

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"DISEÑO DE SISTEMA DE VIDEO-VIGILANCIA INALÁMBRICA PARA ZONAS AGRÍCOLAS-GANADERAS"

INFORME DE MATERIA INTEGRADORA

Previa a la obtención del Título de:

LICENCIADO EN REDES Y SISTEMAS OPERATIVOS.

Presentado por:

WENDY PAMELA MEREJILDO FIGUEROA

JOSE ROBERTO QUIROZ ASENCIO

GUAYAQUIL – ECUADOR

AÑO: 2016

AGRADECIMIENTOS

Mis más sinceros agradecimientos a Dios por bendecirme, fortalecer mi corazón, iluminarme y permitirme cumplir mis propósitos, a mis padres quienes me brindaron su apoyo incondicional para culminar con éxito mi carrera, a mis maestros a quienes admiro por tener la capacidad de transmitir sus conocimientos, orientación, asesorías y motivación para formarnos como estudiantes y profesionales, a todas las personas que formaron parte de mi vida profesional.

Wendy Merejildo Figueroa.

Si no me infundieras de fuerza para luchar, de valor para seguir y de aliento para vivir, ningún logro hubiera sido posible; Por lo que agradezco un logro más a Dios en nombre de su hijo amado Jesús, por estar siempre conmigo, por guiarme y darme de su bendición en el camino. A mi amada esposa Jessica Franco R., que con mucha paciencia ha estado para mí, llena de comprensión y sobre todo dándome impulso para lograr este objetivo, a mis padres que desde siempre han sido un gran apoyo y sus consejos que me han servido en cada situación buena y mala que se presenta en la vida, a los estimados docentes de nuestra carrera que día a día han impartido sus conocimientos con el mejor propósito de que seamos grandes profesionales de éxitos.

Agradezco de manera especial a la Ing. Adreana González por el apoyo brindado para los estudios durante toda la carrera, así mismo al Master Fausto Jácome, por permitirme continuar con mi educación y brindarme la oportunidad de laborar en la facultad que muy acertadamente dirige. Al Lsi. Gregorio Cruz G. y a cada compañero de labores y de aulas que han estado presente en esta etapa de una u otra manera, a todos ellos un agradecimiento sincero y de corazón. Gracias.

José Quiroz Asencio.

DEDICATORIA

El presente proyecto lo dedico a nuestro Padre celestial, a mis padres Sergio Merejildo y Jesther Figueroa, por sus esfuerzos, sacrificios que han hecho por mí, por sus consejos, valores y constancia, a mis hermanos que me han motivado a continuar mis estudios profesionales, a mis compañeros, a mis sobrinos para que vean en mi un ejemplo a seguir y a mis maestros por haberme ayudado a lograr mis objetivos.

Wendy P. Merejildo F.

El presente proyecto lo dedico a Dios y de una manera muy especial a Jessica Franco R. mi amada esposa, porque cuando quise desistir ella me lleno de aliento para continuar, de fe para seguir adelante y de esperanza para conseguir uno de mis mayores anhelos que ha sido este título. También dedicarle el presente, a mis dos bendiciones más grandes como son mis hijos, Dana y David Quiroz, que con sus locuras y ocurrencias alegran mis días, ellos son mi principal motivación para no rendirme y con este logro darle un ejemplo bueno a seguir. A mis padres por creer en mí y llenarme de confianza para alcanzar las metas propuestas. Dedicado para ustedes a quienes amo tanto. "Amor lo logramos y lograremos todas nuestras metas juntas."

José Quiroz A.

TRIBUNAL DE EVALUACIÓN

Kobert Andrap

Ing. Robert S. Andrade Troya. PROFESOR EVALUADOR

1Date

Ing. Albert G. Espinal Santana. PROFESOR EVALUADOR

DECLARACIÓN EXPRESA

"La responsabilidad y la autoría del contenido de este Trabajo de Titulación, nos corresponde exclusivamente; y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Wendy Merejildo Figueroa.

José Quitoz Asencio.

RESUMEN

El Proyecto consiste en el Diseño de un Sistema de video-vigilancia inalámbrico para zonas agrícolas-ganaderas, con el fin de llevar un mayor control de las actividades que se desarrollan, así como también la prevención de hurto que es común en las zonas, detección de intrusos y supervisión del estado del negocio.

La solución propuesta nos brindará vigilancia permanente desde cualquier sitio donde exista conexión a internet, brindando seguridad con monitoreo en tiempo real en la zona y sus alrededores.

En caso en que se haga efectivo el hurto tener pruebas para las respectivas denuncias, así mantener y preservar la seguridad del sitio.

El proyecto se encuentra divido en capítulos para cumplir con las descripciones antes mencionadas, se instalarán cámaras Ip con sus respectivos equipos de radio enlace que establecerán conexión con la antena principal para cubrir las diferentes rutas, obteniendo energía limpia al trabajar con paneles solares que alimentarán a los dispositivos.

De acuerdo al estudio del sitio se realizará prueba de conexión entre el radio enlace principal y radios receptores. Así como también los cálculos para obtener los diferentes datos de características de dispositivos para la instalación, como línea de vista para las antenas, la potencia requerida para el panel solar, la autonomía para las baterías.

ÍNDICE GENERAL

AGRADEC	IMIENTOS	ii
DEDICATO	DRIA	iii
TRIBUNAL	DE EVALUACIÓN	iv
DECLARA	CIÓN EXPRESA	v
RESUMEN	I	vi
ÍNDICE	E GENERAL	vii
ÍNDICE	E DE FIGURAS	ix
ÍNDICE	E DE TABLAS	xi
CAPÍT	ULO 1	1
1.	DESCRIPCIÓN DEL PROBLEMA	1
1.2	Situación Actual	5
1.3	Objetivos	7
1.3.1	1 Objetivos generales	7
1.3.2	2 Objetivos Específicos	7
CAPÍT	ULO 2	8
2.	DIAGRAMA DE LA SOLUCIÓN	8
2.1	Componentes del Sistema de Video-Vigilancia	10
2.1.	1 Diagrama de Implementación del Panel Solar	10
2.1.2	2 Orientación del Panel Solar	12
2.2	Descripción de la Solución	12
2.3	Características Técnicas	13
2.4	Configuración de Dispositivos	13
2.4.7	1 Configuración de Radio Enlace	13
2.4.2	2 Configuración NVR y Cámaras	17
2.4.3	3 Configuración de Cámaras de seguridad Ip	22
2.4.4	4 Acceso vía Web al VNR	24
2.5	Presupuesto de Equipos	27
2.6	Cálculo de la Zona de Fresnel	28

2.6.1 Cálculo de Paneles Solares y Baterías	31
2.6.2 Cálculo de Potencia en Panel Solar	32
CAPÍTULO 3	35
3. ANÁLISIS DE LOS RESULTADOS	35
3.1 Pruebas de Implementación en cuanto a distancia y señal	36
CONCLUSIONES Y RECOMENDACIONES	45
BIBLIOGRAFÍA	47
ANEXOS	48

ÍNDICE DE FIGURAS.

Figura 1.1: Visualización del perímetro del sitio.	2
Figura 1.2: Cercamiento de Hacienda Zeas.	3
Figura 1.3: Ruta del ganado vacuno	4
Figura 1.4: Rutas aledañas a la hacienda	6
Figura 2.1: Diseño de Solución de Video-vigilancia inalámbrica	8
Figura 2.2: Punto de Acceso	9
Figura 2.3: Diagrama de Funcionamiento y características del Panel Solar	.11
Figura 2.4: Orientación del panel solar	.12
Figura 2.5: Configuración de Antena ubiquiti	.14
Figura 2.6: Configuración de estación Antena Inalámbrica.	.17
Figura 2.7: Asistente para configurar NVR	.17
Figura 2.8: Pantalla para contraseña de Administrador	.18
Figura 2.9: Pantalla para elegir zona horaria	.18
Figura 2.10: Configurar disco duro del NVR	.19
Figura 2.11: Configuración de dirección IP al dispositivo NVR	.19
Figura 2.12: Gestión de cámaras – agregar y configurar lp	.20
Figura 2.13: Configuración de Grabación	.20
Figura 2.14: Prueba de la cámara	.21
Figura 2.15: Menú Principal del Sistema NVR	.21
Figura 2.16: Prueba de grabación	.22
Figura 2.17: Configuración de cámaras Ip vía explorador de Internet	.22
Figura 2.18: Configuración de Red vía Web	.23
Figura 2.19: Imagen de cámara vía internet	.23
Figura 2.20. Configuración Ajuste de visualización	.24
Figura 2.21. Acceso a dispositivo NVR vía Web	.24
Figura 2.22. Pantalla principal de NVR en la Web.	.25
Figura 2.23. Prueba de cámara vía Web	.25
Figura 2.24: Diagrama de zona de Fresnel	.28

Figura 2.25: Detalle de Simulador de Enlace Zona Fresnel2	29
Figura 2.26: Detalle de Zona de fresnel	31
Figura 2.27: Cálculo de potencial energético	32
Figura 3.1: Detalle de Espectro de Bandas de Frecuencias y canales	36
Figura 3.2: Detalle de respuesta de conexión de antena sección inalámbric	a. 37
Figura 3.3: Pestaña principal de la antena y calidad de conexión	38
Figura 3.4: Pestaña de configuración avanzada prueba de distancia	39
Figura 3.5: Comprobación de conexión entre antenas.	39
Figura 3.6: Prueba de conexión a la antena cliente4	10
Figura 3.7: Prueba de conexión a la cámara IP.	10
Figura 3.9: Características del dispositivo principal4	11
Figura 3.10: Prueba de velocidad de transmisión4	12
Figura 3.11: Prueba en consola desde la antena principal4	12
Figura 3.12: Prueba en consola hacia la antena cliente4	13
Figura 3.13: Prueba en consola hacia la cámara IP.	13
Figura 3.14: Prueba de conexión entre antenas4	14

ÍNDICE DE TABLAS

ÍNDICE DE FÓRMULAS

Fórmula 2.1: Cálculo zona de fresnel	30
Fórmula 2.2: Cálculo zona de fresnel. Fórmula Simple	31
Fórmula 2.3: Cálculo potencia de paneles Fotovoltaico	32
Fórmula 2.4: Cálculo pérdida de compensación	33
Fórmula 2.5: Cálculo capacidad total de las baterías	33
Fórmula 2.6: Cálculo energía en el controlador	34

CAPÍTULO 1

1. DESCRIPCIÓN DEL PROBLEMA.

1.1 Antecedentes.

El negocio de varios hacendados es la ganadería, en su mayoría en producción bovina, los mismos que necesitan de grandes espacios o superficies que por lo general se encuentran en zonas rurales en nuestro País.

Muchos propietarios generalmente viven de la cría de vacuno, en tierras amplias y productivas y sin servicio de energía eléctrica.

Debido al crecimiento de las ciudades y a la expansión las haciendas están alejadas de las zonas urbanas, es así como los propietarios establecieron su inversión en estos puntos rurales.

El levantamiento de información fue realizado en la hacienda llamada "ZEAS" ubicada en la parroquia CHANDUY de la provincia de Santa Elena a 1:30 horas de la ciudad de Guayaquil. La misma que cuenta con una superficie de 20 hectáreas planas aproximadamente.

La actividad de la hacienda se especifica por conteo de cabezas de ganado, con un cálculo de que posee un estimado de 100 cabezas de ganado de ordeño.

Las siguientes especificaciones del espacio visualizado y medido con la ayuda de la aplicación Google Earth como se muestra en la Figura 1.1, con una superficie total de 156.597,98 m2, perímetro de 1.70 Km.

Visualización del perímetro del sitio.

Figura 0.1: Visualización del perímetro del sitio.

