

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. FACULTAD DE INGENIERÍA EN MECÁNICA

"DETERMINACIÓN DE LA VELOCIDAD DE CORROSIÓN DEL ACERO ASTM A-42 EN HORMIGONES DISEÑADOS CON CEMENTO TIPO PUZOLÁNICOS MEDIANTE TÉCNICAS CINÉTICAS DE LABORATORIO"

PROYECTO DE GRADO

Previa a la obtención del Título de:

INGENIERO MECÁNICO

Presentado por
WILSON ÁNDRES HUIRACOCHA SÁENZ

Guayaquil - Ecuador 2010

AGRADECIMIENTO

A Dios, por su eterno amor e infinita Misericordia. A mi madre por dedicar su vida entera a sus hijos, por ser la base fundamental de la mía, por toda su fuerza, amor y apoyo de igual manera a mi padre porque desde el cielo está viendo cumplir su mayor anhelo. Al Ing. Julián Peña Estrella, mi Director de Tesis, por brindarme todos Sus conocimientos con paciencia y dedicación.

DEDICATORIA

A DIOS

A MI FAMILIA.

TRIBUNAL DE GRADUACIÓN

Ing. Francisco Andrade S. DECANO DE LA FIMCP PRESIDENTE. Ing. Julián Peña E. DIRECTOR DE PROYECTO

Ing. Andrés Rigail C. VOCAL PRINCIPAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este proyecto de graduación, me corresponde exclusivamente; y, el patrimonio intelectual de la misma a la Escuela Superior Politécnica del Litoral".

(Reglamento de Graduación de la ESPOL).

Wilson Andrés Huiracocha Sáenz

RESUMEN

La determinación de la velocidad de corrosión de las armaduras es de fundamental importancia a la hora de efectuar un diagnostico y evaluar la vida útil de una estructura de hormigón armado.

La ejecución de los trabajos preliminares se han realizado en los laboratorios del Centro Técnico del Hormigón en HOLCIM. La técnica no destructiva mas empleada es la de resistencia de polarización (Rp), mediante la cual la densidad de corriente de corrosión (icorr) es calculada a partir de la ecuación icorr = B/Rp, donde Rp es la resistencia a la polarización y B es una constante que depende del valor de las pendientes de Tafel anódicas y catódicas.

Su valor es de 0,026V y 0,052V para acero en estado activo y pasivo, respectivamente, y estos son los valores generalmente empleados para calcular icorr.

El Presente Proyecto de Graduación consta de cuatro capítulos:

En el Capitulo 1 se hará una introducción a los conceptos básicos sobre los procesos de corrosión de las armaduras, sus causas y efectos. También se hace un enfoque sobre los inhibidores como una forma eficaz de prevenir y detener la corrosión.

En el Capitulo 2 se describe la parte experimental introducida en nuestro estudio, la metodología, el procedimiento, las normas utilizadas, los ensayos realizados, y resultados.

En el Capitulo 3 se presenta el análisis de los resultados de los hormigones en las diferentes condiciones de exposición.

En el Capitulo 4, se presentan las conclusiones y recomendaciones.

ÍNDICE GENERAL

RE	SUN	1EN	l
ÍNE	DICE	DE GENERAL	II
ΑB	REV	TATURAS	V
ĺΝ[DICE	DE FIGURAS	VI
ĺΝ[DICE	DE TABLAS	VIII
ΙNΊ	ΓRΟΙ	DUCCIÓN	1
CA	PÍTU	JLO 1	
1.	LOS	CEMENTOS PUZOLÁNICOS Y LA CORROSIÓN DEL HORMIGÓN	
	EN	EL ECUADOR	2
	1.1	El problema de la vida útil en estructuras de hormigón armado	3
	1.2 I	El Hormigón Puzolánico, características y aplicaciones	4
	1.3 I	Degradación del Hormigón Puzolánico	7
	1.4	Técnicas cinéticas para determinar la velocidad de corrosión	8
	1.5 l	Resistencia a la polarización	10
CA	PÍTU	JLO 2	
2.	ENS	SAYOS EXPERIMENTALES PARA LA OBTENCIÓN DE LA	
	VEL	OCIDAD DE CORROSIÓN EN HORMIGONES PUZOLÁNICOS	.13
	2.1	Metodología experimental	.13
	2.2	Construcción de las probetas de hormigón armado	.20
	2.3	Condiciones de exposición	.27
		2.3.1 Probetas expuestas al Ambiente Natural de Guayaquil	.28

		2.3.2	Probetas parcialmente inmersas en solución conteniendo	
			Cloruro de Sodio	
		2.3.3	Probetas expuestas a atmosferas en Dióxido de Carbono29	
	2.4	Result	ados experimentales para obtener la Resistencia a la	
		Polariz	zación30	
	2.5	Detern	ninación de la resistencia a la polarización38	
CA	APÍTU	JLO 3		
3.	ANALISIS DE LOS RESULTADOS57			
	3.1	Análisi	s de la resistencia a la polarización bajo diversas atmosferas58	
	3.2	Análisi	s comparativo respecto al comportamiento del hormigón	
		formul	lado con cemento PORTLAND TIPO II66	
CA	APÍTU	JLO 4		
4.	4. CONCLUSIONES Y RECOMENDACIONES67			
ΑF	PÉND	ICES	70	
BII	BIBLIOGRAFÍA75			

ABREVIATURAS

ASTM American Society for Testing and Materials

mpy Mili-Pulgadas por Año
ET Electrodo de Trabajo
EA Electrodo Auxiliar

ER Electrodo de Referencia
Rp Resistencia a la Polarización
B Constante de Proporcionalidad
Rs Resistencia del electrolito

RPL Resistencia a la polarización lineal ERI Electrodo de referencia interno

CSC Cobre sulfato de cobre CP Curvas de polarización.

Pág.

Curva de polarización anódica y catódica.....11 Electrodo de referencia externo......14 Mediciones de potencial con el electrodo de referencia Medición de potencial contra el electrodo CSC......17 Conexiones del potenciogalvanostato......18 Modelo del potenciogalvanostato......18 Probetas de hormigón con barras de acero......21 Barras de acero INOX 304 (izquierda), ASTM A-42 (derecha) y el ERI (electrodo de referencia interno) listas para ser empotradas en el cemento......22 Barras de acero y electrodo de referencia montados sobre el soporte de madera......23 Molde listo para colada del cemento......24 Molde en proceso de colado......25 Probetas listas para el procesos de curado......25 Probeta de hormigón armado terminada......26 Probetas parcialmente inmersas en soluciones Cámaras de carbonatación......30 Evolución del potencial de corrosión durante 150 días expuestos al medio ambiente......59 Evolución de la resistencia a la polarización durante

150 días expuestas al medio ambiente......60

expuestas al medio ambiente......60

expuestas a NaCl......61

150 días expuestas a NaCl......62

Expuestas a NaCl......63

Expuestas a CO2......64

150 días expuestas a CO2......65

Evolución de la velocidad de corrosión durante 150 días

Evolución del potencial de corrosión durante 150 días

Evolución de la resistencia a la polarización durante

Evolución de la velocidad de corrosión durante 150 días

Evolución del potencial de corrosión durante 150 días

Evolución de la resistencia a la polarización durante

INDICE DE FIGURAS

Figura 1

Figura 2

Figura 3

Figura 4

Figura 5

Figura 6

Figura 7

Figura 8

Figura 9

Figura 10

Figura 11 Figura 12

Figura 13

Figura 14

Figura 15

Figura 16

Figura 17

Figura 18

Figura 19

Figura 20

Figura 21

Figura 22

Figura 23

Figura 24	Evolución de la velocidad de corrosión durante 150 dias	
	Expuestas a CO26	35

ÍNDICE DE TABLAS

		Pág.
Tabla 1	Programación de ensayos	14
Tabla 2	Características de la mezcla utilizada en la construcción de las probetas	24
Tabla 3	Programación de construcción de probetas	
Tabla 3	Codificación de las probetas acorde a la condición de	20
i abia +	•	27
Tabla 5	Hormigones Puzolánico Sin Inhibidor Sometidas A	21
rabia 0	Cámara De Carbonatación	32
Tabla 6	Hormigones Puzolánico con inhibidor sometidas a	02
		33
Tabla 7	Hormigones Puzolánico sin inhibidor sometido a agua	
		34
Tabla 8	Hormigones Puzolánico con inhibidor sometido a agua	
	Salada	35
Tabla 9	Hormigones Puzolánico sin inhibidor sometido al ambiente	
	Natural	36
Tabla 10	Hormigones Puzolánico con inhibidor sometido al ambient natural	
Tabla 11	Tabla del estado del acero	39
Tabla 12	Tabla de datos de una probeta Puzolánico	40
Tabla 13	A.1 Hormigones Puzolánico sin inhibidor sometidas a	
	cámaras de carbonatación	45
Tabla 14	A.2 Hormigones Puzolánico sin inhibidor sometidas a	
	cámara de carbonatación	46
Tabla 15	B.1 Hormigones Puzolánico con inhibidor sometidas	
T.11. 40	a cámara de carbonatación	
Tabla 16	B.2 Hormigones Puzolánico con inhibidor sometidas a cár	
	De carbonatación	48
Tabla 17	C.1 Hormigones Puzolánico sin inhibidor sometidas	
Tabla 17	a agua salada	49
Tabla 18	C.2 Hormigones Puzolánico sin inhibidor sometidas	
	a agua salada	50
Tabla 19	D.1 Hormigones Puzolánico con inhibidor sometidas a	
	agua salada	51
Tabla 20	D.2 Hormigones Puzolánico con inhibidor sometidas a	

	agua salada	52
Tabla 21		
Tabla 22	E.2 Hormigones Puzolánico sin inhibidor sometidas a Ambiente natural	54
Tabla 23	F.1 Hormigones Puzolánico con inhibidor sometidas a Ambiente natural	55
Tabla 24	F.2 Hormigones Puzolánico con inhibidor sometidas a Ambiente natural	56

INTRODUCCION

La elaboración de este trabajo de experimentación e investigación se lo realizo con el interés de conocer por medio del método de resistencia de polarización el nivel de corrosión existente en el Ecuador, tomando en consideración los diferentes tipos de climas que rodean cada región. Es por ello que el material de estudio se ha expuesto a 3 medios diferentes. Nuestra finalidad será determinar la velocidad o rapidez de corrosión del acero ASTM A-42 en cada medio expuesto. Para dar inicio a las pruebas en el laboratorio las probetas expuestas en sus diferentes medios deben ser retiradas cada 15 días. La técnica de resistencia de polarización es una técnica electroquímica que funciona de la siguiente manera; primero se mide el potencial del material, sobre este se fija un rango de variación de potencial, luego se perturba el material por medio de impulsos de corriente y este responderá en los mismos términos dando valores instantáneos de corriente que varían conjuntamente con el potencial. La relación que se genera entre el potencial y la corriente produce gráficamente una pendiente llamada resistencia de polarización, que con la ayuda de básicos procedimientos matemáticos se convertirá finalmente en velocidad de corrosión.

CAPÍTULO 1

1. LOS CEMENTOS PUZOLANICOS Y LA CORROSION DEL HORMIGON EN EL ECUADOR.

El presente trabajo trata acerca del comportamiento de un hormigón elaborado con cemento Puzolánico y adición de aditivos superplastificantes, los que aportaron en épocas sucesivas notables avances en la tecnología de los hormigones tradicionales, actualmente el hormigón fluido está marcando un nuevo hito en la forma de aplicar el hormigón a la construcción aportando muchas ventajas en cuanto a la facilidad de puesta en obra, la seguridad en el trabajo y la durabilidad del hormigón. El hormigón una vez endurecido presentará un aumento en la resistencia mecánica por efecto directo de la reducción de agua y esto podrá ser apreciado a tempranas edades y a la edad final donde se registra la máxima resistencia que alcanzará dicho hormigón.

1.1 EL PROBLEMA DE LA VIDA UTIL EN ESTRUCTURAS DE HORMIGON ARMADO.

El hormigón armado es un material compuesto, que comenzó a utilizarse industrialmente a principios del Siglo XX. Sus excelentes propiedades físicas se deben a la combinación de la resistencia a la compresión propia del hormigón y a la alta resistencia a la tracción que le confiere el acero.

Su gran versatilidad en cuanto a forma, acabado y tamaño, su bajo costo relativo, su fácil disponibilidad y trabajado, además de su elevada resistencia a los medios agresivos frente a otros materiales estructurales, lo hacen una de las principales elecciones a la hora de seleccionar de un material para estructuras (Tretiakov, 1986). Además de las ventajas estructurales que resultan de la combinación del hormigón y el acero, el hormigón actúa como barrera física de las armaduras respecto del medio ambiente y posee características químicas que ofrecen al acero una excedente protección contra la corrosión.

Sin embargo, a través del tiempo, se comprobó que el hormigón armado también se deterioraba, tanto debido a procesos de degradación del propio hormigón como a través de la corrosión de las armaduras.

La información disponible coincide en general en que es fundamental el respeto de las reglas del arte en la fabricación de un hormigón armado para alcanzar una prolongada vida en servicio del mismo.

La definición de vida útil de una estructura en la mayoría de los códigos se define como el periodo en el cual la estructura mantiene los requisitos especificados en el proyecto respecto a seguridad, funcionalidad y estética, sin costos inesperados de mantenimiento.

1.2 EL HORMIGON PUZOLÁNICO, CARACTERISTICAS Y APLICACIONES.

El cemento es una mezcla de minerales, principalmente silicatos y aluminatos de calcio. Cuando fragua, se endurece por hidratación de los distintos compuestos que lo constituyen. Durante ese proceso llamado curado, ocurren entre otros los siguientes fenómenos:

- Conformación de la red de silicatos, que determina la resistencia mecánica del hormigón.
- Segregación del hidróxido de calcio, el cual junto con los álcalis provenientes de las

materias primas llevan el pH de la fase acuosa a valores de aproximadamente 12.

 Evaporación del agua en exceso agregada durante el amasado para hacer trabajables las mezclas, lo cual genera una red de poros y canales que llegan hasta la superficie del hormigón.

Estos procesos, determinarán en gran medida el desempeño final del material, por lo cual la formulación, ejecución y curado del hormigón deben ser cuidadosos. Así por ejemplo el aporte de agua a la mezcla debe ser el exacto para evitar un exceso, que provocaría un aumento de la porosidad y disminución de la resistencia a la compresión del hormigón.

Puzolana, según el criterio de Lea adoptado por las actuales normas del ASTM es el material silíceo que no siendo aglomerante por si mismo o en muy baja magnitud contiene elementos que se combinan con la cal en presencia del agua, a temperaturas ordinarias, formando compuestos de escasa solubilidad que presentan propiedades aglomerantes.

Tipos de puzolanas

En una primera clasificación, las puzolanas se dividen en dos grandes grupos: naturales y artificiales, estos últimos, arcillas, pizarras, etc., calcinadas. Los dos grupos, a su vez, se han clasificado atendiendo a diversos criterios. El Bureau of Reclamation, entidad norteamericana con mayor experiencia en la materia, considera los siguientes tipos:

I. Arcillas y pizarras (que requieren calcinarse para ser activas):

a) colinita

b) montmorillonita

II. Materiales opalinos (En los cuales la calcinación puede o no ser necesaria).

a) Tierra de diatomeas, semiopalos y pizarras.

III Tobas volcánicas y pumicitas (en las cuales la calcinación puede o no ser necesaria)

a) riolíticos

b) andesíticos

c) fenoliticos.

IV Sub productos industriales:

Escoria de alto horno.

Ceniza volante.

Humo silíceo.

CARACTERISTICAS:

a) Retracción y fluencia. Ambos fenómenos se ven acrecentados en el caso de los portland puzolánicos. El campo de variación es amplio, según sea la puzolana, cemento usado y tipo de agregado.'

En todo caso no hay leyes que determinen las deformaciones del concreto.

- b) Las condiciones de deformación elástica del concreto son ligeramente disminuidas por los cementos puzolánicos. Aunque no se puede determinar coeficientes al respecto, dada la cantidad de parámetros incidentes.
- e) Las resistencias mecánicas disminuyen en los cementos puzolánicos, especialmente en los concretos ricos en aglomerantes. En las mezclas pobres, eventualmente, los cementos puzolánicos pueden acrecentar la resistencia.

Las obras de concreto puzolánicos exigen mayor control y curado especial y continuado para prevenir los peligros de fisuración y otras anomalías.

1.3 DEGRADACION DEL HORMIGON PUZOLANICO.

Si el recubrimiento de hormigón sobre las armaduras no se mantiene en buenas condiciones, no se puede esperar un buen desempeño de la estructura de hormigón armado. El deterioro puede provenir de:

- Fisuración provocada por esfuerzos mecánicos provenientes de diversas fuentes.
- Erosión mecánica.

