ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Formulación de una sopa concentrada y diseño del proceso de esterilización comercial"

TESIS DE GRADO

Previo a la obtención del Titulo de:

INGENIERO DE ALIMENTOS

Presentada por:

Arturo Sócrates Palacios Ponce

GUAYAQUIL-ECUADOR

Año: 2008

AGRADECIMIENTO

A Dios y a todas las personas quienes hicieron posible la realización del presente trabajo, por sus oportunos comentarios, por su disposición para atenderme y por toda la ayuda otorgada.

DEDICATORIA

A mi madre y hermana, por ser el apoyo más grande que he conocido, por todo el esfuerzo realizado y por el cariño demostrado día a día.

A mis amigas y amigos, por enseñarme y recordarme siempre lo necesario e importante que se hace tenerlos.

TRIBUNAL DE GRADUACIÓN

Ing. Fabiola Cornejo Z.
DELEGADA POR EL
DECANO DE LA FIMCP
PRESIDENTA

Ing. Karin Coello O. DIRECTORA DE TESIS

Ing. Luís Miranda S. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta
Tesis de Grado, me corresponden
exclusivamente; y el patrimonio intelectual
de la misma a la ESCUELA SUPERIOR
POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la Espol)

Arturo Sócrates Palacios Ponce

RESUMEN

La tendencia de elaboración y desarrollo de productos en conserva en el país por años se ha limitado a formatos de envases pequeños de aproximadamente 0.5 Kg. tales como 307X408 (83 mm x 114 mm) para pescados, granos, frutas. En el presente trabajo se desarrolló una conserva de un plato típico de amplia aceptación, una sopa de harina de arveja y, se realizó un estudio de penetración de calor en envases metálicos de mayor dimensión, con el propósito de aliviar la demanda de alimentos en situaciones extremas de emergencia y que, además, contribuya a reducir la deficiencia calórica proteica en sectores nutricionalmente sensibles de la población escolar a través de programas de alimentación colectiva.

Seleccionamos productos de consumo tradicional y subproductos de la industria porcina para la preparación de una sopa de arveja en conserva. Luego, se procedió a realizar pruebas de formulación a nivel de laboratorio con el propósito de obtener una combinación base de ingredientes para llenar un envase convencional de 0.5 Kg. Para concluir las pruebas a nivel de laboratorio, se ajustó la fórmula para un tamaño de hojalata de 603X600 (153 mm x 152 mm).

Obtenida la formulación ideal mediante pruebas experimentales en planta piloto, se determinó el punto donde el producto demora el mayor tiempo en alcanzar la temperatura de proceso dentro del envase de 3Kg. Una vez establecido el punto frío dentro del envase, se realizó el estudio de penetración de calor y a partir de los datos obtenidos se calculó el tiempo y temperatura de proceso (parámetros para la esterilización comercial) mediante el método matemático de Stumbo, que garanticen la inocuidad de la conserva. Se realizaron pruebas sensoriales de aceptabilidad y finalmente se diseñó el diagrama del proceso.

ÍNDICE GENERAL

		Pág.
RESUMEN.		
INDICE GE	NERAL	
ABREVIATI	JRAS	IV
INDICE DE	FIGURAS	V
INDICE DE	TABLAS	VI
INTRODUC	CIÓN	1
CAPÍTULO	1	
1. GEN	ERALIDADES	2
1.1.	Materias primas	2
1.2.	Fundamentos del procesado térmico	7
1.3.	Características del producto	13
CAPÍTULO	2	
2. PRU	EBAS EXPERIMENTALES	14
2.1	Materiales y métodos	15
2.2	Pruebas a nivel de laboratorio	17
	2.2.1 Formulación de la sopa para un formato de	envase
	307X408	17
	2.2.2 Ajuste de la formulación para un formato de e	envase
	603X600	23
2.3	Pruebas a nivel de planta piloto	28
	2.3.1 Determinación del nunto frío	20

	2.3.2	Estudio de penetración de calor para un formato de	
		envase 603X600	31
CAPÍTULO	3		
3. CAL	CULOS	Y RESULTADO	46
3.1	Parán	netros de esterilización comercial	46
	3.1.1	Calculo del punto frío para el envase 603X600	47
	3.1.2	Determinación de tiempo y temperatura de proceso	49
3.2	Prueb	as de aceptabilidad	78
3.3	Descr	ipción del proceso para la obtención del producto	82
CAPÍTULO	4		
4. CON	NCLUSI	ONES Y RECOMENDACIONES	86

ANEXOS BIBLIOGRAFÍA

ABREVIATURAS

B Tiempo de Proceso de Stumbo

CUT Tiempo de levante

D Tiempo de reducción decimal

Fo Letalidad

f_h Factor de respuesta a la temperatura en el calentamiento f_c Factor de respuesta a la temperatura en el enfriamiento g Diferencia de temperatura entre la retorta y el alimento

al final del calentamiento

I Diferencia de temperatura entre la retorta y el alimento

en el comienzo del calentamiento

I_c Diferencia de temperatura entre la retorta y el alimento

en el comienzo del enfriamiento Factor de retraso de calentamiento Factor de retraso de enfriamiento

L Letalidad min minuto

jch

Jcc

N Número final de microorganismos No Número inicial de microorganismos

Ti Temperatura inicial

Tr Temperatura de la retorta

U Tiempo requerido para que la temperatura de la retorta

alcance una cierta letalidad

ÍNDICE DE FIGURAS

	,		
\mathbf{P}	а	n	
	а	ч	

Figura 1.1	Producción Nacional de Cultivos Transitorios	3
Figura 1.2	Producción de Carne a la Canal Año 2005	5
Figura 1.3	Perfil Temperatura-Tiempo característico de una Autoclave	7
Figura 1.4	Historia típica de la temperatura en el punto frío de una lata	
	durante el proceso en el autoclave	8
Figura 2.1	Autoclave vertical vista lateral	.29
Figura 2.2	Vista superior de la ubicación de sensores	
Figura 2.3	Vista frontal de la ubicación de sensores en envase	.30
Figura 3.1	Composición de sopa de harina de arveja	.46
Figura 3.2	Curvas de penetración de calor, sensor ubicado a diferente	
	altura del eje axial del envase 603X600	.48
Figura 3.3	Curva de calentamiento para el producto en la fase de levant y retención	
Figura 3.4	Curva de enfriamiento para el producto geométrico en la fase	;
-	de enfriamiento	.52
Figura 3.5	Letalidades Método de Stumbo vs Lectura del Sensor	.58
Figura 3.6	Tiempos de retención Método de Stumbo vs Lectura del	
	Sensor	.62
Figura 3.7	Perfil de letalidad Fo en el estudio de penetración de calor	.75
Figura 3.8	Perfil de temperatura de la autoclave y de temperatura del	
	producto en el punto frío	.76
Figura 3.9	Puntuación de muestras	
Figura 3.10	Comparación de media de las muestras	
Figura 3.11	Diagrama de Proceso para la sopa de harina de arveja	.85

ÍNDICE DE TABLAS

		ray.
Tabla 1	Nutrientes de la Arveja Seca	4
Tabla 2	Formulación del Producto para un Envase 307x408	
Tabla 3	Formulación del Producto para un Envase 603X600	27
Tabla 4	Prueba de Determinación del Punto Frío Sensor 1	32
Tabla 5	Prueba de Determinación del Punto Frío Sensor 2	39
Tabla 6	Parámetros de Penetración de Calor	53
Tabla 7	Tiempos de retención para una Letalidad Deseada	63
Tabla 8	Prueba de validación de datos	67
Tabla 9	Tiempos de retención a diferentes temperaturas iniciales de	
	producto y deferentes temperaturas de retorte	77
Tabla 10	Análisis de Varianza	79
Tabla 11	Comparación Valor F	

INTRODUCCIÓN

La Espol, en su continuo deseo de contribuir al mejoramiento de la calidad de vida de nuestra sociedad, patrocinó el proyecto semilla "Tecnología para el desarrollo de productos dirigidos a la alimentación colectiva en el Ecuador" a fin de aliviar principalmente problemas de alimentación: escolar, situaciones de emergencia y catástrofes naturales.

La industria conservera ofrece una amplia gama de productos enlatados entre ellos sopas, mariscos, granos, etc. y cuyas presentaciones solo se limitan a envases de 0.5 Kg a 1 Kg.

En el presente trabajo se desarrolló una sopa de consumo tradicional en un formato de envase no tradicional 603 X 600 (153 mm X 152 mm) la cual sea una alternativa para los procesadores de conserva que contribuyan a priorizar la atención de sectores sociales nutricionalmente desfavorecidos y que además alivien los efectos causados por desastres naturales.

CAPITULO 1

1. GENERALIDADES

A continuación se detallan las características y generalidades de las materias primas usadas en el proceso

1.1 Materia prima

La elaboración de una sopa en conserva consiste básicamente en la combinación de materias primas básicas e ingredientes auxiliares. Para la sopa concentrada de arveja se utilizaron como materias primas: agua (calidad potable), ajo, cebolla blanca, cebolla colorada, col, papa, pimiento, carne de cerdo y harina de arveja.

Los cultivos de las hortalizas antes mencionadas están concentrados básicamente en la región sierra con el 84.25%, tanto por sus condiciones edáficas, climáticas y sociales, como por las técnicas y sistemas de producción aplicadas; el 15.42% en la Costa y el 0.34% en el Oriente y Galápagos.(Fuente: www.sica.gov.ec).

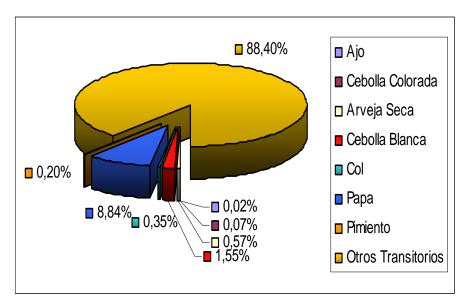


FIGURA 1.1 Producción Nacional de cultivos transitorios

Fuente: www.sica.gov.ec

Elaborado por: Arturo Sócrates Palacios Ponce

Acontinuación, una breve descripción de las principales materias primas empleadas en el desarrollo de este trabajo:

Arveja Seca: Es una leguminosa que se cultiva en nuestro país y es una de las más consumidas en nuestro medio. La arveja es un alimento con una alta calidad nutritiva gracias a su significativo contenido en proteínas, calcio, magnesio, vitamina A y vitamina C. La arveja contiene entre 22 a 29% de proteína cruda y aunque su contenido total de proteína es menor que el de la soya, su valor nutritivo es casi el mismo. En la tabla 1 se aprecia la composición nutricional de esta leguminosa.

TABLA 1

NUTRIENTES DE LA ARVEJA SECA

334
23,3
1
60,1
5,7
2,4
70
5,6
375
0,03
0.68
0,17
2,55
-

Fuente: Tabla de Alimentos Ecuatorianos

Esta hortaliza se emplea cocida en sopas, cremas, ensaladas usada en la gastronomía tradicionales en el Ecuador ya sea en su forma original (grano) o procesada como harina.

Carne de Cerdo: La mayor explotación de carne de cerdo es de tipo artesanal aproximadamente 80% de producción total, encontrándose en manos de pequeños productores mientras que la tecnificada o semi-tecnificada pertenece a pocas empresas; se estima que aporta

aproximadamente con el 22% de la oferta total estando orientada a satisfacer la demanda de carne magra de la cadena de supermercado e industrias de elaborados cárnicos. Más de 50% del faenamiento total se concentra en tres provincias: 30% corresponde a los mataderos de Pichincha, 16% en Guayas y 9% en Chimborazo.

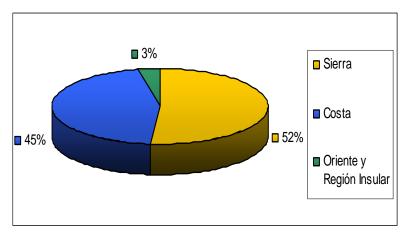


FIGURA 1.2 Producción de Carne a la Canal Año 2005

Fuente: www.sica.gov.ec

Elaborado por: Arturo Sócrates Palacios Ponce

Papa: En la actualidad la papa es consumida en casi todas las regiones del Ecuador, y es junto al trigo, maíz y arroz uno de los cuatro cultivos básicos en la alimentación humana.

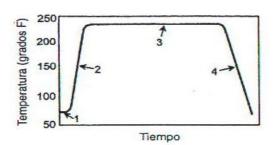
El cultivo de papa en Ecuador se realiza en la Sierra, en alturas comprendidas entre los 2700 a 3400 msnm (metros sobre el nivel del mar), sin embargo los mejores rendimientos se presentan en zonas ubicadas entre los 2.900 y 3.300 msnm donde las temperaturas

fluctúan entre 11 y 9 °C.La variedad utilizada en la preparación del producto es la papa superchola la cual es cultivada preferentemente en la zona norte de la sierra ecuatoriana.

<u>Ingredientes Auxiliares</u>: El empleo de ingredientes auxiliares como el aliño, la sal y especias o condimentos en general ayudarán a definir características tanto de sabor, color y olor en el producto final, así tenemos que:

<u>Sal</u>: Es el aditivo más antiguo constituyéndose en un pilar de la cocina en casi cualquier cultura. La sal se utiliza para dar sabor a las sopas, cremas, aderezos, carnes, etc.

<u>Aliño</u>: Es obtenido a partir del licuado de hortalizas como: ajo, cebolla colorada, pimiento verde y especias como: sabora y comino molido en una determinada cantidad de agua. Al igual que la sal contribuye con el sabor de las comidas.


Refrito: Se lo emplea con el objetivo de otorgarle cuerpo a la sopa que se este preparando. Este es obtenido a partir del licuado y posterior cocción de hortalizas como: cebolla blanca, cebolla colorada, pimiento, con una determinada cantidad de agua.

1.2 Fundamentos del proceso térmico

El enlatado de los alimentos es el procedimiento para conservar alimentos envasándolos en recipientes herméticamente cerrados, calentándolos para destruir microorganismos patógenos causantes del deterioro y sus esporas, así como inactivar enzimas. Esta clase de productos se los califica desde el punto de vista comercial, como estériles. Para el procesado de conservas alimenticias, el patógeno más resistente al calor que podemos encontrar es el Clostridium botulinum causante de intoxicación alimentaria.

Combinación de Tiempo y Temperatura

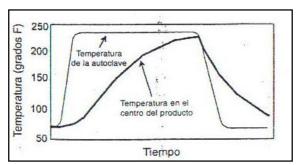

La esterilización comercial es una operación que combina tiempo y temperatura con el fin de eliminar microorganismos que puedan causar algún daño a la salud o al producto. De tal manera que cuando se procesan alimentos enlatados, se obtiene un perfil típico de temperatura de la cámara del autoclave.

FIGURA 1.3 Perfil temperatura-tiempo característico de una autoclave **Fuente**: Operaciones Unitarias, Sharma, Mulvaney y Rizvi, 1997.

El perfil de temperatura-tiempo característico de una autoclave esta distribuido en 4 fases. En la primera fase; los envases con el producto son cargados en la cámara del autoclave. En la segunda fase (levante o CUT); se introduce vapor o agua caliente para que la temperatura de la cámara aumente hasta alcanzar un valor fijado (temperatura de proceso). En la tercera fase (retención) se mantiene el sistema a la temperatura de proceso durante un periodo necesario de tiempo para destruir microorganismos y en la fase final (enfriamiento); el agua fría reemplaza al vapor, para disminuir la temperatura de la cámara a temperatura ambiente.