La hacienda cuenta con un corral hecho con estacas, postes de madera con alambres de púas como acostumbran en la zona, tanto para evitar el escape del ganado como la entrada de extraños. Como se observa en la Figura 1.2.

Para llevar un control de su ganado suelen marcar el vacuno con iniciales, además del conteo manual de parte del capataz que se realiza diariamente dentro de la misma, antes de la salida del mismo.

Figura 0.2: Cercamiento de Hacienda Zeas.

A pesar que el área es amplia no se ha plantado pasto dentro de la hacienda por la inversión que representa hacerlo, tampoco es de mayor beneficio para ellos llevarles el pasto al sitio, por lo que se necesita trasladar el ganado a los pastizales que poseen mayor pasto para su alimentación diaria.

El ganado en algunos casos se moviliza de manera independiente en las tardes sin la supervisión de algún capataz, ya que el ganado se dirige por un vacuno líder por lo tanto las demás le siguen en busca del pasto. En este sector tienen dos rutas distintas ya trazadas, que en ocasiones llegan hasta un kilómetro de distancia y retornan en el ocaso guiadas por un capataz, como se especifica en la Figura 1.3.

Figura 0.3: Ruta del ganado vacuno.

Las actividades diarias se ajustan a un tiempo específico, siendo así que se aprovecha el lugar para el aseo del ganado, aplicación de medicamentos, partos, vacunación y ordeñarlas dentro de la hacienda.

Horario detallado en la tabla 1 mostrados en el siguiente esquema.

HORARIO	ACTIVIDADES
10:00 – 12:00	Aseo de ganado y ordeñar.
13:00 – 14:00	Descanso del ganado y comer pasto en pequeñas porciones.
14:30 – 15:15	Traslado del ganado a las diferentes zonas de pastizales.
15:20 – 16:30	El rebaño del ganado descansa y se alimenta en el pastizal.
16:30 – 17:15	Retorno del Vacuno.
18:00	El ganado en su respetivo corral.

Tabla 1: Horario de Actividades.

1.2 Situación Actual.

Para las diferentes labores que se llevan a cabo, no existe un mayor control sobre el cumplimiento del horario establecido, puesto que el dueño pasa la mayoría de tiempo fuera de la parroquia, por lo tanto, mantiene una relación de confianza con el capataz para conservar en buena marcha su negocio.

La inseguridad por abigeato, o robo de ganado, es una preocupación fundamental para los propietarios de las haciendas, ya que esto implica pérdidas económicas, debido que en situaciones el ganado se traslada independientemente, en el transcurso del retorno del ganado se han reportado perdida de los mismos, que ha causado malestar a los dueños.

Cuando se producen estos hurtos, no se poseen pruebas o algún indicio de quien pudo haberlo cometido, ya que estas áreas son no controladas y de libre acceso para transitar por los mismos.

Es el lugar perfecto para el hurto, debido a carreteras aledañas de una de las rutas, ejecutándose los delitos en camionetas o camiones, en ciertas ocasiones aprovechando la oscuridad de la noche por falta de alumbrado al retorno del ganado, como se muestra en la Figura 1.4.

Figura 0.4: Rutas aledañas a la hacienda.

El cerramiento de la hacienda no ofrece una buena seguridad, por lo tanto, es fácil destruir o extraer las estacas de la cerca e ingresar a la misma, sobre todos para aquellos que saben cómo hacerlo.

El incremento de delincuencia, hurto, etc., en los últimos años ha creado la necesidad de tomar medidas de seguridad eficaces y efectivas con el fin de disminuir y tratar de erradicar esta realidad, por esta situación los dueños han decidido buscar una alternativa efectiva para cuidar sus intereses desde su hacienda hasta el sitio donde llega el ganado, ya que en el camino hacia el pastizal carecen de sistemas o energía eléctrica. Por lo que es importante no descartar métodos de vigilancia que podrán ayudar a suprimir este problema que no solo existe en nuestro país, también alrededor del mundo de los hacendados u otros negocios dentro de una zona rural.

La vigilancia se ha incrementado ante la consecuencia de la progresiva demanda de un ambiente normal, tranquilo con seguridad y paz, por los empleados, colaboradores y dueños de la hacienda, es comprensible sentirse preocupados por los hechos ocurridos y por el futuro de su negocio.

1.3 Objetivos.

1.3.1 Objetivos generales.

Implementar un diseño de sistema de video-vigilancia autónomo que opere las 24 horas del día, que permita el monitoreo desde cualquier parte del mundo donde se tenga acceso a la internet, indica que mantendrá vigilancia permanente de tal forma que se pueda prevenir robo de ganado por parte de los llamados cuatreros, quienes son personas dedicadas al robo de ganado vacuno y control del estado del ganado.

1.3.2 Objetivos Específicos.

- Desarrollar un diseño de video-vigilancia.
- > Conectar red de cámaras para acceso remoto y vía internet.
- > Implementar área de supervisión que automatice el control.
- Supervisar la entrada y salida del personal de trabajo.
- > Control y vigilancia del bienestar del ganado vacuno.
- Prevenir hurto.
- Detectar y reconocer movimientos de intrusos

CAPÍTULO 2

2. DIAGRAMA DE LA SOLUCIÓN.

Figura 2.1: Diseño de Solución de Video-vigilancia inalámbrica

La Figura 2.1 muestra el diseño de implementación de la red inalámbrica con los distintos dispositivos a utilizar.

En la oficina central que se encuentra dentro de la hacienda, se ubicarán los diferentes dispositivos de conexión de red y monitoreo, está constituida por 2 computadoras fijas, un router inalámbrico para acceso a internet, que es necesario para la vigilancia desde cualquier punto exterior a la hacienda, para esto se podrá aprovechar el enlace existente con la empresa CNT de 2 Mbps. Adicionalmente se implementará un sistema de CMR – arreglo de monitor en un área específica, donde el operador visualiza uno o más visores de una superficie, para el control de las distintas cámaras

remotas ayudado por un equipo NVR -network video record- el cual mantendrá almacenado las capturas de video emitidos remotamente de cada nodo.

El switch PoE capa 3, suplirá dos temas: la creación de vlans, en la que se manejarán los envíos de datos y videos por diferentes segmentos de red; proveer de energía a los radios enlaces principales en la torre a través de cable par trenzado categoría 6. Además, se contará con antenas sectoriales las cuales servirán para obtener mayor distancia de conexión, establecerán las conexiones con los diferentes nodos remotos a una frecuencia de 2.4 Ghz, frecuencia que se encuentra saturada en las zonas urbanas no así en las zonas rurales, por lo cual es mayormente recomendada para alcanzar mayor distancia por las longitudes de ondas que son mayores a las de 5Ghz.

En los puntos de vigilancia remota se localizarán las cámaras de grabación ip, las mismas que tendrán característica PTZ(Pant-Tilt-Zoom) plano horizontal(panning), plano vertical (tilt), acercarse o alejarse (Zoom), controlada por un operador, la cual indica que puede realizar acercamientos además de rotar sobre los ejes horizontal y vertical entre otras características. Se conectará la cámara mediante cable par trenzado categoría 6 con el dispositivo de radio frecuencia, el mismo que transmitirá a 1 Mbps –ancho de banda recomendado para la trasmisión de cámaras de video-vigilancia-. Estos dos dispositivos serán alimentados de energía eléctrica a través de un panel solar que genera energía fotovoltaica –El diagrama de conexión del punto de acceso receptor se mostrará como en la Figura 2.2.

Figura 0.2: Punto de Acceso

2.1 Componentes del Sistema de Video-Vigilancia.

Referencia, detalle y descripción de los componentes que conforman nuestro diseño del sistema de video vigilancia IP se los puede observar en la tabla 2 a continuación:

EQUIPOS	DESCRIPCIÓN				
Router	Enrutador de paquete conectado directamente al switch.				
Switch PoE	Conmutador de interconexión conectado al Router				
Cámaras IP	Cámara que emite imágenes directamente a la red				
	conectado a la antena.				
Paneles solares	Dispositivo que capta energía de radiación solar				
	conectado a una cámara IP.				
NVR	Grabador de video en red				
Antenas Sectoriales	Antena direccional				
Equipo de Radio	Interconecta a los terminales de telecomunicación.				
Monitor	Visualiza la transmisión del video en tiempo real.				

Tabla 2: Equipos del sistema de video vigilancia.

2.1.1 Diagrama de Implementación del Panel Solar.

El panel solar es el dispositivo encargado de captar la radiación solar para generar energía, la misma que servirá para el funcionamiento de la cámara y el radio enlace en los nodos remotos [1], mediante los cálculos ya realizados, cuyos cálculos se demuestran en la sección 2.8.1, se espera que el panel solar reciba 1000 vatios fotovoltaicos que generarán 12 voltios de salida con una potencia de 300Wp.

El panel solar estará conectado al controlador de carga, el mismo que llevará los 12V hacia las baterías. Además, ejercerá control sobre las baterías de tal forma que una vez que está completamente cargada la misma, el controlador de carga desconecta el interruptor para interrumpir el paso de energía. Una vez que la batería se descarga hasta cierto nivel,

vuelve el controlador a reconectar el interruptor para cargar volverla a cargar [2].

El controlador de carga posee una salida para la conexión del inversor, el mismo que se encargará de transformar los 12 Vdc a 110 Vac, donde se podrá alimentar de energía el sistema de radio frecuencia y la cámara de video de vigilancia.

Detalle de conexión y funcionamiento podemos observarlo explícitamente en la Figura 2.3.

Figura 0.3: Diagrama de Funcionamiento y características del Panel Solar

2.1.2 Orientación del Panel Solar.

Figura 0.4: Orientación del panel solar.

La orientación del panel solar estará hacia el norte, esto debido a la zona de implementación y por la ruta para aprovechar la mayor energía solar del día como se representa en la Figura 2.4.

El panel solar de 300WP tiene dimensiones de 1954*992*45mm con un peso de 30.5 Kg, el cual estará soportado por un poste de 12mtrs de (aluminio), el mismo puede soportar un peso de carga Máxima de 80 Kg suficiente para el peso del panel solar.

2.2 Descripción de la Solución.

Ante la necesidad de controlar lo que ocurre en el campo se propone una solución, la cual el sistema de video vigilancia cumplirá con los objetivos generales.

Se trata de una aplicación útil para los propietarios y empleados de la hacienda a la hora de vigilar su ámbito dentro y fuera de la misma, con el fin de mantener y preservar la seguridad del sitio. Al ser vigilados por sus jefes los empleados aumentan sus niveles de productividad, este proceso mantendrá a los dueños informados como trabajan sus colaboradores en su ausencia y del funcionamiento de su negocio, sin tener que realizar investigaciones por otros medios como llamadas telefónicas o visitar el lugar periódicamente como se acostumbra.

En delincuencia, en caso de observar movimiento sospechoso tomar las precauciones necesarias, y en caso de no poderse evitar, logremos tener un perfil de personas involucradas en el mismo, ya que el propietario o el usuario autorizado podrá visualizar grabaciones realizadas por las cámaras IP en nuestro sistema de video vigilancia, que luego podrán servir como pruebas para las respectivas denuncias. La video vigilancia no solo protege de delincuentes externos, también se usan para detectar robos internos de empleados dentro de la empresa.

2.3 Características Técnicas.

Se plantea desarrollar un proyecto de diseño de un sistema de video-vigilancia inalámbrico, debido a las características analizada en la zona y la dificultad de cablear la misma.

Se implementarán cámaras IP en el área para cubrir los diferentes puntos estratégicos donde camina el ganado. En el perímetro de la hacienda no existen redes eléctricas, para obtener este servicio se utilizará paneles solares con el fin de suministrar energía que alimenten las baterías, que a su vez mantendrán a las cámaras en funcionamiento.