- Congelamiento, durante el cual el agua retenida en la red de poros y canales solidifica presionando contra las paredes de los mismos hasta fisurar el hormigón.
- Ataque ácido, que disuelve las fases alcalinas del hormigón.
- Ataque por sulfatos, que reaccionan con componentes del hormigón formando productos muy voluminosos, los cuales presionan hasta fisurar la masa de hormigón.
- Reacción álcali-agregado, debida a la reactividad de agregados finos de estructura amorfa frente al medio fuertemente alcalino, generando también fases voluminosas y fisuración.
- Ataque biológico, provocado por la acción química de metabolitos de microorganismos.
- Desalcalinización de las fases del cemento por efecto de un lavado continúo con agua.

1.4 TECNICAS CINETICAS PARA DETERMINAR LA VELOCIDAD DE CORROSION.

De manera concisa se da a continuación un conocimiento general de la técnica cinética y se hará un análisis detallado de la Técnica de Resistencia a la Polarización en la sección 1.5.

Técnica Potensiostáticas

Ya sabemos que para predecir la velocidad de corrosión de un metal en un medio determinado deben conocerse las curvas de

9

polarización de cada una de las reacciones electroquímicas que

acompañan el proceso de corrosión.

Para determinar la curva de polarización se deben aplicar

sobrepotenciales constantes, midiendo la respectiva corriente

luego que haya alcanzado para cada potencial, un valor

estacionario.

Por medio de la Ley de Faraday determinamos la velocidad de

corrosión a partir de la corriente de corrosión.

$$W = (It m) / (ZF)$$
 (ec. 1)

Donde:

W: pérdida de peso de la especie electroactiva

m: peso molecular

Z: numero de electrones involucrados en la reacción

electroquímica

F: constante de Faraday (96500 culombios)

I: corriente en amperios

t : tiempo en segundos

W/t es la velocidad de corrosión (Vcorr) en g/s

La velocidad de corrosión será expresada como milésima de pulgada por año (mpy), que indica la perdida de espesor de material.

Dividiendo la ecuación anterior por el area del electrodo de trabajo (A) en cm2 y por su densidad en g/cm3 se tiene que

$$Vcorr (cm/s) = I M / d F A Z (ec. 2)$$

Convirtiendo segundos a años, centímetros a milésimas de pulgada y expresando el térmico I / A como densidad de corriente de corrosión, icorr en uA/cm2, la ecuación quedara entonces como

Vcorr (mpy) =
$$0.129$$
 icorr M / d Z (ec. 3)

Esta ecuación se usa para calcular la velocidad de corrosión directamente de icorr.

1.5 RESISTENCIA A LA POLARIZACION.

Las mediciones con desviaciones en el potencial mucho más pequeñas que las constantes de activación de Tafel tienden a eliminar daños permanentes en el sistema y permiten a su vez un mejor control de los errores debidos a la alta resistencia del electrolito.

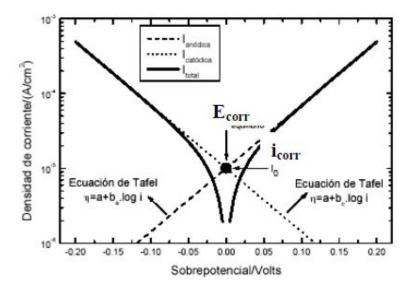


Figura 1.- Curva de polarización anódica y catódica

Estos métodos aprovechan la relación cuasi-lineal entre la corriente aplicada y la desviación del potencial que se encuentra cuando ésta última es pequeña. Por ejemplo, si se satisfacen las condiciones, no hay caída óhmica, el electrodo de referencia está próximo a la superficie de la barra y η es muy pequeño nos da la ecuación siguiente:

$$\eta/i_{ap} = B/i_{corr}$$
 (ec. 4)

con:

$$B = b_a b_c / 2,3 (b_a + b_c) (ec. 5)$$

Esta es una forma de la ecuación de Stern-Geary, que muestra que la relación de la desviación del potencial respecto a la densidad de corriente aplicada es inversamente proporcional a la densidad de la corriente de corrosión. La relación η/iap obtenida en este caso se define como la resistencia de polarización (Rp) del sistema, la cual se define como el valor límite de la relación cuando el potencial se varia a una velocidad infinitamente baja en el pequeño limite de amplitud. Así entonces, finalmente la ecuación de Stern- Geary tomará la forma:

$$i_{corr} = B / Rp (ec. 6)$$

El valor de Rp aquí obtenido no es el Rp "puro", sino que incluirá el valor de la resistencia del electrolito Rs, o sea que el verdadero valor de Rp será corregido restándole el Rs medido acorde a lo explicado en "Medición de Rs". La magnitud B en la ecuación (4) es una simple función de las pendientes de Tafel. La mayoría de los autores coinciden desde hace muchos años en tomar para el sistema acero-hormigón, B= 0,26V para acero en estado activo y B= 0,52V para estado pasivo.

CAPÍTULO II

ENSAYOS EXPERIMENTALES PARA LA OBTENCION DE LA VELOCIDAD DE CORROSION EN HORMIGONES PUZOLANICOS.

2.1 METODOLOGIA.

El presente estudio está orientado a evaluar el comportamiento del acero ASTM A42 en el hormigón Puzolánico.

Los ensayos de resistencia a la polarización se realizaron periódicamente mediciones durante 150 días (5 meses) en intervalos de 15 días por medición, mediante la técnica de Resistencia a la polarización lineal (RPL), con el Scanning Potentiostat. Las

mediciones de Ecorr fueron tomadas periódicamente para cada una de las barras de todas las probetas contra el electrodo de referencia interno de titanio incluido en cada probeta (ERI). Además se tomó el potencial del ERI contra un electrodo de referencia externo standard de Cobre/Sulfato de cobre saturado (Cu/SCS).

El electrodo de referencia externo (Cu/SCS) utilizado puede verse en la figura 2.

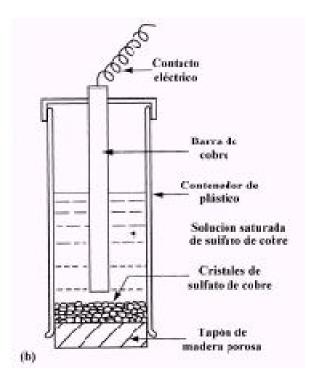


Fig. 2

Se detalla a continuación una tabla resumida indicando las mediciones que realizaron:

ORDEN DE EJECUCIÓN	ENSAYO	FRECUENCIA	MEDICIÓN EN	EQUIPO
1	Potencial de corrosión E _{corr}	QUINCENAL	C / electrodo de trabajo (2 x probeta)	Multímetro
2	Densidad de corriente I _{COrr}	QUINCENAL	C / electrodo de trabajo (2 x probeta)	Potenciogalvanostato EG&G 362
3	Resistencia	QUINCENAL	C /probeta	NILSON 400

TABLA 1.- Programación de ensayos

PROCEDIMIENTO PARA MEDICIÓN DE POTENCIALES.

1) Potenciales Ecorr.

- a) Colocar el multímetro en el rango de milivolts.
- b) Conectar el negativo del multímetro al electrodo de referencia interno de la probeta, y el positivo al electrodo de trabajo AX.
 Registrar la medición
- c) Repetir el procedimiento para el electrodo de trabajo AY.

Fig. 3.- Medición de potencial con el electrodo de referencia interno ERI

2) Potenciales de ERI vs CSC.

- a) Utilizar una esponja limpia y un recipiente con agua destilada para no introducir contaminantes en las probetas.
- b) Colocar el multímetro en el rango de milivolts.
- c) Conectar el positivo al ERI (Electrodo de Referencia Interno).
- d) Conectar el negativo del multímetro al electrodo de CSC. Apoyar el CSC sobre la esponja humedecida en agua destilada, sobre un costado de la probeta.
- e) Registrar la medición, cuando la lectura se haya estabilizado \pm 0.02 V al menos 5 minutos.
- f) Repetir para las otras caras de la probeta.
- g) Obtener promedio.

Fig. 4.- Medición de potencial contra el electrodo CSC

PROCEDIMIENTO PARA MEDICIONES DE DENSIDAD DE CORROSION icorr.

1) Conexiones entre el potenciogalvanostato y la probeta

- a) Esta operación debe realizarse sin encender el equipo y con el interruptor CELL en OFF.
- b) El cable VERDE debe conectarse al electrodo de trabajo AX.
 Para la segunda medición sobre la misma probeta, se conectará al AY.
- c) El cable BLANCO debe conectarse al electrodo de referencia.
- d) El cable ROJO debe conectarse a los dos contraelectrodos de acero inoxidable, IX e IY.
- e) El cable NEGRO se conecta a un punto de tierra (en la regleta).

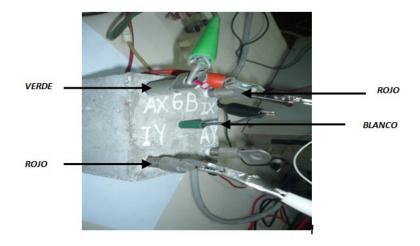


Fig. 5.- Conexiones del potenciogalvanostato

Fig. 6.- Modelo del potenciogalvanostato

2) Otras conexiones

 a) Realizar las conexiones necesarias entre las salidas de datos del potenciogalvanostato y la tarjeta de adquisición. b) Conectar el multímetro a la salida de voltaje del potenciostato para respaldar las lecturas de la tarjeta. Acompañar las lecturas con un cronómetro para registrar a los 60 s.

3) Ajuste de los controles del equipo

- a) Esta operación debe realizarse sin encender el equipo y con el interruptor CELL en OFF.
- b) Todos los botones de la hilera del extremo izquierdo deben estar "sueltos".
- c) El interruptor MODE debe estar presionado, para funcionar en modo CONTROL I.
- d) El contador INITIAL POTENTIAL se utiliza como un multiplicador sin dimensiones, que trabaja en conjunto con el selector de rango CURRENT RANGE, para indicar el valor de corriente que se aplicará al electrodo de trabajo:
- e) Por ejemplo, si se desea aplicar 20 μA , presionar el CURRENT RANGE 10 μA y colocar + 2.000 en el contador INITIAL POTENTIAL.
- f) Encender el equipo. La corriente se inyectará al momento de presionar el interruptor CELL a su posición ON.
- g) Luego de realizar las conexiones a la probeta y el ajuste de los controles, encender el equipo. Deberá tomarse la lectura

- requerida, a los 60 segundos de inyectar la corriente. Este tiempo empieza a correr al presionar el interruptor CELL.
- h) Tomar la lectura de voltaje inducido en el electrodo de trabajo,
 a los 60 segundos y apagar la inyección de corriente (CELL OFF).
- i) Se tomará una lectura para AX y luego otra para AY.

Las mediciones empezaron desde el 31 de julio del 2009 hasta el 18 de diciembre del 2009.

2.2 CONTRUCCION DE LAS PROBETAS DE HORMIGÓN ARMADO

Las probetas empleadas en el presente trabajo, están constituidas por cubos de hormigón de 10 cm de lado que contienen 4 barras de acero, dos de ASTM A-42 y dos de INOX 304 de 10 mm de diámetro posicionadas en sus vértices de manera de obtener un espesor de recubrimiento de 10 mm (Figura 7)

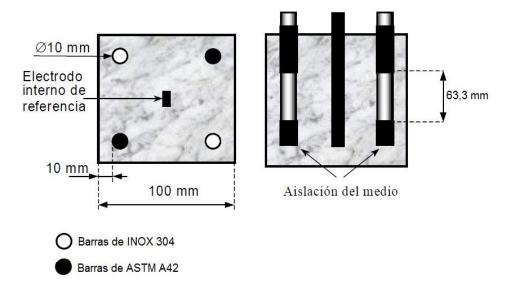


Fig. 7.- Probetas de hormigón con barras de acero

Las probetas contienen un electrodo interno de referencia de titanio colocado en su centro para facilitar la ejecución de ensayos electroquímicos. El área expuesta de las barras en contacto con el cemento es de 20 cm2.

Para confeccionar la armadura de las probetas, se tomaron barras lisas de sección redonda de acero INOX 304 Y ASTM A-42 de 10 mm de diámetro y se cortaron tramos de 100 mm de longitud.

Luego se procedió a pulir las barras usando un papel abrasivo (lija) de grano #280, puliendo en forma manual, para eliminar todo vestigio de posible óxido superficial. Luego de desengrasarlas con alcohol se procedió a dejar en cada barra un área expuesta de exactamente 20 cm2 cubriendo el resto de la barra con cinta

adhesiva plástica y luego soplando aire con una secadora para lograr un perfecto sellado. Uno de los extremos de la barra se dejo libre de cinta ya que sobresaldrá del cemento y se montará sobre él, un terminal eléctrico para facilitar la conexión del instrumento de medición.

Luego se procedió a construir el electrodo de referencia interno (ERI), que irá empotrado en el centro del cubo, equidistante de las cuatro barras que lo rodearán. Como ya se mencionó el material de dicho electrodo es titanio. (Figura 8).

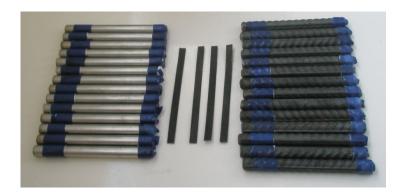


Fig. 8.- Barras de acero INOX 304 (izquierda), ASTM A-42 (derecha) y el ERI (electrodo de referencia interno) listas para ser empotradas en el cemento.

Luego se construyó un soporte de madera para poder mantener las barras y el electrodo de referencia en la posición correcta durante la colada del cemento en el molde. Es de hacer notar que el área expuesta de todas las barras y el electrodo de referencia quedarán a la misma altura dentro de la probeta (Figura 9).

Fig. 9.- Barras de acero y electrodo de referencia montados sobre el soporte de madera

Una vez montadas las barras y el electrodo de referencia en el soporte se introduce el conjunto en el molde, que previamente se ha cubierto con grasa como agente desmoldante, para poder colar el cemento sin que se adhiera a las paredes del molde ni al soporte de madera (figura 10).

Fig. 10.- Molde listo para colada del cemento. Cada molde está preparado para colar dos probetas.

Para la elaboración del mortero se utilizó cemento Puzolánico.

Las características de la mezcla utilizada se resumen en la tabla 2.

Tabla 2. Características de la mezcla utilizada en la construcción de las probetas

			DOS	IFICACION POR	m3		
	Cemento	Piedra 12,5mm	Arena	Arena de Rio	Agua		Inhibidor MCI 2006
TIPO	(Kg)	(Kg)	Triturada (Kg)	(Kg)	(Kg)	SikamentNR %	NS (Kg)
PZ-sin						1 % del contenido de	
inhibidor	500	533	291	791	210	cemento	
PZ-con						1% del contenido de	
inhibidor	500	533	291	791	210	cemento	0,6

Una vez preparado el mortero, se procedió al llenado de los moldes.

Luego, se llenó completamente el molde con cemento, se quitó el excedente, con una regleta metálica, y se cubrió el molde con un

film de polietileno para evitar la pérdida de humedad. Así las probetas quedaron listas para el proceso de curado. (Figura 11 y 12)

Fig. 11.- Molde en proceso de colado

Fig. 12.- Probetas listas para el procesos de curado

En la figura 13 se puede ver una de la probeta terminada.

Fig. 13.- Probeta de hormigón armado terminada

En la tabla 3 a continuación se presenta la programación de la elaboración de las probetas de hormigón Puzolánico.

Tabla 3. Programación de construcción de probetas

FECHA	MODELO	TIPO	CANTIDAD	OBSERVACIONES	Bacht
Martes 12-05-09	Cúbicas	sin inhibidor	8	6 cinéticas + 2 extra	Único
Miércol 13-05-09	Cilíndricas	sin inhibidor	13	12 difusión + 6 rotura	Único
	Cilíndricas	sin inhibidor	5	12 dilusion + 6 fotura	
	Cúbicas	sin inhibidor	4	ensayo acelerado	1r Bacht
Viernes 15-05-09	Cilíndricas	con inhibidor	5	rotura	
		con		6 cinéticas + 2	
	Cúbicas	inhibidor	8	extra	2o. Bacht

probetas totales

43

Para identificar cada probeta se utilizaron ciertos códigos para las cuatro condiciones de exposición

La tabla 4 resume las probetas asignadas para cada condición acorde a la codificación adoptada.

Tabla 4 Codificación de las probetas acorde a la condición de exposición.

