

## ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

# Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"OPTIMIZACIÓN DE UN SISTEMA PARA PRECALENTAMIENTO DE AGUA PARA COBERTURAS BLANCA Y OSCURA"

### TRABAJO FINAL DE GRADUACIÓN

Materia Integradora

Previo la obtención del Título de:

**INGENIERO MECÁNICO** 

Presentado por: JEFFERSON ALEXANDER RODRÍGUEZ ALBÁN

GUAYAQUIL - ECUADOR

Año: 2016

### **AGRADECIMIENTOS**

En el presente trabajo, quiero darle las gracias a mi hermano el Ing. Jorge Rodríguez, por ser un pilar en cada momento de la realización de este trabajo. A mi enamorada, la Psicóloga Lisbeth Ipiales, por ayudarme a trabajar de manera ordenada y ser constante en cada actividad de mi vida. De igual manera, a mis padres y mis abuelos, que siempre han estado pendientes de mi bienestar y el éxito que conlleva estudiar una carrera tan exigente. A mi directora y tutora, la Ing. Andrea Boero por la atención brindada en este tiempo, y a todas las personas que de alguna manera posible, formaron parte en este periodo universitario.

## **DECLARACIÓN EXPRESA**

"La responsabilidad del contenido desarrollado en la presente propuesta de la materia integradora corresponde exclusivamente al equipo conformado por:

Jefferson Rodríguez A.

Ing. Andrea Boero

Y el patrimonio intelectual del mismo a la Facultad de Ingeniería Mecánica y Ciencias de la Producción (FIMCP) de la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

Jefferson Rodríguez A.

Ing. Andrea Boero

### RESUMEN

Una empresa alimenticia, con sede en la ciudad de Guayaquil, cuenta entre sus líneas de producción a los chocolates de cobertura, blanca y oscura. Como parte de esta línea de producción se necesita de un proceso de precalentamiento de las coberturas, a fin de que éstas se mantengan en fase líquida durante su almacenamiento y transporte. Se ha identificado que el sistema actual de precalentamiento de las coberturas es poco eficiente, y, que el no poder controlar de manera precisa los parámetros de temperatura y presión, ha ocasionado en algunos casos la solidificación del producto transportado en el sistema de tuberías, provocando paradas de la producción; lo cual representa pérdidas económicas. Considerando lo expuesto, el objetivo de este proyecto es la optimización del sistema de precalentamiento de coberturas. En este trabajo primero se realizó un análisis del proceso, para determinar qué componentes pueden ser mejorados. De esta manera se ha propuesto un sistema que incluye dos intercambiadores de calor de tubo y coraza (uno para cada cobertura). El diseño térmico y mecánico de los intercambiadores de calor se desarrolló en concordancia con las normas TEMA, normas ASME y un manual para el diseño de intercambiadores de calor, HEDH. El diseño propuesto además incluye equipos de control de los parámetros de presión, temperatura. Se realizó también el cálculo de la recuperación de condensado. Como resultado del diseño, se obtuvieron los planos detallados de los intercambiadores de calor y el diseño de forma final del sistema de precalentamiento de coberturas optimizado. La evaluación económica del proyecto concluye que el sistema optimizado representa ahorros en los costos de operación de la fábrica, con lo cual el retorno de la inversión es de aproximadamente 20 meses.

Palabras Clave: chocolate de cobertura, sistema de precalentamiento, intercambiador de calor de tubo y coraza.

### **ABSTRACT**

A food company with location in Guayaquil has in its production lines the chocolate compounds, that could be white or black compound. In this production line, a preheating process for chocolate compounds is required, in order to keep in a liquid phase during their storage and transportation. It has been identified in this process that the existing preheating system is not efficient, and the fact of a lack of a precisely pressure and temperature control, has caused the solidification of the product carried along the piping system, generating stopping production, which represents economic losses. Considering the displayed information, the goal of this project is the preheating chocolate compound system optimization. The first item discussed in this project was a review of the process, so that the components that need to be improved can be determined. By this way, a system that includes two different shell and tube heat exchangers (one for each type of compound) has been proposed. The thermal and mechanical design of both heat exchangers was developed in accordance to standards of TEMA, ASME and to the Heat Exchanger Design Handbook. The proposed design also includes temperature and pressure control appliances, and the calculation of condensate recovery. As a result of the design, the detailed drawings of the heat exchangers and the final shape design of the optimized preheating system were obtained. The economic appraisal of the project concludes showing that the optimized system represents saving accounts in the operation costs of the factory, wherewith the return of investment is in approximately 20 months.

Keywords: chocolate compound, preheating system, shell and tube heat exchanger.

# **ÍNDICE GENERAL**

| RESUMEN                                                 | I    |
|---------------------------------------------------------|------|
| ABSTRACT                                                | II   |
| ÍNDICE GENERAL                                          | III  |
| ABREVIATURAS                                            | VII  |
| SIMBOLOGÍA                                              | VIII |
| ÍNDICE DE FIGURAS                                       | XII  |
| ÍNDICE DE TABLAS                                        | XIV  |
| ÍNDICE DE PLANOS                                        | XVII |
| CAPÍTULO 1                                              | 1    |
| 1. INTRODUCCIÓN                                         | 1    |
| 1.1. Descripción del problema                           | 1    |
| 1.2. Objetivos                                          | 4    |
| 1.3. Marco teórico                                      | 4    |
| CAPÍTULO 2                                              | 6    |
| 2. METODOLOGÍA DEL DISEÑO                               | 6    |
| 2.1. Diseño conceptual                                  | 6    |
| 2.1.1. Parámetros de diseño                             | 6    |
| 2.1.2. Variables de solución                            | 6    |
| 2.1.3. Tipos de intercambiadores propuestos             | 7    |
| 2.1.4. Análisis de selección del tipo de intercambiador | 7    |
| 2.1.5. Criterios de evaluación                          | 10   |
| 2.1.6. Selección del tipo de intercambiador             | 11   |
| 2.1.7. Normas y manuales aplicables                     | 13   |

| 2 | .2. Diseño Térmico                                                                                         | . 15 |
|---|------------------------------------------------------------------------------------------------------------|------|
|   | 2.2.1. Metodología y diseño del sistema para calentamiento de agua                                         | . 16 |
|   | 2.2.2. Procedimiento para calcular el flujo másico de vapor                                                | .16  |
|   | 2.2.3. Procedimiento para el cálculo del área de transferencia de calor                                    | 19   |
|   | 2.2.4. Procedimiento para el cálculo de la caída de presión del lado de los tubos                          | .27  |
| 2 | .3. Diseño Mecánico                                                                                        | . 28 |
|   | 2.3.1. Criterios para la selección de materiales utilizados en la fabricación di intercambiadores de calor |      |
|   | 2.3.2. Materiales utilizados en el diseño de intercambiadores de calor de tul y coraza                     |      |
|   | 2.3.3. Metodología para el diseño mecánico                                                                 | . 31 |
|   | 2.3.4. Condiciones de operación                                                                            | . 32 |
|   | 2.3.5. Definición del valor del diámetro de la coraza                                                      | . 32 |
|   | 2.3.6. Definición del tipo de arreglo de tubos                                                             | . 33 |
|   | 2.3.7. Selección del material de la coraza                                                                 | . 36 |
|   | 2.3.8. Selección del tubo                                                                                  | . 38 |
|   | 2.3.9. Diseño de los espejos                                                                               | . 39 |
|   | 2.3.10. Cálculo de la longitud de la coraza                                                                | . 39 |
|   | 2.3.11. Diseño de los desviadores                                                                          | . 40 |
|   | 2.3.12. Diseño de las cabezas                                                                              | . 45 |
|   | 2.3.13. Diseño de los sellos                                                                               | . 49 |
|   | 2.3.14. Diseño de las conexiones de agua y vapor                                                           | . 49 |
|   | 2.3.15. Selección del tipo de trampa de vapor                                                              | . 49 |
|   | 2.3.16. Selección del tipo de reguladora                                                                   | . 50 |

| CAI  | PÍTULO 351                                                                                 |
|------|--------------------------------------------------------------------------------------------|
| 3. R | ESULTADOS51                                                                                |
| 3    | 3.1. Resultados del diseño térmico para precalentamiento de cobertura blanca51             |
| 3    | 3.2. Resultados del diseño mecánico para precalentamiento de cobertura blanca              |
| 3    | 3.3. Diseño final del intercambiador de calor de tubo y coraza para cobertura  blanca58    |
| 3    | 3.4. Resultados del diseño térmico para precalentamiento de cobertura negra                |
| 3    | s.5. Resultados del diseño mecánico para precalentamiento de cobertura negra               |
| 3    | s.6. Diseño final del intercambiador de calor de tubo y coraza para cobertura negra62      |
| 3    | 3.7. Análisis de costo de los intercambiadores para cobertura blanca y negra . 63          |
| 3    | s.8. Costos por mano de obra debido a paradas en el proceso65                              |
| 3    | s.9. Análisis económico de la recuperación de condensado para un Intercambiador de Calor65 |
|      | 3.9.1. Análisis económico de la recuperación de condensado para el                         |
|      | intercambiador de cobertura blanca68                                                       |
|      | 3.9.1.1. Resultados del análisis económico para cobertura blanca68                         |
|      | 3.9.2. Análisis económico de la recuperación de condensado para el                         |
|      | intercambiador de cobertura negra68                                                        |
|      | 3.9.2.1. Resultados del análisis económico para cobertura negra69                          |
| 3    | s.10. Comparación del sistema de serpentines con el sistema de                             |
|      | intercambiadores propuesto72                                                               |

| CAPÍTULO 4                        | 74 |
|-----------------------------------|----|
| 4. CONCLUSIONES Y RECOMENDACIONES | 74 |
| 4.1. Conclusiones                 | 74 |
| 4.2. Recomendaciones              | 75 |
| BIBLIOGRAFÍA                      | 76 |
| APÉNDICES                         | 79 |

## **ABREVIATURAS**

ESPOL Escuela Superior Politécnica del Litoral

HEDH Heat Exchanger Design Book

ASME American Society of Mechanical Engineers
ASTM American Society for Testing and Materials

TEMA Tubular Exchanger Manufactures Association

NPT National Pipe Thread

# **SIMBOLOGÍA**

mm milímetros cm centímetros

m metros

cm<sup>2</sup> centímetros cuadrados

m<sup>2</sup> metros cuadrados

m<sup>3</sup> metros cúbicos

litros

pulg pulgadas
Kg kilogramo
mL mililitros

L

N newton

seg segundos min minutos h horas

Pa pascales

MPa mega pascales

Psi libras por pulgada cuadrada

°C grados centígrados

W vatios Kw kilowatts

h<sub>f</sub> entalpía de líquido saturado

h<sub>q</sub> entalpía de vapor saturado

h<sub>fa</sub> entalpía de vaporización

 $\Delta T_{ml}$  diferencia de temperaturas media logarítmica

T<sub>h,i</sub> temperatura del fluido caliente a la entrada

T<sub>c,i</sub> temperatura del fluido frío a la entrada

T<sub>h,o</sub> temperatura del fluido caliente a la salida

T<sub>c,o</sub> temperatura del fluido frío a la salida

R<sub>e</sub> número de Reynolds

m flujo másico

 $\begin{array}{ll} \mu & \text{viscosidad dinámica} \\ \text{Nu}_{\text{D}} & \text{número de Nusselt} \\ \text{Pr} & \text{número de Prandtl} \end{array}$ 

K conductividad térmica

h<sub>i</sub> coeficiente de transferencia de calor en el interior de un tubo

h<sub>D</sub> coeficiente de transferencia de calor para el arreglo de

tubos

 $\rho_l$  densidad del líquido

 $\rho_v$  densidad del vapor saturado

T<sub>sat</sub> temperatura de saturación

T<sub>s</sub> temperatura superficial

Do diámetro exterior del tubo

D<sub>i</sub> diámetro interior del tubo

q' flujo de calor a través de la pared de un tubo

h<sub>t</sub> pérdida de altura en una tubería

ΔP<sub>t</sub> caída de presión en los tubos

V velocidad lineal del agua

A<sub>tt</sub> área de sección transversal de un tubo

A<sub>t</sub> área total de flujo

G<sub>t</sub> velocidad másica del agua

f factor de fricción

D<sub>ic</sub> diámetro interior de la coraza

L<sub>to</sub> paso de fluido entre tubos

L<sub>bb</sub> claro que hay entre la coraza y el arreglo de tubos

N<sub>to</sub> número de pasos en los tubos

D<sub>otl</sub> diámetro exterior del arreglo de tubos

D<sub>ctl</sub> diámetro del arreglo de tubos

N<sub>tt</sub> número total de tubos
 S<sub>y</sub> esfuerzo de fluencia
 S esfuerzo permisible
 n<sub>s</sub> factor de seguridad
 P presión de diseño

E<sub>f</sub> eficiencia de la junta soldada

t espesor

p<sub>c</sub> profundidad del canal

B<sub>c</sub> corte óptimo de desviadores

L<sub>sb</sub> claro entre coraza y desviadores

L<sub>tb</sub> claro entre coraza y tubos

L<sub>b</sub> máxima distancia no soportada de los tubos

D<sub>b</sub> diámetro de desviadoresC<sub>b</sub> corte de los desviadores

D<sub>bb</sub> diámetro de los barrenos de los desviadores

L<sub>ti</sub> longitud de tubos entre espejos fijos

L<sub>bc</sub> distancia de separación entre desviadores

N<sub>b</sub> número de desviadores

 $L_{b,ent}$  distancia del desviador de la entrada  $L_{b,sal}$  distancia del desviador de la salida

 $P_{td}$  presión de diseño de los tubos  $E_c$  eficiencia de la junta del canal  $C_{pc}$  corrosión permitida del canal  $E_{cc}$  eficiencia de la junta de la tapa  $C_{pcc}$  corrosión permitida de la tapa  $D_{ec}$  diámetro exterior de la tapa  $D_{cc}$  diámetro pequeño de la tapa

R<sub>cc</sub> radio exterior de la tapa

r<sub>cc</sub> radio de curvatura de la tapa

h<sub>1</sub> profundidad de la tapa
 h<sub>2</sub> extensión de la tapa
 h<sub>cc</sub> longitud de la tapa

H<sub>c</sub> longitud total del cabezal

% porcentaje

SG gravedad específica del fluido

c calor específico del fluido

Q<sub>I</sub> rango de flujo del fluido

m<sub>fw</sub> rango de agua de alimentación

C<sub>e</sub> costo unitario de energía

h costo de aislamiento y mano de obra

n<sub>t</sub> eficiencia de temperatura

H<sub>r</sub> calor recuperado

M ahorros monetarios de combustible

FC porcentaje de combustible conservado

\$ dólares

# **ÍNDICE DE FIGURAS**

| FIGURA 1. ESQUEMA DEL PROCESO                                         | 3      |
|-----------------------------------------------------------------------|--------|
| FIGURA 2 CLASIFICACIÓN DE LOS INTERCAMBIADORES DE CALOR DE ACUERDO    | Э 5    |
| FIGURA 3. DISEÑO DE FORMA DEL SISTEMA PROPUESTO PARA UN               |        |
| INTERCAMBIADOR                                                        | 15     |
| FIGURA 4. CURVA DE DESEMPEÑO DE LA BOMBA COMERCIAL GOULDS PUMPS.      | 17     |
| FIGURA 5. VOLUMEN DE CONTROL DEL ICTC                                 | 18     |
| FIGURA 6. MALLA TÉRMICA PARA LOS TUBOS                                | 20     |
| FIGURA 7. DISTRIBUCIÓN A CONTRAFLUJO DE LOS FLUIDOS EN UN ICTC        | 22     |
| FIGURA 8. FACTORES DE FRICCIÓN DE TUBERÍAS COMERCIALES DE ACERO       | 28     |
| FIGURA 9. INTERCAMBIADOR DE CALOR DE ESPEJOS FIJOS                    | 32     |
| FIGURA 10. ESPACIO DIAMETRAL INTERIOR DE LA CORAZA-HAZ DE TUBOS LBB.  | 34     |
| FIGURA 11. INTERCAMBIADOR DE CALOR DE UN SOLO PASO POR LOS TUBOS Y    | ,      |
| POR LA CORAZA                                                         | 35     |
| FIGURA 12. DESVIADOR SEGMENTADO SIMPLE                                | 40     |
| FIGURA 13. ESPACIO DIAMETRAL TUBO-AGUJERO DEL DEFLECTOR LTB           | 41     |
| FIGURA 14. CLAROS ENTRE LOS DESVIADORES CON LA CORAZA Y LOS TUBOS.    | 42     |
| FIGURA 15. DESVIADOR SIMPLE CON CORTE HORIZONTAL                      | 43     |
| FIGURA 16. ESQUEMA DE LA DISTANCIA DE LOS DESVIADORES DE ENTRADA,     |        |
| SALIDA Y CENTRALES                                                    | 44     |
| FIGURA 17. ILUSTRACIÓN DEL CONJUNTO TAPA – BRIDA                      | 45     |
| FIGURA 18. DE IZQUIERDA A DERECHA: DIMENSIONES DE LA TAPA ELIPSOIDAL. |        |
| DIMENSIONES DEL CABEZAL                                               | 48     |
| FIGURA 19. TRAMPA DE VAPOR DE BALDE INVERTIDO                         | 50     |
| FIGURA 20. REGULADORA COMBINADA DE PRESIÓN/TEMPERATURA ½" A 4" 25 F   | PT. 50 |
| FIGURA 21. DIMENSIONES DE LOS ESPEJOS PARA COBERTURA BLANCA           | 55     |

| FIGURA 22. DIMENSIONES DEL CONJUNTO TAPA-BRIDA PARA COBERTURA | A BLANCA |
|---------------------------------------------------------------|----------|
|                                                               | 57       |
| FIGURA 23. INTERCAMBIADOR DE CALOR PARA COBERTURA BLANCA      | 58       |
| FIGURA 24. INTERCAMBIADOR DE CALOR PARA COBERTURA NEGRA       | 62       |

# **ÍNDICE DE TABLAS**

| TABLA 1. VENTAJAS DE LOS TIPOS DE INTERCAMBIADORES PROPUESTOS       | 8     |
|---------------------------------------------------------------------|-------|
| TABLA 2. DESVENTAJAS DE LOS TIPOS DE INTERCAMBIADORES PROPUESTOS    | 9     |
| TABLA 3. PONDERACIÓN DE LOS CRITERIOS DE EVALUACIÓN                 | 11    |
| TABLA 4. MATRIZ DE EVALUACIÓN                                       | 12    |
| TABLA 5. PUNTAJE DE CADA OPCIÓN                                     | 13    |
| TABLA 6. PROPIEDADES FÍSICAS DEL AGUA A TEMPERATURA PROMEDIO        | 16    |
| TABLA 7. PROPIEDADES FÍSICAS DEL VAPOR A TEMPERATURA PROMEDIO       | 17    |
| TABLA 8. VALORES DE ENTALPÍAS A LA ENTRADA Y SALIDA DEL ICTC        | 19    |
| TABLA 9. VALORES DE ENTALPÍAS A LA ENTRADA Y SALIDA DEL ICTC        | 23    |
| TABLA 10. COMPARACIÓN DE PROPIEDADES DE LOS DISTINTOS MATERIALES    | 30    |
| TABLA 11. DIMENSIONES DE CORAZA Y DIÁMETRO INTERNO DE CORAZA PARA   |       |
| ESPEJO FIJO                                                         | 33    |
| TABLA 12. NÚMERO DE PASOS EN LOS TUBOS                              | 35    |
| TABLA 13. PROPIEDADES DEL ACERO AL CARBONO ASTM A516 GR 70          | 36    |
| TABLA 14. VALORES PARA EL CÁLCULO DEL ESPESOR DE PARED DE LA CORAZA | ٠. 37 |
| TABLA 15. CARACTERÍSTICAS DE TUBERÍA SIN COSTURA CÉDULA 40 ASTM A53 | 38    |
| TABLA 16. VALORES DE LB, MAX SEGÚN EL GRUPO DE MATERIAL Y DIÁMETRO  |       |
| EXTERNO DE TUBO                                                     | 42    |
| TABLA 17. CONDICIONES BÁSICAS DEL AGUA DE PROCESO                   | 51    |
| TABLA 18. CONDICIONES BÁSICAS DEL VAPOR DE PROCESO                  | 51    |
| TABLA 19. RESULTADOS DEL DISEÑO TÉRMICO PARA COBERTURA NEGRA        | 59    |
| TABLA 20. RESULTADOS DEL DISEÑO MECÁNICO PARA COBERTURA NEGRA       | 60    |
| TABLA 21. LISTADO DE COSTO DE MATERIALES DE UN INTERCAMBIADOR       | 63    |
| TABLA 22. MEMORIA TÉCNICA DEL PROCESO DE ELABORACIÓN DE LOS EQUIPO  | S 64  |
| TABLA 23. COSTO TOTAL DE UN INTERCAMBIADOR                          | 64    |

| TABLA 24. COSTO TOTAL DE AMBOS INTERCAMBIADORES DE CALOR            |
|---------------------------------------------------------------------|
| TABLA 25. COSTO POR MANO DE OBRA REQUERIDA DEBIDO A PARADAS EN EL   |
| PROCESO65                                                           |
| TABLA 26. PARÁMETROS CONSIDERADOS EN EL CÁLCULO DE RECUPERACIÓN DEL |
| CONDENSADO (INTERCAMBIADOR DE COBERTURA BLANCA)67                   |
| TABLA 27. RESULTADOS OBTENIDOS DEL PROGRAMA (COBERTURA BLANCA) 68   |
| TABLA 28. PARÁMETROS CONSIDERADOS EN EL CÁLCULO DE RECUPERACIÓN DEL |
| CONDENSADO (INTERCAMBIADOR DE COBERTURA NEGRA)69                    |
| TABLA 29. RESULTADOS OBTENIDOS DEL PROGRAMA (COBERTURA NEGRA) 70    |
| TABLA 30. COSTOS INVERTIDOS PARA LA OPTIMIZACIÓN DEL PROCESO70      |
| TABLA 31. AHORROS OBTENIDOS7                                        |
| TABLA 32. TIEMPO EN EL QUE SE RECUPERA LA INVERSIÓN72               |
| TABLA 33. TASAS DE TRANSFERENCIA DE CALOR PARA SERPENTINES DE VAPOR |
| SUMERGIDOS EN AGUA                                                  |

# **ÍNDICE DE PLANOS**

| PLANO 1  | Intercambiador de calor de tubo y coraza para cobertura blanca |
|----------|----------------------------------------------------------------|
| PLANO 2  | Conjunto de la tapa para cobertura blanca                      |
| PLANO 3  | Deflector para cobertura blanca                                |
| PLANO 4  | Tubería de media pulgada para cobertura blanca                 |
| PLANO 5  | Conjunto coraza y espejo para cobertura blanca                 |
| PLANO 6  | Soporte del ICTC para cobertura blanca                         |
| PLANO 7  | Vista de corte del ICTC para cobertura blanca                  |
| PLANO 8  | Intercambiador de calor de tubo y coraza para cobertura negra  |
| PLANO 9  | Conjunto de la tapa para cobertura negra                       |
| PLANO 10 | Deflector para cobertura negra                                 |
| PLANO 11 | Tubería de media pulgada para cobertura negra                  |
| PLANO 12 | Conjunto coraza y espejo para cobertura negra                  |
| PLANO 13 | Soporte del ICTC para cobertura negra                          |
| PLANO 14 | Vista de corte del ICTC para cobertura negra                   |

# **CAPÍTULO 1**

### 1. INTRODUCCIÓN

#### 1.1. Descripción del problema

Una empresa alimenticia, con sede en la ciudad de Guayaquil, se dedica a la producción y comercialización de productos alimenticios, lácteos, culinarios y conservas. Esta empresa cuenta con varias fábricas, en una de éstas se realiza principalmente la producción de las líneas de galletería, waffer, recubiertos, chocolatería, polvos secos y cereales. En la línea de recubiertos se da la fabricación de los denominados chocolates de cobertura. Conocidos en la industria alimenticia como recubiertos, este tipo de chocolate es una mezcla de cacao, azúcar y contiene un elevado porcentaje de manteca de cacao (Alimentos Argentinos, 2015). Los procesos de atemperado y de moldeo son los únicos realizados en la fábrica para la obtención del producto, donde únicamente se producen dos tipos de coberturas: la blanca y la oscura.

Uno de los procesos auxiliares en la línea de coberturas, es el precalentamiento de éstas. El precalentamiento tiene como objetivo reducir la viscosidad de las coberturas, y a su vez facilitar el transporte a través de tuberías (que se encuentran enchaquetadas) desde los tanques donde se almacenan las coberturas (también enchaquetados) hasta la siguiente etapa del proceso. El precalentamiento se realiza a través de unos serpentines sumergidos en el interior de unos reservorios abiertos donde se almacena agua. Este tipo de intercambiador de calor es de uso frecuente en aplicaciones de calentamiento con vapor, razón por la cual fue colocado en este espacio. El agua caliente se obtiene con el uso de vapor que sale de la caldera a una temperatura y presión de 170 °C y 110 psi (Nestlé, 2015), y pasa a través de los serpentines. A cada reservorio le corresponde un tipo de cobertura, según el producto que se vaya a elaborar.

