.20 30.486	3.36 32.380	3.84 35.960	4.48 41.414	25
54.	56	58	62	64	68	70	74	78	84	92	104	106	116	122	136	156	25
1.08 13.497 54	1.15 13.986 56	1.23 15.471 60	1.35 15.685 62	1.38 16.423 64	1.54 17.357 68	1.62 18.828 72	1.73 19.010 74	1.85 20.197 78	2.08 22.559 86	2.31 23.885 92	2.69 28.124 106	2.77 28.557 108	3.08 31.314 118	3.23 32.167 122	3.69 36.802 138	4.31 41.206 156	26
1.00	1.07	1.14 14.987	1.25 16.212	1.29	1.43 17.898	1.50 18.365	1.61	1.71 20.756	1.93 23.130	2.14 24.469	2.50 27.690	2.57 29.156	2.86 30.885	3.00 32.782	3.43 36.379	4.00 41.847	28
56	58	60	64	66	70	72	76	80	88	94	106	110	118	124	138	158	20
	15.000	15.497	16.732	17.474	18.432	18.904 74	20.109	20.298	22.678	25.044	28.282	28.720	31.490	33.389 126	37.000 140	42.481 160	30
	(1100)	1.00	1.09	1.13	1.25 18.958	1.31	1.41 20.647	1.50 20.845	1.69 23.237	1.88 25.612	2.19 28.865	2.25 29.307	2.50 32.087	2.63 32.957	3.00 37.613	3.50 43.106	32
		64	68	68	74	76	80	82	90	98	110	112	122	126	142	162	
	OW L	nak a	17.500	18.250	19.234 76	19.719 78	20.940	22.154	23.557	25.942	29.218	29.664 114	32.458 124	33.335 128	38.005	43.514	35
CIENT .		d been	16.50 10.5	1.00	1.11	1.17 20.478	1.25 20.701	1.33 21.917	1.50 24.332	1.67 25.717	1.94 28.994	2.00	2.22 32.237	2.33 34.143	2.66 37.788	3.11	36
		0.03(0.00)	Transpire (72	76	80	82	86	94	100	112	116	124	130	144	164	12/00/91
	rate di	u nyaria		SERVINE VI	20.000	20.498	21.736	22.965	24.399	26.812	30.122	30.576	33.392 128	34.283	38.978 148	43.482	40

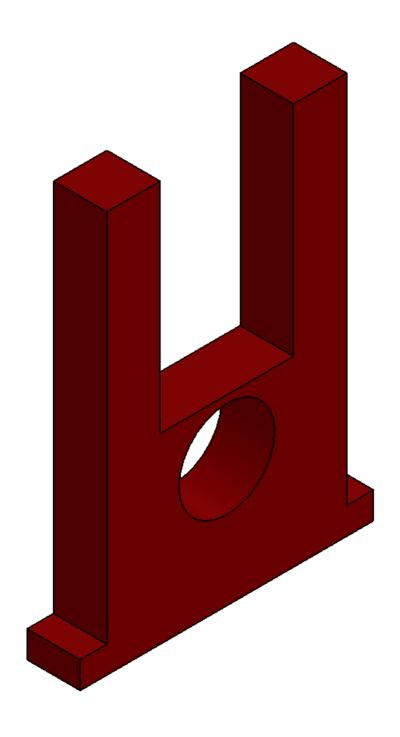

BIBLIOGRAFÍA

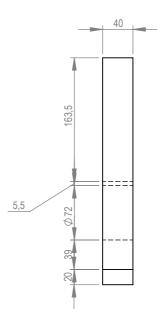

- JOSEPH E. SHIGLEY, Diseño en ingeniería Mecánica, Mc Graw Hill, Sexta Edición, México, 2002, pág. 258 a 889.
- REXNORD R100, Power Transmission and Conveying Components,
 U.S.A., 1992, pág. 20 a 25.
- EGOR P. POPOV, Introducción a la mecánica de sólidos, Editorial Limusa,
 Segunda Edición, México, 1980, pág. 562 a 564.
- JAIME S. DOMINGO, Apuntes de la materia Mecánica de Sólidos, Tema 6: Flexión, EPS Zamora, 2008.
- 5. NTN CORPORATION, Catalogo de Rodamientos, NTN Co, 2004.
- AMERICAN SOCIETY OF MECHANICAL ENGINEERS, The Ljunsgström Air Preheater 1920, Svenska Mekanisters Riksförening, Stockholm, 1995, pág. 1 a 30.

