L. He POT-014

ESCUELA SUPERIOR POLITECNICA DEL LITORAL DEPARTAMENTO DE INGENIERIA ELECTRICA

"USO DEL SIMULADOR DE REDES DEL LABORATORIO DE SISTEMAS DE POTENCIA, VENTAJAS Y LIMITACIONES EN COMPARACION CON UN-PROGRAMA DIGITAL".

TESIS DE GRADO PREVIA A LA OBTENCION DEL TITULO DE:

> INGENTERO EN ELECTRICIDAD ESPECIALIZACION: POTENCIA

> > PRESENTADA POR:

EDUARDO SPANDRE VELASQUEZ

GUAYAGUIL - ECUADOR 1982

Ne POT-DIA

AGRADECIMIENTO

AL ING. HERNAN GUTIERREZ V.

Director de Tesis, por su
ayuda y colaboración para la realización de este tra
bajo.

AL ING. JORGE CHIRIBOGA

Por la colaboración prestada en el Laboratorio de Sis
temas de Potencia.

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Doto, de l'ingenierfa Eléctrica

B | B | L | O T | E | C | A

Im. No. POT- 011

DEDICATORIA

A MI MADRE, quien me educó y supo guiar por los buenos senderos de la vida.

ESCUELA SUPERIOR POLITICANDA DEL LITORAL Doto, de Ingenieria Eléctrica BIBLIOTECA

Lav. No. POT-011

DEDICATORIA

A MI ABUELITA

A MIS HERMANOS

A MI ESPOSA

ING. HERNAN GUTIERREZ VERA DIRECTOR DE TESIS

Inv. No. POT-014

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL).

EDUARDO RENE SPANDRE VELASQUEZ

Im. No. POT-011

RESUMEN

El tema en cuestión trata sobre todo de dar al estudiam te del Laboratorio de Sistemas de Potencia la información necesaría acerca del simulador de redes montado en la ESPOL, a fin de que sea una guía para su operación, simulando sistemas de potencia reales.

El desarrollo de esta información se ha efectuado paso a paso, desde la preparación del sistema a tratarse has ta la realización física del mismo en el simulador; se dan reglas a seguir para obtener buenos resultados en - la operación del sistema. He concentrado la atención - especialmente al problema de flujo de carga; motivo principal para el uso del simulador; partiendo en principio de sistemas de potencia sencillos, hasta llegar a un sistema más complejo, donde se utilice la máxima capacidad del simulador. Además de este análisis, se efectuará un estudio de transientes en una línea de transmisión por la conexión y desconexión de fuentes de energía, justificando los resultados obtenidos del simulador, mediante - un análisis teórico.

Las respuestas del simulador en el análisis de flujo de carga serán comparadas con un programa digital, a fin - de establecer el grado de exactitud del simulador.

Inv. No. 407-011

INDICE GENERAL

	PAGS.
RESUMEN	VII
INDICE GENERAL	ΙX
INDICE DE FIGURAS	ΧI
INDICE DE TABLAS	XIV
INDICE DE ABREVIATURAS	ΧV
INTRODUCCION	16
CAPITULO I	
1.1. GENERALIDADES	18
CAPITULO II: DESCRIPCION DEL SIMULADOR	
2.1. OBJETIVO	21
2.2. ESTRUCTURACION DEL SIMULADOR	21
2.3. OPERACION	32
2.4. ANALISIS DE ERRORES	35
CAPITULO III:ANALISIS DE FLUJO DE CARGA EN SISTEMAS	
DE POTENCIA	
3.1. OBJETIVO	38
3.2. EJEMPLOS CON SISTEMAS SENCILLOS	38
3.2.1. Preparación de los Sistemas escogidos	42

	3.2.2. Obtención de resultados	45
	3,2,3, Comentarios	53
3,3,	EJEMPLO CON UN SISTEMA MAS COMPLEJO	53
	3.3.1. Sistema escogido	53
	3.3.2. Reducción del Sistema	5.4
	3.3.3. Sistema reducido	5 7
	3.3.4. Preparación del sistema para flujo de	
	carga	65
	3.3.5. Energización del simulador y obtención	
	de resultados	67
3.4.	ANALISIS DEL SISTEMA ESCOGIDO USANDO UN PROGRA	
	MA DIGITAL	6.7
3.5.	COMPARACION DE LOS RESULTADOS OBTENIDOS EN EL	
	SIMULADOR CON LOS OBTENIDOS EN EL PROGRAMA DI	
	GITAL	93
20000000		
CAPI	TULO IV: ANALISIS DE TRANSIENTES QUE SE PRESEN-	
	TAN EN UNA LINEA DE TRANSMISION POR LA	
	CONEXION Y DESCONEXION DE LAS FUENTES	
	DE ENERGIA	
4.1.	GENERALIDADES	104
4.2.	ANALISIS TEORICO DEL PROBLEMA POR CONMUTACION	105
4.3.	ANALISIS PRACTICO EN EL SIMULADOR	133
	4.3.1. Fiemple escendido	133

Pags

	Pag.
4.3.2. Preparación para su estudio en el sim	ш
lador	134
4.3.3. Energización del simulador y obtención	n
de resultados	134
4.4. COMPARACION DE LOS RESULTADOS OBTENIDOS EN E	
SIMULADOR CON LOS DEL ANALISIS TEORICO	140
CONCLUSIONES Y RECOMENDACIONES	145
APENDICE: Listado del programa utilizado	148
BIBLIOGRAFIA	158

Law.	No
------	----

INDICE DE FIGURAS

FIG.	PAG
DIAGRAMA ESQUEMATICO DEL SIMULADOR	26
PRIMER EJEMPLO	40
SISTEMA REDUCIDO	41
NUMERACION DE MEDIDORES	43
RESULTADOS FINALES	46
SEGUNDO EJEMPLO	47
DIAGRAMA DE MEDICION DEL SEGUNDO EJEMPLO	51
DIAGRAMA UNIFILAR GUAYAQUIL 1980	55
DIAGRAMA REDUCIDO	58
DIAGRAMA CON VALORES P. U	59
DIAGRAMA DE MEDICION	66
CIRCUITO EQUIVALENTE DE UNA LINEA	86
CIRCUITO EQUIVALENTE DE UN TRANSFORMADOR CON TAP-	
VARIABLE	87
DIAGRAMA DE FLUJO DEL PROGRAMA DIGITAL	94
REPRESENTACION DIFERENCIAL DE UNA L/T	106
CONDICIONES INICIALES PARA DETERMINAR LOS PARAME-	
TROS A v B	114

FIG.	PAGS.
DIAGRAMA DE LATTICE	126
UN PULSO SOBRE UNA L/T CON Z _O DIFERENTES	
DIAGRAMA EJEMPLO PARA LA PRUEBA DE TRANSIENTES DIAGRAMA A CONSTRUIR EN EL SIMULADOR	136
FOTOGRAFIAS DEL CASO DE CIRCUITO ABIERTO FOTOGRAFIAS DEL CASO DE LA IMPEDANCIA.CARACTERIS	138
ONDAS QUE APARECEN EN UNA LINEA EN CIRCUITO -	138-9
ABIERTO AL INTRODUCIR UNA SEÑAL ESCALON	141

INDICE DE TABLAS

Nºº		PAGS.
1	RANGO DE PARAMETROS DEL SIMULADOR	29
2	PARAMETROS DEL SEGUNDO EJEMPLO	48
3	PARAMETROS RE-ESCALADOS DEL SEGUNDO EJEMPLO	50
4	RESULTADOS DEL FLUJO DE CARGA DEL SEGUNDO -	
	EJEMPLO	52
5	PARAMETROS DEL SISTEMA GUAYAQUIL 1980	60
6	PARAMETROS DEL DIAGRAMA REDUCIDO	62
7	VALORES EN P.U. DEL DIAGRAMA REDUCIDO	64
8	RESULTADOS DEL FLUJO DE CARGA EN EL LIMPIA-	
	DOR	68

INTRODUCCION

A través de los años, los sistemas de potencia se han ido desarrollando de tal manera, que en actualidad es practicamente imposible analizar un sistema relativamente complejo con una calcu ladora de bolsillo; así como también la dificultad que implica la utilización de un analizador de redes a.c., debido al espacio físico que se ocupa; se ha llegado a obtener un mo delo compacto que es el simulador de redes montado en el Laboratorio de Sistemas de Poten cia de la Escuela Superior Politécnica del Li toral, que permite una rápida maniobra de todos los componentes del sistema y a su vez, proporciona una herramienta de trabajo muy importante, que es la visualización del sistema y ayudará al operador a comprender cómo se

afectan las variaciones de voltaje y de pote<u>n</u> cia a un sistema.

CAPITULO I

1.1. GENERALIDADES

Como los sistemas eléctricos de potencia han desarrollado un amplio campo, los problemas asociados con su construcción y operación han sido clasificados como:

- a. Diseño inicial para obtener el aumento de carga es perando y la distribución patrón.
- b. Operación económica, digamos con pérdidas mínimas, haciendo el mejor uso del equipo utilizable en cual quier momento.
- c. Seguridad y protección contra disturbios, ya sean naturales o inducidos.
- d. Coordinación con otra clase de producción de energía y absorción de las industrias a fin de realizar una política coherente de energía.

El factor principal en los dos primeros problemas, es el análisis de flujo de carga, es decir, la manera en la cual las potencias activa y reactiva son distribuí das dentro de un sistema. Este trabajo es atribuído a un simulador de redes, que es capaz de un análisis de flujo de carga simple y directo. Además proporcio na al ingeniero un mejor entendimiento del comporta miento del sistema y podría ser una ayuda para mejorar el diseño y la operación de sistemas de potencia.

Un sistema de potencia proyectado requiere un cuidad \underline{o} so análisis antes de ser construído o antes de ser e \underline{x} tendido. Las ecuaciones del sistema son esencialmente no lineales, ya que las variables de interés son los voltajes y las potencias. La mayoría de los méto dos de análisis de flujo de carga involucran un proceso iterativo.

Otro método consiste en establecer un modelo del sistema, una fuente sinusoidal representa el generador; elementos resistivos, inductivos y capacitivos representan la línea y la carga, y se hacen medidas directas de voltaje y de potencia. Por supuesto, el sis

tema en cuestión debe ser re-escalado, es decir, que las magnitudes del sistema real deben ser transferidas al sistema analógico empleando bases adecuadas.

Mientras que el método analógico no es capaz del mismo grado de precisión como el método del computador digital, ya que se basa en los instrumentos de medición y en la exactitud de la representación física de los componentes, proporciona a cambio, resultados más que adecuados en la mayoría de los casos, ya que los parámetros del sistema generalmente no son conocidos con tanta precisión.

CAPITULO II

DESCRIPCION DEL SIMULADOR

2.1. OBJETIVO

La meta a conseguir en este capítulo es conocer las partes constitutivas del simulador montado en el La boratorio de Sistemas de Potencia de la ESPOL, por - medio de un breve detalle acerca de cada una de ellas, e instruírse en la operación del instrumento, de tal forma que lo explicado en esta sección constituya un patrón a seguir en los capítulos siguientes.

2.2. ESTRUCTURACION DEL SIMULADOR

En el desarrollo del prototipo, la idea principal fue reunir las específicaciones requeridas para producir soluciones de flujo de carga en estado estable, con - una exactitud de aproximadamente 2 %. Una idea secun daria pero importante fue la de mantener la simplici dad de la construcción para tener posibilidades de

mantenimiento sencillo y desarrollo dentro de las 1i mitaciones de la ESPOL.

Una red modelo, podría operar en un amplio campo de niveles de voltaje y potencia comparados con el siste ma de potencia real, y el mecanismo que permite cam biar estos niveles es el sistema por unidad.

El sistema por unidad de escalamiento es ampliamente utilizado en el análisis de sistemas de potencia, no sólo por conveniencia, sino además que con un cuidadoso escogitamiento de las cantidades base, el rango de valores a ser representados es mucho menor.

Cualquier cantidad base de MVA puede ser escogida teo ricamente para representar un sistema de potencia; en la práctica es recomendable escoger una base tal que permita utilizar el rango completo del simulador. Para el simulador, los valores base están limitados por las características físicas de las unidades de impedancia y dispositivos electrónicos.

El máximo voltaje base se fija debido a la decisión -

de usar dispositivos electrónicos facilmente aprovecha bles y normalizados; que tienen definidos los máximos suministros de potencia para los requerimientos de voltaje.

El valor de corriente en la red simulada, debe mantenerse tan bajo como sea posible, a fin de minimizar los efectos de acoplamiento magnético.

Un gran número de factores se ha involucrado en la de cisión del valor de la frecuencia de operación del si mulador, siendo el predominante el factor Q de los nú cleos de ferrita de los inductores y la necesidad de minimizar los acoplamientos indeseables. Para estu dios transientes, un rango de frecuencias podría per mitir el mejor uso de las características del núcleo de ferrita, pero para problemas de estado estable, só lo se requiere una frecuencia.

Cuando se utiliza el simulador para el análisis de flujo de carga; las unidades pasivas, representando - las impedancias de las líneas, transformadores y cables, han sido colocadas en sus valores respectivos,

las variables restantes, dígase: voltaje y ángulo de fase de los generadores, y las impedancias de carga, necesitan ser controladas inmediatamente por medio de los interruptores que manejan la instrumentación en varios puntos de la red.

Generalmente, los cables que interconectan las unida des, deben ser tan cortos como sea posible y distribuidos en tal forma que tengan mínima interferencia uno con otro.

En una primera etaba se decidió adoptar un escalamien to de una sola frecuencia, de tal forma que los cir cuitos RC de control de fase y frecuencia puedan ser utilizados como dispositivos absolutos de tiempo.

El escalamiento de voltaje y corriente fue designado por compatibilidad con los transistores disponibles normalizados y con los circuitos integrados. Todos los componentes para las unidades electrónicas son artículos disponibles en el stock de Radiospares - Components Limited.

La ESPOL mantiene los siguientes instrumentos para -

uso del simulador de sistemas de potencia:

FASIMETRO REALIMENTADO DPM 380 - MULTIMETRO DIGITAL 3 1/2
VATIMETRO ELECTRONICO REALIMENTADO EW 604.

Se presentó inicialmente una dificultad con el EW604, debido a que, sólo tenía una precisión de + 5 %, la cual en principio disminuía aún más, interconectando las dos partes del simulador. Debido a esto, se mo dificó el EW 604 de forma tal que se obtuvo la precisión requerida, con la salvedad que sólo se puede utilizar para uso del simulador y no para uso gene nal; sin embargo en asunto costos, ésta fue la solu ción más económica.

La parte electrónica del simulador consiste en seis unidades generadoras maneiadas por la unidad oscila dora principal, notándose que se puede ampliar esto en un futuro, contando con una unidad amplificadora, como se aprecia en la figura 2.1.

Cada una de las unidades electrónicas incorpora dis-

FIGURA Nº2.1.
DIAGRAMA ESQUEMATICO DEL SIMULADOR

positivos de estabilización de voltaie que aceptarían una alimentación en el rando de [±] 17.5 Vdc hasta [±]30 Vdc. siendo el voltaie nominal de [±] 22 Vdc. Esta - alimentación puede provenir de un jueno de baterías o una unidad de potencia capaces de desarrollar aproximadamente dos amperios.

En la unidad oscilatoria principal de multifase, nos encontramos con que los circuitos RC para generación de frecuencia y control de fase son simples en concepto, pero en la práctica existen tres limitaciones se rias:

- La frecuencia, fase y amplitud, son interdependientes.
- La relación entre R ó C y la fase no es lineal(función tangente).
- Cualquier red RC en su forma simple puede funcionar como control de fase sólo sobre un rango considerablemente menor a 90°.
- El primero de estos problemas es amortiguado por la de

cisión de usar una sóla frecuencia, pero el problema de la interdependencia de la amplitud y fase permane ce.

