

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

"AUTOMATIZACIÓN DEL PROCESO DE DECAPADO Y FOSFATADO PARA ESTRUCTURAS DE TRANSFORMADORES DE BAJA Y MEDIA TENSIÓN"

INFORME DE PROYECTO INTEGRADOR

Previa a la obtención del Título de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN ELECTRÓNICA Y AUTOMATIZACIÓN INDUSTRIAL

JONATHAN ANDRES RECALDE ESPINOSA

JAIRO IVAN COBEÑA MACIAS

GUAYAQUIL - ECUADOR

AÑO: 2015

AGRADECIMIENTOS

A Dios ante todo por darnos la fortaleza para seguir adelante a pesar de las dificultades.

A nuestros padres, por brindarnos el sustento y apoyo necesarios para avanzar durante nuestra carrera universitaria.

A nuestros amigos y compañeros que formaron parte de nuestra vida estudiantil y nos acompañaron durante la culminación de nuestras carreras.

A la Escuela Superior Politécnica del Litoral por habernos brindado la preparación y las herramientas necesarias para la finalización de nuestras carreras.

Jonathan y Jairo

DEDICATORIA

Dedico este trabajo a mis padres por todo el apoyo brindado durante estos años de carrera, a mi hermano, familiares y amigos que de alguna u otra manera se hicieron presentes en el transcurso de mi vida universitaria y que han contribuido para que pueda terminar con éxito ésta etapa de mi vida.

Jonathan Recalde Espinosa

DEDICATORIA

A Dios por guiarme, iluminarme y llenar mi camino de bendiciones y éxitos durante el desarrollo del proyecto. A mi padre Sergio Cobeña y madre Estrella Macías, a mi hermana Génesis Cobeña, a mi tía Belén Macías que me acogió en su casa como a un hijo por su motivación, apoyo y por siempre estar en todo momento brindándome su amor y paciencia.

A mis amigos y compañeros por sus recomendaciones y consejos que permitieron llegar a la meta propuesta.

Jairo Cobeña Macias

TRIBUNAL DE EVALUACIÓN

PhD. Wilton Agila

PROFESOR EVALUADOR

MSc. Holger Cevallos

MEN

PROFESOR EVALUADOR

DECLARACIÓN EXPRESA

"La responsabilidad y la autoría del contenido de este Trabajo de Titulación, nos corresponde exclusivamente; y damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Jonathan Andres Recalde Espinosa

Jairo Ivan Cobeña Macias

RESUMEN

En el presente trabajo se muestra el diseño de un sistema de automatización para el proceso de decapado y fosfatado para estructuras de transformadores de baja y media tensión. El proceso involucra el uso de un polipasto de dos toneladas, cuyo movimiento será controlado por un PLC. La automatización del proceso empieza cuando los transformadores son colocados en el área de recepción, una vez aquí deberán ser movilizados con ayuda del polipasto hacia cinco tinas que contienen diferentes sustancias que forman parte del proceso de limpieza y preparación de los transformadores. La automatización del proceso incluye: el control del movimiento del Polipasto, el control de llenado, el tiempo que deben permanecer los transformadores en las tinas y un control PID para la temperatura de la tina de fosfatación de los transformadores.

En la realización del proyecto se usó el PLC S71200 de Siemens con el software TIA PORTAL V.12.0. Además, se desarrolló un sistema SCADA para la visualización y control de parámetros del proceso. El alcance del proyecto involucra el establecimiento de una arquitectura de control, la programación, la realización de los correspondientes planos eléctricos, la realización de un sistema SCADA y el respectivo análisis de costos referentes al desarrollo del proyecto.

ÍNDICE GENERAL

AG	RADEC	IMIENTOS	. ii
DE	DICATO	ORIA	iii
TR	IBUNAL	DE EVALUACIÓN	٧
RE	SUMEN	v	⁄ii
ÍNE	DICE DE	FIGURAS	χi
CA	PÍTULO	1	1
1.	DESCF	RIPCIÓN DEL ESCENARIO	1
	1.1	Marco Teórico	1
		1.1.1 Proceso de corrosión en los metales	1
		1.1.2 Proceso de decapado	2
		1.1.3 Fosfatado	3
	1.2	Descripción del proceso de decapado y fosfatado d	е
	transfo	rmadores	3
	1.3	Descripción del problema	6
	1.4	Justificación	7
	1.5	Objetivo	7
	1.6	Resultados Esperados	7
CA	PÍTULO	2	8
2.	DESAR	ROLLO	8
	2.1	Arquitectura	8
	2.2	Elementos que conforman el proceso de decapado y fosfatado.	9
		2.2.1 Controlador	9

	2.2.2 Levantador Magnetico	10
	2.2.3 Finales de carrera	11
	2.2.4 Sensores de posición	11
	2.2.5 Sensores de nivel	12
	2.2.6 Termocupla	13
2.3	Funcionamiento del sistema	14
	2.3.1 Descripción del proceso a automatizar	14
	2.3.2 Diagrama de flujo del proceso	15
	2.3.3 Causa de fallos del sistema de decapado y fosfatado	17
2.4	Diagramas eléctricos	18
2.5	Listado de entradas y salidas digitales- analógicas del PLC	19
2.6	Programación del controlador	21
	2.6.1 Escalamiento	21
	2.6.2 Configuración del bloque PID	23
2.7	Descripción de pantallas	25
	2.7.1 Pantalla Principal	25
	2.7.2 Pantalla de Configuración de Parámetros	26
	2.7.3 Pantalla de llenado y vaciado de tinas	26
	2.7.4 Ventana de alarmas	27
2.8	Simulaciones	28
	2.8.1 Simulación de una variable analógica	29
	2.8.2 Simulación del funcionamiento del Polipasto en n	nodo
	automático	
CAPÍTULC	3	33

3. F	RESULT	ADOS 33
	3.1 automa	Análisis de tiempos entre el proceso automatizado y no tizado
		3.1.1 Tiempos del proceso sin automatizar33
		3.1.2 Estimación de tiempos con el proceso automatizado34
		3.1.3 Análisis Comparativo35
	3.2	Análisis Económico
		3.2.1 Descripción de la terminología usada para el análisis económico
		3.2.2 Presupuesto del proyecto
		3.2.3 Análisis de relación Beneficios – Costos40
		3.2.4 Tasa Interna de Retorno (TIR)41
СО	NCLUSI	ONES Y RECOMENDACIONES45
BIB	LIOGRA	AFÍA47
AN	EXOS	48

ÍNDICE DE FIGURAS

Figura 1.1: Diagrama de bloques del proceso	4
Figura 1.2: Estructuras de transformadores con el sello de calidad de la empresa	4
Figura 1.3: Área de decapado y fosfatado	5
Figura 1.4: Estructura de transformador luego de ser atada	5
Figura 1.5: Estructura de transformador siendo colocada en la tina de enjuague	6
Figura 2.1: Arquitectura para el diseño del sistema a automatizar	8
Figura 2.2: PLC S71200	9
Figura 2.3: Levantador magnético marca FELEMANG	. 10
Figura 2.4: Final de carrera marca SUNS	. 11
Figura 2.5: Sensor de posición inductivo marca Autonics	. 12
Figura 2.6: Sensor de nivel marca GILL	. 13
Figura 2.7: Termocupla tipo J marca BOCON	. 13
Figura 2.8: Diagrama de flujo general del proceso	. 15
Figura 2.9: Diagrama de flujo para el modo manual	. 16
Figura 2.10: Diagrama de flujo para el modo automático	. 17
Figura 2.11: Variación de la temperatura con respecto al voltaje para una termocupla tipo J	. 22
Figura 2.12: Bloque SCALE para el escalamiento de la señal analógica de voltaje de la termocupla	
Figura 2.13: Bloque multiplicador	. 23
Figura 2.14: Gráfico del bloque PID	. 25
Figura 2.15: Pantalla principal del sistema SCADA	26

Figura 2.16: Pantalla de Configuración de parámetros del sistema	26
Figura 2.17: Ventana con electroválvulas para el llenado y vaciado de las	
tinas del proceso	27
Figura 2.18: Ventana de alarmas del proceso	28
Figura 2.19: Correcta conexión entre el software TIA PORTAL y PLCSIMv1	12
	28
Figura 2.20: Tabla de Simulación en PLCSIMv12	29
Figura 2.21: Asignación de un valor a una señal analógica, para el caso la	
señal proviene de una TERMOCUPLA	29
Figura 2.22: Valor de temperatura simulado visto en TIA PORTAL	30
Figura 2.23: Simulación inicio del proceso de decapado y fosfatado	30
Figura 2.24: Movimiento del polipasto hacia la primera tina	31
Figura 2.25: Polipasto posicionado sobre la tina de decapado	32
Figura 2.26: Polipasto en la tina de fosfatado	32
Figura 3.1: Tiempos de duración del proceso automatizado y no	
automatizado	36

ÍNDICE DE TABLAS

ácido clorhídrico y ácido sulfúrico
Tabla 2: Especificaciones final de carrera marca SUNS
Tabla 3: Especificaciones del sensor de posición
Tabla 4: Especificaciones sensor de nivel marca GILL
Tabla 5: Especificaciones para la sonda de temperatura BOCON 14
Tabla 6: Descripción de las entradas digitales del plc
Tabla 7: Descripción de las salidas digitales del plc
Tabla 8: Descripción de las entradas analógicas del plc
Tabla 9: Detalle de la medición de tiempos del proceso sin automatizar 34
Tabla 10: Detalle de la estimación de tiempos con el proceso automatizado
Tabla 11: Lista de Componentes y Precios
Tabla 12: Beneficio Primer Año
Tabla 13: Beneficio Segundo Año
Tabla 14: Datos de costos
Tabla 15: Relación entre la TIR v el VAN

CAPÍTULO 1

1. DESCRIPCIÓN DEL ESCENARIO

En este capítulo se describe la manera actual en cómo se realiza el proceso de decapado y fosfatado en una determinada fábrica de transformadores de la ciudad de Guayaquil, los problemas existentes, la respectiva justificación para la implementación de un sistema de automatización para este proceso que solucione los problemas existentes y permita tener mejoras.

1.1 Marco Teórico

Se hace referencia a los términos más relevantes involucrados en el proceso de decapado y fosfatado de transformadores.

1.1.1 Proceso de corrosión en los metales

La corrosión es un fenómeno en el cual se produce la alteración de la composición e integridad física de un material sólido debido a una reacción química o electroquímica con el medio que lo rodea. El fin que persigue el proceso de corrosión es la reducción de la energía libre de un sistema; ocurre durante un cierto tiempo y a diferentes condiciones de temperatura, ya sean altas o bajas.

En la corrosión química, también denominada disolución directa, existe un medio líquido corrosivo en el cual el material es disuelto. La disolución del material continuará hasta que se consuma todo el material o bien hasta que el líquido se sature.

La corrosión electroquímica, constituye la manera más habitual de corrosión en los metales, en éste proceso se produce la pérdida de electrones de los átomos en un metal hasta convertirse en iones. Conforme avanza el proceso se tiene la formación de u subproducto. En ambientes acuosos, donde existen iones en el agua, tierra o aire húmedo, la corrosión electroquímica es mucho más frecuente. En este proceso, se forma un circuito eléctrico compuesto por cuatro componentes: un ánodo,

un cátodo, un electrolito y un paso de corriente. El sistema recibe el nombre de celda electroquímica.[1]

1.1.2 Proceso de decapado

El proceso de decapado consiste en el tratamiento de las superficies metálicas para librarla de grasas, suciedad, óxidos.

Para liberar las piezas metálicas de óxido, estas son tratadas con ácido sulfúrico o ácido clorhídrico, en procesos como el decapado de estructuras de transformadores se utiliza ácido clorhídrico para obtener una superficie más blanca y pulida que utilizando el ácido sulfúrico.[2]

El óxido está constituido de tres capaz.

- La capa externa está constituida de óxido férrico $(Fe_2\,O_{3)}$ y es la más delgada.
- La capa intermedia contiene oxido férrico- ferroso (Fe_3O_4) esta capa es la más gruesa.
- La capa que está en la proximidad del hierro está conformada con ácido ferroso FeO y esta es compacta.

Las reacciones químicas del ácido clorhídrico con la estructura metálica se describen en las ecuaciones (1.1), (1.2), (1.3).

$$Fe_2 O_3 + 6HCL = 2Fe CL_4 + 3H_2O$$
 (1.1)

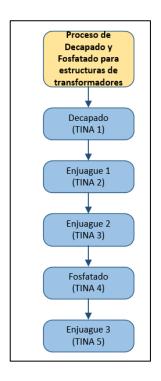
$$FeO + 6HCL = Fe CL + H_2O$$
 (1.2)

$$Fe + 6HCL = Fe CL + H_2$$
 (1.3)

En la **tabla 1** se puede observar la relación entre temperatura, concentración de ácido y solubilidad del hierro y sus óxidos. A una mayor concentración de ácido clorhídrico y ácido sulfúrico se produce una importante disolución de los óxidos.

TEMPERATURA °C	CONCENTRACIÓN DE ÁCIDO %	DISUELTO DE UNA MUESTRA DE 100 GRAMOS EN UNA HORA		
		Fe(gr)	Fe ₂ O ₃ (gr)	FeO(gr)
	H ₂ SO ₄			
20 °C	1	6,0	3,9	0,14
20 °C	5	15,0	4,8	0,56
20 °C	10	35,0	6,4	0,98
30 °C	10	97,7	9,0	1,40
	HCI			
20 °C	1	20,8	0,112	0,48
20 °C	3	31,6	0,36	0,76
20 °C	5	40,7	0,71	0,83
20 °C	10	72,0	10,6	7,5

Tabla 1: Solubilidad del hierro y sus óxidos sometidos en contacto con el ácido clorhídrico y ácido sulfúrico [2]


Durante el decapado de los transformadores el ácido penetra en los poros de la primera capa hasta llegar al óxido ferroso (FeO) dejando como resultado una superficie limpia de óxido, el tiempo de decapado dependerá de la cantidad de óxido que contenga el material.

1.1.3 Fosfatado

El fosfatado es un proceso químico en el cual la superficie de un metal sufre una transformación para crear capas de fosfato de cinc sobre el material. Estas capas son porosas, absorbentes y tienen una estructura cristalina. Como resultado de este procedimiento se tiene una superficie protegida contra la corrosión y la humedad apta para la colocación de aceites, pinturas o lacas. [3]

1.2 Descripción del proceso de decapado y fosfatado de transformadores

En la **figura1.1**, se puede observar el diagrama de bloques del proceso. Como se puede apreciar el proceso involucra el paso de la estructura del transformador por 5 diferentes tinas. En la primera tina se realiza el decapado, la segunda tina corresponde al enjuague 1, la tercera tina al enjuague 2, la cuarta tina corresponde a la etapa de fosfatado y la quinta tina al tercer enjuague.

|Figura 1.1: Diagrama de bloques del proceso

El proceso de decapado y fosfatado de transformadores, constituye una de las primeras etapas para la fabricación de transformadores. Antes de realizar el proceso de decapado y fosfatado la estructura del transformador debe contar con el sello de calidad de soldaduras, es decir, que todas las partes que conforman el transformador estén soldadas correctamente, como se aprecia en la **figura 1.2**.

Figura 1.2: Estructuras de transformadores con el sello de calidad de la empresa

El proceso de decapado y fosfatado para estructura de transformadores, empieza en la recepción de la estructura del transformador, luego de cumplir con el sello de calidad, la estructura es trasladada para ser amarrada, donde estará lista para ser sumergida en 5 diferentes tinas que cuentan con los respectivos aditivos para el

proceso de decapado y fosfatado, en la **figura 1.3** se puede apreciar el área de decapado y fosfatado.

Figura 1.3: Área de decapado y fosfatado

La estructura del transformador es amarrada, **figura 1.4**, para luego ser trasladarlo con el polipasto a la piscina y sumergirlo en la tina 1 que contiene una solución de ácido clorhídrico y agua. En ésta tina se realiza el decapado.

Figura 1.4: Estructura de transformador luego de ser atada

Después de 20 minutos de estar la estructura del transformador sumergida en la piscina con el ácido clorhídrico, ésta es trasladada hacia las tinas dos y tres que

contienen agua, en donde en cada una de las tinas, la estructura es enjuagada para librarla de cualquier residuo de ácido que pudiera tener, **figura 1.5**.

Figura 1.5: Estructura de transformador siendo colocada en la tina de enjuague

Luego de realizar los enjuagues pertinentes la estructura es trasladada hacia la tina de fosfatado. Esta tina se encuentra a 60°C aproximadamente y contiene una mezcla de fosfato de cinc con agua. Este proceso sirve para darle una capa no metálica a la placa de metal del transformador, este procedimiento se realiza para preparar la superficie de la estructura del transformador con lo cual se obtiene una superficie apta para recibir y retener la pintura dando como resultado la protección contra la oxidación debajo de la pintura. La estructura de transformador debe permanecer aquí por aproximadamente 30 minutos.

Finalmente la estructura es llevada hacia la tina de enjuague 3, donde recibe un último enjuague con agua.

Después de todo el proceso de decapado y fosfatado la estructura metálica del transformador es trasladada al área de pintura, por medio del cual se termina el proceso ante mencionado.

1.3 Descripción del problema

Este proceso corresponde a una empresa ubicada en la ciudad de Guayaquil, dedicada a la fabricación de transformadores de baja y media tensión. El proceso de decapado y fosfatado de la estructura de transformadores es una etapa en la fabricación de los mismos.

Actualmente este proceso se realiza de una manera no automatizada por lo que existen una serie de inconvenientes que hacen que el proceso se realice de forma ineficiente.