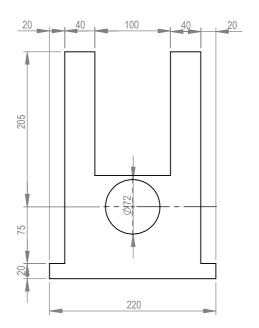

PLANOS

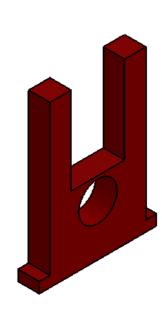


			ם בכו	201		REBARBAR Y ROMPER ARISTAS VIVAS	NO CAMBIE LA ESCALA REVISIÓN				
		FIMC	P-E3F	Lady Merchán Aguila							
	NOMBRE	FIRMA	FECHA				τίτυιο:				
DIBUJ.											
VERIF.							Caia para r	odillo	superio	∩r	
APROB.							Caja para rodillo superior				
FABR.											
CALID.				MATERIA	L:	_	N.º DE DIBUJO				
				l Hi	erro fun	dido	l Pla	no 4		A3	
				PESO:			ESCALA:1:2	HOJA 1 DE	1		

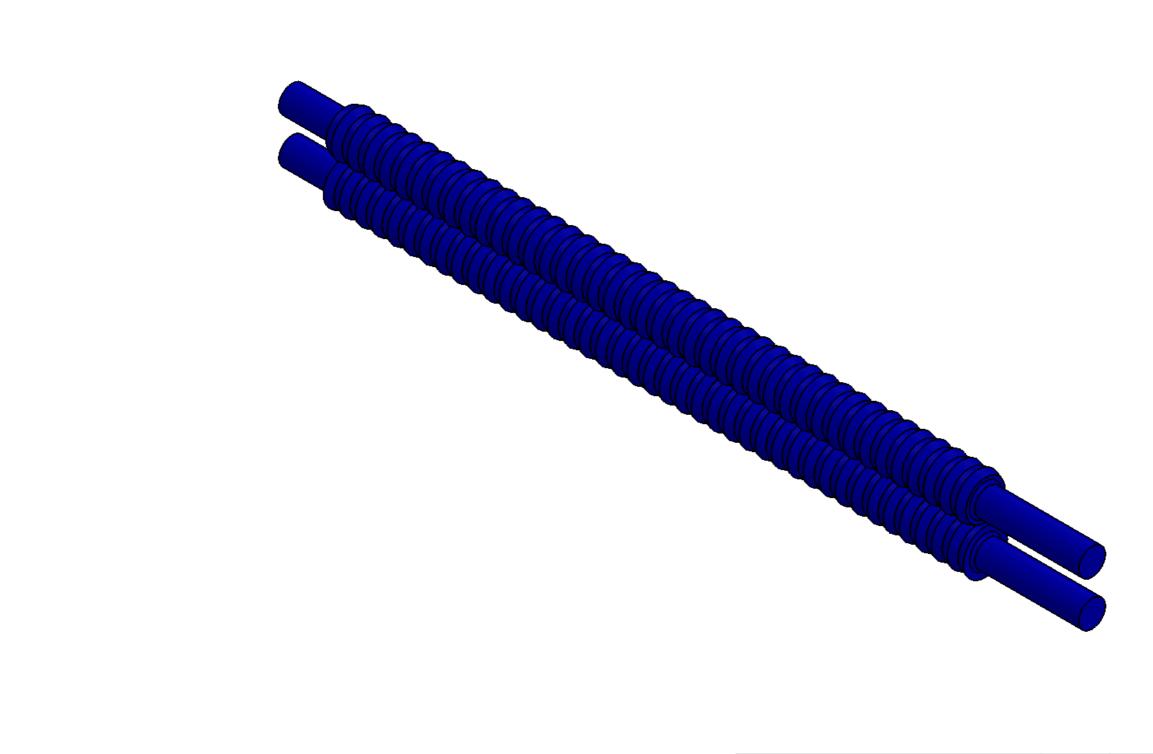


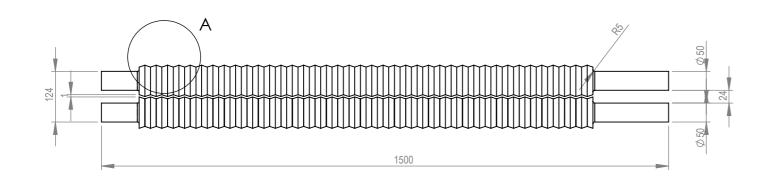


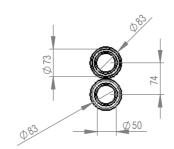

		40D F	·cDC	\	ROMP	RBAR Y PER ARISTAS	NO CAN	MBIE LA ESCALA	REVISIÓN	I			
	FI	MCP-E	:3PC)L	Lady Merchán Aguila						r		
	NOMBRE	FIRMA	FECHA				Τίτυιο:						
DIBUJ.							•	Caja para rodillo superior					
VERIF.							Cala	para ro	dillo su	peri	or		
APROB.							,	•		•			
FABR.													
CALID.				MATERIAL:			N.º DE DIBUJO	DI	4 1		А3		
				Hierro :	fundic	ob	Plano 4.1						
				5 6									
				PESO:			ESCALA:1:2		HOJA 1 DE 1				