Se designará dentro de la hacienda un área para el cuarto de telecomunicaciones, donde estarán ubicado los equipos que se detalla en el siguiente tema.

2.4 Configuración de Dispositivos.

2.4.1 Configuración de Radio Enlace.

Para el correcto funcionamiento de nuestro diseño inalámbrico, se configurará un esquema punto – multipunto para el envío de video con su

respectivo direccionamiento de segmentación de red para la conexión de nuestros equipos.

Para esta solución se ha considerado utilizar equipos Airmax Ubiquiti, por su rendimiento y alcances en cuanto a distancias que se necesitará para la transmisión de datos del diseño, además que ofrece diversas funcionalidades y herramientas intuitivas para la configuración de las radios [3].

Se plantea utilizar las siguientes características y configuración de equipos para el buen desempeño de la red:

Para la torre principal donde se ubicará la Estación Base, se utilizará un Rocket M2 Ubiquiti con una antena sectorial Airmax 2.4 Am-2G1690 que ayudará a obtener una distancia de hasta más de 5km y una mejor ganancia entre 16 – 17 dbi.

El equipo para la Estación base el Rocket M2, incorpora utilidades que ayudarán a calcular el enlace a cuanto distancia se refiere, con la herramienta Airlink (https://airlink.ubnt.com/#/), además provee de un analizador de espectro para escoger el canal más puro en cuanto a ruido e interferencia se refiere llamado Airview. La IP por defecto de los equipos airmax es 192.168.1.20 con su el usuario y respectiva contraseña ubnt, Figura 2.5.

Figura 0.5: Configuración de Antena ubiquiti

Una vez elegido el canal, se debe de tomar en consideración la configuración de las siguientes características del Radio como se muestra en la tabla 3 y 4 a continuación:

Pestaña WIRELESS:

Características		Configuración	
Modo inalámbrico:		Punto de Acceso	
SSID:		WZeas1	
Modo IEEE 802.11:		A/N mixed	
Frecuencia Mhz:		Uso de AirView	
Seguridad Inalámbrica:		WPA2-AES	
WDS (Modo Puente		Habilitado	
Transparente):			
Código de País:		Ecuador	
Ancho de Canal:		20 Mhz	
Potencia de Salida:		16 dbi	

Tabla 3: Características de equipos de radio Inalámbrica.

Pestaña NETWORK

Características	Configuración	
Modo de Red:	Punto de Acceso	
Modo de Configuración:	Zeas	
Dirección ip de Administración:		
Dirección IP:	10.0.0.20	
Mascara de Red:	255.255.255.0	
Puerta de Acceso:	10.0.0.3	
IP DNS Principal: Proveedor de interne		
IP DNS Secundario: Proveedor de internet		

Tabla 4: Características de equipo de radio de red.

Para los equipos receptores, se harán uso de equipos NanoStation M2, que entre sus características de manera general podemos mencionar que permite un ancho de banda de 150 Mbps a una distancia hasta 5 Km. Para configurar el equipo, ingresamos con la ip por defecto 192.168.1.20, luego se cambiará esta, por una ip dentro del mismo rango de la estación base.

Los parámetros a configurar para este equipo que trabajará como receptor están en la tabla 5:

Características	Configuración	
Modo Inalámbrico:	Estación	
SSID:	Botón Seleccionar – WZeas1 *	
WDS (Modo Puente Transparente):	Habilitado	
Código de País:	Ecuador	
Seguridad Inalámbrica:	WPA2-AES**	

Tabla 5: Características de equipos receptores Nano.

En la opción del SSID que es el nombre de la red, se encontrará con un botón seleccionar, al cual a darle click se abrirá una nueva ventana de site survey (descubrimiento de sitios), el mismo en el que aparecerá el nombre de WZeas1 establecido en la estación base, indicando la intensidad de señal del mismo, el cual se escogerá para la conexión, seguidamente este pedirá la clave para el enlace, que se indicó en WPA2-AES. Luego se establece el código de País. Los demás campos se establecen por defecto, tomando la configuración de la antena principal, como se muestra en la Figura 2.6.

MAIN WIRI	LESS	NETWORK	ADVANCED	SERVICES	SYSTEM	Tools:	▼ Logo
asic Wireless Settings							
Mirologo Mir	day Ct	ation	-				
WDS (Transparent Bridge Mo	a): 🗌	Enable	•				
vvD3 (Transparent Druge wo		Endore		Colort			
Look to AP M	C: 68	72:51:1A:AB:CE		Select			
LOCK TO AP M	te: Eo	vador	•	hance			
IEEE 802.11 Mc	de: B/	G/N mixed		mange			
Channel Width	[?] Au	ito 20/40 MHz	•				
Channel Shifting	[?] Di	sable	۲				
Frequency Scan List, M	Iz: 🔲	Enable					
Auto Adjust to EIRP Li	nit: 🕑	Enable					
Output Pov	er: "		-/// 12	dBm			
Data Rate Mod	ile: De	efault	•				
Max TX Rate, Mt	os: M	CS 15 - 130 [300]	▼ 🖉	Automatic			
Wireless Security							
Secu	ity: M	PA2-AES	T				
WPA Authenticat	on: PS	SK V					
WPA Preshared K	ey:			Show			

Figura 0.6: Configuración de estación Antena Inalámbrica.

2.4.2 Configuración NVR y Cámaras.

Para la implementación se hará uso de un NVR de 32 cámaras para su debido crecimiento, la misma que permitirá el control visual y el control remoto de cada una de las cámaras, este almacenará en los discos los videos que capturen las cámaras IP, la configuración se dará sobre los siguientes parámetros: Los NVR se los podrá configurar por el asistente o una vez cargado el programa. Como muestra la Figura 2.7.

Figura 0.7: Asistente para configurar NVR.

La siguiente pantalla solicitará el ingreso de una contraseña para el usuario Administrador, por lo general los equipos tienen una contraseña de fábrica, la cual será cambiada por una contraseña personalizada, observar en la Figura 2.8.

Figura 0.8: Pantalla para contraseña de Administrador

Se escoge la zona horaria del país en el que se está trabajando, en este caso Ecuador (GMT-05:00), Figura 2.9.

Figura 0.9: Pantalla para elegir zona horaria.

Los NVR traen un sistema de arreglo de discos, por ende, estos discos deben ser formateados por el sistema para su óptimo funcionamiento, Figura 2.10

Figura 0.10: Configurar disco duro del NVR.

Inmediatamente se procederá a la asignación de la IP del NVR, dentro del rango especificado para las conexiones con los equipos de radio-frecuencia. Esta configuración, también se puede modificar una vez cargado el sistema, Figura 2.11.

	Asistente
Tipo de NIC DHCP Dirección Ipv4	10M/100M autoadaptativa
Direccion IPv4 por	10 .0 .0 .1
Servidor DNS favorito Servidor DNS altern	10.0.0.1
	Anterior Siguiente Salir

Figura 0.11: Configuración de dirección IP al dispositivo

Al presionar el botón siguiente, se agregarán las cámaras al NVR que se encuentren dentro de nuestra red, observar Figura 2.12.

Figura 0.12: Gestión de cámaras – agregar y configurar lp

Al final empezará la grabación en el sistema, ver Figura 2.13.

Figura 0.13: Configuración de Grabación.

Acceder

Nombre de u...
admin

Contraseña

OK

Cancelar

Pantalla de prueba del funcionamiento de la cámara con NVR, Figura 2.14.

Figura 0.14: Prueba de la cámara.

Al Acceder al NVR con clave y contraseña, aparecerá el menú principal, donde se hallarán opciones de reconfiguración del NVR, configuración de la cámara, de discos y reproducción de grabaciones, Figura 2.15.

Figura 0.15: Menú Principal del Sistema NVR

Pantalla de muestra de reproducción de grabación, Figura .2.16

Figura 0.16: Prueba de grabación

2.4.3 Configuración de Cámaras de seguridad Ip.

Los dispositivos hikvision, que es la marca de cámaras que se utilizarán para la implementación tienen una Ip por defecto 192.0.0.64, con la cual se ingresará al navegador para la configuración del dispositivo, ver Figura 21.

Figura 0.17: Configuración de cámaras Ip vía explorador de Internet.

La primera pantalla mostrará la imagen de la cámara con los diferentes menús a configurar. Ver Figura 2.18.

Live view	Reprod.	Reg.	Configuraci	ón	💄 admin 🖙 Cerrar ses
🖞 Configurac. local 🛛 🗖	TCP/IP Puerto				
Configurac. local	Aliverte e MIC				
Configuración básica ^	Ajustes Nic	A.A.			
Sistema	Tipo NIC	Auto	•		
Red	DHCP				
Vídeo/Audio	Dirección Ipv4	10.0.0.10		Prueba	
Imagen	Máscara subred IPv4	255.255.255.224	4		
Seguridad	Direccion IPv4 prede	t. 10.0.0.1			
³⁰ Configuración avanzada	Modo IPv6	Anuncio de ruta	•	Ver anuncio de ruta	
	Dirección IPv6				
	Máscara de subred l	Pv6 0			
	Pta.en.IPv6 pr.				
	Direcc.MAC	c4:2f:90:2c:8b:f0			
	MTU	1500			
	Dirección multicast				
	Habilitar detecció	n de multidifusión			
	Servidor DNS				
	Servidor DNS favorito)			
	Servidor DNS alterna	tivo			
					Guardar

Figura 0.18: Configuración de Red vía Web.

En la pestaña configuración se encontrarán diversas opciones, como configuración de ip, la cual se cambiará por una ip de nuestro segmento, con el fin de poder agregar la cámara de video vigilancia al NVR. Ver Figura 2.19.

En la misma pestaña de configuración se podrán modificar parámetros como el de Video/Audio, Figura y seguridad, ubica dos en la parte lateral izquierda. Ver Figura 2.20.

Live view	Reprod.	Reg.	Configuración	🤽 admin 🛩 Cerrar ses
Configurac.local Configuraclon básica Configuración básica Configuración básica Configuración básica Configuración avanzada*	Ajuste visualización 12-11-2015 Pri	13:12:41	hikv2eabul01 Commutar aj Ajuste de im Brilo Contraste Saturación Nitidez * Ajustes de ci * Ajustes de ci * Balance bla * Hejora de in * Ajuste de vin	Justes Conmutación automática • hagen

Figura 0.20. Configuración Ajuste de visualización

2.4.4 Acceso vía Web al VNR.

Se podrá acceder al dispositivo NVR por medio de una interfaz web, para esto se escribirá la dirección IP del NVR en la barra de dirección, como muestra la Figura 2.21.

Figura 0.21. Acceso a dispositivo NVR vía Web
Posteriormente se debe autenticar para ingresar a la pantalla principal del NVR, en la parte lateral izquierda se observará el listado de cámaras conectadas al equipo, se podrán seleccionar una o varias cámaras para observar el video que están emitiendo. Ver Figura 2.22.

HIKVISION DS	S-2CD20)10F-I			0
Live view	R	eprod.	Reg.	Configuración	💄 admin 🖙 Cerrar sesión
 Configurac. local Configuración bási Sistema Red Video/Audio Imagen Seguridad Ø Configuración ava 	nzada Y	Video Tipo flujo Tipo video Resolución Tipo veloc. bits Calidad video Fotogramas/s Veloc. máx. bits Codificación de v Perfil Interv. campo I SVC Suavización	Flujo principal() Flujo de video 1280°720P Variable El más alto 30 2048 H 264 Perfil principal 50 Cerrar	Vormal) v v v v fps kbps v v v fos fos fos fos fos fos fos fos fos fos	orrar⇔Suavizar]
					Guardar

Figura 0.22. Pantalla principal de NVR en la Web.

Mediante la Figura 2.23 se representa la transmisión de la cámara en tiempo real vía internet, la respectiva especificación PTZ como se observa en la parte superior derecha.

