

## ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS

## DEPARTAMENTO DE CIENCIAS QUÍMICAS

| Año:2015                    | Período: Segundo Término              |
|-----------------------------|---------------------------------------|
| Materia: QUÍMICA INORGÁNICA | Profesor: Ing. John Fajardo Contreras |
| Evaluación: Segunda         | Fecha: Febrero 3 del 2016             |

## **COMPROMISO DE HONOR**

firmar este compromiso, reconozco que el presente examen está diseñado para ser resuelto de manera individual, que puedo usar una calculadora *ordinaria* para cálculos aritméticos, un lápiz o esferográfico; que solo puedo comunicarme con la persona responsable de la recepción del examen; y, cualquier instrumento de comunicación que hubiere traído, debo apagarlo y depositarlo en la parte anterior del aula, junto con algún otro material que se encuentre acompañándolo. No debo además, consultar libros, notas, ni apuntes adicionales a las que se entreguen en esta evaluación. Los temas debo desarrollarlos de manera ordenada. *Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior*.

"Como estudiante de ESPOL, me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".

Firma NÚMERO DE MATRÍCULA: PARALELO: PARALELO:

Sabiendo que el potasio es sólido y el bromo es un líquido en condiciones estándar, calcula la energía reticular del bromuro de potasio, use el proceso BORN-HABER. <u>Datos:</u> ΔH<sub>f</sub> (KBr) = -391,8 kJ/mol, ΔH<sub>sublim.</sub> (K) = 19,44 kcal/mol, ΔH<sub>vaporización</sub> (Br<sub>2</sub>) = 30,7 kJ/mol, ΔH<sub>dis.</sub> (Br<sub>2</sub>) = 193.500 J/mol , E<sub>ioniz.</sub> (K) = 418,4 kJ/mol, AE (Br) = -321,9 kJ/mol. (10 puntos)

$$K(s) + \frac{1}{2}Br_{2(j)} \longrightarrow KBr(s)$$

$$\Delta H_{sub} = \frac{1}{2}Br_{2(g)}$$

$$K(g) = \frac{1}{1/2}\Delta H_{dis}$$

$$EI = \frac{Br_{(g)}}{\sqrt{AE}}$$

$$K(g) + Br_{(g)}$$

$$\Delta Hf = \Delta Hsub + \frac{1}{2}\Delta Hvap + \frac{1}{2}\Delta Hdis + EI + AE + Ur$$

$$\Delta Hsub: 19,44 \frac{Kcal}{mol}x \frac{4,18 \ KJ}{1 \ Kcal} = 81,26 \frac{KJ}{mol}$$

$$\Delta Hdis: 193.500 \frac{J}{mol}x \frac{1 \ KJ}{1000 \ J} = 193,5 \frac{KJ}{mol}$$

$$Ur = -391,8 - \left(81,26 + \frac{1}{2}(30,7) + \frac{1}{2}(193,5) + 418,4 + (-321,9)\right) = -681,66 \frac{KJ}{mol}$$

2. CONOCIMIENTO DE FUNDAMENTOS CONCEPTUALES (10 puntos): En la columna extrema derecha, escriba el literal que corresponda a la definición correcta. (Ejemplo: cobre, oro y plata se denominan metales de acuñación, se escribe como respuesta: a en la última columna)

| a) | Cobre, plata, oro                                          | Ligando                                              | I) |
|----|------------------------------------------------------------|------------------------------------------------------|----|
| b) | Mineral suave de color gris a negro.                       | Molaridad                                            | u) |
| c) | Diamante, grafeno, fullereno.                              | Gases nobles                                         | g) |
| d) | La configuración electrónica ns²(n-1)d                     | Plata                                                | q) |
| e) | A excepción del berilio, forman compuestos iónicos         | Grafito                                              | b) |
| f) | Es elemento más electronegativo                            | Carbono                                              | k) |
| g) | Tienen la configuración electrónica más estable            | Ácido Bronsted                                       | r) |
| h) | Son elementos líquidos a temperatura ambiente              | Mercurio y bromo                                     | h) |
| i) | Segundo elemento más abundante en la corteza terrestre     | Base de Lewis                                        | m) |
| j) | Energía asociada a los procesos de formación de compuestos | Flúor                                                | f) |
|    | iónicos.                                                   |                                                      |    |
| k) | Elemento fundamental de la química orgánica                | Anfóteros                                            | s) |
| I) | Ión o molécula que se une a un átomo metálico para formar  | Nitrógeno                                            | t) |
|    | compuestos de coordinación.                                |                                                      |    |
| m) | Sustancia que puede donar un par de electrones             | Silicio                                              | i) |
| n) | Comercialmente es el más importante de los alcalinos.      | Alcalino térreos                                     | e) |
| o) | Todos los cloruros son solubles excepto                    | Ag <sup>+</sup> ; Pb <sup>2+</sup> y Hg <sup>+</sup> | o) |
| p) | O, S, Se, Te, Po                                           | Elementos de transición.                             | d) |
| q) | [Kr]5s <sup>1</sup> 4d <sup>10</sup>                       | Calcógenos                                           | p) |
| r) | Sustancias capaces de donar un protón                      | Metales de acuñación                                 | a) |
| s) | Pueden formar ácidos o bases                               | Sodio                                                | n) |
| t) | 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>3</sup>            | Alótropos del carbono                                | c) |
| u) | Sus unidades son mol*L <sup>-1</sup>                       | Energía reticular                                    | j) |