Con respecto al parámetro de viscosidad, la condición inicial en la que reciben las coberturas desde el tanquero de abastecimiento es de  $2,65\ ^Pa/_S$  para la cobertura oscura (Nestlé, 2015). A fin de mantener la viscosidad de las coberturas blanca y negra en los valores especificados, se requiere agua caliente recirculando por el sistema de almacenamiento y distribución de las coberturas, tal como se describió previamente. En la Figura 1, se observa que la temperatura de salida del agua caliente desde los reservorios debe estar entre los  $55^{\circ}C$  y  $60^{\circ}C$ , para cobertura blanca y entre  $70^{\circ}C$  y  $75^{\circ}C$  para la cobertura negra (Nestlé, 2015). Los parámetros especificados corresponden a los mínimos valores necesarios para evitar que el producto (las coberturas), se endurezca y/o se solidifique dentro de las tuberías, lo cual representa pérdidas económicas para la fábrica dados los retrasos en la producción y los gastos de mantenimiento a la línea de distribución.

Este sistema de calentamiento es controlado por un regulador manual de presión. El problema existente, es que el calentamiento no se da de manera eficiente debido a que la temperatura no se la puede controlar en forma exacta, provocando que el agua no llegue a los valores requeridos para que las coberturas se mantengan en fase líquida y puedan recorrer a través de las tuberías, evitando la posible solidificación en el interior de éstas. Debido a que no se cuenta con un equipo de mayor precisión, para el control de los parámetros de temperatura y presión del vapor, en ocasiones esto ha provocado que el vapor de la caldera llegue a los reservorios de agua a una presión muy elevada que junto con una alta corrosión provocada por este fluido, genera picaduras y fisuras en los serpentines. Además, con los serpentines no hay un gran aprovechamiento del calor proveniente de los gases de salida de la caldera, haciendo de este un sistema poco confiable.

Considerando lo expuesto, se requiere optimizar el sistema de precalentamiento en la línea de coberturas, de tal manera que la

transferencia de calor y la eficiencia del sistema diseñado como resultado de este proyecto, superen las condiciones del sistema que está actualmente en operación.

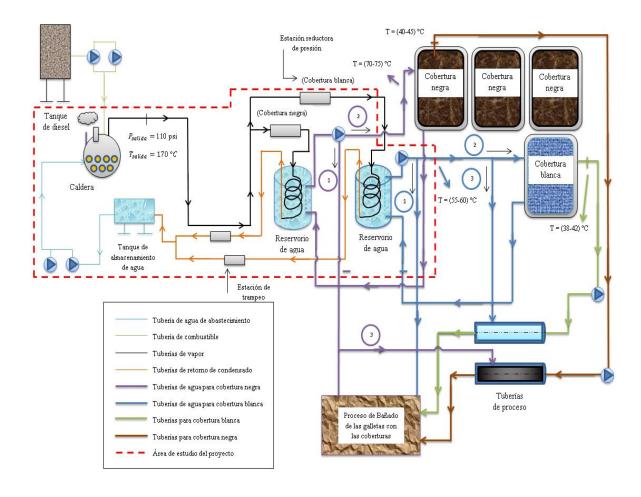



Figura 1. Esquema del proceso

Fuente: Rodríguez, 2000. Elaboración propia.

#### 1.2. Objetivos

#### 1.2.1. Objetivo General

 Optimizar el sistema de calentamiento actual en la línea de coberturas en una fábrica de alimentos en la ciudad de Guayaquil.

#### 1.2.2. Objetivos Específicos

- Realizar el diseño térmico del sistema de precalentamiento en la línea de coberturas a fin de que se cumplan las condiciones de operación tanto de temperatura como de presión involucradas en el proceso.
- Realizar el diseño mecánico del sistema de precalentamiento en la línea de coberturas.
- Evaluar la factibilidad económica del proyecto mediante un análisis de costos.

#### 1.3. Marco teórico

En este apartado se detallan conceptos relacionados al proceso de precalentamiento de las coberturas. Se incluye descripciones de los principales componentes del sistema.

#### Chocolate de cobertura

Se conoce como cobertura al tipo de chocolate utilizado en las industrias de alimentos para recubrir bombones, galletas y demás productos de confitería y heladería. Están compuestos principalmente de cacao, azúcar, y un elevado porcentaje de manteca de cacao (32% al 39%) (Aulestia, 2015).

### Recipiente enchaquetado

Se le denomina de esta manera al doble fondo o encamisado que posee un recipiente, y cuyo propósito es calentar el contenido del mismo. (Ingeniería y Control del Centro, 2011).

#### Intercambiadores de Calor

Los intercambiadores de calor son dispositivos diseñados para transferir energía térmica desde una fuente o un fluido hacia otro, debido a la diferencia de temperaturas entre ambos. La transferencia puede darse por contacto directo entre ambos fluidos o también puede ocurrir cuando estos se encuentran separados por una barrera (calentamiento indirecto).

En forma muy general, se puede clasificar a los intercambiadores de calor según su tipo de superficie en:

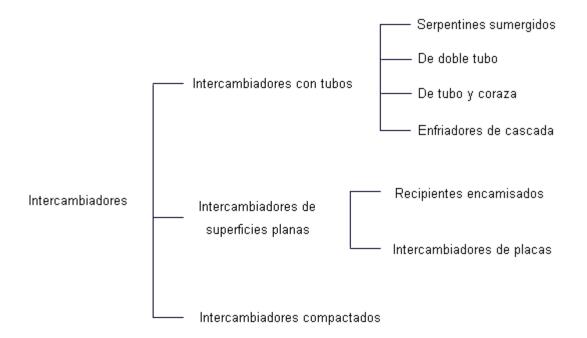



Figura 2 Clasificación de los intercambiadores de calor de acuerdo a su tipo de superficie

Elaboración propia.

La descripción de los diferentes tipos de intercambiadores de calor, en particular las ventajas y desventajas, se incluirán en el siguiente capítulo como parte del análisis para la selección de la mejor alternativa de diseño.

# **CAPÍTULO 2**

## 2. METODOLOGÍA DEL DISEÑO

#### 2.1. Diseño conceptual

#### 2.1.1. Parámetros de diseño

Los parámetros de diseño están dados por las condiciones particulares del proceso. A continuación se describen los parámetros relacionados al sistema de almacenamiento y distribución de las coberturas (Nestlé, 2015):

- Volumen de agua en el tanque usado para cobertura blanca:  $0,308 m^3$
- Volumen de agua en el tanque usado para cobertura negra:  $0,529 m^3$
- Temperatura del agua antes de iniciar el proceso de calentamiento. Se tienen dos temperaturas: la de retorno del circuito que es aproximadamente 42 45°C para cobertura blanca y entre 47 50°C para cobertura negra. Cuando se realiza algún tipo de limpieza o mantenimiento, se repone agua a temperatura ambiente, que fluctúa entre 29 31°C según temporada en la ciudad.
- Temperatura y presión del vapor a la salida de la caldera:  $170\,^{\circ}\text{C}\ y\ 110\ psi$
- Presión y temperatura del vapor requerido para calentamiento en cobertura blanca:  $P_{v,e}=15~Psi~(0,10~MPa);~T_{v,e}\approx102~^{\circ}C.$
- Presión y temperatura del vapor requerido para calentamiento en cobertura negra:  $P_{v,e} = 20 \, Psi \, (0.138 \, MPa); \, T_{v,e} \approx 110 \, ^{\circ}C.$
- Volumen de red de tuberías de cobertura blanca: 1,48 m³
- Volumen de red de tuberías de cobertura negra: 3,99  $m^3$

#### 2.1.2. Variables de solución

Las variables de solución son las formas en que difieren las alternativas de solución al problema; para este caso se tienen las siguientes:

- 1.- Tipo de intercambiador por seleccionar.
- 2.- Tamaño y forma del equipo.
- 3.- Materiales de construcción.

#### 2.1.3. Tipos de intercambiadores propuestos

Serpentines sumergidos: un serpentín es un tubo que se encuentra generalmente doblado, curvado o en espiral con el fin de aprovechar el espacio del tanque o recipiente donde éste se encuentre sumergido y conseguir una mayor área de transferencia de calor. Pueden ser de acero al carbono, acero inoxidable, o cobre. (Ingeniería y Control del Centro; Ingeniería y Control del Centro, 2011). Son utilizados generalmente en tanques para sistemas de calentamiento o de refrigeración.

Intercambiador de calor de placas: consiste en un bastidor que tiene por dentro un conjunto de placas de metal corrugadas que son recambiables. El sellado de las placas puede ser realizado a través de juntas o estar soldadas. Son utilizados comúnmente en las industrias alimenticias.

Intercambiador de calor de tubo y coraza: es un intercambiador de contacto indirecto del tipo recuperativo formado por un gran número de tubos de sección circular concéntricos montados dentro de una carcasa cilíndrica, donde los dos fluidos involucrados en el proceso fluyen en direcciones paralelas y pueden viajar en un mismo sentido o a contracorriente.

#### 2.1.4. Análisis de selección del tipo de intercambiador

Este análisis de selección consiste en determinar el tipo de intercambiador que será utilizado como medio para optimizar el sistema de precalentamiento de agua para las coberturas blanca y oscura. En las Tablas (1 y 2) se detallan las ventajas y desventajas de cada uno de los equipos propuestos, (Mijev, 1979) citado por (Martínez & Aguirre, 2006). Los equipos propuestos deberán cumplir las principales premisas que son fundamentalmente:

- El tipo de proceso: se requiere que el agua utilizada para el calentamiento del sistema de las coberturas, sea calentada con vapor de agua, proveniente de una caldera que está operando a 110 psi de presión.
- Rango de presión y temperatura: los equipos mencionados deberán cumplir con los requerimientos de presión y de temperatura a las cuales se esté operando en el proceso de calentamiento de la cobertura.
- Tamaño del intercambiador de calor y espacio físico disponible en el sitio: la instalación del equipo debe ser en un área acorde al espacio que ocupan actualmente los reservorios con agua.

Tabla 1. Ventajas de los tipos de intercambiadores propuestos

| Serpentines                                                                                              | Tubo y Coraza                                                                                           | De placas                                                                                                             |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Son utilizados en casos donde no se cuenta con tiempo ni presupuesto para conseguir un equipo comercial. | Su instalación es sencilla y son de fácil mantenimiento.                                                | Ligeros, compactos y de fácil<br>manipulación.                                                                        |
| Son fáciles de construir,<br>pudiendo ser armados<br>rápidamente en un taller.                           | Se usan para servicios donde se requieren grandes superficies de intercambio de calor (5 a 1000 $m^2$ ) | Sirven como calentadores de agua y otros fluidos, mediante el uso de vapor.                                           |
| Son fácilmente removibles y transportables, además der fáciles de limpiar externamente.                  | Pueden manejar caudales muy<br>grandes de gases o líquidos,<br>así como también cambios de<br>fase.     | Permiten una apertura y un cierre<br>fácil y rápido para limpieza.                                                    |
| Utilizados comúnmente para calentamiento con vapor.                                                      | Sirven como calentadores de agua, mediante el uso de vapor.                                             | Estos ocupan un área mucho menor que la que ocupan los de tubo y coraza.                                              |
| Son muy utilizados para instalaciones provisorias.                                                       | Soportan presiones de hasta 35<br>MPa.                                                                  | Tienen una alta eficacia en la transferencia de calor debido a las grandes áreas superficiales que poseen las placas. |

| Serpentines                                                     | Tubo y Coraza                                                                                                                      | De placas                                                                                                 |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| El rendimiento debido al intercambio de calor es satisfactorio. | Son los más baratos del mercado con respecto a los servicios que presta, pudiendo ser fabricados localmente con una alta eficacia. | Poseen una alta eficiencia porque trabajan con flujos turbulentos y por los distintos arreglos de flujos. |
|                                                                 | Son los equipos más estudiados<br>en el medio y sobre los que existe<br>una normalización como es el<br>TEMA.                      | No hay una normalización con respecto a este tipo de equipos.                                             |

Fuente: Martínez & Aguirre, 2006. Elaboración propia.

Tabla 2. Desventajas de los tipos de intercambiadores propuestos

| Serpentines                                                                                                         | Tubo y Coraza                                                                                                                                       | De placas                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Al utilizar vapor como medio<br>de calentamiento, se produce<br>una alta corrosión en las<br>paredes del serpentín. | La limpieza mecánica en el interior de los tubos es dificultosa si se produce ensuciamiento sea en la parte recta o en las curvas.                  | Los empaques son caros y existe inhabilidad de sellar confiablemente las juntas entre placas.                                                 |
| No hay un eficiente intercambio de calor debido a que el área de transferencia es pequeña.                          | No son flexibles de desmontar una vez que hayan sido instalados y en el caso que se generen picaduras en algún tubo habría que desmontar el equipo. | Manejan presiones menores a 25<br>bares (2.5MPa), así como<br>también se encuentra limitado a<br>bajas temperaturas (menores a<br>los 200 °C) |
|                                                                                                                     | En los de cabezal fijo, los problemas de expansión térmica son extremadamente críticos.                                                             | Tienden a formarse incrustaciones en las secciones de calentamiento de agua.                                                                  |

Fuente: Martínez & Aguirre, 2006. Elaboración propia.

#### 2.1.5. Criterios de evaluación

- Los criterios de evaluación ayudarán a la elaboración de una matriz de decisión para seleccionar la mejor y más viable solución posible. Se lo realiza comparando factores relacionados con la calidad y seguridad en la operación del equipo, con el fin de realizar una selección que vaya a cumplir con los objetivos del proyecto. Las variables tomadas en cuenta son las siguientes:
- Costos asociados a la implementación: se consideran los costos asociados a cada tecnología, que incluyen costos de construcción y de instalación.
   Para evaluar este criterio en la matriz de decisión, se considerará que mientras más alto sea el puntaje colocado, los costos mencionados del equipo analizado son menores.
- Eficiencia térmica: se refiere a cuán eficiente es el sistema para transferir calor del vapor al agua, para lograr obtener una temperatura óptima que mantenga a las coberturas en estado líquido, sin que se generen problemas de solidificación. En este caso, a mayor puntaje, mayor eficiencia posee el equipo analizado con respecto a la calidad de transferencia del fluido utilizado para calentamiento.
- Mantenimiento: se refiere a la frecuencia con la que se deba realizar algún tipo de reparación o mantenimiento. Incluye además cualquier riesgo de parada, sea ésta de emergencia o programada y la disponibilidad de herramientas y materiales para llevar a cabo las acciones de corrección. Un valor alto en la calificación, implica que la frecuencia de mantenimiento del equipo es baja, y no surgen inconvenientes debido a paradas repentinas. Además los materiales disponibles en el mercado son fáciles de adquirir.
- Disponibilidad de espacio: el tipo de intercambiador colocado debe acomodarse a los requerimientos de espacio, por lo cual es necesario conocer la disponibilidad de área donde éste vaya a ser instalado. Mientras mayor sea el puntaje, significa que la instalación del equipo no presentará problemas por falta de espacio.

 Seguridad y riesgos: se refiere a los peligros relacionados con el uso de estos equipos y las complicaciones operacionales en el momento que se encuentren en operación. Por lo tanto, una calificación alta, implica que el manejo del equipo evaluado no representa un peligro al operario en el momento de operación o mantenimiento, y además se logra mantener la seguridad intrínseca de las instalaciones.

#### 2.1.6. Selección del tipo de intercambiador

A continuación, se asigna una ponderación a cada uno de los criterios de evaluación mencionados según el grado de importancia que se le amerite:

Tabla 3. Ponderación de los criterios de evaluación

| Criterios de evaluación    | Ponderación |  |
|----------------------------|-------------|--|
| Costos asociados           | 24%         |  |
| Eficiencia térmica         | 20%         |  |
| Mantenimiento              | 16%         |  |
| Disponibilidad de espacios | 20%         |  |
| Seguridad y riesgos        | 20%         |  |

Elaboración propia.

La ponderación fue realizada de acuerdo al hecho de que la eficiencia térmica tiene que satisfacer y garantizar la transferencia de calor requerida para mantener caliente las coberturas y puedan circular normalmente a través de la red de tuberías. Este criterio va acompañado con el requerimiento de mantener al mínimo los riesgos operacionales asociados al equipo elegido.

Los costos asociados a la construcción del equipo, son parte fundamental en la selección del tipo de intercambiador, que involucran principalmente adquisición de materiales y disponibilidad de accesorios en el mercado local, incluyendo además valores relacionados con la instalación.

El tamaño del intercambiador de calor es un aspecto fundamental, debido a que este equipo debe instalarse donde actualmente se encuentran los tanques con agua. Con respecto al mantenimiento, los parámetros fueron ya mencionados en la sección anterior. A continuación, se muestra la matriz de de evaluación con cada tipo de intercambiador sugerido, donde se asigna un puntaje a cada uno de ellos de acuerdo a factores discutidos:

Tabla 4. Matriz de evaluación

| Valorización                             | Costos<br>asociados | Eficiencia<br>térmica | Mantenimiento | Disponibilidad<br>de espacios | Seguridad y<br>riesgos |
|------------------------------------------|---------------------|-----------------------|---------------|-------------------------------|------------------------|
| Alternativas                             | 24%                 | 20%                   | 16%           | 20%                           | 20%                    |
| Serpentines sumergidos                   | 21                  | 10                    | 13            | 18                            | 14                     |
| Intercambiador de calor de placas        | 12                  | 18                    | 12            | 18                            | 17                     |
| Intercambiador de calor de tubo y coraza | 18                  | 17                    | 11            | 16                            | 17                     |

Elaboración propia.

Tabla 5. Puntaje de cada opción

| Opción                                   | Puntaje |
|------------------------------------------|---------|
| Serpentines sumergidos                   | 75%     |
| Intercambiador de calor de placas        | 77%     |
| Intercambiador de calor de tubo y coraza | 79%     |

Elaboración propia.

De acuerdo a los resultados obtenidos en la matriz de evaluación, se recomienda como parte del proceso de optimización del sistema de calentamiento de agua de las coberturas, usar un intercambiador de calor de tubo y coraza. Este tipo de intercambiadores ofrecen servicios donde se requieren grandes superficies de intercambio de calor. Además, manejan grandes caudales de gases o líquidos, así como también cambios de fase.

Otro aspecto importante por el cual se elige este intercambiador, es porque sirven como calentadores de agua utilizando vapor como medio de calentamiento. Además, la temperatura de operación máxima que pueden soportar estos equipos es de 700 °C (González, 2011), cumpliendo así con los principales requerimientos de diseño térmico de este proyecto con respecto al proceso de transferencia de calor.

A pesar de presentar problemas con respecto a la dificultad de limpieza mecánica en el interior de los tubos, son equipos de bajo costo y pueden ser fabricados sin necesidad de depender de matrices diseñadas y construidas especialmente para un tipo de equipo en específico.

#### 2.1.7. Normas y manuales aplicables

Entre las normas aplicables a este proyecto, se destacan las relacionadas al diseño de intercambiadores de calor, que a continuación se describen.

1.- Diseño Térmico y Mecánico: Manual HEDH (Heat Exchanger Design Handbook Capítulos 3 y 4). Este manual establece métodos para el diseño de intercambiadores de calor que permiten calcular analíticamente los parámetros esenciales de construcción de un intercambiador (Hewitt, 2000), En este manual se detallan conceptos básicos de diseño y relaciones teóricas utilizadas en el diseño de intercambiadores, selección de materiales, fabricación, así como su inspección y funcionamiento.

#### 2.- Diseño Mecánico:

- Códigos y Normas ASME (American Society of Mechanical Engineers).
   Sección VIII (Recipientes a presión). Se refiere al diseño y operación de recipientes a presión y consta de tres subsecciones:
- 1.- Requisitos Generales.
- 2.- Requisitos para los métodos de diseño y fabricación de los recipientes a presión.
- 3.- Requisitos concernientes a la clase de materiales.
- Normas TEMA (Tubular Exchanger Manufacturer Association)

Se refieren a una serie de consideraciones para el diseño y fabricación de intercambiadores tubulares, donde se consideran aspectos como los tipos y las designaciones más comúnmente utilizadas en la construcción de intercambiadores de este tipo. Se detalla además el tipo de aplicación que se le da al intercambiador de acuerdo a la severidad del servicio.

#### 2.1.8. Diseño de forma

La Figura 3 muestra un esquema representativo de la propuesta del sistema de intercambiador de calor junto con la instrumentación necesaria para conseguir la optimización del sistema actual de serpentines.

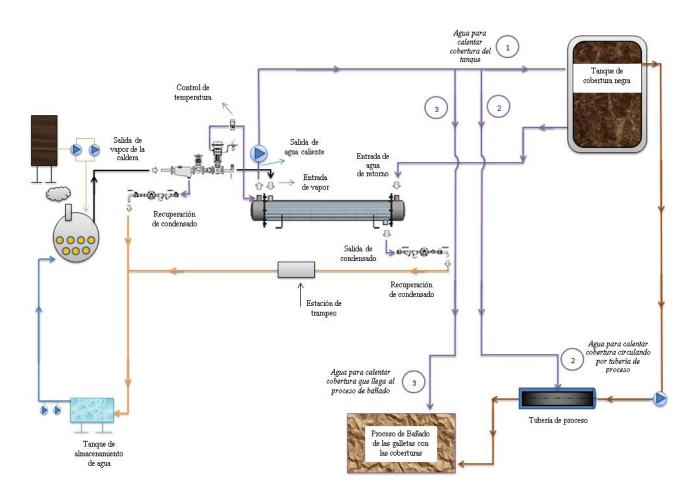



Figura 3. Diseño de forma del sistema propuesto para un intercambiador

Elaboración propia.

#### 2.2. Diseño Térmico

En esta sección del proyecto, se habla sobre la metodología aplicada para el diseño térmico, que involucra cálculos de flujo másico de vapor, coeficientes de transferencia interno y externo, coeficiente global de transferencia y área total de transferencia de los intercambiadores de calor.

#### 2.2.1. Metodología y diseño del sistema para calentamiento de agua

La metodología aplicada en el desarrollo de este proyecto, considera parámetros tales como: temperaturas de retorno y salida del agua y de vapor, características de los flujos, propiedades de los fluidos, dimensiones de tubos, así como también propiedades del material de los tubos (fundamentales en el proceso de calentamiento de agua utilizando vapor de agua). Para esto se ha sistematizado el proceso de diseño en una hoja de cálculo. Por medio de esta herramienta, a través de una serie de pasos, se pueden ingresar todos los valores antes mencionados, y, utilizando fórmulas y métodos adecuados según las condiciones del proceso en las que se encuentran los fluidos, se pueden determinar las características de diseño del sistema. Cabe recalcar que el alcance de este proyecto incluye tanto el diseño térmico como el mecánico de dos intercambiadores de calor, correspondientes cada uno, a la cobertura blanca y oscura. Para representación de los cálculos, se presentan en este informe los correspondientes al tipo de cobertura blanca. Al momento de la presentación de los resultados, se mostrarán los valores relevantes de ambos intercambiadores cuyos valores fueron desarrollados en el programa, y serán anexados para su visualización.

#### 2.2.2. Procedimiento para calcular el flujo másico de vapor

Se detallan cada una de las propiedades físicas de los fluidos, tal como se muestran en las Tablas 6 y 7. Es necesario mencionar que cada una de estas características fue evaluada a la temperatura promedio de las temperaturas de entrada y salida de ambos fluidos.

Tabla 6. Propiedades físicas del agua a temperatura promedio

| Fluido 1 (Agua)                  | VALOR  | UNIDAD   |
|----------------------------------|--------|----------|
| Temperatura media (Tmedia)       | 50,5   | °C       |
| Calor específico ( <i>Cp,l</i> ) | 4,2    | KJ/kg-°C |
| Densidad (d,l)                   | 988    | kg/m3    |
| Viscosidad dinámica (u,l)        | 0,0008 | (N-s)/m2 |
| Conductividad térmica (k,l)      | 0,59   | W/m-°C   |

Tabla 7. Propiedades físicas del vapor a temperatura promedio

| Fluido 2 (Vapor)                        | VALOR      | UNIDAD   |
|-----------------------------------------|------------|----------|
| Temperatura media (tmedia)              | 100,75     | °c       |
| Calor específico ( <i>Cp,v</i> )        | 2,043      | KJ/kg-°C |
| Densidad ( <i>d,v</i> )                 | 0,952      | kg/m3    |
| Viscosidad dinámica (u,v)               | 0,00001239 | (N-s)/m2 |
| Conductividad térmica (k,v)             | 0,02559    | W/m-°C   |
| Entalpía de vaporización ( <i>hfg</i> ) | 2256000    | KJ/kg    |

Elaboración propia.

A fin de continuar con los cálculos, se requiere el caudal de agua a ser calentado. Para esto, se recurrió a las especificaciones de la bomba de agua utilizada para el proceso. Estas especificaciones son mostradas en la Figura 3. Se ha tomado en consideración el volumen que ocupan los tanques actualmente y según esto, se calculó el cabezal neto de succión  $NPSH_R$ , siendo la eficiencia de la bomba 40%. De la Figura 3 se obtiene que el caudal de agua bombeado es de  $25\ GPM$ .