Durante el procesado de conservas es útil y común obtener un perfil típico de la temperatura que refleje la cinética de calentamiento en el punto de más lenta transferencia de calor en el alimento dentro del envase (centro geométrico).

FIGURA 1.4 Historia típica de la temperatura en el punto frío de una lata durante el proceso en el autoclave.

Fuente: Operaciones Unitarias, Sharma, Mulvaney y Rizvi, 1997.

La temperatura y los tiempos de tratamiento en el autoclave dependen del tamaño y peso del envase, de la temperatura de llenado y de la forma de presentación del producto, mientras que la velocidad de penetración de calor en el producto durante la esterilización depende de los siguientes factores:

- Tamaño, forma y naturaleza del envase.
- Naturaleza del envase.
- El gradiente de temperatura.
- Características físicas del producto.
- Agitación del envase.
- Relación solidó líquido.
- Espacio de cabeza.

Letalidad

Este término hace referencia a la inactivación de cualquier microorganismo que se encuentre en un determinado medio y que sea tratado térmicamente a cierta temperatura fija, donde la velocidad de destrucción sigue una cinética de primer orden.

$$\ln\left(\frac{N_0}{N}\right) = K\theta \tag{1}$$

Esta ecuación (1) puede integrarse bajo la condición que exista un número inicial de microorganismos (N_0), obteniéndose el valor D o

tiempo de reducción decimal (2) que es el tiempo necesario para que haya un reducción de 10 veces en el número de microorganismos a una temperatura determinada.

$$\ln\left(\frac{N_0}{N}\right) = \frac{t}{D_0} \tag{2}$$

La experiencia ha demostrado que un tratamiento de 12 reducciones decimales (12 D) en las esporas del Clostridium botulinum son suficientes para garantizar la inocuidad en una conserva.

El valor Z mide la variación de la velocidad de destrucción térmica con la temperatura y representa el incremento de temperatura necesaria para reducir el tiempo de tratamiento a la décima parte, en este caso D_0 para las esporas el Clostridium botulinum, se ha tabulado un valor de Z=18 °F o Z=10°C.

Este valor se lo utiliza para calcular la velocidad letal L (3), que convierte el tiempo real de calentamiento de un proceso a una temperatura de referencia especificada T_0 , en uno equivalente a otra temperatura T.

$$L = 10^{\left(\frac{T - T_0}{Z}\right)} \tag{3}$$

La letalidad Fo (4), es el tiempo a la temperatura de referencia, por lo general 250°F, en que se alcanza la misma destrucción del Clostridium botulinum que la del proceso que se estudia.

$$F_0 = F_T \times 10^{\frac{T-250}{18}}$$
 (4)

Existen algunos métodos con los que podemos hallar la letalidad Fo en un proceso, métodos numéricos y gráficos que integran el efecto letal como: regla trapezoidal, regla de Simpson, método de Patashnik, cuenta de cuadrados, por pesadas, planímetro polar. Otros son métodos de fórmula como los de Ball, Stumbo y Hayakawa, que hacen uso de parámetros obtenidos a partir de estudios de penetración de calor junto con procedimientos matemáticos para integrar los efectos letales.

Normalmente los mecanismos de transferencia de calor que gobiernan el procesado de conservas son conducción y convección. Cuando no existe movimiento del producto en el interior del envase el mecanismo de transferencia de calor es dominado por la conducción. Durante cualquiera de los procesos de calentamiento o enfriamiento existirá un gradiente de temperatura desde la pared al centro geométrico del envase, considerado como el punto de menor velocidad de calentamiento a lo largo de la sección transversal de la

lata. Sin embargo, un producto de menor letalidad en el envase es función de la geometría de éste y de las condiciones de proceso.

Método de Stumbo

El primer método predictivo desarrollado para evaluar procesos térmicos es el método general de Ball, el cual define el parámetro *U* (5) como el tiempo requerido para que a la temperatura del dispositivo de tratamiento se lleve a cabo la misma cantidad de destrucción microbiana, equivalente al valor de F del proceso

$$U = F_{250} \times F_0 = F_{250} \times 10^{\frac{T_{250} \cdot T_0}{Z}}$$
 (5)

En el presente estudio se utilizara el método predictivo de C. R. Stumbo (1973), quien utiliza como base el modelo matemático de Ball, sugiriendo la incorporación de otro parámetro fh/U. Elaborando para ello nuevas tablas para dicho parámetro, respecto a distintos valores del factor de retraso de enfriamiento del proceso j_c, cada tabla corresponde a un diferente valor de constante de muerte térmica (Z=18°F). Para obtenerlas Stumbo tomó datos de diferentes puntos del envase para tener distintos valores de j_c.

Las tablas suponen que la transmisión de calor es solo por conducción y se realizan suposiciones no arbitrarias acerca de la

forma de los perfiles de temperatura en la fase de enfriamiento. Este método está limitado por el intervalo de jc y errores de redondeo en los cálculos numéricos.

1.3 Características del producto

La elaboración de un producto conlleva a realizar énfasis en una amplia gama de características. Para el desarrollo de la sopa de harina de arveja en conserva de lata se consideraron las siguientes:

- ➤ Bajo costo relativo y que forme parte de la cultura gastronómica de nuestro país, para lo cual se desarrollaron formulaciones en base a una mezcla principal de ingredientes la cual comprenderá el uso de subproductos de la industria porcina con ciertas hortalizas y verduras autóctonas de la costa y sierra ecuatoriana.
- Alto rendimiento y adecuado nivel nutricional.
- ➤ Envase de hojalata de dimensiones 603X600 (153 mm X 152 mm) con una capacidad aproximada de 3 kilogramos,
- Fácil manipulación del producto terminado y extenso periodo de almacenamiento sin dependencia de la cadena de frío

CAPÍTULO 2

2. PRUEBAS EXPERIMENTALES

Se realizaron 5 pruebas experimentales tanto a nivel laboratorio como a nivel piloto. En ambos niveles se aplicaron principios y fundamentos del procesado térmico de los alimentos.

Las pruebas a nivel de laboratorio comprenden el desarrollo de la formulación y además, el comportamiento de los ingredientes frente al tratamiento térmico de una sopa de harina de arveja en dos tamaños diferentes de envases: un formato de envase tradicional 307x408 (600 gr.) y otro no tradicional 603X600 (3 Kg. aprox.).

El estudio de penetración de calor se realizó a nivel piloto y comprende de 2 fases principales:

- 1. Determinación del punto frío del envase.
- Determinación de los parámetros de proceso (tiempo y temperatura) de esterilización comercial.

2.1 Materiales y método

Los materiales y equipos utilizados en pruebas a nivel de laboratorio son:

- Materia Prima
- Cucharas y cuchillos
- Tablas de picar
- Cocina
- Licuadora
- Gas
- Ollas
- Latas (307x408)
- Autoclave
- Caldero
- Diesel
- Selladora
- Exhauster
- Termómetros
- Balanza

Para el desarrollo de la formulación de la sopa en el envase tradicional, se realizaron 5 diferentes pruebas. Se diseño una guía de

laboratorio que incluía el plan experimental, los materiales, métodos y observaciones al final de cada prueba.

Las pruebas de formulación se basaron en pruebas de acierto y error, escogiendo la mejor combinación de materias primas e ingredientes. Luego una vez obtenida la combinación ideal esta fórmula fue sometida a diversos ajustes especialmente en lo concerniente al espacio de cabeza del envase.

En las pruebas a nivel de planta piloto se utilizaron los siguientes materiales y equipos:

- Materia Prima
- Cucharas y cuchillos
- Tablas de picar
- Cocina
- Licuadora
- Gas
- Ollas
- Latas (603X600)
- Autoclave vertical estacionario
- Caldero

- Diesel
- Selladora
- Exhauster
- Termómetros
- Balanza
- Sensor de temperatura Data Trace Micropack I
- Sensor de temperatura Data Trace Micropack III
- Interfase Data Trace
- Una computadora

Para estas pruebas, se realizó el estudio de penetración de calor que comprende 3 fases esenciales

- 1. Localizar el punto más lento de distribución de calor del autoclave.
- Determinar el punto más lento de calentamiento de la sopa dentro del envase 603X600.
- Realizar una prueba de comprobación y validación de los datos obtenidos.

2.2 Pruebas a nivel de laboratorio

2.2.1 Formulación para un formato de envase 307 X 408.

El número de experiencias para el desarrollo de la formulación de la sopa fueron 5, las cuales se basaron en pruebas de acierto y error. En ellas se realizaron la caracterización de parámetros organolépticos, variando la composición de los ingredientes en el producto y además la determinación de procedimientos estándares. Estas formulaciones fueron sometidas a tratamientos térmicos en envases de hojalata 307X408. Posteriormente fueron evaluadas a través de un panel de degustación, donde previo a la degustación, el contenido de cada envase era diluido con 400 gr. de agua. Las formulaciones obtenidas así como las respectivas observaciones y recomendaciones por cada prueba se detallan a continuación:

Prueba # T1: tuvo como objetivo elaborar una sopa de harina de arveja de manera casera, combinando una serie de ingredientes elegidos acorde a la cultura gastronómica del medio, para obtener una fórmula base. De las degustaciones realizadas se determinó que su consistencia no era acorde con el plato tradicional, y que la cantidad de col era excesiva.

Se obtuvo una ligera aceptación en cuanto a sabor por parte de los degustadores. Se recomendó como prioridad mejorar la consistencia del producto.

Prueba # T2: estuvo orientada a mejorar la consistencia y apetencia de la sopa, para lo cual se planteó aumentar la cantidad de harina de arveja así como otorgar a la sopa pequeños sólidos en suspensión, cortando los ingredientes del refrito en trozos pequeños y añadirlos durante la preparación. Del producto obtenido se pudo observar que su consistencia mejoró, el color obtenido era café claro, presentó un aroma agradable y la presencia de sólidos en suspensión era apreciable para la vista. Durante la degustación del producto este no tuvo buena aceptación. Se recomendó licuar a los ingredientes del refrito y que los trozos de col sean cortes más grandes pues la cocción deshace los cortes de 2cm X 2cm.

Prueba # T3: estuvo encaminada a evitar la presencia de sólidos en suspensión, mejorar un poco la consistencia del producto, mejorar el sabor y emplear trozos de col de mayor dimensión. Para ello se licuaron los ingredientes del refrito, se aumentó en una pequeña proporción la cantidad de harina de arveja, se aumentó la cantidad de aliño, se trató de que la cantidad de cebolla colorada, tomate y pimiento sean similares y que los cortes de col fueran de mayor dimensión a los de la prueba anterior 4cm X 4cm.

Del producto obtenido se pudo observar que la apariencia y textura fue más homogénea, mucho mejor que las pruebas anteriores, el color era similar al de las pruebas antes realizadas y que la mitad de los trozos de col agregadas salieron enteras, además se evidenció que el contenido de papa era escaso. Durante la degustación del producto el sabor tuvo una buena aceptación, el contenido de zanahoria no tenia fin común en este plato ya que el plato tradicional no lo usa como ingrediente. Se recomendó ajustar las cantidades de sólidos como carne, papa y un poco la col además de eliminar la zanahoria ya que no es parte constitutiva del plato tradicional.

Prueba # T4: estuvo orientada a mejorar la presencia de sólidos en la sopa. Para ello el contenido en cuanto a carne de cerdo, papa chola y col aumentaron, repartiendo el porcentaje de zanahoria suprimido entre estos tres componentes. De las degustaciones realizadas se determinó que la apariencia, textura, color y sabor fueron agradables para los degustadores De igual manera se recomendó solamente ajustar el contenido de papa.

Prueba # T5: estuvo orientada a aumentar un poco el contenido de papa sin producir alteraciones significativas en el porcentaje obtenido en los demás ingredientes de la prueba anterior. Para ello alteramos los porcentajes de carne y agua re-distribuyéndolo en contenido de papa. Del producto obtenido se pudo observar que la apariencia, textura, color y sabor se mantuvieron y el contenido de papa se evidencio de una mejor manera en el momento de la dilución del producto con agua. La degustación de este producto tuvo alta aceptación.

TABLA 2
FORMULACIÓN DEL PRODUCTO PARA UN ENVASE 307X408

Ingredientes	Prueba # T1	Prueba # T2	Prueba # T3	Prueba # T4	Prueba # T5
	%	%	%	%	%
Sólidos					
Carne de Cerdo	9	11	13	13	13
Col	5	1	2	2	2
Papa	5	5	5	7	10
Zanahoria	3	2	2	0	0
Polvo	1	7	7	8	7
Aliño	1	1	1	1	1
Refrito					
Cebolla blanca Cebolla	1	2	1	2	1
colorada	2	3	3	3	3
Pimiento	1	2	2	2	2
Tomate	2	3	2	2	2
Especias					
Sal	1	1	1	1	1
[] de carne	0,16	0,30	-	-	-
Líquido					
Inicio	70	63	48	47	45
Dilución			13	12	12
Total	100	100	100	100	100

Elaborado por: Arturo Sócrates Palacios P

2.2.2 Ajuste de la formulación para un formato de envase 603X600.

Una vez escogida la mejor formulación de la etapa previa (formulación #T5), se realizó un ajuste a la misma, para utilizar los ingredientes en mayor proporción para el llenado de un más grande (603X600). Para ello se realizaron envase nuevamente 5 pruebas, tomando como base de ajuste una proporción de 5 veces en todos los ingredientes basados en la capacidad del envase de mayor dimensión que aproximadamente 3 kilogramos. En estas pruebas se evaluó y corrigió el comportamiento de los ingredientes, tratando de mantener las características organolépticas establecidas previamente, en el formato de envase más pequeño. Las formulaciones obtenidas así las respectivas como observaciones y recomendaciones por cada prueba se detallan a continuación:

Prueba # NT1: tuvo como objetivo observar el comportamiento de los ingredientes con la base de ajuste tomada y determinar la merma y rendimiento del producto. De las pruebas de degustación realizadas se determinó que el producto presento una buena apariencia, el porcentaje de papa y carne era

relativamente escaso en comparación al volumen de líquido utilizado y se obtuvo una ligera aceptación con respecto al sabor.

La merma obtenida en la elaboración del producto en el envase 603X600 fue del 17%, dato que tiene que ser considerado en el ajuste de la formulación con la finalidad de que no se presenten problemas en el momento de llenado del envase provocando falta de producto, que afecta en el espacio de cabeza como aconteció en esta prueba.

Prueba # NT2: tuvo como objetivo eliminar los problemas de llenado y observar el comportamiento de los ingredientes.

De las pruebas de degustación se determinó que el producto presento una buena consistencia, las proporciones de carne, col y papa eran aceptables y se obtuvo una ligera aceptación especialmente el sabor.

No se obtuvo problemas en el llenado del envase, se recomendó realizar un ajuste con respecto a la col y papa tratar de disminuirlos y mejorar el sabor.

Prueba # NT3: tuvo como objetivo tomar en consideración las recomendaciones de la prueba anterior con respecto a papa, col y sabor. Además se consideró la lectura de tiempos y temperaturas en cada una de las etapas del proceso de elaboración para establecer parámetros definitivos del proceso. De las pruebas de degustación se determinó que la consistencia del producto fue mejor, las proporciones entre carne, col y papa mejoraron, el color que presento el producto se torno algo verde pálido, aspecto a mejorar en la siguiente prueba y se obtuvo una decorosa aceptación con respecto al sabor.

