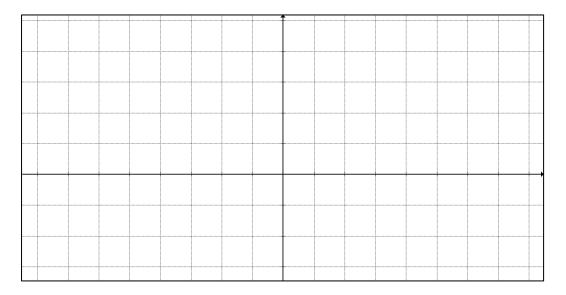


ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

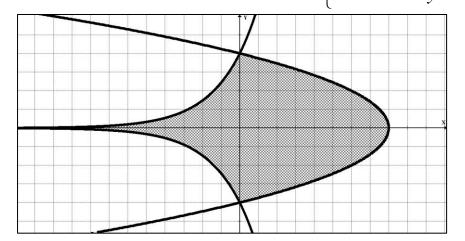
AÑO:	2015	PERIODO:	SEGUNDO TÉRMINO
MATERIA:	CÁLCULO INTEGRAL	PROFESORES:	JOSÉ CASTRO, PAMELA CROW, JOHNY PAMBABAY, MIRIAM RAMOS, SORAYA SOLÍS, XAVIER TOLEDO, JANET VALDIVIEZO, LUIS VARGAS
EVALUACIÓN:	SEGUNDA	FECHA:	FEBRERO 1


COMPROMISO DE HONOR					
Yo,					
Firma					

TEMA1	TEMA2	TEMA3	TEMA4	NOTA EXAMEN	OTROS	NOTA FINAL

TEMA 1 Valor: 10 puntos

Sea R la región exterior a la curva definida por la ecuación polar $r=2\cos(\theta)$ e interior a la curva definida por la ecuación polar $r=2-2\cos(\theta)$, determine:


a) El gráfico de la región R (2 puntos)

b) El área de la región R (4 puntos)

c) El perímetro de la región R (4 puntos)

La parte sombreada del gráfico corresponde a la región R limitada por $\begin{cases} y = -2c \\ x = 4-c \end{cases}$

Calcular si es posible:

a) El área de la región R (10 puntos)

b) El volumen del sólido que se genera al rotar R alrededor de la recta X=4 (10 puntos)

Determinar si las series son absolutamente convergentes, condicionalmente convergentes o divergentes, justificando correctamente su respuesta.

a)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} (n+1)!}{5^n}$$
 (5 puntos)

b)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n 4}{(2n-1)(2n+1)}$$
 (5 puntos)

Realizar lo siguiente:

a) Califique como Verdadera (V) o Falsa (F) a cada una de las siguientes proposiciones (5 puntos)

PROPOSICION	VALOR DE VERDAD
$\sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{n!} = e^{-x}, \ x \in lR$	
$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{2n+1}}{\left(2n+1\right)!} = senh(x), \ x \in lR$	
$\sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1} = \arctan(x), \ x \in [-1,1]$	
$\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos(x), \ x \in lR$	
$\sum_{n=0}^{+\infty} \frac{\left(-1\right)^n x^{n+1}}{n+1} = \ln(x+1), \ x \in \left(-1,1\right]$	

b) Determine la serie de Taylor de la función $f(x) = \frac{1}{1-2x}$, alrededor del punto $a = -\frac{1}{2}$ (5 puntos)