SIGLA	DETALLE	INDICADOR
Р	PUZOLÁNICO	
2	PORTLAND TIPO 2	MEZCLA
X/I	SIN INHIBIDOR / CON INHIBIDOR	
R	RESISTENCIA DE POLARIZACIÓN Rp	
Α	ENSAYO ACELERADO	ENSAYO
D	ENSAYO DE DIFUSIÓN	
С	CÁMARA DE CARBONATACIÓN	
S	INMERSIÓN EN SAL	MEDIO
N	EXPOSICIÓN A LA ATMÓSFERA (NATURAL)	
#	NUMERO DE PROBETA	NUMERO

2.3 CONDICIONES DE EXPOSICION

Una vez que las probetas fueron desmoldadas y cumplieron su período de curado, las mismas fueron sometidas a las respectivas condiciones de exposición a saber:

- a) Expuestas al ambiente Natural de Guayaquil.
- b) Probetas parcialmente inmersas en solución conteniendo
 Cloruro de Sodio.
- c) Expuestas a atmósfera en Dióxido de Carbono.

2.3.1 Probetas expuestas al ambiente Natural de Guayaquil

Para la condición de exposición al ambiente natural sólo se dejaron las probetas sobre una superficie horizontal ubicada en el area de las oficinas del area de materiales de la FIMCP expuestas al ambiente.

2.3.2 Probetas parcialmente inmersas en solución conteniendo Cloruro de Sodio

Se prepararon soluciones al 3,5% m/m de cloruro de sodio y, usando agua destilada. Esta condición emula un entorno conteniendo agua de mar (con iones cloruro).

Las probetas expuestas en esta condición se las puede observar en la siguiente Figura 14.

Fig. 14.- Probetas parcialmente inmersas en soluciones de cloruro de sodio.

2.3.3 Probetas expuestas a atmosferas en dióxido de carbono

En esta condición se estudia la acción del dióxido de carbono presente en al aire atmosférico (carbonatación del hormigón). Para la carbonatación acelerada de las probetas se diseñó y construyó una cámara, consistente en un recipiente de plumafon (inerte frente al CO2) con su respectiva tapa, en la cual se colocó un sistema de ductos para permitir el llenado de la cámara con CO2 proveniente de un cilindro y para poder evacuar el aire presente por desplazamiento al iniciar el llenado. Se colocó también un manómetro de baja presión para controlar que siempre exista presión positiva dentro de la cámara. Dentro de la cámara se colocaron las respectivas probetas, construidos con el mismo cemento con y inhibidor para monitorear el avance del frente de carbonatación y un vaso de precipitados conteniendo una solución saturada de nitrato de magnesio hexahidratado Mg(NO3)2.6H2O (reactivo de calidad analítica y agua desmineralizada), solución que tiene la capacidad de mantener la humedad dentro del recinto de la cámara en aproximadamente 55-60% (CRC, 1999), que es la condición más favorable para la rápida carbonatación del hormigón.

Posteriormente y una vez asegurada la estanqueidad de la cámara, se llenó con CO2 (pureza 99,995%) a saturación.

Con respecto al tiempo necesario para que el frente de carbonatación llegue hasta la superficie de las barras de acero, se introdujeron en la cámara (como se mencionó anteriormente) los probetas de cemento Puzolánico con y sin inhibidor los cuales fueron extraídos, de a uno por vez a intervalos de 2 semanas. Figura 15

Fig. 15

2.4 RESULTADOS EXPERIMENTALES PARA OBTENER LA RESISTENCIA A LA POLARIZACION.

En esta parte del presente trabajo se muestran los resultados obtenidos mediante las técnicas del trazado de curvas de polarización (CP), aplicación de la técnica de resistencia a la

polarización lineal (RPL) y medición de resistencia eléctrica del hormigón, ya descritas en los capítulos anteriores, para la determinación de la velocidad de corrosión de barras de acero empotradas en las probetas sometidas a diversas condiciones de exposición. Se resumen las condiciones de exposición a las que fueron sometidas las probetas: Ambiente Natural, Parcialmente sumergidas en solución de NaCl 3,5% m/m, cámara de CO2 con 60% de humedad relativa.

TABLA 5
HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

	PROMEDIO	(FINAL)		-0,06615		-0,0402625		-0,0465125		-0,040325		-0,0446125		-0,03225		-0,026875		-0,023825		-32,96875		0,75625
RESUMEN	PROMEDIO Foots CSC	(FINAL)		-66,15		-40,2625		-46,5125		-40,325		-44,6125		-32,25		-26,875		-23,825		-65,9375		1,5125
RE	PROMEDIO Ecorr CSC	(POR PROBETA)	-59,75	-72,55	-41,925	-38,6	-46,6	-46,425	-41,025	-39,625	-40,85	-48,375	7,61-	-44,8	-25,5	-28,25	-20,1	-27,55	-70,95	-60,925	-1,175	4,2
AY	CORREGID O Ecorr vs	CSC (CON ERI vs	-51,4	-59,45	-38,075	-57,7	-43,8	-53,575	-38,875	-45,825	-38,35	-54,425	-17,5	-50,8	-22,7	-34,3	-18,45	-29,3	-68,15	-63,725	0,375	1,8
AX	CORREGIDO CORREGID Ecorr vs CSC O Ecorr vs	(CON ERI VS CSC)	-68,1	-85,65	-45,775	-19,5	-49,4	-39,275	-43,175	-33,425	-43,35	-42,325	-21,9	-38,8	-28,3	-22,2	-21,75	-25,8	-73,75	-58,125	-2,725	6,6
		CARA 2 CARA 3 CARA 4 PROMEDIO	61,1	55,55	31,725	62,7	22,2	41,325	25,825	49,375	26,65	39,275	48,2	46,5	34,1	46,8	42,35	52,3	26,65	39,275	99,875	119,3
	CSC (m/	CARA 4	79,6	58,6	23,2	81,5	24,6	56,6	23,4	70	26,7	61,9	52,3	50,6	36,2	51	35,6	47,3	26,7	61,9	107,4	132,1
	- ERI vs	CARA 3	49,4	63,4	38,5	48,7	17,5	32,4	24,2	40	19,7	29,6	60,3	32	28,4	63,1	43,4	62,5	19,7	29,6	99,4	109,3
	POTENCIAL ERI VS CSC (mV)	CARA 2 (56,1	52,4	22,7	62,5	21	42,6	28,4	47,3	31,1	38,3	37,3	48	33,2	21,4	40,3	50,8	31,1	38,3	91,4	122,1
		CARA 1	59,3	47,8	42,5	58,1	25,7	33,7	27,3	40,2	29,1	27,3	42,9	55,4	38,6	51,7	50,1	48,6	29,1	27,3	101,3	113,7
	AL DE E _{corr} (mV)	AY (-112,5	-115	-69,8	-120,4	99	-94,9	-64,7	-95,2	-89	-93,7	-65,7	-97,3	-56,8	-81,1	9'09-	-81,6	-94,8	-103	-99,5	-117,5
	POTENCIAL DE CORROSIÓN E _{CORR} (mV)	AX	-129,2	-141,2	-77,5	-82,2	-71,6	9'08-	69-	-82,8	-70	-81,6	-70,1	-85,3	-62,4	-69	-64,1	-78,1	-100,4	-97,4	-102,6	-112,7
	díse	uldə	28	2	CF	7	ម្ន	3	70	2	8	3	8	9	113	711	128	120	140	140	15.4	5
	cópigo	PROBETA	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2
	CECHA	LEGIN	14/08/2009	2007/00/1	28/08/2009	20270007	11/09/2009		25/09/2009	2007/00/07	08/10/2000	20270	23/10/2000	501015000	06/11/2009	2007	20/11/2000	500711107	0000000000	2007/71/10	05/04/2040	202
	MEDICIÓ	N No.	-	-	0	1	~	,	7		v	,	ď	,	7	-	oc	•	o	,	Ç	2

TABLA 6
HORMIGONES PUZOLANICOS CON INHIBIIDOR SOMETIDAS A CAMARA DE CARBONATACION

	PROMEDIO Front CSC	(FINAL)		-0,094175		-0,07285		-0,0727625		-0,0708625		-0,0670375		-0,05655		-0,0463125		-0,023465		-0,063525		
_)-)								
RESUMEN	PROMEDIO Front CSC	(FINAL)		-94,175		-72,85		-72,7625		-70,8625		-67,0375		-56,55		-46,3125		-23,465		-63,525		
	PROMEDIO Ecorr CSC	(POR PROBETA)	-91,675	-96,675	-62,4	-83,3	-66,225	-79,3	-63,7	-78,025	-64,725	-69,35	-54,45	-58,65	-43,4	-49,225	-28,5125	-18,4175	-43	-84,05	5,475	
AY	CORREGID PROMEDIO O Ecorr vs Ecorr CSC	CSC (CON ERI vs	-100,725	-97,425	-63,4	-85,7	-64,775	-81,2	-64,3	-82,325	-64,075	-71,8	-57,65	-60,85	-44,25	-52,325	-27,7625	-20,7675	-44,75	-88,45	5,725	
ΑX	CORREGID O Ecorr vs	CSC (CON ERI VS	-82,625	-95,925	-61,4	6'08-	-67,675	-77,4	-63,1	-73,725	-65,375	6'99-	-51,25	-56,45	-42,55	-46,125	-29,2625	-16,0675	-41,25	-79,65	5,225	200.00
		PROMEDIO	37,975	48,475	21,9	13,9	2,425	3,4	2,6	0,375	0,525	8,9	23,85	29,25	14,55	16,575	32,5375	53,7325	29,25	14,55	90,425	88 975
	SC (mV)	CARA 4	41,1	49,2	15,3	22,3	-7,3	12,4	-2,5	0,7	-2,5	21,2	8,3	33,4	14,1	18,4	22,3	6'99	33,4	14,1	84,5	0.70
	POTENCIAL ERI VS CSC (mV)	CARA 3	47,2	45,4	25	15,5	8	6,8	2,9	-9,9	15,2	9,5	28,7	29,1	8,7	20	33,25	49,3	29,1	8,7	91,3	6
	POTENCIA	CARA 2	24,4	49	18,7	-8,6	9'9-	-16,6	-3,6	5,1	-14,7	-1,1	18,7	17,5	21,8	3,4	19,3	54,23	17,5	21,8	89,4	7 00
		CARA 1	39,2	50,3	28,6	26,4	15,6	11	13,6	5,6	4,1	9	39,7	37	13,6	24,5	55,3	44,5	37	13,6	96,5	F 60
	AL DE E _{corr} (mV)	AY	-138,7	-145,9	-85,3	966-	-67,2	-84,6	6'99-	-82,7	-64,6	-80,7	-81,5	-90,1	-58,8	-68,9	-60,3	-74,5	-74	-103	-84,7	A 777
	POTENCIAL DE CORROSIÓN E _{CORR} (mV)	AX	-120,6	-144,4	-83,3	-94,8	-70,1	-80,8	-65,7	-74,1	-65,9	-75,8	-75,1	-85,7	-57,1	-62,7	-61,8	8,69-	-70,5	-94,2	-85,2	404.0
	o ju	e dia	28	07	CF	74	95	8	02		83	3	8	3	143	112	178	071	440	2	15/	5
	cópigo	PROBETA	PLR-C-1	PLR-C-2	PLR-C-1	PLR-C-2	PLR-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PLR-C-1	PI-R-C-2	PLR-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PLR-C-1	PLR-C-2	PLR-C-1	PLR-C-2	PLR-C-1	000
	EFCHA	LCIIA	44/08/2000	50070041	28/08/2000	5000000	44/00/2000	500750011	25,00,2000	50075007	08/10/2000	6007/01/00	23/10/2009	00000	06/11/2000	600711100	20141/2000	2011112003	000000000	6007/71/40	05/04/2040	0107/10/00
	MEDICIÓN	No.	·	-	,	7	ç	,	4	-	¥	,	ď	,	7	-	ex.	0	o	0	ţ	2

TABLA 7
HORMIGONES PUZOLANICO SIN INHIBIDOR SOMETIDAS A AGUA SALADA

	PROMEDIO	(FINAL)		-0,227213		-0,459875		-0,56225		-0,525363		-0,5204		-0,494663		-0,498038		-0,532113		-0,532788		-0,570788
OMEDIO PARA GRAFICA	PROMEDIO			-227,2125		-459,875		-562,25		-525,3625		-520,4		-494,6625		-498,0375		-532,1125		-532,7875		-570,7875
OMEDIO PA	CORREGID CORREGID PROMEDIO O Ecorr vs O Ecorr CSC	(POR PROBETA)	-230,55	-223,875	-464,575	-455,175	-558,275	-566,225	-517,55	-533,175	-541,875	-498,925	-483,05	-506,275	-484,35	-511,725	-532,4	-531,825	-480,175	-585,4	-576,15	-565,425
AY	CORREGID O Ecorr vs	CSC (CON ERI VS	-246,65	-201,475	-590,225	-437,625	-567,375	-528,575	-552,55	-498,875	-516,525	-453,775	-481,35	-468,725	-509,1	-486,425	-557,05	-509,625	-508,575	-555,65	-563,55	-546,875
AX	CORREGID O Ecorr vs	CSC (CON Eri Vs	-214,45	-246,275	-338,925	-472,725	-549,175	-603,875	-482,55	-567,475	-567,225	-544,075	-484,75	-543,825	-459,6	-537,025	-507,75	-554,025	-451,775	-615,15	-588,75	-583,975
		PROMED 10	-1,15	-0,575	-0,225	-7,025	-14,575	6,025	-6,15	-0,375	-13,125	-15,275	-1,05	-6,025	20,2	0,875	-1,05	-6,025	19,325	-18,35	-6,15	-0,375
	csc (mV)	CARA 4	-1,2	-0,6	0	-17,6	-7,5	-1	-16,2	-2,4	-24,9	-11,8	-24,4	-9,8	5,9	1,6	-24,4	8'6-	39,1	-7,8	-16,2	-2,4
	POTENCIAL ERI VS CSC (mV)	CARA 3	-1,1	-0,5	-0,5	-0,4	-18,1	12,6	-3,4	9'0	9'6-	-17,1	12,2	-5,9	22,3	6,5	12,2	6'5-	21,6	-35,4	-3,4	9'0
	POTENCIA	CARA 2	-1,1	-0,6	-0,3	1,5	-5,2	14,4	-4,2	10,9	-1,9	-1,5	5,2	4	28,3	8,9	5,2	4	-25,8	-28,3	-4,2	10,9
		CARA 1	-1,2	-0,6	-0,4	-11,6	-27,5	-1,9	-0,8	-10,6	-16,1	-30,7	2,8	-12,4	24,3	-13,5	2,8	-12,4	42,4	-1,9	-0,8	-10,6
	IAL DE E _{corr} (mV)	AY	-245,5	-200,9	-590	-430,6	-552,8	-534,6	-546,4	-498,5	-503,4	-438,5	-480,3	-462,7	-529,3	-487,3	-556	-503,6	-527,9	-537,3	-557,4	-546,5
	POTENCIAL DE CORROSIÓN E _{CORR} (mV)	AX	-213,3	-245,7	-338,7	-465,7	-534,6	-609,9	-476,4	-567,1	-554,1	-528,8	-483,7	-537,8	-479,8	-537,9	-506,7	-548	-471,1	-596,8	-582,6	-583,6
	, <u>r</u>	ollas	18	2	n	76	97	2	9	3	74		87	ò	100	701	116	2	130	2	144	
	cópigo	PROBETA	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2
	VICUI	rcuna	34/07/2000	20071010	14/08/2000	1100/2003	28/08/2000	50070007	11/00/2000	6007/60/1	25/00/2000	2310312003	08/10/2000	007101700	23/10/2000	23/ 10/2003	08/11/2000	6007111000	20/41/2000	200711107	04/12/2000	20217
	MEDICIÓN	No.	٠	-	,	7	۲	,	7	٠	ď	,	ď	•	7	_	o	•	0	,	ę	2