Figura 0.23. Prueba de cámara vía Web

Para la configuración de red de equipos vamos a utilizar direccionamiento lpv4, para el funcionamiento de los dispositivos, agregando asignaciones dividas con segmentos de red distintas tanto para video y para datos, debido a la cantidad de dispositivos detallamos la dirección de mascara a implementar, aquellas especificaciones se encuentran en tabla 6.

VLAN	Redes	Dirección IP	Máscara
10	VIDEOS	10.0.0.1	255.255.255.0
20	DATOS	192.168.56.1	255.255.255.224
Cantidad de Direcciones	Dirección de Red	Máscara	Nombre de la Red
254	10.0.0.0	255.255.255.0	Host de video
30	192.168.56.0	255.255.255.224	Host de datos

Tabla 6: Configuración IP general de video y datos

2.5 Presupuesto de Equipos

En tabla 2.5 detallamos dispositivos con su descripción relacionada a marca y modelo de cada uno, especificaciones con su unidad de medida en voltaje y capacidad del mismo, con sus valores referentes a su descripción, con un costo total de equipos de \$42.509,90. Además nos puntualiza los costos de implementación del desarrollo, incluye instalación de equipos y configuración del mismo con un valor de \$1350,00. El valor general del proyecto nos muestra un total de 43.859,90.

Cabe indicar que el pago mensual del operador de sistema de video-vigilancia que se encargará del buen desenvolvimiento del mismo, este pasivo generará un gasto de \$450,00 para mayor detalle en la tabla 7.

COSTO DE EQUIPOS							
Cantidad	Descripción	Costo Unitario	Costo Total				
15	Panel solar Monocristalino 300 Wp / 12V max	800,00	12.000,00				
15	Regulador de carga Victron 10A. 12/24V	43,36	650,40				
15	Inversor de carga de 12v a 110 vac	85,50	1.282,50				
15	Baterías AGM 12V 600 Ah	850,00	12.750,00				
15	Soporte para paneles solares	120,00	1.800,00				
15	UBIQUITI CPE NANO LOCO M2 GHZ AP/CLIENTE 150 Mw / antena 10dbi / 45 grados NSM2 LOCO	80,00	1.200,00				
3	UBIQUITI AIRMAX ANTENA SECTORIAL 15 DBI / 2,4GHZ / 90° / MIMO DOBLE POLARIDAD AM-2G15-90	199,00	597,00				
3	UBIQUITI AIRMAX ROCKET M2 / 802.11b/g, 802.11n 400mw /2.4 ghz ROCKET M2	125,00	375,00				
1	TOUCH SWITCH POE PRO 16 PUERTOS UBIQUITI TOUCH SWITCH8	255,00	255,00				
15	Cámaras Domo PTZ IP EXTERIOR HIKVISION DS-2DF1-718	600,00	9.000,00				
6	Viáticos para soporte del sistema.	200,00	1.200,00				
1	NVR 32 CAMARAS IP HIKVISION DS9632NI-ST	1.200,00	1.200,00				
2	Monitores	100,00	200,00				
TOTAL CO	DSTO DE EQUIPOS		42.509,90				
Costo de implementación							
15	Instalaciones de equipos de radio, cámaras y paneles solares	80,00	1.200,00				
Configuraciones generales y puesta en marcha incluye capacitación.							
Total costo de Implementación							
COSTO T	OTAL DEL PROYECTO		43.859,90				

Tabla 7: Presupuesto de equipos.

2.6 Cálculo de la Zona de Fresnel

Figura 0.24: Diagrama de zona de Fresnel.

Una utilidad más que ofrece ubiquiti airmax es el de calcular de forma sencilla la zona de fresnel, en este caso se hace el análisis para la conexión más lejana, la marca azul indica que es la antena base (ACCESS POINT), y la maraca roja que es la estación, es decir donde está ubicada la cámara (STATION). Mediante google Maps se elige el lugar en la cual se situarán las antenas, haciendo referencia en el lugar donde se está trabajando.

Establecido el lugar de las dos antenas el programa indica los detalles de la conexión en el recuadro de la parte derecha de la página, mostrándonos parámetros de conexión, niveles de señal, distancia de las mismas. En el caso se ingresa parámetros con los cuales se va a trabajar, como por ejemplo la frecuencia que es de 2,4Ghz, la altura de las antenas acoplarlas para una mejor implementación e incluso se seleccionan los equipos de radio que se proponen, como se observa en la Figura 2.25.

Figura 0.25: Detalle de Simulador de Enlace Zona Fresnel.

La grafica indica que se puede obtener la zona de fresnel sin obstrucción desde los 26mtrs, esto se obtiene de la suma de los 12mtrs que ingresamos como parámetros en el campo Height en la parte de la antena radio base, más los 14mtrs de la superficie más alta del lugar, de la misma manera con la radio de estación a una altura de 22mtrs. Para verificar los datos ingresados, que es una estimación, se puede realizar la fórmula establecida para encontrar la zona de fresnel, se detalla de la siguiente forma:

r = 17,31 * sqrt [(d1*d2)/(f*d)].

Fórmula 2.1: Cálculo zona de fresnel

r = Radio de la zona de fresnel en metros.

d1 = Distancia desde la antena principal (ACCESS POINT) hasta el obstáculo.

d2 = Distancia desde el obstáculo a la antena receptora (STATION).

f = Frecuencia a utilizar

d = Distancia total de la conexión.

En el caso quedaría la operación de la siguiente forma:

r = 17,31 * sqrt [(0,70*0,30)/(2,4*1)]. r = 17,31 * sqrt [0,0875]. r = 17,31 * 0,2958. r = 5,12 mt

Ya encontrado el radio de la zona de fresnel, lo siguiente es saber la altura que se necesita para evitar la obstrucción que en este caso es de 15mtrs, para aquello se hace uso de la siguiente formula. Se multiplica el radio de fresnel x 2, debido a la segunda zona de fresnel, luego despejamos X.

```
r = 5,12 x 2 = 10,24
x - 15 = 10,24
x = 15 + 10,24
x = 25,24 mts
```

25,24mtrs es el total de altura que necesitaríamos para la conexión pura de la zona de fresnel, Ver Figura 2.27.

Figura 0.26: Detalle de Zona de fresnel.

En el caso de estudio también se puede utilizar un cálculo más simple debido que la distancia es relativamente corta 1km, la misma que quedaría de la siguiente formula:

Fórmula 2.2: Cálculo zona de fresnel. Fórmula Simple

2.6.1 Cálculo de Paneles Solares y Baterías.

Para el cálculo de los paneles solares y baterías es necesario primero tener en cuenta que se utilizarán 58 Watts de consumo por hora, esto

debido a los watts que ocupan los radios enlaces como la cámara ip a utilizar.

Equipo	Watts
Radio Enlace (Nanostation)	50 W
Cámara de vigilancia IP	8 W

Tabla 8: Detalle de consumo de Dispositivos.

2.6.2 Cálculo de Potencia en Panel Solar

Figura 0.27: Cálculo de potencial energético.

Lo primero a calcular es la potencia que necesitará en los paneles Fotovoltaico, para esto se utilizan los siguientes parámetros.

Fórmula 2.3: Cálculo potencia de paneles Fotovoltaico

Demanda Energética = 58 W * 24h

Demanda Energética= 1.392 Wh/día.

Irradiación solar para la zona = 5.56 Kwh/día.

La irradiación solar se obtiene gracias a una calculadora solar de medición en la zona, se selecciona el lugar donde se pretende calcular y muestra automáticamente el potencial energético de horas de sol diaria, mensual y anual, para esto se puede ayudar del siguiente enlace: http://www.enair.es/calcula-energia [4].

Establecidos estos datos se obtiene: Potencia total del Panel.

Factor para compensar pérdida:

Por sugerencia la perdida es de 1.2 W

Pérdida de compensación * Demanda Energética / Irradiación

Fórmula 2.4: Cálculo pérdida de compensación

Pérdida de compensación = 1.2 * 1.392/5.56

Pérdida de compensación= 300 Wp(watts pico)

Lo cual nos indica la potencia que necesita el panel solar para la solución, en este caso se necesita un panel solar de 300Wp.

Inmediatamente se calcula la capacidad que van a necesitar las baterías para una autonomía de 2 días. Anteriormente se realizó el cálculo de la demanda energética que es de 1.392 Wh/día, este valor se utiliza en la operación de la capacidad de baterías. Se considera una eficiencia de batería del 80%, así como descarga máxima del 50% para no afectar la vida útil de la batería, esto se da por recomendación. Mientras el voltaje del sistema no sea mayor a 1500 Wh/día es de 12 V, teniendo en cuenta estos datos se realiza el siguiente calculo.

Fórmula 2.5: Cálculo capacidad total de las baterías.

CTB = (2 * 1.392) / (0.8 * 0.5) = 2784 / 0.4 CTB = 6960W/h Potencia. CTB = Potencia / Voltios CTB = 6.960 / 12

Capacidad Total de Baterías (CTB) = 580 Ah

Necesitaremos baterías que cubran 580 Ah, en caso de no encontrar el valor exacto se puede realizar un banco de batería hasta llegar al valor deseado, sin embargo, existen baterías de 12V 600Ah que es óptimo para la implementación.

Por último, se realiza el cálculo de amperios para el controlador de carga, para ello utilizamos la potencia pico o máxima del panel solar, ya obtenida anteriormente con un valor de 300 Wp sobre el voltaje a utilizar que es de 12v.

Fórmula 2.6: Cálculo energía en el controlador

Energía en el controlador = 300 / 12

Energía en el controlador = 25 A

De la misma forma si no se encuentra el valor exacto se utiliza el más cercano superior.

En el cálculo también se ha tomado en cuenta que en el día se recibe la energía solar por 5.56, considerando una potencia media de 29W y una potencia máxima de 58 W, estos datos obtenidos también de la calculadora solar.

CAPÍTULO 3

3. ANÁLISIS DE LOS RESULTADOS

A diferencia que la hacienda no cuenta con un sistema o método de seguridad contra el robo de su ganado, el valor del sistema propuesto que se espera es de un porcentaje aproximado al 90% de mejora.

Gracias al control visual y a la operatividad posible, en el proyecto el tema de seguridad generará un buen grado de confianza.

Las cámaras de vigilancia de tecnologías Ip, representan un retardo de imagen de 1 a 3 segundos de transmisión.

El ancho de banda necesario para la transmisión de video de cada cámara ip se aproxima a 1Mbps, los cuales los equipos de radio-frecuencia utilizados para la implementación cuentan con 150 Mbps de ancho de banda, además se espera una calidad de Figura limpia y dentro los parámetros, tomando en cuenta la distancia en que se encuentran, ya que los dispositivos pueden trabajar a una distancia de 4 km y en el estudio la distancia máxima de los equipos es de 1km.

El técnico será capaz de solucionar los inconvenientes relacionados con el sistema, estará capacitado para realizar operaciones de instalación, configuración, uso y mantenimiento correctivo para el mismo.

El cálculo de la zona de fresnel nos muestra que obtenemos parámetros de conexión óptimos, entre las distintas distancias con los nodos remotos, como el correcto ancho de banda para la transmisión de video que a 1Km brinda 84,50Mbps y en conexiones más cercanas hasta 862Mbps.

El estudio de frecuencia muestra que la zona está libre de interferencia indicando los canales recomendables a usar.

La irradiación solar de zona de 5.56 Kmh/día, nos da un indicativo de que el diseño es funcional con respecto a los paneles solares.

La potencia total de la batería de 580 Ah nos asegura una autonomía de 2 días de carga sin recibir energía solar.

