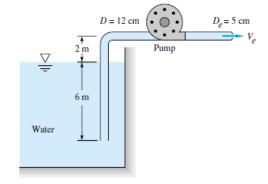

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA (FICT)

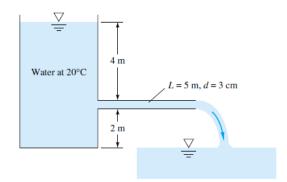
MATERIA:	Mecánica de fluidos (FICT-01651)
EXAMEN:	Segundo parcial 2014-II
FECHA:	23-marzo-2015
ALUMNO:	

- 1.- El accesorio mostrado en la figura es utilizado para derivar equitativamente el caudal circulante por la tubería de sección 1 por los dos conductos de secciones 2 y 3. Si $Q_1=5~{\rm ft^3/s}$ y $P_1=25~{\rm lbf/in^2}$
- a) Estimar las presiones en las secciones transversales 2 y 3, expresar las respuestas en psf (pouds square foot), es decir lbf/ft^2
- b) Obtener la fuerza requerida para mantener el accesorio en su lugar, expresar la respuesta en lbf

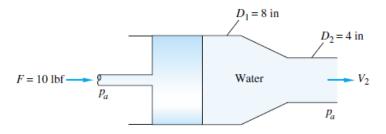

(10 puntos)

Nota: $\rho_{agua~20^{\circ}C}=1.94~slugs/ft^{3}~donde~1~slug=lbf.\,s^{2}/ft$

2.- La bomba mostrada en la figura mueve 220 m³/h de agua (a 20°C) desde un reservorio hasta un punto de descarga a la atmósfera. Si las pérdidas totales por fricción son de 5 m, estimar la potencia de la bomba en kW. Utilizar 998 kg/m³ para la densidad del agua y 9.81 m/s² para aceleración debida a la gravedad.


(10 puntos)

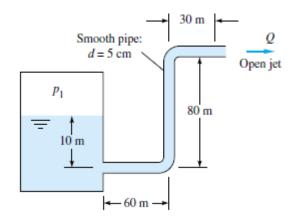
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA (FICT)

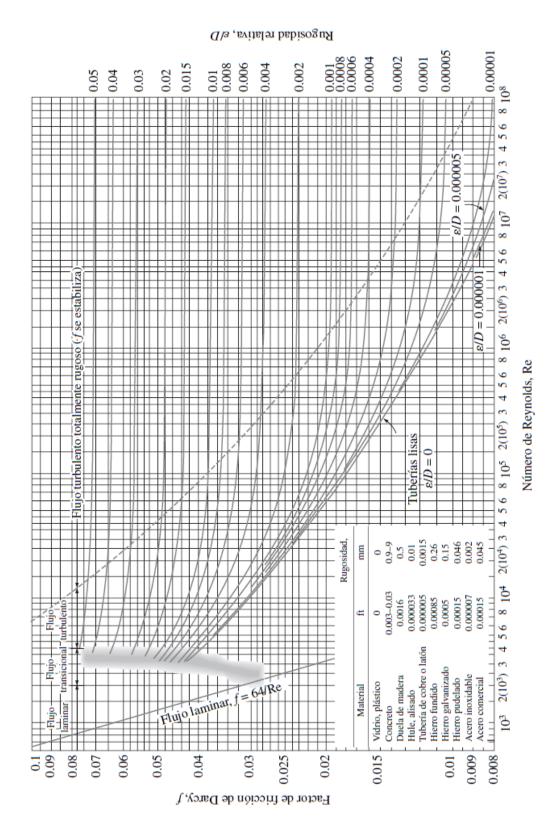

MATERIA:	Mecánica de fluidos (FICT-01651)
EXAMEN:	Segundo parcial 2014-II
FECHA:	23-marzo-2015
ALUMNO:	

3.- El sistema mostrado en la figura debe entregar al menos 11 m³/h al reservorio. ¿Cuál será la máxima rugosidad absoluta ϵ que deberá tener la tubería para entregar el caudal requerido? Para agua a 20°C considerar $\rho=998~kg/m^3$ y $\mu=0.001~kg/m.s$ (10 puntos).

4.- El pistón mostrado en la figura conduce agua a 20° C. Considerando que no existen pérdidas estimar la velocidad de salida V_2 (expresada en ft/s).

(10 puntos)


ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE INGENIERÍA EN CIENCIAS DE LA TIERRA (FICT)


MATERIA:	Mecánica de fluidos (FICT-01651)
EXAMEN:	Segundo parcial 2014-II
FECHA:	23-marzo-2015
ALUMNO:	

5. La figura muestra un sistema compuesto por un tanque de presión y una tubería que descarga a la atmósfera. ¿Cuál es la presión manométrica P_1 necesaria para proporcionar un caudal de $60 \text{ m}^3/\text{h}$?

Para agua a 20°C considerar $\rho = 998~kg/m^3~\text{y}~\mu = 0.001~kg/m.\,\text{s}$

(10 puntos)