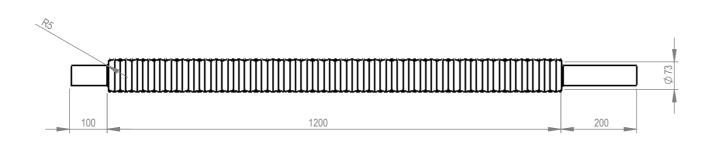


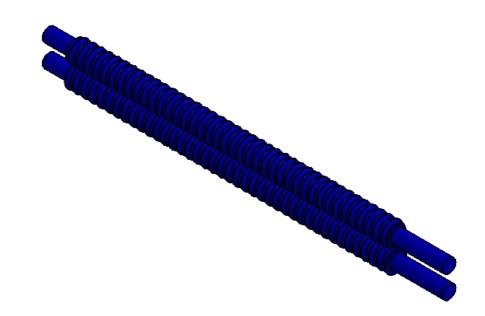
						REBARBAR Y ROMPER ARISTAS	NO CAMBIE LA ESCALA REVISIÓN					
	ΗM	ИСР-I	ESPC)L		VIVAS	Lady Merchán Aguilar					
	NOMBRE	FIRMA	FECHA				τίτυιο:					
DIBUJ.							Fstr	uctura n	ara rodil	los		
VERIF.							Estructura para rodillo conformadores					
APROB.								contorn	naaores			
FABR.												
CALID.				MATERIAL:	erro fu	ndido	N.º DE DIBUJO	Plano 3		A3		



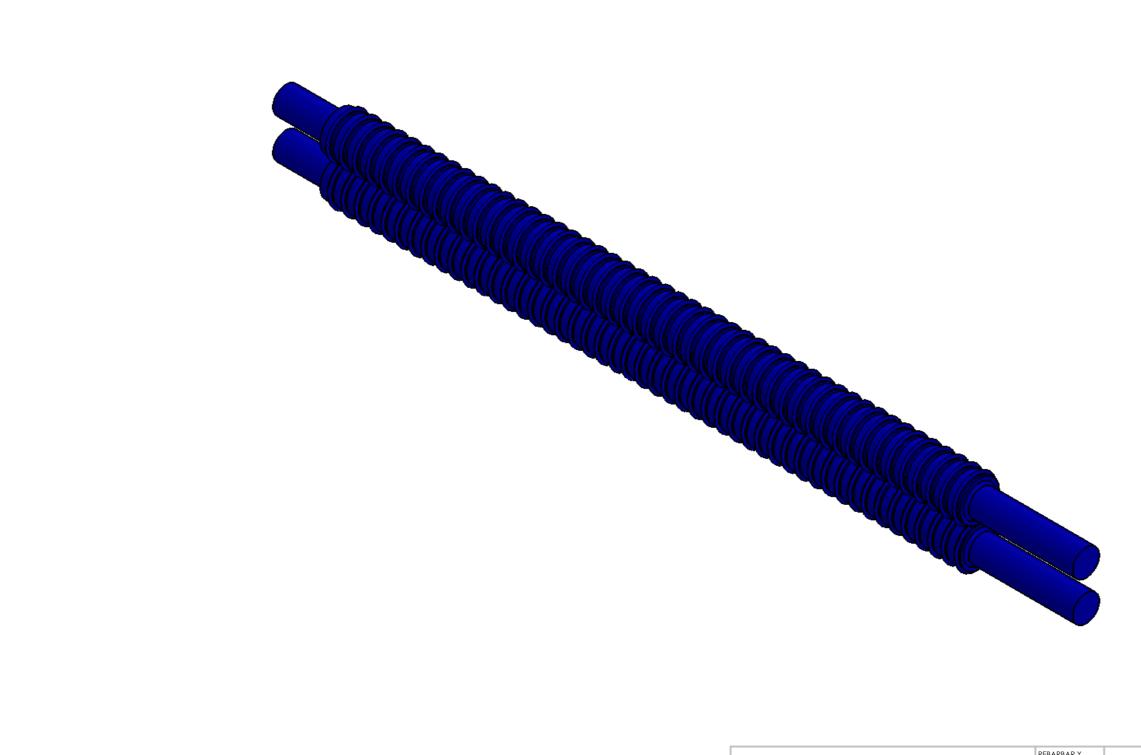


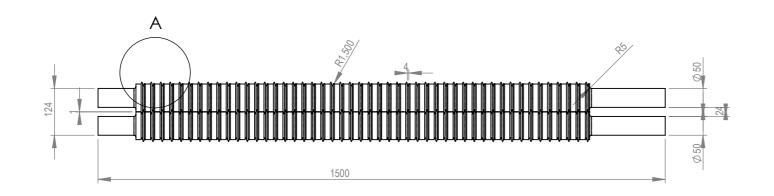


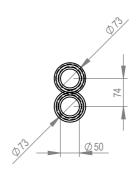

		400 E	c D 🔿		REBARBAR Y ROMPER ARISTAS	NO CAMBIE LA ESCALA	REVISIÓN		
	FIA	1CP-E	3PO	L	VIVAS	Lady Merch	nán Aguild	ar	
	NOMBRE	FIRMA	FECHA			τίτυιο:			
DIBUJ.							1*11		
VERIF.						Estructura po	ara rodillo	S	
APROB.						conform	adores		
FABR.						Comon			
CALID.				MATERIAL:		N.º DE DIBUJO		A3	
				Hierro fur	ndido	Plano 3.1			
					13.30	1 Idilo	J. I		
				PESO:		ESCALA:1:5	HOJA 1 DE 1		