TABLA 8
HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AGUA SALADA

PROMEDIO	(FINAL)		-0,2699375		-0,4846		-0,5437125		-0,5829375		-0,4773		-0,51735		-0,4905913		-0,5691375		-0,525675		-0,522875
PROMEDIO	(FINAL)		-269,9375		-484,6		-543,7125		-582,9375		-477,3		-517,35		-490,59125		-569,1375		-525,675		-522,875
PROMEDIO Ecorr CSC	(POR Probeta)	-165,7	-374,175	-477,75	-491,45	-502	-585,425	-581,375	-584,5	-429,15	-525,45	-536,775	-497,925	-482,2	-498,9825	-599,925	-538,35	-544,15	-507,2	-532,475	-513,275
CORREGIDO Ecorr vs CSC	(CON ERI VS CSC)	-103,35	-373,375	-477,05	-488,85	-492,85	-615,225	-502,275	-549,1	-499,6	-510,75	-499,575	-472,375	-521,5	-479,4825	-639,025	-494,3	-627,85	-519,45	-545,475	-514,375
CORREGIDO CORREGIDO ECOLT VS CSC	(CON ERI VS CSC)	-228,05	-374,975	-478,45	-494,05	-511,15	-555,625	-660,475	-619,9	-358,7	-540,15	-573,975	-523,475	-442,9	-518,4825	-560,825	-582,4	-460,45	-494,95	-519,475	-512,175
	PROMEDIO	96'0-	-0,975	-21,05	-34,15	-70,45	42,825	-28,975	-82,2	-8,5	-13,85	-16,775	-8,275	12,8	-8,1825	8,275	-3,1	-6,55	-15,55	-16,775	-8,275
C(mV)	CARA 4	6'0-	-0,9	-28	-43	-78,4	-72,4	-47,6	-98,6	-28,3	-22,4	-39,5	-29,7	8,7	-26,3	1,3	9'6	-3,3	-47,1	-39,5	-29,7
POTENCIAL ERI VS CSC (mV)	CARA 3	-1,1	-1,2	-18,1	-27,5	9/-	-36,6	-29,5	-81,5	-6,3	9'8-	-19,4	0	29,7	-1,03	31,7	-3,5	11,7	-4,7	-19,4	0
POTENCI/	CARA 2	6'0-	6'0-	-19,5	-38,4	-69,2	-40,8	-24,1	-73,9	0,4	-15,5	-3,4	-1,2	16,3	8,1	47,4	-21,3	5	-1,7	-3,4	-1,2
	CARA 1	6'0-	6'0-	-18,6	-27,7	-58,2	-21,5	-14,7	-74,8	0,2	6,8-	-4,8	-2,2	-3,5	-13,5	-47,3	2,8	-39,6	-8,7	4,8	-2,2
IAL DE E _{corr} (mV)	AY	-102,40	-372,40	-456	-454,7	-422,4	-572,4	-473,3	-466,9	-491,1	-496,9	-482,8	-464,1	-534,3	-471,3	-647,3	-491,2	-621,3	-503,9	-528,7	-506,1
POTENCIAL DE CORROSIÓN E _{CORR} (mV)	AX	-227,10	-374,00	-457,4	-459,9	-440,7	-512,8	-631,5	-537,7	-350,2	-526,3	-557,2	-515,2	-455,7	-510,3	-569,1	-579,3	-453,9	-479,4	-502,7	-503,9
4	dias	48	2	33	3	N.	2	60	8	7/		87	5	102	70	118	2	130	2	144	Ē
cópigo	PROBETA	PLR-S-1	PLR-S-2	PLR-S-1	PLR-S-2	PLR-S-1	PLR-S-2	P.R.S.1	PLR-S-2	PLR-S-1	PLR-S-2	P.R.S-1	PLR-S-2	P.R.S.1	PLR-S-2	P.R.S-1	PLR-S-2	P.R.S-1	PLR-S-2	P.R.S-1	P.R.S.2
VICEOUA	rccnA	34/07/2000	2007110110	14/08/2000	202001	28/08/2000	20200	41/09/2009	00000	25/10/2000	500750007	08/10/2000	207010	23/10/2009	00000000	06/11/2009		20/11/2009		04/12/2009	
MEDICIÓN	No.		-	,	4	3	,	7		u	,	œ	,	7	-	oc	,	σ	,	ę	2

TABLA 9
HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS AL AMBIENTE NATURAL

										ΑX	ΑY		RESUMEN	
CCUA	cópigo	, <u>, , , , , , , , , , , , , , , , , , </u>	POTENCIAL DE CORROSIÓN E _{corr} (mV)	AL DE E _{corr} (mV)		POTENCIA	POTENCIAL ERI VS CSC (mV)	SC (mV)		CORREGID CORREGID O Ecorr vs O Ecorr vs		PROMEDIO Ecorr CSC	PROMEDIO Foots CSC	PROMEDIO
TECHA	PROBETA	Sell	AX	AY	CARA 1	CARA 2	CARA 3	CARA 4	PROMEDIO	CSC (CON ERI vs	CSC (CON ERI vs	(POR PROBETA)	(FINAL)	(FINAL)
34/07/2000	PX-R-N-1	48	-33,90	-33,00	-76,20	-74,50	-77,50	-76,10	-76,075	-109,975	-109,075	-109,525		
110112003	PX-R-N-2	10	-45,70	-44,40	-73,50	-72,60	-72,50	-76,80	-73,85	-119,55	-118,25	-118,9	-114,2125	-0,1142125
44/08/2009	PX-R-N-1	a	-42,5	-42,3	-63,7	-60	-64,7	-60,3	-62,175	-104,675	-104,475	-104,575		
1,00/2,003	PX-R-N-2	35	-33,2	-31,5	-58	-68,1	-62,2	-70,6	-64,725	-97,925	-96,225	-97,075	-100,825	-0,100825
28/08/2009	PX-R-N-1	97	-37,8	-35,2	-71,5	-73,5	-70,4	-69,4	-71,2	-109	-106,4	-107,7		
000,500	PX-R-N-2	49	-33,6	-29	-58,4	-58,5	-65,8	-70,5	-63,3	-96,9	-92,3	-94,6	-101,15	-0,10115
41/00/2000	PX-R-N-1	6.0	-32,7	-30,4	-79,5	-77,4	-76,7	-74,5	-77,025	-109,725	-107,425	-108,575		
2021001	PX-R-N-2	3	-30,2	-25,5	-59,1	-60,5	-75,8	-76,9	-68,075	-98,275	-93,575	-95,925	-102,25	-0,10225
25/00/2000	PX-R-N-1	7.4	-29,4	-29,8	-65,7	-70,5	-69,1	-72,6	-69,475	-98,875	-99,275	-99,075		
2007/2002	PX-R-N-2	:	-26,8	-24,3	-60,4	-53,7	-66,8	-69,7	-62,65	-89,45	-86,95	-88,2	-93,6375	-0,0936375
08/10/2009	PX-R-N-1	87	-35,6	-28,8	7'69-	-58,6	-96,3	-80,7	-76,325	-111,925	-105,125	-108,525		
207010	PX-R-N-2	5	-25,7	-22,2	-64,2	-57,3	-84,5	-76	-70,5	-96,2	-92,7	-94,45	-101,4875	-0,1014875
23/10/2000	PX-R-N-1	100	-39,1	-40	-3,5	-20,5	-15,1	-33,2	-18,075	-57,175	-58,075	-57,625		
20101200	PX-R-N-2	701	-33	-32,7	-1,05	-2,1	-27,12	-13,5	-10,9425	-43,9425	-43,6425	-43,7925	-50,70875	-0,05070875
06/11/2000	PX-R-N-1	118	-35,7	-32,7	-53,2	-44,1	-61,3	-62,9	-55,375	-91,075	-88,075	-89,575		
2007	PX-R-N-2	2	-29,7	-27,2	-41,3	-11,3	-33,5	-36,4	-30,625	-60,325	-57,825	-59,075	-74,325	-0,074325
20/11/2009	PX-R-N-1	130	-31,1	-30	-7,8	-13,2	3,74	-11,5	-7,19	-38,29	-37,19	-37,74		
20071110	PX-R-N-2	2	-31,6	-28,8	-5,03	-13,2	-22,6	-11,5	-13,0825	-44,6825	-41,8825	-43,2825	-40,51125	-0,04051125
04/12/2009	PX-R-N-1	144	-113,4	-35,7	-7,8	-13,2	3,74	-11,5	-7,19	-120,59	-42,89	-81,74		
2022	PX-R-N-2		-35,7	-39,2	-5,03	-13,2	-22,6	-11,5	-13,0825	-48,7825	-52,2825	-50,5325	-66,13625	-0,06613625

TABLA 10
HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS AL AMBIENTE NATURAL

	PROMEDIO From CSC	(FINAL)		-0,1072		-0,0921		-0,085		-0,0878375		-0,078625		-0,0825		-0,038025		-0,0473125		-0,03272		-0,04332
RESUMEN	PROMEDIO Front CSC	(FINAL)		-107,2		-92,1		-85		-87,8375		-78,625		-82,5		-38,025		-47,3125		-32,72		-43,32
	PROMEDIO Ecort CSC	(POR Probeta)	-118,65	-95,75	-90,15	-94,05	-84,05	-85,95	-86,65	-89,025	-80,7	-76,55	-81,675	-83,325	-29,975	-46,075	-43,55	-51,075	-30,7725	-34,6675	-34,3725	-52,2675
AY		CSC (CON ERI vs CSC)	-117,7	-95,85	-90,15	-93,35	-84,45	-85,95	-87,2	-87,025	-81,3	-75,95	-82,975	-81,925	-29,575	-48,975	-43,6	-47,275	-31,3225	-36,4675	-33,3225	-51,0675
AX		CSC (CON ERI VS CSC)	-119,6	-95,65	-90,15	-94,75	-83,65	-85,95	-86,1	-91,025	-80,1	-77,15	-80,375	-84,725	-30,375	-43,175	-43,5	-54,875	-30,2225	-32,8675	-35,4225	-53,4675
		PROMEDIO E	9'92-	-60,75	-58,45	-52,75	-54,65	45,85	-60,3	-52,525	-56,5	43,85	-58,275	-53,225	-2,075	-8,575	-17,1	-16,275	-6,7225	-8,4675	-6,7225	-8,4675
	SC (mV)	CARA 4	-83,60	-52,70	-67,6	-45,5	-69,1	-40,7	-76,8	-44,2	-72,8	-28,5	-75,2	-27,4	-18	-12,5	-25,3	22,5	-1,06	-1,5	-1,06	-1,5
	POTENCIAL ERI VS CSC (mV)	CARA 3	-71,10	-56,5	-53,8	-55,3	-48	-48,2	-58,7	-50,7	-51,4	47,4	89	-76,6	-8,5	-3,7	-12,5	-27,5	-15,73	-23,2	-15,73	-23,2
	POTENCIA	CARA 2	08'69-	-73,8	-51,3	-62	-44,8	-55,4	-52,7	-66,5	-52	-57,4	-39	-61,7	29,7	-3,5	-1,3	-42,3	3,1	-11,2	3,1	-11,2
		CARA 1	-81,90	-60,00	-61,1	-48,2	-56,7	-39,1	-53	-48,7	-49,8	-42,1	-50,9	-47,2	-11,5	-14,6	-29,3	-17,8	-13,2	2,03	-13,2	2,03
	AL DE E _{corr} (mV)	AY	-41,10	-35,10	-31,700	-40,600	-29,800	-40,100	-26,9	-34,5	-24,8	-32,1	-24,7	-28,7	-27,5	-40,4	-26,5	-31	-24,6	-28	-26,6	-42,6
	POTENCIAL DE CORROSIÓN E _{CORR} (mV)	АХ	-43,00	-34,90	-31,700	-42,000	-29,000	-40,100	-25,8	-38,5	-23,6	-33,3	-22,1	-31,5	-28,3	-34,6	-26,4	-38,6	-23,5	-24,4	-28,7	-45
	diae	nias	48	2	a	70	97	2	, B	8	7.4		28	5	100	701	118	2	130	200	144	<u> </u>
	cópigo	PROBETA	PLR-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PLR-N-2
	FECHA	ILCIIA	34/07/2000	2007/10/10	14/08/2000	1100/2003	28/08/2009	202000	44/00/2000	2007/2001	25/00/2000	5003/5003	08/10/2000	2007/01/00	23/40/2000	201010102	06/44/2000	001112003	20/41/2000	2011112003	04/12/2000	0025
	MEDICIÓN	No.		-	,	7	č	,	7	-	v	,	ď	,	7	-	ox	o	o	מ	Ę	2

2.5 DETERMINACION DE LA RESISTENCIA A LA POLARIZACION.

Las fórmulas que emplea el método de Rp (Resistencia de Polarización), son las siguientes:

$$Rt = Rp + R\Omega$$
 (ec. 7)

Siendo Rt, la resistencia total en la probeta; Rp la resistencia de polarización y R Ω la resistencia debida al electrolito, que se lee con el equipo Nilson 400.

$$Rt = \frac{\Delta E}{\Delta I} = \frac{(E-Ecorr)}{\Delta I}$$
 (ec. 8)

El valor de E es el que se lee a los 60 segundos de inyectada la corriente. Ecorr corresponde al potencial de corrosión leído con el multímetro, y el Δ l es la corriente aplicada.

$$Rp = \frac{B}{Icorr}$$
 (ec. 9)

El valor de B aplicado, depende de la actividad del acero:

TABLA 11

Ecorr	Estado del	Valor de B
'	acero	
> -0.200 VCSC	Pasivo	0.052 V
<-0.350 VCSC	Activo	0.026 V

Estas fórmulas se combinan y se despeja la Icorr, de la siguiente forma:

$$Icorr = \frac{B}{\left(\frac{E-Ecorr}{\Delta I}\right)-R\Omega}$$
 (ec. 10)

El valor de lcorr, está dado en Amperios. Luego para obtener la densidad de corriente icorr, se debe dividir para el área expuesta del electrodo de trabajo, que en cada caso es de 20 cm2.

Para esto se tomara como ejemplo las probetas sin inhibidor expuesta a cámara de carbonatación de medición No 4 a los 70 días de exposición con código PX-R-C1 y PX-R-C2.

Cuyos datos son los siguientes:

TABLA 12

MEDICIÓN No.	FECHA	CÓDIGO PROBETA	días	POTEI D CORRO E _{CORR} ELECT DE TRA vs I	E OSIÓN (mV) RODO ABAJO	POTE	NCIAL E	RI vs CS	C (mV)
				AX	AY	CARA 1	CARA 2	CARA 3	CARA 4
4	25/09/2009	PX-R-C-1	70	-69	-64,7	27,3	28,4	24,2	23,4
4	23/03/2009	PX-R-C-2	70	-82,8	-95,2	40,2	47,3	40	70

Sacamos un promedio de Potencial ERI vs CSC (mV) para cada probeta:

(CARA1 + CARA2 + CARA3 + CARA4)/4 = Potencial promedio

PX-R-C1prom=25,825 mV

PX-R-C2prom=49,375 mV

Con esto obtenemos un valor corregido de AX y AY para cada probeta:

PX-R-C1: AX=-69+25,825=-43,175mV

AY=-64,7+25,825=-38,875mV

PX-R-C2: AX=-82,8+49,375=-33,425mV

AY=-95,2+49,375=-45,825mV

41

Ahora sacamos un promedio de los potenciales obtenidos de los

electrodos de trabajo por cada probeta:

PX-R-C1:(AX+AY)/2=-41,025mV

PX-R-C2:(AX+AY)/2=-39,625mV

Obteniendo un valor promedio entre las dos probetas:

$$(PX-R-C1 + PX-R-C2)/ = -40,325 \text{ mV}$$

Este valor comparado con las tabla ¿? Nos indica que la probeta se

encuentra en estado pasivo donde se determina que el valor de

B = 0.052 V.

Luego con el potensiogalvanostato obtenemos un potencial a los

60seg para cada probeta:

PX-R-C1: AX=320mV; AY=468mV

PX-R-C2: AX=597mV; AY=389mV

Luego sacamos un valor corregido del potencial a los 60seg, entre el

potencial del electrodo de trabajo a los 60seg y el potencial promedio

de las caras de cada probeta calculada anteriormente:

PX-R-C1:
$$AX=25,825mV + 320mV = 345,825mV$$

 $AY=25,825mV + 468mV = 493,825mV$

PX-R-C2:
$$AX = 49,375 \text{mV} + 597 \text{mV} = 646,375 \text{mV}$$

 $AY = 49,375 \text{mV} + 389 \text{mV} = 438,375 \text{mV}$

Posteriormente luego de calcular los potenciales con los valores obtenidos del potensiostato y del multimetro, utilizandos el NILSON 400 para medir resistencias en cada electrodo de trabajo para cada probeta:

PX-R-C2:
$$AX = 3300 \Omega$$
; $AY = 3000 \Omega$

Con esto obtenemos una resistencia promedio para cada probeta:

$$PX-R-C1 = (1700 + 2200)/2 = 1950\Omega$$

$$PX-R-C2 = (3300 + 3000)/2 = 3150\Omega$$

Y finalmente obtenemos una resistencia promedio entre las 2 probetas para este medio sin inhibidor:

RESISTENCIA FINAL =
$$(1950 + 3150)/2 = 2550 \Omega$$

Ahora procedemos a calcular el icorr para AX y el icorr para el AY de cada probeta:

$$Icorr = \frac{B}{\left(\frac{E - Ecorr}{\Delta I}\right) - R\Omega}$$

PARA LA PROBETA PX-R-C1 - AX

B = 0.052 V

Ecorr =
$$345,825 - (-43,175) = 389 \text{ mV} = 0,389 \text{ V}$$

Donde el valor de E es el potencial corregido del valor obtenido a los 60seg en el potensiostato y el Ecorr es el potencial corregido del valor obtenido en el multimetro.