3.1 Pruebas de Implementación en cuanto a distancia y señal.

Para las pruebas se instalan los equipos de radios a las diferentes distancias que muestra el diseño, con una distancia máxima de 1Km para el equipo más lejano como ya se ha mencionado.

Luego de la configuración de cada uno de los dispositivos se llevan a cabo diferentes pruebas, entre ellas la elección de la frecuencia a utilizar en los dispositivos de radio, haciéndose uso de la herramienta AirView, para seleccionar la frecuencia más pura y libre de ruidos tal como lo muestra la Figura 3.1.

Figura 3.1: Detalle de Espectro de Bandas de Frecuencias y canales.

Esta opción se encuentra en el menú herramienta de los equipos de ubiquiti y muestra el espectro en la banda que se está trabajando, en este caso como los equipos trabajan en la banda de 2.4 Ghz, se observa el rango de frecuencias que se puede utilizar más el canal. Una lectura sencilla de la gráfica es que en las

frecuencias 2.405 a la 2.450 tiene menos obstrucciones, una guía es el color con el que se aprecian (azul), la cual indica que podemos trabajar en los canales 1 al 7.

Los otros canales y colores demuestran que están en actividad muy probablemente por otros dispositivos de radios.

Se procederá a la prueba de conexión, el site survey que es otra herramienta de los dispositivos de radio, ayudará a conectarse al equipo que se desea en este caso a WZeas1, mostrando el canal en que se encuentra, frecuencia entre otras características, como se observa en la Figura 3.2

🔊 [NanoStation Loco M2] -) 🗙 📃								- -	X
← → C 🛛 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹	?1450389271831							6	₩ ☆
	NenoStation OCO M2 Main V Basic Wireless Settings INanoStation Loco M21 - Sin Status V./10.0.0.25/sur Site Survey Scamed Freedomics	HRELESS NETW e Survey - Google (vey.cgi?iface=/	ORK ADVANCED	SERVICES	SYSTEM	Tools:	Construction Logout		
	2.412GHz 2.417GHz 2.422 MAC Address 9CD6.4384:CF.0F 68:72:51:1A:AB:CE 0A:18:D6:AD:A7:5D 1C:AF;F7:8E:C4:4C	IGHz 2.427GHz 2.43 SSID InLab WZeas1 Auidi-Maestria Edcom	2GHz 2.437GHz 2.442 Device Name NanoStation Lo	Encryption WPA2 WPA2 WPA2 NONE	2.452GHz 2.457GHz 2.44 Signal / Noise, dBm -55 / -100 -28 / -100 -61 / -100 -54 / -100	52GHz 2.467GHz 2.472 Frequency, GHz 2.437 2.442 2.462 2.462 2.462	GHz Channel 6 7 11 11		
	Selectable SSID's must be vit	sible and have comp	atible channel bandwidt	h and security se	ttings	Lock to AP S	elect Scan		
	SERVINE 🕕 PRODUCT				© Copy	rright 2006-2014 Ubiqu	iti Networks, Inc.		

Figura 3.2: Detalle de respuesta de conexión de antena sección inalámbrica.

Figura 3.3: Pestaña principal de la antena y calidad de conexión.

Una vez establecida la conexión se podrá observar las características de conexión como intensidad de la señal, velocidad de transmisión/recepción entre otras como se observa en la Figura 3.3. Se resalta que estos valores se los obtuvo a una distancia de 0.6Km entre las antenas, las mismas dan una distancia aproximada automáticamente

[NanoStation Loco M2] - Advanced - Window	vs Internet Explorer	
C C C C C C C C C C C C C C C C C C C		👻 😵 Error de certificado 🛛 🔄 🍫 🗶 📴 Bing
x Google	👻 🛂 Buscar 🐑 👪 Compartir 🛛 Más 🍽	Acceder
🚖 Favoritos 🛛 🚕 🐌 Sitios sugeridos 👻 🖉	Galería de Web Slice ▼	
😁 🔹 🗟 [NanoStation Loco M2] 🗙 🔊 [N	anoStation Zeas2] - Prin	🏠 🔻 🖾 👻 🖃 🖶 🔻 Página 🗸 Seguridad 👻 Herramientas 🕶 🔞
	NanoStation IOCO M2 Main Wireless Network advanced services system	Tools:
	Advanced Wireless Settings	
	RTS Threshold: [?] 2346 V Off	
	Distance: [?] 0.4 miles (0.6 km) 🖉 Auto A	Adjust
	Aggregation: [?] 32 Frames 50000 Bytes 💟 Enable	
	Multicast Data: [?] 🗹 Allow All	
	Multicast Enhancement: [?] 📝 Enable	
	Installer EIRP Controt [?] 🥅 Enable	
	Extra Reporting: [?] 🗹 Enable	
	Client Isolation: [?] 🔲 Enable	
	Sensitivity Threshold, dBm: [?] -96 🖉 Off	
	Advanced Ethernet Settings	
	LANO Speed: [7] Auto	
	Signal LED Thresholds	
	LED1 LED2 LED3 LED4 Thresholds, dBm; [7] - [94 - 80 - 73 - 65	

Figura 3.4: Pestaña de configuración avanzada prueba de distancia.

Una vez verificado estos datos, se procede hacer pruebas de ping entre los diferentes dispositivos desde las antenas. Ping a la antena principal con IP 10.0.0.20 desde el computador, como se muestra en la Figura 3.5.

🔊 [NanoStation Loco M2] - Ping - Google Chrome								
🕼 😹 https://10.0.0.8/pingtest.cgi								
Network Ping								
Select Destination IP:	specify manually 🔻 💍	Packet Count: 5						
	10.0.0.20	Packet Size: 56						
Host	Time	TTL						
10.0.0.20	0.3 ms	64	<u>م</u>					
10.0.20	0.27 ms	64						
10.0.0.20	0.47 ms	64						
10.0.0.20	0.27 ms	64						
10.0.20	0.64 ms	64						
			·					
		5 of 5 packets received, 0% los	s					
Min: C	0.27 ms Avg: 0.39 ms	s Max: 0.64 m	s					
		Star	t					

Figura 3.5: Comprobación de conexión entre antenas.

NanoStation Loco M2	2] - Ping - Google Chr	ome	AF		
🖹 https://10.0.0.20)/pingtest.cgi				88
Networ	k Ping				
Select D	Destination IP: spe	cify manually 🔻 🖒	Packet	t Count: 5	
	10.0	.0.25	Packet	t Size: 56	
Host		Time	TTL		
10.0.0	.25	4.46 ms		64	
10.0.0	.25	2.19 ms		64	
10.0.0	.25	4.43 ms		64	
10.0.0	.25	2.1 ms		64	
10.0.0	.25	3.47 ms		64	
					*
			5 of 5	packets received, 0% lo	DSS
	Min: 2.1 ms	Avg:	3.33 ms	Max: 4.46	ms
				St	art

Ping hacia la antena cliente 10.0.0.25 desde la antena principal, ver Figura 3.6.

Figura 3.6: Prueba de conexión a la antena cliente

Ping hacia la cámara IP 10.0.0.10 desde la antena principal, ver Figura 3.7

1	[NanoStation Loco M2] - Ping - Google	Chrome				x
	🖹 https://10.0.0.20/pingtest.cgi					88
	Network Ping					
	Select Destination IP:	specify manually 🔻 🖒	Packet Count:	5		
1		10.0.0.10	Packet Size:	56		
	Host	Time	TTL			
	10.0.0.10	4.22 ms		64 4	h	
	10.0.0.10	3.9 ms		64		
	10.0.0.10	4.97 ms		64		
	10.0.0.10	5.19 ms		64		
	10.0.0.10	11.77 ms		64		
			5 of 5 packets r	eceived, 0% loss	s	
	Min: 3.9	ms Avg: 6.01 ms		Max: 11.77 m	S	
				Star	t	

Figura 3.7: Prueba de conexión a la cámara IP.

Desde la antena principal también se posee una opción para ver qué y cuantos equipos están adheridos a él, como se lo puede observar a continuación, ver Figura 3.8

Monitor	Throug	hput <u>Stations</u> Interfac	es ARP Table Brid	dge Table R	toutes Log		
Station MAC	Device Name	 Signal / Noise, dBm 	TX/RX, Mbps	CCQ, %	Connection Time	Last IP	Action
68:72:51:1A:B4:94	NanoStation Ze	-32 / -99	162 / 270	99	00:01:36	10.0.0.25	kick
							Refresh

Figura 3.8: Monitor de dispositivos conectados.

De la misma manera la antena cliente puede observar las características del dispositivo principal al cual esta adherido, se muestra en la Figura 3.9.

Punto de Acceso 68:	72:51:	1A:AB:CE			
Nombre del dispos	sitivo:	NanoStation Lo	Tasa de negociación	última señal, dBm	
Pro	duct:	NanoStation Loco M2	MCS0	No está	
Firmw	vare:	v5.5.8	MCS1	No está	
Tiempo de Cone	exión	00:04:47	MCS2	No está	
Intensidad de la s	eñal:	-31 dBm	MCS3	No está	
Ruido b	base:	-100 dBm	MCS4	No está	
Dista	incia:	0.7 miles (1.1 km)	MCS5	No está	
	CCQ:	99%	MCS6	No está	
últin	ma IP:	10.0.0.20	MCS7	No está	
Tasa TX	X/RX:	270.0 Mbps / 162.0 Mbps	MCS8	No está	
TX/RX Bit F	Rate:	1.81 Mbps / 62.28 kbps	MCS9	No está	
Paquetes TX	X/RX:	58485 / 32420	MCS10	No está	
Tasa de Paquetes TX/RX,	pps:	294 / 132	MCS11	No está	
Bytes Transmit	tidos:	67917184 (64.77 MBytes)	MCS12	-33	
Bytes Recib	oidos:	2287971 (2.18 MBytes)	MCS13	No está	
			MCS14	No está	
			MCS15	No está	

Figura 3.9: Características del dispositivo principal.

Se realiza otra prueba para medla velocidad de transmisión, esto se lo lleva a cabo con la herramienta Speed Test, el cual indica una aproximación de la velocidad en Mbps de cuanto se envía y recibe. Ver Figura 3.10

[NanoStation Loco M2] - Speed Test - Google Chrome	l	- 0 X
🕼 bttps://10.0.0.20/sptest.cgi		8
Network Speed Test Select Destination IP: 10.0.0.25 User: ubnt Password: •••• Remote WEB Port: 80 Show Advanced Options Warning! If traffic shaping is enabled on either device	Test Results RX: 83.67 Mbps TX: 47.01 Mbps Total: 130.68 Mbps e the speed test results will be limited accordingly. Run Test	-

Figura 3.10: Prueba de velocidad de transmisión.

Desde una distancia aproximada a 1 Km se realizó conexión entre antenas, con la aprobación óptima en tiempo de respuestas en milisegundos. Para mayor demostración podemos observar la comprobación del ping desde la antena principal que es 10.0.0.20 con su respectiva estadística, hacia la dirección 10.0.0.25 que es la antena receptora con su respuesta y tiempos aproximados en la Figura 3.11.