Los principales problemas existentes durante el proceso son: se requiere personal constante para la manipulación de la estructura los transformadores durante este proceso, el llenado y vaciado de las tinas no se realiza de forma automatizada; no se tiene ningún tipo de control para el calentamiento de la tina de fosfatación por lo que el tiempo de calentamiento y la temperatura pueden variar.

1.4 Justificación

La automatización del proceso de decapado y fosfatado de transformadores constituye un avance importante en el mejoramiento de la forma como se ha venido realizando el proceso, ya que involucra el requerimiento de menos personal humano, una reducción del tiempo en cuanto al traslado de los transformadores, un mejor sistema de calentamiento de la tina de fosfatación con un control temperatura que garantice las condiciones adecuadas para la realización del proceso. Con estas mejores se podrá aumentar la producción, se requerirá menor personal durante esta parte del proceso y por ende se reducirán costos.

1.5 Objetivo

Realizar el diseño de un sistema automatización el proceso de decapado y fosfatado para estructura de transformadores de baja y media tensión, con la correspondiente arquitectura, programación, sistema SCADA, diagramas eléctricos y simulaciones respectivas.

1.6 Resultados Esperados

Realizar el diseño de un sistema de automatización del proceso de decapado y fosfatado de transformadores de media y alta tensión utilizando un polipasto de 2 toneladas que permita la optimización del proceso actual.

Elaborar un informe con todo el detalle de la automatización del proceso incluyendo, arquitectura, esquemas eléctricos, programación, análisis de costos y sistema SCADA del proceso.

CAPÍTULO 2

2. DESARROLLO

En este capítulo se describirán los aspectos correspondientes al diseño del sistema de automatización.

2.1 Arquitectura

En el presente capítulo se describirá la arquitectura a utilizarse para el diseño del sistema de automatización del proceso de decapado y fosfatado de transformadores, con los respectivos protocolos y dispositivos que se requieren.

Para esto es necesario mencionar que para el diseño se va a trabajar con un PLC S71200 de la marca Siemens. El protocolo de comunicación que se va a usar es ProfiNet.

Entre las características más destacables para la selección del protocolo ProfiNet se consideró lo siguiente: funciona con un estándar industrial como lo es TCP/IP, posee distancia máxima de conexión entre dispositivos de 100 metros, tiene una velocidad de 100Mbps, permite comunicación inalámbrica, soporta topologías en bus, estrella o anillo ya sea por conductores de cobre o fibra óptica.

La arquitectura de control puede apreciarse en la figura 2.1.

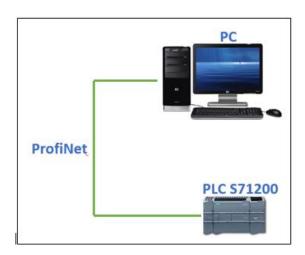


Figura 2.1: Arquitectura para el diseño del sistema a automatizar

2.2 Elementos que conforman el proceso de decapado y fosfatado

Se detallará todos los elementos que conforman el proceso, tales como el levantador electromagnético de imanes permanentes, finales de carrera, sensores de posición y sensores de nivel.

2.2.1 Controlador

Para la selección del controlador se tomó en cuenta el número de variables tanto digitales como analógicas que intervienen en el proceso; además se consideró el factor económico y el nivel tecnológico ofrecido por el controlador de manera que cumpla con los estándares actuales y permita también una posible expansión a futuro. Por lo anteriormente mencionado se seleccionó el PLC S71200 de la serie 1214 AC/DC/RELÉ marca Siemens, en la figura 2.2 se puede apreciar el controlador escogido.

Entre las características más importantes se tiene que: cuenta con 14 entradas digitales a 24Vdc, tiene 10 salidas tipo relé y 2 entradas analógicas de voltaje.

En lo que respecta a su capacidad de expansión se tienen hasta 8 módulos de señal, 3 módulos de comunicación y un signal board (SB).

Figura 2.2: PLC S71200

Además se seleccionaron los siguientes módulos de expansión:

- DQ16 x relay 6ES7222-1HH32-0XB
- Al8 x 13BIT 6ES7 231-4HF32-0XB0

2.2.2 Levantador Magnético

El levantador magnético se usará para adherir la estructura del transformador a la cadena del polipasto para poder ser movilizada hacia las diferentes tinas correspondientes al proceso.

Este elevador automático sirve para el manejo de estructuras metálicas, además de tener una elevada capacidad de levantamiento, un diseño compacto y una larga vida útil es decir no se necesita de mantenimiento, figura 2.3.

El elevador de imanes permanente es ideal para el levantamiento de placas de materiales ferromagnéticos, estos elevadores magnéticos no requieren de energía eléctrica para su funcionamiento dispuesto a que contiene una batería de 12 VDC para su funcionamiento, el cual evita cualquier interrupción en su funcionamiento por falta de electricidad.

Características

- La magnetización y desmagnetización se realiza a través de un pulso de corriente.
- Capacidad máxima 2 toneladas
- Peso reducido y de diseño compacto
- Sistema de seguridad anti accidente

Figura 2.3: Levantador magnético marca FELEMANG [5]

2.2.3 Finales de carrera

Los finales de carrera serán colocados en la cadena del polipasto, deberán colocarse dos finales de carrera para saber los límites superior e inferior hasta donde puede ser desplazada la cadena del polipasto que sujetará el levantador magnético y la estructura metálica para transformadores.

El tipo de final de carrera seleccionado pertenece a la marca SUNS, **figura 2.4**. El diseño de este sensor es apropiado para aplicaciones de pequeño espacio de montaje, está construido con base de metal y cubierta de plástico. Tiene un mecanismo de apertura positiva. Las especificaciones de este sensor pueden ser apreciadas en la **tabla 2**.

Figura 2.4: Final de carrera marca SUNS [6]

Modelo	Az8200	
Tipo de sensor	Limit switch	
Velocidad	0,05mm- 2m/s	
Voltaje	250Vac	
Corriente	10A	
Resistencia de contacto	< 25mΩ	

Tabla 2: Especificaciones final de carrera marca SUNS [6]

2.2.4 Sensores de posición

Para el posicionamiento de la estructura de transformador sobre cada tina, de acuerdo al proceso se usarán sensores inductivos. Se usarán 7 sensores de posición, un sensor para indicar la posición inicial del polipasto, 5 sensores correspondientes a la ubicación de las tinas y otro

sensor para señalar la posición final. En la **figura 2.5** se puede apreciar el modelo de sensor inductivo a usarse.

Las especificaciones para los sensores de posición pueden ser visualizadas en la **tabla 3.**

Figura 2.5: Sensor de posición inductivo marca Autonics [7]

Modelo	PRL18 -8AO	
Tipo de	Sensor inductivo de	
sensor	proximidad	
Voltaje	100-240Vac	
Tipo de	2 hilos AC	
cable		
Tipo Salida	Normalmente	
	abierta	
Distancia de	8 mm	
detección		

Tabla 3: Especificaciones del sensor de posición [7]

2.2.5 Sensores de nivel

Debido a que se va a trabajar en sustancias líquidas y corrosivas, el sensor de nivel debe ser resistente y apropiado para trabajar en este tipo de medios.

Los sensores seleccionado son de la marca GILL, sirve para la medición de nivel de líquidos, están hechos de acero inoxidable y están diseñados específicamente para su uso con líquidos agresivos o corrosivos, incluyendo la sal agua, refrigerante, ácidos y líquidos basados en productos químicos, **figura 2.6**.

El sensor proporciona una salida analógica 0-5V totalmente configurable, lo que se calibra normalmente 0.25V vacía, 4.75V completa. Cada sensor es de fábrica calibrado en su tipo de líquido (o equivalente). Las especificaciones del sensor pueden apreciarse en la **tabla 4**.

Figura 2.6: Sensor de nivel marca GILL [8]

Modelo	1612-00-018-X	
Tipo de sensor	Sensor de nivel	
Voltaje	250Vac	
Corriente	< 10mA@12V	
Interfaz serial	RS232 (+5v)	
Voltaje de salida	0,75V - 4.75V	

Tabla 4: Especificaciones sensor de nivel marca GILL [8]

2.2.6 Termocupla

Para la medición y control de temperatura en la tina de fosfatado se usará una termocupla tipo J. Esta sonda de temperatura está diseñada para aplicaciones industriales, experimentales y de calentamiento. Está hecha de acero inoxidable lo que la hace resistente y evita que se dañe fácilmente. Cabe resaltar que la termocupla ya se encuentra en funcionamiento por lo que no será necesaria su adquisición. En la figura 2.7 se puede apreciar el diseño de la termocupla a usarse. Las especificaciones de este dispositivo pueden ser apreciadas en la tabla 5.

Figura 2.7: Termocupla tipo J marca BOCON

Modelo	TM2401
Tipo de	Sonda de
sensor	temperatura
Rango de temperatura	-50°C - 600°C
Cable +	hierro
Cable -	cobre-níquel

Tabla 5: Especificaciones para la sonda de temperatura BOCON [9]

2.3 Funcionamiento del sistema

Se controlará de forma manual y automática el traslado de las estructuras metálicas de los transformadores, utilizando un plc para este fin donde es necesario que las entradas habilitadoras sean activas al inicio del proceso.

El control y monitoreo del sistema es visualizado desde la computadora, el setpoint de operación de trabajo de la temperatura puede ser calibrado por el operador en la pantalla de seteos desde la computadora.

2.3.1 Descripción del proceso a automatizar

El proceso se divide en dos partes:

- Manual
- Automático

Una vez iniciado el proceso manual el operador puede hacer uso del control de direccionamiento del polipasto.

Para el caso de seleccionar el modo manual; se desactivaran algunas condiciones necesarias que se necesitan para que funcione en modo automático, esta opción solo se utilizara cuando ocurre un daño o imperfecto en la secuencia del proceso.

El proceso automático tiene las siguientes características:

- Cuando el operario selecciona modo automático el PLC controla el proceso.
- Una vez seleccionado el modo automático solo estarán habilitadas dos botoneras (marcha, paro), se presionará la botonera marcha cuando se requiera inicial el proceso, la botonera paro cuando se desea detener el proceso.

- No se puede iniciar el proceso automático sin antes cumplir con las condiciones iniciales, tanto de nivel requerido de llenado, temperatura, acidez.
- Para el llenado y vaciado de las tinas de enjuagues se utilizarán electroválvulas de forma automática utilizando sensores de nivel para este fin.
- Para realizar la medición de temperatura se empleará una termocupla que enviará un voltaje proporcional al PLC, como se desea tener un valor constante se utilizará un control de lazo cerrado PID, el valor de temperatura correspondiente se visualizará en la pantalla del Scada además de poder cambiar el setpoint desde la pantalla.
- En vez de que el operario amarre la estructura de los transformadores se utilizará un magnetizador de imanes permanentes el cual actuará sobre una placa de metal que tendrá unas cadenas con las cuales se sujetará a los transformadores.

2.3.2 Diagrama de flujo del proceso

El proceso trabaja en dos modos: manual y automático. Antes de empezar el proceso deben cumplirse las condiciones iniciales las cuales son el llenado de las tinas y el calentamiento de las resistencias para la tina de fosfatación hasta llegar a la temperatura deseada. Un esquema general del proceso puede ser apreciado en la **figura 2.8.**

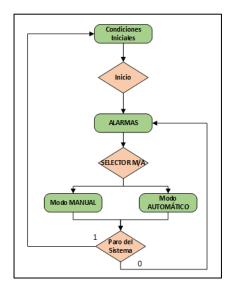


Figura 2.8: Diagrama de flujo general del proceso

La secuencia lógica de trabajo para el modo manual involucra la activación de movimiento del polipasto mediante una botonera. Al presionar un determinado botón se activará el motor relacionado a ésta acción y el movimiento del polipasto dependerá totalmente del operador. El diagrama de flujo para el trabajo en modo manual puede ser observado en la **figura** 2.9.

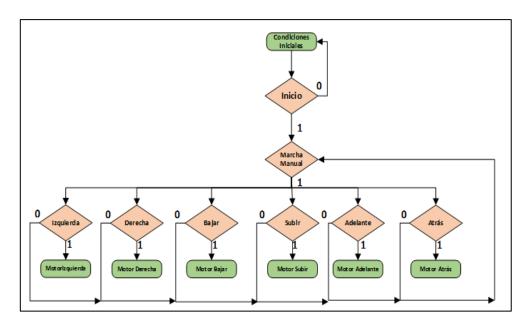


Figura 2.9: Diagrama de flujo para el modo manual

Cuando el selector se encuentra en modo automático se va a trabajar con las señales provenientes de los finales de carrera que controlan el movimiento vertical de la cadena del polipasto y con sensores de posición que delimitarán el desplazamiento horizontal del polipasto hacia cada tina.

En un principio el polipasto debe estar ubicado en la posición inicial, detectada por el sensor de posición inicial. Hecho esto se debe bajar la cadena y su desplazamiento vertical es limitado por el final de carrera bajar. Luego debe activarse el elevador magnético y colocarse la estructura del transformador, para que la cadena con la estructura suba hasta donde indique el final de carrera subir. Posterior a esto empieza el movimiento hacia adelante del conjunto, hasta pasar por cada uno de los 5 sensores de posición correspondientes a cada tina, bajar la estructura, esperar el tiempo determinado, subir la estructura y continuar hacia la siguiente tina. El proceso es secuencial y repetitivo. Una vez que la tina ha

cumplido su tiempo de permanencia en la quinta tina, la estructura debe ser subida y llegar hasta la posición indicada por el sensor de posición final para ser bajada y retirada del polipasto por medio de un operador. La secuencia lógica de trabajo en modo automático se aprecia en **la figura 2.10**.

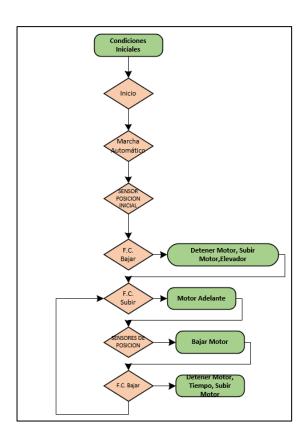


Figura 2.10: Diagrama de flujo para el modo automático

2.3.3 Causa de fallos del sistema de decapado y fosfatado

Se mencionara las posibles causas de errores que pudieren tener el proceso y las acciones a tomar.

- Error en el sistema de electroválvula: el proceso puede dejar de funcionar cuando ocurre este error, es fundamental tener el nivel de líquido requerido en todas las tinas, la acción a tomar seria llenarlas de forma manual evitando que el sensor de nivel mande una señal al plc.
- Error en los sensores de posición polipasto: una vez iniciado el proceso en modo automático presentarse un error en los sensores, el

operador puede cambiar a modo manual hasta que se realice el correctivo necesario.

- Error de lectura de temperatura en la termocupla: es necesario que el valor medido de 60°C – 65°C sea el correcto un valor erróneo puede dar como resultado un fosfatado en mal estado y un empollamiento de la pintura.
- La desconfiguración del controlador lógico programable: Es uno de los problemas más importante ya que puede llegar a producir un colapso dejando afuera el funcionamiento del proceso de decapado y fosfatado.

2.4 Diagramas eléctricos

Se realizaron los siguientes diagramas eléctricos.

Diagrama de Fuerza Polipasto: En este diagrama se tienen las conexiones de los 4 motores que permiten el movimiento del polipasto hacia las líneas eléctricas, con sus respectivas protecciones, variadores de frecuencia y contactores.

Diagrama de Fuerza Resistencias de Calentamiento: En este diagrama se tiene la conexión en delta de las resistencias R1, R2, R3 y de las resistencias R4, R5, R6 hacia sus respectivos térmicos y hacia las líneas de alimentación. Estas resistencias van ubicadas en la tina de fosfatación y sirven para producir el calentamiento del agua con fosfato de zinc.

Conexiones de fuente DC de 24V: Aquí se muestran las conexiones de la fuente de corriente continua que alimentará al controlador y a los módulos de expansión.

Conexiones del PLC: Entradas, salidas y pines de alimentación conectados al controlador.

Conexiones del PLC Módulos de Ampliación: Conexiones de entradas y salidas de los módulos de entradas y salidas digitales y analógicas.

Conexiones de Relés 1 al 3: Conexiones respectivas para los relés 1, 2 y 3 para la activación de salidas.

Conexiones de Relés 4 al 6: Conexiones respectivas para los relés 4, 5 y 6 para la activación de salidas.

Conexiones de relés 7 al 9: Conexiones respectivas para los relés 7, 8 y 9 para la activación de salidas.

Conexiones de Relés 10 al 12: Conexiones respectivas para los relés 10, 11 y 12 para la activación de salidas.

Conexiones de Relés 13 al 15: Conexiones respectivas para los relés 13, 14 y 15 para la activación de salidas.

Conexiones de Relés 16 al 18: Conexiones respectivas para los relés 16, 17 y 18 para la activación de salidas.

Conexiones de Relés 19 al 21: Conexiones respectivas para los relés 19, 20 y 21 para la activación de salidas.

Conexiones de Bobinas de Contactores: En este diagrama se tienen las conexiones hacia las bobinas para la activación de contactores.

El detalle de cada uno de los diagramas puede ser observado en el Anexo 1.

2.5 Listado de entradas y salidas digitales- analógicas del PLC

Para el proyecto se tienen un total de 28 entradas digitales las cuales empiezan desde 10.0 hasta 13.6. En la **tabla 6** se puede observar la lista de entradas digitales con su numeración, la variable a la que corresponde y una breve descripción.