Prueba # NT4: tuvo como objetivo mejorar el color del producto.

De las pruebas de degustación se determinó producto obtenido se pudo observar que la consistencia del producto se mantuvo, la proporción de sólidos era adecuada y mejoro el color.

Además el sabor del producto fue aceptable. Se recomendó mejorar el color del producto.

Prueba # NT5: se planteo primero la visita a una persona dedicada al arte culinario por años y mostrar la formulación obtenida y ver si existía algún cambio a realizar para mejorar las

características del producto. Se recomendó entonces, sustituir el tomate y redistribuirlo entre los otros ingredientes del refrito ya que el plato típico no lo tiene como ingrediente constitutivo y aumentar un poco la intensidad del color empleando más achiote. Con las indicaciones dadas se procedió a elaborar el producto y verificar el comportamiento del producto en cuanto a sus características organolépticas. Del producto obtenido se pudo observar que la consistencia y proporción de sólidos del producto se mantuvieron, el color mejora en un 100%. Durante la degustación del producto dio los resultados esperados.

Prueba # NT6: se tuvo como objetivo usar la mejor formulación de todas las pruebas anteriores, para realizar los estudios de determinación de punto frío y posteriormente el estudio de penetración de calor.

TABLA: 3
FORMULACIÓN DEL PRODUCTO PARA UN ENVASE 603×600

Ingredientes	Prueba # NT1	Prueba #NT 2	Prueba #NT 3	Prueba #NT 4	Prueba #NT 5	Prueba #NT 6
	%	%	%	%	%	%
<u>Sólidos</u>						
Carne de Cerdo	13	14	13	13	13	13
Col	2	2	2	2	2	2
Papa	10	10	10	10	10	10
Polvo	7	8	7	7	7	7
Aliño	0,90	0,95	0,92	0,92	0,92	0,92
Refrito						
Cebolla blanca	1	1	1	1	3	3
Cebolla colorada	3	3	3	3	4	4
Pimiento	2	2	2	2	2	2
Tomate	2	2	2	2	-	-
<u>Especias</u>						
Sal	1,30	1,37	1,33	1,33	1,33	1,33
[] de carne	-	-	0,20	0,20	0,20	0,20
Achiote	-	-	-	0,09	0,30	0,30
<u>Liquido (Agua)</u>						
Inicio	45	48	46	46	46	46
Dilución	12	7	10	10	10	10
Total	100	100	100	100	100	100

Elaborado por: Arturo Sócrates Palacios P.

2.3 Pruebas a nivel de planta piloto

Las pruebas a nivel piloto se dividen en dos fases principales:

- 1. Determinación del punto frío.
- **2.** Determinación de parámetros de proceso.

El estudio de penetración de calor fue realizado en un formato de envase 603X600. Para ello se empleo el uso de equipos que involucran una línea de elaboración de conservas. Estos equipos fueron: caldera el cual proporcionó vapor saturado a toda la línea de enlatado, una tubería de caucho la cual fue adaptada a la línea de vapor para distribuir el mismo a las latas y así provocar el vacío necesario de las mismas, la maquina selladora marca Somme para el sellado de los envases, un compresor de aire y una autoclave vertical con una capacidad instalada aproximada de 100 Kg. en la cual su punto más lento de distribución de calor dentro del equipo es próximo a la entrada de aire comprimido (parte superior) que corresponde a la parte más alejada a la entrada principal de vapor.

El empleo de una autoclave vertical para estas pruebas con llevará que el tiempo de tratamiento térmico para lograr la esterilidad comercial del producto sea prolongado ya que con este equipo no existe movimiento de los envases fenómeno que provocaría una reducción considerable en el tratamiento térmico.

FIGURA 2.1 Autoclave Vertical

2.3.1 Determinación del punto frío.

Para determinar el punto frío del envase, se utilizaron: dos sensores de temperatura Data Trace Micropack I, 2 envases 603X600, phmetro, y producto. Los sensores fueron ubicados en dos puntos diferentes y en envases diferentes a lo largo de su eje axial y seguidamente se realizó el proceso térmico en la autoclave. Los datos de temperatura del producto recolectados a tiempo real, nos servirán, para determinar si el mecanismo

de transferencia de calor que predomina en el producto es conductivo o convectivo.

FIGURA 2.2 Vista superior de la ubicación de sensores

FIGURA 2.3 Vista frontal de la ubicación de sensores

2.3.2 Estudio de penetración de calor

Es la parte medular de este trabajo y consistió en la recopilación de datos de temperatura del producto a tiempo real durante las operaciones de autoclavado. Las temperaturas y tiempos obtenidos serán los parámetros de proceso que garanticen la esterilidad comercial del producto, es decir, proporcionan un alimento seguro para el consumo humano. Para ello se empleó el uso de un sensor de temperatura Data Trace MP III, recolectando los valores de temperatura del producto a tiempo real que posteriormente se registrarán en papel semi-logarítmico versus tiempo, para así obtener datos necesarios para el cálculo del tiempo de proceso térmico y lograr la esterilidad comercial.

TABLA: 4

PRUEBA DE DETERMINACIÓN DEL PUNTO FRIO SENSOR 1

Prueba de Determinación del Punto Frío			
Tipo/Capacidad del envase	Dimensiones del envase		
Hojalata - 3 piezas	In: x	mm: -	
Espacio de cabeza:	Diam/Largo	Altura/Ancho	
5 mm	603	600	
Peso neto mínimo:	Peso neto má		
2610 gr.		2640 gr.	
Método de Procesamiento	Esterilización	-Alimento de Baja Acidez	
Identificación de la Retorta			
Tipo de Retorta	Disco	ntinua sin Agitación	
Medio de Calentamiento	V	apor Saturado	
Posicionamiento del envase en la retorta.	En el punto frío del equipo (parte superior)		
Comentarios	Sensor ubicado en el eje axial del envase a una altura de 7.62 cm. desde la base		
Tiempos y Temperatura de Proceso			
Tiempo de Levante o CUT	23	Minutos	
Tiempo de Retención	150	Minutos	
Tiempo de Enfriamiento	20	Minutos	
Temperatura de Retención	250	°F (grados Fahrenheit)	
Producto			
pH antes de la esterilización	5.35		
pH después de la esterilización	5.44		
Sensor			
Tipo de sensor	Data Trace Micropack I		
Numero del sensor	1		
Localización	1/2 desde la base		
Fo mínimo	6		

Elaborado por: Arturo Sócrates Palacios P.

Sensor:		Nombre del Pi	roducto:
No- 1		Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	٥F	L	
0	155,4224	0,0000	Inicio del CUT
1	155,2568	0,0000	
2	155,0642	0,0000	
3	154,8968	0,0000	
4	154,769	0,0000	
5	154,6016	0,0000	
6	154,4486	0,0000	
7	154,2812	0,0000	
8	154,1804	0,0000	
9	154,0382	0,0000	
10	153,923	0,0000	
11	153,833	0,0000	
12	153,7052	0,0000	
13	153,6296	0,0000	
14	153,5648	0,0000	
15	153,4622	0,0000	
16	153,4244	0,0000	
17	153,3992	0,0000	
18	153,3596	0,0000	
19	153,3596	0,0000	
20	153,4118	0,0000	
21	153,4118	0,0000	
22	153,4622	0,0000	
23	153,4748	0,0000	Fin del CUT
24	153,59	0,0000	Inicio de la Retención
25	153,68	0,0000	
26	153,8204	0,0000	
27	153,9482	0,0000	
28	154,103	0,0000	
29	154,2812	0,0000	
30	154,4864	0,0000	
31	154,6916	0,0000	
32	154,9616	0,0000	
33	155,2298	0,0000	
34	155,5124	0,0000	
35	155,8346	0,0000	

Sensor:		Nombre del Pro	oducto:
No- 1		Po	lvo de Arveja
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
36	156,155	0,0000	
37	156,5276	0,0000	
38	156,8876	0,0000	
39	157,3124	0,0000	
40	157,712	0,0000	
41	158,1638	0,0000	
42	158,6012	0,0000	
43	159,1052	0,0000	
44	159,6362	0,0000	
45	160,115	0,000	
46	160,673	0,000	
47	161,1914	0,000	
48	161,7908	0,000	
49	162,3776	0,000	
50	162,9644	0,000	
51	163,5908	0,000	
52	164,2208	0,000	
53	164,9156	0,000	
54	165,587	0,000	
55	166,2728	0,000	
56	166,9604	0,000	
57	167,6102	0,000	
58	168,3662	0,000	
59	169,0862	0,000	
60	169,808	0,000	
61	170,5316	0,000	
62	171,2318	0,000	
63	171,986	0,000	
64	172,7456	0,000	
65	173,5322	0,000	
66	174,2684	0,000	
67	175,0352	0,000	
68	175,8038	0,000	
69	176,5904	0,000	
70	177,3518	0,000	
71	178,1294	0,000	

Sensor:		Nombre del Pr	oducto:
	No- 1	Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
72	178,9106	0,000	
73	179,6972	0,000	
74	180,4856	0,000	
75	181,22	0,000	
76	182,0156	0,000	
77	182,759	0,000	
78	183,533	0,000	
79	184,3106	0,000	
80	185,0774	0,000	
81	185,8064	0,000	
82	186,5804	0,000	
83	187,3148	0,000	
84	188,0978	0,000	
85	188,825	0,000	
86	189,8996	0,000	
87	190,3064	0,000	
88	190,9832	0,001	
89	191,7716	0,001	
90	192,4574	0,001	
91	193,208	0,001	
92	193,8992	0,001	
93	194,6426	0,001	
94	195,6722	0,001	
95	196,3454	0,001	
96	196,7072	0,001	
97	197,357	0,001	
98	198,0392	0,001	
99	198,743	0,001	
100	199,3856	0,002	
101	199,9832	0,002	
102	200,6492	0,002	
103	201,3512	0,002	
104	201,9578	0,002	
105	202,586	0,002	
106	203,1998	0,003	
107	203,8154	0,003	

Sensor:		Nombre del Pr	oducto:
No- 1		Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
108	204,4364	0,003	
109	205,0772	0,003	
110	205,619	0,003	
111	206,2328	0,004	
112	206,8142	0,004	
113	207,3992	0,004	
114	207,9698	0,005	
115	208,544	0,005	
116	209,0858	0,005	
117	209,6312	0,006	
118	210,1946	0,006	
119	210,7094	0,007	
120	211,244	0,007	
121	211,7642	0,008	
122	212,3402	0,008	
123	212,7938	0,009	
124	213,2834	0,009	
125	213,7586	0,010	
126	214,2716	0,010	
127	214,7702	0,011	
128	215,2706	0,012	
129	215,717	0,012	
130	216,203	0,013	
131	216,6728	0,014	
132	217,1066	0,015	
133	217,58	0,016	
134	217,9994	0,017	
135	218,4566	0,018	
136	218,8994	0,019	
137	219,2846	0,020	
138	219,7292	0,021	
139	220,1378	0,022	
140	220,5284	0,023	
141	220,9604	0,024	
142	221,3924	0,026	
143	221,7092	0,027	

Sensor:		Nombre del P	roducto:
No- 1		Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
144	222,125	0,028	
145	222,5246	0,030	
146	222,9044	0,031	
147	223,3058	0,033	
148	223,628	0,034	
149	223,9718	0,036	
150	224,2958	0,037	
151	224,6828	0,039	
152	225,0104	0,041	
153	225,401	0,043	
154	225,7502	0,045	
155	226,0814	0,047	
156	226,3928	0,049	
157	226,7258	0,051	
158	227,0804	0,053	
159	227,3738	0,055	
160	227,6888	0,058	
161	228,0056	0,060	
162	228,3242	0,062	
163	228,5996	0,065	
164	228,8768	0,067	
165	229,1972	0,070	
166	229,4978	0,073	
167	229,7768	0,075	
168	230,0576	0,078	
169	230,3384	0,081	
170	230,6642	0,084	
171	230,882	0,087	
172	231,143	0,090	
173	231,4508	0,093	Fin de la Retención
174	231,6254	0,095	(Steam Off)
175	231,89	0,099	Al final e la retención la
176	232,088	0,101	Sumatoria de letalidades
177	232,3094	0,104	dio como resultado
178	232,5308	0,107	Σ = 2,152
179	232,8188	0,111	Inicio de Enfriamiento

Sensor:		Nombre del Pr	oducto:
No- 1		Po	olvo de Arveja
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
180	233,042	0,114	
181	233,2436	0,117	
182	233,4668	0,121	
183	233,6702	0,124	
184	233,7818	0,126	
185	233,9852	0,129	
186	234,1868	0,132	
187	234,2336	0,133	
188	234,3002	0,134	
189	234,3902	0,136	
190	234,3902	0,136	
191	234,3686	0,135	
192	231,6254	0,095	
193	227,4368	0,056	
194	224,2364	0,037	
195	223,6892	0,035	
196	221,9666	0,028	
197	218,9174	0,019	
198	214,5848	0,011	
199	179,6396	0,000	
200	185,9378	0,000	Fin de Enfriamiento
		$\Sigma = 4.588$	

TABLA: 5

PRUEBA DE DETERMINACIÓN DEL PUNTO FRIO SENSOR 2

Prueba de Determinación del Punto Frío			
Tipo/Capacidad del envase	Dimensiones del envase		
Hojalata - 3 piezas	In: x	mm: -	
Espacio de cabeza:	Diam/Largo	Altura/Ancho	
5 mm	603	600	
Peso neto mínimo:	Peso neto ma		
2610 gr.		2640 gr.	
Método de Procesamiento	Esterilización	n –Alimento de Baja Acidez	
<u>Identificación de la Retorta</u>			
Tipo de Retorta	Disco	ntinua sin Agitación	
Medio de Calentamiento	V	/apor Saturado	
Posicionamiento del envase en la retorta.	En el punto frio del equipo (parte superior)		
Comentarios	Sensor ubicado en el eje axial de envase a una altura de 5.68 cm desde la base		
Tiempos y Temperatura de Proceso			
Tiempo de Levante o CUT	23	minutos	
Tiempo de Retención	150	minutos	
Tiempo de Enfriamiento	20	minutos	
Temperatura de Retención	250	°F (grados Fahrenheit)	
Producto			
pH antes de la esterilización	5.35		
pH después de la esterilización	5.44		
Sensor			
Tipo de sensor	Data Trace Micropack I		
	2		
Numero del sensor		2	
Numero del sensor Localización	1/	2 3 desde la base	

Elaborado por: Arturo Sócrates Palacios P.