🖾 Símbolo del sistema	-	×
C:\Users\Admin>ping 10.0.0.20		^
Haciendo ping a 10.0.0.20 con 32 bytes de datos: Respuesta desde 10.0.0.20: bytes=32 tiempo<1m TTL=64 Respuesta desde 10.0.0.20: bytes=32 tiempo<1m TTL=64 Respuesta desde 10.0.0.20: bytes=32 tiempo<1m TTL=64 Respuesta desde 10.0.0.20: bytes=32 tiempo<1m TTL=64		
Estadísticas de ping para 10.0.0.20: Paquetes: enviados = 4, recibidos = 4, perdidos = 0 (0% perdidos), Tiempos aproximados de ida y vuelta en milisegundos: Mínimo = 0ms, Máximo = 0ms, Media = 0ms		
C:\Users\Admin>ping 10.0.0.25		
Haciendo ping a 10.0.0.25 con 32 bytes de datos: Respuesta desde 10.0.0.25: bytes=32 tiempo=67ms TTL=64 Respuesta desde 10.0.0.25: bytes=32 tiempo=17ms TTL=64 Respuesta desde 10.0.0.25: bytes=32 tiempo=44ms TTL=64 Respuesta desde 10.0.0.25: bytes=32 tiempo=44ms TTL=64		
Estadísticas de ping para 10.0.0.25: Paquetes: enviados = 4, recibidos = 4, perdidos = 0 (0% perdidos), Tiempos aproximados de ida y vuelta en milisegundos: Mínimo = 17ms, Máximo = 67ms, Media = 44ms		
C:\Users\Admin>		~

Figura 3.11: Prueba en consola desde la antena principal.

Prueba bajo consola hacia la antena cliente con ping infinito que permite observar el tiempo de respuesta medido en milisegundos. Ver Figura 3.12

🔤 Símbolo del sistema - ping 10.0.0.25 -t	-	×
^C		/
C:\Users\Admin>		
C:\Users\Admin>ping 10.0.0.25 -t		
Haciendo ping a 10.0.0.25 con 32 bytes de datos:		
Respuesta desde 10.0.0.25: bytes=32 tiempo=10ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=22ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=11ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=16ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=12ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=67ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=14ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=19ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=14ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=11ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=18ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=10ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=25ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=12ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=12ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=41ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=65ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=46ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=4ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=11ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=27ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=27ms TTL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=18ms_TL=64		
Respuesta desde 10.0.0.25: bytes=32 tiempo=6ms TTL=64		
		×

Se establece conexión con la cámara Ip bajo consola de Windows sin interrupción con ping infinito, detallando su tiempo de respuesta en tiempo real. Ver Figura 3.13.

🚾 Símbolo del sistema - ping 10.0.0.10 -t	-	×
Haciendo ping a 10.0.0.10 con 32 bytes de datos:		^
Respuesta desde 10.0.0.10: Dytes=32 tiempo=20Ims l=04		
Respuesta desde 10.0.0.10. bytes-22 tiempo-12ms $TT = 64$		
Respuesta desde 10.0.0.10: bytes=32 tiempo=88ms TTL=64		
Estadísticas de ping para 10.0.0.10:		
Paquetes: enviados = 4, recibidos = 4, perdidos = 0		
(0% perdidos),		
Tiempos aproximados de ida y vuelta en milisegundos:		
Mínimo = 12ms, Máximo = 261ms, Media = 99ms		
C:\Users\Admin>ping 10.0.0.10 -t		
Haciendo ping a 10.0.0.10 con 32 bytes de datos:		
Respuesta desde 10.0.0.10: bytes=32 tiempo=47ms TTL=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=98ms TTL=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=42ms TTL=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=71ms TTL=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=/dms IIL=64		
Respuesta desde 10.0.0.10: bytes=22 tiempo=11ms IIL=64		
Respuesta desde 10.0.0.10: Dytes=32 (Tempo 2015) TTE=64		
Nespuesta desde 10.0.0.10. Dytes=32 tiempo=105ms (11=04		
Respuesta desde 10.0.0.10. bytes-22 tiempo-21ms TTI=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=210ms TTI=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=46ms TTI=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=35ms TTL=64		
Respuesta desde 10.0.0.10: bytes=32 tiempo=32ms TTL=64		

Figura 3.13: Prueba en consola hacia la cámara IP.

Para comprobar la distancia como observamos la Figura 3.14 donde nos especifica la información detallada de este proceso de conexión a distancia de 1.1 Km explícitamente.

NanoStation loco M2 air OS
MAIN WIRELESS NETWORK ADVANCED SERVICES SYSTEM Tools: Logout
Advanced Wireless Settings
RTS Threshold: [?] 2346 🕜 Off
Distance: [?] 0.7 miles (1.1 km) 🖌 Auto Adjust
Aggregation: [?] 32 Frames 50000 Bytes 🖉 Enable
Multicast Data: [?] 🖉 Allow All
Multicast Enhancement: [?] 🕢 Enable
Installer EIRP Control: [?] Enable
Extra Reporting: [?] 🕢 Enable
Client Isolation: [?] 📃 Enable
Sensitivity Threshold, dBm: [?] -96
Advanced Ethernet Settings
LAN0 Speed: [?] Auto
Signal LED Thresholds
LED1 LED2 LED3 LED4 Thresholds, dBm: [?] - 94 - 73 - 65

Figura 3.14: Prueba de conexión entre antenas.

CONCLUSIONES Y RECOMENDACIONES

Conclusión

- En base al estudio y pruebas se realizó el diseño, que ayudará a resolver los problemas ya mencionados.
- Estaremos aportando con el cuidado del medio ambiente al trabajar con energía limpia y gracias al área que se encuentra ubicada la hacienda podríamos aprovechar el nivel de radiación de la zona para la generación de voltajes suficientes para abastecer la batería que alimentará la cámara y el radio.
- 3. Las comunicaciones entre las radios establecidas siendo a 1 Km la más lejana, nos brinda un tiempo de respuesta de comunicación óptimo con un ancho de banda favorable mayor a 1Mbps necesarias para la transmisión del video de las cámaras hacia la antena principal.
- 4. Se estableció trabajar con una frecuencia de 2.4 Ghz debido que en la zona no está saturada de conexiones inalámbrica como están las zonas urbanas que usan comúnmente esta frecuencia.
- 5. Las aplicaciones de los dispositivos usados en las radios (UBIQUITI), sirvieron para establecer los enlaces, como altura de la antena, obstrucciones en las líneas de vistas (no se toma en cuenta construcciones) y para el cálculo de la zona de fresnel, además de establecer la frecuencia más limpia para trabajar.
- 6. Se puede implementar otras soluciones, en cuanto trabajar con energía limpia, tomando en cuenta que en la zona donde se ubicaran las cámaras no se posee de un cableado eléctrico, se podría hacer uso de un sistema de energía eólica, pero para lo cual se necesitaría mayor inversión, además que para la obtención de energía no se haría al mismo nivel y porcentaje que el panel solar.

Recomendaciones

- Debido a la cercanía al mar de la zona de implementación se considera el uso de poste hecho de fibra de vidrio para evitar la corrosión por salinidad.
- Para equipos como el sistema eléctrico del panel solar se establece un período de mantenimiento de cada seis meses.
- 3. Capacitar al personal encargado del sistema de video-vigilancia para eventualidades que se puedan presentar para un pronto diagnóstico.
- 4. En cuanto al mantenimiento de las antenas se lo realizará cada año y revisiones de enlaces que pueden verse afectado por fuertes vientos, aunque esto no pasa a menudo en la zona.
- 5. Impulsar en la zona trabajar con energía limpia con implementaciones similares al Diseño.
- Mantener los accesos a usuarios privilegiados a las cámaras de seguridad, para que no puedan monitorear personas ajenas a las mismas.
- 7. No se recomienda usar cámaras inalámbricas lp con antenas omnidireccionales para aumentar la potencia de las mismas, aunque reduciría el costo del proyecto, perderíamos potencia hacia los puntos más lejanos debido a que la irradiación de la señal se da en forma radial (circular), lo cual conllevaría a buscar otra solución para llegar a la conexión de 1Km. Es aquí la razón de por qué se optó trabajar con antenas de radios direccionales.

BIBLIOGRAFÍA

[1] Francisco Javier García Mata, Videovigilancia: CCTV usando vídeos IP. España: Publicaciones Vértices S. L., 2011.

[2] Pepa Mosquera Martínez – Luis Merino Ruesga, Empresa y energías renovable.España – Madrid: Fundación CONFEMETAL, 2006.

[3] Ubiquiti Networks, Inc., (2005, junio). https://www.ubnt.com/ [online]. Disponible en: <u>https://community.ubnt.com/airmax</u>

[4] ENAIR, (1970). Calculadora de Energía Eólica y Solar [online]. Disponible en: <u>http://www.enair.es/calcula-energia</u>

ANEXOS

Plan de Instalación y Configuración de Diseño de Sistema de Video-Vigilancia.

En la Figura 2.26 presentada a continuación se estiman los tiempos de desarrollo del sistema de video vigilancia empezando con el respectivo levantamiento de información relacionando un itinerario de tareas programadas, duración de tarea con sus fechas de inicio y fin de la actividad. Los temas previos al desarrollo donde indican las tareas establecidas antes de la ejecución, fase de implementación muestran los procesos de adquisición, distribución, instalación de equipos, configuración de los mismos y la fase de prueba en su tiempo definido previo a la ejecución del sistema.

Como nombres de los recursos son aquellos encargados o responsables de cada actividad establecida.

Id		Mod	Nombre de tarea		Duraciór	Comienzo	Fin	Nombres de los recursos	
		de							19 oct '15
1	U	tarea	DISEÑO DE SISTE		A 62 días	vie 16/10/15	lup 11/01/16		J V S D L M X J
2	-	5	EASE DE INVESTI	GACIÓN	6 días	vie 16/10/15	vie 23/10/15		_
3		5	Analisis de la pro		1 día	via 16/10/15	vie 16/10/15	lose Quiroz y Wendy Merejildo	Jose Ouiroz v Wendy
4		5	Analisis Visual de	Sector	2 días	lun 19/10/15	mar 20/10/15	lose Quiroz y Wendy Merejildo	Jose C
5	+	5	Estudio de una p	osible solución	3 días	mié 21/10/15	vie 23/10/15	lose Quiroz y Wendy Merejildo	
6	-	5	Actividades Prev	ia al desarrollo	16 días	cáb 24/10/15	vie 13/11/15	sose quiloz y wenay merejnao	
7	•	5	Desarrollar presu	inuesto de equipos	1 días	sáb 24/10/15	mié 28/10/15	lose Quiroz v Wendy Merejildo	_
2 2	•	<u> </u>	Pequerimientes	de equipes	2 días	iuo 20/10/15	hup 02/11/15	lose Quiroz y Wendy Merejildo	—
0	-	<u> </u>	Selessión de equ	inos	2 días	Jue 23/10/13	mić 04/11/15	Jose Quiroz y Wendy Merejildo	
10		<u>×</u>	Selección de equ	ipos	2 ulas	via 06/11/15	via 06/11/15	Jose Quiroz y Wendy Merejildo	
10		<u>×</u>	Estudio del sicio	norto noro oquinos	1 díac	cáb 07/11/15	vie 00/11/13	Técnicos do Instalogión	
12	•	<u>×</u>	Propagación del s	porte para equipos	4 ulas	Sab 07/11/15	nie 11/11/15	Ingeniere Electrice, Jaco Quirez V	
12		X	reparación del o	cuarto de	2 dias	Jue 12/11/15	Vie 13/11/15	Wendy Merejildo	
13		*	FASE DE IMPLEN		29 días	vie 13/11/15	mié 23/12/15	Wendy Merejido.	
14		\$	Adquisición de er	auipos	6 días	vie 13/11/15	vie 20/11/15	lose Quiroz v Wendy Merejildo	
15	•	\$	Distribución de e	auipos	3 días	sáb 21/11/15	mar 24/11/15	Técnicos de Instalación	
16		5	Instalación de en	uinos	15 días	mié 25/11/15	mar 15/12/15	Técnicos de Instalación	
17		\$	Configuración de	equipos	6 días	mié 16/12/15	mié 23/12/15	lose Quiroz v Wendy Merejildo	
18		\$	FASE DE PRUEBA		11 días	lun 28/12/15	lun 11/01/16		
19	+	5	Prueba de Impler	mentación	9 días	lun 28/12/15	iue 07/01/16	lose Quiroz v Wendy Merejildo	
20		5	Puesta en march	a - Provecto	2 días	via 08/01/16	Jun 11/01/16	lose Quiroz y Wendy Merejildo	
		A	r desta en march		2 0105	110 00/01/10	1011 11, 01, 10	sose danoz y menay merejnao	
				Tarea		Resumen	inactivo	Tareas externas	
				División		Tarea mar	nual	Hito externo	\$
_				Hito 🔹	•	solo durad	ión 🛛	Fecha límite	+
Proye	cto:	proj	ect_sistvideovig	Resumen		Informe d	e resumen manual	Progreso	
recha	a. vit	11/1	12/13	Resumen del proyecto		Resumen	manual	Progreso manual	
				Tarea inactiva		solo el co	mienzo [
				Hito inactivo		solo fin		1	
					-			-	

Detalles de Actividades de implementación.