 ΔI es la corriente aplicada.

$$(E - Ecorr)/\Delta I = 19.450,00 \Omega$$

$$((E - Ecorr)/\Delta I) - R = 19.450,00 - 1950 = 17500 \Omega$$

Donde finalmente

$$Icorr = B/17500 = 0,052 / 17500 = 2,9714E-06$$

Obtenemos el icorr:

$$icorr = 2,971 \text{ uA} / 20 \text{ cm}2$$

$$icorr = 0,148571 uA/cm2$$

Densidad de corriente para el electrodo de referencia AX de la probeta PX-R-C1.

De este modo se calcularon todos los resultados para cada electrodo de trabajo de cada probeta mostrados en las siguientes tablas:

TABLAS DE CALCULOS DE RESULTADOS DE HORMIGONES CON Y SIN INHIBIDOR EXPUESTOS EN DIFERENTES MEDIOS

TABLA 13

A.1 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

	DECICTIVID	AD		13011,1875		16654,32		17174,7675		17695,215		18736,11		22899,69		22032,2775		21338,3475		26195,8575		28277,6475
RESUMEN	DESICTENC DESICTIVI	IA FINAL		1875		2400		2475		2550		2700		3300		3175		3075		3775		4075
	MEDICIÓN DE RESISTENCIA	R PROMEDIO	1400	2350	1800	3000	1850	3100	1950	3150	2050	3350	2500	4100	2400	3950	2300	3850	2800	4750	3100	2050
	ÓN DE RE	AY	1500	2300	2000	2800	2000	3000	2200	3000	2300	3200	2800	3900	2600	3700	2500	3700	3100	4400	3400	4800
	MEDICI	AX	1300	2400	1600	3200	1700	3200	1700	3300	1800	3500	2200	4300	2200	4200	2100	4000	2500	5100	2800	2300
	0	CORREGID O CSC AY	206,1	115,55	392,725	437,7	377,2	415,325	493,825	438,375	389,65	454,275	692,2	563,5	459,1	615,8	301,35	425,3	448,65	539,275	467,875	490,3
) seg: E(mV)	CORREGID CORREGID O CSC AY	158,1	198,55	349,725	245,7	328,2	518,325	345,825	646,375	333,65	523,275	447,2	9'929	1,804	604,8	417,35	474,3	408,65	664,275	528'885	837,3
	POTENCIAL 60 seg:	ΑV	145	09	361	3/2	398	374	897	688	363	415	7 79	215	425	699	697	373	422	009	898	371
	<u>~</u>	AX	26	143	318	483	306	477	320	269	307	514	339	630	369	929	375	422	382	629	439	718
AY	VALOD DE	B B	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052
AX	VAI OD DE	B B	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052
	rónico	PROBETA	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2	PX-R-C-1	PX-R-C-2
		FECHA	0000/00/7	6007/00/41	0006/00/06	50/07/00/07	44,000/2000	1/03/2003	0000/00/30	50/02/50/02	0000000000	6007/01/00	00/0/0//20	5007/01/67	06/44/2000	6007/11/00	20/44/2000	5007/11/07	0000/07/70	6007/71 /50	05/04/2040	0107/10/60
	MEDICIÓN	No.		_	٠	7	·		,	+	J		J	D	7	-	0	0	o	c.	40	2

TABLA 14

A.2 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

				CA	CALCULO DE icorr PARA AX	RA AX			CAI	CALCULO DE icorr PARA AY	4RA AY			RESUMEN	
MEDICIÓN	נבעתע	código	E - Ecorr	(E - Ecorr)/∆I	(E - Ecorr)/\tell ((E - Ecorr)/\tell)-R B /((E - Ecorr)/\tell)-R	/((E - Ecorr)/AI)-R	icorr	E - Ecorr	(E - Ecorr)/Al	((E - Ecorr)/AI)-R	E - Ecorr (E - Ecorr)/Δ ((E - Ecorr)/Δ)-R B /((E - Ecorr)/Δ)-R	icorr	icorr	icorr	pérdida de
No.	LECURA	PROBETA	(V)	(0hms)	(0hms)	А	uA/cm2	(V)	(Ohms)	(Shms)	А	uA/cm2	PROMEDIO	(FINAL)	espesor
-	44/08/2000	PX-R-C-1	0,2262	11.310,00	9910	5,24723E-06	0,2623613	0,2575	12.875,00	11.475,00	4,53E-06	0,2265795	0,2444704		
_	14100/2003	PX-R-C-2	0,2842	14.210,00	11860	4,38449E-06	0,2192243	0,175	8.750,00	6.400,00	8,13E-06	0,40625	0,3127371	0,2786038	3,23
٠	000000000	PX-R-C-1	0,3955	39.550,00	37750	1,37748E-06	0,0688742	0,4308	43.080,00	41.280,00	1,26E-06	0,0629845	0,0659293		
	50000000	PX-R-C-2	0,5652	56.520,00	53520	9,71599E-07	0,04858	0,4954	49.540,00	46.540,00	1,12E-06	0,0558659	0,0522229	0,0590761	69'0
۰	44/00/2000	PX-R-C-1	0,3776	18.880,00	17030	3,05344E-06	0,1526718	0,421	21.050,00	19.200,00	2,71E-06	0,1354167	0,1440442		
	1103/2003	PX-R-C-2	0,5576	27.880,00	24780	2,09847E-06	0,1049233	0,4689	23.445,00	20.345,00	2,56E-06	0,1277955	0,1163594	0,1302018	1,51
-	OUUCIOUISC	PX-R-C-1	0,389	19.450,00	17500	2,97143E-06	0,1485714	0,5327	26.635,00	24.685,00	2,11E-06	0,1053271	0,1269493		
+	23/03/2003	PX-R-C-2	0,6798	33.990,00	30840	1,68612E-06	0,0843061	0,4842	24.210,00	21.060,00	2,47E-06	0,1234568	0,1038814	0,1154154	1,34
u	08/40/2000	PX-R-C-1	0,377	18.850,00	16800	3,09524E-06	0,1547619	0,428	21.400,00	19.350,00	2,69E-06	0,1343669	0,1445644		
	00/10/2003	PX-R-C-2	0,5956	29.780,00	26430	1,96746E-06	0,0983731	0,5087	25.435,00	22.085,00	2,35E-06	0,117727	0,10805	0,1263072	1,47
c	22/40/2000	PX-R-C-1	0,4691	23.455,00	20955	2,48151E-06	0,1240754	0,7097	35.485,00	32.985,00	1,58E-06	0,0788237	0,1014496		
	2011012003	PX-R-C-2	0,7153	35.765,00	31665	1,64219E-06	0,0821096	0,6143	30.715,00	26.615,00	1,95E-06	0,0976893	0,0898994	0,0956745	1,11
7	06/41/2000	PX-R-C-1	0,4314	2,16E+04	19170	2,71257E-06	0,1356286	0,4818	2,41E+04	21.690,00	2,40E-06	0,1198709	0,1277497		
_	0011112003	PX-R-C-2	0,627	3,14E+04	27400	1,89781E-06	0,0948905	0,6501	3,25E+04	2,86E+04	1,82E-06	0,0910524	0,0929714	0,1103606	1,28
×	000011000	PX-R-C-1	0,4391	2,20E+04	19655	2,64564E-06	0,1322819	0,3198	1,60E+04	1,37E+04	3,80E-06	0,1899196	0,1611008		
	501 115003	PX-R-C-2	0,5001	2,50E+04	21155	2,45805E-06	0,1229024	0,4546	2,27E+04	1,89E+04	2,75E-06	0,1377119	0,1303071	0,1457039	1,69
0	000000000	PX-R-C-1	0,4824	2,41E+04	21320	2,43902E-06	0,1219512	0,5168	2,58E+04	2,30E+04	2,26E-06	0,1128472	0,1173992		
	04112/2003	PX-R-C-2	0,7224	3,61E+04	31370	1,65763E-06	0,0828817	0,603	3,02E+04	2,54E+04	2,05E-06	0,1023622	0,092622	0,1050106	1,22
Ŷ	05/04/2010	PX-R-C-1	0,5416	2,71E+04	23980	2,16847E-06	0,1084237	0,4675	2,34E+04	2,03E+04	2,56E-06	0,1282367	0,1183302		
	0000112010	PX-R-C-2	0,8307	4,15E+04	36485	1,42524E-06	0,0712622	0,4885	2,44E+04	1,94E+04	2,68E-06	0,1341935	0,1027279	0,110529	1,28

TABLA 15

B.1 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

	DECICTIVID	AD		10408,95		16654,32		13878,6		14399,0475		13184,67		18389,145		18042,18		17001,285		21511,83		22032,2775
RESUMEN	DECICTENC DECICTIVID	IA FINAL		1500		2400		2000		2075		1900		2650		2600		2450		3100		3175
	ISTENCIA	R PROMEDIO	1550	1450	2000	2800	2000	2000	2150	2000	1700	2100	2750	2550	2700	2500	2550	2350	3400	2800	3350	3000
	MEDICIÓN DE RESISTENCIA	AY	1900	1500	2500	1900	2500	2200	2700	2000	1700	2100	3500	2800	3200	2700	3200	2400	3900	2800	4200	3000
	MEDIC	AX	1200	1400	1500	3700	1500	1800	1600	2000	1700	2100	2000	2300	2200	2300	1900	2300	2900	2800	2500	3000
	0	CORREGID O CSC AY	130,975	113,475	452,9	345,9	451,425	338,4	470,6	501,375	405,525	469,9	586,885	401,25	518,55	408,575	639,5375	342,7325	618,25	408,55	786,425	535,975
) seg: E(mV)	CORREGID O CSC AX	114,975	85,475	330,9	289,9	311,425	276,4	323,6	270,375	346,525	326,9	523,85	516,25	370,55	326,575	544,5375	217,7325	405,25	399,55	521,425	431,975
	POTENCIAL 60 seg:	AY	93	59	431	332	644	335	468	501	405	194	999	372	504	392	209	588	689	394	969	<i>L</i> ÞÞ
	ď	AX	11	37	309	276	309	273	321	270	346	318	200	487	356	340	512	164	376	385	431	343
AY	VALOD DE	B B	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052
AX	VALOD DE	B B	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052
	cónico	PROBETA	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2	PI-R-C-1	PI-R-C-2
		FECHA	4470079000	14/00/2003	00/06/00/06	50/02/00/07	4470079000	6002/60/1	0000/00/36	50/03/50/03	00/0/01/00	6007/01/00	92/40/9000	5002/01/07	000447000	600711100	00/44/9000	500711177	0000000000	6007/71 /40	05/04/2040	0102/10/00
	MEDICIÓN	No.	•	-	í	7	,	C	•	4	7	C	y	o	7	-	0		o	Ċ	40	

TABLA 16

B.2 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A CÁMARA DE CARBONATACIÓN

RESUMEN	i corr i corr pérdida de	PROMEDIO (FINAL) espesor	0,285609	0,3135394 0,2995742 3,48	0,0611119	0,0701331 0,0656225 0,76	0,1312725	0,1513485 0,1413105 1,64	0,1285036	0,1333187 0,1309112 1,52	0,1284891	0,1040624 0,1259368 0,127213 1,48	0,0938722	0,113082 0,1034771 1,20	0,1235039	0,1265515 0,1369928 0,1302483 1,51	0,0843745 0,0919195	0,2213348 0,1566271 1,82	0,1123897	0,1203936 0,1163916 1,35	0,0943105	
ΑY	Ecorr)/Aŋ-F i corr	A uA/cm2	5,18E-06 0,2590932	5,72E-06 0,2858714	1,05E-06 0,0523877	1,29E-06 0,0644202	2,18E-06 0,1091978	2,74E-06 0,1369863	2,11E-06 0,1057125	1,91E-06 0,095641	2,39E-06 0,1193756	2,08E-06 0,1040624	1,76E-06 0,0877637	2,53E-06 0,1264899	2,04E-06 0,1022013	2,53E-06 0,1265515	1,69E-06 0,0843745	3,29E-06 0,164297	1,75E-06 0,087395	2,36E-06 0,1179138	1,46E-06 0,0728597	
CALCULO DE icorr PARA AY	(E - Ecorr)/AI ((E - Ecorr)/AI)-RB (((E - Ecorr)/AI)-R	(Shms)	10.035,00 5,1	9.095,00	49.630,00	40.360,00 1,2	23.810,00 2,1	18.980,00 2,7	24.595,00 2,1	27.185,00 1,9	21.780,00 2,3	24.985,00 2,0	29.625,00 1,7	20.555,00 2,5	2,54E+04 2,0	2,05E+04 2,5	3,08E+04 1,6	1,58E+04 3,2	2,98E+04 1,7	2,21E+04 2,3	3,57E+04 1,4	
CALCI	_	(Ohms)	11.585,00	10.545,00	51.630,00	43.160,00	25.810,00	20.980,00	26.745,00	29.185,00	23.480,00	27.085,00	32.375,00	23.105,00	2,81E+04	2,30E+04	3,34E+04	1,82E+04	3,32E+04	2,49E+04	3,90E+04	
	E-Ecorr	2	0,2317	0,2109	0,5163	0,4316	0,5162	0,4196	0,5349	0,5837	0,4696	0,5417	0,6475	0,4621	0,5628	0,4609	0,6673	0,3635	699'0	0,497	0,7807	
	icorr	uA/cm2	0,3121248	0,3412073	0,0698362	0,075846	0,1533471	0,1657106	0,1512947	0,1709964	0,1376025	0,1478113	0,0999808	0,0996741	0,1448065	0,1474341	0,0994644	0,2783726	0,1373844	0,1228733	0,1157614	
PARA AX	(E - Ecorr)/AI ((E - Ecorr)/AI)-RB /((E - Ecorr)/AI)-R	A	6,2425E-06	6,82415E-06	1,39672E-06	1,51692E-06	3,06694E-06	3,31421E-06	3,02589E-06	3,41993E-06	2,75205E-06	2,95623E-06	1,99962E-06	1,99348E-06	2,89613E-06	2,94868E-06	1,98929E-06	5,56745E-06	2,74769E-06	2,45747E-06	2,31523E-06	
CALCULO DE icorr PARA AX	((E - Ecorr)/AI)-R	(Shms)	8330	1620	37230	34280	16955	15690	17185	15205	18895	17590	20092	26085	17955	17635	26140	9340	18925	21160	22460	
CALC	(E - Ecorr)/∆I	(Shms)	9.880,00	9.070,00	39.230,00	37.080,00	18.955,00	17.690,00	19.335,00	17.205,00	20.595,00	19.690,00	28.755,00	28.635,00	2,07E+04	2,01E+04	2,87E+04	1,17E+04	2,23E+04	2,40E+04	2,58E+04	
	E-Ecorr	(X)	0,1976	0,1814	0,3923	0,3708	0,3791	0,3538	0,3867	0,3441	0,4119	0,3938	1575,0	0,5727	0,4131	0,4027	0,5738	0,2338	0,4465	0,4792	0,5162	
	código	PROBETA	PLR-C-1	PLR-C-2	PLR-C-1	PLR-C-2	PLR-C-1	PLR-C-2	PLR-C-1	PLR-C-2	PLR-C-1	PLR-C-2	PLR-C-1									
	VII VIII	ECIA E	44/00/2000	14/00/2003	0000/00/00	20100100	44/00/2000	1103/2003	00000000	2002/2002	000000000	00/10/2002	000000000	500700105	06/44/2000	00/11/5003	0000144000	500711107	000000000	04/12/2003	DEMAPORA.	
	MEDICIÓN	No.	-	_	,	7	٥	•	-	+	3		ď	0	7	_	0	0	0		40	=

TABLA 17
C.1 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AGUA SALADA

	DECICTIVID	AD		4840,16175		4631,98275		4527,89325		5603,48475		5291,21625		4614,6345		5551,44		5534,09175		5256,51975		5742,27075
RESUMEN	DECICTENC	IA FINAL		697,5		667,5		652,5		807,5		762,5		665		800		797,5		757,5		827,5
	STENCIA	R PROMEDIO	720	675	099	685	625	680	815	800	770	755	725	605	820	780	790	805	820	695	845	810
	MEDICIÓN DE RESISTENCIA	AY	740	640	099	099	640	029	870	160	810	800	700	580	840	069	800	720	840	750	910	790
	MEDICI	AX	200	710	640	710	610	069	160	840	730	710	750	630	800	870	780	890	800	640	780	830
	(CORREGID O CSC AY	-5,15	112,425	-557,225	-398,025	-518,575	-438,975	-458,15	-388,375	-468,125	-393,275	-457,05	-385,025	-398,8	-422,125	-470,05	-418,025	-338,675	-483,35	-486,15	-483,375
	seg: E(mV)	CORREGID O CSC AX	139,85	70,425	-284,225	-450,025	-483,575	-558,975	-364,15	-508,375	-499,125	-473,275	-391,05	-414,025	-388,8	-443,125	-415,05	-509,025	-217,675	-550,35	-556,15	-512,375
	POTENCIAL 60 seg:	AY	4	113	-557	-391	-504	-445	-452	-388	-455	-378	-456	-379	-419	-423	-469	-412	-358	-465	-480	-483
	PO	AX	141	71	-284	-443	-469	-565	-358	-508	-486	-458	-390	-408	-409	-444	414	-503	-237	-532	-550	-512
AY	VAI OD DE	B	0,052	0,052	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026
AX	VALOP DE	B	0,052	0,052	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026
	cónico	PROBETA	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2	PX-R-S-1	PX-R-S-2
		FECHA	24/07/2000	21/01/2003	44,007,000	14/00/2003	00/00/00/00	50/00/5003	44/00/2000	11/03/2003	0000/00/36	50/02/50/02	00/10/2000	00/10/2003	93/40/9000	5007101767	00014470000	00/11/2003	20/44/2000	500711107	04/42/2000	04/12/2003
	MEDICIÓN	No.		-	٠	7	٠		,	4	J		Ų	o	7	_	0		0	r.	4	2