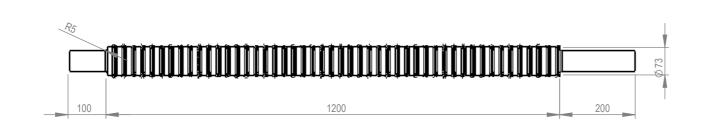


	FIL	40D E0	2001			REBARBAR Y ROMPER ARISTAS	NO CAMBIE LA E	ESCALA	revisión			
	FIM	ICP-ES	POL			VIVAS	Lady Merchán Aguilar					
	NOMBRE	FIRMA	FECHA				Τίτυιο:					
DIBUJ.						Rodillos conformadore						
VERIF.												
APROB.							Forma de	e alen	te de sie	erra		
FABR.												
CALID.				MATERIAL:			N.º DE DIBUJO	<u> </u>	_		А3	
Acero SA						E 1018	 	Plane	0.2		AS	
							•	. •	–			
				PESO:			ESCALA: 1:5		HOJA 1 DE 1			

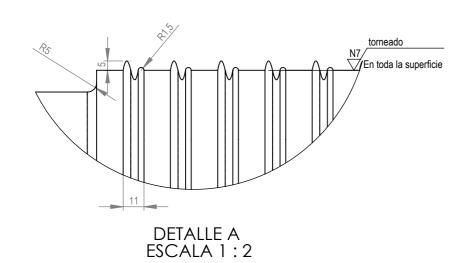


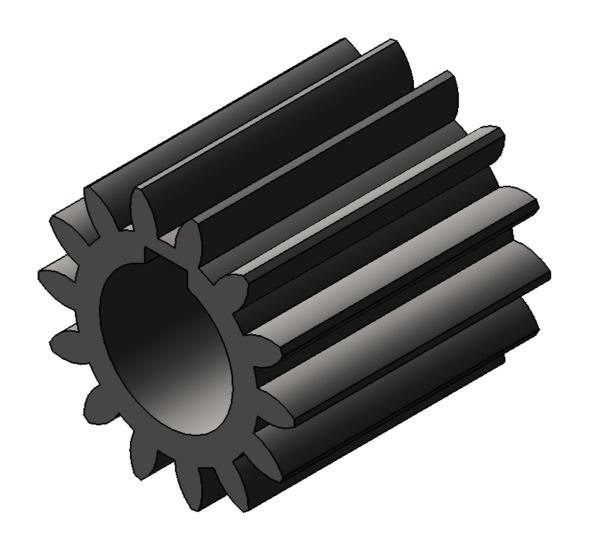


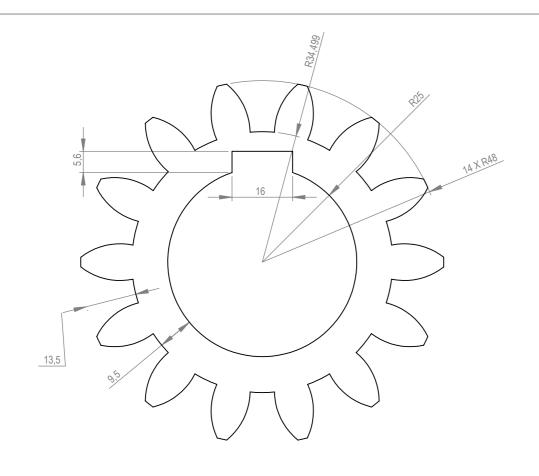

**	torneado N7 En todas las superficies
30	DETALLE A
	ESCALA 1:2

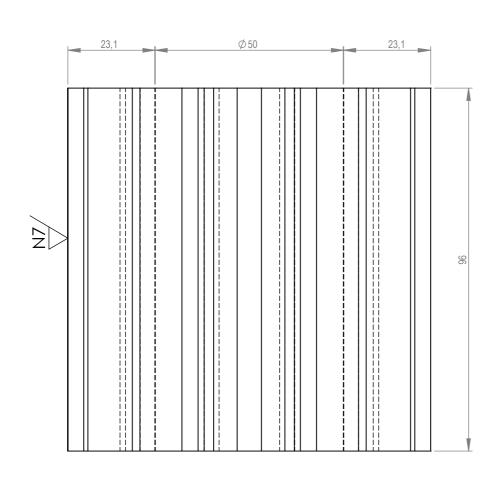

			-0001			REBARBAR Y ROMPER ARISTAS	N	O CAMBIE LA ESCALA	revisión				
	FIMCP-ESPOL					VIVAS	Lady Merchán Aguilar						
	NOMBRE	FIRMA	FECHA				TÍTULO:	Dadillas aa	nformado	ros			
DIBUJ.							Rodillos conformadores						
VERIF.								Forma die	nte de siei	ra			
APROB.													
FABR.													
CALID.				MATERIAL:			N.º DE DIBUJO	DI	O 1	A3			
				Acero SAE 1018						AS			
				PESO:			ESCALA:1:10		HOJA 1 DE 1				