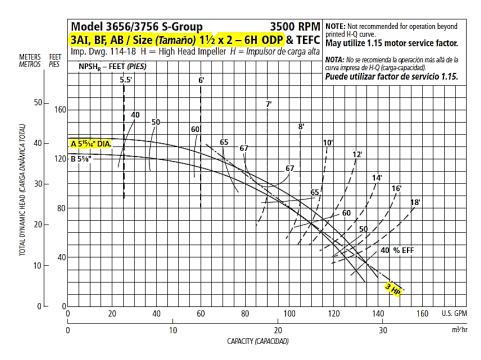



Figura 4. Curva de desempeño de la bomba comercial Goulds Pumps

Fuente: Goulds Pumps, 1998.

Se determina el flujo másico de agua, relacionando el flujo volumétrico, con el volumen específico del líquido saturado a la presión de entrada a la caldera (15 psi). El valor obtenido del flujo másico de agua es por lo tanto:

$$\dot{m}_{agua} = 5442,3 \frac{kg}{h}$$

La cantidad de calor necesaria para calentar el agua está dada por:

$$\dot{Q} = \dot{m}_{agua} \cdot c_{p,agua} \cdot \Delta T_{agua} \tag{1}$$

Con los valores de la Tabla 6.1 y 7, y usando la ecuación (1), se obtiene que el calor requerido para calentamiento es:

$$\dot{Q} = 88,9 \, KW$$

Se realizan los balances de masa y energía al volumen de control (el intercambiador de calor) que se presenta en la Figura 4.

$$E_{salida} = E_{entrada}$$
 
$$\dot{m}_2 \, h_2 + \dot{m}_4 \, h_4 = \dot{m}_1 \, h_1 + \dot{m}_3 \, h_3 \qquad (2)$$
 Donde: 
$$\dot{m}_3 = \dot{m}_4 = \dot{m}_{vapor}$$
 
$$\dot{m}_1 = \dot{m}_2 = \dot{m}_{agua}$$
 3. Vapor sobrecalentado 
$$\qquad \qquad 2. \text{ Agua calentada}$$
 4.-Líquido saturado 
$$\qquad \qquad 1. \text{ Agua de retorno}$$

Figura 5. Volumen de control del ICTC

Elaboración propia.

Asumiendo que el vapor a la salida del intercambiador debe estar en condición de líquido saturado y a la entrada de éste, a una temperatura ligeramente mayor a la de saturación. Despejando el flujo másico de vapor de la ecuación (2), se tiene que:

$$\dot{m}_{vapor} = \frac{\dot{m}_{agua} \left( h_f @ T_2 - h_f @ T_1 \right)}{\left( h_g @ 15 \ psi - h_f @ 15 \ psi \right)} \tag{3}$$

Los valores de cada parámetro son detallados en la Tabla 8.

Tabla 8. Valores de entalpías a la entrada y salida del ICTC

| Fluido 1 | Tentrada (T1)  | Tsalida (T2)  |      | Entalpía entrada<br>(h1,agua)  | Entalpía salida<br>(h2,agua)  |         |
|----------|----------------|---------------|------|--------------------------------|-------------------------------|---------|
|          | 43,5           | 57,5          | 1001 | 182,19                         | 240,68                        |         |
| Fluido 2 | t,entrada (t1) | t,salida (t2) | (°C) | Entalpía entrada<br>(h3,vapor) | Entalpía salida<br>(h4,vapor) | (kJ/kg) |
|          | 101            | 100,5         |      | 2675,5                         | 421,11                        |         |

Elaboración propia.

Reemplazar los datos de la Tabla 7 en la ecuación (3), se tiene que:

$$\dot{m}_{vapor} = 141.2 \frac{kg}{h}$$

#### 2.2.3. Procedimiento para el cálculo del área de transferencia de calor

Para empezar con la etapa del diseño del intercambiador, se necesitan conocer las temperaturas de retorno del agua para cada tipo de cobertura, así como las temperaturas de agua caliente requeridas a la salida. Lo que se busca fundamentalmente en el diseño de estos equipos, es encontrar el área de transferencia, o también llamada frontera sólida que separa ambos fluidos, con el fin de garantizar una taza de transferencia de calor a través de estos. Se lo expresa a través de la siguiente ecuación:

$$\dot{Q} = U \cdot A \cdot \Delta T_{ml} \ [W] \tag{4}$$

Donde:

- U, es el coeficiente global de transferencia de calor.  $\left[\frac{W}{m^{2} \cdot c}\right]$
- A, es el área de transferencia de calor.  $[m^2]$
- $\Delta T_{ml}$ , es la diferencia de temperaturas media logarítmica. [°C]

El coeficiente global de transferencia está definido en términos de la resistencia térmica total, que incluyen de conducción y de convección, para la transferencia de calor entre dos fluidos separados por paredes planas y cilíndricas compuestas, respectivamente. Este coeficiente está dado por:

$$U = \frac{1}{\left(\frac{1}{h_i} + \frac{r_i \ln(r_o/r_i)}{k} + \frac{1}{h_o}\right)} \quad \left[\frac{W}{m^2 \cdot {}^{\circ}\text{C}}\right]$$
 (5)

Donde:

- $r_i$  y  $r_o$  representan el radio interior y exterior de los tubos que serán colocados. [m]
- $h_i$  y  $h_o$  representan el coeficiente de transferencia en el interior de un tubo y el coeficiente externo de transferencia, respectivamente.  $\left[\frac{W}{m^2 \cdot \circ c}\right]$

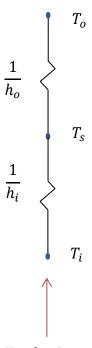



Figura 6. Malla térmica para los tubos

Elaboración propia.

La diferencia media logarítmica, es un valor promedio de las diferencias máximas de temperaturas entre el fluido caliente y el frío en cada sección del intercambiador. Para calcularlo, es necesario establecer la forma específica en que se vayan a disponer las distribuciones de temperaturas calientes y frías dentro del intercambiador, las cuales pueden ser en dirección paralela, o a contraflujo. Aunque, cabe recalcar que con las mismas temperaturas de entrada y de salida, el valor de  $\Delta T_{ml}$  para el contraflujo excede a la del flujo paralelo, es decir:  $\Delta T_{ml,CF} > \Delta T_{ml,FP}$ . Por consiguiente, el área superficial requerida para efectuar una transferencia de calor  $\dot{Q}$ , será más pequeña para el contraflujo que para un arreglo en flujo paralelo, suponiendo un mismo valor de U (Incropera, 1999). Por lo tanto, se propone una distribución de los fluidos a contraflujo cuya diferencia logarítmica se expresa así:

$$\Delta T_{ml} = \frac{\Delta T_2 - \Delta T_1}{\ln \left(\Delta T_2 / \Delta T_1\right)} \ [^{\circ}C] \tag{6}$$

Las diferencias de temperaturas en los puntos extremos se definen como:

$$\begin{bmatrix} \Delta T_1 \equiv T_{h,1} - T_{c,1} = T_{h,i} - T_{c,o} \\ \Delta T_2 \equiv T_{h,2} - T_{c,2} = T_{h,o} - T_{c,i} \end{bmatrix}$$

Donde:

- $T_{h,i}$  y  $T_{h,o}$  representan las temperaturas del fluido caliente a la entrada y salida del intercambiador.
- $T_{c,i}$  y  $T_{c,o}$  representan las temperaturas del fluido frío a la entrada y salida del intercambiador.

Los valores de  $\Delta T_1$  y  $\Delta T_2$  son: 57 [°C] y 43,5 [°C] dando un valor de:

$$\Delta T_{ml} = 49,94 \, [^{\circ}C]$$

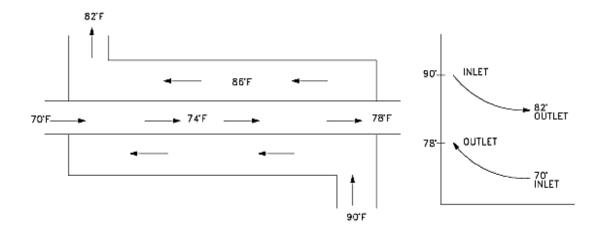



Figura 7. Distribución a contraflujo de los fluidos en un ICTC

Fuente: Jaramillo, 2007.

Como siguiente paso, se debe calcular el coeficiente interno de transferencia de calor, para lo cual se necesita obtener el número de Reynolds del agua que circula por dentro de los tubos. Para un flujo incomprensible estable en un tubo circular de área transversal uniforme  $A_c = \pi d^2/4$ , el número de Reynolds se lo calcula mediante la siguiente expresión:

$$Re_D = \frac{4 \cdot \dot{m}}{\pi \cdot D_i \cdot \mu} \tag{7}$$

Donde:

- $\dot{m}$ , representa el flujo másico de agua que circula por los tubos.  $\left[\frac{kg}{s}\right]$
- $D_i$ , es el diámetro interior del tubo por donde va a circular el agua. [m]
- $\mu$ , es la viscosidad dinámica del agua a temperatura promedio.  $\left[\frac{N \cdot s}{m^2}\right]$

El valor del diámetro de las tuberías se lo puede conseguir en tablas para tuberías de acero comercial existentes en el mercado. Valores nominales de diferentes diámetros son especificados en la Tabla 9:

Tabla 9. Valores de entalpías a la entrada y salida del ICTC

| Diámetro<br>nominal<br>(pulgadas) | Diámetro<br>exterior (mm) | Diámetro<br>interior (mm) | Espesor<br>(mm) |
|-----------------------------------|---------------------------|---------------------------|-----------------|
| 1/2"                              | 21,3                      | 15,8                      | 2,77            |
| 3/4"                              | 26,7                      | 21                        | 2,87            |
| 1"                                | 33,4                      | 26,6                      | 3,38            |
| 1 1/4"                            | 42,2                      | 35,1                      | 3,56            |
| 1 1/2"                            | 48,3                      | 40,9                      | 3,68            |
| 2"                                | 60,3                      | 52,5                      | 3,91            |

Fuente: Novacero, 2012 Elaboración propia.

En la ecuación (7), es necesario asumir que el flujo de agua se va a distribuir uniformemente a través de cada tubo, es decir  $\frac{\dot{m}}{n}$ , siendo n el número de tubos del arreglo. En la hoja de cálculo desarrollada para este diseño se seleccionó un diámetro nominal de tubería de 1/2". El valor del diámetro interior es utilizado para el cálculo del Reynolds, donde se debe lograr que éste sea mayor a 10000, para garantizar que el flujo sea turbulento (Incropera, 1999) sin exceder de gran manera el valor del mismo, ya que se produciría un aumento en la caída de presión en el interior de los tubos.

Como siguiente paso, se debe encontrar una correlación de convección para flujo turbulento en tubos circulares. Una expresión para calcular el número de Nusselt local para este tipo de flujos se obtiene a partir de la siguiente ecuación de Dittus-Boelter:

$$Nu_D = 0.023 \cdot Re_D^{\frac{4}{5}} \cdot Pr^m \tag{8}$$

Donde:

m = 0.4 para calentamiento.

Esta ecuación se ha confirmado de forma experimental para las siguientes condiciones:

$$\begin{bmatrix} 0.7 \le Pr \le 160 \\ Re_D \ge 10000 \\ \frac{L}{D_i} \ge 10 \end{bmatrix};$$

con todas las propiedades evaluadas en  $T_m$  y para diferencias de temperaturas moderadas. Reemplazando el valor del diámetro interior del tubo de ½" en la ecuación (7), con un número de 14 tubos, y un valor de Prandtl igual a 3,525 se obtiene un valor de  $Re_D=10877,15$ , cumpliendo así la condición 2 citada en el párrafo anterior. El valor de Nusselt da un valor de  $Nu_D=59,34$ . Finalmente, se obtiene el coeficiente de transferencia de calor en el interior de un tubo mediante la siguiente expresión:

$$h_i = \frac{Nu_D \cdot k_{agua}}{D_i} \tag{9}$$

cuyo valor es de  $h_i=2215,75\,[W/m^2\cdot{}^\circ C]$ , el cual según pruebas y experimentación, se encuentra dentro del rango de valores típicos para convección forzada en líquidos, que están entre  $50\,W/m^2\cdot{}^\circ C$  y  $200000\,W/m^2\cdot{}^\circ C$ .

Como se había asumido con anterioridad, el vapor se encuentra en condensación a la entrada del intercambiador y se mantiene en esta condición hasta la salida del mismo. Para una hilera vertical de *N* tubos horizontales, el coeficiente de convección promedio (sobre los *N* tubos) se puede expresar como:

$$\bar{h}_{D,N} = 0.729 \left[ \frac{g \cdot \rho_l \cdot (\rho_l - \rho_v) \cdot k_l^3 \cdot h_{fg}}{N \cdot \mu_l \cdot (T_{sat} - T_s) \cdot D_o} \right]^{1/4}$$
(10)

Donde:

- $\overline{h}_D$ , es el coeficiente de transferencia de calor para el tubo superior del arreglo de tubos.  $\left[\frac{W}{m^2\cdot ^\circ \text{C}}\right]$
- ullet  $ho_l,\,
  ho_v,$  son las densidades del líquido y el vapor saturado.  $\left[rac{kg}{m^3}
  ight]$
- $k_l$ , es la conductividad térmica del material de los tubos.  $\left[\frac{W}{m \cdot c}\right]$
- $h_{fg}$ , representa la entalpía de vaporización.  $\left[\frac{KJ}{kg}\right]$

- N, cantidad promedio de tubos que se encuentran en hilera vertical.
- $\mu_l$ , es la viscosidad dinámica del líquido.  $\left[\frac{N \cdot s}{m^2}\right]$
- $T_{sat}$ , es la temperatura de saturación. [° $\mathcal{C}$ ]
- $T_s$ , es la temperatura superficial del tubo. [°C]
- $D_o$ , es el diámetro exterior de un tubo. [m]

A partir de ahora, se empieza a establecer un procedimiento iterativo para el cálculo del coeficiente externo de transferencia de calor, que involucra el cálculo de la temperatura media superficial del tubo. Se asume inicialmente un valor de coeficiente externo de transferencia de calor, que para un proceso de condensación de vapor, se encuentra entre  $2500~W/m^2 \cdot {}^{\circ}C$  y  $100000~W/m^2 \cdot {}^{\circ}C$ . El valor asumido, se lo introduce en la ecuación (5), junto con el valor del coeficiente interno de transferencia de calor, ya calculado con anterioridad, y los valores de los diámetros del tubo escogido, así como la conductividad térmica del mismo. El coeficiente global de transferencia de calor del tipo vapor condensándose está entre los  $1000~W/m^2 \cdot {}^{\circ}C$  y  $5000~W/m^2 \cdot {}^{\circ}C$  . Teniendo este valor, se procede a calcular el flujo de calor que circula a través de la pared del tubo, usando la ecuación (11):

$$q' = U \cdot \Delta T_{ml} \tag{11}$$

Este calor se usa para obtener el valor de la temperatura media superficial:

$$T_{s} = \frac{q'}{h_{i}} + T_{agua} \tag{12}$$

Con este dato, se regresa a la ecuación (10), para el cálculo del coeficiente externo de transferencia de calor. Es ahora donde se comparan ambos valores, el asumido inicialmente, y el obtenido a través de la fórmula con la ayuda de la temperatura media superficial del tubo. El valor calculado, al ser diferente del asumido, se convertirá en el nuevo valor asumido del programa, realizando así nuevamente el procedimiento descrito, hasta obtener un nuevo valor del coeficiente externo de transferencia. Se realizarán varias

iteraciones, hasta lograr conseguir que ambos valores sean similares o iguales. En este momento, se detiene el proceso de iteración.

Teniendo este último dato, se procede a calcular el área de transferencia de calor, despejando A de la ecuación (4). Se tiene de esta manera que:

$$A = \frac{\dot{Q}}{U \cdot \Delta T_{ml}} \ [m^2]$$

Se desea ahora conocer la longitud que tendrá cada uno de los tubos, donde los diámetros fueron escogidos de la tubería nominal de la Tabla 8. El área que representa un tubo está dado por:

$$A = L \cdot \pi \cdot D_i \quad [m^2] \tag{13}$$

Si se multiplica este valor por los n tubos del arreglo (valor inicialmente asumido), y se despeja L de la ecuación (13), se puede obtener la longitud en metros que tendrá cada tubo dispuesto en el intercambiador.

Los valores resultantes del proceso iterativo son mostrados a continuación:

- Coeficiente externo de transferencia asumido:  $h_{o,asumido} = 6409 \left[ \frac{W}{m^2 \cdot c} \right]$
- Coeficiente global de Transferencia de calor:  $U = 1528,23 \left[ \frac{W}{m^2 \cdot ^{\circ} C} \right]$
- Flujo de calor a través de la pared del tubo: q' = 76329,52 [W]
- Temperatura media superficial del tubo:  $T_s = 84,95 \, [^{\circ}C]$
- Coeficiente externo de transferencia:  $h_{o,cal} = 6409,04 \left[ \frac{W}{m^2 \cdot c} \right]$
- Área de transferencia:  $A = 1,17 [m^2]$
- Longitud de cada tubo del intercambiador:  $L_{tubo} = 1,68 [m]$

# 2.2.4. Procedimiento para el cálculo de la caída de presión del lado de los tubos

Cuando un intercambiador de calor se encuentra en operación, siempre se va a producir una caída de presión de los fluidos. Esta caída en el lado interior de los tubos se la puede calcular a través de la fórmula de pérdida de altura en una tubería (Shames, 1995) multiplicado por la densidad del fluido a la temperatura promedio. De esta manera se tiene lo siguiente:

Pérdida de altura en una tubería:

$$h_{t} = f \cdot \frac{L}{D_{H}} \cdot \frac{V^{2}}{2} \qquad \left[ \frac{N \cdot m}{kg} \right]$$

$$\rho_{agua} @ T_{promedio} = 988 \left[ \frac{kg}{m^{3}} \right]$$
(14)

Multiplicando ambos factores, se obtiene la caída de presión dentro del equipo para un flujo turbulento:

$$\Delta P_t = f \cdot \frac{L}{D_i} \cdot \frac{V^2}{2} \cdot \rho_{agua} \quad [Pa]$$
 (15)

Donde:

- f, es el factor de fricción de la tubería.
- L, longitud del tubo. [m]
- V, velocidad lineal del agua dentro de la tubería.  $\left[\frac{m}{s}\right]$

Para obtener el valor de la velocidad del agua dentro de los tubos se recurrió a una serie de fórmulas mostradas a continuación:

$$A_{tt} = \frac{\pi \cdot D_i^2}{4} \tag{16}$$

$$A_t = \#tubos_{/paso} \cdot A_{tt} \tag{17}$$

$$G_t = \frac{\dot{m}_{agua}}{A_t} \tag{18}$$

Donde:

- $A_{tt}$ , es el área de sección transversal de un tubo.  $[m^2]$
- $A_t$ , el área total del flujo.  $[m^2]$
- $G_t$ , es la velocidad másica del agua.  $\left[\frac{kg}{s \cdot m^2}\right]$

La velocidad lineal del agua es entonces:

$$v = \frac{G_t}{\rho_{agua}} \quad [m/_S] \tag{19}$$

Reemplazando valores, se obtiene una velocidad interior de los tubos de:

$$v = 0.56 \, [m/_S]$$

El valor del factor de fricción se lo obtuvo a través de la Tabla 8:

| Diámetro<br>nominal       | 1/2"  | 3/4"  | 1"    | 1 1/2" | 2"    |
|---------------------------|-------|-------|-------|--------|-------|
| Factor de<br>fricción (f) | 0,027 | 0,025 | 0,023 | 0,022  | 0,021 |

Figura 8. Factores de fricción de tuberías comerciales de acero

Fuente: CRANE. Elaboración propia.

Finalmente, se obtiene que la caída de presión es de:

$$\Delta P_t = 407,03 \, [Pa]$$

#### 2.3. Diseño Mecánico

# 2.3.1. Criterios para la selección de materiales utilizados en la fabricación de intercambiadores de calor

La selección de los materiales para la fabricación del intercambiador de calor, requiere un conocimiento de los procesos de manufactura; donde la soldabilidad es una de las propiedades más importantes. Una serie de factores son considerados al momento de la selección de los materiales en

intercambiadores de tubo y coraza. Sin embargo, criterios similares son considerados para otro tipo de intercambiadores.

A continuación se exponen los criterios fundamentales:

- Compatibilidad de los materiales con los fluidos que circulan por el lado de los tubos y de la coraza.
- Comportamiento de los materiales frente a la corrosión.
- Propiedades mecánicas del material tales como: resistencia a la tracción, resistencia a la fatiga, y límite elástico.
- Conductividad térmica, capacidad calorífica, densidad y expansión térmica.
- Capacidad del material para ser laminado, soldado o maquinado.
- Costo mínimo del material.
- Requisitos de instalación y mantenimiento.

# 2.3.2. Materiales utilizados en el diseño de intercambiadores de calor de tubo y coraza

A continuación, se describen los materiales utilizados con mayor frecuencia en el diseño de estos intercambiadores. (Marín & Guillén, 2013)

- Aceros al carbono. Son mayormente utilizados para las carcasas, cabezales y deflectores, debido a las características de dureza que posee. Su resistencia y dureza aumentan con el contenido de carbono, donde los más utilizados son aquellos cuyo contenido de este elemento se encuentra entre un 0,6 al 2%. Son aconsejables usarlos siempre y cuando no superen temperaturas de 510 °C. Además de esto, desde el punto de vista económico, es la mejor elección debido a que son los menos costosos, en comparación con los demás materiales.
- Aceros inoxidables. Poseen excelentes propiedades mecánicas y son altamente resistentes a la corrosión. El acero inoxidable austenítico es el más utilizado para la fabricación de intercambiadores, además de que es fácilmente soldable. Pero el precio es 5 veces superior al precio del acero al carbono.

- Aceros con cromo y molibdeno. Su costo es superior que el de un acero al carbono, pero menor que el de uno inoxidable. Recomendables para trabajar entre 450 y 650 °C.
- Cobre. Posee una alta conductividad térmica, pero su resistencia a la tracción es menor que la de los aceros al carbono.
- Aleaciones cobre-níquel. Estos elementos están aleados con el fin de mejorar la resistencia a la corrosión, sin embargo la conductividad esta aleación, hace disminuir notablemente la conductividad del cobre.
- Aluminio. Tienen gran resistencia a la corrosión y excelente conductividad térmica.
- Acero A516 GR 70. Son aceros para recipientes a presión resistentes al calor, que se caracterizan por tener una buena soldabilidad. Se utilizan comúnmente para la fabricación de calderas, recipientes a presión y tuberías de transporte de líquidos calientes. (CASIDER, 1992).

En la Tabla 10 se presenta una comparación de las propiedades más importantes de estos materiales.

Tabla 10. Comparación de propiedades de los distintos materiales

| Material                    | Conductividad térmica $(W/m^C)$ | Densidad $(kg/m^2)$ | Calor específico<br>(J/kg·°C) |
|-----------------------------|---------------------------------|---------------------|-------------------------------|
| Acero al carbono: AISI 1042 | 50                              | 7840                | 434                           |
| Acero inoxidable: AISI 304  | 14,9                            | 7900                | 477                           |
| Acero inoxidable: AISI 306  | 13,4                            | 8238                | 468                           |
| Acero: 9 Cr - 1 Mo          | 26                              | 7780                |                               |
| Cobre                       | 400                             | 8933                | 385                           |
| Aluminio                    | 237                             | 2700                | 903                           |
| ASTM A516 GR 70             |                                 |                     |                               |

Fuente: Marín & Guillén, 2013. Elaboración propia.

### 2.3.3. Metodología para el diseño mecánico

Para el desarrollo de esta metodología, se deben considerar principalmente los fluidos de trabajo involucrados, que son agua y vapor de agua; los flujos de cada uno, así como los rangos de operación de temperatura y de presión. Además, se debe incluir la corrosión permisible, los esfuerzos permisibles de los materiales utilizados, y el espacio disponible para el intercambiador.

A continuación se resume la metodología general aplicada para el diseño mecánico del intercambiador de calor.

- Revisión bibliográfica. En esta revisión se incluyeron normas, manuales y códigos para el desarrollo del diseño y fabricación de intercambiadores de calor de tubo y coraza.
- Basado en la bibliografía revisada, y con el fin de sintetizar el proceso de diseño mecánico, se ha desarrollado un programa en Excel que permita dimensionar los componentes del equipo, en función de los requerimientos del diseño térmico y a la selección correcta de materiales. En el programa se han incluido factores de corrosión, ensuciamiento de los fluidos de trabajo, propiedades físicas y mecánicas y costo de los materiales.

Tal como se mostró previamente para el proceso de diseño mecánico del intercambiador de calor, se ha referido a la norma de la Asociación de Fabricantes de Intercambiadores Tubulares (TEMA: *Tubular Exchanger Manufactures Association*) (TEMA, 1999), al Código de la Sociedad Americana de Ingenieros Mecánicos (ASME: *American Society of Mechanical Engineering*), específicamente a la Sección VIII (Recipientes a presión) (ASME, 2007), y al Manual de Diseño de Intercambiadores de Calor (Hewitt, 2000). Además de información específica tomada de artículos y trabajos de investigación.

