Econometría II

Escuela Politécnica del Litoral - ESPOL

II Término 2015-2016

Primer Parcial¹

7 de Diciembre, 2015

Yo,	al firmar este compromiso,
reconozco que el preser	nte examen está diseñado para ser resuelto de manera individual, que
sólo puedo comunicarm instrumento de comuni anterior del aula, junto además, consultar libro evaluación. Los temas o comprometo a combati	dora ordinaria para cálculos aritméticos, un lápiz o esferográfico; que ne con la persona responsable de la recepción del examen; y, cualquier cación que hubiere traído, debo apagarlo y depositarlo en la parte con algún otro material que se encuentre acompañándolo. No debo s, notas, ni apuntes adicionales a los que se entreguen en esta debo desarrollarlos de manera ordenada. Como estudiante de ESPOL me r la mediocridad y actuar con honestidad, por eso no copio ni dejo presente compromiso, como constancia de haber leído y aceptar la
Firma:	, Nro. Matrícula:, Paralelo:

Instrucciones:

- El examen tiene dos secciones. Lea detenidamente y responda las preguntas planteadas.
- En la sección de opción múltiple marque claramente (en un círculo) la respuesta seleccionada.
- En la sección de ejercicios e intuición sea conciso y claro. Exponga ordenadamente su desarrollo.
- No requiere de ningún material adicional a un lápiz/esferográfico y borrador. ESTÁ PROHIBIDO EL USO DE CELULARES O CUALQUIER DISPOSITIVO MÓVIL.
- Tiene dos horas para finalizar el examen. ¡Mucha suerte!

¹ **Contacto profesor:** José Gabriel Castillo, Departamento de Economía, ESPOL, email: jcastil@espol.edu.ec

Opción múltiple (28 puntos / 4 cada una)

Resultado de Aprendizaje: Comprender las herramientas para modelar matemáticamente los diversos procesos económicos.

Seleccione la respuesta correcta.

1. Si violamos el supuesto de homoscedasticidad en MCO:

- a. Los coeficientes estimados son sesgados e inconsistentes.
- b. Los errores estándar son eficientes.
- c. Los errores estándar se pueden corregir mediante estimación robusta.
- d. Los coeficientes estimados se pueden corregir mediante estimación robusta.
- e. No violamos los supuestos de Gauss-Markov

2. Las variables *Proxy* deben cumplir con las siguientes condiciones:

- a. Ortogonalidad con los errores y correlación con los regresores.
- b. Ortogonalidad con los errores y redundancia en la ecuación de regresión
- c. Redundancia y cercanía con la variable omitida.
- d. Cercanía con la variable omitida y ortogonalidad con los errores.
- e. Redundancia y correlación con los errores.

3. ¿Un proceso estocástico ruido blanco es un proceso estacionario?

- a. Verdadero
- b. Falso

4. ¿Un proceso i.i.d. es un proceso débilmente dependiente?

- a. Verdadero
- b. Falso

5. Una regresión espuria:

- a. Ocurre cuando existe multicolinealidad perfecta.
- b. Implica que dos procesos que son independientes parezcan estar relacionados con alta probabilidad.
- c. ayb.
- d. No se puede estimar en la práctica.

6. ¿Por qué los *quiebres estructurales* son problemáticos en el análisis de series de tiempo?

- a. Ignorar el problema implicaría estimar relaciones "en promedio" para toda la muestra cuando en realidad las relaciones pueden cambiar en el tiempo.
- b. Ignorar el problema implicaría estimar un modelo con un proceso no estacionario.
- c. Ignorar el problema violaría el supuesto de normalidad de los errores.
- d. ayb

7. En un sistema de ecuaciones en el tiempo, podemos identificar la *causalidad en el sentido de Granger* cuando:

- a. Estimamos un modelo VAR con rezagos.
- b. Un modelo VAR contiene los efectos contemporáneos.
- c. Probamos la significancia estadística de los rezagos de un bloque de variables respecto de cada variable en un sistema.
- d. Estimamos un modelo ARMA y probamos la significancia de los rezagos.
- e. Analizamos los residuos de la estimación de un modelo VAR y verificamos que son estacionarios.