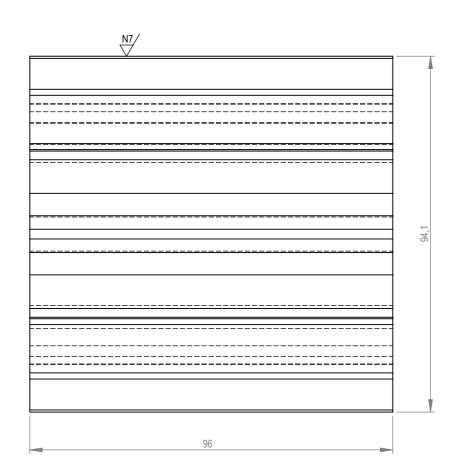


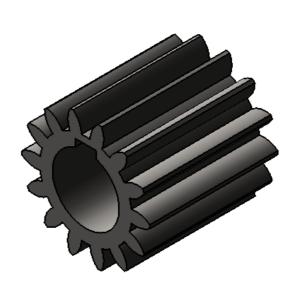

	- 11		-0001		REBARBAR Y ROMPER ARISTAS	NO CAMBIE LA ESCALA	revisión				
	FII	MCP-E	:3POI	_	VIVAS	Lady Merc	hán Aguilar	-			
	NOMBRE	FIRMA	FECHA			τίτυιο:	τίτυιο:				
DIBUJ.						Padillas car	Rodillos conformadores				
VERIF.								٥			
APROB.						Forma o	ndulada				
FABR.											
CALID.				MATERIAL:		N.º DE DIBUJO	1	A3			
Acero SA					1018						
				PESO:		ESCALA:1:10	HOJA 1 DE 1				