Se solucionó en parte con el diseño de una red de control de amplitud y compensación de fase de tal forma que se hace un control variable en pequeños pa
sos y no existirán problemas de interrelación.

La segunda limitación se torna aceptable con un medidor ó un control de calibración que es usado sobre - un rango lo suficientemente pequeño, de manera que - la función tangente sea aproximadamente lineal.

La tercera limitación es aceptable, pero inconvenien te; y de acuerdo a las limitaciones establecidas se ha llegado a los valores óptimos mostrados en la tabla 1.

Se observa de la misma que se ha tomado una previsión de 100 % de corriente de sobrecarga, debido a las condiciones de desbalance que ocurren durante la solución del proceso iterativo.

		0.000 A 1000 C		
		IMPEDANCIA BAS VOLTAJE BASE CORRIENTE BASE POTENCIA BASE FRECUENCIA	5 V 50 m 250 m 159.2Hz	
EEAD TIPO		VALORES	POR UNI	D A D P A S D S
			K A II O V	. A 5 0 5
EDANCIA	L	0 - 10 mH 0 - 100 mH	0 - 0.1 0 - 1.0	0.01
BENEA	R	0 - 10 0 - 100	0 - 0.1 0 - 1.0	0.01
DE CARGA	L	0.1-1H 1 - 10H	0 - 1.0 0 - 0.1	0.1 0.01
DE	R	0.1 - 1K	0 - 1.0	0.1
CARGA		1 - 10 K	0 - 0.1	0.01
CEPTANCIA	c	0.01-0.1HF	0 - 0.01	0.001
AVITIDA		0.1 - 1HF	0 - 0.1	0.01
	٧	0.5-7.5 V	0.1 - 1.5	CONTINUOS
	I	0 - 200 mA	0 - 4.0	9 .4)
	Ø	0 - 360°	250	CONTINUOS

RANGO DE PARAMETROS DEL SIMULADOR

En cuanto a la frecuencia, se decidió utilizar el valor de 159.2 Hz ya que justamente con este valor se obtiene que w = 2πf = 1000; lo cual proporciona una simple relación numérica entre la impedancia óhmica la inductancia y la capacitancia; digamos que 1.0 pu de impedancia puede ser obtenido con 100 ohmios, ó 100 mh, ó 10 uf.

Si los MVA base son correctamente escogidos, la corriente nunca debería exceder de 2.0 pu.

Se ha incluído además un rango de variación de ángulo de fase de O a 360°, para extender el uso del simulador a estudios de estabilidad transiente.

El simulador consta de seis unidades generadoras, dis puestas tres a cada lado del mismo, contando cada una de ellas con un ajuste de voltaje grueso y uno fino, y además con tres posiciones de variación de su ángulo de fase.

Consta además de doce líneas de transmisión, separadas seis a cada lado del simulador, cada una de las cuales

tiene un juego de susceptancias capacitivas en el ca so de lineas largas.

Cada línea tiene un juego de décadas de resistencias y de inductancia con los rangos y su variación espec<u>i</u> ficados en la Tabla 1.

Se han ubicado catorce barras, dispuestas siete a ca da lado del simulador y tres barras adicionales, com \underline{u} nes a ambos lados del mismo, para facilitar la interconexión cuando se utiliza el instrumento como una sola entidad.

El simulador consta de un interruptor de interconexión que permite que este sea utilizado como uno sólo, dis poniendo de la totalidad de los elementos descritos. Se lo utiliza cuando se va a simular un sistema que tenga más de tres generadores o más de seis líneas de trans misión; en caso de no hacer uso de éste interruptor, el simulador consta de dos partes idénticas completamente independientes pudiendo en esta forma, ser usado por dos grupos de estudiantes, simulando sistemas diferentes.

A cada lado del simulador le corresponden doce puntos de medición diferentes, los cuales deben ser interconectados con los elementos del sistema siguiendo un patrón definido, los que están en la parte A del simulador deben ser intercalados de derecha a izquierda; y los de la parte B, de izquierda a derecha, obtenién dose en cada punto, lecturas de potencia activa, reactiva, voltaje y corriente.

El panel de medición está previsto para dos vatímetros (instrumentos comerciales modificados apropiadamente), uno de los cuales se utiliza para medir la potencia activa, y el restante la reactiva, cuando el simulador - se utiliza como una sola entidad; dos multimetros digitales (uno para medición de corriente); y dos medidores analógicos para hacer una observación rápida de que la corriente no es excesiva.

2.3. OPERACION DEL SIMULADOR

Para una correcta operación del instrumento se ha creado un formato, el cual deberá ser seguido en lo posible para evitar algún contratiempo posterior.

Como primer paso para tratar un problema en el simula dor, se reúne toda la información necesaria acerca de los parámetros y requerimientos del sistema.

De los generadores, debemos conocer sus valores nominales, rango del voltaje de operación, límites de operación de MVA y MVAR, reactancia transiente y reguladores de voltaje.

De los transformadores, debemos conocer sus valores - nominales (incluyendo su porcentaje de sobrecarga), número de vueltas, configuración de los devanados, rango del tap (en carga o sin carga), reactancia de acoplamiento, capacitancia del devanado (para problemas - transientes).

De las líneas de transmisión y cables, debemos conocer la corriente y voltajes nominales, dependiendo de las condiciones ambientales, impedancias serie y paralelo (susceptancia), incluyendo cantidades de secuencia ce ro para cálculo de fallas desbalanceadas.

El segundo paso es dibujar un diagrama completo del sistema, donde el problema involucra el desarrollo de

un sistema, digamos en tres etapas, luego éstas po drian ser indicadas por tres diagramas separados, ó indicados claramente en un diagrama de mayor tamaño.

Se debe trabajar con suma precisión al re-escalar el sistema utilizando los valores base más adecuados, para que se utilice completamente el rango de medición del simulador.

Ahora se procede a conectar las unidades, verificando que coincidan las conexiones indicadas en el dia grama con los puntos de medición del simulador.

Como tercer paso, la colocación inicial de la carga debe ser realizada, separando cada carga de la red y conectándola a un generador (a 1.0 pu de voltaje), a través de un medidor de interfase. La unidad de carga es ajustada a su valor nominal y reconectada a la red.

Cuando todas las carças hayan sido ajustadas a sus valores nominales, cada generador debe a su vez, ser separado de la red, y colocado a 1.0 pu de voltaje y a un ángulo de fase de unos 15°, esto es por el motivo de tener una rápida variación sea en atraso o en adelanto; cuando esto haya sido realizado y los generado res han sido reconectados a la red, el sistema estálisto para ser energizado.

Como cuarto paso, el sistema se energiza conmutando a la posición de encendido todos los generadores. El resultado inicial está muy lejos de la distribución y balance de carga deseado.

Una buena experiencia consiste en tomar nota en particular de los generadores y cargas grandes; ya que cambiando una carga, se afecta a las otras y cambiando - el ángulo de un generador cambián las potencias de - otro, de tal manera que el balance del sistema debe ser llevado a cabo haciendo variaciones pequeñas. Cuan do se ha llegado a un equilibrio del sistema, éste de be ser archivado; para partir de éste punto, trabajan do con el mismo sistema en estudios posteriores.

2.4. ANALISIS DE ERRORES

A fin de obtener soluciones con una exactitud del or

den del 2 % las unidades electrónicas deben tener las siguientes características:

UNIDAD OSCILADORA PRINCIPAL

La frecuencia $\omega = 1.000 \stackrel{+}{-} 0.1 \%$

La distorsión debe ser menor al 1 %.

La impedancia de salida debe ser lo suficientemente baja para manejar las seis unidades generadoras, cada
una teniendo una impedancia de salida de 1 Megahomio,
con una caída de voltaje inferior al 0.1 % lo cual im
plica 166 ohmios como máximo.

El generador debe tener las siguientes características:

Rango de voltaje - 0.5 Vrms á 7.5 Vrms.

Rango de corriente - O á 200 ma.

Potencia de salida -1.5 W máx.

Impedancia de entrada - >1 Megaohmio.

Impedancia de salida- suficientemente baja para desarro llar 200 ma. con una caída de voltaje inferior al 1%.Lo cual implica:

con 0.5 V -----0.025 ohmios como máximo.

con 7.5 V -----0.375 ohmios como máximo.

Control de fase - 0 à 360°

Variación de fase - pasos de 0.5 °

Exactitud de fase - superior que - 0.1°

Instrumentos de Interfase:

Rango de medición de voltaje - 0.5 á 7.5 V(0.1 á 1.5 pu)

Exactitud de medición de voltaje - + 50 mv (1 %)

Rango de medición de corriente - 0.5 ma á 200 ma

(0.01 á 4 pu)

Exactitud de medición de corriente - + 50 uamp.(0.1%)

Rango de, medición de volt-amp - 2.5 mva á 1.5 va (0.01

á 6 pu)

Exactitud de medición de volt - amp - + 0.25 mva (0.1% á 1.0 pu)

CAPITULO III

ANALISIS DE FLUJO DE CARGA EN SISTEMAS DE POTENCIA

3.1. OBJETIVO

Se espera que la principal aplicación del simulador sea dar a los estudiantes una apreciación y una idea más clara acerca del comportamiento de los sistemas de potencia, de tal manera que se observe fisicamen te al sistema, y se aclare cualquier duda remanente de la teoría recibida.

El simulador no puede reemplazar a un programa digital; sino más bien, ser su complemento, ya que un programa digital es mucho más preciso en cuanto a resultados, pero en cuanto al análisis propíamente dicho, la velocidad para hoer diferentes pruebas en el simulador, es determinante.

3.2. EJEMPLOS CON SISTEMAS DE POTENCIA SENCILLOS

El primer ejemplo objeto de análisis es el mostrado

en la figura 3.2.

Para preparar este sistema en el simulador, recurrimos al Capítulo dos, sección tres, de esta tesis.

Según se observa en el diagrama, tenemos los paráme tros necesarios para efectuar el análisis requerido, que en este caso es flujo de carga, y pasamos a es coger una base adecuada, de tal forma que los valo res en pu escogidos estén dentro del rango del simulador y hagan uso completo del alcance de los aparatos de medición.

Escogemos como valores base los siguientes:

MVA BASE = 100

KV BASE = 69

Efectuando las reducciones respectivas se llega al sistema en la figura 3.2.1.

FIGURA 3.2.

PRIMER EJEMPLO

FIGURA 3.2.1.

SISTEMA REDUCIDO

3.2.1. Preparación de los Sistemas Escogidos

Como se observa de los valores obtenidos, estos se pueden regular fácilmente en el Simulador.

Procedemos ahora a elaborar un diagrama de me dición, para en base a este diagrama hacer las diferentes conexiones en el simulador.

Para la confección del diagrama de medición, existe una regla práctica que facilitará nues
tro trabajo de apreciación del simulador.

En primer lugar, se numeran en orden ascenden te las barras de generación; luego las barras de carga, y por último las líneas, de esta ma nera tendremos un patrón definido y cualquier persona podrá interpretar de una manera sencilla cualquier diagrama de medición, por . com plicado que este sea.

El diagrama de medición se observa de la figura 3.2.2., y es necesario insistir en que la

FIGURA 3.2.2.

MEMERACION DE MEDIDORES

ubicación de los medidores debe depender del sentido de la corriente; en este caso, se han colocado de la manera señalada, debido a que el generador de la izquierda se ha asumido ma yor que el generador de la derecha.

El siguiente paso, luego de la interconexión, es muy importante; todos los generadores del sistema, deben ser aislados y regulados separa damente a 1.0 pu de voltaje y a un ángulo de -fase de 15°.

Cuando se haya efectuado este paso, y los generadores hayan sido reconectados a la red, se puede proceder a energizar el sistema.

La energización se lleva a cabo conmutando a la posición de encendido todos los generadores de la red; el resultado inicial está muy distante de la distribución y balance de carga de seado.

Algo realmente importante es tomar muy en cue<u>n</u>

ta la lectura de los medidores cercanos a los generadores, a fin de controlar el hecho de - que la corriente esté por debajo del límite, y no sobrepase el valor de 2.0pu.

Se debe ir efectuando variaciones pequeñas de voltaje y ángulo en los generadores a fin de que las potencias se vayan distribuyendo de manera uniforme, y los voltajes en las cargas permanezcan dentro del límite establecido con anterioridad.

3.2.2. Obtención de Resultados

Luego de efectuar las variaciones respectivas de los parámetros del sistema de potencia, se llegó al resultado de la figura 3.2.3.

Como segundo ejemplo, se ha tomado el sistema de la figura 3.2.4.

Los parâmetros del sistema son los siguientes:

FIGURA 3.2.3.

TENTE TADOS FINALES

FIGURA 3.2.4.

MOD EJEMPLO

TABLA 2

ETROS DEL SEGUNDO EJEMPLO

MINA	IMPEDANCIA (Ω)		CARGA	CARGA DE LA LINEA (u		υ)	
3-2	3.809 + j11.426	3 809 + 111 426		1.575 x 10 ⁻⁴				
	15.23 + j45.706		1.313					
	11.426 + j34.279		1.05 x	10-4				
	11.426 + j34.279		1.05 x					
	7.618 + j22.850		7.876×10^{-5}					
	1.904 + j 5.713		5.25×10^{-5}					
	15.235 + j45.706	-1						
	VOLTAJE ASUMIDO	GENE	RACION	CA	RGA			
		MW	MVAR	MM	MVAR			
	146.28 + j0	0	0	0	0			
	138.0 + j0	40	30	20	10			
	138.0 + j0	0	0	45	15			
	138.0 + j0	0	0	40	5			
	138.0 + j0	0	0	60	10			

Con los valores obtenidos en la tabla 2, pasamos a reducir el sistema a valores por unidad, empleando como base los valores de:

MVA BASE: 100 MVA

KV BASE : 138 KV.

Los resultados obtenidos de esta reducción se encuentran detallados en la tabla 3, mostrada a continuación.

Con estos resultados estamos listos para pasar a interconectar el sistema en el simulador, para lo cual se deberá utilizar el diagrama de medición que aparece en la figura 3.2.5.; diagrama que ha sido realizado siguiendo las consideraciones expuestas en la sección 3.2.1. del presente capítulo.

El resultado del análisis del flujo de ca<u>r</u> qa se observa en la tabla 4.

TABLA 3.

TABLA 3.

TABLA 3.

BARRA	IMPEDANCIA(pu) CARGA DE LA LIN		NEA		
1-2	0.02 + j0.06		j0.0	30	
13-3	0.08 + j0.24		j0.0	25	
2-3	0.06 + j0.18		j0.0	20	
2-4	0.06 + j0.18		j0.0	20	
2-5	0.04 + j0.12		j0.0	15	
3-4	0.01 + j0.03		j0.0	10	
8-5	0.08 + j0.24		j0.0	25	
BURRA	VOLTAJE ASUMIDO	GENER	ACION	CAI	RGA
		MW	MVAR	MW	MVAR
1	1.06 + j0	M W 0	MVAR 0	0	MVAR 0
1 2	1.06 + j0 1.00 + j0	(6.9%)	Water Control	CONTR	To Toronto
		0	0	0	0
2	1.00 + j0	0	0	0	0

FIGURA Nº 3.2.5.

BLAGRAMA DE MEDICION DEL SEGUNDO EJEMPLO

TABLA 4.

TABLA 4.

TABLA 4.

LINEA	MW	MVAR
1-2	0.88	-0.08
1-3	0.41	0.01
2-3	0.25	0.04
2-4	0.28	0.03
2-5	0.55	0.07
3-4	0.19	-0.05
4+5	0.06	-0.02

.

3.2.3. Comentarios

De los ejemplos anteriores, se ha observado la relativa facilidad con la que se ha obtenido - un balance de carga bastante aceptable, y mucho más y mejor percibido que un programa digital, el cual trata al sistema como un ente matemático y no como lo que es, una realidad física su jeta a variaciones diversas, producto de las condiciones ambientales y de la operación de seres humanos.