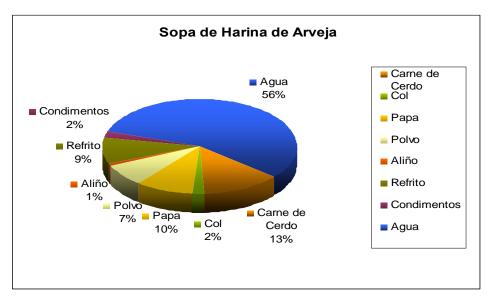
Sensor:		Nombre del Pi	roducto:
No- 2		Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	٥F	L	
0	148,7732	0,0000	Inicio del CUT
1	148,5194	0,0000	
2	148,2386	0,0000	
3	147,9704	0,0000	
4	147,7022	0,0000	
5	147,4862	0,0000	
6	147,2432	0,0000	
7	147,0398	0,0000	
8	146,8868	0,0000	
9	146,759	0,0000	
10	146,7086	0,0000	
11	146,7338	0,0000	
12	146,8364	0,0000	
13	147,0398	0,0000	
14	147,3206	0,0000	
15	147,7292	0,0000	
16	148,3394	0,0000	
17	149,117	0,0000	
18	149,9594	0,0000	
19	151,0196	0,0000	
20	152,1554	0,0000	
21	153,3974	0,0000	
22	155,4224	0,0000	
23	156,0902	0,0000	Fin del CUT
24	157,469	0,0000	Inicio de la Retención
25	158,8244	0,0000	
26	160,196	0,0000	
27	161,5604	0,0000	
28	162,9032	0,0000	
29	164,201	0,0000	
30	165,515	0,0000	
31	166,7696	0,0000	
32	167,99	0,0000	
33	169,2176	0,0000	
34	170,4362	0,0000	
35	171,608	0,0000	

Sensor:		Nombre del Pro	oducto:
No- 2		Po	lvo de Arveja
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
36	172,7726	0,0000	
37	173,9696	0,0000	
38	175,1324	0,0000	
39	176,2754	0,0000	
40	177,4382	0,0000	
41	178,5668	0,0000	
42	179,645	0,0000	
43	180,7592	0,0000	
44	181,823	0,0000	
45	182,8526	0,000	
46	183,9146	0,000	
47	184,928	0,000	
48	185,918	0,000	
49	186,8846	0,000	
50	187,8422	0,000	
51	188,7926	0,000	
52	189,6872	0,000	
53	190,6052	0,001	
54	191,4962	0,001	
55	192,3944	0,001	
56	193,2368	0,001	
57	194,0702	0,001	
58	194,891	0,001	
59	195,7334	0,001	
60	196,52	0,001	
61	197,2778	0,001	
62	198,0734	0,001	
63	198,8078	0,001	
64	199,58	0,002	
65	200,2928	0,002	
66	200,993	0,002	
67	201,6968	0,002	
68	202,3898	0,002	
69	203,0846	0,002	
70	203,7182	0,003	
71	204,422	0,003	

Sensor:		Nombre del Pr	oducto:
No- 2		Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°F	L	
72	205,0628	0,003	
73	205,673	0,003	
74	206,339	0,004	
75	206,9546	0,004	
76	207,5234	0,004	
77	208,148	0,005	
78	208,7564	0,005	
79	209,318	0,005	
80	209,8814	0,006	
81	210,4646	0,006	
82	211,0154	0,007	
83	211,5338	0,007	
84	212,0918	0,008	
85	212,5976	0,008	
86	213,4148	0,009	
87	213,6344	0,010	
88	214,1474	0,010	
89	214,6244	0,011	
90	215,1068	0,012	
91	215,5892	0,012	
92	216,0752	0,013	
93	216,5432	0,014	
94	217,2794	0,015	
95	217,6772	0,016	
96	217,886	0,016	
97	218,345	0,017	
98	218,804	0,018	
99	219,209	0,019	
100	219,6338	0,021	
101	220,0622	0,022	
102	220,451	0,023	
103	220,8434	0,024	
104	221,2952	0,025	
105	221,63	0,027	
106	222,0656	0,028	
107	222,404	0,029	

Sensor:		Nombre del Producto:		
No- 2		Polvo de Arveja		
Tiempo	Temperatura	Razón Letal	Observaciones	
min.	°F	L		
108	222,7838	0,031		
109	223,1636	0,032		
110	223,5272	0,034		
111	223,8494	0,035		
112	224,2544	0,037		
113	224,5802	0,039		
114	224,906	0,040		
115	225,2552	0,042		
116	225,6044	0,044		
117	225,9752	0,046		
118	226,2866	0,048		
119	226,598	0,050		
120	226,8896	0,052		
121	227,2244	0,054		
122	227,4746	0,056		
123	227,8112	0,059		
124	228,1496	0,061		
125	228,4664	0,064		
126	228,7436	0,066		
127	228,9992	0,068		
128	229,2764	0,071		
129	229,577	0,073		
130	229,856	0,076		
131	230,1368	0,079		
132	230,3744	0,081		
133	230,6786	0,084		
134	230,8964	0,087		
135	231,224	0,091		
136	231,4418	0,093		
137	231,683	0,096		
138	231,9476	0,099		
139	232,2122	0,103		
140	232,4102	0,105		
141	232,655	0,109		
142	232,9214	0,113		
143	233,1446	0,116		

Sensor:		Nombre del Producto:		
No- 2		Polvo de Arveja		
Tiempo	Temperatura	Razón Letal	Observaciones	
min.	°F	L		
144	233,3678	0,119		
145	233,591	0,123		
146	233,816	0,126		
147	234,0626	0,130		
148	234,2444	0,133		
149	234,4478	0,137		
150	234,6278	0,140		
151	234,9014	0,145		
152	235,0832	0,148		
153	235,265	0,152		
154	235,4702	0,156		
155	235,6538	0,160		
156	235,8608	0,164		
157	236,0912	0,169		
158	236,2748	0,173		
159	236,4602	0,177		
160	236,6456	0,181		
161	236,7842	0,184		
162	237,0182	0,190		
163	237,2036	0,195		
164	237,3908	0,199		
165	237,5078	0,202		
166	237,695	0,207		
167	237,812	0,210		
168	238,0478	0,217		
169	238,1414	0,219		
170	238,3304	0,225		
171	238,496	0,230		
172	238,685	0,235		
173	238,8272	0,239	Fin de la Retención	
174	238,9226	0,242	(Steam Off)	
175	231,89	0,099	Al final e la retención la	
176	232,088	0,101	Sumatoria de letalidades	
177	232,3094	0,104	dio como resultado	
178	232,5308	0,107	Σ = 8.218	
179	239,9504	0,276	Inicio de Enfriamiento	


Sensor:		Nombre del Producto:		
No- 2		Polvo de Arveja		
Tiempo	Temperatura	Razón Letal	Observaciones	
min.	٥F	L		
180	240,143	0,283		
181	240,2636	0,288		
182	240,3842	0,292		
183	240,4328	0,294		
184	240,2636	0,288		
185	239,7596	0,270		
186	238,8992	0,242		
187	237,6716	0,207		
188	236,0912	0,169		
189	234,356	0,135		
190	233,0096	0,114		
191	232,943	0,113		
192	232,3886	0,105		
193	231,2456	0,091		
194	229,3412	0,071		
195	227,2244	0,054		
196	224,9888	0,041		
197	222,4238	0,029		
198	219,965	0,021		
199	217,4864	0,016		
200	215,1068	0,012	Fin de Enfriamiento	
		Σ = 12.282		

CAPÍTULO 3

3. CALCULOS Y RESULTADOS

3.1 Parámetros de esterilización.

Para determinar el punto frío y encontrar los parámetros de esterilización en el envase propuesto es necesario la formulación del producto a tratar, la misma que se obtuvo de las pruebas realizadas a nivel planta piloto y que detallamos a continuación.

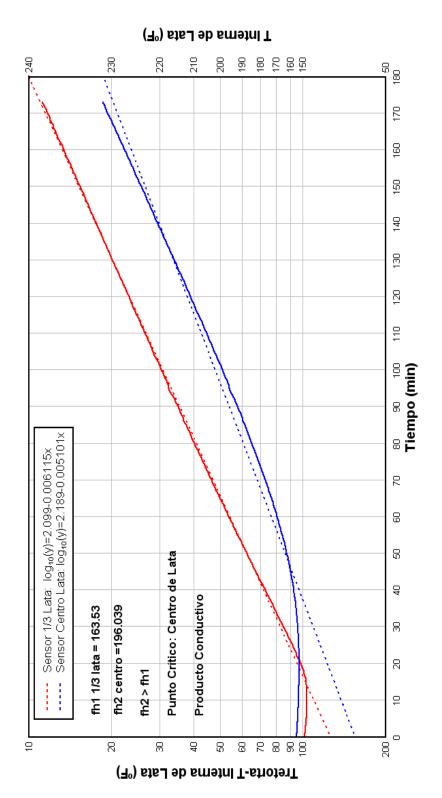


FIGURA 3.1 Composición de Sopa de harina de arveja **Elaborado por:** Arturo Sócrates Palacios P.

3.1.1 Cálculo del punto frío en envase 603X600

En el enlatado, el calor se transfiere desde las paredes del recipiente al producto, destacándose un punto o zona donde el calentamiento es más lento (punto o zona fría), la misma que se encuentra a lo largo del eje axial del envase. Esta localización depende de las características y condiciones del producto y de las dimensiones del envase. Su importancia radica en que para poder evaluar un proceso térmico es necesario conocer las características de calentamiento de la zona fría.

Para el cálculo del punto frío se graficó en una hoja semilogarítmica de tres ciclos, los datos de temperatura del alimento a tiempo real, recopilados con los sensores de temperatura (Data Trace MP I). Con esto es posible construir las curvas que denoten la forma como se transfiere el calor en el productoenvase a lo largo del proceso térmico. Las curvas se linealizan, con la intención de obtener una ecuación que vincule la mayor cantidad de datos graficados y por medio de la cual, el inverso de su pendiente nos dará un parámetro de respuesta a la temperatura llamado fh, el cual describe la velocidad de penetración de calor en el recipiente y en su contenido durante el calentamiento.

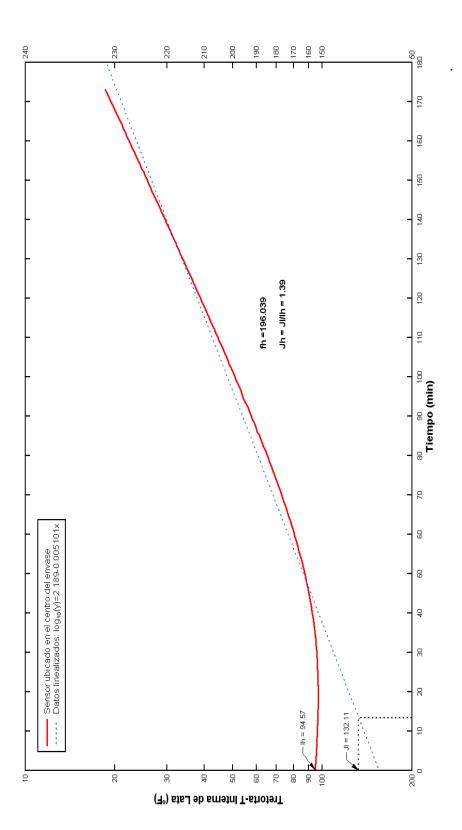
FIGURA 3.2 Curvas de penetración de calor, sensor ubicado a diferente altura del eje axial del envase 603X600. Elaborado por: Arturo Sócrates Palacios P.

El gráfico (fig: 3.2) muestra la curva de calentamiento y su respectiva linealización para los datos obtenidos de los sensores de temperatura ubicados a 1/3 y en el centro a lo largo del eje axial del envase 603x600. Los parámetros de respuesta a la temperatura fh obtenidos en cada posición respectivamente fueron: fh1= 163.53 y fh2=196.039.

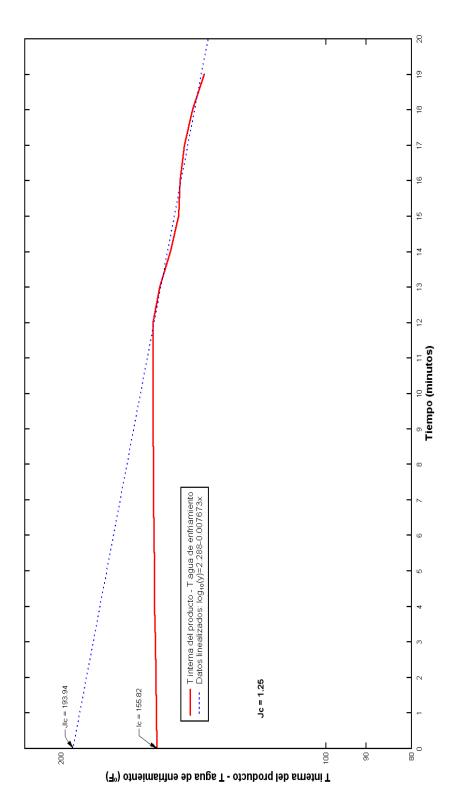
Al realizar el análisis comparativo de los fh, se denota que **fh1 < fh2**, lo que nos indica que la transferencia de calor en el 1/3 del envase es mucho más rápida que en el centro. Por lo tanto, el punto más lento de calentamiento, se encuentra en el centro geométrico del envase. Del análisis de esta curva también podemos concluir que el mecanismo de transferencia de calor que predomina en el producto es la conducción.

3.1.2 Determinación de tiempo y temperatura de proceso.

La determinación del tiempo y la temperatura de proceso, se fundamenta en el estudio de penetración de calor. Con los datos obtenidos en las pruebas experimentales se emplea el método de Stumbo para calcular:


- 1. Letalidad Fo
- 2. Tiempo de Esterilización

Debido a que no se cuenta con información disponible del tiempo ni temperatura de tratamiento térmico adecuado para este formato de envase y, en particular para el tipo de producto formulado, se utilizaran los datos obtenidos en la prueba de determinación del punto frío del envase para pronosticar el tiempo de tratamiento térmico, utilizando el método de Stumbo con el cual se calculará:


- La letalidad Fo para un determinado tiempo de procesamiento.
- El tiempo de esterilización para una letalidad Fo deseada.

Luego compararemos resultados, de letalidades y tiempos de procesamiento calculados por Stumbo vs los obtenidos por el sensor de temperatura, con el propósito de disponer de un margen de seguridad para pronosticar el tiempo de procesamiento idóneo que acarree lograr un producto comercialmente estéril en el estudio de penetración de calor.

Los parámetros de penetración de calor obtenidos en el punto frió del envase se detallan en las siguientes gráficas:

FIGURA 3.3 Curva de calentamiento para el producto en la fase de levante y retención. **Elaborado por:** Arturo Sócrates Palacios P

FIGURA 3.4 Curva de enfriamiento para el producto en la fase de enfriamiento. **Elaborado por:** Arturo Sócrates Palacios

Los gráficos (fig: 3.3 y fig: 3.4) muestran la curva de calentamiento y de enfriamiento en el punto frío del envase respectivamente, obteniéndose los siguientes parámetros:

TABLA 6

PARAMETROS DE PENETRACIÓN DE CALOR

Concepto	Parámetro	Valor	Unidades
Respuesta a la Temperatura	fh	196.039	min.
Factor de Retraso (Calentamiento)	Jh	1.3969	Adimensional
Factor de Retraso (Enfriamiento)	Jc	1.25	Adimensional

Elaborado por: Arturo. Sócrates Palacios P.

Los factores Jh y Jc (tabla 6), se obtienen de la razón de dos diferencias, una aparente y otra real, estas diferencias son datos puntuales de la curva de calentamiento y enfriamiento.

Para su obtención se hace uso de dos factores: I y JI, generados en cada curva, como se describe a continuación:

Factor de retraso Jh

1. Calculo del factor Ih

$$I_h = T^0 \text{ retorta} - T^0 \text{ inicial del producto}$$
 (6)

$$I_h = 250-155.43$$

$$I_h = 94.57$$

2. Calculo del factor Jlh

$$Jlh= T^{o}$$
 retorta – T^{o} pseudoinicial producto (7) $Jlh=132.11$, (figura 3.3).