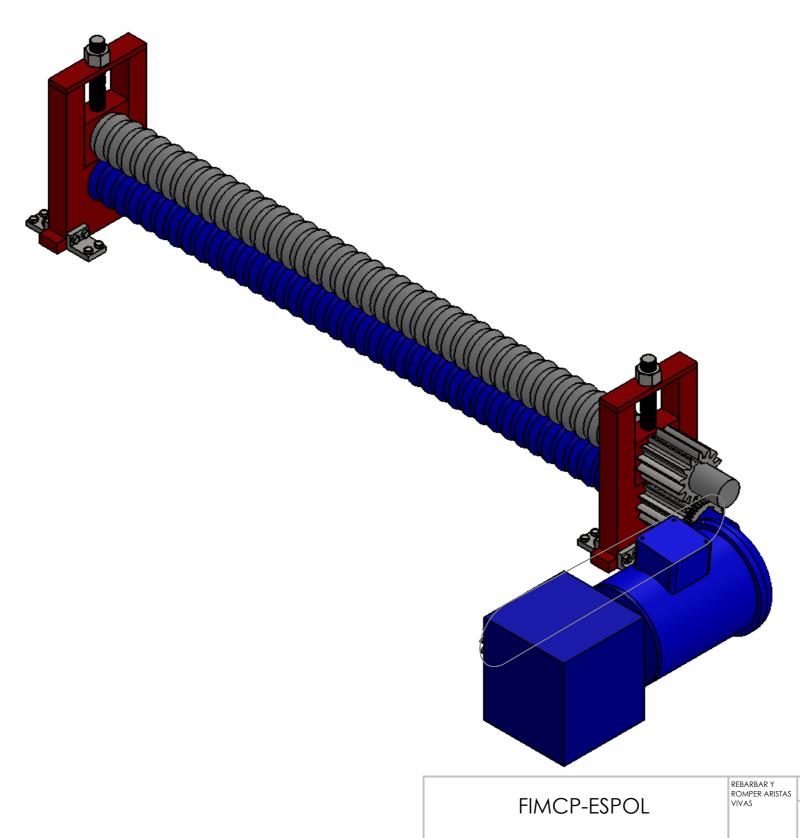


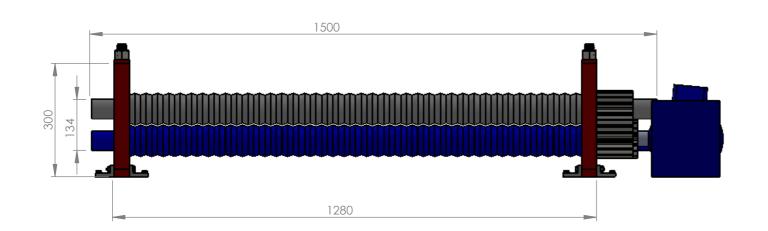


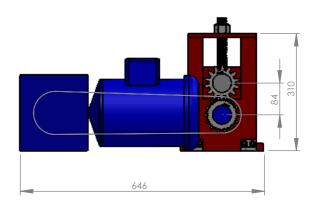

	EIV.	1CP-		\sim	\bigcap I		NO CA	NO CAMBIE LA ESCALA REVISIÓN				
	1 1/ 🗸	1C1 -	-L31	OL		VIVAS	Lady	y Merchá	n Aguild	ar		
	NOMBRE	FIRMA	FECHA				τίτυιο:					
DIBUJ.							Rodillos conformadores					
VERIF.							F	orma on	dulada			
APROB.							'		adiada			
FABR.												
CALID.				MATERIAL:			N.º DE DIBUJO				А3	
				Acer	o SA	E 1018		Planc) ,		AS	
							1 13.113					
				PESO:			ESCALA:1:10		HOJA 1 DE 1			

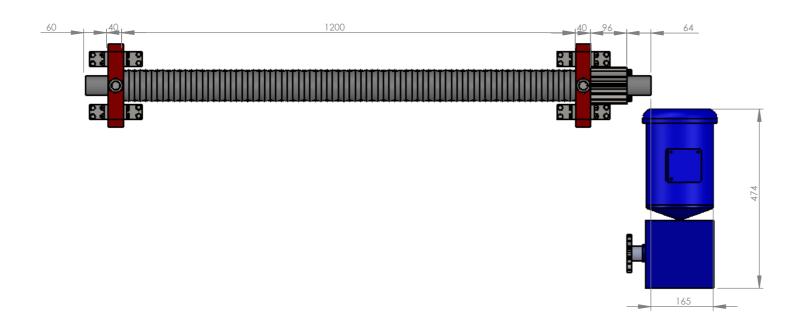


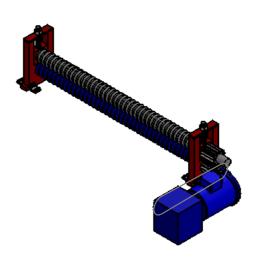
		51. 4 O D			NO CAMBIE LA ESCALA	revisión			
		FIMCP	- ES	POL	Lady Merchán Aguilar				
	NOMBRE	FIRMA	FECHA		τίτυιο:				
DIBUJ.					_				
VERIF.					Engrand	IJе			
APROB.									
FABR.									
CALID.				MATERIAL:	N.º DE DIBUJO		А3		
					PLANO	4	73		
					1 17 (110	<i>-</i>			
				PESO:	ESCALA: 1:1 HOJ	A 1 DE 1			