EJEMPLO CON UN SISTEMA MAS COMPLEJO

El objeto de estudiar un sistema más complejo en el simulador, reside en la necesidad de observar de que manera responden los instrumentos del mismo, ante un sistema que hace acopio prácticamente de toda la capa cidad del simulador.

3.3.1. Sistema Escogido

El sistema a utilizarse en esta sección es el sistema Guayaquil, basándonos en el diagrama -

unifilar del año 1.980.

El Sistema Guayaquil presenta dos puntos de <u>ge</u> neración; la Planta a Vapor Guayaquil y la - Planta Térmica Estero Salado, estando ambas e<u>n</u> lazadas a través de un sistema de líneas de transmisión a 69000 voltios con subestaciones de bajadas intermedias de 13.800 y de 4.160 - voltios.

El diagrama del sistema se presenta en la fig<u>u</u> ra 3.3.1, diagrama que fue facilitado por el Instituto Ecuatoriano de Electrificación.

3.3.2. Reducción del Sistema

Para reducir el sistema se ha tomado en cuenta los generadores de gas similares en reactancia, y se ha tomado el mismo procedimiento con las unidades de vapor; para la obtención de un equivalente del sistema interconectado que llega a la barra del Salitral, se efectuó un equivalente de Thévenin, para obtener la reactancia -

equivalente del sistema, y en base a datos de INECEL, obtener la generación de MVA que rec<u>i</u> be el Sistema Guayaquil del resto del Sistema Nacional Interconectado.

Una vez realizado lo interior, procedemos a redistribuir las barras de carga, con el fin de eliminar algunas líneas del sistema, toman do el criterio de importancia de las líneas y contribución de corriente, de forma tal que nos aproximemos a la realidad, se debe efectuar estas reducciones un tanto forzadas, de bido a que la capacidad del simulador nos mita a sólo seis generadores, doce líneas y doce barras, por lo cual se efectúan las aproximaciones antes mencionadas; pero servirán para nuestros propósitos en el lador, que consisten en efectuar una distribu ción de potencia en el sistema, de manera que se observen físicamente las variaciones intro ducidas, y llegar a una condición tal, que la distribución de potencia, y los niveles de voltaje sean los adecuados.

El diagrama reducido se muestra en la figura - 3.3.2.

3.3.3. Sistema Reducido

El sistema reducido se lo prepara ahora en para su entrada al simulador, de tal forma que - los valores obtenidos se ajusten a las especificaciones del mismo, para que de esta manera se utilicen a discreción los rangos dados por el simulador en líneas y generadores. Se utilizó una base de 100 MVA y un voltaje base de 69 KV.

Obteniéndose el siguiente diagrama de la figura 3.3.3.

Los valores de los parámetros del sistema esco gido se muestran en la tabla 5, los valores re sultantes de la reducción del sistema se mues tran en la tabla 6, y los valores en por unidad se muestran en la tabla 7.

TABLA 5

TO BOOK	DEL	CTOTOLE	CHENCOME.	
部型化ラ	ULL	SISIEMA	GUAYAQUIL	1.980

	R	X
4	0.21	0.31
	0.21	0.31
	0.0201	0.2549
	0.21	D.31
	0.21	0.31
	0.21	0.31
	0	0.407
	0	0.231
	0	0.231
	0.059	0.6128
	0.0402	0.5239
	0.0107	0.0335
	0.0291	0.0669
	0.0107	0.0248
	0.0165	0.038
	0,0133	0.0307
	0.0149	0.0465
	0.0149	0.0465

POTENCIA GENERACION

	MW	MVAR
	14	3.8
(40)	14	3.8
	14	3.8
	10	3.4
	22	4.4
	22	4.4

continua...

.......

	33	9.2	
15	70	13.6	
E,	70	13.6	

CARGAS

	MW	MVAR	
E,	10.2	3	
2	41.0	12	
G3	19.0	6.0	
E4	35	9.0	
Cc	41		
E5 E6	26		
C,	33	9	

TABLA 6.

TETROS DEL DIA	GRAMA REDUCIDO	
	R	х
L	0.09	0.15
12	0.02	0.25
La	0.0	0.64
Lg	0.06	0.61
4.5	0.04	0.52
Le	0.0167	0.0335
L	0.0291	0.0669
2.0	0.0107	0.0248
La	0.0165	0.038
L ₁ L ₂ L ₃ L ₄ L ₅ L ₅ L ₇ L ₈ L ₉ L ₁₀ L ₁₁	0.0133	0.0307
Lui	0.0149	0.0465
L ₁₂	0.0149	0.0465
00-00-00	POTENCIA GENERACIO	N
	MW	MVAR
G.,	6.5	12
\$ ₁ \$ ₂	30	17

80

30

continua.....

17

--

17

	MW	MVAR
c ₁	10.2	3.0
Co	41.0	12.0
C ₂ C ₃ C ₄ C ₅ C ₆ C ₇	19.0	6.0 9.0
C,	35.0	9.0
C.	41.0	200
CE	26.0	
67	33.0	9.0

TABLA 7

	Th	The Part of the	to T A P to the A S. S. S.	DEBLIEF TOO
100 - 10 N	D - 11	11.4-1	TILD IS SERVER	N E 151111 1 1111
March 2017	F + W +	Dr. Art. Sec.	The Transfer of the Contract o	REDUCIDO

III SHIPPA	A BARRA	R (PU)	X(PU)
1	6		0.53
	7		0.34
	7 8	***	0.21
4	9		0.69
	10		0.35
	11	0.09	0.15
	11	0.02	0.25
8	11		0.64
9	12	0.06	0.61
	12	0.04	0.52
	14	0.04	0.52
	15	0.15	0.47
	16	0.29	0.67
	17	0.15	0.47
	13	0.17	0.38
12	16	0.11	0.25
	17	0.13	0.31
	920		

BEELS.	GENERACION		CARGA	
	MW(PU)	MVAR(PU)	MW(PU)	MVAR(PU)
1	0.65	0.12		
2	0.30	0.17	0.1	0.03
3	0.80	0.17		
E		2222		
5	0.30	0.17	0.35	0.09
13			0.41	
114			0.33	0.09
115			0.41	0.12
25			0.19	0.06
17			0.26	****

Como se observa en la figura 3.3.3., se han au mentado barras en los generadores, esto es con la finalidad de utilizar esta configuración en la sección 3.4. del presente capítulo.

3.3.4. Preparación del sistema para flujo de carga

Procedemos ahora a elaborar un diagrama de me dición de acuerdo a la distribución física de los puntos de medida en el simulador para obte ner un cableado relativamente homogéneo, siguien do las sugerencias mencionadas en la sección - 3.2.1. De ésta forma, el diagrama de medición es el presentado en la figura 3.3.4.

Una vez realizado el diagrama de medición en el simulador, y con los generadores del sistema a 0.1 por unidad de voltaje, procedemos a desarro llar potencia en los mismos, tomando en conside ración que se tomó la barra de generación de la turbina a gas de la Subestación Guayaquil, como barra de oscilación.

3.3.5. Energización del Simulador y Obtención de Resultados

Luego de efectuar las respectivas variaciones de voltaje en las cargas, y de voltaje y ángu lo en los generadores, se llegó al resultado mostrado enla tabla 8.

ANALISIS DEL SISTEMA ESCOGIDO UTILIZANDO UN PROGRAMA DIGITAL

El problema de flujo de carga consiste en el cálculo del flujo de potencia y voltajes de una red bajo - ciertas condiciones específicadas. Identificamos - tres tipos de barras en el sistema: barra de oscilación, barra de voltaje controlado y barra de carga. Seleccionamos la barra de oscilación cuyo voltaje - terminal se desea mantener, a fin de proveer la potencia activa y reactiva para suministrar las pérdidas de transmisión, puesto que estas son desconocidas hasta que la solución final sea obtenida. Para esta barra se especifican la magnitud y la fase del voltaje, mientras que en la barra de carga son especifica

TABLA 8

TABLA 8

TABLA 8

MESA.	VOLTAJE (p.u.) ANGULO
6	1.05	15°
2	1.03	10°
	0.99	10°
	1.01	0°
	0.96	-5°
	0.97	200
	0.92	
	0.85	www.
	0.84	H = -
	0.85	
	0.90	
	0.87	7.7.7
	POTENCIA Y BARRA	EN CADA CARGA
BURA	P(p.u.)	Q(p.u.)
5	0.65	0.16
7	0.19	0.16
	0.73	0.32
	0.17	0.11
	-0.05	0.08
	0.05	-0,05
	0.02	0.02
	-0,40	0.01
122	-0.33	-0.09
	-0.41	-0.12
123 224 125 226	-0.19	-0.07
	-0.25	-0.01

.....

	POTENCIA GENERA	
ERADOR	P(p.u.)	Q(p.u.)
1	0.65	0.16
2	0.30	0.19
3	0.73	0.32
4	0.18	0.11
5	0.30	0.17

das la potencia real y reactiva.

La formulación matemática del problema de flujo de carga resulta en un sistema de ecuaciones algebraícas mo lineales o lineales.

Estas pueden ser establecidas usando como sistema de referencia ya sea un lazo o una barra de la red. Los coeficientes de las ecuaciones dependen de la selección de las variables independientes, esto es, volta jes o corrientes. De esta manera, pueden utilizarse las matrices impedancia o admitancia de la red.

La solución de las ecuaciones algebraícas que describen el funcionamiento del sistema está basada en técnicas iterativas debido al carácter de estas ecuaciones. La solución debe satisfacer las leyes de Kirchhoff, esto es, la suma algebraíca de todos los voltajes en un lazo debe ser igual a cero, y la suma algebraíca de todos los flujos en una barra debe ser igual a cero.

Las ecuaciones que describen el funcionamiento de la

red de un sistema de potencia usando barras del mismo como ejes de referencia son:

$$\overline{E}_{barra} = \overline{Z}_{barra} \overline{Y}_{barra}$$
 (3.4.1)

ő

$$T_{barra} = \overline{Y}_{barra} \overline{E}_{barra}$$
 (3.4.2.)

Donde:

E_{barra} : es la matríz columna de las tensiones de nudos

Zbarra: es la matriz que representa las impedancias propias y las impedancias mutuas de las líneas del sistema en análisis.

I_{barra}: es la matriz columna de las corrientes que entran a los nudos.

Y_{barra}: es la matríz admitancia de nudos.

Notar que: $\overline{Z}_{barra} = \overline{Y}_{barra}$

Las matrices impedancia o admitancia de la red pueden ser formadas incluyendo la barra de tierra. Los ele mentis de las matrices, por tanto, incluirán los efec tos de los elementos en derivación (shunt) a tierra, tales como capacitores estáticos y reactores, carga de la línea y elementos derivación (shunt) de transfor madores equivalentes. Cuando la barra de tierra incluída y seleccionada como nodo de referencia, los voltajes de barra en las ecs. 3.4.1. y 3.4.2, son me didos con respecto a tierra. Si la barra de tierra no es incluida en la red, los elementos de las matrices impedancia o admitancia no incluirán los efectos de los elementos en derivación (shunt) y debe seleccionar se una barra de la red como barra de referencia.En es te caso, los efectos de los elementos en derivación -(shunt) son tratados como fuentes de corriente en las barras de la red y los voltajes de barra en las ecs. -3.4.1. y 3.4.2, son medidas con respecto a la barra de referencia seleccionada.

Analizaremos ahora las ecuaciones específicas de la red. La potencia real y reactiva en cualquier barra p

está dada por:

$$S_p = P_p - jQ_p = E_p \times I_p$$

y la corriente es:

$$I_{p} = \frac{P_{p} - jQ_{p}}{E_{p} x}$$
 (3.4.3.)

Donde:

Sp: es la potencia aparente que sale de la barra P

Po: es la potencia activa que sale de la barra P

Qp: es la potencia reactiva que sale de la barra P

Ep: es la diferencia de potencial entre la barra P y tierra.

 I_p : es la corriente que pasa por la barra P.

Donde Ip es positiva si fluye hacía dentro del sistema.

En la formulación de la ecuación de la red, si los - elementos en derivación a tierra son incluídos en los parámetros matriciales, entonces la ec. 3.4.3, es la

corriente total en la barra.

Por otro lado si los elementos en derivación son excluídos en los parámetros de la matríz, la corriente total en la barra P es:

$$I_p = \frac{P_p - jQ_p}{E_p \times} - y_p E_p$$

Donde y_p es la admitancia (paralelo) total en la -barra y $y_p E_p$ es la corriente que está fluyendo des de la barra P a tierra.

Después de que la solución iterativa de los voltajes en las barras es completada, se calcula el flujo de potencia entre líneas. La corriente en la barra P, en la línea que conecta la barra P con la barra q,es:

$$f_{pq} = (E_p - E_q) y_{pq} + E_p \frac{y'pq}{2}$$

Donde:

y_{pq} : admitancia de la linea

y'_{pq}: admitancia total de carga de la línea

Epy'pq/2: contribución de corriente a la barra p debi do a la carga de la linea.

El flujo de potencia real y reactiva está dado por:

$$P_{pq} - jQ_{pq} = E_p + i_{pq}$$

ő

$$P_{pq} - jQ_{pq} = E_p = (E_p - E_q) y_{pq} + E_{p+} = E_q \frac{y'pq}{2}$$
 (3.4.4.)

 P_{pq} equivale al flujo de potencia real desde la barra p a la barra q y Q_{pq} equivale al flujo de potencia reactiva desde la barra p a la q. Similarmente en la barra q el flujo de potencia de q hacía p está dado por:

$$P_{qp} - jQ_{qp} = E_q \quad (E_q - E_p) y_{pq} + E_q \cdot E_q \frac{y'_{pq}}{2} \quad (3.4.5.)$$

Las pérdidas de potencia en la línea p-q equivalen a la suma algebráicas de los flujos de potencia determinados de las ecs. (3.4.4) y (3.4.5).

Emplearemos el método iterativo de Gauss - Seidel ut<u>i</u> lizando la matriz admitancia de barra del sistema.

La solución del problema de flujo de carga es inicia da asumiendo voltajes para todas las barras, excepto para la barra de oscilación, donde el voltaje es es pecíficado y permanece fijo. Luego se calculan las corrientes para todas las barras excepto para la barra de oscilación, la cual denominaremos de ahora en adelante por la letra s.

Las ecuaciones que representan la perfomance de la red son:

$$\mathbb{I}_{p} = \frac{P_{p} - jQ_{p}}{E_{p}} \qquad p = 1, 2, ..., n \quad (3.4.6.)$$

$$p \neq s$$

donde n es el número de barras de la red. Por otra -

$$\overline{I}_{barra} = \overline{Y}_{barra} \overline{E}_{barra}$$
 (3.4.7.)

Seleccionando la tierra como barra de referencia, po demos establecer un grupo de (n-1) ecuaciones simultáneas:

$$E_{p} = \frac{1}{y_{pq}} (I_{p} - q_{e1}^{n} Y_{pq} E_{q})$$

$$p = 1, 2, ..., n$$
(3.4.8.)

D # S

Las corrientes de barra calculadas de la ecuación
(3.4.6), el voltaje de la barra de oscilación, y los voltajes de barras estimados son sustituídos en la ecuación (3.4.8) para obtener un nuevo grupo de voltajes de barra. Estos nuevos voltajes son usados en la ecuación (3.4.6) para recalcular las corrientes - de barra en una solución subsecuente de la ecuación (3.4.8). Este proceso continúa hasta que los cambios en todos los voltajes de las barras sean despreciables. Después que se obtiene la solución para los voltajes en las barras del sistema, se procede a evaluar la potencia en la barra de oscilación y el flujo de potencia entre líneas. Combinando las ecuacio

nes (3.4.8) y (3.4.6) se obtiene:

$$E_{p} = -\frac{1}{Y_{pp}} \left(\frac{P_{p} - jQ_{p}}{E_{p}} - \sum_{\substack{q=1 \ q \neq p}}^{n} Y_{pq} E_{q} \right)$$
 (3.4.9)

p # s

Esta ecuación involucra solamente voltajes de barra - como variables.