3. Calculo del factor de retraso J_h

$$J_{h} = \frac{JI_{h}}{I_{h}}$$

$$J_{h} = \frac{132.11}{94.57} = 1.396$$
(8)

$$J_h = 1.40$$

Factor de retraso Jc

1. Calculo del factor Ic

$$I_c$$
= T^o alimento cierre vapor – T^o agua enfriamiento (9)
$$I_c = 231,82\text{-}76$$

$$I_c = 155,82$$

2. Calculo del factor JIc

$$JI_c = T^o$$
 pseudoinicial producto $-T^o$ agua enfriamiento (10) $JI_c = 193.94$; (figura 3.4)

3. Calculo del factor de retraso Jc

$$J_{c} = \frac{JI_{c}}{I_{c}}$$

$$J_{c} = \frac{193,94}{155,82} = 1.25$$

$$J_{c} = 1.25$$
(11)

Los parámetros de penetración de calor obtenidos serán evaluados, primeramente calculando la letalidad Fo, para cada tiempo de procesamiento empleado en la determinación del punto frío. Se determinarán los valores de g (diferencia de temperatura entre el alimento y el medio de calentamiento) en cada tiempo y junto con el factor de retraso Jc, (11) se usará el Anexo A, para encontrar los valores correspondientes de fh/U los cuales serán aplicados, para obtener las letalidades en la siguiente ecuación:

$$F_o = f_h / [(f_h / U) * F_i].$$
 (12)

Para la obtención de los parámetros g, fh/U y Fo, se hará uso de los factores de respuesta a la temperatura de la curva de calentamiento fh =196.04, el factor de retraso del calentamiento Jh = 1.40 (8), el factor de retraso de enfriamiento Jc = 1.25 (11),

así como la temperatura de la retorta Tr = 250 °F, la temperatura inicial del producto Ti = 155.43 °F, el tiempo de levante CUT = 23 min. y el valor de Z = 18°F para el clostridum botulinum, de la siguiente forma:

1. Calculo del valor de g

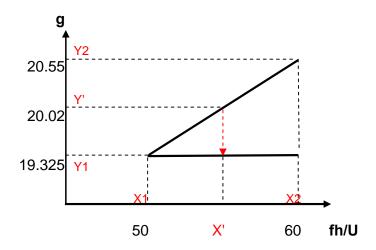
$$\log(g) = \log(J_h \times I) \frac{B}{fh}$$
 (13)

Donde; B = steam on to steam off - 0.58 CUT

$$B = 174 - 0.58(23)$$

 $B = 160.66 \, min$

$$\log(g) = \log(1.40 \times 94.57) - \frac{160.66}{196.04}$$


$$\log(g) = 1.3$$

$$g = 20.2$$

Para determinar el valor de fh/U que me permita determinar el valor de letalidad Fo se procede a usar la tabla del Anexo A con el valor de g obtenido e interpolando para el factor $J_c = 1.25(11)$ de la curva de enfriamiento, como se detalla a continuación.

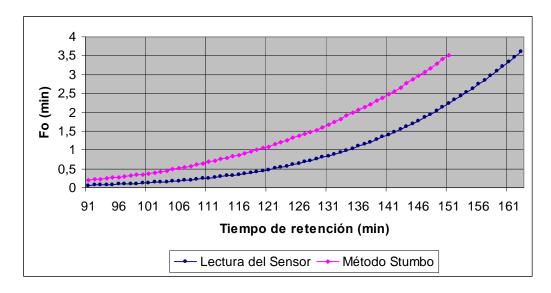
2. Calculo del factor fh/Upara un $J_c = 1.25$

• Interpolación:

$$\frac{X2 - X1}{X' - X1} = \frac{Y2 - Y1}{Y' - Y1}$$

$$\frac{60 - 50}{x' - 50} = \frac{20.55 - 19.325}{20.02 - 19.325}$$

$$X' = 50 + (60 - 50) \times \frac{20.02 - 19.325}{20.55 - 19.325}$$


$$X' = fh/U = 55.67$$
(14)

3. Calculo de la letalidad del proceso $\,{\sf F_{\scriptscriptstyle 0}}$

$$F_{0} = \frac{fh}{[(fh/U \times F_{i})]}$$
Donde; $F_{i} = 10^{\frac{(250-Tr)}{Z}} = 10^{\frac{(250-250)}{18}} = 1$

$$F_{0} = \frac{196.04}{[(55.67) \times 1]} = 3.521$$

Basado en la secuencia de pasos detallada anteriormente podemos obtener datos para los diferentes valores de g, con sus respectivos valores de fh/U así como sus letalidades Fo. Estos datos están descritos en los Anexos C y C1 del presente trabajo. Para una mejor comprensión el resultado de letalidades se detalla en la siguiente gráfica.

FIGURA 3.5 Letalidades Método de Stumbo vs Lectura del Sensor. **Elaborado por:** Arturo Sócrates Palacios P.

La grafica (fig: 3.5) muestra las letalidades obtenidas por el método de Stumbo y lectura del sensor. Podemos observar que al final de la etapa de retención (151 min.), el calculo matemático por el método de Stumbo pronostica una letalidad teórica Fo=3,522 min. y el sensor de temperatura una letalidad real Fo=2,127 min.

Los resultados logrados, nos indican que el producto estaría subprocesado, ya que para que una conserva, sea considerada comercialmente estéril, esta debe de cumplir con un valor de letalidad **Fo= 6 min.**

Además podemos observar que el sensor de temperatura alcanza el valor de letalidad Fo= 3.522 pronosticado por Stumbo a los 163 minutos de tratamiento térmico, es decir después de 12 minutos una vez empezada la etapa de enfriamiento.

Seguidamente se evaluaron los mismos parámetros, usando también el método matemático de Stumbo (proceso inverso), el cual consiste en el cálculo del tiempo de tratamiento para una letalidad deseada.

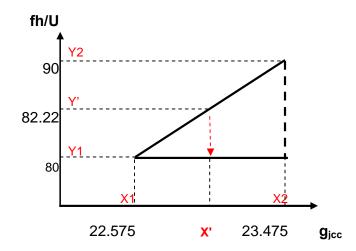
Las letalidades Fo deseadas que se tomaron, para el cálculo del tiempo de tratamiento, fueron las obtenidas en la prueba de determinación del punto frío. Para cada letalidad, se determinaron los valores de fh/u y junto con el factor de retraso Jcc (11), se uso el Anexo A, para encontrar los valores

correspondientes de g, que posteriormente fueron evaluados en la siguiente ecuación:, que pronostica el tiempo de tratamiento.

$$B = f_{h^*}[log (j_h^*l_h)-log g)]$$
 (15)

Para la obtención de los parámetros fh/U, g y B, se hará uso de los factores de respuesta a la temperatura de la curva de calentamiento fh =196.04, el factor de retraso del calentamiento Jch =1.40 (8), enfriamiento Jcc = 1.25 (11), así como la temperatura de la retorta Tr = 250 °F, temperatura inicial del producto Ti =155.43 °F, la letalidad del proceso $F_0 = 2.22$ min y el valor de Z = 18°F para el clostridum botulinum, como se detalla a continuación:

1. Calculo del factor fh/U


$$fh/U = \frac{fh}{(F_0 \times F_i)}$$

$$F_i = 10^{\frac{(250-Tr)}{2}} = 10^{\frac{(250-250)}{18}} = 1$$

$$fh/U = \frac{196.04}{2.22 \times 1}$$

$$fh/U = 82.22$$

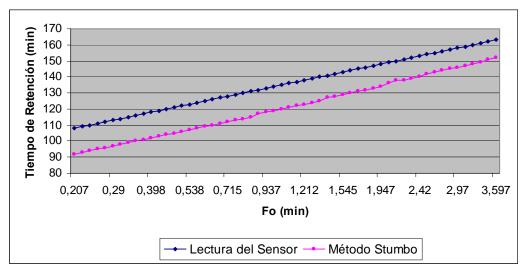
- 2. Calculo del factor g para un $j_{cc} = 1.25$
- Interpolación:

$$\frac{X2 - X1}{X' - X1} = \frac{Y2 - Y1}{Y' - Y1}$$

$$\frac{23.475 \quad 22.575}{X' \quad 22.575} = \frac{90 \quad 80}{82.22 \quad 80}$$

$$X' = 22.575 + (23.475 \quad 22.575) \times \frac{82.22 - 80}{90 - 80}$$

$$X' = g = 23.34$$


3. Calculo el tiempo de proceso B

$$B = fh \times [log(j_{ch} \times I_h) - log(g)]$$

$$B = 196.04 \times [log(1.4 \times 94.57) - log(23.34)]$$

$$B = 138 \text{ min.}$$
(15)

Basado en la secuencia de pasos detallada anteriormente podemos obtener datos para los diferentes valores de fh/U, con sus respectivos valores de g así como los tiempos de procesamiento B. Estos datos están descritos en los Anexos F y F1 del presente trabajo. Se elaboró un gráfico tiempo versus Fo (letalidad) para comprender mejor los resultados.

FIGURA 3.6 Tiempos de Retención Método de Stumbo vs Lectura del Sensor **Elaborado por:** Arturo Sócrates Palacios P

La gráfica (fig: 3.6) muestra:

a) Los tiempos de retención correspondientes a cada letalidad obtenida en la determinación del punto frío.

b) Los tiempos de retención para las letalidades Fo obtenidas en la determinación del punto frío y que fueron evaluadas con Stumbo.

A simple vista se aprecia una marcada diferencia entre los datos de la gráfica, ya que los tiempos pronosticados por Stumbo están por debajo de los tiempos que se obtuvieron en la práctica. El detalle de los resultados se presenta en el siguiente cuadro;

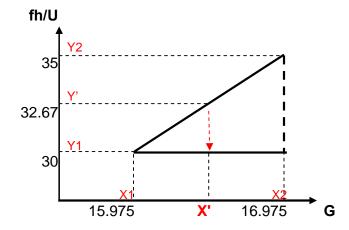
TABLA: 7
TIEMPOS DE RETENCION PARA UNA LETALIDAD DESEADA

Fo Deseado	Tiempo Retención Stumbo	Tiempo Retención Real	Desfase
min	min	min	min
0.207	92	108	16
0.507	106	122	16
1.04	120	135	15
1.545	129	143	14
2.222	138	151	13

Elaborado por: Arturo. Sócrates Palacios P.

La tabla # 7 nos indica que para una letalidad deseada los tiempos de retención obtenidos por el método de Stumbo son menores a los tiempos que se obtienen con el sensor de temperatura, existiendo un desfase en minutos entre la lectura del sensor y el método de Stumbo. Se toma como ejemplo la

letalidad obtenida al final del proceso de retención en la determinación del punto frío Fo= 2.222 min, para el cual Stumbo pronostica una retención teórica de 138 minutos y el tiempo de retención real obtenido en la practica fue de 151 min, existiendo una diferencia de 11 minutos entre lo real y lo teórico. También podemos observar que a medida que el valor de la letalidad es mayor el desfase en minutos entre la lectura del sensor y el método de Stumbo tiende a disminuir. Este comportamiento en particular, es un indicativo a tomar en consideración en el momento de pronosticar una letalidad Fo= 6 min, para la prueba de penetración de calor.


Basado en los hechos antes descritos y tomando en consideración el análisis respectivo de los mismos, se usó el proceso inverso de Stumbo para pronosticar el tiempo de tratamiento del producto. El objetivo es alcanzar una esterilidad comercial en el producto, es decir una letalidad Fo= 6 min. al final del proceso de retención. Usando como referencia los factores de respuesta a la temperatura de la curva de calentamiento fh = 196.04, el factor de retraso del calentamiento Jch =1.40 (8), enfriamiento Jcc = 1.25 (11), así como la temperatura de la

retorta Tr = 250 °F y el valor de Z = 18°F para el clostridum botulinum empleando la siguiente secuencia de pasos:

1. Calculo del factor fh/U

fh/U =
$$\frac{fh}{(F_0 \times F_i)}$$
 (12)
Donde; $F_i = 10^{\frac{(250-Tr)}{Z}} = 10^{\frac{(250-250)}{18}} = 1$
 $fh/U = \frac{196.04}{6 \times 1}$
fh/U = 32.67

- 2. Calculo del factor g para un $\, J_{c} = 1.25 \,$
- Interpolación:

$$\frac{X2 - X1}{X' - X1} = \frac{Y2 - Y1}{Y' - Y1} \tag{14}$$

$$\frac{16.975 - 15.975}{X' - 15.975} = \frac{35 - 30}{32.67 - 30}$$

$$X' = 15.975 + (16.975 - 15.975) \times \frac{32.67 - 30}{35 - 30}$$

$$X' = g = 16.51$$

3. Calculo el tiempo de proceso B

$$B = fh \times [log(j_{ch} \times I_{h}) - log(g)]$$

$$B = 196.04 \times [log(1.4 \times 94.57) - log(16.51)]$$

$$B = 168 \text{ min.}$$
(15)

El cálculo indica un tiempo de retención de 168 minutos, el cual basado en el análisis hecho con anterioridad (Tabla # 6), se le sumo 10 minutos como margen de seguridad. Una vez hecho el pronóstico de Stumbo con la respectiva corrección del caso, se procedió a realizar el estudio de penetración de calor a nivel piloto, del cual se obtuvieron los siguientes resultados.