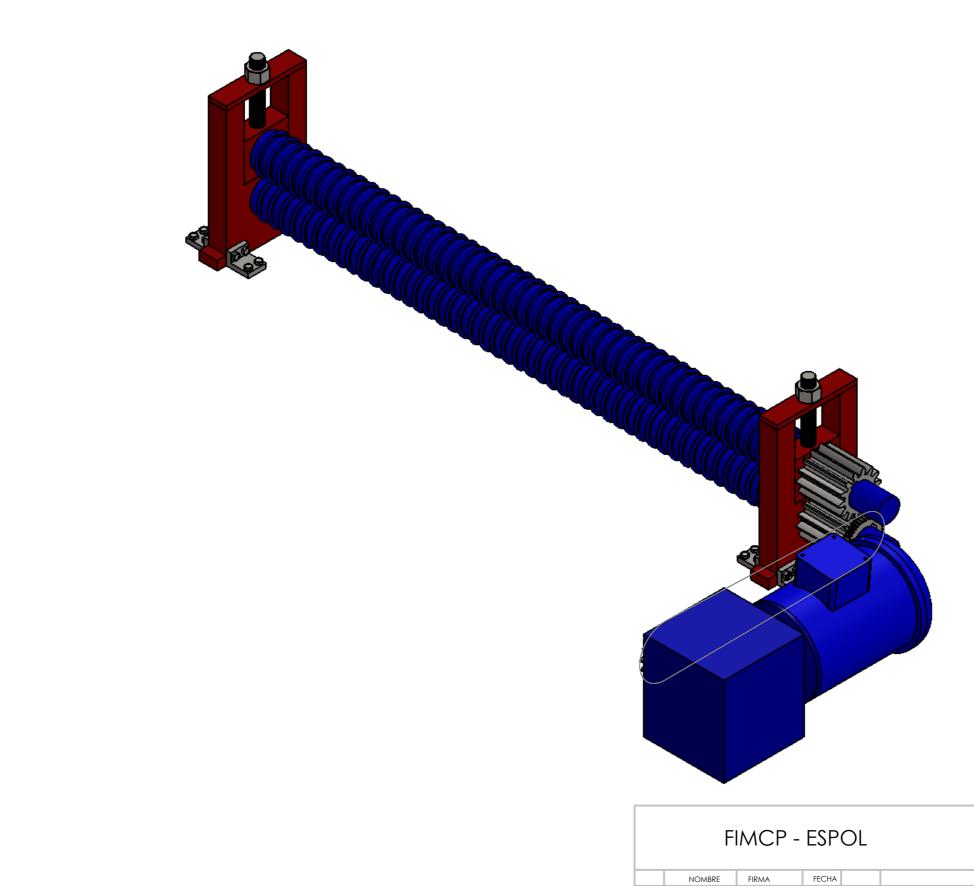


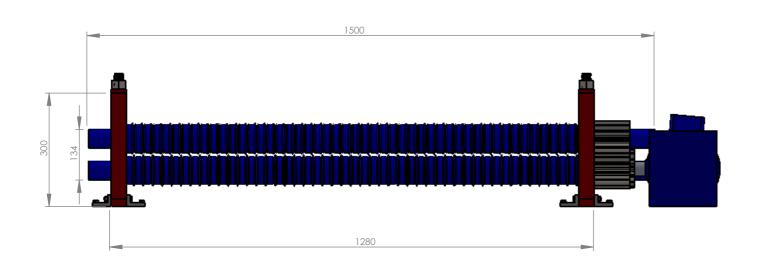


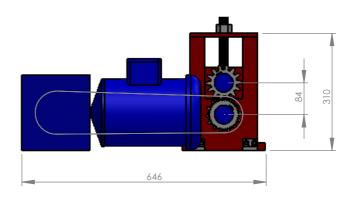

	_		E05	201	NO CAMBIE LA ESCALA	revisión		
	F	IMCP -	- E2F	OL .	Lady Merchán Aguilar			
	NOMBRE	FIRMA	FECHA		τίτυιο:			
DIBUJ.					_	•		
VERIF.					Engro	anaje		
APROB.					_	•		
FABR.								
CALID.				MATERIAL:	N.º DE DIBUJO	\ / 1	A3	
					PLANC) 6. l	AS	
				PESO:	ESCALA:1:1	HOJA 1 DE 1		

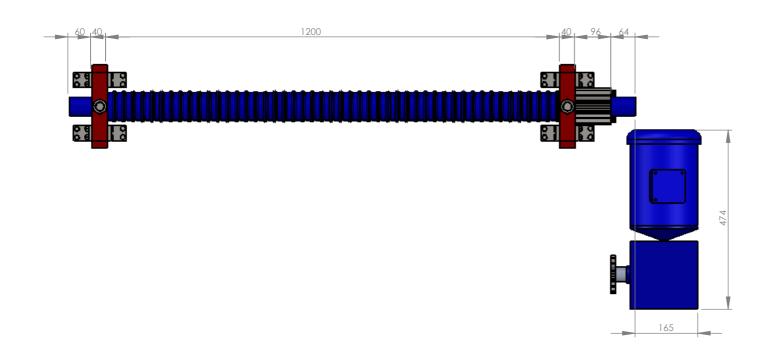


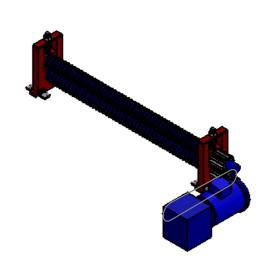
				~ 1		REBARBAR Y ROMPER ARISTAS VIVAS	NO CAMBIE LA ESCALA		REVISIÓN	
	FIMCP-ESPOL						Lady Merchán Aguilar			
	NOMBRE	FIRMA	FECHA				TÍTULO:			
DIBUJ.							Máquir			
VERIF.							con	forma	dores	
APROB.	OB.								de sierra	
FABR.							inpo an	011100	40 01011 G	
CALID. MATERIAL:							N.º DE DIBUJO		7	A3
							\square	ond	/	AS
							. , ,			
PESO:							ESCALA: 1:6	HOJA	1 DE 1	