Formulando de ésta manera el problema de flujo de car ga obtenemos un grupo de ecuaciones lineales que pueden ser resueltas por métodos iterativos.

para la obtención de una solución se obtendrá realizan do tantas operaciones matemáticas posibles antes de - finiciar el método iterativo. De esta forma llamando:

$$\frac{1}{Y_{p,p}} = L_p$$

La ecuación (3.4.9) puede ser escrita

$$E_{p} = \frac{(P_{p} - jQ_{p}) L_{p}}{E_{p}} - \frac{n}{q=1} Y_{pq} L_{p} E_{q}$$

$$q \neq p$$

$$p = 1, 2, ..., n$$

$$p \neq s$$

$$(3.4.10)$$

Considerando ahora:

$$(P_p - jQ_p) L_p = KL_p$$

La ecuación (3.4.10) se reduce a:

$$E_{p} = \frac{KL_{p}}{E_{p}} - \sum_{\substack{q=1\\q\neq p}}^{n} YL_{pq} E_{q}$$

$$q = 1, 2, \dots, n$$

$$p \neq s$$

$$(3.4.11)$$

En el método iterativo de Gauss - Seidel) el nuevo -

voltaje calculado en la iteración (k+1): E_p^{k+1} , reemplaza inmediatamente al voltaje E_p^k y es usado en la solución de las ecuaciones subsecuentes.

Para la lectura de datos del programa digital, se utiliza un formato libre indicado por un asterisco en la proposición READ, por ejemplo se tiene READ(4,
*). De esta manera los datos deben escribirse sepa
rados por una coma sin necesidad de específicar un
ârea determinada para cada uno. Cuando se escribe
un grupo de datos, separado por comas, el último de
ellos no debe llevar coma al final, debiendo escri
birse el siguiente grupo de datos, si los hay, en
una nueva línea.

Los datos se digitan en el siguiente orden:

A) NUMG, NTRANS, NUMB, NL, EPS, MAX, BOSCIL, ALFA, MVA, en donde :

NUMG : número de generadores del sistema

NTRANS: número de transformadores

NUMB : número de barras

NL: número de líneas

EPS: factor de error

MAX: máximo número de iteraciones

BOSCIL: Barra de oscilación

ALFA: Factor de aceleración

MVA: megavoltios-amperios base

B. Los siguientes datos de entrada son los de las líneas formadas por la reactancia transiente de los generadores del sistema y los de las líneas que tienen transformadores.

LINEA(I), BI(I), BF(I), ZSERR(I), ZSERI(I), TAP(I)

En donde:

LINEA (I): número de línea (las líneas se numeran previamente en el diagrama unifilar - del sistema.

BI(I): Barra inicial de la línea I

BF(I): Barra final de la linea I.

- ZSERR(I): parte real de la impedancia del genera dor o transformador de la línea I.
- ZSERI(I): Parte imaginaria de la impedancia del generador o transformador de la línea I.
- TAP(I): Tap del transformador de la linea I
- C. A continuación entran los datos de las líneas que no tienen transformadores.
 - LINEA (I), BI(I), BF(I), LONG(I), YSHTR(I), YSHTI(I), ZSERR(I), ZSERI(I), en donde:
 - LONG(I): Longitud de la línea I(se supone que los datos de línea están dados en p.u.
 unidad de longitud).
 - YSHTR(I): Parte real de la admitancia en paralelp (Y')de la linea I
 - YSHTI(I): Parte imaginaria de la admitancia en para ralelo (Y') de la línea I.
 - ZSERR(I): Resistencia de la linea I

ZSERI(I): Reactancia de la linea I

En el caso de que los valores de Y' y Z sean valores totales de la línea, entonces el valor de - LONG(I) es igual a 1.0 (valor unitario). Los da tos de impedancias y admitancias deben estar da dos en por unidad de longitud.

Es importante la identificación correcta del núme ro de cada barra y línea del sistema. Las barras internas de los generadores toman siempre los valores iniciales seguidas de las barras colocadas luego de la reactancia transiente de cada generador.

- D. Datos de los voltajes asumidos en todas las barras, desde la barra NG(NG= NUMG + 1) hasta la barra NUMB, entrando parte real y parte imaginaria.
- E. Datos de cargas de cada barra, desde la barra NG, hasta la barra NUMB, entrando parte real y parte imaginaria.

F. Datos de potencia generada en cada barra desde la barra NG hasta la barra NUMB, entrando parte real y parte imaginaria.

Notar que las lecturas previas comienzan a partir de la barra NG, con lo cual no consideramos las barras internas de los generadores, que no intervienen en el flujo de carga del sistema.

En primer lugar se forma la matríz admitancia de barra sin considerar las barras internas que mencionámos anteriormente; de esta manera, las barras internas no intervienen en el flujo de carga del sistema. Previo a la formación de la matríz admitancia de barra debemos hacer dos diferenciaciones:

- Consideramos un sistema que presenta transformado res con tap variable; y
- 2. Consideramos un sistema sin transformadores.

Para ambos casos, la formación de ésta matriz es si milar, salvo que en el primer caso tenemos otro tipo de ecuaciones debido a la diferente representación - del circuito equivalente de un transformador con tap y de una línea sencilla.

Observando las figuras 3.4.1 y 3.4.2, parecen iguales salvo que en la figura 3.4.1, tenemos Y1 = Y3 = car ga de la linea.

$$Y_2 = \frac{1}{Z_t}$$

Siendo $Z_{\rm t}$ la impedancia serie de la línea. En cambio en la figura 3.4.2, tenemos:

$$Y_1 = \frac{1-n}{n^2 Z_t}$$

$$y_2 = \frac{1}{nZ_t}$$

$$Y_3 = \frac{n-1}{nZ_t}$$

Siendo Z_t la impedancia del transformador y n el tap. Debido a que $Y_1 \neq Y_3$ es importante anotar que, en

FIGURA 3.4.1.

CIRCUITO EQUIVALENTE DE UNA LINEA

FIGURA 3.4.2.

CIRCUITO EQUIVALENTE DE UN TRANSFORMADOR CON TAP VARIABLE

la lectura de daros, debe considerarse como B1 a la barra que señala la flecha en la figura 3.4.2, en este caso B2 y como BF a la barra opuesta a la flecha, en este caso B1.

A continuación se muestra el diagrama de flujo del programa FLUCAR.

La forma de ingresar los datos en el sistema S/34, consiste en crear un procedimiento mediante la siguiente instrucción:

SEU <u>nombre del procedimiento</u>, P,... <u>nombre de la li-</u>

<u>breria donde se</u>

<u>encuentra el pro-</u>

grama principal

Se pulda entonces la tecla ENTER y aparece en la pantalla la primera línea a ser digitada. Luego de cada línea digitada, se deberá presionar la tecla ENTER. Antes de comenzar a digitar los datos de entra da es necesario cargar el procedimiento mediante dos líneas de control al programa principal (en nuestro caso FLUCAR), tal como se indica a continuación:

DIAGRAMA DE FLUJO DEL PROGRAMA DIGITAL

Lateule el cambio en el voltaje de barra p
$$\Delta E_{p}^{k} = E_{p}^{k+1} - E_{p}^{k}$$
Introduzca factor de aceleración \propto

$$E_{p}^{k+1} = E_{p}^{k+\infty} E_{p}^{k}$$

Obtenga los voltajes detrás de la reactancia transiente de cada ge nerador.

$$\overline{E}_{G} = \overline{E} + (\frac{P - jQ}{E^*}) (r_d + jx'_d)$$

// LOAD FLUCAR

DATOS DE ENTRADA

La primera hoja de salida del programa corresponde a la descripción general del sistema de potencia en estudio, luego se presentan los datos de líneas y transformadores de la red y a continuación los resultados del flujo de carga del sistema: voltajes en cada barra, flujo de potencia entre barras, potencia genera da existente y los voltajes tras la reactancia transiente de cada generador.

temas de potencia conformados por 10 generadores, 28 barras y 28 líneas. Es necesario hacer una aclaración en cuanto al número de barras que acepta el programa. De las 28 barras mencionadas anteriormente, 10 corresponden a barras internas creadas antes de la reactancia transiente de cada generador, es decir, que el sistema en estudio puede estar constituído has ta por 18 barras externas entre las que contabilizamos barras de generación y barras de carga.

El espacio de memoria utilizado es de 64 K; a cont<u>i</u> nuación se muestran los resultados del flujo de ca<u>r</u> ga utilizando el programa digital.

3.5. COMPARACION DE LOS RESULTADOS OBTENIDOS EN EL SIMULA DOR CON LOS OBTENIDOS EN EL PROGRAMA DIGITAL.

Por simple observación de los resultados obtenidos - del programa digital, y de los resultados obtenidos utilizando el simulador que se encuentran en la tabla 8., se nota una gran similitud en los valores.

El porcentaje de error oscila entre el 1 % y el 2 %, lo que concuerda con la exactitud provista por los componentes electrónicos del simulador; cabe anotar que para elaborar el programa digital, se requirió de algún tiempo de computadora en realizarlo, corregirlo y probarlo, por lo que se resalta que la utilización del simulador es altamente ventajosa en comparación con el tiempo empleado en el computador, y como ente físico y matemático, ya que ha proporcionado una acertada visualización de los parámetros que varían en un flujo de carga de un sistema, cosa que no provee precisamente el programa digital; el cual a

			1700	on the Programme control to the second of these to	we the second second second	1	The second second second section and second second	Administration of the Court of the Court of			
		11 1500		e e a commo de inclui		12		perpendicular control of the second	a product over the state of		
		i				12					
		indexAu				5					,
						5					
				114 70 FOS	Latorica :	500					
				RU DE ITTRA GILACIA.	*C 10 753	9	The second section of the sect	AND THE RESIDENCE OF THE PARTY			
				CLLLPACION		1.50	1000 07			2-30-	
		A Est		Charles		100					
		74 37712				k () 3					
					the transfer of the second teacher		Print A. A. B. H. A. H.				
-		10 mm		Management is dispersion and the control of the special	DATO	S DE LINEAS!	9.0.)	and the second of the second o			
-	***			entranse i en depende del traggio de glacia del mario				CONTRACT COMMERCIAL CONTRACT C			
	1 45 A	LI	E F	LONGITUD	AUMITARE	IA PARALELO	IMPEDAN	CIA SERIE	TAP		
_			-								
					G	3	R	×			
*											
								•			
	•	1									
		-	.)	and the second second		.44.9.4	0.00000	0.530001		,	
	2	2	7	a see and the second			0.00000	0.34000J		* T. **:	
	2 3	2	7	a (ar &) (18)						* 	
	-	3 4	7				C.00000 C.00000 C.00000	0.34000J 0.21000J 0.69000J			
-	3		e:				C.00000 C.00000 C.00000 C.00000	0.34000J 0.21000J 0.69000J 0.35000J			
	3	4	e: ?				C.00000 C.00000 C.00000	0.34000J 0.21000J 0.69000J	1.000		
	3 4 5	4	61 7 1 0				C.00000 C.00000 C.00000 C.00000	0.34000J 0.21000J 0.69000J 0.35000J 0.15000J	1.000		
	3 4 5	4 5 0	1)				C.00000 C.00000 C.00000 C.00000 C.02000 C.02000	0.34000J 0.21000J 0.69000J 0.35000J			
	3 6 5	4 5 0 7	; ; ; ; ;				C.00000 C.00000 C.00000 C.00000 C.07000 C.02000	0.34000J 0.21000J 0.69000J 0.35000J 0.15000J	1.000	•	
	3 4 5 7 3	4 5 7 8	10 11 11				C.00000 C.00000 C.00000 C.00000 C.02000 C.02000	0.34000J 0.21000J 0.69000J 0.35000J 0.25000J 0.64000J	1.000		
	3 8 5 7 3	4 5 7 8 2	10 11 11 11	1.0	0.00000	0.0000J	C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000	0.34000J 0.21000J 0.69000J 0.35000J 0.15000J 0.25000J 0.64000J	1.000 1.000 1.000		
	3 2 5 7 3 9	4 5 7 8 7	10 11 11 11 12	1.0	0.0000	0.0000J	C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000	0.34000J 0.21000J 0.57000J 0.35000J 0.15000J 0.6400J 0.51000J 0.52000J	1.000 1.000 1.000		
	3 7 7 3	4 5 7 8 10 11	10 11 11 11 12 12				C.00000 C.00000 C.00000 C.00000 C.00000 C.02000 C.00000 C.00000 C.00000 C.00000	0.34000J 0.21000J 0.67000J 0.15000J 0.25000J 0.64000J 0.51000J 0.52000J	1.000 1.000 1.000		
e e como o como	3 6 7 3 7	4 5 7 8 9 13 11	10 11 11 11 12 12 15	1.0	0.00000	0.000001	C.00000 C.00000 C.00000 C.00000 C.02000 C.02000 C.00000 C.06000 O.34000 O.11000 O.29000	0.34000J 0.21000J 0.67000J 0.35000J 0.15000J 0.25000J 0.64000J 0.52000J 0.34000J	1.000 1.000 1.000		
	3 2 5 7 3 9 11 12 13	4 5 7 8 10 11 11	10 11 11 12 12 15	1.0	0.00000	0.00000	C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000 C.00000	0.34000J 0.21000J 0.69000J 0.35000J 0.15000J 0.64000J 0.51000J 0.52000J 0.34000J 0.67000J	1.000 1.000 1.000		
	3 6 7 3 7 11 12 13	4 5 7 8 10 11 11 12	10 11 11 12 12 15 16	1.0 1.0 1.0	0.00000 0.00000 0.0000	0.00000J 0.00000J	C.00000 C.000000 C.000000 C.00	0.34000J 0.21000J 0.57000J 0.35000J 0.25000J 0.64000J 0.52000J 0.52000J 0.34000J 0.25000J 0.25000J	1.000 1.000 1.000		95
	3 7 3 7 11 12 13 14	4 5 7 8 10 11 11 12 11	10 11 11 12 12 15 16 17	1.0 1.0 1.0 1.0	0.00000 0.00000 0.00000 0.0000	0.00000J 0.00000J 0.00000J	C.00000 C.000000 C.000000 C.00	0.34000J 0.21000J 0.67000J 0.15000J 0.25000J 0.64000J 0.51000J 0.52000J 0.34000J 0.25000J 0.25000J 0.25000J	1.000 1.000 1.000		95

			•	
		EURLCIFICARUS		
	$f_{\lambda} = f_{\lambda} + f_{\lambda}$	47671102	ANGULO	
	•	(P.U.)	(GRADUS)	
	4 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e en est e en e		
-	<u>5</u>	1.00000	0.00000	
	7	2.00000	0.00000	
	3,	1.00000	0.00000	
		1.31300	0.00000	
	2.9	1,00000	0.00000	
		r•bbbcb	0.00000_	Mile of the Company o
	12	1.00000	0.00000	
*, -,	13	1.30707	0.00000	
	14	1.00000	0.00000	
	17	1.00000	0.00000	•
	1.5	1.00000	0.00000	
	17	1.00000	0.00000	
	19721 2 12 2 300			
			er 3.4 · · ·	ا ما د ما مساوحه د می است و بد دینیا
	oc maka De	E CARGA EN HA!	REAS(E.U.)	1,
	eries (e.g. f e.g. es.			
	24 K-14	8	_ C	
	•		44	
	ر،		0.00000	
ŧ	7	9.10020	0.07020	
			0.00000	
	3	9.90000	0.00000	
	10	3.39003	0.02000	
	11	3.00001	0.0000	
	1.2		0.0000	
	1.3	V. 41:39	J.00000	
				The state of the s

0.33001

0.41000

9.19900

0.20000

10

16

17

0.00000

0.12000

0.00000

96

 	0.55000	0.12000	
 7	0.30000	0.17000	
.3	0. 12.00	2.17000	
4	0.0000	0.60000	
10	0.30000	0.17000	-
11	0.00000	0.000.0	
 1.2	0.00000	0.60000	
 1.3	0.00000	0.02000	
1 4	0.00000	♦. 0 ≥0 ≥0	
2.5	v • 10 15 7	0.61000	
4.5	0.50000	0.6707)	
17	0.00007	0.00000	
	y • · ·		

WALTHES DE PETETICIA NETA EN HAPPAS(P.U.)

