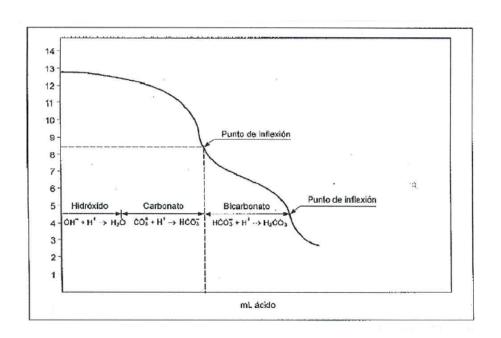
FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS

DEPARTAMENTO DE CIENCIAS QUIMICAS Y AMBIENTALES

PRIMER EXAMEN DE TRATAMIENTO DE AGUAS

Nombre y apellid):	Fecha: Diciembre 09 del 2014


1. 10 puntos) Indique cuál es la forma dominante de alcalinidad en agua natural a pH=7. Cuál o cuáles son las formas presentes a pH=10,5? Ilustre gráficamente su respuesta.

La forma dominante a pH 7 es como bicarbonatos

4 puntos

La forma dominante a pH 10,5 es como carbonatos y iones hidroxilos

4 puntos

2 puntos

- 2. (10 puntos) Indique al menos 5 beneficios que se obtienen por el tratamiento de un agua de proceso.
 - Evitar incrustaciones
 - Evitar corrosión
 - Disminuir costos de reparaciones y mantenimiento
 - Aumenta eficiencia del proceso
 - Mejorar procesos de transferencia de calor

2 puntos c/u

3. (10 puntos) Defina los siguientes términos y explique qué significado tiene su determinación o uso según el caso.

a) Dureza carbonácea

2.5 puntos

Es la dureza relacionada químicamente con los bicarbonatos y los carbonatos.

b) Alcalinidad F y Alcalinidad M

2.5 puntos

La alcalinidad F es la que determina los compuestos presentes a un pH hasta 8.3 y se debe a presencia de OH-, CO3 y HCO3, mientras que la Alcalinidad M es debido a los componentes hasta un pH de 4,5 donde solo se observa presencia de HCO3-.

c) Recarbonatación.

2,5 puntos

Se inyecta CO2 con el fin de convertir el exceso de cal agregado al agua en carbonato de calcio para permitir su precipitación y remoción. Por otro lado la segunda etapa tiene como fin eliminar la tendencia del agua ablandada con cal y soda as, a depositar carbonato de calcio sobre la arena de los filtros. La adición de CO2 pretende convertir el carbonato de calcio en bicarbonato de calcio llevando el agua a un pH cercano a 8.6.

d) Acidez mineral

2.5 puntos

Es la forma de acidez que obedece a la presencia de CO_2 en el agua y que presenta a niveles de pH menores que 4,5.

4. (20 puntos) Un agua tiene las siguientes características:

$$Ca^{++} = 40 \text{ mg/l}$$
 Alc $(HCO_3^-) = 135 \text{ mg/l} \text{ como } CaCO_3$

$$Mg^{++} = 14.7 \text{ mg/l}$$
 $SO_4^{-2} = 29 \text{ mg/l}$

$$Na^{+} = 13.7 \text{ mg/l}$$
 $Cl^{-} = 17.8 \text{ mg/l}$

- a) Realice el gráfico de barras y liste las hipotéticas combinaciones para esta agua.
- b) Cuáles son las dosis de cal y carbonato de sodio requeridas para ablandar al mínimo técnicamente posible 250.000 m³ de esta agua?
- c) Realice el gráfico de barras para el agua tratada luego del ablandamiento.

a)

Componente	mg/l	mg/mEq	mEq/l	
Ca ²⁺	40	20	2	
Mg ²⁺	14,7	12,2	1,2	
Na ⁺	13,7	23	0,6	
HCO ₃	135	50	2,7	
SO ₄ ²⁻	29	48	0,6	
Cl	17,8	35,45	0,5	

3 puntos

La suma de cationes y aniones es de 7,6.

Diagrama de barras del agua cruda

2 puntos

Ca ²⁺	Mg ²⁺		Na⁺
HCO ₃		Cl	SO ₄ ²⁻

Combinaciones

Ca(HCO₃)₂, Mg(HCO₃)₂ MgSO₄, Na₂SO₄ NaCl

2,5 puntos

b)

Dosis de cal $Ca(OH)_2$

Dureza Carbonácea = $135 \times 0.74 = 99,9 \frac{mg}{l} = 2,70 \text{ mE/L}$

Dureza
$$Mg = 60.5 \times 0.74 = 44.8 \frac{mg}{l} = 1.21 mE/L$$

Exceso de Cal =
$$50 \frac{mg}{l} = 1,35 \text{ mE/L}$$

Total de
$$Ca(OH)_2 = 194.7 \frac{mg}{l} = 5.26 \text{ mE/L}$$

Total de
$$CaO = \frac{194.7x56}{74} = 147.3 \text{ mg } CaO/l$$

Dosis de Na₂CO₃

Dureza No Carbonácea = 0,51 $\frac{mE}{L}$ = 25,5 $\frac{mg}{l}$

3 puntos

3 puntos

Dosis de cal
$$Na_2CO_3 = 25.5 \frac{mg}{L} x1.06 = 27 mg/l$$

Para 250.000 m 3 la dosis de cal es de 48675 kg de Ca(OH) $_2$ o 36825 kg CaO y 6750 kg Na_2CO_3

1,5 punto

4 puntos

c)

Exceso de Cal= 1,35 mE/L

Ca2+ residual = 30 mg/ CaCO3/I =0.6 mE/L

Mg2+ residual =10 mg CaCO3/I =0.2 mE/I

Na+ agregado = 27x46/106 = 11,72 mg7l = 0.51 mE/L

Na+ residual =0.6 + 0.51 = 1.11 mE/L

OH- reisudal=0.2 + 1.35 = 1,55

 $CO3^{-2} = 0.6 \text{ mE/L}$

SO4 =0,6 mE/L

CI-=0.5 mE/L

Exceso de Cal		0	(),6	0,8			1,9
	Ca ²⁺		Ca ²⁺	Mg	2+	Na	+	
	OH -		CO ₃ -2			2		
				OH	l ⁻	SO_4^{2-}	Cl	
1,3	5	0		0,6	0,8	1	L,4	1,9

1 punto

5. (20 puntos) Cuáles son las concentraciones de dureza total y alcalinidad total de una agua que durante las pruebas analíticas presenta un consumo de una solución de EDTA de 34,5 ml que tiene un factor de 1,025 ml/mg CaCO₃ y 32,5 ml de ácido sulfúrico 0,02 N. La cantidad de muestra utilizada en los dos casos es de 50 ml.

10 puntos

$$Dureza\ total = \frac{34,5\ ml\ de\ EDTA\ x\ \frac{1\ mg\ CaCO_3}{1,025\ ml\ de\ EDTA}}{0.05\ Litros} = 673,17\ mg\ CaCO_3/L$$

10 puntos

$$Alcalinidad = \frac{32,5 \ mlx \ 0.02 \ \frac{mEq}{l} x50000 \ \frac{mg \ CaCO_3}{1 \ mEq}}{50 \ ml} = 650 \ mg CaCO_3/L$$