### 2.3.4. Condiciones de operación

Estas condiciones del intercambiador son básicamente los rangos de temperaturas de operación máximas y mínimas que están entre  $43.5\,^{\circ}C$  a  $57.5\,^{\circ}C$  para el agua, recorriendo por el lado de los tubos en un solo paso, y vapor condensándose a  $100.5\,^{\circ}C$  en la coraza.

#### 2.3.5. Definición del valor del diámetro de la coraza

Se debe definir el valor del diámetro de la coraza según el arreglo y número de tubos. Para esto, se recurrió al manual HEDH donde se especifican diámetros nominales de coraza, con sus respectivos espesores de acuerdo al tipo de coraza y al material utilizado. Estos valores se detallan en la Tabla 11. Se escoge el tipo de espejos fijos, ya que comúnmente éstos se extienden más allá de la coraza y sirven como bridas, que son sujetadas a los cabezales del lado de los tubos con ayuda de pernos (Figura 9). Esto implica que los materiales de la coraza y de los espejos sean los mismos, facilitando en gran medida la construcción del equipo al poder ser soldados entre sí.

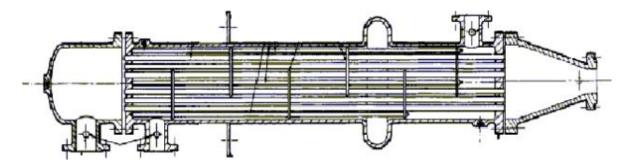



Figura 9. Intercambiador de calor de espejos fijos

Fuente: Mahuli González, 2011.

Teniendo en claro esto, y usando la Tabla 11 como referencia (Llangarí & Solís, 2012), se decide que el diámetro interior de la coraza sea de:

$$D_{ic} = 170 [mm]$$

# 2.3.6. Definición del tipo de arreglo de tubos

Son 14 tubos en un arreglo cuadrado rotado de 45°. Se escoge este tipo de arreglo, porque el flujo de vapor es prácticamente laminar, logrando conseguir que la caída de presión sea baja en la coraza y hasta pueda considerarse despreciable en comparación con la caída dentro de los tubos. Además este arreglo es usado debido a que el vapor produce ensuciamiento del lado de la coraza.

Tabla 11. Dimensiones de coraza v diámetro interno de coraza para espeio fiio

| Diámetro                | Diámetro                | Espesor          | Espesor de pared de la coraza $(mm)$ |            |                  | Diámetro interno de la coraza<br>(mm) |            |  |
|-------------------------|-------------------------|------------------|--------------------------------------|------------|------------------|---------------------------------------|------------|--|
| nominal de la<br>coraza | externo de la<br>coraza | Acero al carbono |                                      | Acero      | Acero al carbono |                                       | Acero      |  |
| (mm)                    | (mm)                    | Tubo<br>soldado  | Coraza<br>rolada                     | inoxidable | Tubo soldado     | Coraza<br>rolada                      | inoxidable |  |
| 150                     | 168                     | 4,5              |                                      | 4          | 159              |                                       | 160        |  |
| 200                     | 219                     | 5,9              |                                      | 4          | 207,2            |                                       | 211        |  |
| 250                     | 273                     | 6,3              |                                      | 4          | 260,4            |                                       | 265        |  |
| 300                     | 324                     | 7,1              |                                      | 4          | 309,8            |                                       | 316        |  |
| 350                     | 355                     | 8                | 6                                    | 4          | 339              | 343                                   | 347        |  |
| 400                     | 406                     | 8,8              | 6                                    | 4          | 388,4            | 394                                   | 398        |  |
| 500                     | 508                     |                  | 6                                    | 4          |                  | 496                                   | 500        |  |
| 600                     | 600                     |                  | 6                                    | 5          |                  | 588                                   | 590        |  |
| 700                     | 700                     |                  | 8                                    | 5          |                  | 684                                   | 690        |  |
| 800                     | 800                     |                  | 8                                    | 5          |                  | 784                                   | 790        |  |
| 900                     | 900                     |                  | 10                                   | 6          |                  | 880                                   | 888        |  |
| 1000                    | 1000                    |                  | 10                                   | 6          |                  | 980                                   | 988        |  |
| 1100                    | 1100                    |                  | 12                                   | 7          |                  | 1076                                  | 1086       |  |
| 1200                    | 1200                    |                  | 12                                   | 7          |                  | 1176                                  | 1186       |  |

Fuente: Hewitt, 2000. Elaboración propia. Luego de esto, se calcula el paso del fluido entre tubos  $L_{tp}$ , multiplicando 1,5 veces el diámetro exterior del tubo, siendo éste el valor máximo permitido de separación según HEDB (Hewitt, 2000). Este valor es de:

$$L_{tp} = 31,95 [mm]$$

El claro que hay entre la coraza y el arreglo de tubos  $L_{bb}$ , de determina con ayuda de la Tabla 11, donde se relacionan el diámetro interno de la coraza  $D_{ic}$ , y el tipo de espejo, que para este caso es de espejo fijo. El valor de  $L_{bb}$ , con un diámetro interno  $D_{ic}=170\ mm$  es de aproximadamente:

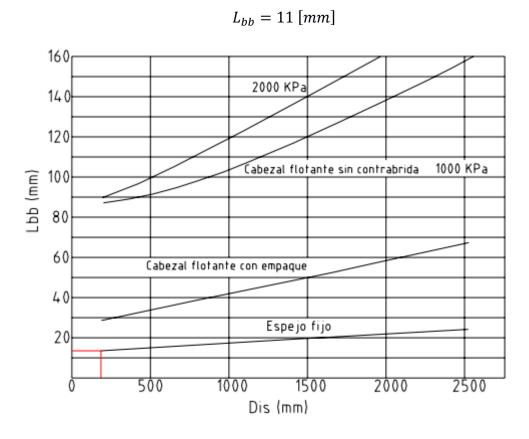



Figura 10. Espacio diametral interior de la coraza-haz de tubos Lbb

Fuente: Flores, 2007. Taborek, 1992.

Tabla 12. Número de pasos en los tubos

| Diámetro interno de la coraza $(\mathcal{D}_{s})$ $(mm)$ | Número de pasos en los tubos<br>(N <sub>tp,máx</sub> ) |
|----------------------------------------------------------|--------------------------------------------------------|
| 200                                                      | 2                                                      |
| 400 – 800                                                | 4-6                                                    |
| 800 — 1300                                               | 6 – 8                                                  |
| >1300                                                    | 8 – 10                                                 |

Fuente: Flores, 2007. Hewitt, 2000.

En la Tabla 12, se ve que según el diámetro interno de la coraza establecido, el mayor número de pasos posibles va a ser de 2. Como se analizó en la parte del diseño térmico, el intercambiador tiene únicamente 1 paso por el lado de los tubos (ver Figura 11).

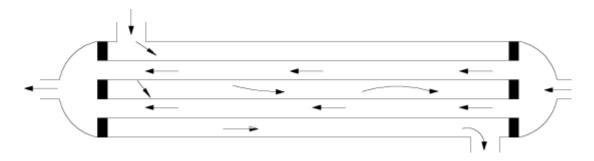



Figura 11. Intercambiador de calor de un solo paso por los tubos y por la coraza

Fuente: Jaramillo O., 2007.

Este valor se lo calcula de acuerdo a las siguientes ecuaciones:

$$D_{otl} = D_{ic} - L_{bb} (20)$$

$$D_{ctl} = D_{otl} - D_{et} (21)$$

Siendo:

- $D_{otl}$ , el diámetro exterior del arreglo de tubos. [m]
- $D_{ctl}$ , el diámetro del arreglo de tubos. [m]

Utilizando los valores de  $D_{otl}$ ,  $L_{bb}$  y el valor de la constante  $\mathcal{C}_1=1$  para un arreglo de tubos cuadrados rotados a  $45^\circ$ , se calcula el número total de tubos  $N_{tt}$ :

$$N_{tt} = \frac{0.78 \cdot D_{ctl}^{2}}{C_{1} \cdot L_{tp}^{2}} \tag{22}$$

$$N_{tt} = 14 [tubos]$$

#### 2.3.7. Selección del material de la coraza

El acero que generalmente se utiliza para la construcción de recipientes a presión es el *ASTM A*516 *GR* 70. Recurriendo al código (ASME, 2007) (ver ANEXOS), se encontró que los valores del límite de proporcionalidad y resistencia última son los siguientes:

Tabla 13. Propiedades del acero al carbono ASTM A516 GR 70

| SA-A516 GR 70 (K02700)    |           |  |  |
|---------------------------|-----------|--|--|
| Esfuerzo de fluencia (Sy) | 38000 psi |  |  |
| Resistencia última        | 70000 psi |  |  |

Elaboración propia.

El material usado para las patas de la coraza es un acero estructural *ASTM A*36, que es muy común en las fabricaciones industriales.

En primer lugar, se debe determinar el esfuerzo permisible a utilizarse para el cálculo de espesores, el cual se ha definido de la siguiente manera considerando que la temperatura de la superficie del recipiente se encuentra entre  $-29 \,^{\circ}C$  y  $343 \,^{\circ}C$ . (ASME, 2007)

$$S = \frac{S_y}{n_s} \tag{23}$$

### Donde:

- S, es el esfuerzo permisible. [Pa]
- $S_y$ , es el esfuerzo de fluencia. [Pa]
- $n_s$ , factor de seguridad asumido.

Con un factor de seguridad de  $n_{\rm S}=$  2,5 , se obtiene un valor de esfuerzo permisible igual a:

$$S = 104.8 [MPa]$$

Tabla 14. Valores para el cálculo del espesor de pared de la coraza

| Presión de operación del                                                | 0,1034    | MPa                       |
|-------------------------------------------------------------------------|-----------|---------------------------|
| intercambiador                                                          | 103400    | Pascales                  |
| Presión de diseño (Presión de la                                        | 0,75      | MPa                       |
| caldera) (P)                                                            | 750000    | Pascales                  |
| Esfuerzo de fluencia (Sy)                                               | 38000     | Psi                       |
| Estueizo de Ituencia (39)                                               | 262000880 | Pascales                  |
| Eficiencia de la junta de la<br>soldadura (No examinadas) ( <i>Ef</i> ) | 0,7       | ASME<br>APÉNDICE<br>UW-11 |
| Desgaste por corrosión: 1/16                                            | 0,063     | pulgadas                  |
| pulgadas (suficiente para<br>recipientes y tuberías)                    | 1,5875    | mm                        |
| Be die interior de la compa dBi et                                      | 85,5      | mm                        |
| Radio interior de la coraza ( <i>Ri,s</i> )                             | 0,0855    | m                         |
| Esfuerzo permisible (\$)                                                | 104800352 | Pascales                  |
| Factor de seguridad                                                     | 2,5       | ASUMIDO                   |

Elaboración propia.

Las corazas son consideradas como cilindros de pared delgada en el análisis de espesores, y la fórmula para obtener este valor es:

$$t_{coraza} = \frac{P \cdot R_{ic}}{S \cdot E - 0.6P} \quad [m]$$
 (24)

#### Donde:

- P, es la presión de diseño. [Pa]
- $R_{i,c}$ , es el radio interno de la coraza. [m]
- $E_f$ , es la eficiencia de la junta.

De esta manera se obtiene que:

$$t_{coraza} = 3 [mm]$$

Ahora, para un diámetro interior de  $170 \, mm$  (ver Tabla 10), el valor del espesor para un tubo de acero al carbono es aproximadamente  $5 \, mm$ . Se trabajará con este valor para el espesor de la coraza, basándose en los valores tabulados para diámetros cercanos al escogido en este proyecto.

#### 2.3.8. Selección del tubo

El diámetro y espesor de los tubos fueron revisados en el diseño térmico. Los tubos utilizados en intercambiadores de calor no deben llevar costura, donde el material utilizado debe ser el acero *ASTM A*53. Se especifica así, que el tubo de acero debe ser de Ø1/2" *CÉDULA* 40. Propiedades y características de esta material son presentadas en la Tabla 15:

Tabla 15. Características de tubería sin costura cédula 40 ASTM A53

| NORMA                       | ASTM A53 Grαdo 8,<br>utilizado para<br>conducción de fluidos |
|-----------------------------|--------------------------------------------------------------|
| RECUBRIMIENTO               | Negro o Galvanizado                                          |
| LARGO NORMAL                | 6,00m                                                        |
| PRESIÓN DE<br>PRUEBA (1/2") | 700 lb/pulg²                                                 |
| PESO                        | 1,27 kg/m                                                    |

Fuente: DIPAC-Productos de Acero. Elaboración propia.

## 2.3.9. Diseño de los espejos

El espejo es utilizado como brida proporcionando rigidez al arreglo de tubos y a la coraza, además de ofrecer soporte a la unión de estos con los cabezales de entrada y de salida. Se logra una buena aproximación modelando al espejo, como una placa plana circular de extremos fijos y que están sometidos a carga uniforme. (Adum, 2000) Se calcula con la siguiente fórmula:

$$t_{espejo} = \sqrt{\frac{3P \cdot D_{ec}^2}{16S}} \quad [mm] \tag{25}$$

$$t_{espejo} = 7 [mm]$$

El material usado para los espejos es el mismo que el de la coraza, *ASTM A*516 *GR* 70, donde los tubos serán soldados a estos. El espejo cumplirá también la función de brida al ser empernado con la tapa o cabeza del intercambiador.

## 2.3.10. Cálculo de la longitud de la coraza

Este valor se lo determina usando a siguiente expresión:

$$L_{coraza} = L_t - 2 \cdot (t_{espejo} + p_{canal}) \quad [mm]$$
 (26)

Donde:

•  $p_{canal}$ , es la profundidad del canal de los espejos. [mm]

Este valor se lo calculó dividiendo el espesor de los espejos para 2. Se tiene entonces que:

$$p_{canal} = 3,1 [mm]$$

De esta manera la longitud de la coraza es de:

$$L_{coraza} = 1657,3 [mm]$$

#### 2.3.11. Diseño de los desviadores

Sirven para dirigir el flujo en la coraza a través del arreglo de tubos (Flores, 2007). Se selecciona el tipo de deflectores simples, debido a su fácil fabricación e instalación. En la figura 12 se muestra un gráfico de este tipo de arreglo:

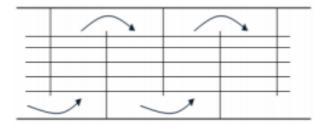



Figura 12. Desviador segmentado simple

Fuente: Flores, 2007.

Rafael Flores (2007), sostiene que el corte óptimo recomendable de los desviadores  $B_c$  es del 20 al 25%, con el cual se obtiene un mayor coeficiente de transferencia de calor, siendo así el más apropiado el deflector simple con un corte horizontal del 25%. Para el dimensionamiento de los mismos se incluyen los siguientes valores:

• Claro mínimo que hay entre la coraza y los desviadores  $L_{sb}$ , determinado con la siguiente fórmula:

$$L_{sb} = 1.6 + 0.004 \cdot D_{ic}$$
 (27)  
 $L_{sb} = 3.78 [mm]$ 

• Claro mínimo que hay entre la coraza y los tubos  $L_{tb}$ . Esta dimensión está en función del diámetro exterior de los tubos  $D_{et}$ , y la máxima distancia no soportada de estos  $L_{b,m\acute{a}x}$ . Según la figura 13, se escoge el valor de  $L_{tb}$ .

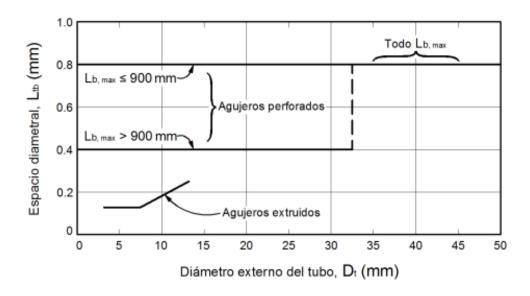



Figura 13. Espacio diametral tubo-agujero del deflector Ltb

Fuente: Llangarí & Solís, 2012. Hewitt, 2000.

El valor de  $L_{b,m\acute{a}x}$ , está a su vez en función del diámetro externo del tubo y del grupo de material al que pertenece. Esta clasificación de materiales se detalla en la tabla 18, donde se muestran los grupos de materiales tabulados por TEMA según el intervalo de diámetros, con la respectiva ecuación aplicable. Para este caso, el material del tubo se encuentra en el grupo A, el cual incluye al acero y sus aleaciones. (TEMA, 1999)

Con un valor de  $D_{et}=21{,}3\ mm$  y siendo el material del tubo acero al carbono cédula 40, se tiene que:

$$L_{b,m\acute{a}x} = 50 \cdot D_{et} + 532 \tag{28}$$

Tabla 16. Valores de Lb, Max según el grupo de material y diámetro externo de tubo

| Materiales del Grupo A<br>(Acero y aleaciones de acero) |                                       |  |
|---------------------------------------------------------|---------------------------------------|--|
| $D_{st} = 19 - 51 \ mm$                                 | L <sub>b,máx</sub>                    |  |
| D <sub>st</sub> = 19 = 31 nm                            | 50 · D <sub>et</sub> + 532            |  |
| 2 ( 10                                                  | $L_{b,m\acute{a}x}$                   |  |
| $D_{et} = 6 - 19 \ mm$                                  | 68 · D <sub>st</sub> + 228            |  |
|                                                         | es del Grupo B<br>e cobre y aluminio) |  |
|                                                         | L <sub>b,máx</sub>                    |  |
| $D_{et} = 19 - 51 \ mm$                                 | 46 · D <sub>st</sub> + 436            |  |
|                                                         | L <sub>b,máx</sub>                    |  |
| $D_{st} = 6 - 19 \ mm$                                  | 60 · D <sub>st</sub> + 177            |  |

Fuente: Llangarí & Solís, 2012. TEMA, 1999.

Elaboración propia.

Obteniendo un valor  $L_{b,m\acute{a}x}=1597~mm$ . Conociendo que los agujeros son perforados, se toma un valor de  $L_{tb}=0.6~mm$  (Tabla 7). En la figura 14 se muestra de manera más clara en un esquema los valores calculados:

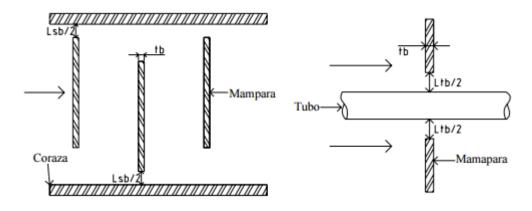



Figura 14. Claros entre los desviadores con la coraza y los tubos

Fuente: Flores, 2007.

• El diámetro de los desviadores  $D_b$ , es calculado con el diámetro interno de la coraza  $D_{ic}$  y el claro entre la coraza y los desviadores  $L_{sb}$ , según la siguiente expresión:

$$D_b = D_{ic} - L_{sb}$$
 (29)  
 $D_b = 167,22 [mm]$ 

• El corte de los desviadores  $C_b$ , se calcula con el diámetro interno de la coraza  $D_{ic}$  y el porcentaje de corte  $B_c$  que fue del 25% de la siguiente manera:

$$C_b = \frac{B_c \cdot D_{ic}}{100}$$

$$C_b = 42,75 [mm]$$
(30)

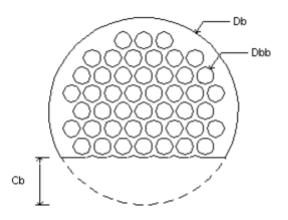



Figura 15. Desviador simple con corte horizontal

Fuente: Flores, 2007.

 El diámetro de los barrenos de los desviadores se determina con la siguiente expresión:

$$D_{bb} = D_{et} + L_{tb}$$

$$D_{bb} = 21.9 [mm]$$
(31)

• La longitud de los tubos que hay entre espejos fijos  $L_{ti}$ :

$$L_{ti} = L_t - 2t_{espejo}$$
 (32)  
 $L_{ti} = 1662,7 [mm]$ 

- Distancia de separación entre desviadores centrales. Una buena distribución del flujo y un correcto dimensionamiento de la ventana del desviador, no permite que el espacio entre estos sea  $L_{bc,min}=0.2 \cdot D_{ic}$  ni exceda el valor del diámetro interno de la coraza  $L_{bc,máx}=D_{ic}$ . Para este proyecto se ha escogido un valor de  $L_{bc}=0.85 \cdot D_i c$  con el cual se obtiene un adecuado paso del flujo a través de los desviadores.
- Número de desviadores. Se determina de la siguiente manera:

$$N_b = \frac{L_{ti}}{L_{bc}} - 1$$

$$N_b = 9.23 \approx 10 \, [deflectores]$$

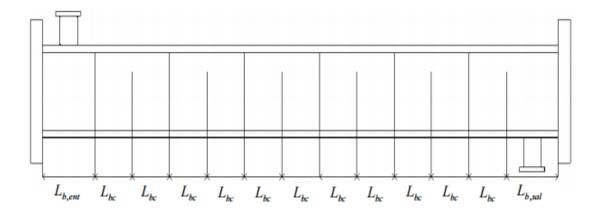



Figura 16. Esquema de la distancia de los desviadores de entrada, salida y centrales

Fuente: Flores, 2007.

 La distancia de los desviadores de entrada y salida son calculados con ayuda de la siguiente expresión:

$$L_{b,ent} = L_{b,sal} = 0.5 \cdot [L_{ti} - L_{bc} \cdot (N_b - 1)]$$

$$L_{b,ent} = L_{b,sal} = 181 \text{ [mm]}$$
(34)

#### 2.3.12. Diseño de las cabezas

Estas cabezas son básicamente la entrada y salida del agua que circula por dentro de los tubos. Entre los distintos tipos de cabezales que pueden fabricarse, se decide utilizar los cabezales tipo "B" o el tipo "M", que consisten de un canal con tapa y brida. Son apropiados para intercambiadores de este tipo, debido a su fácil fabricación, permitiendo una reducción en el costo total del equipo.

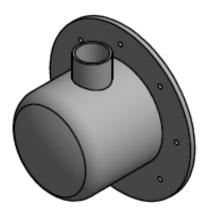



Figura 17. Ilustración del conjunto tapa – brida

Elaboración propia.

Está formado por el canal que es un cilindro hueco y por una tapa elipsoidal, adecuada para diámetros pequeños de coraza menores a 600 mm. Estos dos elementos se unen por soldadura en un extremo, mientras que el otro se une a la brida, permitiendo el ensamble de la cabeza con el espejo fijo por medio de pernos o tornillos. Utilizadas también en aplicaciones de bajas presiones.

Para calcular el espesor del canal  $t_{canal}$ , se recurre al uso de la siguiente ecuación:

$$t_{canal} = \frac{P_{td} \cdot R_{ec}}{S \cdot E_c - 0.6 \cdot P_{td}} + C_{pc} \quad [m]$$
 (34)

Donde:

- $P_{td}$ , es la presión de diseño de los tubos. [Pa]
- $R_{ec}$ , el radio exterior del canal. [m]

- S, es el esfuerzo del material del canal. [Pa]
- $E_c$ , eficiencia de la junta del canal, que es 1 por ser tubo sin costura.
- $C_{nc}$ , corrosión permitida del canal. [m]

En este caso, la presión de diseño será igual a la presión de la bomba de agua, ya que es la presión a la que el agua será enviada por los tubos. Este valor se lo obtiene de las especificaciones de la bomba (ver ANEXOS), cuyo valor es de:

$$P_{td} = 100 \, Psi = 689476 \, [Pa]$$

Se asume que el radio exterior del canal es igual al radio interior de la coraza:

$$R_{e,canal} = 0.085 [m]$$

El valor del esfuerzo del material del canal, es el mismo valor del esfuerzo utilizado para el cálculo del espesor de la coraza:

$$S = 119.1 [MPa]$$

Para ver la corrosión permitida, generalmente un espesor de 1/16" es suficiente para recipientes y tuberías (ASME, 2007). Finalmente, se tiene que el espesor del canal es igual a:

$$t_{canal} = 2,09 \ mm \approx 3 \ mm$$

Ahora, se calcula el espesor de la tapa semielíptica, mediante la siguiente expresión:

$$t_{tapa} = \frac{P_{td} \cdot D_{ec}}{2 \cdot S \cdot E_{cc} - 0.2 \cdot P_{td}} + C_{pcc} \quad [m]$$
 (35)

Donde:

- $D_{ec}$ , es el diámetro exterior de la tapa elipsoidal. [m]
- $E_{cc}$ , es la eficiencia de la junta de la tapa, que es 1 por ser pieza fundida.

•  $C_{pcc}$ , corrosión permitida de la tapa. [m]

Se asume que el diámetro exterior del canal es igual al diámetro exterior de la coraza:

$$D_{e,canal} = 180 [mm]$$

Por lo tanto, el espesor de la tapa da un valor de:

$$t_{tapa} = 2,11 \ mm \approx 3 \ mm$$

Teniendo estos valores, se puede ahora encontrar las dimensiones de las cabezas, que son básicamente la longitud del canal y de la tapa, así como la profundidad de las tapas. Estos cálculos se realizaron de acuerdo a las recomendaciones de ASME por medio se las siguientes expresiones, cuyas medidas están dadas en milímetros [mm]:

$$d_{cc} = 0.8 \cdot D_{ec} \tag{36}$$

$$R_{cc} = 0.9 \cdot D_{ec} \tag{37}$$

$$r_{cc} = 0.173 \cdot D_{ec} \tag{38}$$

$$h_1 = 0.25 \cdot D_{ec} \tag{39}$$

$$h_2 = 0.33 \cdot h_1 \tag{40}$$

$$h_{cc} = h_1 + h_2 (41)$$

Siendo:

- D<sub>ec</sub>, el diámetro exterior de la tapa elipsoidal.
- d<sub>cc</sub>, el diámetro pequeño de la tapa elipsoidal.
- *R<sub>cc</sub>*, el radio exterior de la tapa.
- $r_{cc}$ , radio de curvatura de la tapa.
- $h_1$ , es la profundidad de la tapa.
- $h_2$ , la extensión de la tapa.
- h<sub>cc</sub>, es la longitud total de la tapa.