SAM!	P	C	 3.35	 	
•	0.03000	0.12000		,	
7	3.1 6000	0.14000		 	
	0.10030	0.17000	 		
" " ي	. c. nonun	0.07010	 		
10	-0.02000	0.07030			
1 1	1 0.00000	0.00000			
1.2	0.00000	0.50000			
13	-0.41000	0.00000			
14	- 7. 33 100	-0.00000			
1.	-0.41000	-3.12000			
1.5	-0.1.000	-0.05630		 	
1/	-) (0 0 0 0	0.69330			

```
7450 I TUO
                                           ANGULO
- 120
           VILTAJ
                             (0.0.)
                                          (GRADUS)
            1 . . . . )
                                         13.01060
      1.03345
                9.238791
                             S1.0507
      1.00175
                                          10.93878
                0.17715J
                              1.0284
                                          10.14255
      0.402.0
                1.175741
                              3.9777
      1.01000
                J. 600 10J
                              1.0100
                                          0.000000
      5.079,0 -J.1351CJ
                                          -7.92484
                              0.9799
1 ...
      4.31.15
                0.144511
                              6.4454
                                          d. 43269
1.1
                                          -6.19399
      0.93130 -0.10132J
                              0.9363
12
                                         -11.22459
      0.45751 -3.170203
                              0.8743
1 3
                                          -1.19451
                              0-1545
      0.004.2 -3.017073
14
                                          0.05053
      0.17453 0.000923
                              0.3749
15
                                          -4.07158
      0.01017 -0.004793
                              0.9125
1 ::
                                          -6.27730
                              0.4379
       U-138245 -J. U. 707J
1 /
     FLUJU DE PUTENCIAS ENTRE HAMRAG(P.U.)
                                     POIT, REACTIVA
                        PUT. REAL
                                      -0.00000
                        0.00000
                        0.00000
                                      -0.00000
                        3.00000
                                      -0.00000
                        4.40000
                                      -0.00000
              10
                        0.70000
                                      -0.00000
                                       0.15239
                        0.45361
              2 1
                                      -0.00000
              12
                        0.00000
                                      -0.20000
              1 3
                        0. 10 200
                        0.0000
              14
                                      -0.00000
                        0.033339
                                      -0.00000
                        0.00000
                                      -0.00000
```

LA FECNICA ITERATIVA DE GAUSS-SEIDEL CONVERGIO EN

4,00000

1 5.15 671

-0.00000

-0 12000

2			0.15050	0.10555	
	7	1	9.00000	-0.00000	
	ý	1 3	0.00000	-0.00000	
		1 4	0.00000	-0.00000	and the commerce of the same o
• -	7	13	0.00000	-0.00000	The state of the s
	7	1.5	0.00000	-0.00000	The state of the s
to the same of the same of the	7	17	0.00000	-9.00000	The control of the co
			0.00000	-0.00000	
		-	0.00000	-0.00000	
	23	12	2.00000	-0.00000	والمنافق وال
		3	0.00000	-0.00000	
		10	0.00000	-0.00000	
	r,	11	0.73355	0.32331	the state of the s
	3	12	0.00000	-0.00000	
	64	13	0.00000	-0.00000	
		14	0.00000	-0.20000	and the second s
-		15	2.00000	-0.00000	
•		15	0.00000	-0.00000	
		: 7	0.00000	-0.00000	
And 4 A 4 A 4	- 3	5	0.00000	-0.00000	
		7	0.00000	-0.00000	
		,	0.34700	-0.00000	
		, ,	0.00000	-0.00000	
*** 9	•	13	0.00000	-0.00000	
	- 4	11	0.00000	-0.00000	
	4	12	6.17643	0.11349	
	3	1.3	0.00000	-0.20000	
		1.4	0. 20000	-0.00000	
	. , 	13	7.00000	-0.00000	
		15	0.00000	-0.00000	
• •		17	0.00000	-0.00000	
	10	5.	0.00000	-0.00000	
	•	,	0.00000	-0.00000	
	1		0.00000	-0.00000	
	į ,	,	0.00000	-0.00000	
	1.7	13	0.13030	-0.00000	
	10	11	1.0000	-0.00000	
	1. /	1.2	-3. 4660	0.03642	99
	1.	1 3	7. 10,700	-0.00000	9
	1	1.4	1.000cm	-0.10000	
	10	1 5	0.00000	-0.00000	
	1	1.5	0.0000	-0.00000	• • • • • • • • • • • • • • • • • • •
	1	17	9. 7., 100	-0.00000	
	11	•	-7.41730	-0.10102	
				0 1 0 0	

	11	2 4	9. 43'. 45	0.20643	
	i 1	15	0.25:42	0.01122	
	11	1 5	0.30513	0.10424	and the second s
	11	17	0.0000	-0.00000	The second secon
***	12		0.00000	-0.00000	The state of the s
	12		0.00000	-0.00000	And the second s
	12	1		-0.08675	
	1 &	7	-0.17530	-0.08120	
	2.2	1.7-	0.04735	-0.00000	the second section of the section of
-	12	11	0.0000	-0.00000	
	12	_1?	0.00000	0.06377	The second section is a second
	12	13	0.21744	-0.00000	
	12	1.4	0.00000	-0.00000	
	12	1.5	0.0000	0.12346	
	1.2	16	-0.17224	-0.00000	
	1.2	17	0.0000	-0.00000	
-	_13		0.00000	-2.00000	
	13		0.00000	-2.20000	
	13	3	3.00000	-0.00000	
	1.3	'	0.00000	-0.00000	
	1.3	10	0.00000	-0.00000	
	1.3	11	0.0000	And the second s	
	1.3	12	-0.20744	-0.24151	The second secon
	1 -5	. 1 .3	0.0000	-0.00000	The state of the s
	1.3	1 4	0.10001	-0.20000	The second contraction of the second contrac
	1 5	1/2	0.00.00	-0.20000	
	1 3		9.0000	-0.00000	
	1.3	17	-0.19333	0.05271	the same of the control of the contr
	1.4		0.00000	-0.00000	
	14	7	0.00000	-0.00000	to the control of the
	14	٤٠	0.0000	-0.00000	والمراجع والمحادث والمحادث والمحادث والمحادث والمحادث والمحاد والمحادث والم
	4 +	77.	0.00000	-0.00000	
	14	10	0.00000	-0.00000	
	14	11	-7.13183	-0.09083	A MARKET BY THE PARTY OF THE PA
	14	1.6).ganan	-0.00000	
	1 4	1.5	0.00000	-0.00000	The state of the s
	1 4	14	0.00000	-0.00000	and a second control of the second control o
**************************************	1 4	13	0.00000	-0.00000	⊢
I, .	1 4	1.	0.00000	-0.00000	100
	14	1 /	J. 20032	-0.00000	
	15	6	0.00000	-0.0000	
•	15	7	7.00000	-0.01010	
	.	-4	0.19000	-0.00000	
	1 .	j	9.00090	-0.00000	
	1 1,	1.)	2.00733	-0.90000	•

WARREN 11

6502A 12

Air . A 13

* . . . 1 4

-0-04-64

0.05271

0.011 ++

-6,49112

-0. 471 43

0.09042

0.01927

J. 01120

-0.0003

-0.00337

101

POTENCIA GEMERADA EXISTERTE

-			
GET RADOR	1	2.39358	0.152301
of mander like	2	0.23059	0.19565J
SINI TOOK	3	0.733.5	0.32331J
S. Inchascon	4	0.17343	0.11349J 0.17642J
1. 14. 12. 12. 18 11 11 11 11 11 11 11 11 11 11 11 11	5	0.35739	C . L . C) . L . J

VILTAJOS TOAS LA REACTINGIA TAANSTENTE DE GENERADORES

6-1	VULTAUE	"AGMITUD	DELTA (GRADUS	
1 2 3 4	1.13.76 0.575263 1.355.3 0.331733 1.4224 0.339673 1.96753 0.121903 1.94735 -0.036463	1.0773 1.0773 1.0772 1.0743 1.0485	28.97203 15.25983 18.38147 6.39550 -1.99290	

su vez, sólo tiene la ventaja de la precisión de resultados que podrían ser utilizados en un estudio de ma yor complejidad, para el que se tendría que desarrollar un esquema mucho más complicado con el expuesto ante riormente.

CAPITULO IV

ANALISIS DE TRANSIENTES QUE SE PRESENTAN EN UNA LINEA DE TRANSMISION POR CONEXION Y DESCONEXION DE FUENTES DE ENER GIA.

4.1. GENERALIDADES

Cualquier disturbio en una línea de transmisión,tales como descargas eléctricas o alguna interrupción de las condiciones de estado estable, producen el inicio de ondas viajeras, las que se propagan hacía el final de las líneas donde son reflejadas y modificadas, ate nuadas y distorsionadas por efecto corona y otras pérdidas.

Se han hecho amplios estudios donde las constantes R, L, y C, han sido parámetros distribuídos o concentrados, o donde han sido aproximados entre sí. Asumire mos que estos parámetros están realmente distribuídos en cualquier circuito o pieza de un equipo, así es posible sorprenderse de la forma como un comportamiento transiente de tales circuitos puede ser calculado en

base a un análisis de circuítos con parámetros distribuídos.

4.2. ANALISIS TEORICO DEL PROBLEMA POR CONMUTACION

Representaremos diferencialmente una linea de tran<u>s</u> misión.

Donde:

AX es la longitud de la sección de línea

- r es la resistencia de la linea por unidad de longitud.
- l es la inductancia de la línea por unidad de longitud.
- g es la conductancia de la linea por unidad de lon gitud.
- c es la capacitancia de la linea por unidad de lo<u>n</u> gitud.

Planteando las ecuaciones iniciales:

$$v = i \cdot r \Delta x + 1 \Delta x \frac{di}{dt} + v + \Delta v$$

FIGURA Nº 4.2.1.

REPRESENTACION DIFERENCIAL DE UNA LINEA DE TRANSMISION

$$- v = (ir + 1 \frac{di}{dt}) \triangle x$$

$$-\frac{\Delta v}{\Delta x}$$
 = i.r + 1 $\frac{di}{dt}$; tomando el limite cuando x $\rightarrow 0$

$$-\frac{dv}{dx} = v.i + 1 \frac{di}{dt}$$
 ec. (4.2.1)

De la misma forma planteando ecuaciones de nodo, tenemos:

$$-\Delta i = g \Delta x (v + \Delta v) + c \Delta x \cdot \frac{d}{dt} (v + \Delta v) + i + \Delta i$$

$$-\Delta i = g.\Delta x v + g.\Delta x$$
. $\Delta v + c\Delta x$. $\frac{d}{dt} + c\Delta x$. $\frac{d}{dt} \Delta v$

$$-\Delta i = (g.v + c \frac{dv}{dt}). \Delta x$$

$$-\frac{\Delta i}{\Delta x} = g.v + c\frac{dv}{dt}$$
; tomando el límite cuando $x \rightarrow 0$

$$-\frac{di}{dt} = g.v + c \frac{dv}{dt}$$
 ec. (4.2.2)

Se requiere determinar el voltaje y la corriente en función del espacio y del tiempo; en otras palabras, resolver el sistema de ecuaciones diferenciales.

Tenemos como condiciones iniciales:

t = 0 corresponde a la línea desenergizada.

y(x,0) = 0

i(x,0) = 0

Es necesario recordar que:

$$L \left\{ \frac{dv}{dt} \right\} = sV(x,s) - v(x,0) = sV(x,s)$$

$$L \left\{ \frac{di}{dt} \right\} = sI(x,s) - i(x,0) = sI(x,s)$$

$$L\{v(x,t)\} = V(x,s) = V$$

$$L\{i(x,t)\} = I(x,s) = I$$

Obteniendo las transformadas de las ecuaciones 4.2.1 y 4.2.2, se tiene:

$$-\frac{dv}{dx} = v.I + 1sI = (r + 1s)I = -\frac{dv}{dx}$$
 ec.(4.2.3)

$$-\frac{d1}{dx} = g.V + csV = (g + cs) V = -\frac{d1}{dx} = ec.(4.2.4)$$

Derivando la ecuación (4.2.3), con respecto a X:

$$= \frac{d^2 y}{dx^2} = (r + s1) \frac{d1}{dx}$$

Reemplazando la $\frac{d1}{dx}$ de la ecuación (4.2.4), tenemos:

$$-\frac{d^2v}{dx^2} = -(r + s1) (g + sc)V, de donde:$$

$$-\frac{d^2v}{dx^2} = (r + s1) (g + sc) V$$
 ec.(4.2.3)

Derivando la ecuación (4.2.4) con respecto a x, te nemos:

$$-\frac{d^2I}{dx^2} = (g + sc) \frac{dv}{dx} = -(g + sc) (r + s1) I$$

$$\frac{d^2I}{dx^2} = (r + sI) (g + sc)I \qquad ec. (4.2.4)$$

asumimos que $\gamma^2 = (r + s1) (g + sc)$

luego:

$$\frac{d^2v}{dx^2} = \gamma^2 v$$

$$\frac{d^21}{dx^2} = \gamma^2 I$$

La forma de la solución de este sistema es la siguie $\underline{\mathbf{n}}$ te:

$$v(x,s) = A e^{\gamma x} + B_e^{-\gamma x}$$
 ec. (4.2.5)

$$I(x,s) = C_e^{\gamma x} + D_e^{-\gamma x}$$
 ec. (4.2.6)

Debemos determinar los parámetros A, B, C, y D; derivando las ecuaciones (4.2.5) y (4.2.6) con respecto a x, tenemos:

$$-\frac{dv}{dx} = -Ay_2^{YX} + By_e^{-YX}$$
 ec. (4.2.7)

De la ecuación (4.2.3) sabemos que:

$$-\frac{dv}{dx} = (r + s1) I$$

Reemplazando en la expresión anterior la ec. (4.2.6), se tiene:

$$-\frac{dv}{dx} = (r + s1) \cdot (e_e^{\gamma x} + e_e^{-\gamma x})$$
 ec. (4.2.8)

$$-\frac{dv}{dx} = (r + si) C_e^{\gamma X} + (r + si) D_e^{-\gamma X} ec. (4.2.8)$$

Para que las ecuaciones (4.2.7) y (4.2.8) sean igua les, debe cumplirse que:

$$- AY = C(r + s1)$$

$$BY = D(r + s1)$$

De donde:

$$C = \frac{-AY}{Y + SI}$$

$$D = \frac{B\gamma}{r + s}$$

Y como:
$$y^2 = (r + s1) (g + sc)$$

$$C = -A \sqrt{\frac{(r + s1)(g + sc)}{(r + s1)^2}}$$

$$C = -A \sqrt{\frac{q + sc}{r + sl}}$$

$$D = B \sqrt{\frac{g + sc}{r + s1}}$$

Introduciendo la impedancia característica, tenemos:

$$Z_0 = \sqrt{\frac{r + s1}{g + sc}}$$

$$Y_0 = \sqrt{\frac{q + sc}{r + s1}}$$

Por lo tanto:

$$V(x,s) = Ae^{CX} + Be^{X}$$
 ec. (4.2.9)

$$I(x,s) = -AY_0e^X + BY_0e^X$$
 ec. (4.2.10)

Para hallar los parámetros A y B, necesíto otra con dición inicial, la cual tomaremos de la figura 4.2.

Sabemos que:

$$L(v(0,t)) = V(0,s)$$
 luego:

$$Para x = 0 V(0,s) = A + B$$

Reemplazando el valor de B en las ecs. (4.2.9) y - (4.2.10), tenemos:

$$V(x,s) = Ae^{\gamma X} + \{V(0,s) - A\} e^{-\gamma X}$$

FIGURA 4.2.2.