	ENTRADAS DIGITALES					
TAG	AG VARIABLE DESCRIPCIÓN		MÓDULO			
10.0	PARO	PULSADO DE PARO	CPU 1214C			
10.1	MARCHA	PULSADO DE MARCHA	CPU 1214C			
10.2	MAN-AUTO	SELECTOR MANUAL-AUTOMATICO	CPU 1214C			
10.3	IZQUIERDA	PULSADOR MOVER POLIPASTO - IZQUIERDA	CPU 1214C			
10.4	DERECHA	PULSADOR MOVER POLIPASTO - DERECHA	CPU 1214C			
10.5	SUBIR	PULSADOR MOVER POLIPASTO- ADELANTE	CPU 1214C			
10.6	ATRÁS	PULSADOR MOVER POLIPASTO- ATRÁS	CPU 1214C			
10.7	SUBIR	PULSADOR SUBIR POLIPASTO	CPU 1214C			
11.0	BAJAR	PULSADOR BAJAR POLIPASTO	CPU 1214C			
11.1	FCC-DERECH	FINAL DE CARRERA LADO DERECHO	CPU 1214C			
11.2	FCC-IZQUIER	FINAL DE CARRERA LADO IZQUIERDO	CPU 1214C			
11.3	FCC-ADELANTE	FINAL DE CARRERA - ADELANTE	CPU 1214C			

11.4	FCC-ATRÁS	FINAL DE CARRERA - ATRAS	CPU 1214C
11.5	FCC-SUBIR	FINAL DE CARRERA SUBIR	CPU 1214C
11.6	FCC-BAJAR	FINAL DE CARRERA BAJAR	SM1213
11.7	GUARDAMOTOR1	CONTACTO AUXILIAR GUARDAMOTOR1	SM1213
12.0	GUARDAMOTOR2	CONTACTO AUXILIAR GUARDAMOTOR2	SM1213
12.1	GUARDAMOTOR3	CONTACTO AUXILIAR GUARDAMOTOR3	SM1213
12.2	GUARDAMOTOR4	CONTACTO AUXILIAR GUARDAMOTOR4	SM1213
12.3	GUARDAMOTOR5	CONTACTO AUXILIAR GUARDAMOTOR5	SM1213
12.4	AUTOMATICO	SELECTOR MARCHA AUTOMATICO	SM1213
	SENSOR POSICION		
12.5	INICIAL	SENSOR POSICION INICIAL	SM1213
12.6	SENSOR POSICION 1	SENSOR POSICION 1	SM1213
12.7	SENSOR POSICION 2	SENSOR POSICION 2	SM1213
13.0	SENSOR POSICION 3	SENSOR POSICION 3	SM1213
13.1	SENSOR POSICION 4	SENSOR POSICION 4	SM1213
13.2	SENSOR POSICION 5	SENSOR POSICION 5	SM1213
13.3	DOMINGO	SELECTOR TRABAJAR DIA DOMINGO	SM1213

Tabla 6: Descripción de las entradas digitales del plc

Las salidas digitales se pueden apreciar en la **tabla 7**. Las salidas digitales empiezan desde Q0.0 hasta Q2.4.

SALIDAS DIGITALES					
TAG	VARIABLE	DESCRIPCIÓN	MÓDULO		
Q0.0	INICIO	INICIODEL SISTEMA- INICIO	CPU 1214C		
Q0.1	M-DERECHA	MOVIMIENTO DEL POLIPASTO DERECHA	CPU 1214C		
Q0.2	M-IZQUIERDA	MOVIMIENTO DEL POLIPASTO IZQUIERDA	CPU 1214C		
Q0.3	M-ADELANTE	MOVIMIENTO DEL POLIPASTO ADELLANTE	CPU 1214C		
Q0.4	M-ATRÁS	MOVIMIENTO DEL POLIPASTO ATRÁS	CPU 1214C		
Q0.5	M-SUBIR	MOVIMIENTO DEL POLIPASTO SUBIR	CPU 1214C		
Q0.6	M-BAJR	MOVIMIENTO DEL POLIPASTO BAJAR	CPU 1214C		
Q0.7	SEG-VEL-DER-IZ	SEGUNDA VELOCIDAD IZQUIERDA-DERECHA	CPU 1214C		
Q1.0	SEG-VEL-SUB-BAJ	SEGUNDA VELOCIDAD ADELANTE-ATRÁS	CPU 1214C		
Q1.1	ALARMA POLIP	ALARMA FALLA POLIPASTO	CPU 1214C		
Q1.2	DECAPADO	CONTACTOR ELECTROVALVULA DECAPADO	SM1213		
Q1.3	ENJUAGUE1	CONTACTOR ELECTROVALVULA ENJUAGUE 1	SM1213		
Q1.4	ENJUAGUE2	CONTACTOR ELECTROVALVULA ENJUAGUE2	SM1213		
Q1.5	FOSFATADO	CONTACTOR ELECTROVALVULA FOSFATADO	SM1213		
Q1.6	ENJUAGUE3	CONTACTOR ELECTROVALVULA ENJUAGUE 3	SM1213		
Q1.7	RESISTENCIA 1-2-3	RESISTENCIA 1-2-3	SM1213		
Q2.0	RESISSTENCIA 4-5-	RESISTENCIA 4-5-6	SM1213		

	6		
Q2.1	EXTRACTOR	EXTRACTOR	SM1213
Q2.2	ELEVADOR	ELEVADOR MAGNETICO DE IMANES	SM1213
Q2.3	LUCES DECAPADO	LUCES DECAPADO	SM1213
	LUCES		
Q2.4	FOSFATIZADO	LUCES FOSFATADO	SM1213

Tabla 7: Descripción de las salidas digitales del plc

Para las variables de temperatura y nivel correspondientes a los sensores, se hizo uso de entradas analógicas. Se hizo uso de 5 entradas analógicas como se indica en la **tabla 8**.

ENTRADAS ANALÓGICAS						
TAG	VARIABLE	DESCRIPCIÓN	MÓDULO			
AI0.0	TERMOCUPLA	TERMOCUPLA TIPO J	CPU 1214C			
AI0.1	SENSOR NIVEL1	SENSOR NIVEL1 -TINA DECAPADO	CPU 1214C			
AI0.2	SENSOR NIVEL2	SENSOR NIVEL2 -TINA DE ENJUAGUE1	CPU 1214C			
AI0.3	SENSOR NIVEL3	SENSOR NIVEL3 -TINA DE ENJUAGUE 2	SM1231			
AI0.4	SENSOR NIVEL4	SENSOR NIVEL4 -TINA DE FOSFATADO	SM1231			
AI0.5	SENSOR NIVEL5	SENSOR NIVEL5 -TINA DE ENJUAGUE 3	SM1231			

Tabla 8: Descripción de las entradas analógicas del plc

2.6 Programación del controlador

La programación del PLC se realizó en el software TIA PORTAL v12.0 y se detalla en el **Anexo 2**.

2.6.1 Escalamiento

Para determinar la temperatura de la tina de fosfatado se utilizará una termocupla tipo J, que responde de forma lineal, se utilizará la ecuación de la recta para graficar su comportamiento (**figura 2.11**). Los datos adquiridos fueron tomados de la tabla de referencias de termopares tipo J. [10]

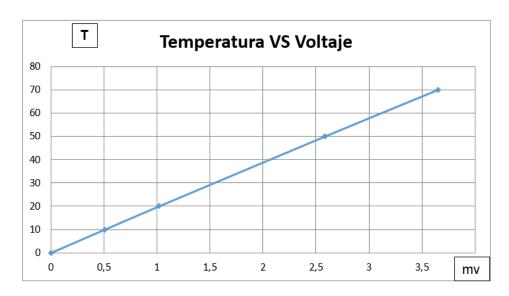


Figura 2.11: Variación de la temperatura con respecto al voltaje para una termocupla tipo J

De acuerdo al comportamiento de la gráfica de temperatura vs voltaje se tiene la siguiente ecuación para el comportamiento de la termocupla:

Para determinar la relación entre el voltaje y la temperatura se procedió a hallar la pendiente de la gráfica a partir de dos puntos conocidos, en este caso se tomaron los puntos (0,0) y (70,3.65) como se puede observar en las ecuaciones (2.1), (2.2) y (2.3).

$$m = \frac{T2 - T1}{V2 - V1} \tag{2.1}$$

$$m = \frac{70 - 0}{3.65 - 0} \tag{2.2}$$

$$m = 19.18 (2.3)$$

Con lo cual se obtuvo una pendiente m de 19.18 mV/°C. Luego reemplazamos este valor en la ecuación de punto y pendiente para una recta, como se ve en las ecuaciones (2.4), (2.5) y (2.6).

$$T - T_0 = m * (V - V_0) (2.4)$$

$$T - 0 = 19.18(V - 0) \tag{2.5}$$

$$T = 19.18 * V \tag{2.6}$$

Ahora que se tiene la ecuación se procede a obtener el valor de la señal analógica de voltaje proveniente de la termocupla, haciendo uso del bloque SCALE, para hacer un escalamiento de los valores máximo y mínimo que se encuentren dentro del rango de acción de la termocupla, como se puede observar en la figura. El nuevo valor de voltaje se almacena en una variable tipo MD, en este caso la MD24. El bloque SCALE se aprecia en la figura 2.12.

Figura 2.12: Bloque SCALE para el escalamiento de la señal analógica de voltaje de la termocupla

Luego se realiza la multiplicación entre la nueva variable MD24 y una constante de valor 19.18, de acuerdo a la ecuación que se obtuvo anteriormente.

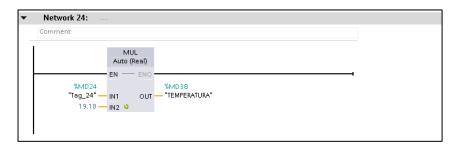


Figura 2.13: Bloque multiplicador

El valor de salida del bloque multiplicador, **figura 2.13**, va ser el valor real de temperatura a la que se encuentra la tina de fosfatado y que se midió mediante la termocupla.

2.6.2 Configuración del bloque PID

A continuación se procede agregar un nuevo bloque, luego aparecen las opciones de tipo de bloques que se desea agregar como se observa en la figura 2.14.

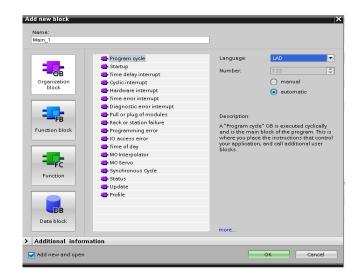


Figura 2.14: Ventana para agregar un nuevo bloque

Dar doble clic sobre cyclic interrupt, una vez creado el nuevo bloque se procede a elegir el bloque de PID que se encuentra en la barra de extensión de instrucciones, figura 2.13.

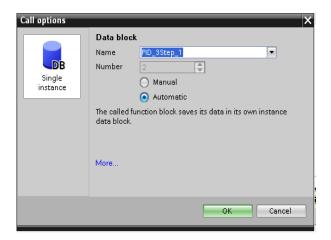


Figura 2.13: Ventana opciones de llamado del bloque PID

Una vez seleccionado el bloque PID deseado, se procederá a llenar los parámetros requeridos por el bloque PID. En la **figura 2.14** se observa el bloque PID.

Setpoint: 60.0

Input: temperatura (entrada analógica)

Output_PWM: %M21.2 (Salida PID Termocupla) (salida1 del módulo de salidas analógicas).

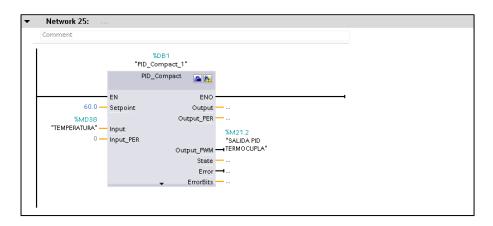


Figura 2.14: Gráfico del bloque PID

2.7 Descripción de pantallas

Aquí se describirán las pantallas correspondientes al sistema SCADA del sistema. El sistema consta de 4 ventanas las cuales tienen diferentes funciones.

2.7.1 Pantalla Principal

Como se observa en la **figura 2.15** la pantalla principal consta de un pulsador de marcha, un pulsador de paro, un selector M/A y un pulsador de marcha automático. En la esquina superior derecha se tienen los motores para el movimiento del polipasto y también se tiene el levantador magnético.

La activación de los sensores de posición para el movimiento del polipasto se visualiza mediante una luz piloto color verde.

En la parte donde se encuentran los motores y el levantador magnético existen unos pequeños recuadros que sirven para saber el estado operativo del elemento. Si el recuadro está de color rojo quiere decir que el motor está apagado u si el recuadro se muestra de color verde quiere decir que el motor está encendido. Ésta misma configuración de colores se tiene para el levantador magnético.

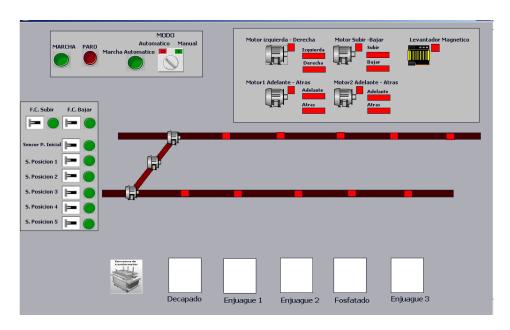


Figura 2.15: Pantalla principal del sistema SCADA

2.7.2 Pantalla de Configuración de Parámetros

En la **figura 2.16** se tiene la pantalla para la configuración de parámetros del sistema. Estos parámetros. Estos parámetros deben ser colocados por el operador y son los siguientes:

- Set Point de temperatura
- Tiempo de decapado
- Tempo de fosfatado

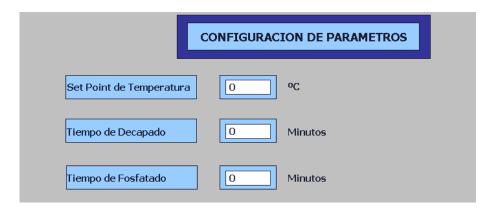


Figura 2.16: Pantalla de Configuración de parámetros del sistema

2.7.3 Pantalla de llenado y vaciado de tinas

Para el llenado y vaciado de todas las tinas se dispone de electroválvulas. El estado operativo de las electroválvulas puede ser visualizado desde ésta pantalla. Con recuadros de color azul se encuentran las electroválvulas correspondientes al llenado y con color verde las electroválvulas para el vaciado de las tinas. Si se enciende la luz piloto color verde la electroválvula está encendida, de estar encendida la luz roja la electroválvula se encuentra apagada. Estos de talles se aprecian en la figura 2.17.

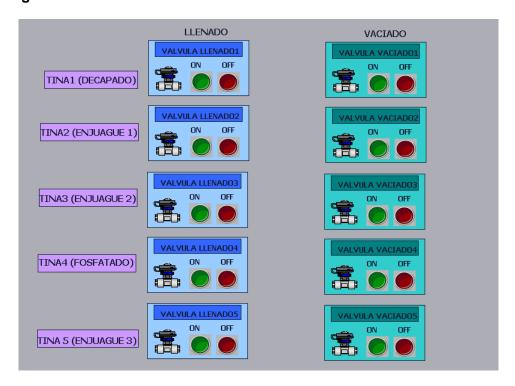


Figura 2.17: Ventana con electroválvulas para el llenado y vaciado de las tinas del proceso

2.7.4 Ventana de alarmas

Para las alarmas del sistema se tiene lo siguiente:

- Alarmas de nivel bajo y de nivel alto para cada una de las 5 tinas involucradas en el proceso.
- Alarmas de sobre temperatura para los motores.
- Alarmas de temperatura alta y baja para la tina de fosfatación.

En caso de existir alguna alarma se encenderá una luz piloto de color verde, tal como se ve en la **figura 2.18.**

Figura 2.18: Ventana de alarmas del proceso

2.8 Simulaciones

En esta parte se describirá la simulación de señales analógicas del proceso correspondientes a las variables de nivel proveniente de los sensores y la variable de temperatura proveniente de la termocupla.

Para esto se hizo uso del software S7-PLCSIM v12 el cual permite simular un PLC s71500 con sus respectivos módulos de señales analógicas y digitales. Para cuestiones de simulación no importará el modelo de PLC con que se trabaje. En la **figura 2.19** se puede apreciar la detección de los dispositivos entre el TIA PORTAL y PLCSIMv12.

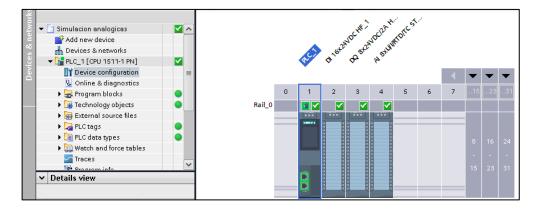


Figura 2.19: Correcta conexión entre el software TIA PORTAL y PLCSIMv12

Para poder simular se deberá crear una tabla de simulación en el programa PLCSIMv12 y desde aquí se podrán forzar las entradas y salidas del PLC. La tabla de simulación puede ser apreciada en la **figura 2.20.**

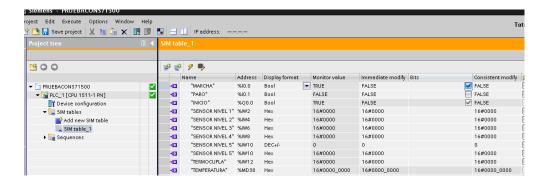


Figura 2.20: Tabla de Simulación en PLCSIMv12

2.8.1 Simulación de una variable analógica

A manera de ejemplo se simulará la variable analógica de temperatura proveniente de la termocupla. Para esto, asignamos un valor en bits cualquiera, para la variable TERMOCUPLA y el valor en bits que se colocará será de 15000, como se ve en la **figura 2.21.** También se ha colocado el tag correspondiente a la temperatura para poder ser visualizado.