Para conseguir una buena distribución del fluido de trabajo por el lado de los tubos, se necesita determinar la longitud total de la cabeza. Este valor está relacionado con el diámetro externo de la coraza:

$$H_c = D_{ec} (42)$$

Donde:

•  $H_c$ , es la longitud total del cabezal. [mm]

Para determinar la longitud del canal  $h_c$ , hacemos uso de la siguiente expresión:

$$h_c = H_c - h_{cc} \tag{43}$$

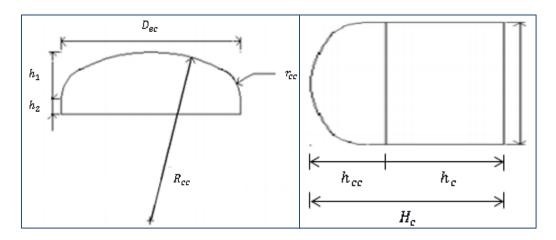



Figura 18. De izquierda a derecha: Dimensiones de la tapa elipsoidal.

Dimensiones del cabezal

Fuente: Flores, 2007. Elaboración propia.

La figura 18 detallan cada una de las dimensiones del conjunto tapa – cabeza, cuyos valores calculados son mostrados a continuación:

$$D_{ec} = 180 [mm]$$

$$d_{cc} = 144 [mm]$$

$$R_{cc} = 162 \, [mm]$$

$$r_{cc} = 31,14 \ [mm]$$
 $h_1 = 45 \ [mm]$ 
 $h_2 = 14,85 \ [mm]$ 
 $h_{cc} = 59 \ [mm]$ 
 $H_c = 180 \ [mm]$ 
 $h_c = 120,15 \ [mm]$ 

#### 2.3.13. Diseño de los sellos

El diseño de estos sellos se refiere a la selección del empaque que debe ser colocado entre la brida de la cabeza y la brida que hace de espejo. Se selecciona empaques Chesterton, que son juntas para intercambiadores de calor. Este diseño incluye además la selección del tipo de pernos que deben ser colocados para asegurar la estanqueidad. Según el diámetro de la brida colocada, se va a requerir una secuencia de apriete de 8 pernos de  $\emptyset 8 \, mm \, \times 1 \, \frac{1}{2}$ " de acero al carbono, con tuerca y anillo plano.

# 2.3.14. Diseño de las conexiones de agua y vapor

La línea de agua que llega al lugar donde sea colocado el intercambiador de tubo y coraza tiene un diámetro nominal de Ø2". Cuando el diámetro de alguna conexión es menor a Ø3", se suelen utilizar uniones roscadas para el montaje de estas tuberías. Por lo tanto, la entrada y salida del agua tendrán una rosca de Ø2" NPT. De manera similar, la línea de vapor que llega al equipo tiene un diámetro nominal de Ø2".

### 2.3.15. Selección del tipo de trampa de vapor

Se selecciona este tipo de trampa de vapor debido a que descargan el condensado de manera intermitente y tienen un mayor tiempo de vida útil debido a su mecanismo de libre flotación.

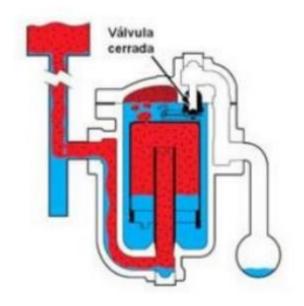



Figura 19. Trampa de vapor de balde invertido

Fuente: Quiminet, 2008.

# 2.3.16. Selección del tipo de reguladora

Se selecciona este tipo de reguladora para eliminar la necesidad de tener por separados una reguladora de presión y otra de temperatura. El piloto de temperatura posee un marcador calibrado para un ajuste más preciso de la misma, y está disponible con una variedad de bombillas de detección de relleno sólidas.

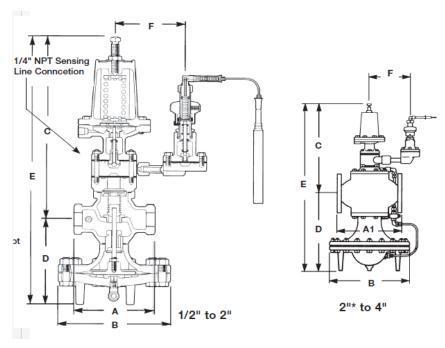



Figura 20. Reguladora combinada de presión/temperatura 1/2" a 4" 25 PT

Fuente: Nestlé, 2015.

# **CAPÍTULO 3**

# 3. RESULTADOS

# 3.1. Resultados del diseño térmico para precalentamiento de cobertura blanca

Las Tablas 17 y 18 muestran las condiciones a las que se encuentran los fluidos involucrados del proceso:

Tabla 17. Condiciones básicas del agua de proceso

| (Agua)                                              | VALOR  | UNIDAD                           |
|-----------------------------------------------------|--------|----------------------------------|
| Temperatura media $(T_{media})$                     | 50,5   | °C                               |
| Calor específico ( $oldsymbol{\mathcal{C}}_{p,l}$ ) | 4200   | $\frac{J}{kg \cdot {}^{\circ}C}$ |
| Densidad $(oldsymbol{d_l})$                         | 988    | $\frac{kg}{m^3}$                 |
| Viscosidad dinámica $(oldsymbol{u_l})$              | 0,0008 | $\frac{N \cdot s}{m^2}$          |
| Conductividad térmica $(m{k_l})$                    | 0,59   | $\frac{W}{m \cdot {}^{\circ}C}$  |

Elaboración propia.

Tabla 18. Condiciones básicas del vapor de proceso

| (Vapor)                                             | VALOR      | UNIDAD                           |
|-----------------------------------------------------|------------|----------------------------------|
| Temperatura media ( $T_{media}$ )                   | 100,75     | °C                               |
| Calor específico ( $oldsymbol{\mathcal{C}}_{p,l}$ ) | 2043       | $\frac{J}{kg \cdot {}^{\circ}C}$ |
| Densidad $(oldsymbol{d_l})$                         | 0,952      | $\frac{kg}{m^3}$                 |
| Viscosidad dinámica $(oldsymbol{u_l})$              | 0,00001239 | $\frac{N \cdot s}{m^2}$          |
| Conductividad térmica $(k_l)$                       | 0,02559    | $\frac{W}{m \cdot {}^{\circ}C}$  |
| Entalpía de vaporización $(m{h}_{fg})$              | 2256000    | $\frac{J}{kg \cdot {}^{\circ}C}$ |

Elaboración propia.

Con la metodología de diseño propuesta para la realización del diseño térmico, se pudieron definir los pasos a seguir para que los valores arrojados por el programa, estén acorde a las condiciones de diseño mencionadas en primera instancia. A continuación se detalla las condiciones iniciales principales que fueron requisito para dar inicio al procedimiento descrito:

Los flujos másicos de agua y de vapor requeridos para el proceso de precalentamiento son:

Flujo másico de agua = 5442,3 [kg/h]

Flujo másico de vapor = 141,2 [kg/h]

La tubería escogida, tiene un diámetro nominal de  $\frac{1}{2}$ " cuyos diámetros exterior e interior, al igual que su espesor son de:

 $Diámetro\ externo\ del\ tubo=21,3\ [mm]$ 

Diámetro interno del tubo = 15,8 [mm]

Espesor de tubería = 2,77 [mm]

El número de tubos asumido para un arreglo cuadrado rotado a 45° fue de:

$$n = 14$$
 [tubos]

El valor de Reynolds al describir un flujo turbulento ( $R_e \geq 10000$ ) dio un valor de:

$$R_e = 11000$$

Los valores de Prandtl y Nusselt evaluados a la temperatura media del agua entre la entrada y la salida fueron de:

$$Pr = 3,525$$

$$Nus = 59,34$$

Se obtuvieron los valores de los coeficientes de transferencia interno y externo, tanto para convección forzada en líquidos como para vapor condensado respectivamente:

$$h_i = 2215,71 \left[ \frac{W}{m^2 \cdot {}^{\circ}C} \right]$$

$$h_o = 6409 \left[ \frac{W}{m^2 \cdot {}^{\circ}C} \right]$$

El flujo de calor calculado que circula a través de la pared del tubo tuvo fue

de: 
$$q' = 76329 [W]$$

Con una temperatura superficial:

$$T_{\rm s} = 84,95 \, [^{\circ}C]$$

Habiendo obtenido estos resultados, el valor del coeficiente global de transferencia de calor para un intercambiador de tubo y coraza del tipo vapor condensándose – agua fue de:

$$U = 1528,32 \left[ \frac{W}{m^2 \cdot {}^{\circ}C} \right]$$

Conociendo este coeficiente global, el cálculo del área fue determinado:

$$A_t = 1.17 [m^2]$$

Finalmente, se obtiene el valor de la longitud de los tubos:

$$L_{tubo} = 1675 [mm]$$

La caída de presión del lado de los tubos, asumiendo que el flujo se dividía uniformemente por cada uno de estos y que era completamente desarrollado, dio un valor de:

$$\Delta P_{tubos} = 407,03 \ [Pa]$$

### 3.2. Resultados del diseño mecánico para precalentamiento de cobertura blanca

#### 3.2.1. Dimensionamiento de la coraza

Basados en la bibliografía revisada, y la metodología propuesta, se introdujeron todos los componentes relevantes en el diseño mecánico en un programa de Excel. A través de la prueba de valores y deducciones lógicas en la construcción de un intercambiador de calor de tubo y coraza, se obtuvieron los siguientes valores:

Diámetro exterior de la coraza = 180 [mm]

Diámetro interior de la coraza = 170 [mm]

Longitud de la coraza = 1657,3 [mm]

El material seleccionado para la coraza fue:

Con un esfuerzo de fluencia y una resistencia última de:

$$S_{v} = 262 [MPa]$$

$$S_{ult} = 482,6 \, [MPa]$$

El valor del esfuerzo permisible calculado con un factor de seguridad de n=2,2 fue de:

$$S_{permisible} = 119,1 [MPa]$$

El espesor requerido de pared para la coraza fue de:

$$t_{coraza} = 5 [mm]$$

#### 3.2.2. Dimensionamiento de los espejos

Para el diseño de los espejos, que a su vez sirven como brida, el espesor mínimo requerido fue de:

$$t_{espeio} = 7 [mm]$$

Cuyo material fue el mismo que el de la coraza: *SAE A*516 *GR* 70. La profundidad de los canales de los espejos fue de:

$$p_{ts} = 3.1 [mm]$$

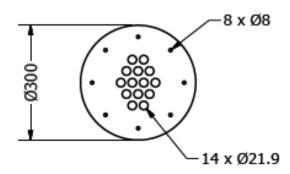



Figura 21. Dimensiones de los espejos para cobertura blanca

Elaboración propia.

#### 3.2.3. Dimensionamiento de los desviadores

El tipo de desviador seleccionado fue el que tiene un 25% de porcentaje de corte con un valor de corte  $C_b = 42,5 \ [mm]$ . Se determinaron así las dimensiones para obtener una caída óptima de presión y una adecuada transferencia de calor entre ambos fluidos de trabajo.

La máxima distancia no soportada por los tubos, fue determinada basándose en las características del material de los tubos:

$$L_{h,max} = 1597 [mm]$$

El diámetro de los desviadores tuvo un valor de:

$$D_b = 166,22 [mm]$$

El valor del claro mínimo entre coraza y desviadores fue:

$$L_{sh} = 3,78 [mm]$$

Mientras que el claro entre tubos y desviadores:

$$L_{tb} = 0.6 [mm]$$

El diámetro de los barrenos de los desviadores se calculó dando un valor de:

$$D_{bb} = 21.9 [mm]$$

La longitud de los tubos que hay entre espejos fijos fue:  $L_{ti} = 1663,46 \ [mm]$ . Con la distancia entre desviadores centrales calculada,  $L_{bc} = 145 \ [mm]$  se logra un recorrido óptimo del fluido a través del arreglo de tubos. Este número de desviadores que direccionan el flujo de vapor en la coraza a través del arreglo de tubos fue calculado dando un número total de:

$$N_b = 10 [desviadores]$$

La distancia entre el desviador de entrada y salida con respecto a los espejos fijos fue la misma, debido a que este arreglo permitió que el flujo que circula por los diámetros de las boquillas de entrada y salida de la coraza, no sea obstruido, logrando así un recorrido óptimo de inicio a fin. Este valor fue de:  $L_{b,ent} = L_{b,sal} = 181 \ [mm]$ 

#### 3.2.4. Dimensionamiento de las cabezas

Los cabezales de entrada y de salida seleccionados para obtener una mejor distribución del flujo en el arreglo de tubos, constaban de un canal, una tapa de tipo elipsoidal y la brida. El espesor del canal o del cuello de la cabeza obtenido con el valor de corrosión incluido fue de:

$$t_{cuello} = 3[mm]$$

Cuyo material utilizado para el diseño fue el acero *SAE* A516 *GR* 70. El espesor de la tapa elipsoidal debe ser la misma que el del cuello, para poder realizar una mejor unión de ambas por soldadura:

$$t_{tapa} = 3[mm]$$

Las dimensiones calculadas de los cabezales, que incluyen medidas del canal y de la tapa son detalladas:

$$D_{ec} = 180 \ [mm]$$
 $t_{cc} = 144 \ [mm]$ 
 $R_{cc} = 162 \ [mm]$ 
 $r_{cc} = 31,14 \ [mm]$ 
 $h_1 = 45 \ [mm]$ 
 $h_2 = 14,85 \ [mm]$ 
 $h_{cc} = 59 \ [mm]$ 
 $H_c = 180 \ [mm]$ 
 $h_c = 120,15 \ [mm]$ 

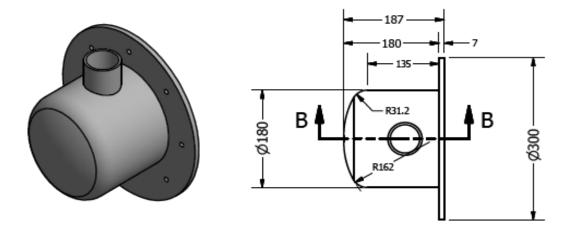



Figura 22. Dimensiones del conjunto tapa-brida para cobertura blanca

## 3.3. Diseño final del intercambiador de calor de tubo y coraza para cobertura blanca

En la figura 21 se muestra el diseño final del intercambiador para cobertura blanca. En la parte superior una vista en 3D del equipo, donde se proyecta en la parte inferior las medidas más relevantes como diámetros externo e interno de la coraza, longitud del intercambiador, espesor de espejos, etc.

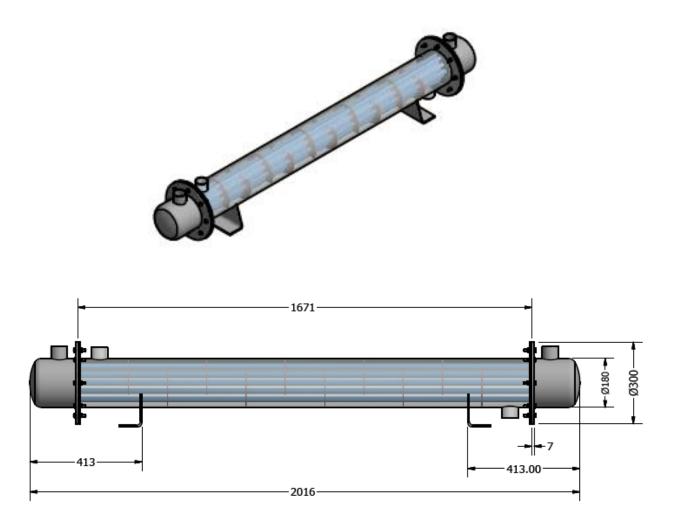



Figura 23. Intercambiador de calor para cobertura blanca

# 3.4. Resultados del diseño térmico para precalentamiento de cobertura negra

La Tabla 19 muestra los resultados del diseño térmico obtenidos con el programa realizado en Excel y desarrollado en base a la metodología propuesta:

Tabla 19. Resultados del diseño térmico para cobertura negra

| Variable                                      | Símbolo           | Dimensión                                        |
|-----------------------------------------------|-------------------|--------------------------------------------------|
| Flujo másico de agua                          | $\dot{m}_{agua}$  | 5442,3 [kg/h]                                    |
| Flujo másico de vapor                         | $\dot{m}_{vapor}$ | 153,95 [kg/h]                                    |
| Calor transferido                             | q                 | 151,92 <i>KW</i>                                 |
| Diferencia de temperaturas                    | $\Delta T_{lm}$   | 48 °C                                            |
| Número de Reynolds                            | $R_e$             | 14911                                            |
| Valor de Prandtl                              | Pr                | 2,748                                            |
| Valor de Nusselt                              | Nus               | 70,29                                            |
| Coeficiente interno de transferencia de calor | $h_i$             | 2936,04 [ <i>W/m</i> <sup>2</sup> · ° <i>C</i> ] |
| Coeficiente externo de transferencia de calor | $h_o$             | 7319 [W/m²·°C]                                   |
| Coeficiente global de transferencia de calor  | U                 | 1907,55 [W/m² · °C]                              |
| Flujo de calor a través de la pared del tubo  | q'                | 91,56 [ <i>KW</i> ]                              |
| Temperatura media superficial del tubo        | $T_s$             | 91,68 <i>°C</i>                                  |
| Área de transferencia de calor                | $A_t$             | 1,66 [m²]                                        |
| Longitud del tubo                             | $L_t$             | 1759,41 [mm]                                     |
| Velocidad másica del agua                     | $G_t$             | $488[kg/s \cdot m^2]$                            |
| Velocidad lineal del agua                     | $V_t$             | 0,5 [m/s]                                        |
| Factor de fricción para tuberías de acero     | f                 | 0,027 [mm]                                       |
| Caída de presión en los tubos                 | $\Delta P_t$      | 365,12 [Pa]                                      |

# 3.5. Resultados del diseño mecánico para precalentamiento de cobertura negra

La Tabla 20 muestra los resultados del diseño mecánico que se obtuvieron del desarrollo en Excel en base a la metodología propuesta:

Tabla 20. Resultados del diseño mecánico para cobertura negra

| COMPONENTE                                               | SÍMBOLO         | DIMENSIÓN           |  |
|----------------------------------------------------------|-----------------|---------------------|--|
| Coraza                                                   | ZIMIROFO        | DIMENSION           |  |
| Presión de diseño en la coraza                           | $P_{dise\~no}$  | 0,75 [ <i>MPa</i> ] |  |
| Diámetro interno de la coraza                            | $D_{ic}$        | 223 [mm]            |  |
| Longitud de la coraza                                    | $L_{coraza}$    | 1736[mm]            |  |
| Tubos                                                    |                 |                     |  |
| Presión de diseño en los tubos                           | $P_{prueba}$    | 4,83 [ <i>MPa</i> ] |  |
| Diámetro interno de los tubos                            | $D_{it}$        | 15,8 [mm]           |  |
| Paso entre tubos                                         | $L_{tp}$        | 37,28 [mm]          |  |
| Claro entre coraza-arreglo de tubos                      | $L_{bb}$        | 11 [mm]             |  |
| Diámetro exterior del arreglo de tubos                   | $D_{otl}$       | 212 [mm]            |  |
| Distancia del centro de la coraza a los<br>últimos tubos | $D_{ctl}$       | 190,7 [ <i>mm</i> ] |  |
| Número total de tubos                                    | $N_{tt}$        | 19 [mm]             |  |
| Desviadores                                              |                 |                     |  |
| Espesor de los desviadores                               | $t_{desviador}$ | 4 [mm]              |  |
| Claro entre desviadores y tubos                          | $L_{tb}$        | 0,6 [mm]            |  |
| Claro entre coraza entre coraza y<br>desviadores         | $L_{sb}$        | 4 [mm]              |  |
| Distancia entre desviadores centrales                    | $L_{bc}$        | 190 [mm]            |  |
| Diámetros de los desviadores                             | $D_b$           | 219 [mm]            |  |
| Corte de los desviadores                                 | $C_b$           | 55,75 [mm]          |  |

| Diámetro de los barrenos de los desviadores | $D_{bb}$                | 21,9 [mm]    |
|---------------------------------------------|-------------------------|--------------|
| Longitud de los tubos entre espejos fijos   | $L_{ti}$                | 1743,26 [mm] |
| Número de desviadores                       | $N_b$                   | 8            |
| Distancia del desviador de entrada y salida | $L_{b,ent} = L_{b,sal}$ | 208 [mm]     |

### Continuación de la Tabla 20

| COMPONENTE                                | SÍMBOLO              | DIMENSIÓN         |  |
|-------------------------------------------|----------------------|-------------------|--|
| Espejos                                   | SIMBOLO              | DIMENSION         |  |
| Espesor de los espejos                    | t <sub>espejos</sub> | 9 [mm]            |  |
| Diámetro exterior de los espejos          | $D_{e,espejo}$       | 355 [ <i>mm</i> ] |  |
| Diámetro de los pernos                    | $d_p$                | 8 [mm]            |  |
| Número de pernos                          | $N_p$                | 8                 |  |
| Canales                                   |                      |                   |  |
| Diámetro exterior del canal               | $D_{ec}$             | 235 [mm]          |  |
| Espesor del canal                         | $t_c$                | 3 [mm]            |  |
| Longitud del canal                        | $h_c$                | 156,83 [mm]       |  |
| Tapas                                     |                      |                   |  |
| Diámetro exterior de la tapa              | $D_{ecc}$            | 235 [mm]          |  |
| Espesor de la tapa                        | $t_{tapa}$           | 3 [mm]            |  |
| Radio exterior de la tapa                 | $R_{cc}$             | 211,5 [mm]        |  |
| Radio exterior de la curvatura de la tapa | $r_{cc}$             | 40,7 [mm]         |  |
| Profundidad de la tapa                    | $h_1$                | 58,75 [mm]        |  |
| Extensión de la tapa                      | $h_2$                | 19,38 [mm]        |  |
| Longitud total de la tapa                 | $h_{cc}$             | 78,14 [mm]        |  |
| Longitud total de la cabeza               | $H_c$                | 235 [mm]          |  |

# 3.6. Diseño final del intercambiador de calor de tubo y coraza para cobertura negra

En la figura 22 se muestra el diseño final del intercambiador para cobertura negra. De forma similar que con el equipo para cobertura blanca, se muestra en la parte superior una vista en 3D del equipo, y en la parte inferior las medidas más relevantes del mismo.

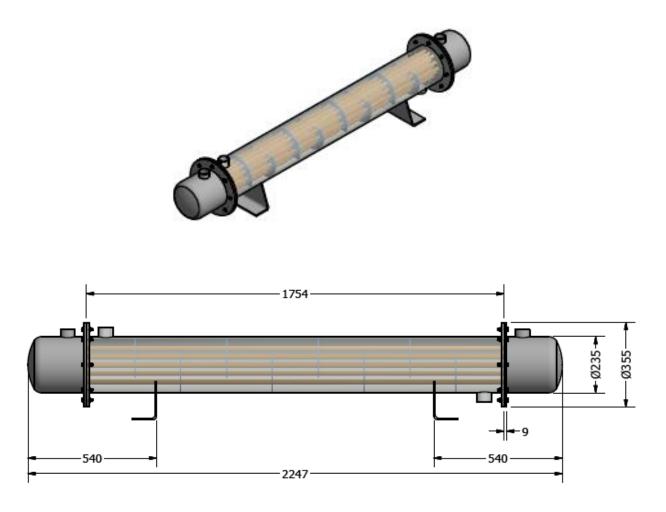



Figura 24. Intercambiador de calor para cobertura negra

## 3.7. Análisis de costo de los intercambiadores para cobertura blanca y negra

A continuación, en la Tabla 21 se presenta el listado de materiales y los costos asociados al proceso de elaboración de los intercambiadores de calor de tubo y coraza para ambos tipos de coberturas:

Tabla 21. Listado de costo de materiales de un intercambiador

| # ITEM | Cantidad | Provisión de materiales                                           | Precio Unitario | Total       |
|--------|----------|-------------------------------------------------------------------|-----------------|-------------|
| 1      | 1        | Plancha de 1.22x2.44 metros A 516<br>Gr 70 e=4mm                  | \$ 260,56       | \$ 260,56   |
| 2      | 4        | Tubería de 1/2" cédula 40 A 53 L= 6 metros                        | \$ 26,06        | \$ 104,24   |
| 3      | 2        | Empaque de 30 x 30 cm Chesterton                                  | \$ 65,14        | \$ 130,28   |
| 4      | 20       | Pernos de 8mm x 1 1/2" acero al carbono con tuerca y anillo plano | \$ 0,65         | \$ 13,00    |
| 5      | 1        | Plancha de 70x70 cm A 516 Gr 70<br>e=9mm                          | \$ 104,22       | \$ 104,22   |
| 6      | 1        | Consumibles. Soldadura, gases, etc.                               | \$ 390,84       | \$ 390,84   |
| 7      | 1        | Plancha de 1,22 x 2,44 metros acero al carbono e= 6 mm            | \$ 130,28       | \$ 130,28   |
|        |          | _                                                                 | TOTAL           | \$ 1.133,42 |

Elaboración propia.