CONDICIONES INICIALES PARA DETERMINAR LOS PARAMETROS A Y B

$$V(x,s) = A(e^{\gamma X} - e^{-\gamma X}) + V(0,s)e^{-\gamma X}$$
 ec.(4.2.11)

$$I(x,s) = -Y_0Ae^{YX} + Y_0\{V(0,s) - A\}e^{-YX}$$

Agrupando términos:

1
$$(x,s) = -Y_0A (e^{YX} + e^{-YX}) + Y_0V(0,s)e^{-YX}$$
 ec.(4.2.12)

Necesitamos determinar el coeficiente A, para obtener la solución de las ecuaciones diferenciales.

Conocemos que la impedancia donde termina la línea es:

$$Z_D = \frac{V(D,s)}{I(D,s)}$$

Luego:

$$Z_{D}(s) = \frac{A(e^{\gamma D} - e^{-\gamma D}) + V(0,s)e^{-\gamma D}}{-Y_{0}A(e^{\gamma D} + e^{-\gamma D}) + Y_{0}V(0,s)e^{-\gamma D}}$$

Despejando A, se tiene:

$$A = V(0,s) \frac{(Z_DY_0 - 1) e^{-\gamma D}}{e^{\gamma D}(Y_0Z_D^+ 1) + e^{-\gamma D}(Y_0Z_D^{-1})} ec.(4.2.13)$$

Llamando coeficiente de reflexión a:

$$K(s) = \frac{Z_D Y_0 - 1}{Z_D Y_0 + 1}$$

Y dividiendo a la ecuación (4.2.13) para:

$$Z_{D}^{Y}$$
 + 1, se tiene:

$$A = V(0,s) = \frac{K(s)}{e^{\gamma D} + Ke^{-\gamma D}} = e^{-\gamma D}$$

Reemplazando A en las ecs. (4.2.11) y (4.2.12), tenemos:

$$V(x,s) = V(0,s) \frac{e^{\gamma(D-x)} + Ke^{-\gamma(D-x)}}{e^{\gamma D} + Ke^{-\gamma D}}$$
 ec.(4.2.14)

$$I(x,s) = Y_0V(0,s) \frac{e^{\gamma(D-x)} - Ke^{-\gamma(D-x)}}{e^{\gamma D} + Ke^{-\gamma D}} ec.(4.2.15)$$

Desarrollando el denominador mediante series:

$$(e^{\gamma D} + Ke^{-\gamma D})^{-1} = \sum_{n=0}^{\infty} (-K(s))^n e^{-(2n+1)\gamma D}$$
 ec.(4.2.16)

Reemplazando la ecuación (4.2.16) en las ecuaciones (4.2.14) y (4.2.15) tenemos:

$$V(x,s) = V(0,x)^{\{\chi(D-x)\}} + Ke^{-\gamma(D-x)} \sum_{n=0}^{\infty} (-K)^n e^{-(2n+1)\gamma D}$$

Desarrollando la expresión anterior, se tiene:

$$V(x,s) = V(0,s) \left\{ \sum_{n=0}^{\infty} (-K)^n e^{-2n\gamma D - \gamma x} - \sum_{n=0}^{\infty} (-K)^n (-K) \right\}$$

Luego:

$$V(x,s) = V(0,s) \begin{cases} \sum_{n=0}^{\infty} (-K)^n e^{-\gamma(2nD+x)} - \sum_{n=0}^{\infty} (-K)^{n+1} e^{-\gamma(-x+2(n+1)D)} \\ \text{ond as incidentes} \end{cases}$$

igualmente :

$$I(x,s) = \frac{V(0,s)}{Z_0} \left\{ \sum_{n=0}^{\infty} (-K)^n e^{-\gamma(2nD+x)} + \sum_{n=0}^{\infty} (-K)^{n+1} e^{-\gamma(-x+2(n+1)D)} \right\}$$
ondas incidentes ondas reflejadas

En base a estos resultados analizaremos a una línea infinita sin pérdidas.

En una linea extremadamente larga, se cumple que:

$$D = \infty$$
 , $r = g = 0$.

Sabemos que:

$$A = V(0,s) \frac{Ke^{-\gamma D}}{e^{\gamma D} + Ke^{-\gamma D}}$$

Si ocurre que D+ ∞ , el valor de A + O

de ésta manera:

$$V(x,s) = V(0,s) e^{-\gamma x}$$

$$I(x,s) = \frac{V(o,s)}{Z_0} e^{-\gamma x}$$

Pero:

$$\gamma = \sqrt{(r + s1)(g + sc)}$$

=
$$\sqrt{s^2}1c$$
 = $s\sqrt{1}c$

Por lo tanto:

$$V(x,s) = V(0.s)e^{-S\sqrt{1}cx}$$

$$I(x,s) = \frac{V(0,s)}{Z_0} e^{-s\sqrt{1}cx}$$

$$Z_0 = \sqrt{\frac{r + sl}{g + sc}} = \sqrt{\frac{1}{c}} = Z_0$$

Donde la impedancia característica de la línea es un número real.

Obteniendo la transformada inversa de Laplace de V(0,5) tenemos:

 L^{-1} {V(0,s)} = V(0,t), lo que representa la fuente al comienzo de la línea.

$$L^{-1}\{V(x,s)\} = V(x,t) = V(0,t) = V(0,t-x')$$
 1c)

y de la misma manera:

$$i(x,t) = \frac{V(0,t-x/1c)}{Z_0}$$

Estas dos ecuaciones representan las ondas viajeras de voltaje y de corriente que existen en una línea de transmisión de longitud infinita.

Analizaremos el caso que nos interesa, el cual es las líneas de longitud finita.

Conocemos por el análisis anterior que:

$$V(x,s)V(0,s)$$
{ $\sum_{n=0}^{\infty} (-K)^n e^{-\gamma(2nD+x)} - \sum_{n=0}^{\infty} (-K)^{n+1} e^{-\gamma(-x+2(n+1)D)}$ }

Se analizarán los siguientes casos:

 Si la carga de la línea es igual a su impedancia característica, es decir:

$$z_p = z_o$$
.

Sabemos que:

$$K(s) = \frac{Z_D Y_0 - 1}{Z_D Y_0 + 1}$$

Si Zp= Zo, ocurre que K(s) = 0

Luego para n = 0

Notar que se está considerando una lina sin pé \underline{r} didas, donde:

$$Z_0 = \sqrt{\frac{1}{c}}$$

De ésta manera:

$$I(x,s) = \frac{V(0,s)}{Z_0} e^{-\gamma x}$$

y como la línea no tiene pérdidas:

$$\gamma = s/1c$$

donde:

$$V(x,s) = V(0,s) e^{-s/1cx}$$

$$I(x,s) = V(0,s) = \frac{e^{-s\sqrt{1}cx}}{Z_0}$$

Soluciones que son las mismas que para una línea inf \underline{i} nita sin pérdidas.

Lo cual significa que toda la energía que viaja en ondas se consume totalmente en la impedancia característica Z_o de la línea, si ésta actúa como carga.

2. Si la carga de la línea Z_D = R; tenemos que:

$$K(s) = \frac{Z_D Y_O - 1}{Z_D Y_O + 1} = \frac{Z_D(s) - Z_O(s)}{Z_D(s) + Z_O(s)}$$

y reemplazando $Z_D = R$, se tiene:

$$K = \frac{R - Z_0}{R + Z_0}$$

Desarrollando la ecuación de las ondas de voltaje:

$$V(x,s) = V(0,s) \{ \sum_{n=0}^{\infty} (-K)^n e^{-\gamma (2nD+x)} - \sum_{n=0}^{\infty} (-K)^{n+1} e^{-\gamma (-x+2(n+1)D)} \}$$

Luego:

$$V(x,s) = V(0,s)_{n=0} \qquad e^{-\gamma x} \qquad + Ke^{-\gamma(-x+2D)}$$

$$n=1 \qquad -Ke^{-\gamma(2D+x)} - K^2e^{-\gamma(-x+4D)}$$

$$n=2 \qquad K^2e^{-\gamma(4D+x)} + K^3e^{-\gamma(-x+6D)}$$

$$n=3 \qquad -K^3e^{-\gamma(6D+x)} - K^4e^{-\gamma(-x+8D)}$$

$$\vdots \qquad \vdots$$

Luego la expresión del voltaje en función del tiempo y del espacio es:

$$v(x,t) = v(0,t - \frac{x}{u}) - Kv (0,t - \frac{x+2D}{u}) + K^2v(\frac{0,t-x+4D}{4})$$

$$- K^3 v(0,t - \frac{x+6D}{u})$$

Las expresiones anteriores representan las ondas incidentes que viajan hacía la curva y son de la forma:

$$V(0,s) = \sum_{n=0}^{\infty} (-K)^n e^{-\gamma(2nD+x)}$$

Continuando con el desarrollo:

$$Kv(0,t-\frac{-x+2D}{u}) - K^2v(0,t-\frac{-x+2D}{u}) + K^3v(0,t-\frac{-x+6D}{u})$$

$$- K^4 v(0,t - \frac{-x + 8D}{u})$$

Estas expresiones representan las ondas reflejadas que viajan hacía la carga y son de la forma:

$$V(0,s) (-) \sum_{n=0}^{\infty} (-K)^{n+1} e^{-\gamma(-x+2(n+1)D)}$$

Para visualizar este desarrollo, deberemos tomar en

ta que transcurra un tiempo determinado, esto es:

Ninguna de las ondas incidentes existirá para un - tiempo:

$$t < \frac{x + 2nD}{u}$$

Ninguna de las ondas reflejadas existirá para un tiem po:

$$t < \frac{-x + 2(n+1)D}{u}$$

Veremos como se comportan las ondas en el punto de llegada, para lo cual utilizaremos el diagrama de -Lattice, mostrado en la figura 4.2.3.

En donde el tiempo D/u llega la primera onda, la onda incidente multiplicada por el coeficiente de reflexión K nos da la onda reflejada, la onda incidente aparece para cada tiempo t = $\frac{2D}{u}$; para un tiem

FIGURA 4.2.3.
DIAGRAMA DE LATTICE

po mayor a la mitad del expuesto anteriormente, la onda se refleja multiplicada por el coeficiente de reflexión.

Se asume que las fuentes son ideales, con lo cual su impedancia interna es igual a cero; por lo cual en el origen de la onda se tendrá un coeficiente de reflexión de:

$$K_0 = \frac{0 - Z_0}{0 - Z_0} = -1$$

Se analizan dos tipos de diagramas: el diagrama de tiempo y el diagrama especial.

En el diagrama de tiempo se trata de representar - las variaciones de voltaje y de corriente a través del tiempo, en un punto específico de la línea.

En el diagrama espacial se representan las variaci<u>o</u> nes de voltaje y de corriente a través de toda la línea pero en un determinado instante de tiempo.

3. El tercer caso se produce cuando la impedancia -

de carga Z_D representa otra linea de transmisión.

Observándo la figura, 4.2.4. notamos que antes de llegar al punto a, se ve la impedancia caracterís tica de la otra línea, Z_2 , como una carga, pero no existirá un consumo de energía, sino una trans misión de la misma.

Para este caso se tendrá que:

$$K = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$
 (coeficiente de reflexión)

y el coeficiente de refracción o transmisión será:

$$K_t = 1 + K$$

$$K_{t} = \frac{2Z_{2}}{Z_{1}+Z_{2}}$$

Veremos en la figura 4.2.5. el efecto de la incide<u>n</u> cia de un pulso sobre dos líneas de transmisión de impedancias características diferentes.

Donde:

FIGURA 4.2.4.

DOS L/T UNA A CONTINUACION DE OTRA

FIGURA 4.2.5. INCIDENCIA DE UN PULSO SOBRE UNA L/T CON $\mathbf{Z_0}$ DIFERENTES

Vi : onda incidente sobre la L/T de impedancia Z_{ol}

Vr : onda reflejada al llegar a la L/T de impedancia $Z_{\rm o2}$.

Vt : onda incidente sobre la L/T de impedancia Z_{o2}.

VR : onda resultante de la suma de las ondas inciden te y reflejada.

Definiremos como coeficiente de reflexión a:

$$K_{11} = \frac{Z_{02} - Z_{01}}{Z_{02} + Z_{01}}$$

y como coeficiente de transmisión a:

$$K_{12} = 1 + K_{11}$$

$$K_{12} = \frac{2 Z_{02}}{Z_{02} + Z_{01}}$$

Casos especiales :

Cuando la línea de transmisión de impedancia caract \underline{e} rística Z_{02} está abierta, entonces $Z_{02} = \infty$ y el $co\underline{e}$

ficiente de reflexión:

$$K_{11} = \frac{Z_{02} - Z_{01}}{Z_{02} + Z_{01}} = \frac{1 - \frac{Z_{01}}{Z_{02}}}{1 + \frac{Z_{01}}{Z_{02}}} = 1$$

Según lo cual se refleja una onda de la misma magn<u>i</u> tud.

Y en cuanto al coeficiente de refracción:

$$K_{12} = \frac{ZZ_{02}}{Z_{02} + Z_{01}} = \frac{Z}{1 + \frac{Z_{01}}{Z_{02}}} = 2$$

La onda reflejada total será de doble magnitud.

Cuando la linea de transmisión de impedancia caract<u>e</u> rística Z_{O2} es un cortocircuito:

$$Z_{02} = 0$$
; luego $K_{11} = \frac{Z_{02} - Z_{01}}{Z_{02} + Z_{01}} = -1$.

El valor obtenido nos indica que se refleja una onda

de igual magnitud, pero de sentido opuesto.

El coeficiente de refracción es:

$$K_{12} = \frac{2Z_{02}}{Z_{02} + Z_{01}} = 0$$

Lo que nos indica que no se tiene onda refractada alguna, lo cual era de esperarse.

Es necesario acotar que en éste análisis, la prime ra onda incidente y la primera onda reflejada son las más importantes, estas son:

$$v(x,t) = v(0,t-\frac{x}{u}) + Kv(0,t + \frac{x-20}{u})$$

$$i(x,t) = \frac{1}{2} v(0,t-\frac{x}{u}) + Kv(0,t+\frac{x-2D}{u})$$

4.3. ANALISIS PRACTICO EN EL SIMULADOR

4.3.1. Ejemplo Escogido

Utilizaremos una línea tipo π de reactancia

x = 0.08 pu y capacitancia c = 0.001 pu. Y se utilizarán tres secciones de línea. El diagrama es el de la figura 4.3.1.

4.3.2. Preparación para su estudio en el Simulador

El diagrama anterior se realizó físicamente en el simulador utilizando como fuente de voltaje a un generador de señales de amplitud y frecuencia variable.

El diagrama utilizado en el simulador fue el de la figura 4.3.2.

4.3.3. Energización del Simulador y obtención de resultados

Se realizaron tres pruebas, la primera fue - con la impedancia de carga en circuito abier to, $Z_D = \infty$, donde se obtuvo que con un volta je incidente de forma cuadrada y de una magnitud de 0,1 voltios, la onda de voltaje re sultante tuvo una magnitud de 0,19 voltios,

FIGURA Nº. 4.3.1.

DIAGRAMA EJEMPLO PARA LA PRUEBA DE TRANSIENTES

FIGURA Nº 4.3.2.

SIMULADOR

ධ

E

CONSTRUIR

rat,

DIAGRAMA

partiendo la onda incidente en t=cero segun dos, y sumándose con la reflejada en t=0,32 (mseg).

Como lo muestran la onda incidente, la onda reflejada y la onda resultante de voltaje, la segunda fotografía muestra la onda resultante de voltaje solamente.

En la segunda prueba se utilizó como carga la impedancia característica de la línea, no tándose que la misma onda que incide en la carga, es la que se refleja debido a que to da la energía electromagnética de la onda - se consume en la impedancia característica de la línea.