PLAN DE IMPLEMENTACIÓN.

Para mejor planificación del Sistema de video-vigilancia se ha establecido el proyecto en diferentes etapas:

Etapa 1. Adquisición de equipos: se comprará equipos de acuerdo a las especificaciones según recomendaciones técnicas.

Etapa 2. Diseño de ubicación de Sistemas de video-vigilancia: se realizará el estudio visual del sitio para obtener la mejor ubicación de cada sistema remoto, serán instaladas 15 cámaras remotas distribuidas estratégicamente considerando los principales lugares de acceso al sitio y carreteras aledañas.

Diseño de Implementación del Sistema de video-vigilancia.

Etapa 3. Instalación del Soporte para equipos:

Para la colocación del soporte se tendrá que tomar en cuenta las recomendaciones de instalación, las mismas que indican que el tubo debe tener una base de concreto dentro de la superficie con dimensiones de unos 50 cm de base, 60 cm de altura o profundidad, 35 cm de corona para el empate con el tubo para lo cual será necesario utilizar pernos de 3/8 * 2.3/4 para el anclaje, de esta forma se instara el soporte como lo muestra en la figura 2.6.

Instalación de Soporte para Panel Solar.

Etapa 4. Adecuación de cuarto de telecomunicación:

Se realizará la instalación de equipos con su respectiva conexión que permitirá monitorizar y controlar cámaras de video desde las instalaciones de la oficina central. **Etapa 5. Instalación de equipos:** En esta actividad se procederá a distribuir los dispositivos en su sitio, para luego ejecutar la instalación predeterminada en cada uno.

Etapa 6. Configuración de equipos: se efectuará la configuración de equipos conforme a las determinaciones que indique el mismo.

Etapa 7. Pruebas y puesta en marcha: En esta etapa se ejecutará el sistema dentro de la oficina para supervisar la automatización de cámaras de video-vigilancia organizados en un tiempo específico hasta dejar puesta en marcha el proyecto.

La planificación de las actividades para la implementación se encuentra detallados más adelante.

DATA SHEET

TOUCH SWITCH POE PRO 16 PUERTOS UBIQUITI.

https://dl.ubnt.com/datasheets/toughswitch/TOUGHSwitch PoE DS.pdf

TOUGH Switch" Poe

Advanced Gigabit PoE Managed Switch

rough Switch **be**

Datasheet

Introducing the Advanced Power over Ethernet Controllers, TOUGHSwitch[®] PoE from Ubiquiti Networks. TOUGHSwitch PoE delivers reliable passive PoE and fast 10/100/1000 Mbps connectivity to attached Ubiquiti devices and other devices that support passive PoE.

To connect your PoE devices, simply enable PoE in the easy-to-use TOUGHSwitch Configuration Interface. Each port can be individually configured to provide PoE, so both PoE and non-PoE devices can be connected.

TOUGHSwitch is available in multiple versions to meet your deployment needs.

- TOUGHSwitch PoE is a cost-effective, 5-port Gigabit switch with 24V PoE support.
- TOUGHSwitch PoE PRO is an industrial-strength, 8-port Gigabit switch with 150 watts of power capable of powering 24V or 48V devices. Output voltage is controlled by the software.
- TOUGHSwitch PoE CARRIER features dual TOUGHSwitch PoE PRO systems in a rack-mountable, 1U form factor with 300 watts of power supporting up to 16 devices.

Simplify Your Deployment

TOUGHSwitch PoE allows network architects to design cleaner, less cluttered deployments. For example, integrating one TOUGHSwitch PoE PRO can eliminate the need for the following:

- 8 PoE adapters
- 8 power cords
- 8 power outlets
- 8 Ethernet patch cables

TOUGHSwitch PoE deployments increase efficiency and greatly reduce potential failure points – resulting in faster installations and less maintenance and troubleshooting.

www.ubnt.com/toughswitch

ANTENA SECTORIAL AIRMAX 2.4 AM-2G16-90. https://dl.ubnt.com/guides/sector/airMAX_Sector_AM-2G16-90_QSG.pdf

	Antenna Characteristics							
Model	AM-9M13	AM-2G15-120	AM-2G16-90	AM-3G18-120				
Dimensions* (mm)	1290 x 290 x 134	700 x 145 x 93	700 x 145 x 79	735 x 144 x 78				
Weight**	12.5 kg	4.0 kg	3.9 kg	5.9 kg				
Frequency Range	902 • 928 MHz	2.3 - 2.7 GHz	2.3 • 2.7 GHz	3.3 - 3.8 GHz				
Gain	13.2 - 13.8 dBi	15.0 - 16.0 dBi	16.0 - 17.0 dBi	17.3 - 18.2 dBi				
HPOL Beamwidth	109° (6 dB)	123° (6 dB)	91* (6 dB)	118° (6 dB)				
VPOL Beamwidth	120° (6 dB)	118° (6 dB)	90° (6 dB)	121° (6 dB)				
Electrical Beamwidth	15*	9*	9*	6*				
Electrical Downtilt	N/A	4*	4*	3*				
Max. VSWR	1.5:1	1.5:1	1.5:1	1.5:1				
Wind Survivability	125 mph	125 mph	125 mph	125 mph				
Wind Loading	95 lbf @ 100 mph	24 lbf @ 100 mph	19 lbf @ 100 mph	21 lbf @ 100 mph				
Polarization	Dual-Linear	Dual-Linear	Dual-Linear	Dual-Linear				
Cross-pol Isolation	30 dB Min.	28 dB Min.	28 dB Min.	28 dB Min.				
ETSI Specification	N/A	EN 302 326 DN2	EN 302 326 DN2	EN 302 326 DN2				
Mounting	Universal Pole	Mount, RocketM Bracket,	and Weatherproof RF Ju	mpers Included				

Specifications

Universal Pole Mount, RocketM Bracket, and Weatherproof RF Jumpers Included

		** Weight ind	ludes pole mount and excludes Ri	ocketM (RocketM sold separe			
	Antenna Characteristics						
Model	AM-5G16-120	AM-5G17-90	AM-5G19-120	AM-5G20-90			
Dimensions* (mm)	367 x 63 x 41	367 × 63 × 41	700 × 135 × 73	700 x 135 x 70			
Weight**	1.1 kg	1.1 kg	5.9 kg	5.9 kg			
Frequency Range	5.10 - 5.85 GHz	4.90 - 5.85 GHz	5.15 - 5.85 GHz	5.15 - 5.85 GHz			
Gain	15.0 - 16.0 dBi	16.1 - 17.1 dBi	18.6 - 19.1 dBi	19.4 - 20.3 dBi			
HPOL Beamwidth	137° (6 dB)	72° (6 dB)	123* (6 dB)	91° (6 dB)			
VPOL Beamwidth	118* (6 dB)	93° (6 dB)	123* (6 dB)	85° (6 dB)			
Electrical Beamwidth	8*	8*	4*	4*			
Electrical Downtilt	4*	4°	2*	2*			
Max. VSWR	1.5:1	1.5:1	1.5:1	1.5:1			
Wind Survivability	125 mph	125 mph	125 mph	125 mph			
Wind Loading	6 lbf @100 mph	6 lbf@100 mph	20 lbf @ 100 mph	26 lbf @ 100 mph			
Polarization	Dual-Linear	Dual-Linear	Dual-Linear	Dual-Linear			
Cross-pol Isolation	22 dB Min.	22 dB Min.	28 dB Min.	28 dB Min.			
ETSI Specification	EN 302 326 DN2	EN 302 326 DN2	EN 302 326 DN2	EN 302 326 DN2			
Mounting	Universal Pole	Mount, RocketM Bracket	, and Weatherproof RF Ju	mpers Included			

* Dimensions exclude pole mount and RocketM (RocketM sold separately) ** Weight includes pole mount and excludes RocketM (RocketM sold separately)

air MAX Sector Datasheet

ROCKET M2 AIRMAX.

https://dl.ubnt.com/guides/Rocket M/RocketM Series QSG.pdf

🛇 2.4 GHz Models

.

The 2.4 GHz frequency band is free to use, worldwide; however, it is extremely crowded due to interference from other wireless devices. Also, there are only three non-overlapping, 20 MHz channels available for use.

M2

RM2-Ti

The Rocket enclosure is built to survive harsh environments and fits the Rocket mount built into every airMAX antenna. Pair the Rocket with the appropriate antenna for your PtP link or PtMP network.

rudurt M

л

Its Gigabit Ethernet connection delivers high throughput, and its aircraft-grade aluminum casing improves performance in harsh RF environments and extreme weather conditions.

🛇 900 MHz Model

The 900 MHz frequency band has a higher tolerance for obstacles that may obstruct line of sight; however noise levels are typically higher. Also its use may require a license in some parts of the world.

M900

The Rocket enclosure is built to survive harsh environments and fits the Rocket mount built into every airMAX antenna. Pair the Rocket with the appropriate antenna for your PtP link or PtMP network.

Specifications

rochet M2

	M2 Physical / Electrical / Environmental Information
Dimensions	160 x 80 x 30 mm (6.30 x 3.15 x 1.18")
Weight	500 g (1.1 lb)
Enclosure Characteristics	Outdoor UV Stabilized Plastic
Processor	MIPS 24Kc
Memory	128 MB SDRAM, 8 MB Flash
Networking Interface	(1) 10/100 Mbps
RF Connections	(2) RP-SMA (Waterproof)
LEDs	Power, Ethernet, (4) Signal Strength
Max. Power Consumption	6.5W
Power Supply	24V, 1A PoE Adapter
Power Method	Passive PoE (Pairs 4, 5+; 7, 8 Return)
ESD/EMP Protection	± 24KV Air / Contact
Operating Temperature	-30 to 75° C (-22 to 167° F)
Operating Humidity	5 to 95% Noncondensing
Shock and Vibration	ETSI300-019-1.4

	M2 Software Information
Modes	Access Point, Station
Services	Web Server, SNMP, SSH Server, Telnet , Ping Watchdog, DHCP, NAT, Bridging, Routing
Utilities	Antenna Alignment Tool, Discovery Utility, Site Survey, Ping, Traceroute, Speed Test
Distance Adjustment	Dynamic Ack and Ackless Mode
Power Adjustment	Software Adjustable UI or CLI
Security	WPA2 AES Only
QoS	Supports Packet Level Classification WMM and User Customer Level: High/Medium/Low
Statistical Reporting	Up Time, Packet Errors, Data Rates, Wireless Distance, Ethernet Link Rate
Other	Remote Reset Support, Software Enabled/Disabled, VLAN Support, 64QAM, 5/8/10/20/30/40 MHz Channel Width Support
Ubiquiti Specific Features	airMAX Mode, Traffic Shaping with Burst Support, Discovery Protocol, Frequency Band Offset, Ackless Mode