TABLA 18
C.2 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AGUA SALADA

CALCIII O DE Locas DADA AV	VA AUA DE L'AND AN	N A MAG Social DA DA AV	VA AUX				12182	10 DE 1991	VA AUA				
		CALC	ULO UE ICOTT	AKA AX			CALCL	CALCULO DE ICOTI PARA AY	PAKA AY			RESUMEN	
código	E-Ecorr	(E - Ecorr)/∆I	(E - Ecorr)/AIJ-FIB	(E - Ecorr)/ΔI ((E - Ecorr)/ΔI)-RB (((E - Ecorr)/ΔI)-R	icorr	E-Ecorr (E - Ecorr)/AI	- Ecorr)/Alj-Æ	(E - Ecorr)/A) (E - Ecorr)/A))-R) ((E - Ecorr)/A))-R	icorr	icorr	icorr	pérdida de
PROBETA	(N)	(Ohms)	(Ohms)	А	uA/cm2	(V)	(Shms)	(Shms)	А	uA/cm2	PROMEDIO	(FINAL)	espesor
PX-R-S-1	0,3543	17.715,00	16995	3,05972E-06	0,1529862	0,2415	12.075,00	11.355,00	4,58E-06	0,228974	0,1909801		
PX-R-S-2	0,3167	15.835,00	15160	3,43008E-06	0,171504	0,3139	15.695,00	15.020,00	3,46E-06	0,1731025	0,1723032 0,1816417	0,1816417	2,11
PX-R-S-1	0,0547	5.470,00	4820	5,39419E-06	0,2697095	0,033	3.300,00	2.650,00	9,81E-06	0,490566	0,3801378		
PX-R-S-2	0,0227	2.270,00	1585	1,64038E-05	0,8201893	0,0396	3.960,00	3.275,00	7,94E-06	0,3969466	0,6085679 0,4943529	0,4943529	5,73
PX-R-S-1	9590'0	3.280,00	2655	9,79284E-06	0,4896422	0,0488	2.440,00	1.815,00	1,43E-05	0,7162534	0,6029478		
PX-R-S-2	0,0449	2.245,00	1565	1,66134E-05	0,8306709	9680'0	4.480,00	3.800,00	6,84E-06	0,3421053	0,5863881	0,594668	6,90
PX-R-S-1	0,1184	5.920,00	5105	5,09305E-06	0,2546523	0,0944	4.720,00	3.905,00	90-399'9	0,3329065	0,2937794		
PX-R-S-2	1650'0	2.955,00	2155	1,2065E-05	0,6032483	0,1105	5.525,00	4.725,00	5,50E-06	0,2751323	0,4391903 0,3664848	0,3664848	4,25
PX-R-S-1	0,0681	3.405,00	2635	9,86717E-06	0,4933586	0,0484	2.420,00	1.650,00	1,58E-05	0,7878788	0,6406187		
PX-R-S-2	0,0708	3.540,00	2785	9,33573E-06	0,4667864	0,0605	3.025,00	2.270,00	1,15E-05	0,5726872	0,5197368 0,5801778	0,5801778	6,73
PX-R-S-1	0,0937	4.685,00	3960	6,56566E-06	0,3282828	0,0243	1.215,00	490,00	5,31E-05	2,6530612	1,490672		
PX-R-S-2	0,1298	6.490,00	5885	4,41801E-06	0,2209006	0,0837	4.185,00	3.580,00	7,26E-06	0,3631285	0,2920145 0,8913433	0,8913433	10,34
PX-R-S-1	0,0708	3.540,00	2720	9,55882E-06	0,4779412	0,1103	5.515,00	4.695,00	5,54E-06	0,2768903	0,3774157		
PX-R-S-2	0,0939	4.695,00	3915	6,64112E-06	0,3320562	0,0643	3.215,00	2.435,00	1,07E-05	0,5338809	0,4329685 0,405192	0,4051921	4,70
PX-R-S-1	0,0927	4.635,00	3845	6,76203E-06	0,3381014	0,087	4.350,00	3.560,00	7,30E-06	0,3651685	0,351635		
PX-R-S-2	0,045	2.250,00	1445	1,79931E-05	0,899654	0,0916	4.580,00	3.775,00	90-368'9	0,3443709	0,6220124 0,4868237	0,4868237	5,65
PX-R-S-1	0,2341	11.705,00	10885	2,38861E-06	0,1194304	0,1699	8.495,00	7.675,00	3,39E-06	0,1693811	0,1444058		
PX-R-S-2	0,0648	3.240,00	2545	1,02161E-05	0,5108055	0,0723	3.615,00	2.920,00	8,90E-06	0,4452055	0,4780055 0,3112056	0,3112056	3,61
PX-R-S-1	0,0326	1.630,00	785	3,3121E-05	1,656051	0,0774	3.870,00	3.025,00	8,60E-06	0,4297521	1,0429015		
PX-R-S-2	0,0716	3.580,00	2770	9,38628E-06 0,4693141	0,4693141	0,0635	3.175,00	2.365,00	1,10E-05	0,5496829	1,10E-05 0,5496829 0,5094985	0,7762	9,00

TABLA 19
D.1 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AGUA SALADA

	DECICTIVID			4805,46525		5239,1715		4510,545		5829,012		8292,4635		5152,43025		5256,51975		6054,53925		4978,94775		5343,261
RESUMEN	DECICTENC	IA FINAL		692,5		755		099		840		1195		742,5		2,737		872,5		717,5		770
	STENCIA	R PROMEDIO	57.2	099	008	710	502	969	875	908	1600	062	058	929	820	969	915	830	710	725	840	200
	MEDICIÓN DE RESISTENCIA	AY	770	920	810	280	710	520	940	860	1800	700	006	530	830	620	940	770	740	099	870	029
	MEDIC	AX	089	770	790	840	700	029	810	750	1400	880	800	740	810	770	890	890	089	800	810	730
	0	CORREGID O CSC AY	291,05	-261,975	36,98	-324,15	-333,45	-536,825	-360,975	-389,2	-382,5	-425,85	-293,775	-286,275	-200,2	-397,1825	-558,725	-388,1	-538,55	-420,55	-452,775	-412,275
	L 60 seg: E (mV)	CORREGID O CSC AX	72,05	-208,975	-454,05	-443,15	-358,45	-429,825	-569,975	-465,2	-207,5	-442,85	-418,775	-226,275	-344,2	-424,1825	-458,725	-436,1	-353,55	-427,55	-475,775	-412,275
	POTENCIAL 6	AY	767	197-	89	067-	-263	767-	-332	206-	-374	-412	117-	8/2-	-213	686-	299-	-385	-532	405	984-	-404
	ď	AX	73	-208	433	-409	-288	-387	-541	-383	-199	-429	-402	-218	-357	-416	-467	-433	-347	412	-459	404
AY	VALOD DE	B	0,052	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026
AX	VALOD DE	B	0,052	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026	0,026
	cónico	PROBETA	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2	PI-R-S-1	PI-R-S-2
		FECHA	24/07/2000	01/01/2003	44/09/2000	14/00/2003	00/06/20/86	50/02/00/07	4470079000	11/03/2003	0000/00/36	6002/60/62	00/40/2000	6007/01/00	00/0/01/06	50/10/2003	0004479000	6007/11/00	00/44/0000	5007/11/07	0000000000	04/12/2003
	MEDICIÓN	No.	•	-	٠	7	3		_	4	3	c	ú	D	7	-	۰	0	c		Ŷ	

TABLA 20
D.2 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AGUA SALADA

		pérdida d	espesor		2,19		3,47		2,86		2,71		3,53		1,64		3,20		3,54		4,14		5,53
	RESUMEN	icorr	(FINAL)		0,1884685		0,2994164		0,2464445		0,2336444		0,3047321		0,1417939		0,2761728		0,3050646		0,3565575		0,4767239
		icorr	PROMEDIO	0,1594755	0,2174614	0,4091873	0,0824873 0,1896455	0,1832652	0,3096239	0,2830903	0,1841984	0,2618219	0,3762663 0,3476423	0,1629225	0,1206654	0,2005956		0,3648087	0,2901786 0,2453206	0,3133399	0,3997751	0,6545494	0,2951192 0,2988984 0,4767239
		icorr	uA/cm2	0,1368781	0,2647658	0,0256917	0,0824873	0,1789401	0,3909774	0,2100162	0,1808067	0,3055229	0,3762663	0,1377119	0,1499423	0,0852739	0,380117 0,35175	0,4193548	0,2901786	0,3462051	0,3080569 0,3997751	0,342556	0,2951192
VA A A A A	PAKA AT	H-(IA/(1705 - 50017)/AJ-14 /([E - Ecorr)/AJ]-F	A	2,74E-06	5,30E-06	5,14E-07	1,65E-06	3,58E-06	7,82E-06	4,20E-06	3,62E-06	6,11E-06	7,53E-06	2,75E-06	3,00E-06	1,71E-06	7,60E-06	8,39E-06	5,80E-06	6,92E-06	6,16E-06	6,85E-06	5,90E-06
III O DE Sorr	CALCULU DE ICOTI PARA AT	F - Ecorr)/Δι)-A	(SmHO)	18.995,00	4.910,00	50.600,00	15.760,00	7.265,00	3.325,00	6.190,00	7.190,00	4.255,00	3.455,00	9.440,00	8.670,00	15.245,00	3.420,00	3.100,00	4,48E+03	3,76E+03	4,22E+03	3,80E+03	4,41E+03
211/2	CALL		(SmyO)	19.720,00	5.570,00	51.400,00	16.470,00	7.970,00	3.920,00	7.065,00	7.995,00	5.855,00	4.245,00	10.290,00	9.305,00	16.065,00	4.115,00	4.015,00	5,31E+03	4,47E+03	4,95E+03	4,64E+03	5,11E+03
		E-Ecorr	(X)	0,3944	0,1114	0,514	0,1647	0,1594	0,0784	0,1413	0,1599	0,1171	0,0849	0,2058	0,1861	0,3213	0,0823	0,0803	0,1062	0,0893	6860'0	0,0927	0,1021
		icorr	uA/cm2	0,1820728	0,1701571	0,7926829	0,2968037	0,1875902	0,2282704	0,3561644	0,1875902	0,2181208	0,3190184	0,1881331	0,0913884	0,3159174	0,3233831	0,3102625	0,2004626	0,2804746	0,4914934	0,9665428	0,3026775
VA A0A0	PAKA AX	B /((E - Ecorr)/ΔI)-R	A	3,64146E-06	3,40314E-06	1,58537E-05	5,93607E-06	3,7518E-06	4,56541E-06	7,12329E-06	3,7518E-06	4,36242E-06	6,38037E-06	3,76266E-06	1,82777E-06	6,31835E-06	6,46766E-06	6,20525E-06	4,00925E-06	5,60949E-06	9,82987E-06	1,93309E-05	6,05355E-06
CIII O DE Socre	CALCULU DE ICOIT PARA AX	(E - Ecorr)/∆I) ((E - Ecorr)/∆I)-R	(0hms)	14280	7640	1640	4380	6930	5695	3650	6930	2960	4075	6910	14225	4115	4020	4190	6485	4635	2645	1345	4295
14.7	CAL	(E - Ecorr)/∆I	(Ohms)	15.005,00	8.300,00	2.440,00	5.090,00	7.635,00	6.290,00	4.525,00	7.735,00	7.560,00	4.865,00	7.760,00	14.860,00	4.935,00	4.715,00	5.105,00	7,32E+03	5,35E+03	3,37E+03	2,19E+03	5,00E+03
		E-Ecorr	(V)	0,3001	0,1660	0,0244	0,0509	0,1527	0,1258	9060'0	0,1547	0,1512	0,0973	0,1552	0,2972	0,0987	0,0943	0,1021	0,1463	0,1069	0,0674	0,0437	6660'0
		código	PROBETA	PLR-S-1	PLR-S-2	PRRS-1	PHR-S-2	PLR-S-1	PHR-S-2	PLR-S-1	PLR-S-2	PLR-S-1	PHR-S-2	PLR-S-1	PLR-S-2	PRRS-1	PLR-S-2	PLR-S-1	PLR-S-2	PLR-S-1	PLR-S-2	PLR-S-1	P.R.S.2
		CCOUN	TECHA	24/07/2000	0110115000	44/08/2000	1100/2003	00/02/20/20	2010012003	44/00/2000	1103/2003	00/00/00/30	5310315003	00/4/1/2000	00/10/2009	02/11/1/00/00	501 1015003	06/11/2000	001117002	20/44/2000	5011115003	0000000000	6007/71/40
		MEDICIÓN	No.	-	-	,		٠		,		7		ä		7	_	ŏ		0		40	\Box

TABLA 21

E.1 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

	PECICTIVID	AD		12490.74		17695.215		22379.2425		30879.885		35390.43		36084.36		40768.3875		44064.555		45972.8625		56208.33
RESUMEN	DECICTENC D	IA FINAL		1800		2550		3225		4450		5100		5200		5875		6350		6625		8100
		R PROMEDIC	1950	1650	2800	2300	3550	2900	4650	4250	9999	4550	9999	4850	6500	5250	00/9	0009	7250	0009	8200	8000
	MEDICIÓN DE RESISTENCIA	AY	1900	1500	2800	2200	3700	2800	4600	3700	5900	4500	5400	4600	6700	5200	0069	0009	7400	6300	8200	8200
	MEDICIÓ	AX	2000	1800	2800	2400	3400	3000	4700	4800	5400	4600	9200	5100	6300	9300	0099	0009	7100	9200	8200	7800
)	CORREGID O CSC AY	62.925	307.15	131.825	175.275	406.8	409.7	420.975	456.925	501.525	480.35	545.675	494.5	554.925	544.0575	481.625	563.375	522.81	317.9175	669.81	751.9175
	seg: E(mV)	CORREGID O CSC AX	396.925	278.15	223.825	154.275	8.703	341.7	586.975	358.925	660.525	421.35	633.675	386.5	697.925	451.0575	701.625	615.375	817.81	446.9175	860.81	716.9175
	POTENCIAL 60 seg:	AY	139	381	194	240	478	473	498	525	571	543	622	599	573	999	537	594	530	331	229	292
	PC	AX	473	352	286	219	629	405	664	427	730	484	710	457	716	462	157	646	825	460	898	730
AY	VALOR DE	B	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052
AX	VAI OP DE	B B	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052
	cónigo	PROBETA	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2	PX-R-N-1	PX-R-N-2
		FECHA	24/07/2000	31/01/2003	44/08/2000	6007/00/41	0000/00/00	_	44/00/2000	1/03/2003	0000/00/30	50/02/50/62	00/10/2000	00/10/2003	03/10/2000	5007/01/67	000/44/9000	6007/11/00	00/44/0000	6007/11/07	0000/07/70	04/12/2003
	MEDICIÓN	No.	,	-	,	7	3			+	J	9	Ų	0	7	-	0	0	0	c.	40	2

TABLA 22
E.2 HORMIGONES PUZOLANICOS SIN INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