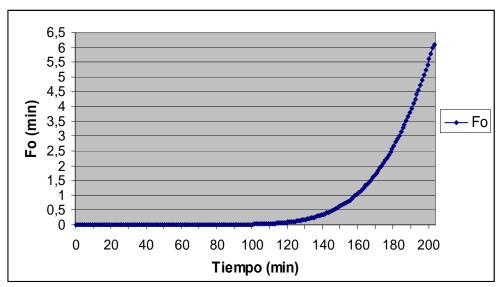
TABLA: 8

PRUEBA DE VALIDACIÓN DE DATOS

Dha da Data		Daniela Fair		
Prueba de Determinación del Punto Frío				
Tipo/Capacidad del envase	Dimensiones del envase			
Hojalata - 3 piezas	ln: x	mm: -		
Espacio de cabeza:	Diam/Largo	Altura/Ancho		
5 mm	603	600		
Peso neto mínimo:	Peso neto má			
2610 gr.		2640gr.		
Método de Procesamiento	Esterilización	–Alimento de Baja Acidez		
Identificación de la Retorta				
Tipo de Retorta	Discor	ntinua sin Agitación		
Medio de Calentamiento	V	apor Saturado		
Posicionamiento del envase en la retorta.	En el punto frío del equipo (parte superior)			
Comentarios	Sensor ubicado en el eje axial del envase a una altura de 7.62 cm. desde la base			
Tiempos y Temperatura de Proceso				
Tiempo de Levante o CUT	23	Minutos		
Tiempo de Retención	178	Minutos		
Tiempo de Enfriamiento	20	Minutos		
Temperatura de Retención	250	°F (grados Fahrenheit)		
Producto				
pH antes de la esterilización	5.35			
pH después de la esterilización	5.44			
Sensor				
Tipo de sensor	Data Trace Micropack I			
Numero del sensor	1			
Localización	1/2 desde la base			
Fo mínimo	6			

Sensor:		Nombre del Producto:	
	No- 1		olvo de Arveja
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°C	L	
0	68,4	0	Inicio del CUT
1	68,5	0	
2	68,5	0	
3	68,6	0	
4	68,6	0	
5	68,7	0	
6	68,8	0	
7	68,8	0	
8	68,8	0	
9	68,8	0	
10	68,8	0	
11	68,8	0	
12	68,7	0	
13	68,7	0	
14	68,7	0	
15	68,8	0	
16	68,8	0	
17	68,8	0	
18	68,8	0	
19	68,8	0	
20	68,8	0	
21	68,9	0	
22	69	0	
23	69	0	Fin del CUT
24	69,1	0	Inicio de la Retención
25	69,1	0	
26	69,2	0	
27	69,2	0	
28	69,3	0	
29	69,4	0	
30	69,5	0	
31	69,6	0	
32	69,7	0	
33	69,8	0	
34	70	0	
35	70,1	0	

Sensor:		Nombre del Producto:	
	No- 1	Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°C	L	
36	70,3	0	
37	70,4	0	
38	70,6	0	
39	70,8	0	
40	71	0	
41	71,2	0	
42	71,5	0	
43	71,7	0	
44	72	0	
45	72,2	0	
46	72,5	0	
47	72,8	0	
48	73,1	0	
49	73,4	0	
50	73,8	0	
51	74,1	0	
52	74,4	0	
53	74,8	0	
54	75,2	0	
55	75,5	0	
56	75,9	0	
57	76,3	0	
58	76,7	0	
59	77	0	
60	77,4	0	
61	77,8	0,001	
62	78,2	0,001	
63	78,6	0,001	
64	79,1	0,001	
65	79,5	0,001	
66	79,9	0,001	
67	80,3	0,001	
68	80,7	0,001	
69	81,1	0,001	
70	81,6	0,001	
71	82	0,001	


Sensor:		Nombre del Producto:		
	No- 1	Po	olvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones	
min.	°C	L		
72	82,4	0,001		
73	82,8	0,002		
74	83,2	0,002		
75	83,7	0,002		
76	84,1	0,002		
77	84,5	0,002		
78	84,9	0,003		
79	85,3	0,003		
80	85,8	0,003		
81	86,2	0,003		
82	86,6	0,004		
83	87	0,004		
84	87,4	0,005		
85	87,8	0,005		
86	88,2	0,006		
87	88,6	0,006		
88	89	0,007		
89	89,4	0,007		
90	89,8	0,008		
91	90,2	0,009		
92	90,6	0,01		
93	90,9	0,011		
94	91,3	0,012		
95	91,7	0,013		
96	92,1	0,014		
97	92,4	0,015		
98	92,8	0,017		
99	93,1	0,018		
100	93,5	0,02		
101	93,9	0,022		
102	94,2	0,024		
103	94,6	0,026		
104	94,9	0,028		
105	95,2	0,031		
106	95,6	0,034		
107	95,9	0,037		

Sensor:	Sensor: Nombre del Producto:		oducto:
	No- 1	Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°C	L	
108	96,2	0,04	
109	96,6	0,043	
110	96,9	0,047	
111	97,2	0,051	
112	97,5	0,055	
113	97,8	0,06	
114	98,1	0,065	
115	98,4	0,07	
116	98,7	0,076	
117	99	0,082	
118	99,3	0,088	
119	99,6	0,095	
120	99,9	0,103	
121	100,2	0,111	
122	100,4	0,119	
123	100,7	0,128	
124	101	0,138	
125	101,3	0,148	
126	101,5	0,159	
127	101,8	0,17	
128	102	0,182	
129	102,3	0,195	
130	102,6	0,209	
131	102,8	0,224	
132	103	0,239	
133	103,3	0,255	
134	103,5	0,273	
135	103,8	0,291	
136	104	0,31	
137	104,2	0,33	
138	104,5	0,351	
139	104,7	0,374	
140	104,9	0,398	
141	105,1	0,422	
142	105,3	0,448	
143	105,6	0,476	

Sensor:		Nombre del Producto:	
	No- 1	Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°C	L	
144	105,8	0,505	
145	106	0,535	
146	106,2	0,567	
147	106,4	0,601	
148	106,6	0,636	
149	106,8	0,672	
150	107	0,711	
151	107,2	0,751	
152	107,3	0,792	
153	107,5	0,836	
154	107,7	0,881	
155	107,9	0,928	
156	108,1	0,977	
157	108,3	1,029	
158	108,4	1,082	
159	108,6	1,137	
160	108,8	1,195	
161	108,9	1,256	
162	109,1	1,318	
163	109,3	1,383	
164	109,4	1,45	
165	109,6	1,519	
166	109,7	1,592	
167	109,9	1,666	
168	110,1	1,745	
169	110,2	1,825	
170	110,3	1,908	
171	110,5	1,994	
172	110,6	2,083	
173	110,8	2,175	
174	110,9	2,27	
175	111,1	2,369	
176	111,2	2,469	
177	111,3	2,574	
178	111,5	2,682	
179	111,6	2,793	

Sensor:		Nombre del Producto:	
	No- 1	Р	olvo de Arveja
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°C	L	
180	111,7	2,907	
181	111,9	3,026	
182	112	3,147	
183	112,1	3,271	
184	112,2	3,4	
185	112,3	3,531	
186	112,5	3,667	
187	112,6	3,807	
188	112,7	3,949	
189	112,8	4,097	
190	112,9	4,248	
191	113	4,402	
192	113,1	4,56	
193	113,3	4,724	
194	113,4	4,891	
195	113,5	5,063	
196	113,6	5,238	
197	113,7	5,417	
198	113,8	5,601	
199	113,9	5,789	
200	114	5,981	
201	114	6,176	Fin de la Retención
202	114,1	6,375	(Steam Off)
203	114,2	6,578	
204	114,3	6,787	
205	114,4	6,998	
206	114,5	7,216	
207	114,6	7,437	Inicio de Enfriamiento
208	114,7	7,663	
209	114,7	7,891	
210	114,8	8,125	
211	114,9	8,364	
212	115	8,606	
213	115,1	8,854	
214	115,1	9,104	
215	115,2	9,361	

Sensor:		Nombre del Producto:	
	No- 1	Polvo de Arveja	
Tiempo	Temperatura	Razón Letal	Observaciones
min.	°C	L	
216	115,3	9,62	
217	115,3	9,883	
218	115,4	10,151	
219	115,5	10,426	
220	115,5	10,7	
221	115,6	10,982	
222	115,6	11,263	
223	115,7	11,547	
224	115,7	11,835	
225	115,7	12,122	
226	115,7	12,41	Fin de Enfriamiento

FIGURA 3.7 Perfil de Letalidad Fo en el estudio de Penetración de Calor.

La gráfica (fig: 3.7) muestra, el comportamiento de la letalidad Fo, para el tiempo total de tratamiento térmico (levante + retención), durante el estudio de penetración de calor. Se puede observar que la letalidad real Fo= 6 min. se alcanza a los 201 minutos (CUT = 23 minutos + retención = 178 minutos), asegurando que el producto a estas condiciones se encuentra comercialmente estéril.

Los perfiles de tiempo y temperatura del producto, obtenidos durante la prueba de penetración de calor, se encuentran detallados en los anexos G del presente trabajo, con los cuales se elaboro la siguiente gráfica;

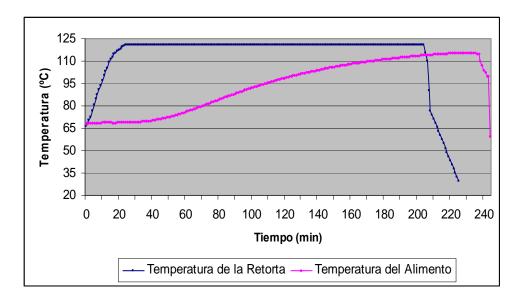


FIGURA 3.8 Perfil de temperatura de la autoclave y de temperatura del producto en el punto frío
Elaborado por: Arturo Sócrates Palacios P

En la grafica (fig:3.8) se puede apreciar los perfiles de temperatura (retorta y producto) a tiempo real durante el proceso térmico, en la que podemos distinguir la máxima temperatura alcanzada por el alimento 115 °C.

Basados en la comprobación y validación de datos pronosticados, en el estudio de penetración de calor, de la cual se obtuvieron los resultados esperados. Se procedió a la elaboración de una hoja, en la cual se detalla los tiempos de retención recomendados para diferentes temperaturas iniciales del alimento a diferentes temperaturas del autoclave.

TABLA 9

Tiempo de Retención a Diferentes Temperaturas Iniciales de Producto y Diferentes Temperaturas de Retorta

Tempe	Temperatura		Tiempo de Retención			
Producto	Retorta	Ca	lculado	Sug	erido	
(°F)	(°F)	Minutos	(HH:MM:SS)	Minutos	(HH:MM)	
130	240	242,6951	4:02:42	243	4:03	
135	240	238,7344	3:58:44	239	3:59	
140	240	234,5805	3:54:35	235	3:55	
145	240	230,2134	3:50:13	231	3:51	
150	240	225,6102	3:45:37	226	3:46	
155	240	220,7438	3:40:45	221	3:41	
160	240	215,5823	3:35:35	216	3:36	
165	240	210,0876	3:30:05	211	3:31	
170	240	204,2137	3:24:13	205	3:25	
175	240	197,9042	3:17:54	198	3:18	
180	240	191,0895	3:11:05	192	3:12	
185	240	183,6815	3:03:41	184	3:04	
130	245	217,5302	3:37:32	218	3:38	
135	245	213,7456	3:33:45	214	3:34	
140	245	209,7850	3:29:47	210	3:30	
145	245	205,6311	3:25:38	206	3:26	
150	245	201,2640	3:21:16	202	3:22	
155	245	196,6608	3:16:40	197	3:17	
160	245	191,7944	3:11:48	192	3:12	
165	245	186,6329	3:06:38	187	3:07	
170	245	181,1382	3:01:08	182	3:02	
175	245	175,2642	2:55:16	176	2:56	
180	245	168,9548	2:48:57	169	2:49	
185	245	162,1400	2:42:08	163	2:43	
130	250	197,6780	3:17:41	198	3:18	
135	250	194,0545	3:14:03	195	3:15	
140	250	190,2699	3:10:16	191	3:11	
145	250	186,3093	3:06:19	187	3:07	
150	250	182,1554	3:02:09	183	3:03	
155	250	177,7883	2:57:47	178	2:58	
160	250	173,1851	2:53:11	174	2:54	
165	250	168,3187	2:48:19	169	2:49	
170	250	163,1572	2:43:09	164	2:44	
175	250	157,6625	2:37:40	158	2:38	
180	250	151,7885	2:31:47	152	2:32	
185	250	145,4791	2:25:29	146	2:26	

78

3.2 Pruebas de aceptabilidad

Se evaluó la aceptabilidad del producto formulado, por parte de los

posibles consumidores. El número total de jueces para la evaluación

fue de 30 personas; entre estudiantes y trabajadores de la ESPOL.

Las edades fluctuaron entre los 18 y 60 años.

El método de evaluación escogido fue el de intervalos (Category &

Scaling test), el cual nos permite determinar el nivel de agrado entre

varias muestras y es fácil de comprender y de aplicar, además no

requiere de entrenamiento o experiencia de los participantes. El

formato presentado fue lo suficientemente explícito. Ver Anexo G.

Las preparaciones se ofrecieron individualmente durante la hora de

almuerzo, proporcionándoles a los jueces un agente neutralizante

(agua purificada) en cada intervalo de prueba para evitar influenciar

las respuestas.

Los tres tratamientos para esta evaluación fueron:

Tratamiento 0: 1 lata de producto + 1/3 lata de agua (900 ml)

Tratamiento 1: 1 lata de producto + 2/3 lata de agua (1800 ml)

Tratamiento 2 : 1 lata de producto + 1 lata de agua (2700 ml);

Las muestras pertenecientes al tratamiento 0 fueron codificadas con el código 711; las pertenecientes al tratamiento 1 con el código 901 y las pertenecientes al tratamiento 2 con el código 165.

Para analizar la puntuación obtenida de la degustación de las tres muestras por parte de los jueces (ver Anexo H), las marcas obtenidas en las escalas fueron traducidas a puntaciones numéricas empleando una regla y midiendo, teniendo como referencia de cero la marca en desagrada y diez la de gusta, para posteriormente aplicar el análisis de varianza de dos vías, el cual explica la diferencia entre dos factores por ejemplo, similitud entre muestras y similitud entre los fallos de los jueces.

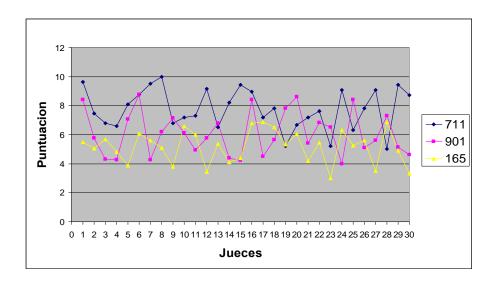
TABLA 10 Análisis de Varianza

Origen de las Variaciones	Grados de Libertad	Suma de Cuadrados	Cuadrados Medios	Relación de Variación
variaciones	gl	SC	CM	F
Muestras	2,00	102,81	51,40	26,06
Jueces	29,00	46,26	1,60	0,81
Error	58,00	114,39	1,97	-
Total	89,00	263,46	-	-

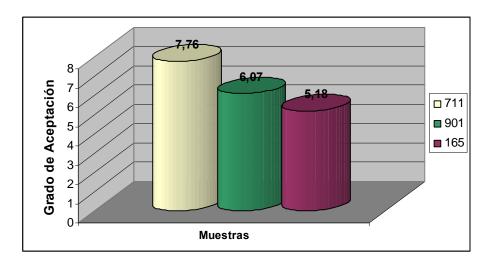
Elaborado por: Arturo Sócrates Palacios

Los valores calculados de la relación de variación (F) se comparan con los valores críticos para F (valores de tablas); si los valores calculados son mayores a los de la tabla, se establece que existe diferencia significativa.

TABLA 11
Comparación Valor F


	Nivel de Significancia	Tabla F		Valor F Calculado	Diferencia Significativa
Muestras	0,05	4,98	V	26,06	Si
wiuestras	0,01	3,15	<	26,06	Si
luccos	0,05	1,6	>	0,81	No
Jueces	0,01	1,39	>	0,81	No

Elaborado por: Arturo Sócrates Palacios


Se puede concluir que, al 0.05 y 0.01 de significancia, es decir, con el 95% y 99% de confiabilidad, entre las muestras presentadas existe diferencia significativa, siendo la de mayor grado de aceptación la muestra 711 que corresponde al tratamiento 0 (1 lata de producto + 1/3 de agua); mientras que entre las opiniones de los jueces no hay diferencia es decir hay congruencia en sus juicios.

Como se puede observar, la figura 3.10, muestra la secuencia de calificaciones obtenidas por muestra, por parte de los 30 jueces; notándose que la muestra 711 alcanza un mayor grado de

aceptabilidad entre las muestras ubicándola en la categoría superior a bastante agradable.

Figura 3.9 Puntuación de muestras **Elaborado por:** Arturo Sócrates Palacios P

Figura 3.10 Comparación de media de las muestras **Elaborado por:** Arturo Sócrates Palacios

3.3 Descripción del proceso para la obtención del producto

Recepción de Materia Prima: Se receptan, por separado: carne de cerdo, verduras y hortalizas como (Cebolla blanca y colorada, pimiento verde, tomate, ajo, col, zanahoria y papa), la arveja seca molida así como las especias (sabora, comino molido) que corresponden para la elaboración de la sopa. Los cuales deberán pasar por los respectivos análisis organolépticos (color, olor, forma, textura) asegurando así que estén aptos para el proceso productivo.