La Tabla 22 detalla todas las actividades involucradas en el proceso de fabricación de un intercambiador de este tipo. En la Tabla 23 se muestra el costo total en dólares de uno de estos equipos, que incluye provisión de materiales y memoria técnica.

Tabla 22. Memoria técnica del proceso de elaboración de los equipos

| # ITEM | Mano de Obra                                 | Precio Unitario | Total       |
|--------|----------------------------------------------|-----------------|-------------|
| 1      | Construcción del intercambiador              | \$ 1.954,20     | \$ 1.954,20 |
| 2      | Mecanizado, rolado y perforado de materiales | \$ 390,84       | \$ 390,84   |
| 3      | Informe de pruebas hidrostáticas             | \$ 1.302,80     | \$ 1.302,80 |
|        |                                              | TOTAL           | \$ 3.647,84 |

Elaboración propia.

Tabla 23. Costo total de un intercambiador

| Costo de provisión de materiales | \$ 1.133,42 |
|----------------------------------|-------------|
| Costo de mano de obra            | \$ 3.647,84 |
| COSTO TOTAL DEL EQUIPO           | \$ 4.781,26 |

Elaboración propia.

En la tabla 24, se puede observar que el costo del intercambiador de calor para la cobertura negra es el mismo que para la cobertura blanca. Esto se hace debido a que las variaciones de los componentes y partes de ambos intercambiadores varían muy poco en sus magnitudes. Además los materiales utilizados para cada parte son los mismos en ambos casos, razón por la cual se coloca el mismo valor, a pesar de que el precio del segundo intercambiador sea en realidad ligeramente superior al de la cobertura blanca.

Tabla 24. Costo total de ambos intercambiadores de calor

| Costo de intercambiador para cobertura blanca | \$ 4.781,26 |
|-----------------------------------------------|-------------|
| Costo de intercambiador para cobertura blanca | \$ 4.781,26 |
| COSTO TOTAL DE INTERCAMBIADORES               | \$ 9.562,52 |

Elaboración propia.

#### 3.8. Costos por mano de obra debido a paradas en el proceso

La tabla 25 muestra valores de costos de mano de obra requerida cuando existe alguna parada durante el proceso. Este costo representa el valor total en dólares por turno (turno de 8 horas). Se registra un promedio de 4 paradas en un año.

Tabla 25. Costo por mano de obra requerida debido a paradas en el proceso

|                            | Horas de<br>Paro | Número de<br>personas | Costo hombre/mano de obra    | Valor por<br>1 hora | Valor total |
|----------------------------|------------------|-----------------------|------------------------------|---------------------|-------------|
| Empaque recubiertos        | 8                | 22                    | \$ 8,99                      | \$ 197,78           | \$ 1.582,24 |
| Fabricación<br>recubiertos | 8                | 6                     | \$ 7,66                      | \$ 45,96            | \$ 367,68   |
|                            |                  |                       | TOTAL COSTO MANO DE OBRA \$1 |                     | \$ 1.949,92 |

Elaboración propia.

### 3.9. Análisis económico de la recuperación de condensado para un Intercambiador de Calor

A continuación se detallan las fórmulas utilizadas para la evaluación del análisis económico en la recuperación del condensado que sale de cada uno de los intercambiadores de calor. Estos cálculos fueron realizados gracias a un programa de una compañía especialista en vapor (TLV, 2013) (ver anexos), donde se consideran los datos que se detallan en la tabla 26.

$$T_2 = \frac{\eta_T \cdot (T_c - T_1)}{100} + T_1 \tag{44}$$

$$H_r = \frac{Q_l \cdot c \cdot SG \cdot (T_2 - T_1)}{0.86} \tag{45}$$

$$M = 3.6 \cdot H_r \cdot C_e \cdot h \tag{46}$$

$$FC = \frac{360 \cdot H_r}{m_{fw} \cdot (h_s - h_{rw})} \tag{47}$$

#### Donde:

- SG, es la gravedad específica del líquido.
- c, calor específico del líquido. [kJ/kg · °C]
- $Q_l$ , rango de flujo del fluido.  $[m^3/h]$
- $T_1$ , temperatura de entrada del líquido. [°C]
- $m_{fw}$ , rango de agua de alimentación. [kg/h]
- C<sub>e</sub>, costo unitaria de energía. [kJ]
- h, costo de aislamiento y mano de obra. [h]
- $\eta_T$ , eficiencia de temperatura. [%]
- T₂, temperatura de salida del líquido. [°C]
- $H_r$ , calor recuperado. [W]
- M, ahorros monetarios de combustible. [\$/ $a\tilde{n}o$ ]
- FC, porcentaje de combustible conservado. [%]
- $h_s$ , entalpía específica del vapor a la presión de la caldera. [kJ/kg]
- $h_{rw}$ , entalpía específica del agua de alimentación. [kJ/kg]

## 3.9.1. Análisis económico de la recuperación de condensado para el intercambiador de cobertura blanca

El sistema que se maneja para la recuperación del condensado es un sistema presurizado o cerrado, ya que el mismo se lo recupera enviándolo directamente a la caldera. Se puede observar en la Tabla 26 los parámetros que se necesitan para realizar el cálculo del ahorro en dólares de combustible que se genera por el hecho de fabricar un intercambiador de calor de tubo y coraza:

Tabla 26. Parámetros considerados en el cálculo de recuperación del condensado (intercambiador de cobertura blanca)

| Tipo de líquido                                   | agua dulce |                 |
|---------------------------------------------------|------------|-----------------|
| Rango de flujo del líquido                        | 25         | GPM             |
| Temperatura de entrada del líquido                | 43,5       | °C              |
| Presión de vapor                                  | 15         | psig            |
| Presión del condensado                            | 10         | psig            |
| Carga de condensado                               | 130        | $\frac{kg}{h}$  |
| Temperatura del agua de alimentación a la caldera | 75         | °C              |
| Rango de agua de alimentación                     | 227,16     | $\frac{kg}{h}$  |
| Valor calorífico del combustible (valor bajo)     | 43000      | $\frac{kJ}{h}$  |
| Eficiencia de la caldera                          | 90         | %               |
| Costo unitario de energía                         | 3          | $\frac{\$}{MJ}$ |
| Temperatura de agua cruda                         | 30         | °C              |
| Costos de aislamiento y mano de obra              | 16         | h               |
| Eficiencia de temperatura                         | 90         | %               |

#### 3.9.1.1. Resultados del análisis económico para cobertura blanca

A continuación, se detallan los valores obtenidos del programa con las fórmulas citadas en el apartado anterior. La fabricación de un intercambiador con los parámetros de diseño iniciales y los requerimientos de agua de calentamiento para la cobertura blanca, generaron un ahorro de combustible de \$ 1828,03 por año (tabla 27):

Tabla 27. Resultados obtenidos del programa (cobertura blanca)

| Ahorros monetarios de combustible | 1828,03 | $\frac{\$}{a$ no |
|-----------------------------------|---------|------------------|
| Temperatura de salida del líquido | 44,86   | °C               |
| Calor Recuperado                  | 10578,9 | W                |
| Combustible ahorrado anualmente   | 15,745  | $\frac{kg}{a$ no |
| % de combustible conservado       | 7       | %                |

Elaboración propia.

## 3.9.2. Análisis económico de la recuperación de condensado para el intercambiador de cobertura blanca

La Tabla 28 muestra los parámetros que se necesitan para realizar el cálculo del ahorro en dólares de combustible generado debido a la fabricación un intercambiador de calor de tubo y coraza:

Tabla 28. Parámetros considerados en el cálculo de recuperación del condensado (intercambiador de cobertura negra)

| Tipo de líquido                                   | agua dulce |                 |
|---------------------------------------------------|------------|-----------------|
| Rango de flujo del líquido                        | 25         | GPM             |
| Temperatura de entrada del líquido                | 48,5       | °C              |
| Presión de vapor                                  | 20         | psig            |
| Presión del condensado                            | 15         | psig            |
| Carga de condensado                               | 140        | $\frac{kg}{h}$  |
| Temperatura del agua de alimentación a la caldera | 75         | °C              |
| Rango de agua de alimentación                     | 227,16     | $\frac{kg}{h}$  |
| Valor calorífico del combustible (valor bajo)     | 43000      | $\frac{kJ}{h}$  |
| Eficiencia de la caldera                          | 90         | %               |
| Costo unitario de energía                         | 3          | $\frac{\$}{MJ}$ |
| Temperatura de agua cruda                         | 30         | °C              |
| Costos de aislamiento y mano de obra              | 16         | h               |
| Eficiencia de temperatura                         | 90         | %               |

Elaboración propia.

#### 3.9.2.1. Resultados del análisis económico para cobertura negra

Al igual que en el equipo para cobertura blanca, los datos calculados por el programa son detallados en la Tabla 29. En ambos casos, la temperatura del condensado aumenta  $1,5\,^{\circ}C$  a la salida del intercambiador con un promedio de  $7,7\,\%$  de combustible que se ahorra por año.

Tabla 29. Resultados obtenidos del programa (cobertura negra)

| Ahorros monetarios de combustible | 2175,21 | $\frac{\$}{a$ no |
|-----------------------------------|---------|------------------|
| Temperatura de salida del líquido | 50,11   | °C               |
| Calor Recuperado                  | 12588   | W                |
| Combustible ahorrado anualmente   | 18,73   | kg<br>año        |
| % de combustible conservado       | 8,31    | %                |

Elaboración propia.

### 3.9.3. Análisis del tiempo de retorno

A continuación se realiza el cálculo del tiempo en el cual se recuperaría la inversión debido a los gastos generados por la fabricación de los intercambiadores, la compra de reguladoras y la mano de obra en general. Se detalla en la tabla 30 estos valores:

Tabla 30. Costos invertidos para la optimización del proceso

| INVERSIÓN                         |              |  |
|-----------------------------------|--------------|--|
| Costos de intercambiadores        | \$ 9.562,52  |  |
| Costos de reguladoras             | \$ 5.201,28  |  |
| Costos de trampas de vapor        | \$ 450,00    |  |
| Mano de obra                      | \$ 2.500,00  |  |
| Diseño intelectual de los equipos | \$ 2000,00   |  |
| VALOR TOTAL DE LA INVERSIÓN       | \$ 19.713,80 |  |

Es importante notar de la Tabla 31 que el valor de \$ 1.949,92 representa el costo de la mano de obra por turno, que es requerida cuando durante el proceso de calentamiento ocurren paradas por solidificación de la cobertura en las tuberías. Durante el año ocurren un promedio de 4 paradas, lo que suma un total de \$ 7.799,68. Con el nuevo sistema implementado, este sería un valor significante que se ahorraría debido a que no se producirían paradas inesperadas por problemas ya mencionados.

Tabla 31. Ahorros obtenidos

|                                                          | AHORRO           |              |  |
|----------------------------------------------------------|------------------|--------------|--|
|                                                          | Subtotal         | Total        |  |
| Costo de mano de<br>obra debido a<br>paradas (por turno) | \$ 1.949,92      | \$ 7.799,68  |  |
|                                                          | Cobertura blanca |              |  |
| Ahorro monetario de                                      | \$ 1.828,03      | ¢ 4 002 24   |  |
| combustible                                              | Cobertura negra  | \$ 4.003,24  |  |
|                                                          | \$ 2.175,21      |              |  |
| VALOR DEL                                                | . AHORRO         | \$ 11.802,92 |  |

Elaboración propia.

#### 3.9.4. Resultados del TIR

En la Tabla 32 se ve el tiempo en que se va a recuperar el valor invertido para conseguir la optimización del sistema actual de serpentines, que es de aproximadamente 20 meses.

Tabla 32. Tiempo en el que se recupera la inversión

| INVERSIÓN | \$ 19.713,80 | Tasa Interna | 1,67  | Años  |
|-----------|--------------|--------------|-------|-------|
| AHORRO    | \$ 11.802,92 | de Retorno   | 20,04 | Meses |

Elaboración propia.

# 3.10. Comparación del sistema de serpentines con el sistema de intercambiadores propuesto

En la tabla 33 se muestran los coeficientes de transferencia global U para serpentines, y que fueron obtenidos a partir de correlaciones. (Anónimo, Cambiadores de calor de serpentines y chaqueta simplificado):

Tabla 33. Tasas de transferencia de calor para serpentines de vapor sumergidos en agua

| Coeficientes de transferencia de calor más comunes          |                                              | Coeficientes de transferencia ( <i>U</i> |                                                             |                                   |
|-------------------------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------------------|
| Diferencia de temperatura entre vapor/agua de 30 °C 550 − 1 |                                              |                                          | erencia de temperatura entre vapor/agua de 30 °C 550 - 1300 |                                   |
| Diferencia de temperatura entre va                          | por/agua de 60 °C                            | 1000 -                                   | 1700                                                        | $\frac{W}{m^2 \cdot {}^{\circ}C}$ |
| Diferencia de temperatura entre vap                         | oor/agua de 110 °C                           | 1300 -                                   | 2700                                                        |                                   |
| Tasas de transferencia recomendadas                         |                                              |                                          | Coeficientes de transferencia global ( <i>U</i> )           |                                   |
| Serpentines para bajas presiones                            | (< 2 bar g) con circ<br>de ag                | 500                                      |                                                             |                                   |
| Serpentines para altas presiones                            | (> 5 bar g) con circ<br>de agu               | 1100                                     | W                                                           |                                   |
| Serpentines para bajas presiones                            | (< 2 bar g) con circulación asistida de agua |                                          | 1100                                                        | $m^2 \cdot {}^{\circ}C$           |
| Serpentines para altas presiones                            | (> 6 bar g) con circ<br>de agu               |                                          | 700                                                         |                                   |

Fuente: (Anónimo, Cambiadores de calor de serpentines y chaqueta simplificado)

Los serpentines de vapor implementados actualmente en el sistema, se encuentran a bajas presiones donde la circulación de agua se da a través de bombas. Viendo en la parte inferior de la Tabla 33 para tasas de trasnferencia recomendadas menores a los 2 bares de presión con circulación asistida de agua, se tiene un valor aproximado de:

$$U = 1100 \; \frac{W}{m^2 \cdot {}^{\circ}C}$$

Los resultados del diseño térmico mostraron coeficientes globales de 1500 y  $2000 \ \frac{W}{m^2 \cdot {}^{\circ} C}$ , para cobertura blanca y negra respectivamente. A partir de esto, se manifiesta que los diseños de los intercambiadores de tubo y coraza trabajando con los parámetros de temperatura y presión del vapor y del agua, citados inicialmente en este proyecto, representan una mayor confiabilidad comparándolo con el diseño de serpentines sumergidos en tanques abiertos a la atmósfera, considerando que las condiciones de los fluidos son las mismas para ambos casos. De esta manera, es necesario recalcar la importancia de haber diseñado estos equipos como un medio para optimizar el proceso del calentamiento de agua para las coberturas.

### **CAPÍTULO 4**

#### 4. CONCLUSIONES Y RECOMENDACIONES

Dentro del desarrollo de este trabajo se realizó el diseño de dos intercambiadores de calor de tubo y coraza, donde se incluyeron válvulas y controles reguladores de presión y temperatura, básicamente constituye la optimización del sistema actual de precalentamiento de agua con serpentines. En los Capítulos 2 y 3 se detalló la metodología utilizada para el diseño de cada equipo, y los resultados obtenidos, respectivamente. Se analizaron cada uno de los componentes que formaron parte en el desarrollo del sistema propuesto, y se introdujeron conceptos económicos para evaluar la factibilidad del proyecto mediante un análisis de costos.

#### 4.1. Conclusiones

- Se desarrolló una metodología para el diseño térmico que involucraba un proceso iterativo a través de una pequeña programación elaborada en Excel, donde el proceso utilizado garantiza que los resultados se encuentren dentro de los valores típicos para intercambiadores de calor de tubo y coraza.
- El diseño estructural realizado con la utilización de los códigos para calderas y recipientes a presión, junto con el manual para el diseño de intercambiadores de calor, proporciona resultados que dan seguridad en la fabricación de estos equipos.
- Con la colocación de las válvulas reguladoras de presión-temperatura se logra evitar problemas de solidificación de producto durante el proceso de producción. Al no generarse paradas en el mismo, se obtiene un ahorro de \$7.799,68, debido a que no hay interrupciones en el periodo que el sistema se encuentra en operación.
- Con el reemplazo de los serpentines por el diseño de un sistema de mayor confiabilidad de intercambiadores de calor de tubo y coraza, se logra obtener un ahorro monetario de combustible, que se ha estimado en \$4.000 anualmente, considerando los precios actuales del combustible.

- Se determinó que el tiempo de recuperación de la inversión es de aproximadamente 20 meses, el cual muestra de manera notable que el nuevo sistema de precalentamiento propuesto es económicamente factible.
- Los serpentines sumergidos en agua poseen un coeficiente global de  $1100 \ \frac{W}{m^2 \cdot {}^{\circ} C}$  a las condiciones actuales de presión y temperatura del proceso, que en comparación con los valores obtenidos para los intercambiadores, que fueron en promedio 1,7 veces mayor, se traduce en una mayor intensidad de calor a través del material y por ende en el calentamiento del agua a menor tiempo, brindando al diseño e instalación de intercambiadores de calor de tubo y coraza una mayor confiabilidad de uso.

#### 4.2. Recomendaciones

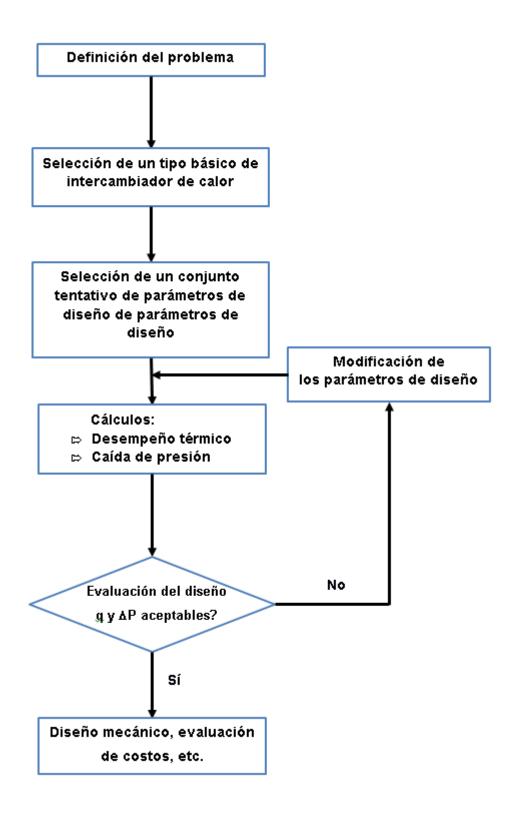
- El diseño propuesto puede ser aplicado a otras áreas de la fábrica que continúen operando con el sistema actual de serpentines.
- Considerar realizar el tratamiento químico al agua que pasa por los tubos, para evitar incrustaciones que afecten la transferencia de calor entre ambos fluidos (agua y vapor de agua).

### **BIBLIOGRAFÍA**

- Alimentos Argentinos. (2015). Obtenido de http://www.alimentosargentinos.gob.ar/
- Anónimo. (s.f.). Cambiadores de calor de serpentines y chaqueta simplificado.

  Obtenido de file:///E:/Descargas/Cambiadores\_de\_calor\_de\_serpentines\_y\_chaqueta.simpli ficadodoc.pdf
- Anónimo. (s.f.). *Intercambiadores de Calor.* Obtenido de https://alojamientos.uva.es/guia\_docente/uploads/2011/447/42501/1/Documen to15.pdf
- ASME. (1 de Julio de 2007). ASME Boiler and Pressure Vessel Code. *Materials*. New York, Estados Unidos.
- Aulestia, C. (Miércoles 28 de Octubre de 2015). Desarrollo de una formulación de cobertura de chocolate con esencia de naranja para. Obtenido de http://www.dspace.uce.edu.ec/bitstream/25000/1865/1/T-UCE-0008-09.pdf
- CASIDER . (1992). Aceros para calderas y recipientes a presión. Obtenido de http://www.casider.com/asa\_516\_gr70\_es.php
- Compañía Especialista en Vapor TLV. (2013). Obtenido de http://www.tlv.com/global/LA/
- CRANE. (s.f.). Factores de Fricción para tuberías comerciales, nuevas, de acero, con flujo en la zona de total turbulencia. Obtenido de https://operaciones1.files.wordpress.com/2009/05/accesorios-en-valvulas-y-tuberias-crane1.pdf
- DIPAC Productos de Acero. (s.f.). Catálogo de Tubería sin costura cédula 40.

  Obtenido de http://dipacmanta.com/index.php?route=product/product&path=169&product\_id =162
- Flores, R. (2007). Fabricación y Validación Experimental de un Intercambiador de Tubo y Coraza. México D.F.
- González, D. (23 de junio de 2011). *Intercambiadores de Calor: Tipos generales y Aplicaciones.*Obtenido de


- http://es.slideshare.net/yumardiaz/intercambiadoresdecalortiposgeneralesyaplicaciones
- Goulds Pumps. (1 de julio de 1998). Cast Iron, Bronze Fitted Centrifugal Pumps. 3656/3756 S-Group. *Performance Curves*.
- Hewitt, G. (2000). Heat Exchanger Design Book. *Shell and Tube Heat Exchanger Design*. New York: Marcel Dekker.
- Incropera, F. (1999). Fundamentos de Transferencia de Calor, 4ta. ed. México: Prentice Hall.
- Ingeniería y Control del Centro. (s.f.). *Intercambiadores de calor.* Obtenido de http://ingenieriaycontroldelcentro.com/ficha\_tecnica.html
- Jaramillo, O. (20 de Noviembre de 2007). *Intercambiadores de Calor.* Obtenido de http://www.cie.unam.mx/~ojs/pub/HeatExchanger/Intercambiadores.pdf
- Llangarí & Solís, V. (2012). Diseño Térmico e Hidraúlico de un Intercambiador de Coraza y Tubos. Riobamba.
- Mahuli González, A. (07 de 2011). Guía Intercambiadores de carcasa y tubo.