	M2 Compliance
Wireless Approvals	FCC, IC, CE
RoHS Compliance	Yes

Fochefi Datashet

Operating Fre Output Power	quency					2011	
Output Power	r.					24	02 - 2462 MHz
Madulation							28 dBm
Madulation	TX Power S	pecifications			RX Power	Specifications	
MOGUNOON	Data Rate	Avg.TX	Tolerance	Modulation	Data Rate	Sensitivity	Tolerance
	1+24Mbps	28 dBm	± 2 dB	_	1+24 Mbps	+97 dBm Min.	± 2 dB
119	36 Mbps	26 dBm	± 2 dB	802.11	36 Mbps	-80 dBm	± 2 dB
02	48 Mbps	25 dBm	±2dB		48 Mbps	•77 dBm	± 2 dB
89	54 Mbps	24 dBm	±2dB		54 Mbps	-75 dBm	± 2 dB
	MCSQ	28 dBm	± 2 dB		MCS0	-96 dBm	± 2 dB
	MCS1	28 dBm	± 2 dB		MCS1	+95 dBm	±2dB
	MC52	28 dBm	±2dB		MC52	-92 dBm	±2dB
	MCS3	28 dBm	±2dB		MCS3	-90 dBm	± 2 dB
	MCS4	27 dBm	±2dB		MCS4	46 dBm	± 2 dB
×	MC55	25 dBm	±2dB	×	MC55	-83 dBm	± 2 dB
MA	MCS6	23 dBm	± 2 dB	W	MCS6	-77 dBm	± 2 dB
(ali	MCS7	22 dBm	± 2 dB	(ait	MCS7	+74 d8m	± 2 dB
II	MC58	28 dBm	± 2 dB	11	MC58	-95 dBm	± 2 dB
05.	MCS9	28 dBm	± 2 dB	03.	MCS9	-93 dBm	± 2 dB
00	MC510	28 dBm	± 2 dB	8	MCS10	-90 dBm	± 2 dB
	MC511	28 dBm	±2dB		MCS11	-87 dBm	± 2 dB
	MC512	27 dBm	± 2 dB		MCS12	-84 dBm	± 2 dB
	MCS13	25 dBm	± 2 dB		MCS13	+79 d8m	± 2 dB
	MC514	23 dBm	±2dB		MCS14	+78 dBm	± 2 dB
	MC515	22 dBm	± 2 dB		MCS15	-75 dBm	± 2 dB
	radata			I			

NANOSTATION M2 2.4GHz.

https://dl.ubnt.com/datasheets/nanostationm/nsm ds web.pdf

Specification	ns
---------------	----

System Information						
Model NanoStationM		locoM5/M2	locoM9			
Processor Specs	Atheros MIPS 24KC, 400 MHz	Atheros MIPS 24KC, 400 MHz	Atheros MIPS 24KC, 400 MHz			
Memory	32 MB SDRAM, 8 MB Flash	32 MB SDRAM, 8 MB Flash	64 MB SDRAM, 8 MB Flash			
Networking Interface	(2) 10/100 Ethernet Ports	(1) 10/100 Ethernet Port	(1) 10/100 Ethernet Port			

Regulatory/Compliance Information						
Model	NSM5/NSM2/locoM5/locoM2	NSM3	NSM365	locoM9		
Wireless Approvals	FCC Part 15.247, IC RS210, CE	-	FCC Part 90Z	FCC Part 15.247, IC RS210		
RoHS Compliance	Yes	Yes	Yes	Yes		

Physical/Electrical/Environmental						
Model	NSM5	NSM3/365	N\$M2	locoM5	locoM2	locoM9
Dimensions (mm)	294 x 31 x 80	294 x 31 x 80	294 x 31 x 80	163 × 31 × 80	163 × 31 × 80	164 x 72 x 199
Weight	0.4 kg	0.5 kg	0.4 kg	0.18 kg	0.18 kg	0.9 kg
Power Supply (PoE)	24V, 0.5A	24V, 0.5A	24V, 0.5A	24V, 0.5A	24V, 0.5A	24V, 0.5A
Max. Power Consumption	8 W	8 W	8 W	5.5 W	5.5 W	6.5 W
Gain	16 dBi	13.7 dBi	11 dBi	13 dBi	8 dBi	8 dBi
RF Connector	-	-	-	-	-	External RP-SMA
Polarization	Dual Linear					
Enclosure Characteristics	Outdoor UV Stabilized Plastic					
Mounting	Pole Mounting Kit Included					
Power Method	Passive Power over Ethernet (pairs 4, 5+; 7, 8 return)					
Operating Temperature	-30 to 75° C					
Operating Humidity	5 to 95% Condensing					
Shock & Vibration	ETSI300-019-1.4					

Operating Frequency Summary (MHz)							
Model	NSM5/locoM5	NSM365	NSM3	NSM2/locoM2	locoM9		
Worldwide	5170 - 5875	2650 2675	2400 2700	2412 2462	000.000		
USA	5725 - 5850	3030-3075	5400-5700	2412-2402	902-928		
USA DFS	5250 - 5850	-	-	-	-		

			Output Po	wer: 23 dBm					
2.4 GHz TX POWER SPECIFICATIONS 2.4 GHz RX POWER SPECIFICATIONS									
	Data Rate/MCS	Avg.TX	Tolerance		Data Rate/MCS	Sensitivity	Tolerance		
	1-24 Mbps	23 dBm	±2dB		1-24 Mbps	-83 dBm	±2dB		
2	36 Mbps	21 dBm	±2dB	হ	36 Mbps	-80 dBm	±2dB		
1	48 Mbps	19 dBm	± 2 dB		48 Mbps	-77 dBm	±2dB		
	54 Mbps	18 dBm	±2dB	7	54 Mbps	-75 dBm	±2dB		
	MCS0	23 dBm	± 2 dB		MCS0	-96 dBm	±2dB		
	MCS1	23 dBm	± 2 dB		MCS1	-95 dBm	±2dB		
	MC52	23 dBm	±2dB		MCS2	-92 dBm	±2dB		
	MCS3	23 dBm	± 2 dB		MCS3	-90 dBm	± 2 dB		
	MC54	22 dBm	±2dB		MC54	-86 dBm	±2dB		
	MCS5	20 dBm	±2dB	7	MCS5	-83 dBm	±2dB		
	MC56	18 dBm	±2dB		MCS6	-77 dBm	±2dB		
X	MCS7	17 dBm	± 2 dB	×	MCS7	-74 dBm	± 2 dB		
ainte	MCS8	23 dBm	±2dB	ainte	MCS8	-95 dBm	±2dB		
	MC59	23 dBm	± 2 dB		MCS9	+93 dBm	±2dB		
	MCS10	23 dBm	±2dB		MC510	+90 dBm	± 2 dB		
	MCS11	23 dBm	± 2 dB		MCS11	+87 dBm	±2dB		
	MC512	22 dBm	± 2 dB		MC512	-84 d8m	± 2 dB		
	MCS13	20 dBm	± 2 dB		MC513	-79 dBm	± 2 dB		
	MCS14 18 dBm ± 2 dB		MCS14	+78 d8m	±2dB				
	MCS15	17 dBm	±2dB		MCS15	-75 dBm	±2dB		
ax VSWR	lation			1.4:1					
ax. v Svvn				1.901					
amwidth				60° (H-pol) /	60° (V-pol) / 60° (i	Elevation)			
	Return Loss			Vertical Azimut	Vertical Azimuth Vertical Elevation				
				Horizontal Azim	uth	Horizontal El	evation		
						E			

63

Datasheet

NanoStation M NanoStation loco M

NVR para almacenamiento de video.

http://www.dvrsolution.com/productos/grabadores/ip/CATALOGO_HK-DS9632NI-ST.pdf

HK-DS9632NI-ST

ESPECIFICACIONES	
Entradas Video/Audio	
Entradas de Video IP	32ch
Entrada de Audio	1-ch, BNC (2.0 Vp-p, 1kΩ)
Salidas Video/Audio	
Resolución de grabación	5MP /3MP /1080P /UXGA /720P /VGA /4CIF /DCIF /2CIF /CIF
	/QCIF
Velocidad de Transmision	Stream PRINCIPAL: 25 fps (P) / 30 fps (N)
	Stream Secundario SUB-Stream: 25 fps (P) / 30 fps (N)
Salida CVBS	1-ch, BNC (1.0 Vp-p, 75 Ω)
	Resolución: 704 × 576 (PAL); 704 × 480 (NTSC)
Salida HDMI	1-ch, resolution: 1920 × 1080P /60Hz, 1920 × 1080P /50Hz, 1600 ×
	1200 / 60Hz, 1280 × 1024 / 60Hz, 1280 × 720
	/60Hz, 1024 × /68 /60Hz
Salida VGA	1-cn, resolucion: 1920 × 1080P /60Hz, 1600 × 1200 /60Hz, 1280 ×
Salida de Audio	2-ch_BNC (linear_6000)
Resolución de reproducción	SMP /3MP /1080P /LIXGA /720P /VGA /ACIE /DCIE /2CIE /CIE
nesonación de reproducción	
Reproducción sincronizada	en sus 16 canales
Discos Duros	
	8 interfasses SATA para 4 HDDs + 1 DVD-R/W (de fábrica), ó
SATA	8HDDs
eSATA	1 Interfase eSATA
Capacidad	Cada interfase soporta hasta 4TB de capacidad
Arreglo de Discos Duro	DS
Tipo de Arreglo	RAID0, RAID1, RAID5, RAID10
Nros de Arregio	4
Nro de Discos Virtuales	0
Interface Externa	
Interface de Ped	2 Interfaces BL 45 10 (100 (1000 Mbac auto adaptable
Interfase de Neu	PS-232: RS-485: Keyboard (teclado joystick)
Interfase JESB	3 interface USB 2.0
Entradas de alarma	16-ch
Salidas de alarma	4-ch
General	
Alimentación	100 ~ 240 VAC. 6 3 A. 50 ~ 60 Hz
Consumo	<45 W (sin discos duros o DVD-R/W)
Temperatura de operación	-10°C ~ +55°C
Humedad Relativa	10%~90%
	19-ich rack-mounted 2U chassis
Chasis	
Chasis Dimensiones	445(W)×470(D)×90mm(H)

HIKVISION Especificaciones Técnicas

Cuadro comparativo de marcas de radio enlace.

http://www.syscom.com.mx/PDF/comparativo-ubiquiti-vs-canopy.pdf

PANELES SOLARES.

http://www.remonsolar.com/es/280wp-300wp-paneles-solares/30-300w-monocristalinopaneles-solares.html

300W MONOCRISTALINO PANELES SOLARES				
	Inquiry			
	Print			
MORE INFO				
Características electricas	PM-20024M			
Potoncia móvima(Pmay)	3000			
Tansián on Bray(Vinn)	36.71/			
Tetessidad on Descu(Tete)	8 174			
Tración o der Prax(Imp)	6.17A 46.3V			
Tension a circuito abierto(Voc)	40.3V			
Intesidad de contochcuito(Isc)	0.77A			
Tension maxima del sistema	1EC:10007 01:0007			
Valor maximo del fusible en sene	104			
NOCT	45±2%/℃			
* En condiciones estándar (STC) Irradiancia 1000	W/m², AM1.5, temperatura de la célula 25°C			
Características mecánicas				
Células solares	72(6×12) monocristalino células 156mm			
Cubierta frontal	3.2mm, vidrio templado de bajo contenido en hierro			
Cubierta posterior	TPT			
Encapsulante	EVA(Ethylene vinyl acetate)			
Marco	Aluminio anodizado / plata / claro / silicona o cinta adhesiva			
Diodos	6 Diodos de bypass reparables			
Caja de conexiones	Clasificada IP65, certificación TUV			
Connector	MC4 o conector compatible			
Cable	Longitud: 1000mm / sección: 4.0 mm ²			
Dimensión	1954×992×45mm			
Peso	30.5 Kgs			
Carga máxima	Certificado 5400Pa			