La tercera prueba se realizó colocando un cortocircuito como carga de la línea, dando
como resultado una onda reflejada de igual
magnitud de voltaje pero de signo contrario.
con lo que la onda resultante fue de voltaje
cero.

FOTOGRAFIA 1. ONDA REFLEJADA Y RESULTANTE DE PRIMERA PRUEBA

FOTOGRAFIA 2. ONDA RESULTANTE DE PRIMERA PRUEBA

FOTOGRAFIA 3.

ONDA INCIDENTE, REFLEJADA Y RESULTANTE DE SEGUNDA PRUEBA

FOTOGRAFIA 4.

ONDA RESULTANTE DE SEGUNDA PRUEBA

4.4. COMPARACION DE LOS RESULTADOS OBTENIDOS EN EL SIMU LADOR CON LOS DEL ANALISIS TEORICO

En el caso del circuito abierto, cuando la impeda<u>n</u> cia de carga Z_D es infinita, al final de una línea de transmisión, ocurre que la corriente en dicho - punto será cero todas las veces; así cuando una o<u>n</u> da de corriente de amplitud positiva llega al pu<u>n</u> to de circuito abierto, una onda de corriente de amplitud negativa se inicia a la vez para satisfacer la condición límite. Esta viaja hacía la fue<u>n</u> te en compañía de una onda de voltaje de amplitud positiva.

Una onda de corriente de amplitud negativa incide<u>n</u> te en el circuito abierto sería reflejada como una onda de amplitud positiva y asociada con una onda de voltaje de amplitud negativa.

Lo que ocurre cuando una línea en circuito abierto es energizada desde una fuente de V voltios, se - muestra en la figura 4.4.1.

ONDAS QUE APARECEN EN UNA LINEA EN CIRCUITO ABIERTO AL INTRODUCIR UNA SEÑAL ESCALON.

En esta situación la energía magnética asociada con la corriente desaparece cuando la corriente es reducida a cero en circuito abierto. Dicha energía reaparece como energía eléctrica, la que a su vez semanifiesta al doblarse el voltaje.

Si el tiempo de viaje de la onda a través de la lí nea es T segundos, por el tiempo, las ondas iniciales de voltaje y de corriente alcanzan el terminal remoto, y una cantidad de energía VIT joules será enviada a la linea desde la fuente. La mitad de és ta residirá en el campo eléctrico y la otra mitad en el campo magnético, T segundos después, una can tidad de energía de 2VIT joules serán impartidos a la línea, pero ahora todo estará en el campo eléc trico, de tal manera que se tiene ahora cuatro ces la energía en el campo eléctrico que la que bia en el tiempo T, el voltaje a través de la linea será dos veces más elevado, ya que la energía varia directamente con el cuadrado del voltaje. Los tran sientes de voltaje pueden tener efectos muy destruc tivos en el equipo que está en el terminal de la lí nea, ya que se está doblando la potencia de la onda. Cuando la impedancia de carga fue igual a la impedancia característica de la línea, no existía onda resultante reflejada, esto es porque la onda incidente fue completamente absorbida por la carga esto en realidad es de mínimo significado práctico en circuitos de potencia pero es muy importante en circuitos de comunicación y en circuitos de medición.

En el caso de cortocircuito, la onda se voltaje in cidente es cancelada por la onda reflejada ya que son de la misma magnitud pero de signo contrario, y la onda incidente de corriente se ve aumentada por la onda reflejada al doble de su magnitud.

El patrón de estos eventos puede ser explicado en términos de energía como en el caso del circuíto - abierto.

En estas pruebas no se obtuvo fielmente la onda en viada por el generador de señales, esto se debe a que en el análisis teórico se tomó en cuenta condiciones ideales, es decir que no existan pérdidas, y

que la impedancia interna de la fuente sea cero.Cua<u>n</u> do en realidad hay una distorsión de la onda debido a la configuración de la línea y a la no existencia de las condiciones ideales mencionadas anteriormente.

CONCLUSIONES Y RECOMENDACIONES

La técnica utilizada con el simulador tiene una ventaja - abrumadora sobre el método del computador digital en la la enseñanza de los estudiantes de Sistemas de Potencia, ya que proporciona una experiencia directa acerca del modo en que trabaja un sistema de potencia.

Cuando se utiliza el simulador, el operador está en con trol del sistema de potencia y será capaz de hallar dife rentes soluciones a un problema de diseño, ya que todos los parámetros son directamente controlables.

Un simulador puede proporcionar una experiencia invalorable para estudiantes de ingeniería de sistemas de potencia, pero debe ser visto como algo complementario al aná
lisis por medio de un computador digital y no como un reemplazo de éste.

De esta manera, un simulador da un control inmediato y di recto, no sólo de los parámetros, sino también sobre la estructura de la red, y esto, combinado con la respuesta inmediata de los instrumentos, proporciona una excelente herramienta mental, para ayudar al diseño de un sistema y a su entendimiento.

El uso del simulador puede extenderse para otro tipo de estudios, pero ninguno de éstos sería tan completo como lo es el estudio del flujo de carga.

Se podría realizar un estudio de fallas, sean éstas sim<u>é</u> tricas o asimétricas, pero nos veríamos limitados por la máxima corriente que debe circular por los aparatos de medición, la cual es de un valor de dos por unidad; y al realizar cualquier tipo de falla, se deberá hacer un cál culo teórico antes de ejecutarla en el simulador, a fin de observar si la corriente de cortocircuito no sobrepasa el valor limite antes mencionado, con la finalidad de limitar el valor de la corriente de falla, a un valor permisible, luego de este comentario se hace notoria la no utilización en la práctica del simulador para estudios de cortocircuito.

De la misma forma se puede realizar estudios de condiciones transientes, cosa que hemos realizado, pero en cuan-

to a variedad y complejidad de sistemas, para su análisis es mucho más positivo el uso del computador digital, ya que nos dá mayor información que lo que se pueda construír con el simulador, debido a las limitaciones en cuanto a capacidad de éste último.

La utilidad del simulador es de esta manera eminentemente didáctica y debe ser utilizado con propósitos de ins
trucción dirigidos hacía estudiantes que comienzan el es
tudio de los sistemas de potencia.

APENDICE

LISTADO DEL PROGRAMA UTILIZADO

```
MENILR
                           UA1 82/05/11 FIM. 11.42
1000
YPE NAME
                                TOTAL NUM TEXTERCORD ATTREST 1501 (9.
               DISK ADDR
S FLUCAR
             30A9E0V9LSA45
                               64/0040
                                             90/00
                                                          00000000
 TOW SYSTEM/34 FURTRAN IV RELIASE 03
                                               01/09/03 00:37
, JOI TOTAL LERORS FUR THIS COMPILATION
, 4 WAS THE HIGHEST SEVERITY
23/016 DECIMAL IS THE MAIN STORAGE SIZE OF THE LUAD MEMBER
, READ DEVICE-SYSIN
PRUCESS LINK (R.LIB(T656)). NOSCURCE, NOHALT, MAP
    PROGRAM FLUCAR
       ANALISIS DE FLUJO DE CARGA DE UN SISTEMA DE POTENCIA 🗸 **
    GLOBAL NUMB, NUMB, NL, BI(20), LF(20), SERYR (20), SERYI (20), TAP (30)
    GLOBAL SHTYR(20), SHTYI(20), XD(16), EG(10), DELTA(10)
    the horas (the side of the
    GLOHAL ZSERR(20), ZSERI(20), LONG(20), YSHTR(20), YSHTI(20)
    DIMENSION YBUS(2,20,20), ER(20), EI(20), KPWRR(20), KPWRI(20),
   1EER(20,20), EEI(20,20), PWRR(20,20), PuRI(20,20), YLPQR(20,20),
   2YLPQI(20,20),KLPR(20),KLPI(20),QM(20),YCR(20,20),
   3YCI(20.20), EGR(10), EGI(10), LINEA(20),
   4SERZR (20), SERZI (20), LUAU (2,20), PGEXI (2,20)
     INTEGER BUSCIL, S.BI. BF, TITL, TIT2, TIT3, TIT4, TIT5,
     REAL KPWRR, KPWRI, KLPR, KLPI, MAGV, LONG, LOAD
     * LECTURA GENERAL DE DATOS *
     LEA NUMERO DE GENERADORES, MUMERO DE TRANSFORMADORES, NUMERO DE
     BARRAS, NUMERO DE LINEAS, FACTOR DE ERROR, MAXIMO NUMERO DE
     TTERACIONES, BARRA DE LISCILACION, FACTOR LE ACELERACION Y CLAVE
     READ(4.*)NUMG;NTRANS;NUMU;UL;EPS;MAX;30SCTL;ALFA;MVA.
     LECTURA DEL NUMERO DE CADA LINEATOARRA INICIAL, BARRA FINAL,
     LUNGITUD DE EINEA ADMITANCIA PARALELDSIMPEDANCIA SERTE
C
     LOS DATOS ESTAN DADOS EN POR UMIDAD DE LONGITOD
     NG=NUMG+1
```

```
NINGI=NING + 1
 バッニトリバリーハレイレ
 NLIN=IL-NU'IG
                                                        151
  [F(NTRANS.EU.O)GO TO 15
  DO 5 I=1. GING
 BEAU(4, $) EINEA(I) THI(I), WE(I) TESCHR(I) TESCRICITATIO(I)
  NOTAR QUE ES IMPORTANTE LA TIDENTIFICACION CORRECTA
  DEL NUMERO DE LAS LINENS DEL SISTEMA
 DO TO I = NINGI, NE
10 READ(4.*) LINEA(I).31(I).0F(I). LONG(I).YSHIR(I).YSHII(I).ZSERG(I).
 T 23ERI(I)
  GU TO 25
15 DU 20 I=1.NL
20 READ(4,*)LINEA(I),BI(I),BF(I),LONG(I),YSHTR(I),YSHTI(I),
 T ZSERR(I),ZSERI(I)
  LECTURA DE LOS VOLTAJES ESPECIFICADOS DE CADA BARRA
25 READ(4,*)(ER(1),EI(1),I=NG,NUMS)
  LECTURA DE LA DEMANDA DE CARGA EN LAS BARRAS Y LA PUTENCIA
   GENERADA ESTABLECIDA PREVID AL FLUJO DE CARGA
   READ (4, *) TECAD (1, I), LCAD (2, I), I=NG, NUMB)
   READ(4,*)(PGEXI(1,1),PGEXI(2,1),I=NG,NUMB)
   LEA LA RESISTENCIA Y REACTANCIA SUBTRANSIENTE DE CADA GENERADOR
   READ(4,*)(RU(I),XU(I),I=I,NUMG)
3 WRITE(3,105)
105 FURMAT( 11,9X, -----
   2 A R G A . D E L S I S I E M A'ZOX, I -----
   DO 110 1=1.NUMB
    DU 110 J=1, NUMB
    YCR (1, J)=0.0
    YCI(I,J)=0.0
   YEUS(1,1,J)=0.0
110 YUUS(2,1,J)=0.0
    WRITE (3,115) NO. NETT, NUMBERTRANS, EPS, TAX, BUSCIL, ALFA, MVA
115 FURMAT (10x, BARRAS', BOX, 137 TOX, LINEAS', SOX, 137 TOX, GENERADUPES
   6.25x, 13/ 10x, TRANSFOR MADURES . 21x . 13/ 10x . FACTOR OF FRRUT CPT.
   CITX, F9.57 TOX, MAXIMO NUMERO DE TIERACTOSEST, GX, TOX TOX, BARRA DE
   COSCILACION: 17x . 13/ 10x . FACTOR DE ACELERACION: 13x .FS .2/ 10x .
   E'MVA BASE', 28X, [3///]
```

```
$ FORMAR LA MATRIZ ADMITANCIA DI DARRA DEL SISTEMA $
  152
  IF (N1 64145 + EQ + O) GO TO 130
  CONSTRUCTAMOS WIL LL SISTEMA TIENE
  TRANSFORMADURES CUIL TAP VARIABLE
   DU 120 TENG , NTHG
  DENK=(ZSERR(I)**2+2SERI(I)**2)*TAP(I)
   TK1 = ( | AP ( | ) * 2SE KR ( | ) - 2SE RR ( | ) ) / OENK
   TK2=(Z3ERI(I)-TAP(I)*Z3ERI(I))/DENK
   SERYR(I)=ZSERR(I)/OENK
   SERVI(I)=-2SERI(I)/DENK
   L=31(1)
   M=BF(I)
   YCR(L,M)=-TKI/TAP(I)
   YCI(L, G) = -TK2/TAP(T)
   YCR (M,L)=TKI
   YCI (M,L)=TK2
   YOUS(1, L, L) = YOUS(1, L, L) + SERYR(1) + YCR(L, M)
   YBUS(Z,L,L)=YBUS(Z,L,L)+ScPYI(I)+YCI(L,M)
   YBUS(1, M, M)=YBUS(1, M, M)+SERYR(I)+YCR(M, L)
   YBUS(2, M, M) = YBUS(2, M, M) + SEPYI(I) + YCI(M, L)
   YBUS(1,L,M)=YBUS(1,L,M)-SERYR(I)
    YBUS(2, L, M) = YBUS(2, L, M) - SERYI(I)
    YOUS (I,M,L)=YOUS (I,M,L)-SERYR (I)
120 YOUS(2,M,L)=YBUS(2,M,L)-SERYI(I)
    DO 125 I=NTNG1.NL
    SHIYR (I) = YSHTR (I) & LONG (I)
    SHTY!(I)=YSHT!(I) &LONG(I)
    SERZE(I)=ZSERR(I) #LONG(I)
    SERZI(I)=ZSERI(I) *LONG(I)
    DEM=SERZR(I)**2+SERZI(I)**2
    SERYR(I)=SERZR(I)/DEN
    SERYI(I)=-SERZI(I)/DEN
    L=31(1)
    M=3F(1)
    YCQ (L, M) = 3HTYR(1)/2.
    YCI(L,M)=SHTYI(I)/2.
     YCR(M,L)=SHTYR(I)/2.
     YCT (M, L) = 5HTY1(1)/2.
     YEUS(1, L, L) = YOUS(1, L, L) + SERYRTI) + SHTYRTI) /2.
     Yous(2.L.L) = Yous(2.L.L) +SERYI(I) +SHIYI(I)/2.
     YOUS (1, M, M) = YOUS (1, M, M) + SEPYR (1) + SHTYR (1) /2.
     YUU5(2,M,M)=YUU5(2,4,M)+5@RYI(I)+5HTYI(I)/2.
     YBUS(1,L,M)=YBUS(1,L,R)-SERYR(I)
     Y3US(2;L;M)=YBUS(2;L;M)=SERYT(T)
     YDUS(1,M,L)=YBUS(1,M,L)=SERYR(T)
125 YOUS(2.M.L)=YOUS(2.M.L)-SERYI(I)
     GU-TU-145
```