  Obtenido de https://operacionesunitarias1.files.wordpress.com/2011/07/unidad-iv-intercambiadores-de-calor.pdf
- Marín & Guillén, J. (2013). *Diseño y cálculo de intercambiadores de calor monofásicos*. Madrid: Paraninfo, S.A.
- Martínez & Aguirre, E. (2006). Selección de la mejor alternativa en lo que respecta al estudio de intercambiadores de calor. Obtenido de https://www.dspace.espol.edu.ec/bitstream/123456789/2067/1/4186.pdf
- Mijev, M. (1979). Fundamentos de Termotransferencia. Moscú.
- Nestlé. (2015). *Chocolate and compound usage.* Haxby Rd, York, Reino Unido: Nestlé Chocolate Product Expert Network (CPEN).
- Novacero . (s.f.). Especificaciones Técnica de tubería para conducción de fluidos. Cédula 20-40-80. Obtenido de http://novacero.com/catalogo-productos/tuberia-para-conduccion-de-fluidos/cedula-20-40-80.html#especificaciones-técnicas
- Rodríguez, J. A. (2000). *Apuntes modernos sobre intercambiadores de calor.*Obtenido de http://www.webaero.net/ingenieria/equipos/Estaticos/Intercambiadores%20de

- %20calor/Bibliografia\_Documentacion/previsualizacion/prev\_Apuntes%20mod ernos%20sobre%20intercambiadores%20de%20calor.pdf
- Shames, I. H. (1995). Mecánica de Fluidos, Tercera edición. Mc Graw Hill.
- Taborek, J. (1992). *Handbook of Heat Exchangers Design.* New York: Begell House, Inc.
- TEMA. (1999). Standars of Tubular Exchangers Manufacturers Association. New York.
- TLV. (2013). Compañía Especialista en Vapor. Obtenido de http://www.tlv.com/global/LA/

### **APÉNDICES**

Metodología general de diseño:



### Metodología utilizada para el diseño mecánico realizada en Excel:

| PASO 1: INFORMACIÓN DE LA CORAZA       |             |       |  |  |  |
|----------------------------------------|-------------|-------|--|--|--|
| Diámetro del haz de tubos<br>(Db)      | I 124 483 I |       |  |  |  |
| Diámetro Exterior del tubo<br>(Do)     | 21,3        | mm    |  |  |  |
|                                        | # pasos     | 1     |  |  |  |
| Arreglo triangular                     | Kt          | 0,319 |  |  |  |
|                                        | alpha       | 2,142 |  |  |  |
| Diámetro del casco-diámetro<br>del haz | 11          | mm    |  |  |  |
| Diámetro exterior de la coraza         | 135,483     |       |  |  |  |
| (Do)                                   | 132         | mm    |  |  |  |
| Según el Heat Exchanger Design<br>Book | 180         |       |  |  |  |
| Diámetro interior de la coraza<br>(Di) | 170         | mm    |  |  |  |

| PASO 1.1 Selección del material |                                     |                                             |
|---------------------------------|-------------------------------------|---------------------------------------------|
| SA-A516 GR 70 (K02700)          |                                     | página 549-550 SECCIÓN<br>VIII ASME LÍNEA 8 |
| Esfuerzo de fluencia (Sy)       | Esfuerzo de fluencia (Sy) 38000 psi |                                             |
| Resistencia última 70000 psi    |                                     |                                             |
| Alargamiento 17%                |                                     |                                             |

| Para cálculo de espesores:                                                    |                 |  |  |
|-------------------------------------------------------------------------------|-----------------|--|--|
| Temperatura media de la superficie del<br>recipiente (°F)                     | (-20°F a 650°F) |  |  |
| Carcazas son consideradas como cilindros de pared delgada para su<br>análisis |                 |  |  |

| PASO 1.2 Espesor requerido de pared para el lado de la coraza (t,s) |                                                                  |             |   |   |      |
|---------------------------------------------------------------------|------------------------------------------------------------------|-------------|---|---|------|
| 0,0008                                                              | 0,0008 metros Añadiendo el desgaste de corrosión (mm) Según HEDB |             |   |   | IEDB |
| 0,768869724                                                         | mm                                                               | 2,356369724 | 3 | 5 | mm   |

| Presión de operación del                                             | 0,1034      | MPa                       |
|----------------------------------------------------------------------|-------------|---------------------------|
| intercambiador                                                       | 103400      | Pascales                  |
| Presión de diseño (Presión de                                        | 0,75        | MPa                       |
| la caldera) (P)                                                      | 750000      | Pascales                  |
| Esfuerzo de fluencia (S)/)                                           | 38000       | Psi                       |
| Estacito de macina a (oy)                                            | 262000880   | Pascales                  |
| Eficiencia de la junta de la soldadura (No examinadas) ( <i>Ef</i> ) | 0,7         | ASME<br>APÉNDICE<br>UW-11 |
| Desgaste por corrosión: 1/16<br>pulgadas (suficiente para            | 0,063       | pulgadas                  |
| recipientes y tuberías)                                              | 1,5875      | mm                        |
| Radio interior de la coraza                                          | 85          | mm                        |
| (R,s)                                                                | 0,085       | m                         |
| Esfuerzo permisible (S)                                              | 119091309,1 | Pascales                  |
| Factor de seguridad                                                  | 2,2         | SUPUESTO                  |

| Presión de operación del                                                   | 0,1034      | MPa                       |
|----------------------------------------------------------------------------|-------------|---------------------------|
| intercambiador                                                             | 103400      | Pascales                  |
| Presión de diseño (Presión de                                              | 0,75        | MPa                       |
| la caldera) (P)                                                            | 750000      | Pascales                  |
| Esfuerzo de fluencia (Sy)                                                  | 38000       | Psi                       |
| Estacizo de tracina a (oy)                                                 | 262000880   | Pascales                  |
| Eficiencia de la junta de la<br>soldadura (No examinadas)<br>( <i>Ef</i> ) | 0,7         | ASME<br>APÉNDICE<br>UW-11 |
| Desgaste por corrosión: 1/16<br>pulgadas (suficiente para                  | 0,063       | pulgadas                  |
| recipientes y tuberías)                                                    | 1,5875      | mm                        |
| Radio interior de la coraza                                                | 85          | mm                        |
| (R,s)                                                                      | 0,085       | m                         |
| Esfuerzo permisible (\$)                                                   | 119091309,1 | Pascales                  |
| Factor de seguridad                                                        | 2,2         | SUPUESTO                  |

| PASO 2: ESPESOR REQUERIDO PARA LA PARED DE LA TUBERÍA (t,t) |                           |                              |              |                  |
|-------------------------------------------------------------|---------------------------|------------------------------|--------------|------------------|
| Diámetro<br>nominal (pulg.)                                 | Diámetro<br>interior (mm) | Diámetro<br>exterior<br>(mm) | Espesor (mm) | Material         |
| 1/2                                                         | 15,8                      | 21,3                         | 2,77         | ASTM A53 GRADO B |
| Presión de prueba (Presión Interna)                         |                           | 700                          | Psi          |                  |
| Presion de prueba (Presion Interna)                         |                           | 4826332                      | Pascales     |                  |

| Longitud de la coraza (L,s) | 1,657   | metros |
|-----------------------------|---------|--------|
| congrada de la coraza (c,s) | 1657,27 | mm     |

|                         | PASO 2.1 Arregio  | de los tubos     |       |                           |
|-------------------------|-------------------|------------------|-------|---------------------------|
|                         |                   |                  |       |                           |
| Paso del                | fluido entre tub  | os (Ltp)         | 31,95 |                           |
| fp                      | 1,                | 5                | mm    |                           |
| Claro e                 | ntre coraza y arı | reglo de tubos ( | [Lbb) | Eigues 4.1                |
| Con el diámetr          | o interior de la  | coraza (Dis) v   | 11    | Figura 4.1<br>(página 79) |
| 1                       | de espejo, esco   |                  | mm    |                           |
| Diámetro exter          |                   | 15               | 9     | C1 (45°)                  |
| de tubos                | (D,otl)           | mr               | m     | 1                         |
| Diámetro del ar<br>(D,o | -                 | 137,7            | mm    |                           |
| Constante por (C,t      |                   | 0,9              | 13    |                           |
| Número total (          | de tubos (Ntt)    | 14,48841103      | 14    |                           |

|                           | PASO 3: DISEÑO DE LO   | OS ESPEJOS       |                 |              |
|---------------------------|------------------------|------------------|-----------------|--------------|
| Espesor mínimo del espejo | 0,0062                 | metros           | Profundidad del | canal de los |
| (t,e)                     | 6,185342293            | mm               | espejos         | (p,ts)       |
| Material del espejo       | SA-A516 GR 70 (K02700) | Tubos soldados a | 0,003092671     | m            |
| iwacenai dei espejo       | 34-4010 GV \0 (V05\00) | los espejos      | 3,092671147     | mm           |

| PASO 4: SELECCIONA                               | MIENTO DE LO | S DESVIADOR | PS                   |
|--------------------------------------------------|--------------|-------------|----------------------|
| PASO 4. SELECCIONA                               |              | 3 DESVINDOR | L                    |
| Máxima distancia entre los                       | 1597         | mm          |                      |
| tubos sin soporte (Lb,máx)                       | 1,597        | metros      |                      |
| Claro mínimo entre coraza y<br>desviadores (Lsb) | 3,78         | mm          |                      |
| Diámetro de los desviadores<br>(Db)              | 166,22       | mm          |                      |
| (Añadiendo 1,5 mm resultado<br>factor de segur   |              | gas para un |                      |
| Corte de desviadores (Cb)                        | 42,5         | mm          | Segmentadas          |
| Porcentaje de corte (Bc)                         | 0,2          | :5          | simples con<br>corte |
| Claro entre tubos y<br>desviadores (Ltb)         | 0,6          | mm          | horizontal           |
| Diámetro de los barrenos<br>(Dbb)                | 21,9         | mm          |                      |
| Longitud de los tubos entre                      | 1,663        | m           |                      |
| espejos fijos (Lti)                              | 1663,46      | mm          |                      |
| Espacio entre desviadores<br>(Lbc)               | 145          | mm          |                      |
| # de desviadores                                 | 10,512       | 10          |                      |
| Lb,ent                                           |              |             |                      |
| Lb,sal                                           | 181          | mm          |                      |

| PASO 5: DISEÑO DE LAS CABEZAS                       |                       |             |  |  |  |
|-----------------------------------------------------|-----------------------|-------------|--|--|--|
| FH30 3.                                             | DISCITO DE LAS CADIZA | 13          |  |  |  |
| Espesor del cuello (t,cu)                           | 0,002081321           | metros      |  |  |  |
| Espesor der caerro (c,ca)                           | 2,08132064            | mm          |  |  |  |
| Presión de diseño (Presión<br>de succión_Bomba de   | 100                   | Psi         |  |  |  |
| agua)                                               | 689476                | Pascales    |  |  |  |
| Material del cuello                                 | SA-A516 GR            | 70 (K02700) |  |  |  |
| Espesor de la tapa                                  | 0,002108854           | metros      |  |  |  |
| semielíptica (t,tapa)                               | 2,11                  | mm          |  |  |  |
| Diámetro pequeño de la<br>tapa elipsoidal(dcc)      | 144,0                 | mm          |  |  |  |
| Radio exterior de la tapa<br>(Rcc)                  | 162,0                 | mm          |  |  |  |
| Radio exterior de la<br>curvatura de la tapa (r,cc) | 31,14                 | mm          |  |  |  |
| Profundidad de la tapa (h1)                         | 45,000                | mm          |  |  |  |
| Extensión de la tapa (h2)                           | 14,850                | mm          |  |  |  |
| Longitud de la tapa (h,cc)                          | 59,850                | mm          |  |  |  |
| Longitud total del cabezal<br>(Hc)                  | 180,00                | mm          |  |  |  |
| Longitud del canal (h,c)                            | 120,150               | mm          |  |  |  |

| PASO 6: CONEXIONES DE AGUA Y VAPOR |        |      |  |  |  |
|------------------------------------|--------|------|--|--|--|
| Acoplamiento para la               | 27,260 | mm   |  |  |  |
| tubería de agua (Dc,agua)          | 1,073  | pulg |  |  |  |
| Acoplamiento para la               | 53,308 | mm   |  |  |  |
| tubería de vapor (Dc,vapor)        | 2,099  | pulg |  |  |  |

| PASO 7: SELEC                                                 | CIÓN DEL NÚMERO DE | PERNOS                 |
|---------------------------------------------------------------|--------------------|------------------------|
| Esfuerzo circunferencial                                      | 10306624,43        | Pascales               |
| Esfuerzo longitudinal                                         | 5153312,216        | Pascales               |
| Fuerza que tienen que<br>soportar los pernos (F,p)            | 17023,505          | Newtons                |
| # pernos                                                      | 8                  | ASUMIR                 |
| Factor de seguridad (n)                                       | 3                  | ASUMIDO                |
| Fuerza teórica (F,t)                                          | 2127,938149        | Newtons                |
| Fuerza de diseño (F,d)<br>(Fuerza que sportará cada<br>perno) | 6383,814447        | Newtons                |
| Escoger un tipo de perno                                      | Clase del perno    | Resistencia (Pascales) |
| escoger un apo de perno                                       | SAE 4.8            | 310000000              |
| Área del perno (A,p)                                          | 2,05929E-05        | m2                     |
| Area dei peillo (A,p)                                         | 20,59294983        | mm2                    |
| Ver en tabla el diámetro                                      | 5,120523222        | mm                     |
| nominal del perno                                             | 8                  |                        |
| Diámetro nominal                                              | M8>                | (1.5                   |

### ■ Metodología utilizada para el diseño térmico realizada en Excel:

|                                     |                  |           | DISEÑO TÉRN                   | AICO DEL       | ICTC                  |                       |                               |                                |                               |       |
|-------------------------------------|------------------|-----------|-------------------------------|----------------|-----------------------|-----------------------|-------------------------------|--------------------------------|-------------------------------|-------|
| PASO 1 : PROPIEDADES FÍ             | SICAS DE LOS FLU | JIDOS     | Flujo másico agua<br>(m.agua) | 5442,3         | (kg/h)                | 1,511 <b>7</b> 5      | (kg/s)                        |                                |                               |       |
| Fluido 1 (Agua)                     | VALOR            | UNIDAD    | Fluida 1                      | Tentrada (T1)  | Tsalida (T2)          |                       | Entalpía entrada<br>(h1,agua) | Entalpía salida<br>(h2,agua)   |                               |       |
| Temperatura media ( <i>Tmedio</i> ) | 50,5             | "C        | 113133                        | 43,5           | 57,5                  | <b>.</b>              | 182,19                        | 240,68                         |                               |       |
| Calores pecífico (Cp,I)             | 4,2              | KJ/kg-°C  | Fluida 2                      | t,entrada (t1) |                       | (°C)                  |                               | Entalpía entrada<br>(h3,vapor) | Entalpía salida<br>(h4,vapor) | (kJ/I |
| Densidad (d,l )                     | 988              | kg/m3     |                               | 101            | 100,5                 |                       | 2675,5                        | 421,11                         |                               |       |
| Vis cos idad dinámica (v,t)         | 0,0008           | (N-s )/m2 | Flujo mesico                  | 444.000        | 4-4-3                 | 2.2200                | 4-4-3                         |                                |                               |       |
| Conductividad térmica (k,t)         | 0,59             | W/m-°C    | vapor (m,vapor)               | 141,200        | (kg/h)                | 0,0392                | (kg/s)                        |                                |                               |       |
| Fluido 2 (Vapor)                    | VALOR            | UNIDAD    | PASO 2: TIPO                  | DE INTERCAMBI  | ADORf(A)              | (KW)                  | (w)                           |                                |                               |       |
| Temperatura media (tmedia)          | 100,75           | °C        | 2452246                       | 41007041555    | 3100 (O.)             |                       | 00000                         |                                |                               |       |
| Calor es pecífico (Cp,v)            | 2,043            | KJ/kg-°C  | PASO 2.1 C                    | ALOR TRANSFER  | am (d)                | 88,89                 | 88890,9                       |                                |                               |       |
| Densidad ( <i>d,v</i> )             | 0,952            | kg/m3     | PASO 2.2                      | DIFERENCIA D   | E TEMPERATU           | RAS ( <i>dT=dTL</i> ) |                               |                                |                               |       |
| Vis cos idad dinámica (u,v)         | 0,00001239       | (N-s )/m2 |                               | 49,946         |                       | (°C)                  |                               |                                |                               |       |
| Conductividad térmica (k,v)         | 0,02559          | W/m-°C    |                               |                |                       |                       |                               |                                |                               |       |
| Entalpía de vaporización (h/g)      | 2256000          | KJ/kg     | Conductividad                 | térmica del ac | ero (k,t <i>ubo</i> ) | 50,2                  | W/m-°C                        |                                |                               |       |

|                  | REYNOLDS PAR     | A FLUIO DENTRO     | DE UNTUBO (#   | le,t)         |                   | PASO 4: NÚMERO                     | O DE NUSSELT<br>TUBOS (N | TEN EL INTERIOR DE LOS<br>u,t)                                                            |                                                                                                                            |                                                                      |                               |            |
|------------------|------------------|--------------------|----------------|---------------|-------------------|------------------------------------|--------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|------------|
| Diámetro Exteri  | or del tubo (De) | 21,3               | 0,0213         | m             |                   | Valor de Pra                       | ındtl (Pr)               | 3,525                                                                                     | Incropera (1                                                                                                               | Fabla A.6)                                                           |                               |            |
| Diámetro Interi  | or del tubo (Di) | 15,8               | 0,0158         | m             |                   | Valor de Nuss                      | elt (Nus)                | 59,337                                                                                    | Página 445 II                                                                                                              | NCROPERA                                                             |                               |            |
| Número de        | tubos (n)        | 14                 | Radio externo  | del tuba (ra) |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
| Consta           | nte Pi           | 3,141592654        | 0,01           | 065           |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
| Valor de Rey     | molds (Re,t)     | 10877,14671        | Radio interno  | del tuba (ri) |                   | PASO 6: ASU                        | MIRUNVALO                | OR ALTO PARA EL COEFIC                                                                    | TO PARA EL COEFICIENTE DITERNO DE                                                                                          |                                                                      |                               |            |
| Mayor a 10000    | Flujo tur        | bulento            | 0,00           | 179           |                   |                                    | TF                       | RANSFERENCIA (ho)                                                                         |                                                                                                                            | Entre 2500 y                                                         | 100000                        |            |
| N                | l                | 2,8                | dividido para: | 5             |                   |                                    | 6409                     |                                                                                           | (W/(m2-°C)                                                                                                                 |                                                                      |                               |            |
| PASO 5: COEFIC   | IENTE INTERNO D  | DE TRANSFERENC     | IA DECALOR     |               |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
|                  | (hi)             |                    |                |               |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
| Coeficiente (hi) | 2215             | , <b>7</b> 51      | (W/(m2-°C)     |               |                   |                                    |                          | ERENCIA DE CALOR                                                                          |                                                                                                                            |                                                                      |                               |            |
|                  | Entre 50         | y 20000            |                |               |                   | l coeficiente to<br>encia de calor |                          | (W/m2-°C)<br>1528,232                                                                     | Entre 1000 y 2500                                                                                                          |                                                                      |                               |            |
|                  |                  |                    |                |               |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
| D45071 FIII      | IO DECALOR A T   | RAVÉS DE LA        |                | D490777TEN    | APERATURA MEDIA   | A SLIDEREICIAI                     |                          | DASO 7 3 CÁICUIO DEI                                                                      | LCOEFICIENTE BITERNO                                                                                                       | DETRANSFERENCIA                                                      |                               |            |
|                  | RED DEL TUBO (o  |                    |                | 7100712121    | DEL TUBO (Ts)     | TOOL ENGINEE                       |                          | 1100715 0110500 001                                                                       | DECALOR                                                                                                                    | DE THIRD ENGINE                                                      | Página 50                     | 55 INCROPE |
|                  | 76329,517        |                    |                |               | 84,949            |                                    |                          | 6409                                                                                      | ,042                                                                                                                       | (W/(m2-°C)                                                           |                               |            |
|                  |                  |                    |                |               |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
|                  |                  |                    |                |               |                   |                                    |                          |                                                                                           |                                                                                                                            |                                                                      |                               |            |
| PASO 8: CÁLCULI  | O DEL ÁREA DE T  | RANSFERENCIA.      |                | D4508110      | KITLID DEL TUBO / | lauba (d. sassa)                   |                          | PASO9: CAÍDA                                                                              | DE PRESIÓN DEL LAD                                                                                                         | XXX DE LOS TUBOS (                                                   | dP)                           |            |
|                  | DECALOR (A)      |                    |                |               | JGITUD DEL TUBO ( |                                    |                          | _                                                                                         |                                                                                                                            | 196.0                                                                |                               |            |
|                  | DECALOR (A)      | RANSFERENCIA<br>m2 |                | 1             | ,676<br>,7,583    | Ltubo) (1 peso) metros centímetros |                          | PASO 9: CAÍDA<br>Área de sección trai                                                     |                                                                                                                            | (A,tt) 196,0                                                         | 67                            |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676              | metros                             |                          | Área de sección tra:                                                                      |                                                                                                                            | (A,tt) 196,0<br>mm<br>0,000                                          | 67<br>2<br>27                 |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676<br>7,583     | metros<br>centímetros              |                          | Área de sección tra:                                                                      | ns vers al de un tubo                                                                                                      | (A,tt) 196,0<br>mm<br>0,000                                          | 67<br>2<br>27                 |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676<br>7,583     | metros<br>centímetros              |                          | Área de sección trai<br>Área tota                                                         | ns vers al de un tubo                                                                                                      | (A,tt) 196,0<br>mm<br>0,000<br>m2<br>550,7                           | 67<br>2<br>27<br>42           |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676<br>7,583     | metros<br>centímetros              |                          | Área de sección trai<br>Área tota<br>Velocidad ma                                         | ns vers al de un tubo<br>al de flujo (A,t)<br>ás ica del agua (Gt)                                                         | (A,tt) 196,0<br>mm<br>0,000                                          | 67<br>2<br>27<br>42<br>n2)    |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676<br>7,583     | metros<br>centímetros              |                          | Área de sección trai<br>Área tota<br>Velocidad ma                                         | ns vers al de un tubo<br>al de flujo (A,t)                                                                                 | (A,tt) 196,0<br>mm<br>0,000<br>m2<br>550,7<br>kg/(s-r                | 67<br>2<br>27<br>42<br>7      |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676<br>7,583     | metros<br>centímetros              |                          | Área de sección trai<br>Área tota<br>Velocidad ma<br>Velocidad li<br>Factor de fricción p | ns vers al de un tubo<br>al de flujo (A,t)<br>ás ica del agua (Gt)                                                         | (A,tt) 196,0<br>mm<br>0,000<br>m2<br>550,7<br>kg/(s-r<br>0,55<br>m/s | 67<br>2<br>27<br>42<br>7<br>7 |            |
|                  | DECALOR (A)      |                    |                | 1             | ,676<br>7,583     | metros<br>centímetros              |                          | Área de sección trai<br>Área tota<br>Velocidad ma<br>Velocidad li<br>Factor de fricción p | ns vers al de un tubo<br>al de flujo (A,t)<br>ás ica del agua (Gt)<br>neal del agua (vt)<br>ara tuberías de acei<br>(1/2") | (A,tt) 196,0 mm 0,000 m2 550,7 kg/(s-r 0,55 m/s 0,02                 | 67<br>2<br>27<br>42<br>7<br>7 |            |

 Valores de Esfuerzos de Fluencia máximos permisibles en materiales ferrosos. Obtenidos de Código ASME para Recipientes a Presión (2007):

TABLE 1A (CONT'D)
SECTION I; SECTION III, CLASSES 2 AND 3;\* SECTION VIII, DIVISION 1; AND SECTION XII
MAXIMUM ALLOWABLE STRESS VALUES SFOR FERROUS MATERIALS
(\*See Maximum Temperature Limits for Restrictions on Class)

|    | Line<br>No. | Nominal Composition | Product Form | Spec No.      | Type/Grade | Alloy<br>Designation/<br>UNS No. | Class/<br>Condition/<br>Temper | Size/Thickness, in.             | P-No. | Group<br>No. |
|----|-------------|---------------------|--------------|---------------|------------|----------------------------------|--------------------------------|---------------------------------|-------|--------------|
| 07 | 1           | Carbon steel        | Plate        | SA/AS 1548    | 7-460Å     |                                  | Annealed                       | ≤6                              | 1     | 2            |
| 07 | 2           | Carbon steel        | Plate        | SA/AS 1548    | 7-460N     |                                  | Normalized                     | ≤6                              | 1     | 2            |
| )7 | 3           | Carbon steel        | Plate        | SA/AS 1548    | 7-460R     |                                  | As rolled                      | ≤ 1 <sup>1</sup> / <sub>2</sub> | 1     | 2            |
|    | 4           | Carbon steel        | Plate        | SA/EN 10028-2 | P295GH     |                                  |                                | $2^{1}/_{4} < t \le 4$          | 1     | 1            |
|    | 5           | Carbon steel        | Plate        | SA/EN 10028-2 | P295GH     |                                  |                                | ≤ 2 <sup>1</sup> / <sub>4</sub> | 1     | 1            |
|    | 6           | Carbon steel        | Plate        | SA-455        |            | K03300                           |                                | $0.58 < t \le \frac{3}{4}$      | 1     | 2            |
|    | 7           | Carbon steel        | Bar          | SA-675        | 70         |                                  | •••                            |                                 | 1     | 2            |
|    | 8           | Carbon steel        | Forgings     | SA-105        |            | K03504                           |                                |                                 | 1     | 2            |
|    | 9           | Carbon steel        | Forgings     | SA-181        |            | K03502                           | 70                             | •••                             | 1     | 2            |
|    | 10          | Carbon steel        | Castings     | SA-216        | WCB        | J03002                           |                                | •••                             | 1     | 2            |
|    | 11          | Carbon steel        | Forgings     | SA-266        | 2          | K03506                           |                                | •••                             | 1     | 2            |
|    | 12          | Carbon steel        | Forgings     | SA-266        | 4          | K03017                           |                                |                                 | 1     | 2            |
|    | 13          | Carbon steel        | Forgings     | SA-350        | LF2        | K03011                           | 1                              |                                 | 1     | 2            |
|    | 14          | Carbon steel        | Forgings     | SA-350        | LF2        | K03011                           | 2                              |                                 | 1     | 2            |
|    | 15          | Carbon steel        | Forgings     | SA-508        | 1          | K13502                           |                                |                                 | 1     | 2            |
|    | 16          | Carbon steel        | Forgings     | SA-508        | 1A         | K13502                           | ***                            |                                 | 1     | 2            |
|    | 17          | Carbon steel        | Forgings     | SA-541        | 1          | K03506                           |                                |                                 | 1     | 2            |
|    | 18          | Carbon steel        | Forgings     | SA-541        | 1A         | K03020                           |                                | •••                             | 1     | 2            |
|    | 19          | Carbon steel        | Cast pipe    | SA-660        | WCB        | J03003                           |                                | •••                             | 1     | 2            |
|    | 20          | Carbon steel        | Forgings     | SA-765        | II         | K03047                           | •••                            | ***                             | 1     | 2            |
|    | 21          | Carbon steel        | Plate        | SA-515        | 70         | K03101                           |                                |                                 | 1     | 2            |
|    | 22          | Carbon steel        | Plate        | SA-516        | 70         | K02700                           |                                |                                 | 1     | 2            |
|    | 23          | Carbon steel        | Plate        | SA/JIS G3118  | SGV480     | ***                              | •••                            |                                 | 1     | 2            |
|    | 24          | Carbon steel        | Wld. pipe    | SA-671        | CB70       | K03101                           |                                |                                 | 1     | 2            |
|    | 25          | Carbon steel        | Wld. pipe    | SA-671        | CC70       | K02700                           |                                | •••                             | 1     | 2            |
|    | 26          | Carbon steel        | Wld. pipe    | SA-672        | B70        | K03101                           |                                |                                 | 1     | 2            |
|    | 27          | Carbon steel        | Wld. pipe    | SA-672        | C70        | K02700                           |                                |                                 | 1     | 2            |
|    | 4           |                     |              |               |            |                                  |                                |                                 |       |              |
|    | 28          | Carbon steel        | Smls. pipe   | SA-106        | C          | K03501                           |                                | •••                             | 1     | 2            |
|    | 29          | Carbon steel        | Wld. tube    | SA-178        | D          |                                  |                                |                                 | 1     | 2            |
|    | 30          | Carbon steel        | Wld. tube    | SA-178        | D          |                                  |                                |                                 | 1     | 2            |
|    | 31          | Carbon steel        | Wld. tube    | SA-178        | D          |                                  |                                | •••                             | 1     | 2            |
|    | 32          | Carbon steel        | Smls. tube   | SA-210        | C          | K03501                           |                                | •••                             | 1     | 2            |
|    | 3           |                     |              |               |            |                                  |                                |                                 |       |              |