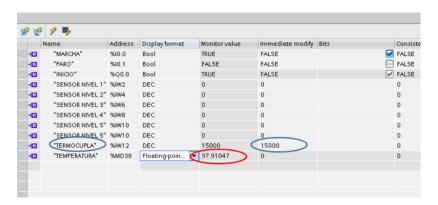


Figura 2.21: Asignación de un valor a una señal analógica, para el caso la señal proviene de una TERMOCUPLA

El valor correspondiente a la temperatura se obtiene multiplicando el valor en voltios proveniente de la termocupla por una constante de 19.18, como se visualiza en la **figura 2.22**. Para el caso del ejemplo se obtuvo una temperatura de 37.91 grados centígrados.

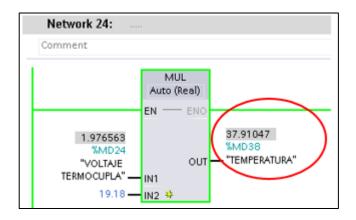


Figura 2.22: Valor de temperatura simulado visto en TIA PORTAL

2.8.2 Simulación del funcionamiento del Polipasto en modo automático

Se debe presionar el botón de MARCHA, el selector M/A debe estar en la posición Automático y se deberá presionar el pulsador Marcha Automático. Para poder iniciar el proceso, el polipasto debe estar en la posición inicial, una vez que el sensor de posición inicial detecta esto la cadena del polipasto empieza a bajar. En la **figura 2.23** podemos apreciar la activación de las señales y el encendido del motor bajar para el desplazamiento hacia debajo de la cadena del polipasto.

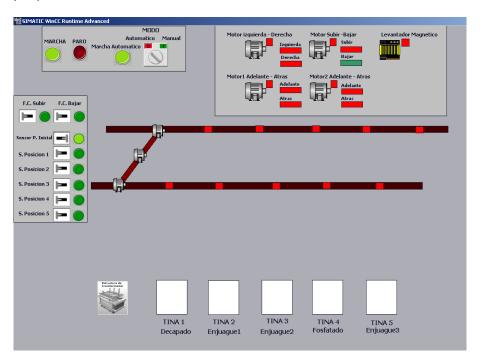


Figura 2.23: Simulación inicio del proceso de decapado y fosfatado

Posteriormente, se activa el levantador magnético, la estructura del transformador debe ser sujetada en la cadena con el levantador magnético, la cadena sube hasta donde indique el fin de carrera subir y luego empieza el movimiento hacia adelante hacia la primera tina. En la **figura 2.24** se puede apreciar la activación del levantador magnético y de los motores adelante-atrás pero con movimiento hacia adelante.

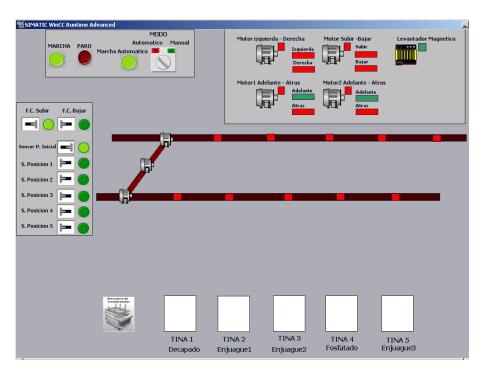


Figura 2.24: Movimiento del polipasto hacia la primera tina

Cuando la estructura de transformador se encuentra sobre la tina 1, se activa el sensor de posición 1, entonces la cadena debe empezar a bajar hasta colocar la estructura en la posición correcta para realizar el decapado. En la **figura 2.25** se puede visualizar la activación del Motor Subir – Bajar con movimiento hacia abajo, con color celeste se indica que la estructura ya se encuentra sobre la tina 1.

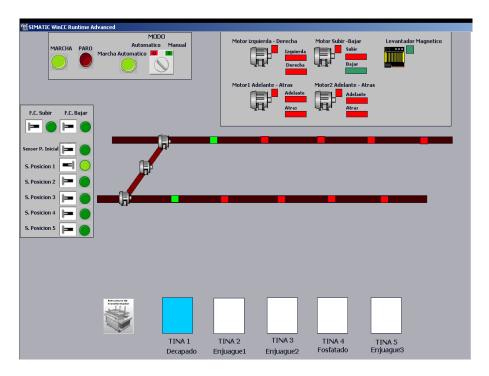


Figura 2.25: Polipasto posicionado sobre la tina de decapado

El proceso se repite para cada una de las otras tinas, lo único que varía es el tiempo de permanencia en cada tina. En la **figura 2.26** se observa que el polipasto está en la tina de fosfatado. Se puede notar que está activado el motor Subir – Bajar para la cadena en el modo subir, lo que también nos indica que el proceso de fosfatado ha finalizado

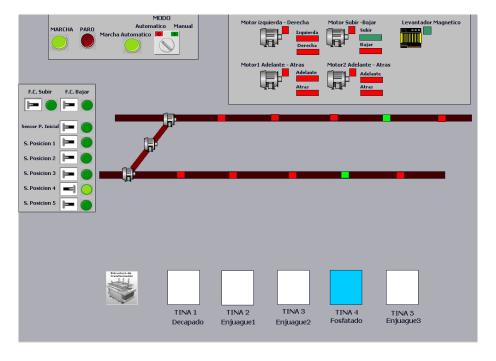


Figura 2.26: Polipasto en la tina de fosfatado

CAPÍTULO 3

3. RESULTADOS

En este capítulo se describen los resultados obtenidos para el diseño de la automatización del proceso de decapado y fosfatado para estructuras de transformadores.

3.1 Análisis de tiempos entre el proceso automatizado y no automatizado

Para este análisis se midieron los tiempos correspondientes para cada etapa del proceso sin automatizar y se hizo luego una estimación del tiempo que tomaría el proceso de forma automatizada para finalmente hacer una comparativa y ver las ventajas que se obtienen.

3.1.1 Tiempos del proceso sin automatizar

Se realizó la medición de los tiempos requeridos para todos los pasos involucrados en el proceso de decapado y fosfatado de la forma actual como se viene haciendo, es decir sin automatizar. Se obtuvo que de este modo el tiempo total aproximado que toma la realización del proceso para una estructura de transformador es de 81 minutos; es decir 1 hora con 21 minutos. El detalle de los tiempos medidos puede ser apreciado en la **tabla 9.**

No:	DESCRIPCIÓN	TIEMPO	TIEMPO	Tfinal-
		DE INICIO	FINAL	Tinicial
1	Amarre de	00:00 min	15:00 min	15 min
	transformadores			
2	Posición inicial-	15:00 min	18:00 min	3 min
	Posición iniciai- Posición decapado	15:00 min	18:00 min	3 min
	·			
3	Tiempo decapado	18:00 min	38:00 min	20 min
4	Posición decapado-	38:00 min	40:00 min	2 min
	Posición enjuague1			
	, -	10.00	4= 00	
5	Tiempo de enjuague	40:00 min	45:00 min	5 min
6	Posición enjuague1	45:00 min	47:00 min	2 min
	Posición enjuague2			
7	Tiempo de enjuague 2	47:00 min	52:00 min	5 min
•	, , ,			
8	Posición enjuague2	52:00 min	54:00 min	2 min
	Posición fosfatado			
9	Tiempo fosfatado	54:00 min	74:00 min	20 min
	•			
10	Posición fosfatado	74:00 min	76:00 min	2 min
	Posición enjuague3			
11	Tiempo de enjuague 3	76:00 min	78:00 min	2 min
12		70:00 min	91:00 min	2 min
12	Tiempo dejar transformador	78:00 min	81:00 min	3 min
	transionnauor			
			Tiempo total del	81 min
			proceso	= 1 :21:00
			_	

Tabla 9: Detalle de la medición de tiempos del proceso sin automatizar

3.1.2 Estimación de tiempos con el proceso automatizado

Se hizo una estimación de los tiempos requeridos para todos los pasos involucrados en el proceso de decapado y fosfatado con la implementación de un sistema automatizado. Se obtuvo que de esta forma el tiempo total aproximado requerido para la realización del proceso para una estructura de transformador sería de 58 minutos. El detalle de los tiempos estimados puede ser apreciado en la **tabla 10**.

No:	DESCRIPCIÓN	TIEMPO DE	TIEMPO	Tfinal-
		INICIO	FINAL	Tinicial
1	Amarre de	00:00 min	5:00 min	5 min
	transformadores			
2	Posición inicial-	5:00 min	7:00 min	2 min
	Posición decapado			
3	Tiempo decapado	7:00 min	22:00 min	15 min
4	Posición decapado-	22:00 min	24:00 min	2 min
	Posición enjuague1			
5	Tiempo de enjuague	24:00 min	28:00 min	4 min
6	Posición enjuague1	28:00 min	30:00 min	2 min
	Posición enjuague2			
7	Tiempo de enjuague 2	30:00 min	34:00 min	4 min
8	Posición enjuague2	34:00 min	36:00 min	2 min
	Posición fosfatado			
9	Tiempo fosfatado	36:00 min	51:00 min	15 min
10	Posición fosfatado	51:00 min	53:00 min	2 min
	Posición enjuague3			
11	Tiempo de enjuague 3	53:00 min	57:00 min	3 min
12	Tiempo dejar	56:00 min	58:00 min	2 min
	transformador			
			Tiempo total del proceso	58 min

Tabla 10: Detalle de la estimación de tiempos con el proceso automatizado

3.1.3 Análisis Comparativo

De acuerdo a las mediciones y estimaciones realizadas el proceso de decapado y fosfatado para una estructura de transformador corresponde a un promedio de 1 hora con 21 minutos de la manera actual en que se realiza; con el proceso automatizado el tiempo aproximado es de 58 minutos. Por lo tanto se tiene una reducción en el tiempo de ejecución del proceso aproximadamente de 23 minutos para una sola estructura de transformador. En la **figura 3.1** se tiene una gráfica ilustrativa con estos tiempos.

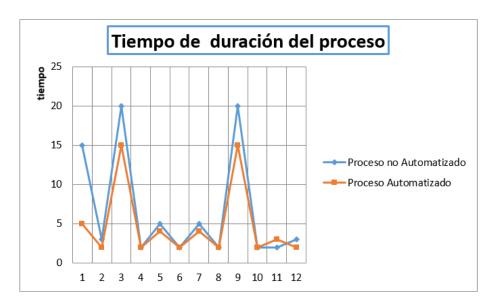


Figura 3.1: Tiempos de duración del proceso automatizado y no automatizado

3.2 Análisis Económico

En esta parte se detallará de forma complementaria cual será el efecto beneficio – costo, es decir, se determinará si la inversión del proyecto será factible y el tiempo mínimo para recuperar la inversión, por medio de estudios económico- financieros utilizando herramientas como la TIR (tasa interna de retorno), VPN (valor presente neto).

3.2.1 Descripción de la terminología usada para el análisis económico

Beneficio: son las mejoras que la empresa obtendrá al implementar la automatización del proceso de decapado y fosfatado para estructura de transformadores.

Costo de inversión: detalles de todos los costos requeridos para implementar el proyecto, incluyendo materiales, equipos, ingeniería, instalación, impuestos y otros costos.

TIR: La TIR es una herramienta para el análisis de la rentabilidad de una inversión, se utiliza para comparar la factibilidad de diferentes

opciones de inversión, la TIR se puede utilizar como un indicador de la rentabilidad de un proyecto, es decir a mayor TIR la rentabilidad es mayor pero si la TIR está por debajo de la tasa mínima o tasa de corte se considera una rentabilidad poco atractiva.

Análisis Beneficio Costo: la razón beneficio –costo se considera el método de análisis fundamental para obtener los mayores y mejores resultados al menor presupuesto invertido en la implementación de un proyecto, es decir es una técnica importante para decidir o determinar la conveniencia de proyecto mediante la enumeración y valoración posterior en términos monetarios de todos los costos y beneficios.

Existen diversas variaciones de la razón beneficio-costo, sin embargo el enfoque es el mismo, todos los cálculos de costo y beneficio deberán convertirse a una unidad monetaria de equivalencia común.

Valor Presente Neto (VPN): Es unos de los métodos más utilizados a la hora de decidir o evaluar si la inversión de un proyecto es sea positivo es decir que en el futuro esa inversión se incrementará.

El valor presente determina si una inversión cumple con la finalidad de maximizar o incrementar esta, aunque este valor estimado puede ser este de valor negativo, positivo o continuar con el mismo valor.

Si el valor es positivo quiere decir que habrá un incremento en la finanza de la empresa igual al monto del valor presente neto.

Si el valor es negativo la empresa perderá riqueza igual que el valor presente neto arrojado en el análisis.

Si el valor del VPN es cero significa que la empresa no ganará ni perderá con la inversión implementada en el proyecto.

3.2.2 Presupuesto del proyecto

En esta parte se hizo un listado de los componentes requeridos para la implementación del proyecto. También se realizó la cotización de los mismos para de esta forma tener un presupuesto inicial y conocer cuál será la inversión inicial, y poder determinar si es factible implementar el proyecto. La lista de materiales y precios puede ser observada en la **tabla 11.** Se tiene que el total de componentes tienen un costo de \$16800.

LISTADO DE MATERIALES PROYECTO DECAPADO Y FOSFATADO				
CANTI DAD	DESCRIPCIÓN	PRECIO \$	TOTAL	
100	AMARRAS CABLES PVC 20CM 100UN	0,05	5,20	
1	AMARRAS CABLES PVC 30CM 100UN	0,07	6,50	
30	BORNERA 4mm2 P/RIEL DIN LTU5N(UK)	3,6	108	
20	BORNERA 6mm2 P/RIEL DIN UK6N	1,9	38	
2	BREAKER 3P 20A 240/480VAC	17,5	35	
1	BREAKER 3P 60A 240/480VAC	17,5	17,5	
2	BREAKER ACTIVE9 Ic60n 2P 1A	17,5	35	
1	BREAKER ACTIVE9 Ic60n 2P 2A	18,4	18,4	
100	CABLE Cu THHN/THWN UNILAY NEGRO #12 AWG 600V 100M	0,7	70	
1	CANALETA C/T 60*40mm*2M RANURADA B60X40 CG	4,49	4,49	
3	CINTA AISLANTE AT#33 + 19mm X 20M SCOTCH	2	6	
2	CONTACTO AUXILIAR 1NO/NC XT MONTAJE FRONTAL P/CONT XT B-C	9,56	19,12	
2	CONTACTO AUXILIAR 2NO/NC XT MONTAJE FRONTAL P/CONT XT B-C	9,56	19,12	
2	CONTACTOR 3P 15A/AC3 B120V SERIE XT CONTAUX 1NA	21	42	
1	GUARDAMOTOR 1,6-2,5 A 600V MAX	49,4	49,4	
2	GUARDAMOTOR 1-1.6A 600 VAC/MA SERIE XT TAMAÑO B	31,5	63	
10	LUZ PILOTO ROJA 250VAC 22mm	4,3	43	
13	LUZ PILOTO VERDE 250VAC 2MM	4,3	55,9	
4	RIEL DIN AL 35mm X 1m	4,75	19	
100	TERMINAL COMPRESIÓN U AL 16-14AWG AU-2.5/4	0,43	43	
8	FUSIBLE 10X38mm 1A 500V ACCIONAMIENTO RAPIDO	0,45	3,6	
4	LUZ PILOTO LED 22mm 240V - ROJO	4,3	17,2	
4	LUZ PILOTO LED 22mm 240V - VERDE	4,3	17,2	
4	PORTA FUSIBLES 30A	5,55	22,2	
14	RELE MINIATURA 4 CONTACTOS BOBINA 230V	6,56	91,84	

1	VARIADOR VELOCIDAD 3F 1HP 200/240V 0.75KW 4.8A	480	480
1	VARIADOR VELOCIDAD 3F 3HP 200/240V 2.2KW 11A	718	718
1	TABLERO MET 50X40X20	79	79
1	BOMBA DE DIAFRAGMA DE DIAMETRO 1"	1000	1000
3	TRANSFORMADOR DE CORRIENTE 200A/5A, 600V, 5VA, 60HZ	72,27	216,81
5	CONTACTOR 220V/50HZ, 240V/60HZ, 25A	23,3	116,5
1	CONTACTOR 220V/50HZ, 240V/60HZ 32A	81.24	81,24
1	BREAKER TIPO RIEL DE 3 POLOS, 415V, 100A	50,2	50,2
1	MEDIDOR DE TEMPERATURA 220V	125	125
1	MEDIDOR DE CORRIENTE 5A, 600V	25	25
1	SELECTOR PARA CORRIENTE DE 4 POSICIONES	7,83	7,83
1	PULSADOR DE EMERGENCIA TIPO HONGO ROJO	10,97	10,97
2	PULSADOR DE MARCHA VERDE	4,3	8,6
7	SELECTOR DE DOS POSICIONES	5,3	37,1
1	PLC CPU 1214AC AC/DC/RELÉ	695	695
1	MÓDULO DE EXTENSIÓN SM322 16 SALIDAS TIPO RELE SIEMENS	514	514
1	MÓDULO DE SEÑAL ANALÓGICA 6ES7231-4HD32-0XB0 4AI	396	396
1	PANTALLA TOUCH SCREEN 4 HMI AUTOMATIZATION PLC	439	439
1	FUENTE DE PODER SITOP DE 120 VAC-24VDC	314	314
5	SENSOR DE NIVEL R SERIES marca GILL	200	1000
7	SENSOR INDUCTIVO 18mm LARGO 100-240 VAC NO/SAL	34,52	241,68
6	GUARDAMOTORES SIRIUS INNOVATIONS 3R-25 A -240V	71,3	427,8
6	RESISTENCIAS DE TITANIO 80 CMS-220V -13 A DIAMETRO 1 PULG	400	2400
6	RELÉ DE ESTADO SÓLIDO 25A-240 VAC	39,6	237,6
1	ELEVADOR MAGNÉTICO DE IMANES PERMANENTES	4000	4000
2	MOTOR REDUCTOR 2 HP	750	1500
100	CABLE CONCENTRICO #4x10 AWG	4,66	466
1 00	CABLE CONCENTRICO #4x12 AWG	3,63	363,00
a		Total	\$ 16800

bla 11: Lista de Componentes y Precios

3.2.3 Análisis de relación Beneficios - Costos

Para poder realizar un análisis de la relación beneficio- costo es necesario conocer y determinar cuáles serán los beneficios al implementar este proyecto.