- 3. Escriba 8 reglas de solubilidad de los compuestos iónicos. (10 puntos)
  - 1. Son solubles todos los compuestos inorgánicos comunes del Grupo IA y del ion amonio
  - 2. Son solubles todos los nitratos (NO<sub>3</sub> <sup>-</sup>), acetatos (CH<sub>3</sub>COO <sup>-</sup>) y la mayoría de los percloratos (ClO<sub>4</sub> <sup>-</sup>).
  - 3. Son solubles todos los cloruros (Cl<sup>-</sup>), bromuros (Br<sup>-</sup>) y yoduros (l<sup>-</sup>), excepto los de Ag<sup>+</sup>, Pb<sup>2+</sup>, Cu<sup>+</sup>, y Hg<sub>2</sub><sup>2+</sup>.
  - 4. Las solubilidades de los cianuros (CN<sup>-</sup>) y de los tiocianatos (SCN<sup>-</sup>) son similares a las de los yoduros correspondientes.
  - 5. Son solubles todos los sulfatos comunes (SO<sub>4</sub><sup>2</sup>-), excepto los de Ca<sup>2+</sup>, Sr<sup>2+</sup>, Ba<sup>2+</sup>, Pb<sup>2+</sup>, Ag<sup>+</sup>
  - 6. Son insolubles todos los hidróxidos metálicos, excepto los del Grupo IA y los del Grupo IIA empezando por Ca<sup>2+</sup>.
  - 7. Son insolubles todos los carbonatos ( $CO_3^{2-}$ ), fosfatos ( $PO_4^{3-}$ ), arseniatos ( $As^{+5}$ ) y cromatos ( $Cr_2O_4^{2-}$ ), excepto los del Grupo IA y los de NH<sup>4+</sup>. El MgCO<sub>3</sub>también es soluble.
  - 8. Son insolubles todos los sulfuros excepto los de los Grupos IA y IIA y los de NH<sup>4+</sup>

4. Escriba la fórmula de los siguientes compuestos de coordinación o iones complejos: (10 puntos)

| Sustancia                                | Símbolo                                                                                         |
|------------------------------------------|-------------------------------------------------------------------------------------------------|
| a) Acuopentatiocianoferrato III.         | [Fe³+ (H <sub>2</sub> O)(CN) <sub>5</sub> -]-2                                                  |
| b) Cloruro de pentacuaohidroxoaluminio.  | [Al³+ (H₂O)₅(OH)] Cl₂                                                                           |
| c) Triacuodicianocloro de cromo (III).   | Cr[Cl (H <sub>2</sub> O) <sub>3</sub> (CN) <sub>2</sub> -]                                      |
| d) Tetraclorocobaltato(II) de amonio     | (NH <sub>4</sub> ) <sub>2</sub> [Co <sup>2+</sup> Cl <sub>4</sub> ]                             |
| e) Cloruro de diaminodicloroplatino (IV) | [Pt <sup>4+</sup> (NH <sub>3</sub> ) <sub>2</sub> Cl <sub>2</sub> <sup>-</sup> ]Cl <sub>2</sub> |
| f) Tetrabromuroiodato (III) de calcio    | Ca[I <sup>3+</sup> Br <sub>4</sub> ] <sub>2</sub>                                               |
| g) Hexacianovanadato (II) de magnesio    | Mg <sub>2</sub> [V <sup>2+</sup> (CN) <sub>6</sub> ]                                            |
| h) Triaminoniquel (II)                   | [Ni (NH <sub>3</sub> ) <sub>3</sub> ] <sup>2+</sup>                                             |

- 5. Disponemos en un matraz de 60 g de HCl a los que añadimos 30 g de Mg(OH)<sub>2</sub>, si nos encontramos ante una ecuación de dobles desplazamiento (neutralización): (10 puntos)
  - a) Plantee y equilibre la ecuación química.
  - b) ¿Cuál es el reactivo limitante?
  - c) ¿Cuántos gramos de reactivo en exceso permanecerán sin reaccionar al final del proceso?
  - d) ¿Cuántos gramos de MgCl<sub>2</sub> se producirán?

a) 
$$2 HCl + Mg(OH)_2 \rightarrow MgCl_2 + 2 H_2O$$

$$60 \ g \ HCl \ x \frac{1 \ mol \ HCl}{36,45 \ g \ HCl} x \frac{1 \ mol \ Mg(OH)_2}{2 \ moles \ HCl} x \frac{58 \ g \ Mg(OH)_2}{1 \ mol \ Mg(OH)_2} = 47,7 \ g \ Mg(OH)_2$$

$$30 \ g \ Mg(OH)_2 \ x \frac{1 \ mol \ Mg(OH)_2}{58 \ g \ Mg(OH)_2} x \frac{2 \ moles \ HCl}{1 \ mol \ HCl} x \frac{36,45 \ g \ HCl}{1 \ mol \ HCl} = 37,7 \ g \ HCl$$

- b) Reactivo limitante: Mg (OH)<sub>2</sub>
- c) Reactivo en exceso que no reacciona: 60 g HCl 37,7 g HCl=22,3 g HCl

d)

$$30 g Mg(OH) 2 x \frac{94,9 g MgCl_2}{58 g Mg(OH) 2} = 49,09 g MgCl_2$$