<u>Lavado</u>: Las materias primas recibidas a excepción de la arveja y las especias, se procederán a lavar para disminuir la carga bacteriana o la presencia de agentes extraños.

<u>Limpieza y Pelado</u>: La carne de cerdo, la cebolla blanca, colorada y el pimiento pasaran por una etapa de limpieza mientras que la papa previamente pasara por una etapa de pelado y luego de limpieza.

Cortado: la carne de cerdo deberá cortarse en cuadrados de (2cmx2cm), la col en cuadrados de (4cmx4cm), la cebolla colorada, el tomate y el pimiento en 4 partes iguales y la rama de cebolla blanca en pequeñas formas cilíndricas de dimensiones (3cmx2cm)

<u>Pre-Cocción</u>: la carne de cerdo limpia y cortada junto con los huesos y aqua, serán precocidas para la elaboración de un caldo base.

<u>Tamizado</u>: Una vez pre-cocinada la carne y el hueso se procede a pasar por un tamiz con el objetivo de eliminar los sólidos.

<u>Cocción</u>: El líquido obtenido de la etapa de tamizado será mezclado con la sal, el aliño, el refrito (previamente calentado por 4 minutos) y el polvo de arveja seca molida (diluida en una determinada cantidad de agua) dando así a la formación del líquido de gobierno.

Escaldado: la papa, col y la zanahoria una vez pasado por los procesos de lavado, pelado y cortado se escaldaran a ebullición durante: 5 minutos (papa y col) y 2 minutos (zanahoria), produciendo así una desactivación enzimática.

<u>Llenado</u>: una vez escaldadas las papas y la col, precocido la carne de cerdo y obtenido el líquido de gobierno en la etapa de cocción se respetará el siguiente orden de llenado: líquido de gobierno, carne de cerdo, líquido de gobierno, papa, líquido de gobierno, col y líquido de gobierno. El líquido de gobierno, tendrá que estar a una temperatura que bordee los 80°C. y el espacio de cabeza será de 5 mm.

Sellado: Una vez llenado los envases, serán pasados por el exhauster y seguidamente cerrados herméticamente para garantizar en gran medida

la vida útil del producto.

Tratamiento Térmico: Es la fase más importante del proceso donde el

producto es sometido a la acción del vapor directo a 121 °C o 250 °F por

un tiempo de 178 minutos. (aprox. 3 horas).

Enfriamiento: Etapa que consiste en la disminución de la temperatura

hasta (40-45 °C) de los envases que fueron sometidos a tratamiento

térmico con vapor directo.

Etiquetado: Se coloca las etiquetas características del formato de la

lata. Esta operación puede ser automática o manual dependiendo del

formato, requerimientos del cliente o de la presencia de litografía o no

en el envase.

Embalaje: El producto será embalado en cartón o plástico.

Almacenamiento: El producto ya embalado será trasladado al almacén

de productos terminados, donde deberá cumplir la respectiva

cuarentena a temperatura ambiente (28 °C - 34°C) antes de ser

distribuido al mercado.

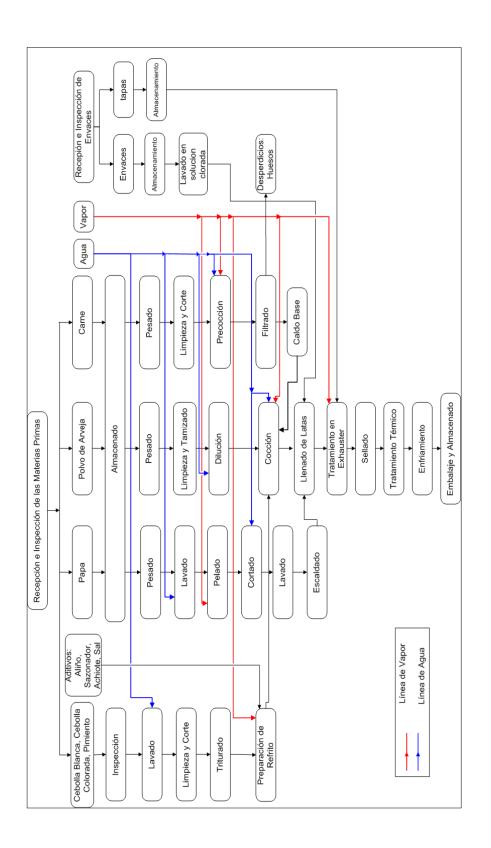


FIGURA 3.11 Diagrama de Proceso para la Sopa de Harina de arveja Elaborado por: Arturo Sócrates Palacios

CAPITULO 4

4. CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

- Se obtuvo un producto de consumo tradicional, enlatado en un envase de formato 603X600 de aproximadamente 3 kilogramos, del cual se podrá disponer alrededor de 15 porciones de aproximadamente 250 gr, con el propósito de incentivar a la resolución de problemas de alimentación social.
- En el presente estudio se estableció que el punto de calentamiento más lento o también llamado punto frio está ubicado en el centro geométrico del envase propuesto y que el producto tiene un mecanismo de transferencia de calor principalmente por conducción.
- Para el cálculo de la letalidad Fo se considero un aumento en el tiempo de tratamiento térmico pronosticado por Stumbo, para alcanzar una letalidad igual a 6 minutos y coincidiendo así con la lectura grafica del data trace.

- Se alcanzo un valor de letalidad Fo igual a 6 en un tiempo de retención de 178 minutos a una temperatura de proceso de 121 °C, lo cual garantiza la esterilidad comercial.
- El método matemático de Stumbo, empleado para los cálculos de letalidad en el presente trabajo, permite pronosticar tiempos de tratamiento térmico para diferentes temperaturas de proceso sin experimentación adicional.
- La metodología empleada en el presente trabajo, servirá como guía en el diseño y desarrollo de procesos térmicos de productos similares al obtenido.

RECOMENDACIONES

- Se recomienda complementar este estudio con uno de estabilidad de los nutrientes durante el tratamiento térmico.
- Se podría realizar un estudio complementario de validación de métodos empleados para la determinación de parámetros de esterilización comercial en productos enlatados.

ANEXOS

ANEXO A
Valores de g para Varios J de la Curva de Enfriamiento

		Jo	CC	
fh/U	1,00	1,20	1,25	1,40
0,20	5,09E-05	5,43E-05	5,51E-05	5,76E-05
0,30	2,40E-03	2,53E-03	2,56E-03	2,66E-03
0,40	1,62E-02	1,71E-02	1,73E-02	1,80E-02
0,50	5,06E-02	5,38E-02	5,46E-02	5,70E-02
0,60	1,09E-01	1,16E-01	1,18E-01	1,23E-01
0,70	0,189	0,202	0,20525	0,215
0,80	0,287	0,308	0,313	0,328
0,90	0,400	0,429	0,43625	0,458
1,00	0,523	0,561	0,57075	0,6
2,00	1,93	2,07	2,105	2,21
3,00	3,26	3,47	3,5225	3,68
4,00	4,41	4,68	4,745	4,94
5,00	5,40	5,71	5,79	6,03
6,00	6,25	6,61	6,7025	6,98
7,00	7,00	7,41	7,5125	7,82
8,00	7,66	8,11	8,2225	8,56
9,00	8,25	8,74	8,865	9,24
10,00	8,78	9,32	9,455	9,86
15,00	10,88	11,59	11,77	12,31
20,00	12,40	13,26	13,4725	14,11
25,00	13,60	14,6	14,85	15,6
30,00	14,60	15,7	15,975	16,8
35,00	15,50	16,7	16,975	17,8
40,00	16,30	17,5	17,8	18,7
45,00	17,00 17,70	18,3	18,6 19,325	19,5 20,3
50,00 60,00	18,90	19 20,2	20,55	20,3
70,00	19,90	20,2	20,55	21,0
80,00	20,80	22,2	22,575	23,7
90,00	21,60	23,1	23,475	24,6
100,00	22,30	23,9	24,275	25,4
150,00	25,20	26,8	27,225	28,5
200,00	27,10	28,9	29,35	30,7
250,00	28,60	30,5	30,975	32,4
300,00	29,80	31,8	32,275	33,7
350,00	30,70	32,8	33,325	34,9
400,00	31,50	33,7	34,25	35,9
450,00	32,30	34,5	35,05	36,7
500,00	32,90	35,2	35,775	37,5
600,00	34,00	36,4	37	38,8
700,00	35,00	37,5	38,1	39,9
800,00	35,80	38,4	39,025	40,9
900,00	36,60	39,2	39,85	41,8
999,99	37,30	39,9	40,575	42,6

Fuente: Stumbo, C.R. 1973 Termobacteriología en Procesamiento de Alimentos, 2nd ed. Academy Press, New Cork, p. 256.

ANEXO B

Letalidades Obtenidas en Prueba de Determinación de Punto Frío

Tie	Tiempo			
		-	atura del	Método
Proceso	Retención	Alimento		General
min	min	°C	°F	Fo
100,66	91	97,76	207,97	0,058
101,66	92	98,08	208,54	0,062
102,66	93	98,38	209,09	0,068
103,66	94	98,68	209,63	0,073
104,66	95	99,00	210,19	0,079
105,66	96	99,28	210,71	0,086
106,66	97	99,58	211,24	0,093
107,66	98	99,87	211,76	0,1
108,66	99	100,19	212,34	0,108
109,66	100	100,44	212,79	0,116
110,66	101	100,71	213,28	0,125
111,66	102	100,98	213,76	0,135
112,66	103	101,26	214,27	0,145
113,66	104	101,54	214,77	0,156
114,66	105	101,82	215,27	0,168
115,66	106	102,07	215,72	0,18
116,66	107	102,34	216,20	0,193
117,66	108	102,60	216,67	0,207
118,66	109	102,84	217,11	0,222
119,66	110	103,10	217,58	0,237
120,66	111	103,33	218,00	0,254
121,66	112	103,59	218,46	0,271
122,66	113	103,83 1	218,90	0,29
123,66	114	04,05	219,28	0,309
124,66	115	104,29	219,73	0,33
125,66	116	104,52	220,14	0,351
126,66	117	104,74	220,53	0,374
127,66	118	104,98	220,96	0,398
128,66	119	105,22	221,39	0,423
129,66	120	105,39	221,71	0,45
130,66	121	105,63	222,13	0,478
131,66	122	105,85	222,52	0,507
132,66	123	106,06	222,90	0,538
133,66	124	106,28	223,31	0,57
134,66	125	106,46	223,63	0,604
135,66	126	106,65	223,97	0,64

ANEXO B1

Letalidades Obtenidas en Prueba de Determinación de Punto Frío

Tiempo				
	_	Temper	atura del	Método
Proceso	Retención	Alimento		General
min	min	°C	°F	Fo
136,66	127	106,83	224,30	0,677
137,66	128	107,05	224,68	0,715
138,66	129	107,23	225,01	0,756
139,66	130	107,45	225,40	0,799
140,66	131	107,64	225,75	0,843
141,66	132	107,82	226,08	0,889
142,66	133	108,00	226,39	0,937
143,66	134	108,18	226,73	0,988
144,66	135	108,38	227,08	1,04
145,66	136	108,54	227,37	1,095
146,66	137	108,72	227,69	1,152
147,66	138	108,89	228,01	1,212
148,66	139	109,07	228,32	1,274
149,66	140	109,22	228,60	1,338
150,66	141	109,38	228,88	1,404
151,66	142	109,55	229,20	1,473
152,66	143	109,72	229,50	1,545
153,66	144	109,88	229,78	1,62
154,66	145	110,03	230,06	1,697
155,66	146	110,19	230,34	1,777
156,66	147	110,37	230,66	1,861
157,66	148	110,49	230,88	1,947
158,66	149	110,64	231,14	2,035
159,66	150	110,81	231,45	2,127
160,66	151	110,90	231,63	2,222
161,66	152	111,05	231,89	2,32
162,66	153	111,16	232,09	2,42
163,66	154	111,28	232,31	2,524
164,66	155	111,41	232,53	2,63
165,66	156	111,57	232,82	2,74
166,66	157	111,69	233,04	2,853
167,66	158	111,80	233,24	2,97
168,66	159	111,93	233,47	3,089
169,66	160	112,04	233,67	3,213
170,66	161	112,10	233,78	3,338
171,66	162	112,21	233,99	3,466
172,66	163	112,33	234,19	3,597

ANEXO C
Letalidades Obtenidas Aplicando El Método de Stumbo

Tie	empo			
				Método
Proceso	Retención	G	fh/U	Stumbo
min	min	°F	-	Fo
100,66	91	40,50	990,28	0,198
101,66	92	40,03	925,05	0,212
102,66	93	39,56	865,35	0,227
103,66	94	39,10	809,35	0,242
104,66	95	38,64	758,98	0,258
105,66	96	38,19	710,20	0,276
106,66	97	37,74	668,03	0,293
107,66	98	37,30	627,96	0,312
108,66	99	36,87	589,55	0,333
109,66	100	36,44	554,40	0,354
110,66	101	36,01	519,66	0,377
111,66	102	35,59	487,61	0,402
112,66	103	35,17	458,94	0,427
113,66	104	34,76	432,43	0,453
114,66	105	34,36	407,06	0,482
115,66	106	33,96	384,41	0,510
116,66	107	33,56	362,98	0,540
117,66	108	33,17	342,77	0,572
118,66	109	32,78	319,65	0,613
119,66	110	32,40	304,92	0,643
120,66	111	32,02	290,37	0,675
121,66	112	31,65	275,99	0,710
122,66	113	31,28	261,77	0,749
123,66	114	30,91	248,18	0,790
124,66	115	30,55	237,07	0,827
125,66	116	30,19	226,09	0,867
126,66	117	29,85	215,24	0,911
127,66	118	29,49	204,52	0,959
128,66	119	29,15	195,35	1,004
129,66	120	28,81	187,34	1,046
130,66	121	28,47	179,43	1,092
131,66 132,66	122 123	28,14 27,81	171,60 163,87	1,142
132,66	123	27,48	156,23	1,196 1,254
134,66	124	27,46 27,16	149,05	1,315
135,66	126	26,85	149,03	1,364
133,00	120	20,00	143,07	1,304

ANEXO C1

Letalidades Obtenidas Aplicando El Método de Stumbo

Tiempo				
				Método
Proceso	Retención	g	fh/U	Stumbo
min	min	°F	-	Fo
136,66	127	26,53	138,36	1,419
137,66	128	26,22	133,10	1,472
138,66	129	25,92	127,91	1,532
139,66	130	25,61	122,78	1,596
140,66	131	25,32	117,71	1,665
141,66	132	25,02	112,70	1,739
142,66	133	24,73	107,75	1,819
143,66	134	24,44	102,85	1,906
144,66	135	24,15	98,54	1,989
145,66	136	23,87	95,01	2,063
146,66	137	23,59	91,53	2,141
147,66	138	23,32	88,29	2,220
148,66	139	23,04	85,27	2,299
149,66	140	22,78	82,28	2,382
150,66	141	22,51	79,34	2,470
151,66	142	22,25	76,50	2,562
152,66	143	21,99	73,69	2,660
153,66	144	21,73	70,91	2,764
154,66	145	21,48	68,46	2,863
155,66	146	21,22	66,18	2,962
156,66	147	20,98	63,93	3,066
157,66	148	20,73	61,70	3,177
158,66	149	20,49	59,55	3,292
159,66	150	20,25	57,60	3,403
160,66	151	20,01	55,67	3,521
161,66	152	19,78	53,76	3,646
162,66	153	19,55	51,87	3,779
163,66	154	19,32	50,01	3,920
164,66	155	19,10	48,45	4,046
165,66	156	18,87	46,91	4,178
166,66	157	18,65	45,39	4,318
167,66	158	18,43	43,99	4,436
168,66	159	18,22	42,65	4,596
169,66	160	18,01	41,32	4,745
170,66	161	17,80	40,00	4,900
171,66	162	17,59	38,74	5,059
172,66	163	17,38	37,50	5,227