- Se necesita implementar un sistema confiable, seguro de control y monitoreo del proceso de decapado y fosfatado por lo tanto este será uno del mayor beneficio.
- El sistema está diseñado para operar con el mínimo personal, debido a los controles automático y semiautomático que ahorran costes de operación.
- Este nuevo sistema cuentan se sensores y alarma que ayudaran a resolver los errores y fallan que se pudieran tener acortando el tiempo de reparación
- El costo del proyecto a implementar no es tan alto comparado con la inversión total de la empresa anónima.

Beneficio.- Se define como beneficio a la diferencia entre los valores de costo de mantenimiento y los costos del nuevo proyecto a implementar. La ecuación de beneficio se muestra a continuación

Beneficio = Costo Actual – Costo del Proyecto (3.1)

Descripción	Inversión	Gasto de capacitación	Gasto de mantenimiento primer año	VPN
Sistema actual	\$ 0.00	\$0.00	\$14400.00	\$14400.00
Sistema Proyecto	15000.00	\$1000.00	\$800	\$16800.00
			Beneficio	\$ -2400.00

Tabla 12: Beneficio Primer Año

Como resultado del primer año se tiene que el VPN (valor presente neto) del sistema proyectado es mayor que el VPN del sistema vigente es decir que se tiene un beneficio negativo como se muestra en la **tabla 12**, aunque este valor negativo no es suficiente para tomar una decisión sobre implementar el nuevo sistema de control de decapado y fosfatado, sin embargo se conoce que el costo de mantenimiento y daño de resistencia se reduce en 90% por lo tanto es preferible realizar un análisis económico a dos años para determinar si el nuevo proyecto a implementar es rentable. En la **tabla 13** se pueden apreciar los beneficios que se obtienen en el segundo año.

Descripción	Inversión	Gastos de capacit ación	Gasto de Mant. Primer año	Gasto de Mant. Segundo año	VPN
Sistema Actual	\$0.00	\$0.00	\$14400	\$14400	\$28840
Sistema propuesto	\$16800	\$1000	\$800	\$800	\$19400
				Beneficio	\$9440

Tabla 13: Beneficio Segundo Año

3.2.4 Tasa Interna de Retorno (TIR)

Esta técnica lo que obtiene es una tasa de interés con la cual el valor actual neto de un proyecto que se está analizando sea cero (VAN=0), como se puede observar en las ecuaciones (3.2) y (3.3).

Para calcular la TIR es necesario conocer los costos iniciales, gastos operativos e ingresos en un periodo dado estos valores los podemos encontrar en la **tabla 14**, en la **figura 3.2** se desglosa el flujo de ingresos (valores positivos) y el flujo de egresos (valores negativos) como el costo inicial, gasto operativo.

Diferentes valores de TIR se van evaluando en la ecuación (3.3) hasta obtener un rango de valores positivos y negativos de VAN, estos valores se deben aproximar a (VAN=0) para obtener un resultado lo más preciso posible.

Si se realiza de forma manual el cálculo de la TIR implicaría asignar diferentes valores de TIR que convierta al VAN en cero hasta obtener un rango de valores positivo y negativo de VAN, estos valores se deben aproximar los más posiblemente a (VAN=0) para obtener un resultado lo más preciso posible.

En la **figura 3.3** se está probando con distintos tipos de interés, con una tasa de interés de 40% se obtiene una valor de VAN de 587,75 y con una tasa de interés de 45% se obtiene una VAN de -253,03, el TIR está por tanto, entre 40% y el 45%.

En la tabla 15 se detalla la evaluación de diferentes tasas de interés.

	1er año	2do año
Costo inicial	16800.00	0.00
Gasto operativo anual	800.00	800.00
ingreso anuales	15000.00	15000.00

Tabla 14: Datos de costos

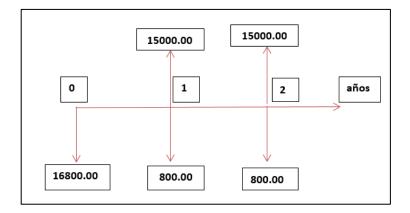


Figura 3.2: diagrama de flujo ingresos – costos operativos

$$VAN = -16800 - \frac{800}{TIR} \left(1 - (1 + TIR)^{-2} \right) + \frac{15000}{TIR} (1 - (1 + TIR)^{-2})$$
 (3.2)

$$0 = -16800 - \frac{800}{\text{TIR}} \left(1 - (1 + \text{TIR})^{-2} \right) + \frac{15000}{\text{TIR}} (1 - (1 + \text{TIR})^{-2})$$
 (3.3)

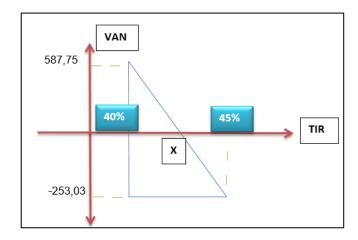


Figura 3.3: VAN vs TIR

TIR	VAN
0,15	6285,06
0,35	1510,0158
0,4	587,75
0,45	-253,03

Tabla 15: Relación entre la TIR y el VAN

De los resultados obtenidos mediante los análisis económicos Costo-Beneficio y el cálculo del TIR (tasa interna de retorno), podemos concluir que:

Al implementar este proyecto en el primer año no se obtiene beneficio alguno, sin embargo se conoce que al realizar este proyecto se reduce en un 90% los costos de mantenimiento, dando como resultado el segundo año se obtiene un beneficio \$9440.00 con respecto al gasto actual por mantenimiento correctivo y daño en las resistencias.

El TIR (tasa de interna de retorno) no es factible calcularla en el primer periodo debido a que no se obtiene beneficio alguno, no obstante en el segundo periodo de año el TIR es de 43,49.

Como se puede observar en la **tabla 14** y la **tabla 15** el beneficio de dos periodos de año sería de \$9400.00 y la TIR (tasa interna de retorno) alcanza el 43,49%, dado estos valores y conociendo que en los posteriores años el beneficio continuarán creciendo en los posteriores años se concluye que el sistema propuesto es rentable.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

- Se verificó que para monitorear y controlar un proceso de una mejor forma es necesario interactuar el PLC con un sistema Scada; siempre y cuando la magnitud del proceso lo amerite.
- Luego de realizar el presupuesto se tiene que el costo para la implementación del proyecto es de \$ 16800.
- Al realizar el análisis económico se puede concluir que la inversión del proyecto se recuperará en 2 años.
- 4. El diseño de un sistema de automatización para el proceso de decapado y fosfatado para la fábrica en cuestión brindará mejoras principalmente en la reducción de tiempos durante el proceso, que se traducirá en una mayor producción y por ende en mayores ingresos para la empresa.
- 5. De implementarse el diseño propuesto se reducirán otros problemas existentes en la fábrica como el continuo contacto de los operarios con sustancias químicas usadas en el proceso como el ácido clorhídrico que puede causar daños en la salud.
- 6. El sistema de automatización propuesto permitirá tener un proceso más controlado, de manera que se podrían evitar accidentes durante el movimiento de las estructuras de transformadores debido a un mal manejo del polipasto.

Recomendaciones

 El sistema podría expandirse hacia alguna otra etapa del proceso de la construcción de transformadores, como el transporte de las estructuras o el área de pintura.

- Siempre verificar todas las conexiones de entradas y salidas hacia al PLC antes de la realización de los diagramas para posteriormente no cometer errores en la implementación.
- 3. Se recomienda comprobar los modelos de PLC con los cuales se puede hacer una simulación con WinCC en RUN-TIME en el software TIA PORTAL, ya que esto se puede realizar sólo con ciertos modelos de controladores y esto sería un inconveniente si ya se ha avanzado en la realización de pantallas para HMI o SCADA.
- 4. Si se desea hacer una simulación con PLCSIM en la versión doce de TIA PORTAL, recordar que sólo se puede trabajar con un controlador S71500 para la simulación de módulos.

BIBLIOGRAFÍA

- [1] Donald R. Askeland, "Corrosión y desgaste" en La ciencia e ingeniería de los materiales, sexta edición, México D.F.: CENGAJE Learning, 2013, pp. 851-854.
- [2] FOSFAMET, (2015, mayo). Proceso de Decapado de Metales [Online]. Disponible en:

http://fosfamet.cl/proceso_de_decapado_para_metales_fosfamet_cl.pdf

[3] QUÍMICA TRUE, (2015, mayo). Fosfatizado [Online]. Disponible en:

http://www.qtrue.com.ar/download/Seminario_de_Fosfato_Teoria.pdf

[4] SIEMENS, (2015, junio). SIMATIC S7-1200 [Online]. Disponible en: https://w5.siemens.com/spain/web/es/industry/automatizacion/sce_educacion/documentacion/Documents/SIMATIC%20S71200R.pdf

[5] FELEMANG, (2015, junio). Electroimán autónomo de batería [Online]. Disponible en:

http://www.felemamg.com/productos.php?id=70

[6] SUNS, (2015, junio). Metal- Bodied Limit Switches: SN6 Series [Online]. Disponible en:

http://www.suns-usa.com/catalog/Limit%20Proximity%20switch%202006.pdf

[7] AUTONICS, (2015, junio). Inductive proximity sensor cylindrical type AC 2 wire [Online]. Disponible en:

http://products.autonicsonline.com/Asset/PR%20series%20AC%202%20wire%20 manual.pdf

[8] GILLS, (2015, julio). Motorsport Specification Liquid Level Sensor [Online]. Disponible en:

http://gillsc.com/content/datasheets/R-Series-Stainless-Steel.pdf?v=4.06.23

[9] BOCON, (2015, julio). Sonda de temperatura/termopar tipo J [Online]. Disponible en:

http://www.directindustry.es/prod/dalian-bocon-science-technology-co-ltd/product-78582-791981.html

[10] TERMOKEW, (2015, junio). Tablas de Referencia MiliVolts VSTemperatura [Online]. Disponible en:

http://www.termokew.mx/termopares/termopar-J-hierro-cobre.jpg

ANEXOS

Anexo 1: Diagramas Eléctricos

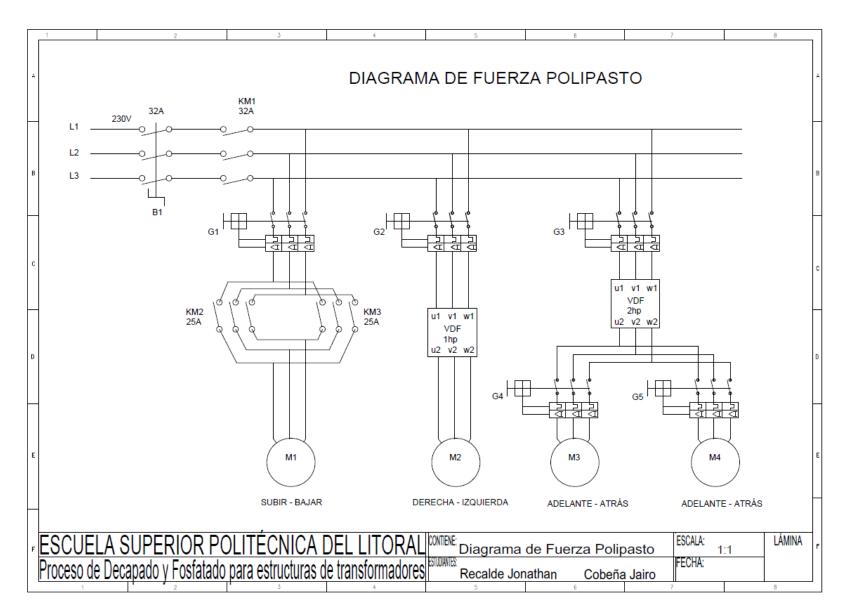
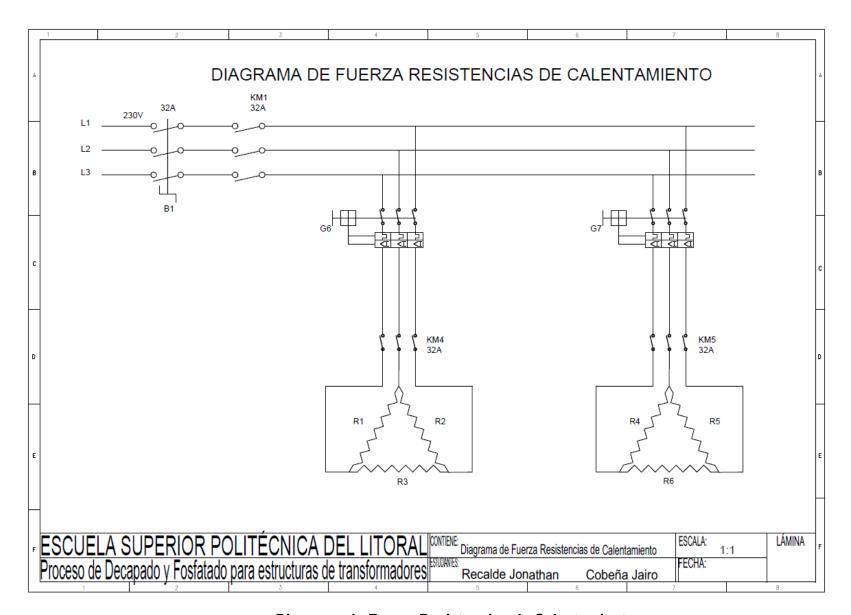
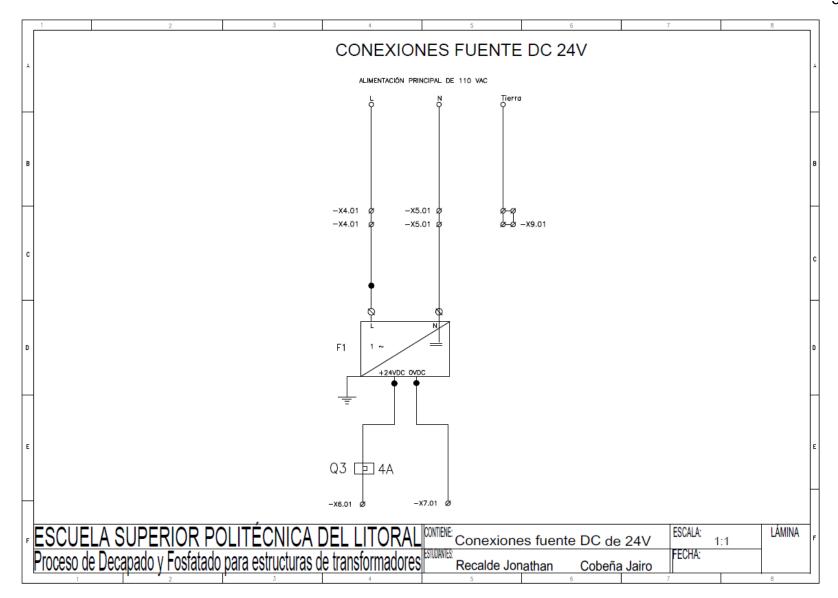
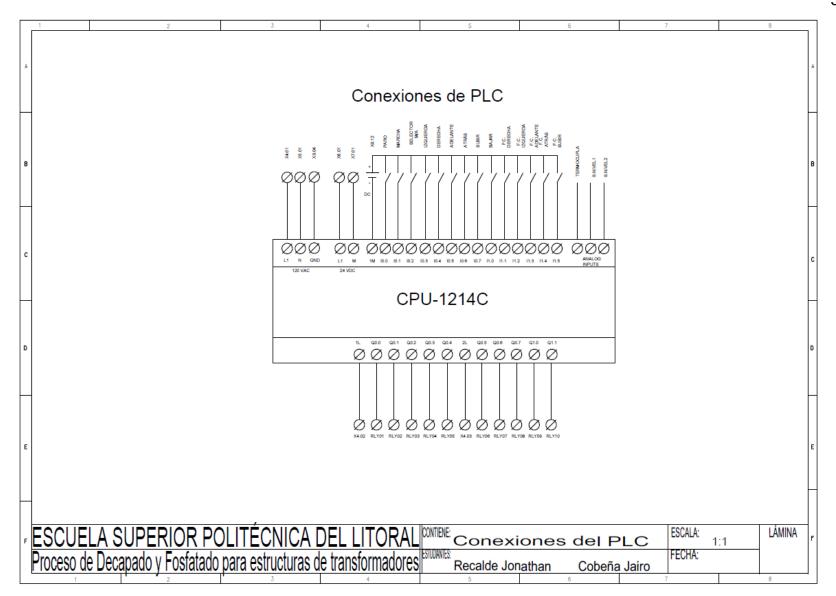
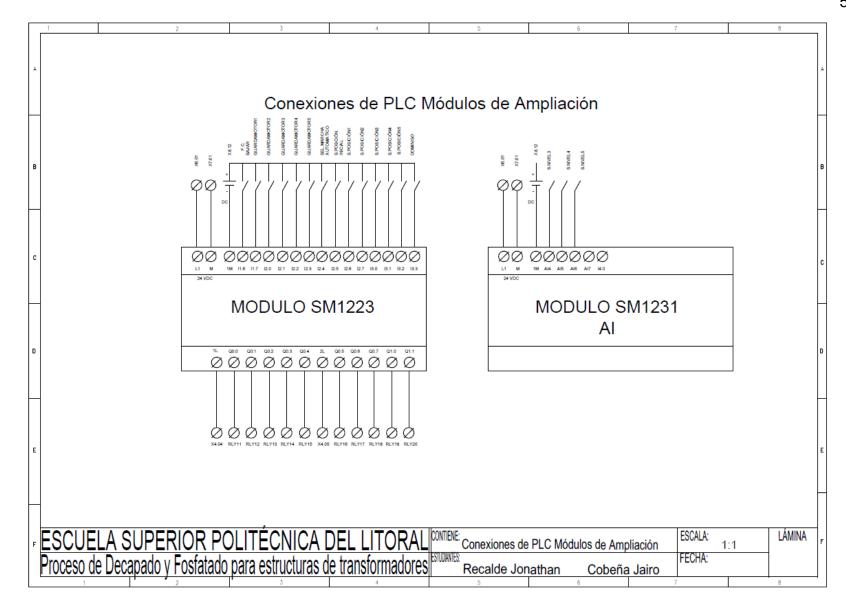
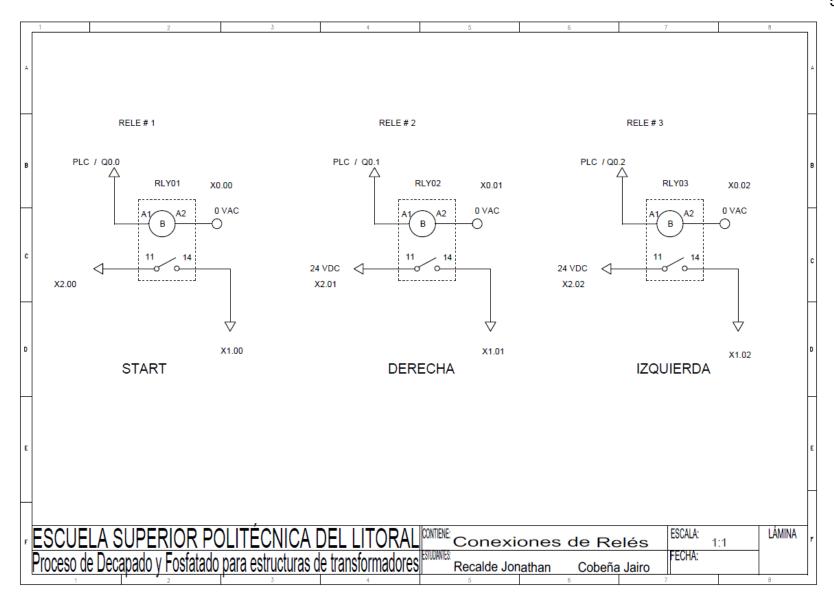
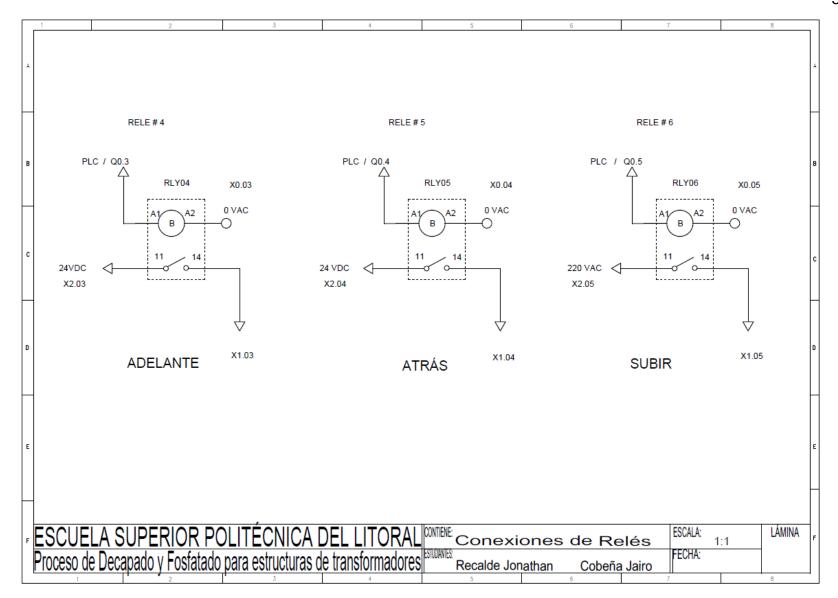