				CALC	CALCULO DE ICORY PARA AX	PARA AX			CALC	CALCULO DE icorr PARA AY	PARA AY			RESUMEN	
MEDICIÓN	VICTORY	cóblgo	E - Ecorr	(E - Ecorr)/∆I	(E - Ecorr)/Alj-R	(E - Ecorr)/Al ((E - Ecorr)/Al)-R B /((E - Ecorr)/Al)-R	icorr	E - Ecorr	(E - Ecorr)/∆ı	((E - Ecorr)/Alj-R	(E - Ecorr)/Al ((E - Ecorr)/Al)-R B /((E - Ecorr)/Al)-R	icorr	icorr	icorr	pérdida de
No.	LECUA	PROBETA	(V)	(Ohms)	(Shms)	А	uA/cm2	(V)	(Ohms)	(Ohms)	А	uA/cm2	PROMEDIO	(FINAL)	espesor
-	24/07/2000	PX-R-N-1	0.5069	25,345.00	23395	2.2227E-06	0.11113486	0.172	8,600.00	6,650.00	7.82E-06	0.39097744 0.25105615	0.25105615		
-	0110115000	PX-R-N-2	0.3977	19,885.00	18235	2.85166E-06	0.14258294	0.4254	21,270.00	19,620.00	2.65E-06	0.13251784	0.13251784 0.13755039	0.19430327	2.25
,	14/08/2000	PX-R-N-1	0.3285	32,850.00	30050	1.73045E-06	0.08652246	0.2363	23,630.00	20,830.00	2.50E-06	0.12481997 0.10567122	0.10567122		
7	2007001	PX-R-N-2	0.2522	25,220.00	22920	2.26876E-06	0.11343805	0.2715	27,150.00	24,850.00	2.09E-06	0.10462777 0.10903291		0.10735206	1.25
٠	DAINRIDAND	PX-R-N-1	0.6168	30,840.00	27290	1.90546E-06	0.09527299	0.5132	25,660.00	22,110.00	2.35E-06	0.11759385 0.10643342	0.10643342		
,	20101170102	PX-R-N-2	0.4386	21,930.00	19030	2.73253E-06	0.13662638	0.502	25,100.00	22,200.00	2.34E-06	0.11711712	0.11711712 0.12687175	0.11665258	1.35
7	44/00/2000	PX-R-N-1	0.6967	34,835.00	30185	1.72271E-06	0.0861355	0.5284	26,420.00	21,770.00	2.39E-06	0.11943041 0.10278295	0.10278295		
	110012000	PX-R-N-2	0.4572	22,860.00	18610	2.7942E-06	0.13970983	0.5505	27,525.00	23,275.00	2.23E-06	0.11170784	0.11170784 0.12570884	0.1142459	1.33
u	04/100/2000	PX-R-N-1	0.7594	37,970.00	32320	1.60891E-06	0.08044554	0.6008	30,040.00	24,390.00	2.13E-06	0.10660107 0.09352331	0.09352331		
2	2010312003	PX-R-N-2	0.5108	25,540.00	20990	2.47737E-06	0.12386851	0.5673	28,365.00	23,815.00	2.18E-06	0.10917489 0.1165217		0.1050225	1.22
œ	00/1/1/1/00	PX-R-N-1	0.7456	37,280.00	31730	1.63883E-06	0.08194138	0.6508	32,540.00	26,990.00	1.93E-06	0.09633197	0.08913668		
>	0010100	PX-R-N-2	0.4827	24,135.00	19285	2.6964E-06	0.13481981	0.5872	29,360.00	24,510.00	2.12E-06	0.10607915	0.10607915 0.12044948	0.10479308	1.22
7	23/10/2000	PX-R-N-1	0.7551	37,755.00	31255	1.66373E-06	0.08318669	0.613	30,650.00	24,150.00	2.15E-06	0.10766046 0.09542357	0.09542357		
-	2010107	PX-R-N-2	0.495	24,750.00	19500	2.66667E-06	0.13333333	0.5877	29,385.00	24,135.00	2.15E-06	0.10772737	0.10772737 0.12053035	0.10797696	1.25
•	08/44/2000	PX-R-N-1	0.7927	39,635.00	32935	1.57887E-06	0.07894337	0.5697	2.85E+04	2.18E+04	2.39E-06	0.11934818 0.09914577	0.09914577		
>	200711100	PX-R-N-2	0.6757	33,785.00	27785	1.87151E-06	0.09357567	0.6212	3.11E+04	2.51E+04	2.08E-06	0.103751	0.103751 0.09866333	0.09890455	1.15
o	20//11/2000	PX-R-N-1	0.8561	42,805.00	35555	1.46252E-06	0.07312614	95.0	2.80E+04	2.08E+04	2.51E-06	0.1253012	0.09921367		
>	2004	PX-R-N-2	0.4916	2.46E+04	18580	2.79871E-06	0.13993541	0.3598	1.80E+04	1.20E+04	4.34E-06	0.21684737	0.21684737 0.17839139	0.13880253	1,61
Ų.	04/12/2000	PX-R-N-1	0.9814	4.91E+04	40870	1.27233E-06	0.06361634	0.7127	3.56E+04	2.74E+04	1.90E-06	0.09476946	0.0791929		
2	2007/71/10	PX-R-N-2	0.7657	3.83E+04	30285	1.71702E-06	0.08585108	0.8042	4.02E+04	3.22E+04	1.61E-06	0.08072027	0.08072027 0.08328568 0.08123929	0.08123929	0.94

TABLA 23 F.1 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

	DECICTIVID	AD		13358.1525		15960.39		20991.3825		26889.7875		32788.1925		36951.7725		41635.8		46319.8275		46666.7925		56902.26
RESUMEN	DECICTENC			1925		2300		3025		3875		4725		5325		0009		6675		6725		8200
	STENCIA	R PROMEDIO	2200	1650	2400	2200	3100	2950	4050	3700	4900	4550	9529	5400	0009	0009	0099	05/9	0089	0999	0068	7500
	MEDICIÓN DE RESISTENCIA	AY	2400	1700	2000	2200	2600	3000	3300	3800	3900	4800	4800	5400	9009	0009	0099	7000	9009	0089	0002	7400
	MEDIC	AX	2000	1600	2800	2200	3600	2900	4800	3600	0069	4300	00/9	5400	6400	0009	00//	0099	8000	0099	10800	0092
	0	CORREGID O CSC AY	362.4	311.25	193.55	123.25	458.35	412.15	513.7	456.475	591.5	551.15	596.725	622.775	650.925	725.425	630.9	635.725	598.2775	468.5325	767.2775	629.5325
) seg: E (mV)	CORREGID O CSC AX	352.4	338.25	213.55	238.25	469.35	459.15	2'089	499.475	9'829	602.15	630.725	922.389	926:609	659.425	6:01/	677.725	678.2775	693.5325	774.2775	765.5325
	POTENCIAL 60 seg:	AY	439.00	372	252	176	513	458	574	609	849	969	999	9/9	653	734	849	652	909	477	174	638
	ď	AX	429.00	399	272	351	524	909	591	552	630	646	689	739	612	899	728	694	685	702	781	774
AY	VALOD DE	B B	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052
AX	VALOD DE	VALON DL B	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052
	cónico	PROBETA	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2	PI-R-N-1	PI-R-N-2
		FECHA	2410719000	31/01/2003	44,002/2000	14/00/2003	0000/00/00	50/00/5003	44/00/2000	6002/60/1	0006/00/26	50/02/50/02	00/10/1000	00/10/2003	0014019000	5007/01/07	00/44/9000	6007111/00	20/14//2000	500711107	0000000000	04/12/2003
	MEDICIÓN	No.	,	-	٠	7	·		,	4	J		ų		7	-	0	0	٥		ç	

TABLA 24

F.2 HORMIGONES PUZOLANICOS CON INHIBIDOR SOMETIDAS A AMBIENTE NATURAL

				CALC	CALCULO DE icorr PARA AX	PARA AX			CAL	CALCULO DE ICOTT PARA AY	PARA AY			RESUMEN	
MEDICIÓN	CCCUA	CÓDIGO	E - Ecorr	(E - Ecorr)/AI	((E - Ecorr)/Δη-R	(E - Ecorr)/Δ1 ((E - Ecorr)/Δ1β-R B ((E - Ecorr)/Δ1β-R	icorr	E-Ecorr	(E - Ecorr)/∆ı	(E - Ecorr)/At ((E - Ecorr)/Atj-R	B/((E · Ecorr)/∆ı}-R	icorr	icorr	_	oérdida de
No.	LECUA	PROBETA	(V)	(Ohms)	(Shms)	А	uA/cm2	(V)	(Ohms)	(Ohms)	A	uA/cm2	PROMEDIO	(FINAL)	espesor
-	24/07/2000	PI-R-N-1	0.472	23,600.00	21400	2.42991E-06	0.1214953	0.4801	24,005.00	21,805.00	2.38E-06	0.1192387	0.120367		
-	0110112003	PI-R-N-2	0.4339	21,695.00	20045	2.59416E-06	0.1297082	0.4071	20,355.00	18,705.00	2.78E-06	0.1390003	0.1343542 0.1273606	0.1273606	1.48
, (0006/60/74	PI-R-N-1	0.3037	30,370.00	27970	1.85913E-06	0.0929567	0.2837	28,370.00	25,970.00	2.00E-06	0.1001155	0.0965361		
	1410012003	PI-R-N-2	0.393	39,300.00	37100	1.40162E-06	0.0700809	0.2166	21,660.00	19,460.00	2.67E-06	0.1336074	0.1336074 0.1018441 0.0991901	0.0991901	1.15
,	0000/00/00	PI-R-N-1	0.553	27,650.00	24550	2.11813E-06	0.1059063	0.5428	27,140.00	24,040.00	2.16E-06	0.1081531 0.1070297	0.1070297		
	5007/00/5	PI-R-N-2	0.5451	27,255.00	24305	2.13948E-06	0.1069739	0.4981	24,905.00	21,955.00	2.37E-06	0.118424	0.112699	0.1098643	1.27
,	44/00/2000	PI-R-N-1	0.6168	30,840.00	26790	1.94102E-06	0.0970511	0.6009	30,045.00	25,995.00	2.00E-06	0.1000192	0.0985352		
	109/2003	PI-R-N-2	0.5905	29,525.00	25825	2.01355E-06	0.1006776	0.5435	27,175.00	23,475.00	2.22E-06	0.1107561 0.1057169		0.102126	1.18
u	OE/NO/2010	PI-R-N-1	0.6536	32,680.00	27780	1.87185E-06	0.0935925	0.6728	33,640.00	28,740.00	1.81E-06	0.0904662 0.0920294	0.0920294		
	500315003	PI-R-N-2	0.6793	33,965.00	29415	1.76781E-06	0.0883903	0.6271	31,355.00	26,805.00	1.94E-06	0.0969968	0.0969968 0.0926936 0.0923615	0.0923615	1.07
	00/0/0/00	PI-R-N-1	0.7111	35,555.00	30305	1.71589E-06	0.0857944	0.6797	33,985.00	28,735.00	1.81E-06	0.090482	0.0881382		
	00/10/2003	PI-R-N-2	0.7705	38,525.00	33125	1.56981E-06	0.0784906	0.7047	35,235.00	29,835.00	1.74E-06	0.087146	0.087146 0.0828183 0.0854782	0.0854782	0.99
, ,	02/11/00/00	PI-R-N-1	0.6403	32,015.00	26015	1.99885E-06	0.0999423	0.6805	34,025.00	28,025.00	1.86E-06	0.0927743	0.0963583		
-	201 1012003	PI-R-N-2	0.7026	35,130.00	29130	1.7851E-06	0.0892551	0.7744	38,720.00	32,720.00	1.59E-06	0.0794621	0.0794621 0.0843586 0.0903585	0.0903585	1.05
0	08/44/9000	PI-R-N-1	0.7544	3.77E+04	31120	1.67095E-06	0.0835476	0.6745	3.37E+04	2.71E+04	1.92E-06	0.0958525	0.0897		
	001 115003	PI-R-N-2	0.7326	3.66E+04	29880	1.74029E-06	0.0870147	0.683	3.42E+04	2.74E+04	1.90E-06	0.0948905	0.0948905 0.0909526 0.0903263	0.0903263	1.05
0	20141/2000	PI-R-N-1	0.7085	3.54E+04	28625	1.81659E-06	0.0908297	0.6296	3.15E+04	2.47E+04	2.11E-06	0.1053485	0.0980891		
	201 112003	PI-R-N-2	0.7264	3.63E+04	29670	1.75261E-06	0.0876306	0.505	2.53E+04	1.86E+04	2.80E-06	0.1397849	0.1397849 0.1137078 0.1058984	0.1058984	1.23
10	0006/64/70	PI-R-N-1	0.8097	4.05E+04	31585	1.64635E-06	0.0823176	9008.0	4.00E+04	3.11E+04	1.67E-06	0.0835207	0.0829191		
	2007/71/10	PI-R-N-2	0.819	4.10E+04	33450	1.55456E-06	0.077728	9089.0	3.40E+04	2.65E+04	1.96E-06	0.0980023	0.0980023 0.0878651 0.0853921	0.0853921	0.99

CAPÍTULO 3

3. ANALISIS DE LOS RESULTADOS.

En esta parte del presente trabajo se muestran los resultados obtenidos mediante la aplicación de la técnica de resistencia a la polarización lineal (RPL) y medición de resistencia eléctrica del hormigón, ya descritas en los capítulos anteriores, para la determinación de la velocidad de corrosión de barras de acero empotradas en las probetas sometidas a diversas condiciones de exposición. Como ya se describió en al Capítulo 2, se resumen las condiciones de exposición a las que fueron sometidas las probetas:

- (a) Ambiente de Natural.
- (b) Parcialmente sumergidas en solución de NaCl 3,5% m/m.
- (d) cámara de CO2 con 60% de humedad relativa.

Como consecuencia de este análisis se evaluara la velocidad de corrosión que ha sufrido el acero ASTM A-42 en estos periodos de exposición. Por lo tanto el detalle se lo hará analizando:

- Graficas de E Cu/SCS vs Tiempo de exposición para todos los medios expuestos.
- Graficas de resistencia a la polarización (Rp) vs Tiempo de exposición.

3.1 ANALISIS DE LA RESISTENCIA A LA POLARIZACION BAJO DIVERSAS ATMOSFERAS.

Exposición al Ambiente Natural:

En la figura 15 se muestra la evolución con el tiempo del potencial de corrosión (Ecorr) de las barras de acero sometidas a ambiente natural de exposición durante 150 días.

Para este caso de exposición al ambiente natural sin inhibidor y con inhibidor, el Ecorr parte aproximadamente -0,1142125 V y -0,1072V respectivamente, aumentando lentamente con el tiempo hasta alcanzar un valor de -0,05070875V sin inhibidor y -0,038025V con inhibidor en el día 105 de mediciones, de ahí en adelante sufre altibajos hasta un momento que se estabilizan llegando finalmente a -0,06613625V sin inhibidor y -0,04332V con inhibidor, denotándose que el hormigón con inhibidor estuvo más protegido que el que no

tenia inhibidor. Siendo estos valores típicos de un material que se encuentra al estado pasivo (ASTM C 876).

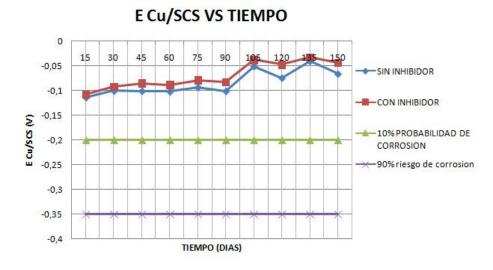


Fig. 16.- Evolución del potencial de corrosión durante 150 días expuestos al medio ambiente.

Simultáneamente con los valores de los Ecorr, se midió la resistencia de polarización lineal de las barras de acero (Rp), y los resultados se muestran en la Fig. 16 y Fig. 17. Para el caso de las probetas expuestas al ambiente natural, Rp de la probeta sin inhibidor aumenta durante los primeros 30 dias, sufriendo luego ligeros altibajos y por el dia 120 denotamos que la velocidad de corrosión aumenta para luego decrecer y estabilizarse llegando a un valor de Rp = $572463,893~\Omega^*$ cm2. Para el caso de la probeta que tiene inhibidor la velocidad de corrosión es lenta donde se aprecia que el

Rp crece lentamente y por el dia 120 presenta ligeros altibajos finalmente llegando a un valor de Rp = 518230,5 Ω *cm2



Fig. 17.- Evolución de la Resistencia a la polarización durante 150 días expuestas al medio ambiente.

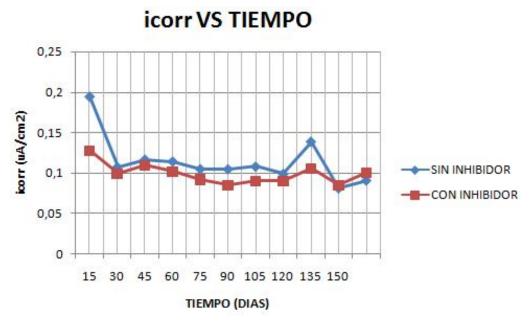


Fig. 18.- Evolución de la velocidad de corrosión durante 150 días expuestas al medio ambiente.

Exposición a NaCl 3,5%:

Para el caso de las probetas parcialmente sumergidas en solución de NaCl 3,5% sin inhibidor y con inhibidor, el Ecorr parte de -0,2272125V y -0,2699375V respectivamente, durante los primeros 30 días, el potencial en ambos casos decrece abruptamente (indicación de que los iones cloruro alcanzaron las barras de acero), y luego de 150 días, su valor es de aproximadamente –0,5707875V y -0,522875V para sin inhibidor y con inhibidor respectivamente hasta estabilizarse en ambos casos, permaneciendo más protegido el hormigón que tiene inhibidor, siendo esto señal que las barras están sufriendo un proceso corrosivo.