ANEXO D

Letalidades Obtenidas por Método Stumbo vs. Lectura del Sensor

	Tiempo				
Tempera	atura del			Método	Método
	ento	Proceso	Retención	General	Stumbo
°C	٥F	min	min	Fo	Fo
97,76	207,97	100,66	91	0,058	0,198
98,08	208,54	101,66	92	0,062	0,212
98,38	209,09	102,66	93	0,068	0,227
98,68	209,63	103,66	94	0,073	0,242
99,00	210,19	104,66	95	0,079	0,258
99,28	210,71	105,66	96	0,086	0,276
99,58	211,24	106,66	97	0,093	0,293
99,87	211,76	107,66	98	0,100	0,312
100,19	212,34	108,66	99	0,108	0,333
100,44	212,79	109,66	100	0,116	0,354
100,71	213,28	110,66	101	0,125	0,377
100,98	213,76	111,66	102	0,135	0,402
101,26	214,27	112,66	103	0,145	0,427
101,54	214,77	113,66	104	0,156	0,453
101,82	215,27	114,66	105	0,168	0,482
102,07	215,72	115,66	106	0,180	0,510
102,34	216,20	116,66	107	0,193	0,540
102,60	216,67	117,66	108	0,207	0,572
102,84	217,11	118,66	109	0,222	0,613
103,10	217,58	119,66	110	0,237	0,643
103,33	218,00	120,66	111	0,254	0,675
103,59	218,46	121,66	112	0,271	0,710
103,83	218,90	122,66	113	0,290	0,749
104,05	219,28	123,66	114	0,309	0,790
104,29	219,73	124,66	115	0,330	0,827
104,52	220,14	125,66	116	0,351	0,867
104,74	220,53	126,66	117	0,374	0,911
104,98	220,96	127,66	118	0,398	0,959
105,22	221,39	128,66	119	0,423	1,004
105,39	221,71	129,66	120	0,450	1,046
105,63	222,13	130,66	121	0,478	1,092
105,85	222,52	131,66	122	0,507	1,142
106,06	222,90	132,66	123	0,538	1,196
106,28	223,31	133,66	124	0,570	1,254
106,46	223,63	134,66	125	0,604	1,315
106,65	223,97	135,66	126	0,640	1,364

ANEXO D1

Letalidades Obtenidas por Método Stumbo vs. Lectura del Sensor

		Tiempo			
Tempera	tura del			Método	Método
Alim	ento	Proceso	Retención	General	Stumbo
°C	°F	min	min	Fo	Fo
106,83	224,30	136,66	127	0,677	1,419
107,05	224,68	137,66	128	0,715	1,472
107,23	225,01	138,66	129	0,756	1,532
107,45	225,40	139,66	130	0,799	1,596
107,64	225,75	140,66	131	0,843	1,665
107,82	226,08	141,66	132	0,889	1,739
108,00	226,39	142,66	133	0,937	1,819
108,18	226,73	143,66	134	0,988	1,906
108,38	227,08	144,66	135	1,040	1,989
108,54	227,37	145,66	136	1,095	2,063
108,72	227,69	146,66	137	1,152	2,141
108,89	228,01	147,66	138	1,212	2,220
109,07	228,32	148,66	139	1,274	2,299
109,22	228,60	149,66	140	1,338	2,382
109,38	228,88	150,66	141	1,404	2,470
109,55	229,20	151,66	142	1,473	2,562
109,72	229,50	152,66	143	1,545	2,660
109,88	229,78	153,66	144	1,620	2,764
110,03	230,06	154,66	145	1,697	2,863
110,19	230,34	155,66	146	1,777	2,962
110,37	230,66	156,66	147	1,861	3,066
110,49	230,88	157,66	148	1,947	3,177
110,64	231,14	158,66	149	2,035	3,292
110,81	231,45	159,66	150	2,127	3,403
110,90	231,63	160,66	151	2,222	3,521
111,05	231,89	161,66	152	2,320	3,646
111,16	232,09	162,66	153	2,420	3,779
111,28	232,31	163,66	154	2,524	3,920
111,41	232,53	164,66	155	2,630	4,046
111,57	232,82	165,66	156	2,740	4,178
111,69	233,04	166,66	157	2,853	4,318
111,80	233,24	167,66	158	2,970	4,436
111,93	233,47	168,66	159	3,089	4,596
112,04	233,67	169,66	160	3,213	4,745
112,10	233,78	170,66	161	3,338	4,900
112,21	233,99	171,66	162	3,466	5,059
112,33	234,19	172,66	163	3,597	5,227

ANEXO E

Tiempos de Retención Calculados por Stumbo
Para una Letalidad Fo Deseada

			STUMBO		
Fo			Tiempo	Tiempo	
Deseado	Factor	G	Proceso	Retención	
min	fh/U	°F	min	min	
0,058	-	-	-	-	
0,062	-	-	-	-	
0,068	-	-	-	-	
0,073	-	-	-	-	
0,079	-	-	-	-	
0,086	-	-	-	-	
0,093	-	-	-	-	
0,100	-	-	-	-	
0,108	-	-	-	-	
0,116	-	-	-	-	
0,125	-	-	-	-	
0,135	-	-	-	-	
0,145	-	-	-	-	
0,156	-	-	-	-	
0,168	-	-	-	-	
0,180	-	-	-	-	
0,193	-	-	-	-	
0,207	947,040	40,19	101	92	
0,222	883,058	39,71	102	93	
0,237	827,168	39,25	103	94	
0,254	771,807	38,76	104	95	
0,271	723,391	38,32	105	96	
0,290	675,996	37,84	106	97	
0,309	634,430	37,38	107	98	
0,330	594,057	36,93	109	99	
0,351	558,515	36,49	110	100	
0,374	524,168	36,07	111	101	
0,398	492,560	35,67	111	102	
0,423	463,449	35,25	112	103	
0,450	435,642	34,82	114	104	
0,478	410,123	34,41	115	105	
0,507	386,664	34,00	116	106	
0,538	364,384	33,59	117	107	
0,570	343,928	33,20	118	108	
0,604	324,567	32,79	119	109	
0,640	306,310	32,41	120	110	

ANEXO E1

Tiempos de Retención Calculados por Stumbo
Para una Letalidad Fo Deseada

			STUMBO		
Fo			Tiempo	Tiempo	
Deseado	Factor	g	Proceso	Retención	
min	fh/U	°F	min	min	
0,677	289,570	32,00	121	111	
0,715	274,180	31,60	122	112	
0,756	259,310	31,22	123	113	
0,799	245,355	30,82	124	114	
0,843	232,550	30,41	125	115	
0,889	220,516	30,02	126	117	
0,937	209,219	29,65	127	118	
0,988	198,420	29,28	128	119	
1,040	188,499	28,86	130	120	
1,095	179,031	28,46	131	121	
1,152	170,172	28,08	132	122	
1,212	161,748	27,72	133	123	
1,274	153,880	27,39	134	124	
1,338	146,516	27,39	135	125	
1,404	139,628	26,61	136	127	
1,473	133,088	26,23	138	128	
1,545	126,886	25,86	139	129	
1,620	121,011	25,51	140	130	
1,697	115,520	25,19	141	131	
1,777	110,320	24,88	142	132	
1,861	105,340	24,59	143	133	
1,947	100,687	24,32	144	134	
2,035	96,333	23,98	145	136	
2,127	92,166	23,33	148	138	
2,222	88,226	23,32	148	138	
2,320	84,499	22,98	149	139	
2,420	81,007	22,67	150	140	
2,524	77,669	22,36	151	142	
2,630	74,539	22,07	152	143	
2,740	71,547	21,79	153	144	
2,853	68,713	21,51	155	145	
2,970	66,006	21,21	156	146	
3,089	63,463	20,93	157	147	
3,213	61,014	20,66	158	148	
3,338	58,729	20,39	159	149	
3,466	56,560	20,13	160	151	
3,597	54,500	19,88	161	152	

ANEXO F Tiempos de Retención Obtenidos por Método Stumbo vs. Lectura del Sensor de Temperatura.

			STUMBO		
Temp	eratura	Fo	Tiempo	Tiempo	Tiempos Reales
	nento	Deseado	Proceso	Retención	Retención
°C	۰F	min	min	min	min
97,76	207,97	0,058	-	-	91
98,08	208,54	0,062	-	-	92
98,38	209,09	0,068	-	-	93
98,68	209,63	0,073	-	-	94
99,00	210,19	0,079	-	-	95
99,28	210,71	0,086	-	-	96
99,58	211,24	0,093	-	-	97
99,87	211,76	0,1	-	-	98
100,19	212,34	0,108	-	-	99
100,44	212,79	0,116	-	-	100
100,71	213,28	0,125	-	-	101
100,98	213,76	0,135	-	-	102
101,26	214,27	0,145	-	-	103
101,54	214,77	0,156	-	-	104
101,82	215,27	0,168	-	-	105
102,07	215,72	0,18	-	-	106
102,34	216,20	0,193	-	-	107
102,60	216,67	0,207	101	92	108
102,84	217,11	0,222	102	93	109
103,10	217,58	0,237	103	94	110
103,33	218,00	0,254	104	95	111
103,59	218,46	0,271	105	96	112
103,83	218,90	0,29	106	97	113
104,05	219,28	0,309	107	98	114
104,29	219,73	0,33	109	99	115
104,52	220,14	0,351	110	100	116
104,74	220,53	0,374	111	101	117
104,98	220,96	0,398	111	102	118
105,22	221,39	0,423	112	103	119
105,39	221,71	0,45	114	104	120
105,63	222,13	0,478	115	105	121
105,85	222,52	0,507	116	106	122
106,06	222,90	0,538	117	107	123
106,28	223,31	0,57	118	108	124
106,46	223,63	0,604	119	109	125
Elaborado por: Arturo. Sócrates Palacios. (2008)					

ANEXO F1

Tiempos de Retención Obtenidos por
Método Stumbo vs. Lectura del Sensor de Temperatura

		STUMBO			
	eratura	Fo	Tiempo	Tiempo	Tiempos Reales
	nento	Deseado	Proceso	Retención	Retención
°C	°F	min	min	min	min
106,65	223,97	0,64	120	110	126
106,83	224,30	0,677	121	111	127
107,05	224,68	0,715	122	112	128
107,23	225,01	0,756	123	113	129
107,45	225,40	0,799	124	114	130
107,64	225,75	0,843	125	115	131
107,82	226,08	0,889	126	117	132
108,00	226,39	0,937	127	118	133
108,18	226,73	0,988	128	119	134
108,38	227,08	1,04	130	120	135
108,54	227,37	1,095	131	121	136
108,72	227,69	1,152	132	122	137
108,89	228,01	1,212	133	123	138
109,07	228,32	1,274	134	124	139
109,22	228,60	1,338	135	125	140
109,38	228,88	1,404	136	127	141
109,55	229,20	1,473	138	128	142
109,72	229,50	1,545	139	129	143
109,88	229,78	1,62	140	130	144
110,03	230,06	1,697	141	131	145
110,19	230,34	1,777	142	132	146
110,37	230,66	1,861	143	133	147
110,49	230,88	1,947	144	134	148
110,64	231,14	2,035	145	136	149
110,81	231,45	2,127	148	138	150
110,90	231,63	2,222	148	138	151
111,05	231,89	2,32	149	139	152
111,16	232,09	2,42	150	140	153
111,28	232,31	2,524	151	142	154
111,41	232,53	2,63	152	143	155
111,57	232,82	2,74	153	144	156
111,69	233,04	2,853	155	145	157
111,80	233,24	2,97	156	146	158
111,93	233,47	3,089	157	147	159
112,04	233,67	3,213	158	148	160
112,10	233,78	3,338	159	149	161
112,21	233,99	3,466	160	151	162
112,33	234,19	3,597	161	152	163

ANEXO G

Nombre y Apellido: _		
Fecha: Edad:		_
acuerdo con la escala	sopa y marque con una "x que se presenta a continu	
MUESTRAS: 711		
Desagrada 	Indiferente	Gusta
Observaciones:	'	'
MUESTRAS: 901 Desagrada	Indiferente	Gusta
MUESTRAS : 165 Desagrada	Indiferente	 Gusta
		1
Observaciones:		

¡Gracias por su colaboración!

ANEXO H
PUNTUACIÓN DE MUESTRAS

	Muestras		
Jueces	711	901	165
1	9,6	8,4	5,5
2	7,4	5,8	5,0
3	6,8	4.3	5,7
4	6,6	4,2	4,8
5	8,1	7,1	4,8 3,9
6	8,1 8,8	4,2 7,1 8,8 4,3	6,1
7	9,5	4,3	5,6
8	10,0	6.2	5,1
9	6,8	7,1	3,8
10	7,2	6,1	6,6
11	7,3	4,9	6,0
12	9,2	5,8	3,4
13	6,5	6,8	5,4
14	7,3 9,2 6,5 8,2	4,4	4,1
15	9,4	4,2	4,4
16	9.0	8,4	6,8
17	7,2	4,5	6,9
18	7,2 7,8	5,6	6,5
19	5,2	7,8	5,3
20	6.7	8,6	6,0
21 22	7,2 7,6	5,4	4,2
22	7,6	6,8	5,4
23	5,2	6,5	3,0
24	9,1	4,0	6,3
25	6,3	8,4	5,2
26	7,8	5,1	5,6
27	9,1	5,6	3,5
28	5,0	7,3	6,9
29	9,4	5,1	4,9
30	8,7	4,6	3,3
Media	7,76	6,07	5,18

BIBLIOGRAFIA

- III Censo Nacional Agropecuario (2002): Cultivos Transitorios: Superficie,
 Producción y Ventas.
 [Online].http://www.sica.gov.ec/censo/docs/nacionales/tabla 20.htm (Mayo 2007).
- 2. JACKSON S, Lauren. (1999): Impact of Processing on Food Safety. New York: Springer.
- Heldman and Harter. (1997): Principles of Food Processing. New York:
 Chapman & Hall.
- 4. LAROUSSE, Jean. (1997): Food canning technology. New York: Willey
- 5. OLIN, Charles. (1957) Sterilization in Food Technology .New York: H W Wilson.
- RICHARDSON, Philip. (2004): Improving the Thermal Processing of Foods. Cambridge: Woodhead

- 7. Sharma, Nulvaney, Rizue. (1997): *Ingeniería en Alimentos: Operaciones unitarias y prácticas de laboratorio* .New York: Limusa
- 8. TOLEDO, Romeo (2007): Fundamentals of food process engineering. New York: Springer