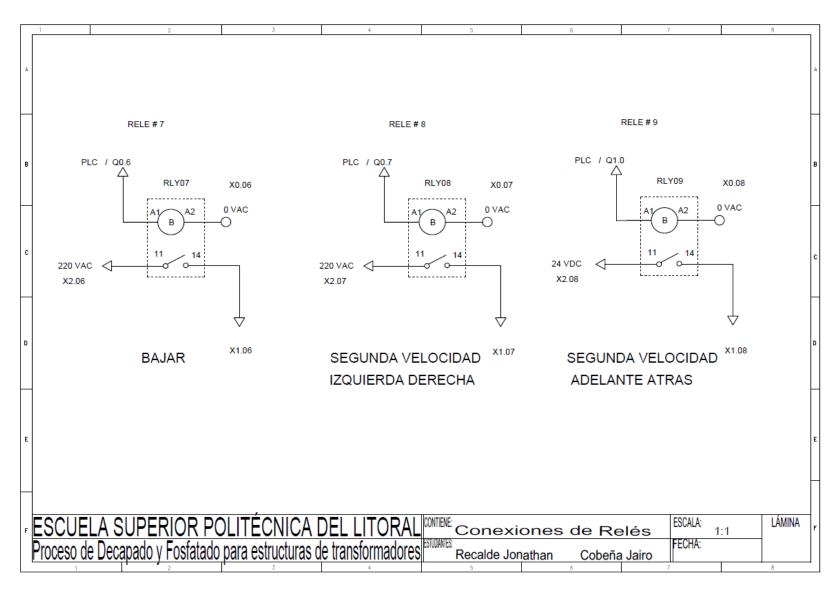
Diagrama de Fuerza Polipasto

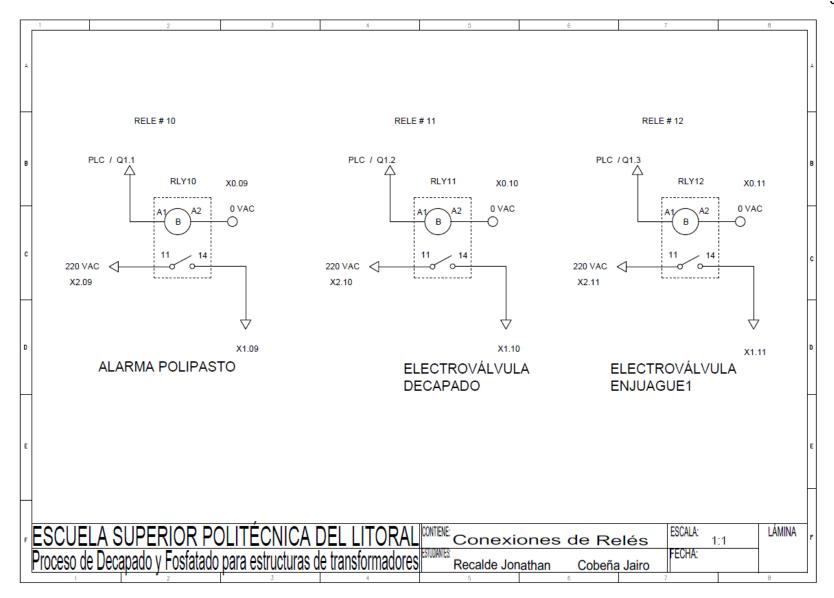




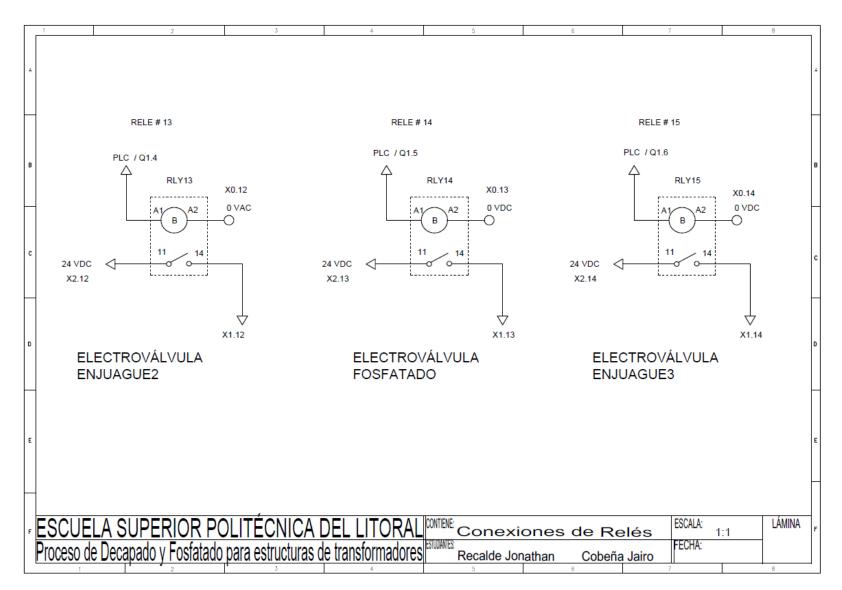

Diagrama de Fuerza Resistencias de Calentamiento

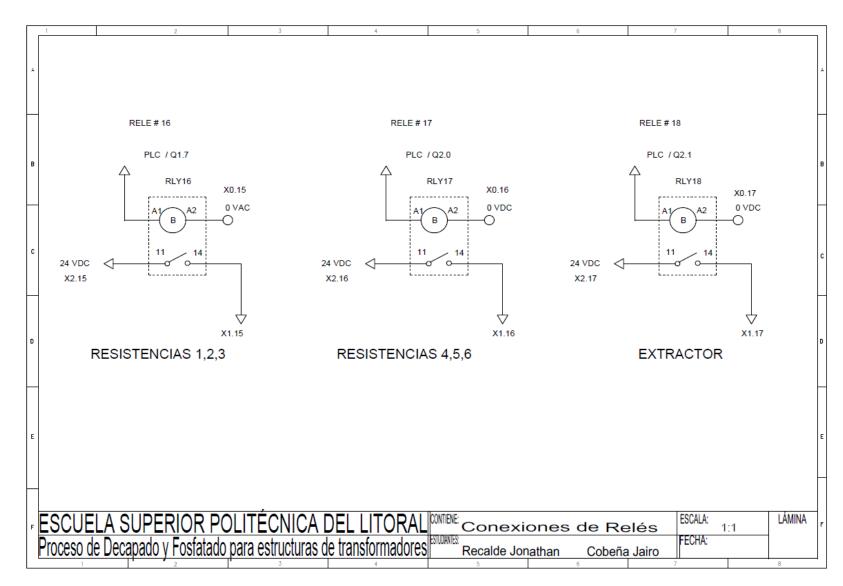

Conexiones de fuente DC de 24V

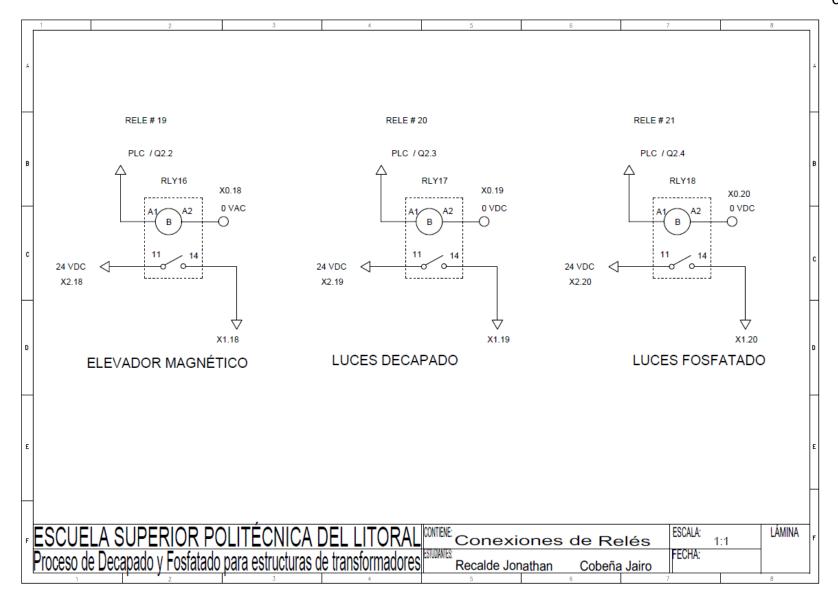

Conexiones del PLC

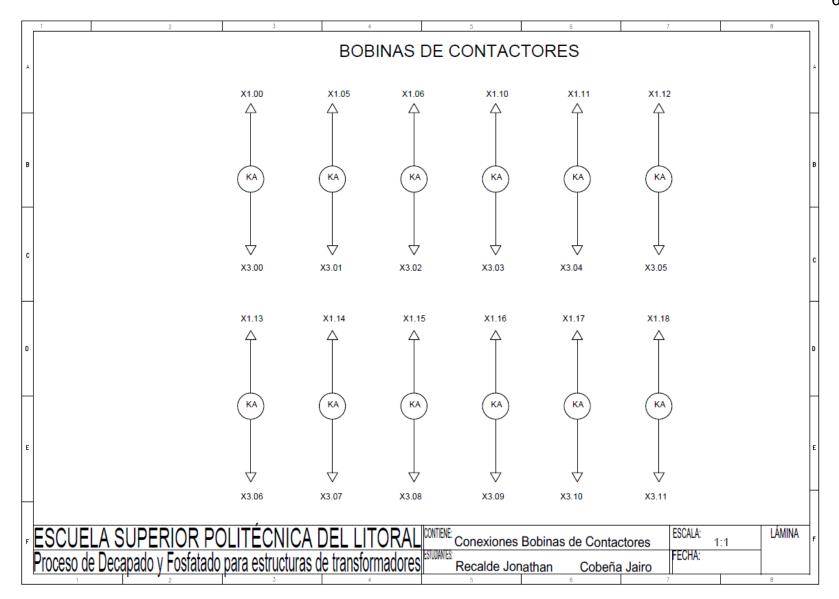

Conexiones del PLC Módulos de Ampliación


Conexiones de Relés 1 al 3


Conexiones de Relés 4 al 6


Conexiones de relés 7 al 9


Conexiones de Relés 10 al 12

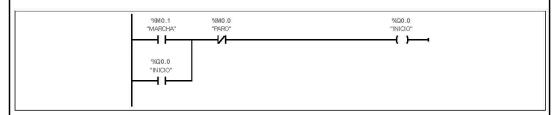

Conexiones de Relés 13 al 15

Conexiones de Relés 16 al 18

Conexiones de Relés 19 al 21

Conexiones de Bobinas de Contactores

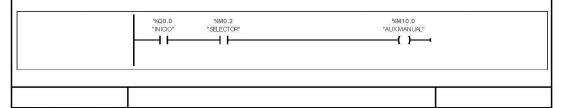
Anexo 2: Programación del PLC


Totally Integrated
Automation Portal

Main [OB1]

Main Propert	ies				
General					
Name	Main	Number	1	Type OB	
Language	LAD				
Information					
Title	"Main Program Sweep (Cycle)"	Author		Comment	
Family		Version	0.1	User-defined ID	

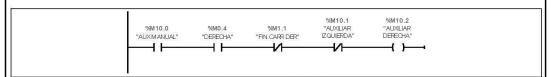
Name	Data type	Offset	Comment
▼ Temp			
OB1_EV_CLASS	Byte	0.0	Bits 0-3 = 1 (Coming event), Bits 4-7 = 1 (Event class 1)
OB1_SCAN_1	Byte	1.0	1 (Cold restart scan 1 of OB1), 3 (Scan 2-n of OB1)
OB1_PRIORITY	Byte	2.0	Priority of OB Execution
OB1_OB_NUMBR	Byte	3.0	1 (Organization block 1, OB1)
OB1_RESERVED_1	Byte	4.0	Reserved for system
OB1_RESERVED_2	Byte	5.0	Reserved for system
OB1_PREV_CYCLE	Int	6.0	Cycle time of previous OB1 scan (milliseconds)
OB1_MIN_CYCLE	Int	8.0	Minimum cycle time of OB1 (milliseconds)
OB1_MAX_CYCLE	Int	10.0	Maximum cycle time of OB1 (milliseconds)
OB1_DATE_TIME	Date_And_Time	12.0	Date and time OB1 started


Network 1:

Symbol	Address	Туре	Comment	
"MARCHA"	%M0.1	Bool		
"PARO"	%M0.0	Bool		
"INIGO"	%Q0.0	Bool		

Network 2:

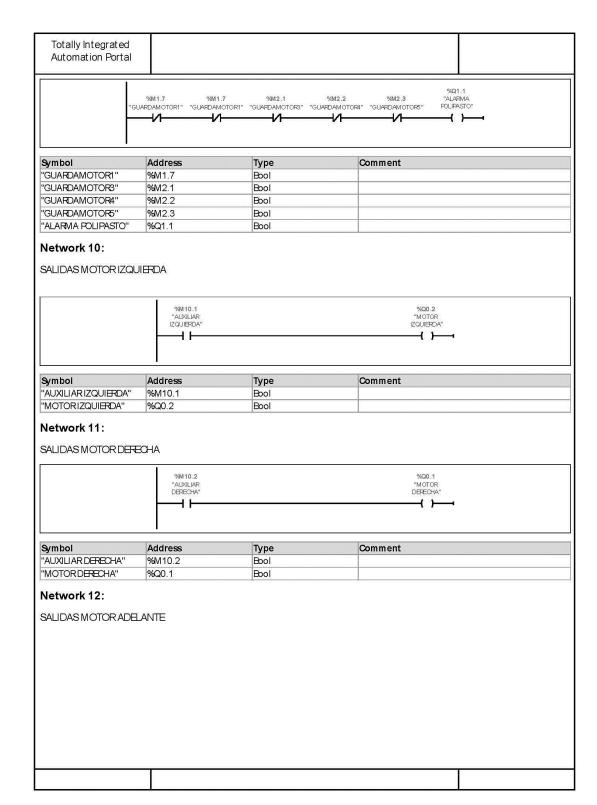
Modo Manual Polipasto

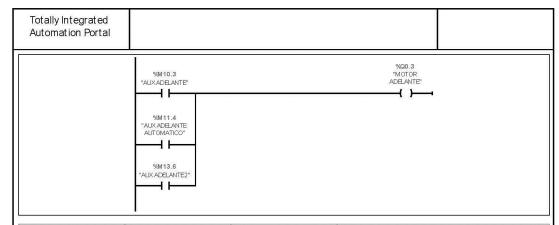

Totally Integrated Automation Porta				
Symbol	Address	Туре	Comment	
"INIGO"	%Q0.0	Bool		
"SELECTOR"	%M0.2	Bool		
"AUX MANUAL"	%M10.0	Bool		

Network 3:

Symbol	Address	Type	Comment	
"AUX MANUAL"	%M10.0	Bool		
"IZQUIERDA"	%M0.3	Bool		
"FIN CARRIZQ"	%M1.2	Bool		
"AUXILIAR IZQUIERDA"	%M10.1	Bool		
"AUXILIAR DERECHA"	%M10.2	Bool		

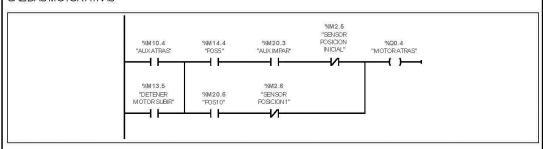
Network 4:




Symbol	Address	Туре	Comment	
"AUX MANUAL"	%M10.0	Bool		
"AUXILIAR IZQUIERDA"	%M10.1	Bool		
"DERECHA"	%M0.4	Bool		
"FIN CARR DER"	%M1.1	Bool		
"AUXILIAR DERECHA"	%M10.2	Bool		

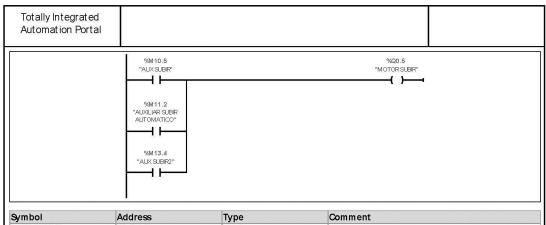
Network 5:

Symbol	Address	Туре	Comment	
"AUX MANUAL"	%M10.0	Bool		
"ADELANTE"	%M0.5	Bool		
"FIN CARR ADELANTE"	%M1.3	Bool		
"AUX ADELANTE"	%M10.3	Bool		
"AUX ATRAS"	%M10.4	Bool		
7.07.7.1111.0	701110.1	15001		



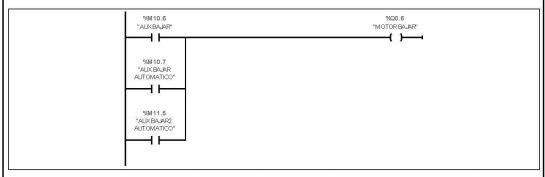
Symbol	Address	Туре	Comment
"AUX ADELANTE"	%M10.3	Bool	
"MOTORADELANTE"	%Q0.3	Bool	
"AUX ADELANTE AUTO MATICO"	%W11.4	Bool	
"AUX ADELANTE2"	%M13.6	Bool	

Network 13:

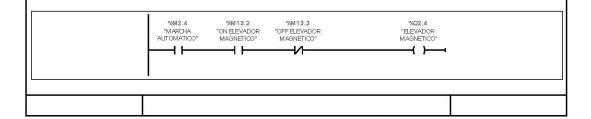

SALIDAS MOTOR ATRAS

Symbol	Address	Type	Comment	
"AUX ATRAS"	%M10.4	Bool		
"MOTOR ATRAS"	%Q0.4	Bool		
"SENSOR POSICION INIO CIAL"	%M2.5	Bool		
"POS5"	%M14.4	Bool		
"SENSOR POSICION1"	%M2.6	Bool		
"DETENERMOTOR SUBIR"	%M13.5	Bool		
"AUX IMPAR"	%M20.3	Bool		
"POS10"	%M20.6	Bool		

Network 14:

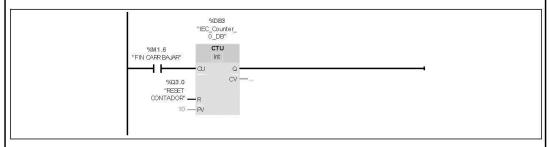

SALIDAS MOTOR SUBIR

Symbol	Address	Туре	Comment	
"AUX SUBIR"	%M10.5	Bool		
"MOTORSUBIR"	%Q0.5	Bool		
"AUXILIAR SUBIRAUTO MATICO"	%M11.2	Bool		
"AUX SUBIR2"	%M13.4	Bool		

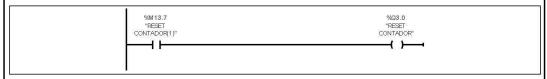

Network 15:

SALIDAS MOTOR BAJAR

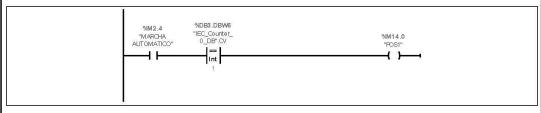
Symbol	Address	Type	Comment	
"AUX BAJAR"	%M10.6	Bool		
"MOTORBAJAR"	%Q0.6	Bool		
"AUX BAJAR AUTOMATI () CO"	%M10.7	Bool		
"AUX BAJAR2 AUTOMATIC CO"	%M11.5	Bool		


Network 16:

Totally Integrated Automation Portal		
---	--	--

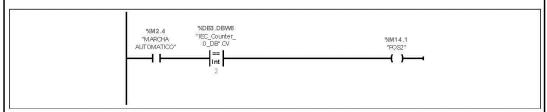

Symbol	Address	Type	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"ON ELEVADOR MAGNETID CO"	%M13.2	Bool	
"OFF ELEVADOR MAGD NETICO"	%M13.3	Bool	
"ELEVADOR MAGNETICO"	%Q2.4	Bool	

Network 17:


Symbol	Address	Туре	Comment	
"FIN CARR BAJAR"	%M1.6	Bool		
"IEC_Counter_0_DB"	%DB3	Block_SFB		
"RESET CONTADOR"	%Q3.0	Bool		

Network 18:

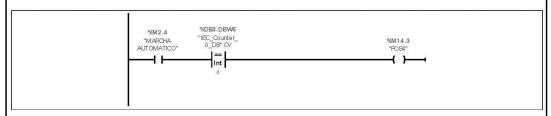
Symbol	Address	Туре	Comment
"RESET CONTADOR(1)"	%M13.7	Bool	
"RESET CONTADOR"	%Q3.0	Bool	


Network 19:

Symbol	Address	Туре	Comment	
"MARCHA AUTOMATICO"	%M2.4	Bool		
	T-			

Symbol	Address	Туре	Comment
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS1"	%M14.0	Bool	

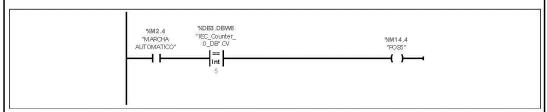
Network 20:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"PO\$2"	%M14.1	Bool	

Network 21:

Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS3"	%M14.2	Bool	

Network 22:

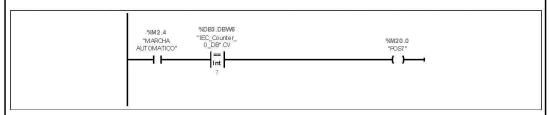


Symbol	Address	Туре	Comment	
"MARCHA AUTOMATICO"	%M2.4	Bool		

|--|

Symbol	Address	Туре	Comment
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"PO\$4"	%M14.3	Bool	

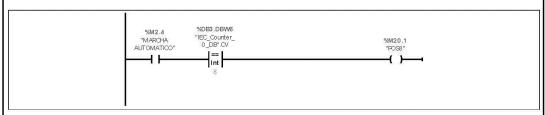
Network 23:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS5"	%M14.4	Bool	

Network 24:

Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS6"	%M14.5	Bool	

Network 25:

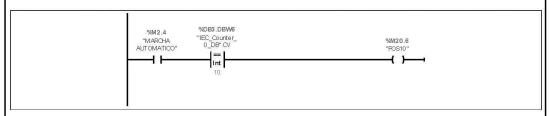


Address	Type	Comment	
%M2.4	Bool		

Totally Integrated Automation Portal			
0	A 11-1	 0	

Symbol	Address	Туре	Comment
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS7"	%M20.0	Bool	

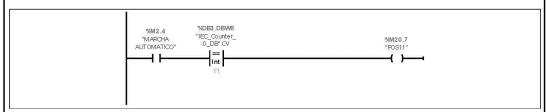
Network 26:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS8"	%M20.1	Bool	

Network 27:

Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"PO99"	%M20.2	Bool	

Network 28:



Symbol	Address	Туре	Comment	
"MARCHA AUTOMATICO" %M2.4		Bool		
	1			

|--|

Symbol	Address	Туре	Comment
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS10"	%M20.6	Bool	

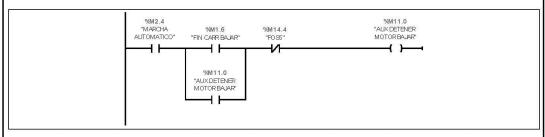
Network 29:

Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS11"	%M20.7	Bool	

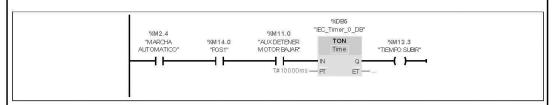
Network 30:

Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"IEC_Counter_0_DB"	%DB3	Block_SFB	
"IEC_Counter_0_DB".CV	%DB3.DBW6	Int	
"POS12"	%M21.0	Bool	

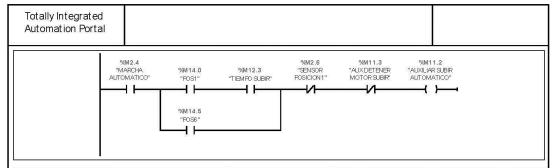
Network 31:


Modo AUTOMATICO

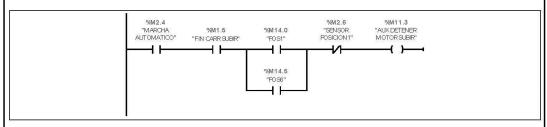
Symbol	Address	Type	Comment	
"INIGO"	%Q0.0	Bool		


Totally Integrated Automation Portal			
Symbol	Address	Туре	Comment
"SELECTOR"	%M0.2	Bool	
"SENSOR FOSICION INI	%M2.5	Bool	
"AUX BAJAR AUTOMATI 🗆 CO"	%M10.7	Bool	
"MARCHA AUTOMATICO"	%M2.4	Bool	
"AUX DETENER MOTOR BAJAR"	%M11.0	Bool	
'TIEMPO SUBIR'	%M12.3	Bool	

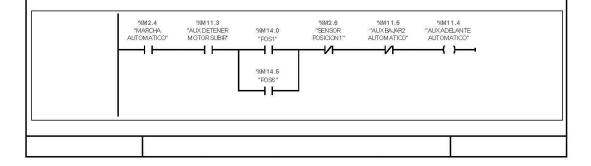
Network 32:


Symbol	Address	Туре	Comment	
"FIN CARR BAJAR"	%M1.6	Bool		
"MARCHA AUTOMATICO"	%M2.4	Bool		
"POS5"	%M14.4	Bool		
"AUX DETENER MOTOR BAJAR"	%M11.0	Bool		

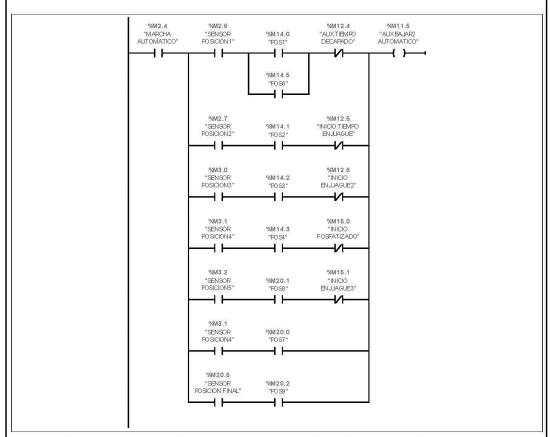
Network 33:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"POS1"	%M14.0	Bool	
"AUX DETENER MOTOR BAJAR"	%M11.0	Bool	
"IEC_Timer_0_DB"	%DB5	Block_SFB	
"TIEMPO SUBIR"	%M12.3	Bool	

Network 34:

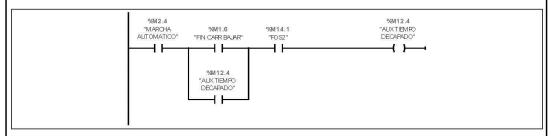

Symbol	Address	Туре	Comment	
"AUXILIAR SUBIRAUTO MATICO"	%M11.2	Bool		
"MARCHA AUTOMATICO"	%M2.4	Bool		
"POS1"	%M14.0	Bool		
"POS6"	%M14.5	Bool		
"TIEMPO SUBIR"	%M12.3	Bool		
"SENSOR FOSICION1"	%M2.6	Bool		
"AUX DETENER MOTOR SUBIR"	%M11.3	Bool		

Network 35:

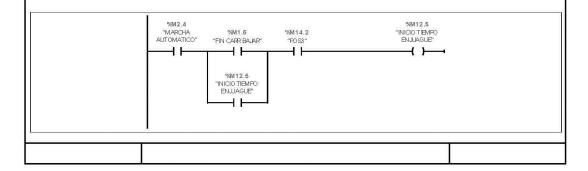

Symbol	Address	Туре	Comment
"FIN CARR SUBIR"	%M1.5	Bool	
"MARCHA AUTOMATICO"	%M2.4	Bool	
"FOS1"	%M14.0	Bool	
"POS6"	%M14.5	Bool	
"SENSOR FOSICION1"	%M2.6	Bool	
"AUX DETENER MOTOR SUBIR"	%M11.3	Bool	

Network 36:

Totally Integrated Automation Portal			
Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"AUX ADELANTE AUTO MATICO"	%M11.4	Bool	
"AUX BAJAR2 AUTOMATII CO"	%M11.5	Bool	
"POS1"	%M14.0	Bool	
"POS6"	%M14.5	Bool	
"SENSOR FOSICION1"	%M2.6	Bool	
"AUX DETENER MOTOR	%M11.3	Bool	

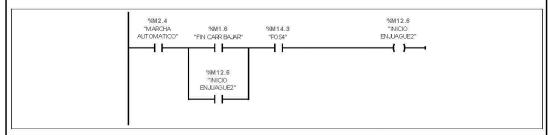

Network 37:

"MARCHA AUTOMATICO" %M2.4	Bool	
	10001	
"AUX BAJAR2 AUTOMATIC %M11.5	Bool	
"POS1" %M14.0	Bool	

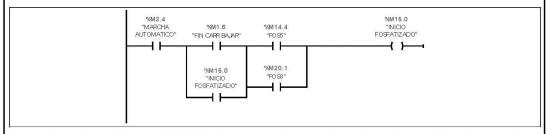

Totally Integrated Automation Portal			
Symbol	Address	Туре	Comment
"POS2"	%M14.1	Bool	
"POS3"	%M14.2	Bool	
"POS4"	%M14.3	Bool	
"P096"	%M14.5	Bool	
"SENSOR FOSICION1"	%M2.6	Bool	
"AUX TIEMPO DECAPADO"	'%M12.4	Bool	
"INICIO TIEMPO ENJUA:: GUE'	%W12.5	Bool	
"INIGO ENJUAGUE2"	%M12.6	Bool	
"SENSOR FOSICION2"	%M2.7	Bool	
"SENSOR FOSICION3"	%M3.0	Bool	
"INICIO FOSFATIZADO"	%M15.0	Bool	
"INIGO ENJUAGUE3"	%M15.1	Bool	
"SENSOR FOSICION4"	%M3.1	Bool	
"SENSORFOSICION5"	%M3.2	Bool	
"POS7"	%M20.0	Bool	
"POS8"	%M20.1	Bool	
"POS9"	%M20.2	Bool	
"SENSOR FOSICION FILI NAL"	%M20.5	Bool	

Network 38:

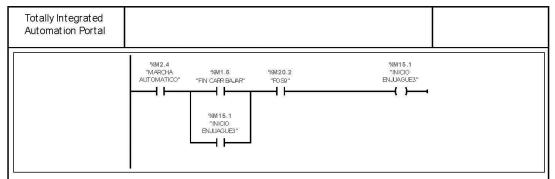
Symbol	Address	Туре	Comment
"FIN CARR BAJAR"	%M1.6	Bool	
"MARCHA AUTOMATICO"	%M2.4	Bool	
"POS2"	%M14.1	Bool	
"AUX TIEMPO DECAPADO"	'%M12.4	Bool	