Demostraciones, definiciones y ejercicios (72 puntos)

Resultado de Aprendizaje: Identificar y aplicar los métodos y técnicas estadísticas y econométricas apropiadas para la toma de decisiones tanto en ámbitos empresariales o del sector público.

- 1. Suponga el siguiente modelo: $u_t=\rho u_{t-1}+\epsilon_t$; en donde $\epsilon_t\sim IID(0,\sigma_\epsilon^2)$. (7 puntos total)
 - a. Defina estacionariedad débil. (2 puntos)

- b. ¿ Bajo qué condición decimos que el proceso descrito arriba es débilmente estacionario? Escriba la condición, no la demuestre.
 (2 puntos)
- c. Demuestre que si es un proceso *débilmente estacionario*, entonces $\sigma_u^2 = \frac{\sigma_\epsilon^2}{1-\rho^2} \qquad \text{(3 puntos)}$

2. Suponga el siguiente modelo MA: (20 puntos total)

$$x_t = \epsilon_t + \beta \epsilon_{t-1}$$

a. Demuestre que el coeficiente de autocorrelación, $\rho=Corr(x_t,x_{t-h})$, es cero cuando h>1. (10 puntos)

b. Demuestre que $\rho = Corr(x_t, x_{t-h}) = {\beta \over (1+\beta^2)}$, cuando h=1. (10 puntos)

3. Suponga que x_t y y_t son procesos I(1) que satisfacen las siguientes ecuaciones: (20 puntos total)

$$y_t = \beta x_t + u_t$$

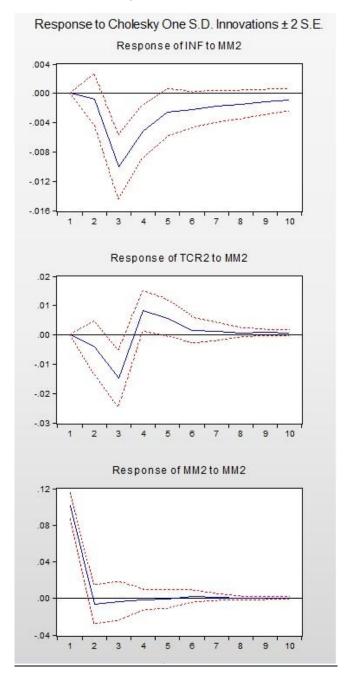
$$\Delta x_t = \gamma \Delta x_{t-1} + v_t$$

En donde, u_t , $v_t \sim IID(0,1)$

- a. ¿Qué condición respecto de u_t y β se requiere para que x_t y y_t sean procesos cointegrados? (5 puntos)
- b. Demuestre que estos procesos implican un modelo de corrección de errores que puede escribirse de la siguiente forma (pista: obtenga la primera diferencia de y_t y proceda): (10 puntos)

$$\Delta y_t = \gamma_1 \Delta x_{t-1} + \delta (y_{t-1} - \beta x_{t-1}) + e_t$$

En donde: $\gamma_1 = \beta \gamma$; $\delta = -1 \, \mathrm{y} \, \mathrm{e_t} = u_t + \beta v_t$


c. En la práctica, ¿cómo puede usted estimar este Modelo de Corrección de Errores? Describa claramente los pasos y las ecuaciones a estimar. (pista: método de Engle-Granger) (5 puntos)

- 4. Usted es contratado para realizar un análisis respecto de los efectos de políticas de restricción de dinero circulante en los índices inflacionarios (ej: el Banco Central deja de imprimir moneda fraccionaria). Para el efecto usted ha recopilado una base de datos en donde cuenta con 3 variables: inflación (x), tipo de cambio real (y) y el agregado monetario 2 de la economía (z). (25 puntos total)
 - a. Breve y ordenadamente describa los pasos y técnicas emplearía para realizar este análisis. (pista: empiece por analizar si sus variables son estacionarias) (10 puntos)

b. Le proponen que realice un modelo VAR con 2 rezagos. Escriba el sistema de ecuaciones a estimar. (5 puntos)

c. El siguiente gráfico corresponde a las funciones de impulso respuesta que usted estimó en su análisis. INF corresponde a inflación, MM2 corresponde al agregado monetario 2 empleado.

Ofrezca una breve interpretación de los resultados observados. (10 puntos)