E Cu/SCS VS TIEMPO

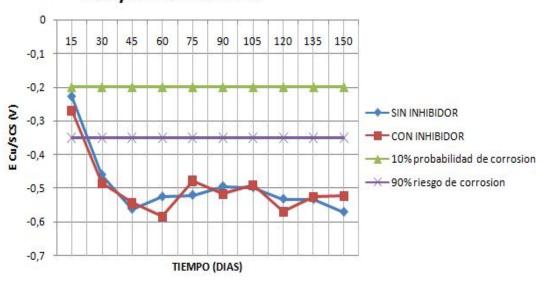


Fig. 19.- Evolución del potencial de corrosión durante 150 días expuestas a NaCl.

Para las probetas parcialmente sumergidas en solución de NaCl 3,5%, Rp sin inhibidor parte de un valor cercano al obtenido en el ambiente de laboratorio sin inhibidor y a partir de 32 días sufre un incremento abrupto en la velocidad de corrosión (consistente con la disminución observada en el Ecorr) e igualmente la que tiene inhibidor, vuelve a sufrir un aumento ligero de velocidad de corrosión posterior a los 150 días.

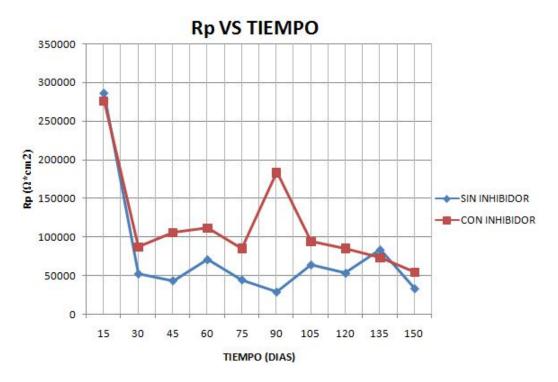


Fig. 20.- Evolución de la resistencia a la polarización durante 150 días expuestas a NaCl.

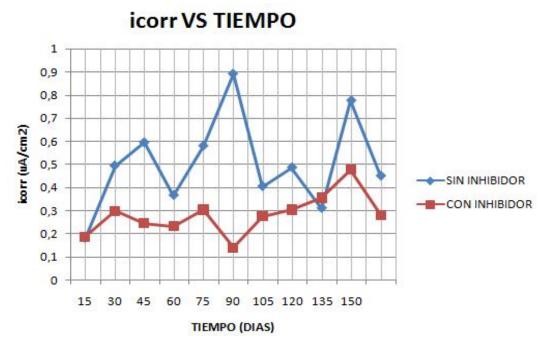


Fig. 21.- Evolución de la velocidad de corrosión durante 150 días expuestas a NaCl.

Exposición a atmosferas en Dióxido de Carbono:

Finalmente, los Ecorr medidos sobre las probetas sometidas a la cámara de carbonatación, muestran que a partir de 120 días (tiempo que tarda el frente de carbonatación en llegar a las barras de acero aproximadamente) éste decrece lentamente desde –0,023825V y -0,023465V con inhibidor y sin inhibidor respectivamente hasta llegar 0,0015125V con inhibidor y -0,053125V sin inhibidor donde vemos que el hormigón con inhibidor se estabiliza estando mas protegido, siendo estos valores los correspondientes a potenciales en los cuales no es factible asegurar si el material se va a corroer estando en estado pasivo.

E Cu/SCS VS TIEMPO 0,05 0

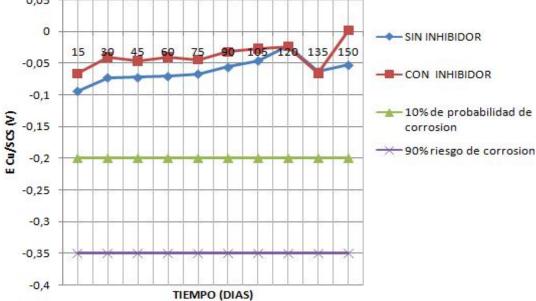


Fig. 22.- Evolución del potencial de corrosión durante 150 días expuestas a CO2.

Por último, las probetas sometidas a carbonatación acelerada, presentan a partir de los 30 días un aumento en la velocidad de corrosión en las probetas con inhibidor y sin inhibidor hasta el dia 45 donde se estabilizan en ambos casos, y en su parte final sufre un decremento en el nivel de corrosión haciendo mayor efecto la probeta con inhibidor.

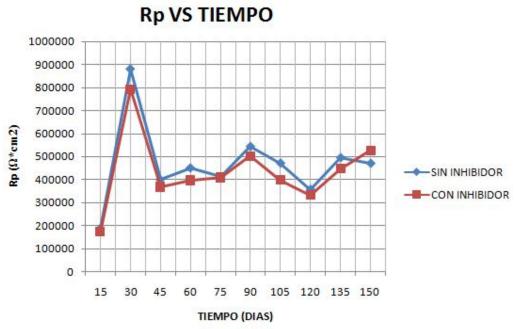


Fig. 23.- Evolución de la resistencia a la polarización durante 150 días expuestas a CO2.

Fig. 24.- Evolución de la velocidad de corrosión durante 150 días expuestas a CO2.

3.2 ANALISIS COMPARATIVO RESPECTO AL COMPORTAMIENTO DEL HORMIGON FORMULADO CON CEMENTO PORTLAND TIPO II.

Ambiente natural.- en esta grafica podemos observar que estos hormigones (TIPO II Y PUZOLANICOS) expuestos al ambiente natural sin inhibidor presentan inicialmente un baja resistencia a la polarización hasta el día 30, luego aumenta lentamente hasta estabilizarse sin sufrir cambios abruptos en ambos tipos de hormigones.

En el caso con inhibidor se observa que en el día 110 ocurre una caída de resistencia a la polarización, tanto en el TIPO II como en el PUZOLANICO.

NaCl.- aquí se denota que el Puzolánico sin inhibidor presenta valores de Resistencia a la polarización más negativos a lo largo del tiempo de exposición.

A diferencia del Puzolánico que tiene inhibidor posee valores más positivos pero durante el dia 105 esta decrece lentamente y el Tipo II aumenta lentamente.

Carbonatación.- en este caso se aprecia que el Tipo II sin inhibidor presenta Rp más bajos que el Puzolánico sin inhibidor. Y para el caso con inhibidor no sufre muchos cambios en ambos tipos de hormigón.

CAPÍTULO 4

CONCLUSIONES Y RECOMENDACIONES.

A partir del presente trabajo, podemos extraer las siguientes conclusiones:

- La técnica de resistencia de polarización ayuda a identificar la cinética de un proceso corrosivo en un material, independientemente del tiempo de exposición al que han estado expuestas.
- 2) Esta técnica es el método más rápido para obtener una respuesta de velocidad de corrosión, aun así no es precisamente la más precisa, pero por otro lado da una idea clara de los niveles de corrosividad que se desean conocer.

- 3) La predicción de icor a partir de las mediciones de Rp, solo es factible con un error dentro del orden de magnitud dependiendo de las condiciones de exposición.
- 4) La velocidad de corrosión del acero ASTM A-42 en probetas con inhibidor es máxima en agua salada tanto para el TIPO II como para el Puzolánico, dándole un tiempo menos de vida al hormigón PORTLAND TIPO II. (Ver graficas en Apéndice VI).
- 5) La velocidad de corrosión del acero en agua salada para hormigones sin inhibidor fue mayor para el hormigón Puzolánico pero sin tanta diferencia entre el hormigón Portland Tipo II, entonces en este medio sin protección (inhibidor) el portland tipo II actúa pasivamente, teniendo más probabilidad de tener una mayor vida útil que el Puzolánico.

Se recomienda lo siguiente:

 Se deberá realizar cambios de la solución electrolítica en este caso NaCl y de cámara de carbonatación siendo nuestro caso que utilizamos como recipiente una caja de material POLIESTIRENO EXPANDIDO, estos cambios deben de ser cada tres ensayos, esto prevendrá de una posible contaminación de los productos de corrosión dentro de la solución.

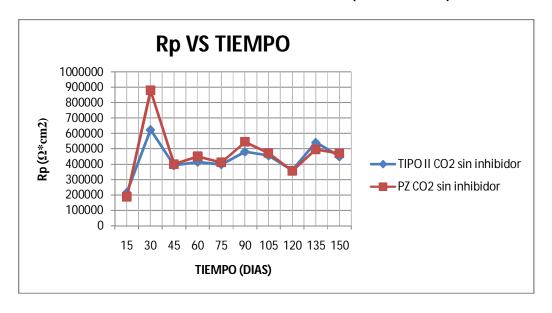
- 2) Mantener el equipo y principalmente las conexiones con absoluta limpieza antes y después de los ensayos quincenales es fundamental para el éxito de la misma
- 3) Cuando se realiza una medición de potenciales en el hormigón es importante la forma como se conecta el voltímetro, el polo positivo se deberá conectar siempre a la estructura a la que se le va a medir el potencial y el polo negativo se conectara al electrodo de referencia en base al cual se va a realizar la medición del potencial eléctrico de dicha estructura.

APENDICE

APENDICE I

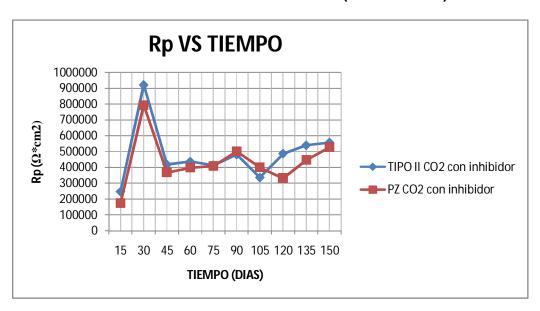
RESISTENCIA A LA POLARIZACION PROMEDIO PARA

HORMIGON PORTLAND TIPO II

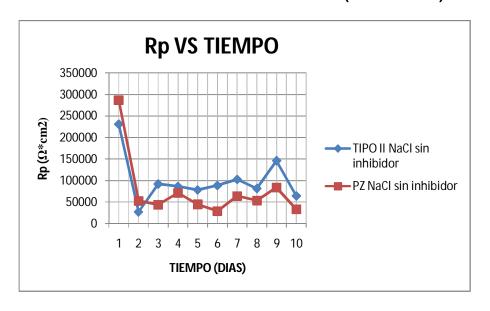

	Resistencia a la polarización promedio [Ω*cm²]								
	Atmosfera con 99% CO2		Contaminación con cloruros		Atmosfera natural				
Días	Sin Inhibidor	Con Inhibidor	Sin Inhibidor	Con Inhibidor	Sin Inhibidor	Con Inhibidor			
15	215401	246724,5	230385,7	75422,2	392557,3	480774,1			
30	623887,7	920335,2	27009,8	39836,5	492151,2	519923,2			
45	391116,2	418279,5	91776,3	78395,3	450994,5	542762,6			
60	415149,7	436880,7	86481,7	96929,4	481550	577670,3			
75	397759	413038,5	78188,8	59734,4	479906,5	555387,7			
90	480714,1	480667,5	88389,1	69935,2	547927,5	589104			
105	455892,2	335509,4	102480,6	30517,3	527985,8	635474,9			
120	360133,3	487019,7	81408,2	77396,7	520456,9	641512			
135	541268,3	539731	146109,3	118760,4	475790,9	299565,4			
150	449390,9	556388,6	64176	106189	569446,7	682581,3			

APENDICE II RESISTENCI A LA POLARIZACION PROMEDIO PARA HORMIGON PUZOLANICO

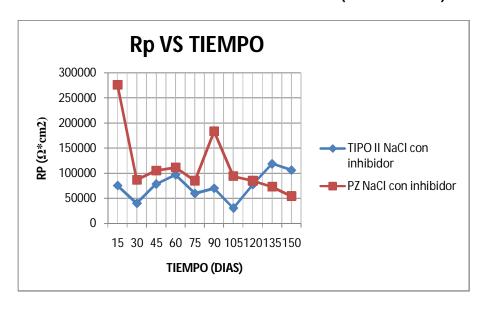
	Resistencia a la polarización promedio [Ω*cm²]								
			Contaminación con						
	Atmosfera con 99% CO2		cloruros		Atmosfera natural				
	Sin	Con	Sin	Con	Sin	Con			
Días	Inhibidor	Inhibidor	Inhibidor	Inhibidor	Inhibidor	Inhibidor			
15	186645,002	173579,711	286277,923	275908,246	267622,87	408289,49			
30	880220	792411,095	52594,012	86835,5916	484387,53	524245,71			
45	399379,982	367984,072	43721,8784	105500,409	445768,09	473311,04			
60	450546,621	397215,945	70944,2712	111280,243	455158,58	509174,77			
75	411694,617	408763,41	44813,8523	85320,8437	495131,98	563005,35			
90	543509,553	502526,484	29169,4574	183364,685	496215,98	608341,98			
105	471182,692	399237,402	64167,0878	94143,9495	481584,21	575485,72			
120	356888,082	331998,686	53407,4242	85227,8399	525759,41	575690,37			
135	495188,128	446767,494	83546,048	72919,5169	374632,93	491036,57			
150	470464,614	527125,977	33496,5218	54538,9101	640084,38	608955,47			


APENDICE III

PUZOLANICO – PORTLAND TIPO II: CO2 (sin inhibidor)

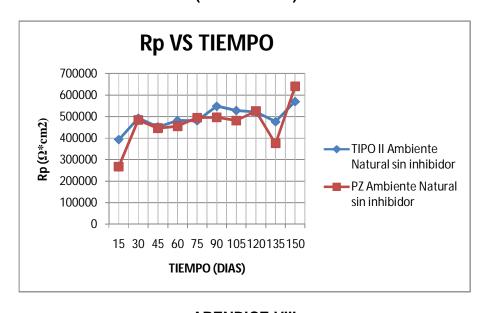

APENDICE IV

PUZOLANICO – PORTLAND TIPO II: CO2 (con inhibidor)


APENDICE V

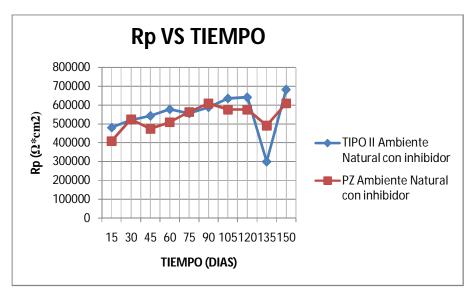
PUZOLANICO – PORTLAND TIPO II: NaCI (sin inhibidor)

APENDICE VI


PUZOLANICO – PORTLAND TIPO II: NaCl (con inhibidor)

APENDICE VII

PUZOLANICO – PORTLAND TIPO II: Ambiente Natural


(Sin inhibidor)

APENDICE VIII

PUZOLANICO – PORTLAND TIPO II: Ambiente Natural

(Con inhibidor)

BIBLIOGRAFÍA

- CALLEJA. J. CORROSION DE ARMADURAS EN LOS HORMIGONES ARMADOS Y PRETENSADOS. Monografía. Instituto Eduardo Toroja. Madrid. España. 1966. pp. 25 -26.
- ROVAYO. E. TECNICAS ELECTROQUIMICAS. Tesis. Escuela Superior Politécnica del Litoral. Guayaquil. Ecuador. 1993. 150 pp.
- 3. WILSON QUITO TORO, TESIS "EVALUACION DE LA CORROSIÓN ATMOSFÉRICA EN EL ECUADOR DENTRO DEL MARCO DEL PROYECTO MAPA IBEROAMERICANO DE CORROSIVIDAD ATMOSFÉRICA (MICAT)", Guayaquil, ESPOL, 1994, 39,40 ,83 ,85, 101-105,111,114.
- 4. GEHO. ARMADURAS. PROTECCION DEL ACERO EN EL HORMIGON-MECANISMOS DE CORROSION Y FACTORES PRINCIPALES QUE INCIDEN EN LOS PROCESOS. Grupo Español del Hormigón. Ciencia y Técnica Publicaciones, pp. 6-13

- ASTM C 876, "Standard test method for half-cell potential for uncoated reinforcing steel in concrete", American Society of Testing and Materials, Philadelphia, 1987.
- ASTM G1-90 (Reapproved 1999), "Standard practice for preparing, cleaning, and evaluating corrosion test specimens", American Society for Testing and metrials, Philadelphia, 1999.
- 7. CARLOS PANCHANA, PROYECTO DE GRADO "INFLUENCIA DEL CARBOXILATO DE AMINA EN LA VELOCIDAD DE CORROSION DEL ACERO A42 EN HORMIGONES CON CEMENTO PORTLAND TIPO II", Guayaquil. ESPOL. 2010. 68, 69, 70, 73