 Visualización del programa para el cálculo de recuperación de condensado en un intercambiador de calor (cobertura blanca).
 Obtenido de la página web de la Compañía Especialista en Vapor LTV:

| Introducir Datos                                  | Ur           | nidades SI(bar) 🔻 |
|---------------------------------------------------|--------------|-------------------|
| Tipo de liquido                                   | Agua (dulce) | ▼                 |
| Rango de Flujo del Liquido                        | 25           | GPM ▼             |
| Temperatura de Entrada del Liquido [?]            | 43.5         | °C ▼              |
| Presión de Vapor                                  | 15           | psig ▼            |
| Presión del Condensado [?]                        | 10           | psig ▼            |
| Carga de Condensado [?]                           | 120          | kg/h ▼            |
| Temperatura del Agua de Alimentación a la Caldera | 75           | °C ▼              |
| Rango de Agua de Alimentación                     | 227.16       | kg/h ▼            |
| Valor Calorifico del Combustible (Valor Bajo)     | 43000        | kJ/kg ▼           |
| Eficiencia de la Caldera                          | 90           | % ▼               |
| Costo Unitario de Energía                         | 3            | \$/MJ ▼           |
| Temperatura de Agua Cruda                         | 30           | °C ▼              |
| Costos de Aislamiento y Mano de Obra              | 16           | h ▼               |
| Eficiencia de Temperatura [?]                     | 90           | % ▼               |

Mostrar Opciones Avanzadas



| Resultados                        |         |              |
|-----------------------------------|---------|--------------|
| Ahorros Monetarios de Combustible | 1.82803 | x1000\$/yr ▼ |
| Temperatura de Salida del Liquido | 44.8639 | °C ▼         |
| Calor Recuperado                  | 10578.9 | w •          |
| Combustible Ahorrado Anualmente   | 15.7453 | kg/yr ▼      |
| % de Combustible Conservado       | 7.00479 | % ▼          |

Visualización del programa para el cálculo de recuperación de condensado en un intercambiador de calor (cobertura negra). Obtenido de la página web de la Compañía Especialista en Vapor LTV:

| Introducir Datos                                  | Un             | idades SI(bar) ▼ |
|---------------------------------------------------|----------------|------------------|
| Tipo de liquido                                   | Agua (dulce) ▼ |                  |
| Rango de Flujo del Liquido                        | 25             | GPM ▼            |
| Temperatura de Entrada del Liquido [?]            | 48.5           | °C ▼             |
| Presión de Vapor                                  | 20             | psig ▼           |
| Presión del Condensado [?]                        | 15             | psig ▼           |
| Carga de Condensado [?]                           | 140            | kg/h ▼           |
| Temperatura del Agua de Alimentación a la Caldera | 75             | °C ▼             |
| Rango de Agua de Alimentación                     | 227.16         | kg/h ▼           |
| Valor Calorifico del Combustible (Valor Bajo)     | 43000          | kJ/kg ▼          |
| Eficiencia de la Caldera                          | 90             | % ▼              |
| Costo Unitario de Energía                         | 3              | \$/MJ ▼          |
| Temperatura de Agua Cruda                         | 30             | °C ▼             |
| Costos de Aislamiento y Mano de Obra              | 16             | h ▼              |
| Eficiencia de Temperatura [?]                     | 90             | % ▼              |

Mostrar Opciones Avanzadas



| Resultados                        |         |              |
|-----------------------------------|---------|--------------|
| Ahorros Monetarios de Combustible | 2.17521 | x1000\$/yr ▼ |
| Temperatura de Salida del Liquido | 50.108  | °C ▼         |
| Calor Recuperado                  | 12588   | w •          |
| Combustible Ahorrado Anualmente   | 18.7357 | kg/yr ▼      |
| % de Combustible Conservado       | 8.31032 | % ▼          |

## Cotización de los equipos controladores de presión-temperatura



Cotizado a: NESTLE Cotizacion No: 150604-125

Atención: JORGE RODRIGUEZ

Validez de la Oferta: 10 DIAS

Condiciones de Pago: CREDITO 30 DIAS

## LA LLAVE S.A. DE COMERCIO

Direccion: Av. Juan Tanca Marengo Km. 21/2

04 2596900 Telefono: Guayaquil, Ecuador

Direccion: Av. Amazonas 6065 y Av. El Inca

Telefono: 02 3949400

Quito, Ecuador

Fecha: Junio 04 del 2015 Vendedor: Ivan Benavides

ibenavides@la-llave.com E-mail:

Telefono: 593 4 2596900 ext: 1170

| CATALOGO | DESCRIPCION                                                          | MARCA        | CANTIDAD | VALOR UNITARIO    | DSCTO. | PRECIO TOTAL | OBSERVACIONES                            |
|----------|----------------------------------------------------------------------|--------------|----------|-------------------|--------|--------------|------------------------------------------|
| 2651019  | REGULADORA DE PRESION 25P, 25 MAIN VALVE,<br>3/4IN,CAST IRON, NPT    | SPIRAX SARCO | 2,00     | \$ 690,00         | 10%    | \$ 1.242,00  | ENTREGA INMEDIATA. SALVO<br>VENTA PREVIA |
| 2651016  | PILOTO DE PRESION 25P,C/I 20-100PSI                                  | SPIRAX SARCO | 2,00     | \$ 347,75         | 10%    | \$ 625,95    | ENTREGA INMEDIATA. SALVO<br>VENTA PREVIA |
| 2651001  | PILOTO TEMPERATURA T2 TEMP PILOT,CI W/8FT<br>100°F-160°F (40°C-70°C) | SPIRAX SARCO | 1,00     | \$ 954,50         | 10%    | \$ 859,05    | ENTREGA EN 4 A 5 SEMANAS                 |
| 2209105  | PILOTO TEMPERATURA T2 TEMP PILOT,CI W/8FT<br>120°F-180°F (50°C-80°C) | SPIRAX SARCO | 1,00     | \$ 880,00         | 10%    | \$ 792,00    | ENTREGA EN 4 A 5 SEMANAS                 |
| 2651005  | ADAPTADOR 25PT                                                       | SPIRAX SARCO | 2,00     | \$ 625,00         | 10%    | \$ 1.125,00  | ENTREGA EN 4 A 5 SEMANAS                 |
|          |                                                                      |              |          |                   |        | \$ 4.644,00  |                                          |
| TI       | TIEMPO DE ENTREGA: SE MUESTRA EN CADA UNO DE LOS ITEMS.              |              |          | IVA 12%           |        | \$ 557,28    |                                          |
|          |                                                                      |              |          | TOTAL \$ 5.201,28 |        |              |                                          |







BALDOR









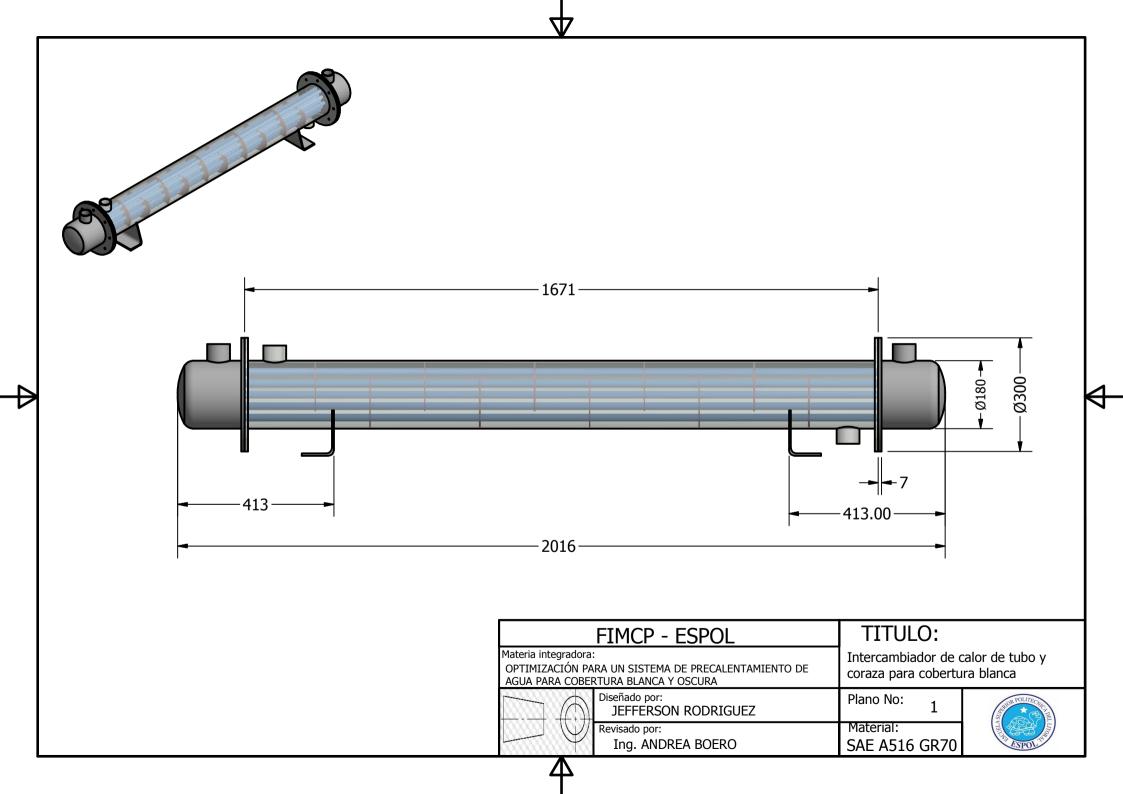


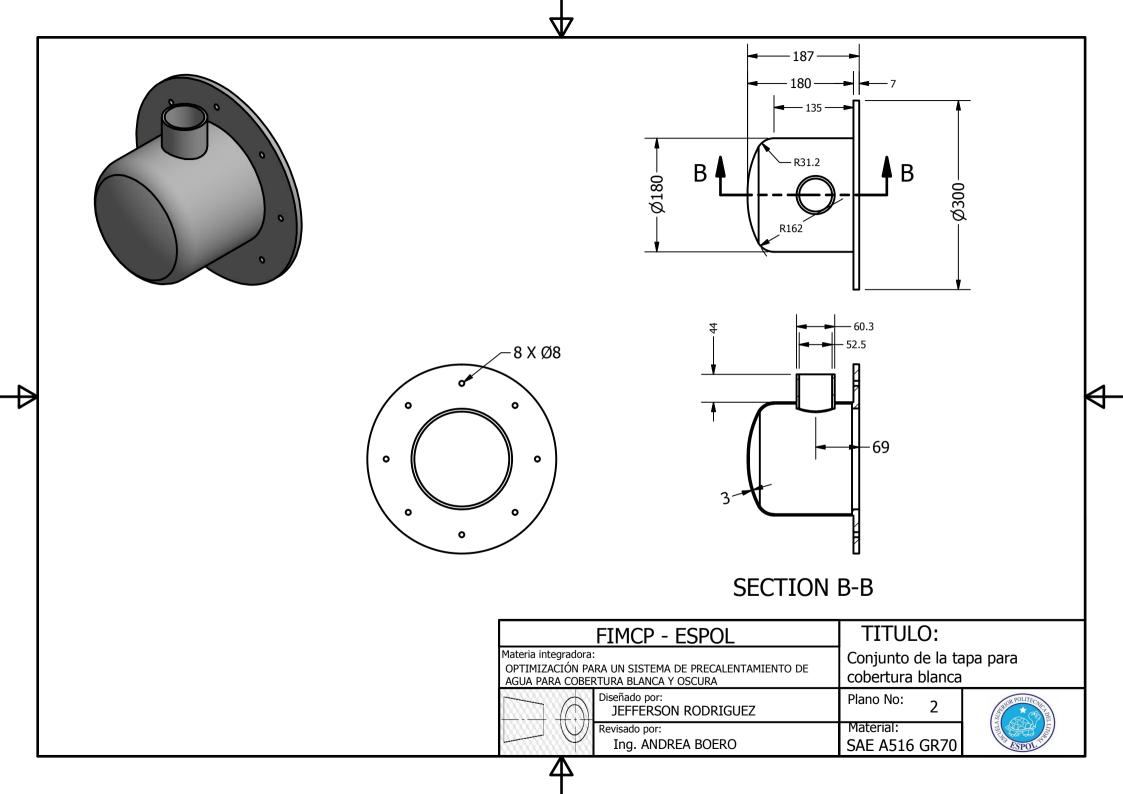


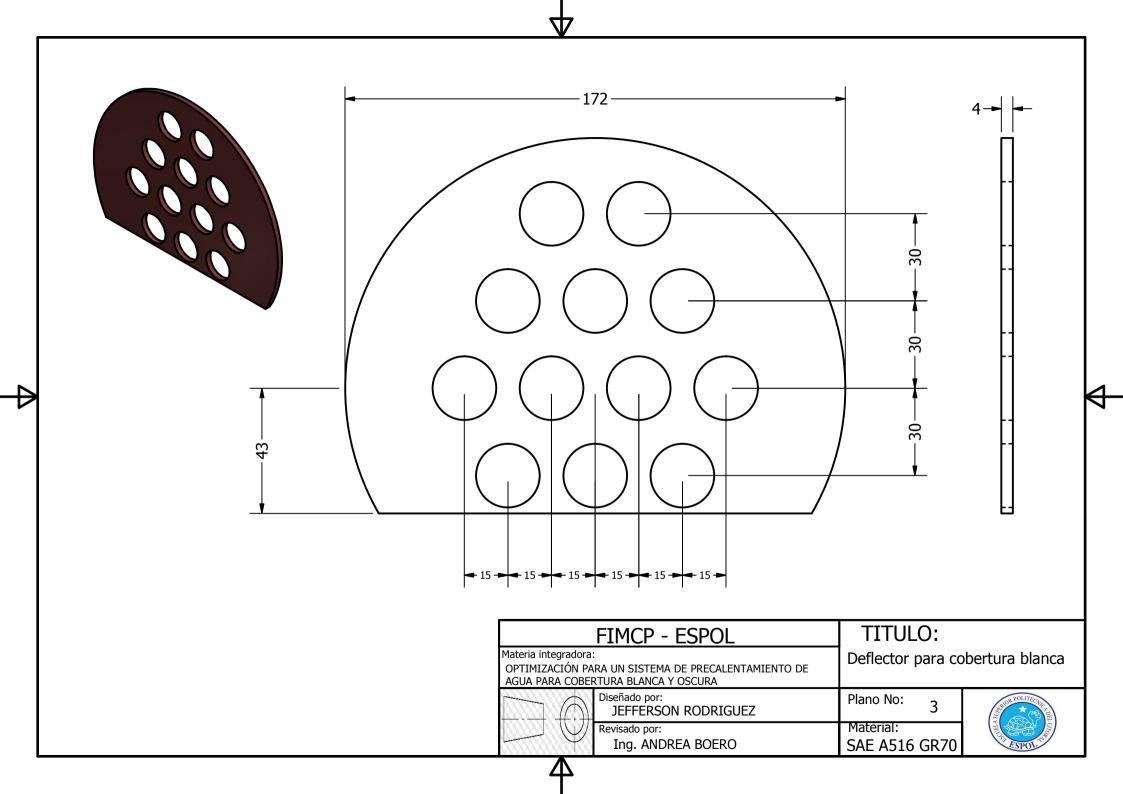


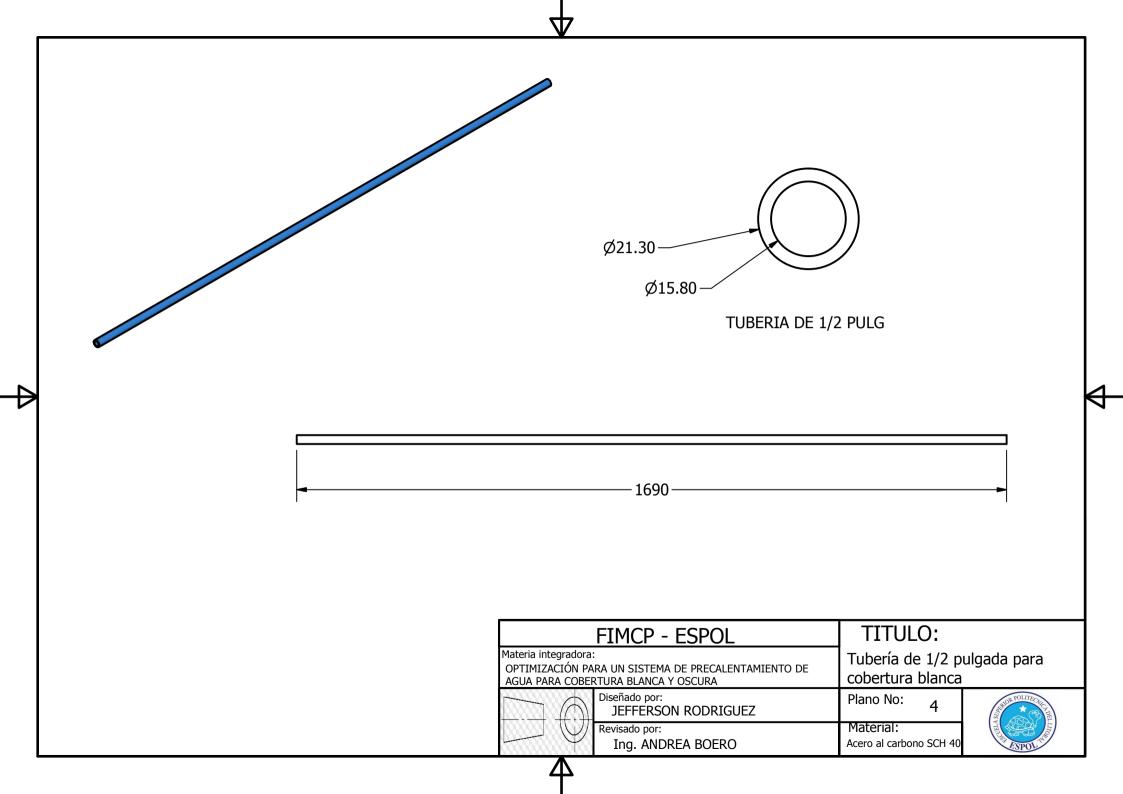


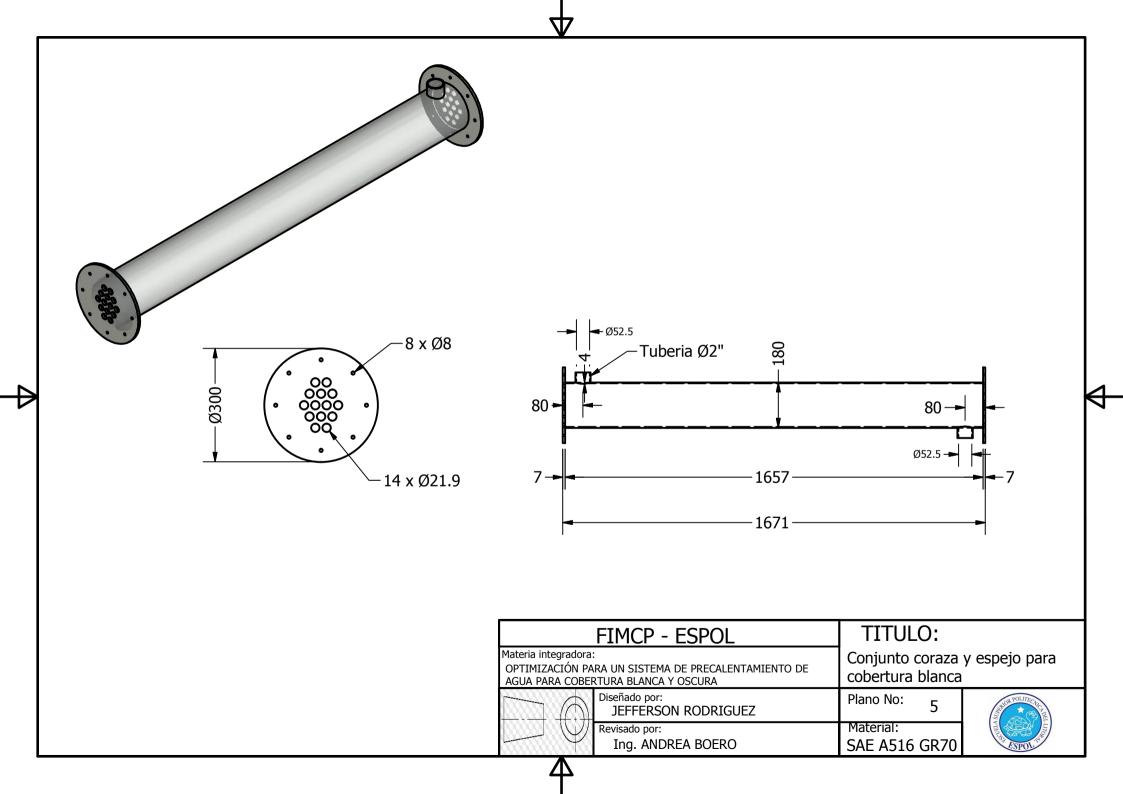






## Tasas de transferencia de vapor para serpentines sumergidos en agua


| able 2.10.1 Heat emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rates for steam coils submerged in water      | U (W/m2°C)    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|
| Customary overall heat transfer coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | 550 - 1 300   |
| Mean steam/water temperature difference around 30°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | 1 000 - 1 700 |
| Mean steam/water temperature difference around 60°C  Mean steam/water temperature difference around 110°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                               | 1 300 - 2 700 |
| The second secon | ture difference around 110 c                  | U (W/m²°C)    |
| Recommended rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (<2 bar g) with natural circulation of water  | 550           |
| Lower pressure ceils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (<2 bar g) with natural calculation of mater  | 1 100         |
| Higher pressure coils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (>6 bar g) with natural circulation of water  | 1 100         |
| Lower pressure coils                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (<2 par q) with assisted circulation of water |               |
| Higher pressure cells (>6 bar g) with assisted circulation of war                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | 1 700         |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |               |


|                       | rates for steam coils submerged in miscellaneous<br>(2 - 6 bar g) with natural liquid convection | U (W/m³°C) |
|-----------------------|--------------------------------------------------------------------------------------------------|------------|
| Aedium pressure steam | Z - B bat gi witt into a                                                                         | 170        |
| ight oils             |                                                                                                  | 80 - 110   |
| leavy oils            |                                                                                                  | 30 - 60    |
| ats                   |                                                                                                  |            |
|                       | (2 - 6 bar g) with forced liquid convection                                                      | U (W/m2°C) |
| Medium pressure steam | (Z - 6 bar g) with forces inquite con-                                                           | 550        |
| ight oils             | (200 sec Redwood at 38°C)                                                                        | 340        |
| Aedium oils           | (1 000 sec Redwood at 38°C)                                                                      | 170        |
| leavy oils            | (3 508 sec Redwood at 38°C)                                                                      | 85         |
| Molasses              | (10 000 sec Redwood at 38°C)                                                                     | 55         |
| Cata                  | (50 000 sec Redwood at 38°C)  ew and margaine are solid at normal temperatures to                |            |


| shle 2.10.2 Heat emission | rates for steam coils submerged in miscellaneous<br>(2 - 6 bar g) with natural liquid convection | U (W/m <sup>2</sup> °C) |
|---------------------------|--------------------------------------------------------------------------------------------------|-------------------------|
| Aedium pressure steam     | (2 - 6 bar g) with natural inquis company                                                        | 170                     |
| ight oils                 |                                                                                                  | 88 - 110                |
| łeavy oils                |                                                                                                  | 30 - 60                 |
| ats                       |                                                                                                  |                         |
|                           | (2 - 6 bar g) with forced liquid convection                                                      | U (W/m2°C)              |
| Medium pressure steam     |                                                                                                  | 550                     |
| Light oils                | (200 sec Redwood at 38°C)                                                                        | 340                     |
| Medium oils               | (1 000 sec Redwood at 38°C)                                                                      | 170                     |
| Heavy oils                | (3 508 sec Redwood at 38°C)                                                                      | 85                      |
| Molasses                  | (10 000 sec Redwood at 38°C)                                                                     |                         |
| Fats                      | (50 000 sec Redwood at 38°C)                                                                     | 55                      |