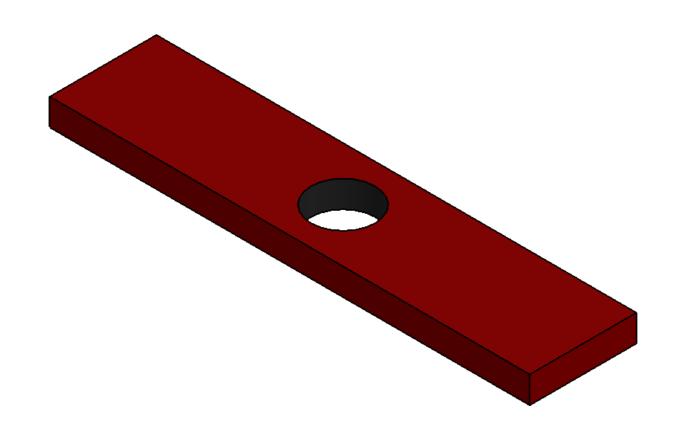


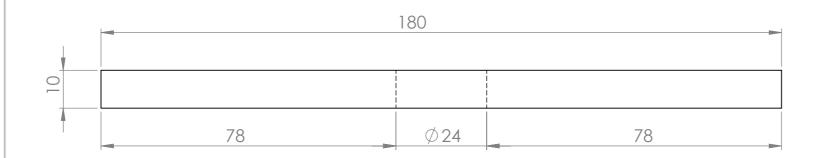


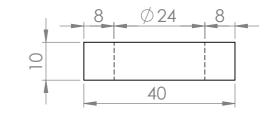

		\bigcirc D	CCD	\bigcirc I	REBARBAR Y ROMPER ARISTAS	NO CAMBIE LA ESCALA REVISIÓN					
	FI/VI	CP-	E2L	OL	VIVAS	Lady Merchán Aguilar					
	NOMBRE	FIRMA	FECHA			τίτυιο:	Márquina aon radillas				
DIBUJ.						Máquina con rodillos conformadores					
VERIF.						conformadores					
APROB.						1	tipo dient				
FABR.						1	npo diem	C SICITO			
CALID.				MATERIAL:		N.º DE DIBUJO	ы.	7 1	A3		
								. • •			
				PESO:		ESCALA:1:20	HO	JA 1 DE 1			

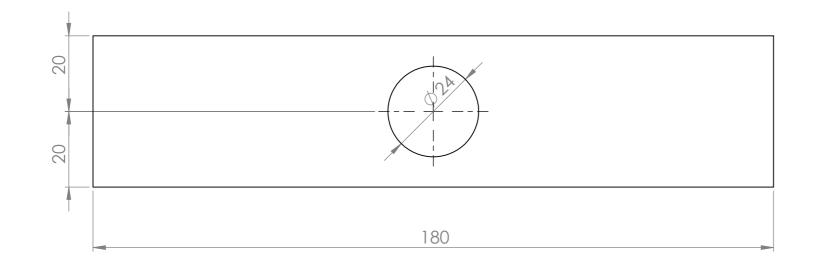


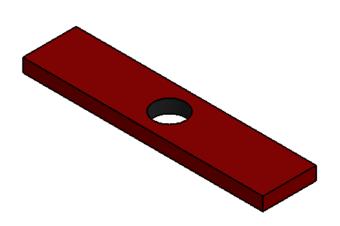
		_		_	NO CAMBIE LA ESCALA		revisión				
	F	IMCP -	ESP	OL	Lady Merchán Aguilar						
	NOMBRE	FIRMA	FECHA		TÍTULO: Máquing con rodillos						
DIBUJ.					Máquina con rodillos						
VERIF.					confo	rma	dores				
APROB.					tino dien	tes or	ondulados				
FABR.					про акт	03 01	idolados				
CALID.				MATERIAL:	N.º DE DIBUJO		^	۸.2			
					N.º DE DIBUJO PLA	N()	8	A3			
					, .	•	•				
				PESO:	ESCALA: 1:6	HOJA	1 DE 1				








						NO	CAMBIE LA ESCALA	revisión		
		FIMCF	P - ES	POL		Lady Merchán Aguilar				
	NOMBRE	FIRMA	FECHA			TÍTULO:	Máguina	son rodil	loc	
DIBUJ.							Madolija	2011/10/01	105	
VERIF.							Máquina d conforn	nadores		
APROB.							po dientes			
FABR.							po diornos	oriadia	405	
CALID.				MATERIAL	:	N.º DE DIBUJO		201		۸.2
							PLAN(J 8.1		A3
							. =; \. \ \			
				PESO:		ESCALA:1:20		HOJA 1 DE 1		



		FIL 4 O F	.	201	NO CA	AMBIE LA ESCALA	REVISIÓN		
		FIMCF	' - E31	OL	Lady Merchán Aguilar				
	NOMBRE	FIRMA	FECHA		τίτυιο:				
DIBUJ.									
VERIF.						Placa s	unerior		
APROB.					11464 30001101				
FABR.									
CALID.				MATERIAL:	N.º DE DIBUJO	PLAN	O 5	A3	
						/ (1 \	•		
				PESO:	ESCALA:1:1		HOJA 1 DE 1		

		LIY V C D	ГС	DOI		NO 0	CAMBIE LA ESCALA	REVISIÓ	ÒN	
FIMCP - ESPOL						Lady Merchán Aguilar				
	NOMBRE	FIRMA	FECHA			TÍTULO:				
DIBUJ.										
VERIF.						Placa superior				
APROB.										
FABR.										
CALID.				MATERIAL:		N.º DE DIBUJO	DI ANIO E 1		A3	
				Hie	erro fundido	PLANO 5.1				AS
				PESO:		ESCALA:1:1		HOJA 1 DE 1		