CC

```
SHTYR(I) =YSHTR(I) &LUNG(I)
    SHTY!(I) = Y 5HT!(1) &LC '16(1)
    GESIS(I)=NUCLUM(I) WE ONG(I) ---
    Sex21(1)=25621(1) $60 16(1)
                                                                    153
    O_N=SURZ9[[]@#2+SUF7[[[]@#2
    SCRYR(I)=SFRZR(I)ZOCH
-135 SERYI(I)=-SERZI(I)/DEN
    FORMANDS LA MATRIZ ADMITANCIA DE BARRA-
C
    DO 140 1=NG, NL
    L=31(1)
    4=3F(I)
    YCR(L, M) = 5HTYR(T) /2.
    YCI(L.M) = 3HTYI(1) //2.
    YCR(M,L)=SHTYR(I)/2.
     YCI(M,L)=SHTYI(I)/2,
    Y5US(1, L, L)=Y5US(1, L, L)+SERYR(1)+SHTYR(1)/27
     YOUS (2, L, L) = YoUS (2, L, L) + SERYI (1) + SHTYI (1) 727
     YBUS(1, k, A)=YBUS(1, F, K)+SERYR(T)+SHTYK(T)/2;
     YOUS[2,M;N]=YOUS[2,M,N]+SERYT[1]+SHTY1[1]/2;
     YaUS(1,L,M)=YaUS(1,L,M)-SERYR(I)
     YOUS(2.L, 4) = YOUS(2.L.M) - SERYI(I)
     YOUS(I.M.L)=YBUS(I.M.L)-SERYR(I)
 T40 Y805(2, M. C) = Y805(2, M. C) - SERYI(I)
     ESCRIBA LOS DATOS DE ENTRADA DE LAS LINEAS
     Y LA MATRIZ ADMITANCIA DE BARRA
 145 NRITE (3,150)
 150 FURMATISTA, DATOS DE LINEAS (P.U.) VYYX, LINEA 12X, UT 12X, EF 1,3X,
    I'LONGITUD'. 2X, 'ADMITANCIA PARALELO', 5X, 'IMPEDANCIA SERIE', 5X, 'TAP'
     2//36X, 'G', 3X, 'B', 11X, 'R', EX, 'X'//)
      IF(NTRANS.EQ.O)GO TO 185
      DU 155 1=1, NUMG
 155 WRITE (3,100) LINEA(1), BI(1), DF(1), ZSERR(1), ZSERI(I)
 160 FORMAT(5X,315,34X,2F3.5, J')
   50 165 I=NG, NTNG
 165 WHITE(3,170) LINEATI) TELTITEF (I) TERRETT TERRETT TAPTI
  170 FURMAT(5X,315,34X,2F0.5,1J1,4X,F5.3)
      00 175 1=NTNG1,NL
-173 WRITE(3,130)LINEA(1),31(1);BF(T);CONG(1);SHTYR(T);SHTYT(1);
    SERZR(I), SERZI(I)
- 180 FORMAT(5X,315;F8,1,4X,2F9,5,'J',3X72F9,5,'J',4X;F5;3)
      GO TO 200
  185 DU 190 I=1 ,NL
  19) WRITE(3,195)LINEA(1),E[(1),EF(1),LONG(1),SHTYR(1),SHTYI(1),
 1SERZR(I),SERZI(I)
195 FURMAT(5X, 315, F8, 1, 4X, 219, 5, 'J', 3X, 2F9, 5, 'J')
200 CONTINUE
SCC- WRITE(3,205)
SCC205 FORMAT(///9X, M A T R I Z A D M I T A N C I A D E B A R R A'//)
1 CC
      DU 210 1=16,4UMB
€ CC ----
      DO 210 Jang, NUMB
a CC215 WRITE (3,215) 1, J, YOUS(1,1,J), YOUS(2,1,J)
```

```
(C215 FURNAT(10X, 'Y.US('.12,1X,12,')= '.10X,F10.5,2x,F10.5,'J')
    SRITE (3.220)
220 FURNATION . VOLTAJES ESFECTI (CADES DE DARRASIZ 12X, MA 2154,
0X, MAGNITUDI, 3X, MAIGULUIZ 24X, (P.U.) 1, 3X, (GRAUDY) 17/)
    WKITE(3,225)(1,ER(1),EL((1),ERG, NUMB)
225 FGREAT (13X, 13, 5x, 19, 5, 2X, 19, 5)
    MKITE (3,230)
-330 FURNATION DE MATHA DE CARGA EN DARRAS (P.U.) 1//12X, 1943/11
            7×, 101,9×,131 77)
    WRITE(3,235)(1,LOAD(1,1),LOAD(2,1),1=NG,NUMB)
 235 FORMAT(13X,13,3X,F9,5,2X,F9,5)
     *411E(3.240)
-240 FURMAT( 11 / 10x, PUTCHCIA GENERADA EXTETENTE (P.U.) ///12x, UNARA!
          7x, 191, 9x, 101 //)
    NRITE(3,245)(1,PGEXI(1,I),PGEXI(2,I),I=NG,HUPU)
 245 FURMAT(134,13,3X,F9,5,2x,F9,5)
     WRITE(3,250)
-250 FORMAT(////lox, VALORES DE POTENCTA HETA EN BARRASTP.U.) //12x,
           TEARRAT, 7XT PT TEARRARY
     DO 255 I=NG, NUMB
     KPARR (T) = PGEXI(I.I)-LUAD(I.I)
 255 KPWRI([]=PGEXI(2,1)-LOAD(2,1)
     WRITE(3,200)(I,KP%3R(I),KP4RI(I),I=NG,NUMG)
 260 FURMAT( 13X, 13, 3X, F9, 5, 2X, F9, 5)
 265 FORMAT(//)
     DU 275 I = NG, NUMB
     DO 270 J=MG, NUMB
     D=NY=YBUS(1,1,1)**2+YBUS(2,1,1)**2
      YLPCR[1,J]=[YBUS[1,1,J]*YBUS[1,1,T]+YBUS[2,1,J]*YBUS[2,1,1])]/DENY
 270 YLPOT([,J]=[YBUS[2,1,J]*YBJS([,I,T)=YBUS[T,I,J]*YBUS[2,I,I]]]VCENY
 275 CONTINUE
      DO 285 I=NG, NUMB
      00 280 J=NG, NUMB
      TF(1.NE.J)50 TO 230
      DENK=YEUS(1,1,J) ##2+YEUS(2,1,J) ##2
      KEPR(I)=(XPARA(I)*YEUS(I,I,J)=KPWRI(I)*YBUS(2,I,J))/OENK
    KLPI(I)==(KPWRI(I)*YBUS(I,I,J)+KPWRR(I)*YBUS(2,I,J))/DENK
  200 CUNTINUE
  285 CUNTINUE
      WRITE(3,255)
      WRITE(3,200)
 290 FORMAT('1', 10X, '-----
     1--- TOX, FUNCTOMAMIENTO DE ESTADO ESTABLE-ITERACIONES DE VOLTAJE
     2/ 10x, !---
      ARITE(3,205)
      # ESQUEMA ITERATIVO #
C
      ITER=1
      DELTAL=0.0
 300
      S=BOSCIL
      DD 320 T=NG, NUMB
```

```
IL (2.53.1) CO. LD. 350.
          YITR=YLPGR(I.I)
                                                                                   the same of the control which the control of the co
          YIII=YUTOI(I+I)--
           YLPUR([.[]=0.0
           YLOGI(1.1)=0.0
           SU 1R=0.0
           0.0=1MU2
           00 310 J=NG. NUND
           SUMR=SUM" + YLPGR(1,J) WER(J) - YEPOI(I,J) WEI(J)
           SUMI=5UM[+YLPQR(I,J)*EI(J)+YLPQI(I,J)*EK(J)
310
           YLP08([,[]=YIIR
           YLOGI(I,I)=YIII -
           DENC= ER(1)**21+E1(1)**2
           ENEWS = (KLPS (T) #ES (T) - KEPT (T) #ET(TT) VOENE - SUMS
           ENEWI=(KLPI(T)*ER(I)*KUPR(I)*CI(TI)/DEME=SUMI
           UTILIZACION DEL FACTOR DE ACELERACION ALFA
            EII=EI(I)
            DXR = ENEWR-EIR
            DXI=ENE .. I - EII
            ENEWR=EIR+ALFA*DXR
             ENE "I = EII + ALFA * DXI
             X = SGRT((ENEWR-ER(I))**2+(ERE#I-EI(I))**2)
             IF(X.GT.DELTAE) DELTAE=X
             ER(I)=ENEWR
             EI(I)=ENENI
             CUNTLINUL
320
              IF ( DELTAE . LT . EPS) GO TO 360
              IF(I [ER-MAX] 330, 330, 340
    330 ITER=ITER+1
              GO TO 360
     340 WRITE(3,350)
    350 FURMAT(/// TOX, 'NO EXISTE CONVERGENCIA EN EL PROCESO TERATIVO!)
               STOP
CC
  360 #RITE(3,370) ITER
     370 FURMAT(SX, 'LA TECNICA ITERATIVA DE GAUSS-SEIDEL CONVERGIO EN'.1X,
             113,2x,'ITERACIONS51//5x,'BARRA',5x,'VOLTAJE',9x,'MAGNITUO',5x,
             2'A'GULO'/ TGX, (P.U.)'TIOX, (F.U.)', 5X, (GFADOS)' VI
               DO 385 THISTNUMB
               ALPHA=ATANTE [ (1) YER (1) ) $57,29578
           →AGV=SORT(ER(T)##2+ET(T]##2)
     380 WKITE (3,390) [,EK(1),EI(1),MAGY, ALPHA
     390 FURMAT(17,2x,2F9.5,1J1,3X,F7.4,4X,F9.5)
               DO 410 I = NG THUMO
               DJ 406 J=1,6,71043
               EER(I,J)=ER(I)**2-UR(J)*ER(I)*ET(I)**2-E1(J)*EI(I)
    -400 EET(1,J)=ET(T)*CR(1)-ET(U)*ER(T)=ER(T)*ET(T)+E*(U)*ET(T)
      410 CUNTINUE
                WRITE (3,205)
```

C

WRITE(3,420)

```
1020 1034AF(/ 10A,1----
   1 POTENCIAS L'HEL LARRAS (P.O.) . ZIDA, . ....
   2----- 1///
   xK[15]3,450]
430 FURNAT(9X; 'BARRA A CARRA', 5%, PUT. REAL', 3X, 1801. REACTIVAT//)
   FLUJO OL CARGAS ENTRE LINEAS (NUMERO REFEDIDO A LAS BARRAS)
   DU 450 1=NG, NUMB
   00 440 J=NG. NUMO
    X1=-Y895(1.1.J) $E68(1.J) +Y895(2.1.J) $E61(1.J)
    XZ=ER(1) $274 CR(1) 1+( [(1) $247 CR(1) J)
    Park(1,3)=X1+X2
    (1.1) 1 3 3 (1.1.) 20 4 (1.1.) 35 3 4 (1.1.3) 3 E F [(1.1.)
    X4 = CR(1) * * 2 * YCI(1,J) + CI(1) * * 2 * YCI(1,J)
 ( 4X+6X) -= ( L. 1 ) 1 Ph 9 044
 450 CUNTINUL
    DU 450 I = HGT HUMB
    DO 460 J=NG, NUND"
    WRITE(3,470)1,J,P%RR(I,J),P%RI(I,J)
 470 FGRMAT(7X, 15,3X, 15,5X, F9,5,5X, F9,5)
     WRITE (3,265)
    WRITE [3.430]
 I EN CADA BARRAIZ 10X, 1----I)
     WRITE (3,485)
 485 FORMAT(/ 24x, P', 13x, O' //)
     DU 510 I=NG, NUMB
     PH(I)=0.0
     OM(I)=0.0
     DU 490 JENG, NUMB
    PM(I)=PM(I)*PWRR(I,J)
  490 QM(1) = 2M(1) + PRRI(1,J)
     WRITE(3,500)1,PM(1),OM(1)
 500 FURMAT(10X, '3ARRA', 13,2X, F9.5,5X, F9.3)
 310 CONTINUE
     WRITE(3,265)
     POTENCIA GENERADA EXISTENTE -
     WRITE(3,520)
 2*****************************
     XXIIE(3,530)
  530 FURNATI/ 20X, '------ ZOX, 'POTENCIA GENERADA
     1 CXISTENTE / ZOX, ------
 WKITE (3,540)
 540 FURNAC(30X, 121, 13X, 101 7)
     MUMG2=MUMG FRUMG
    DO 220 I=116 . 101.25
```

"PM(I)=PM(I)+LDAG(I,I)

```
--- ON(1)=3M(1)+LOAD(2.1)
    -- DE MINT= "R(I) ## e + e I (I | ) ## ?
    XVAGT=X DRV&SZ+X118&2
             J=I-NUMG
        TICALQUEO DE LOS VOLTAJES INTERNOS DE CADÁ GENERADOR TO ---
             \Sigma G \in \{1\} + \{1\} \times \{1\} \times \{1\} + \{1\} \times \{1\} 
          PERCENCE IN THE PROPERTY
----DEUTA(J)=ATAN(EGI(J)VEGR(J))
              PUTENCIA MECANICA DE CADA GENERADOR
              PM(J)=PM(T)=XMAGT#RD(J)=
-550 FRITE(3,560]J,07(J),3M(T)
    560 FORMAT(10X, *GENERADOR*, 1X, I2, 3X, F9, 5, 5X, F9, 5, *J*)
                *KITE (3,255)
   WRITE (3,570)
-570 FCRMAT(5X, 1------/
         I SKI VOLTAJES TRAS LA REACTANCIA TRANSTENTE DE GENERADDRES V 5XI
             3 5X, GEN1, 7X, GULTAJE1, 9X, MAGNITUD1, 2X, GELTA (GRADUS) 7/)
                 DG 580 I=1.NUMG
                DELTA( I) = DELTA( I) *57.29578
     580 WRITE (3,370) I, EGR(I), EGI(I), EG(I), DELTA(I)
               DO 500 T=T, NUMG
 590 DELTA[1]=DELTA[1]757.29578
?? VARIABLE ALLOCATION MAP
                                                                                                                                 AT HEXT DECT HEXE DECE
                                                                                                             NAME
                                                                   HEXZ DEC2 .
                               AT HEXT DLCT
  ?? NAME
                                                                                                                                  IG 0004 00004
                                                                                                             NUMG
                               16 0000 00000
?? NUMB
                                                                                                                                 16 000C 00012 0050 00001
                              16 0003 00008
                                                                                                             TE
  ?? INL
                                                                                                                                 RG 00AC 00172 00FT 00251
                               16 005C 00092 00A5 00171
                                                                                                              SERYZ
?? BF
                                                                                                                                 RG 014C 00332 0198 00411
                                                                                                              TAP
                               RG 00FC 00252 0145 00331
?? SERYI
                                                                                                                                 RG-01EC 00492-0230-00571
                                                                                                              SHTYT
                             -RG 019C 00412 01EB 00491
??"SHTYR"
                                                                                                                                 RG 0264 00612 0288 00°51
                                                                                                              EG
                               RG 0230 00572 0255 00011
1 ?? XD
                                                                                                                                 RG 0284 00692 0303 00771
                                                                                                              PM
                               RG 028C 00552 0283 00691
1 ?? DELTA
                                                                                                                         ----RGU032C-00812
                              RGU0304 00772 0328 00311
2 ??"H"
                                                                                                              DELTAT ROUDSSA DOUGO
                               R600330 00316
1 . L L
                                                                                                              TOF RGU033C 00323
                              RGU0333 70824
: ?? TF
                                                                                                              TREFS---1600344-00830
5 ?? KLAVE 1600340 00932
                                                                                                              LEAULT 16U0370 008H3
                               RG 0348 00140 036F 00879
22 33 KD
                                                                                                                                   16000 67L0UN1
17 ?? LF
                               1600374 00984
9 ?? ZSERR PG 0384 00000 0303 00079 ZSERT RG 0394 00000 0423-01050
```

BIBLIOGRAFIA

- STAGG, G.W., AND A.H.EL-ABIAD: "Computer Methods in Power Systems Analysis", McGraw Hill Book Company, New York, 1968.
- STEVENSON, W.D.: "Elements of Power Systems Analysis", -McGraw Hill, Inc. USA, 1975.
- WESTINGHOUSE ELECTRIC CORPORATION: "Electrical Transmission and Distribution", reference Book, East Pittsburg, Pennsylvania, 1964.
- 4. PETERSON DOVER: "Transient in Power Systems".
- ELGERD, O.: "Electric Energy Systems Theory: An Introduction" Tata McGraw Hill Publishing Company Ltd., New Delhi, 1971.
- 6. ALLAN GREENWOOD: "Electrical Transients in Power Systems" John Wiley & Sons, Inc. USA., 1971.

- 7. SCHAUM: "Lineas de Transmisión".
- 8. ALVIN H. KNABLE: "Electrical Power Systems Engineering".