Network 39:

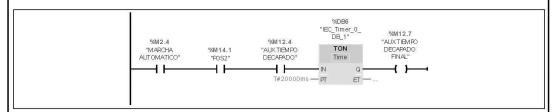
|--|


Symbol	Address	Туре	Comment	
"FIN CARR BAJAR"	%M1.6	Bool		
"MARCHA AUTOMATICO"	%M2.4	Bool		
"POS3"	%M14.2	Bool		
"INICO TIEMPO ENJUAD GUE"	%M12.5	Bool		

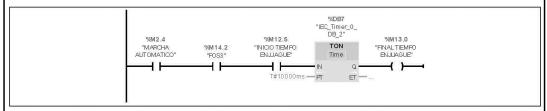
Network 40:


Symbol	Address	Туре	Comment
"FIN CARR BAJAR"	%M1.6	Bool	
"MARCHA AUTOMATICO"	%M2.4	Bool	
"POS4"	%M14.3	Bool	
"INICIO ENJUAGUE2"	%M12.6	Bool	

Network 41:


Symbol	Address	Туре	Comment	
"FIN CARR BAJAR"	%M1.6	Bool		33 11 11 11 11 11 11 11 11 11
"MARCHA AUTOMATICO"	%M2.4	Bool		
"POS5"	%M14.4	Bool		
"INICIO FOSFATIZADO"	%M15.0	Bool		
"POS3"	%M20.1	Bool		

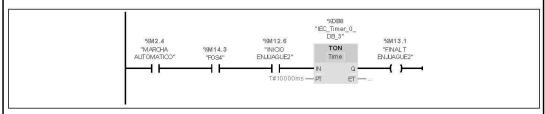
Network 42:


Symbol	Address	Туре	Comment
"FIN CARR BAJAR"	%M1.6	Bool	
"MARCHA AUTOMATICO"	%M2.4	Bool	
"INIGO ENJUAGUE3"	%M15.1	Bool	
"POS9"	%M20.2	Bool	

Network 43:

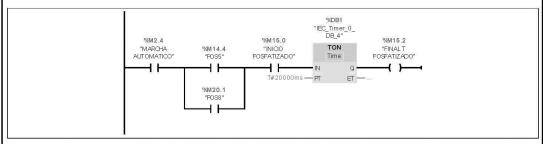
Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"POS2"	%M14.1	Bool	
"AUX TIEMPO DECAPADO"	'%M12.4	Bool	
"IEC_Timer_0_DB_1"	%DB6	Block_SFB	
"AUX TIEMPO DECAPADO	%M12.7	Bool	
FINAL"			

Network 44:

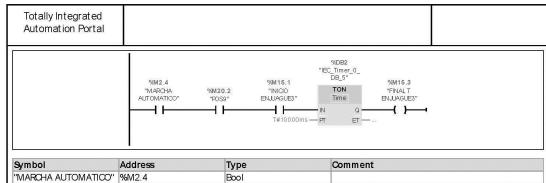


Symbol	Address	Туре	Comment	
"MARCHA AUTOMATICO"	%M2.4	Bool		
"FOS3"	%M14.2	Bool		
"INICO TIEMPO ENJUA GUE"	%M12.5	Bool		
"IEC_Timer_0_DB_2"	%DB7	Block_SFB		

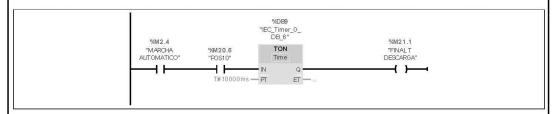
|--|


Symbol	Address	Туре	Comment	
"FINAL TIEMPO ENJUA GUE"	%M13.0	Bool		

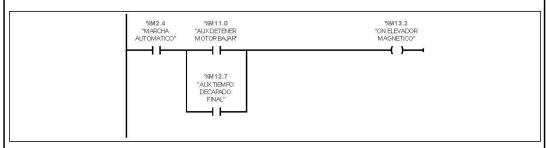
Network 45:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"PO\$4"	%M14.3	Bool	
"INICIO ENJUAGUE2"	%M12.6	Bool	
"IEC_Timer_0_DB_3"	%DB8	Block_SFB	
"FINAL T ENJUAGUE2"	%M13.1	Bool	

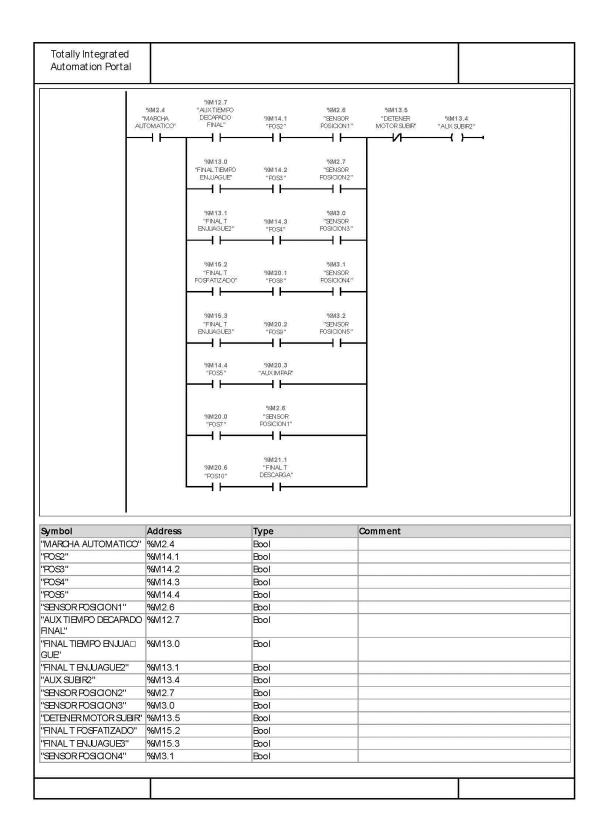
Network 46:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"FOS5"	%M14.4	Bool	
"INICIO FOSFATIZADO"	%M15.0	Bool	
"IEC_Timer_0_DB_4"	%DB1	Block_SFB	
"FINAL T FOSFATIZADO"	%M15.2	Bool	
"POS3"	%M20.1	Bool	

Network 47:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"INICIO ENJUAGUE3"	%M15.1	Bool	
"IEC_Timer_0_DB_5"	%DB2	Block_SFB	
"FINAL T ENJUAGUE3"	%M15.3	Bool	
"POS9"	%M20.2	Bool	

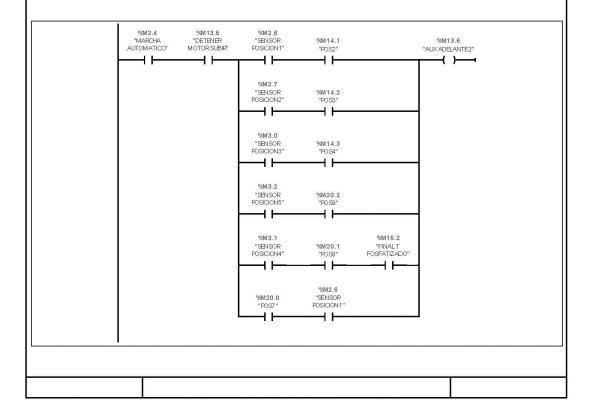
Network 48:


Symbol	Address	Туре	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"POS10"	%M20.6	Bool	
"IEC_Timer_0_DB_6"	%DB9	Block_SFB	
"FINAL T DESCARGA"	%M21.1	Bool	

Network 49:

Symbol	Address	Туре	Comment	
"MARCHA AUTOMATICO"	%M2.4	Bool		
"AUX DETENER MOTOR BAJAR"	%M11.0	Bool		
"AUX TIEMPO DECAPADO FINAL"	%M12.7	Bool		

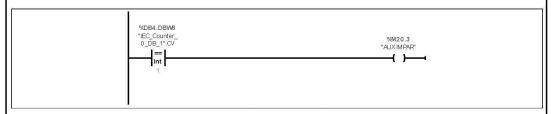
ymbol	Address	Туре	Comment
ON ELEVADOR MAGNET		Bool	
∞"	THE PROPERTY NAME OF THE PARTY		
Network 50:			
vetwork 50:			
	1		
	%W2.4	%M12.1 %M12.4 "AUX TIEM	
	"MARCHA	"AUXTIEMPO DECAPAD	00 %M20.0 "OFF ELEVADOR
	AUTOMATICO"	DECAPADO" FINAL"	"POS7" MAGNETICO"
	1.1	t i vi	V1 1.7
0 b = 1	Baldus as		Comment
Symbol "MARCHA AUTOMATICO"	Address	Type Bool	Comment
"AUX TIEMPO DECAPADO		Bool	
"AUX TIEMPO DECAPADO		Bool	
FINAL"			
"OFF ELEVADOR MAG□	%M13.3	Bool	
NETICO"	0/1100 0		
"POS7"	%M20.0	Bool	


Totally Integrated Automation Portal				
Symbol	Address	Туре	Comment	
"SENSOR POSICION5"	%M3.2	Bool		
"POS7"	%M20.0	Bool		
"POS8"	%M20.1	Bool		
"PO99"	%M20.2	Bool		
"AUX IMPAR"	%M20.3	Bool		
"POS10"	%M20.6	Bool		
"FINAL T DESCARGA"	%M21.1	Bool		

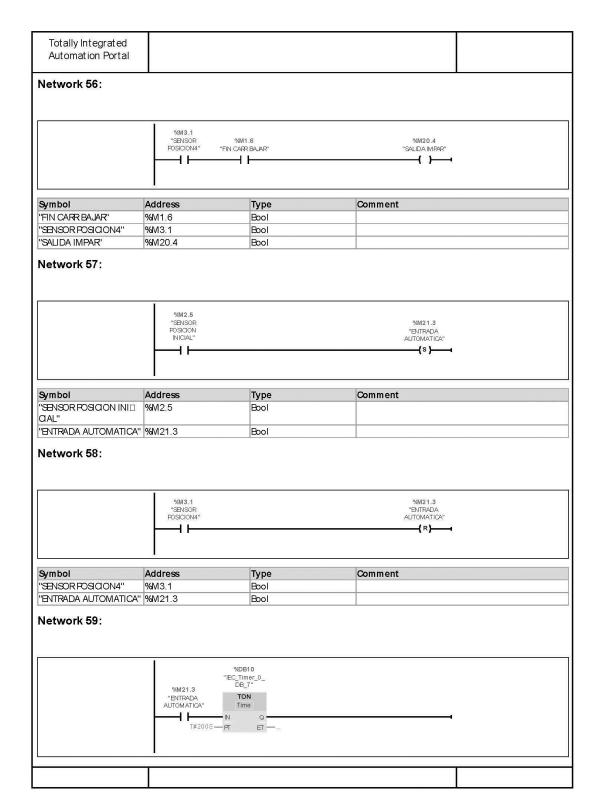
Network 52:


Symbol	Address	Туре	Comment
"FIN CARR SUBIR"	%M1.5	Bool	
"MARCHA AUTOMATICO"	%M2.4	Bool	
"DETENERMOTOR SUBIR"	%M13.5	Bool	

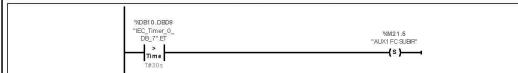
Network 53:

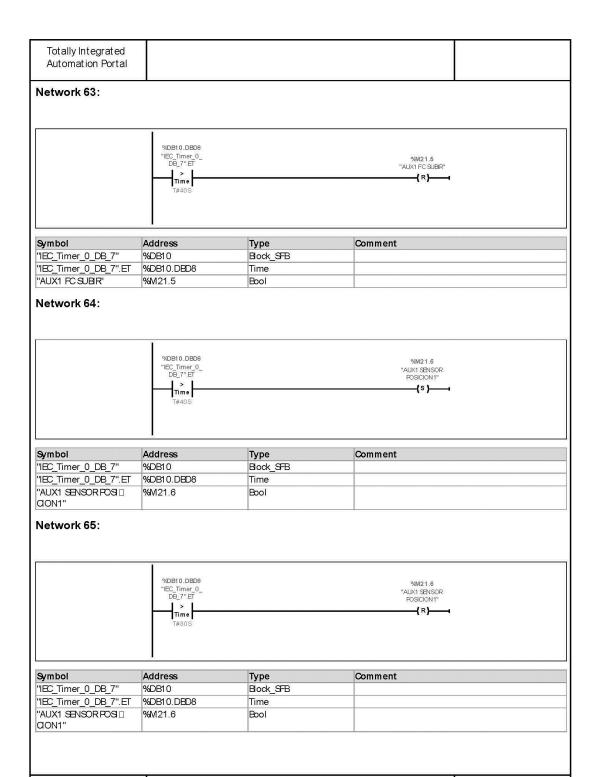

Automation Portal			
Symbol	Address	Type	Comment
"MARCHA AUTOMATICO"	%M2.4	Bool	
"PO\$2"	%M14.1	Bool	
"POS3"	%M14.2	Bool	
"PO\$4"	%M14.3	Bool	
"SENSOR POSICION1"	%M2.6	Bool	
"SENSOR POSICION2"	%M2.7	Bool	
"SENSOR POSICION3"	%M3.0	Bool	
"DETENERMOTOR SUBIR"	%M13.5	Bool	
"AUX ADELANTE2"	%M13.6	Bool	
"FINAL T FOSFATIZADO"	%M15.2	Bool	
"SENSOR POSICION4"	%M3.1	Bool	
"SENSOR POSICION5"	%M3.2	Bool	
"POS7"	%M20.0	Bool	
"P083"	%M20.1	Bool	
"POS9"	%M20.2	Bool	

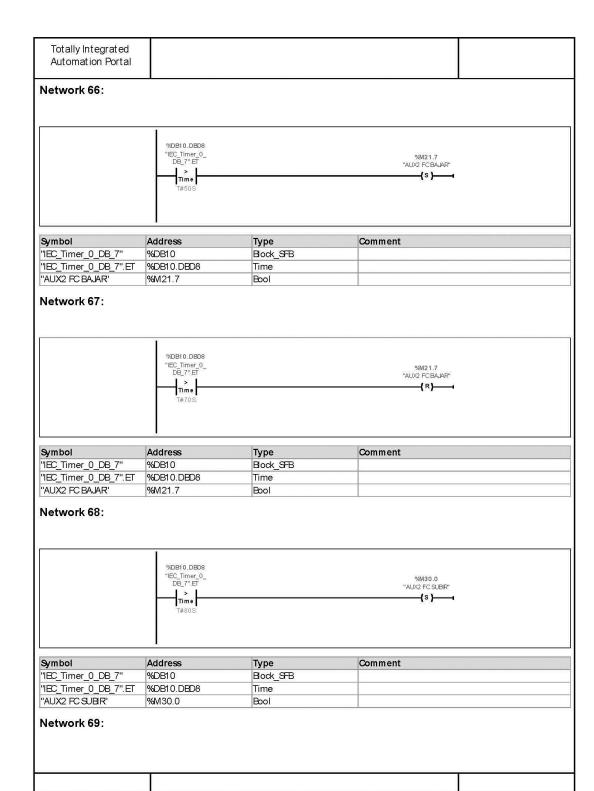
Network 54:

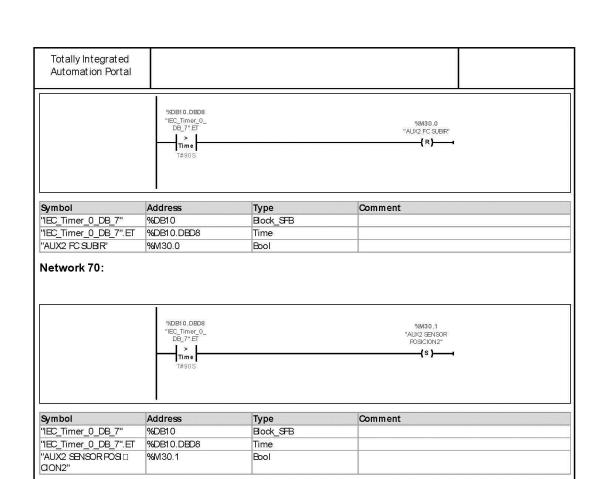


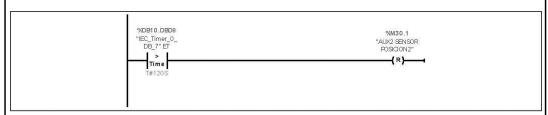
Symbol	Address	Туре	Comment	
"RESET CONTADOR(1)"	%M13.7	Bool		
"IEC_Counter_0_DB_1"	%DB4	Block_SFB		
"SALIDA IMPAR"	%M20.4	Bool		

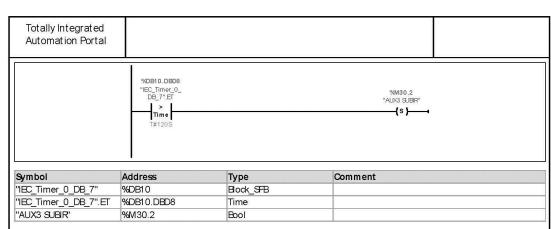

Network 55:


Symbol	Address	Туре	Comment	
"IEC_Counter_0_DB_1"	%DB4	Block_SFB		
"IEC_Coun□ ter_0_DB_1".CV	%DB4.DBW6	Int		
"AUX IMPAR"	%M20.3	Bool		
AUX IIVIPAR	%IVIZU.3	BOOI		
	1		1	

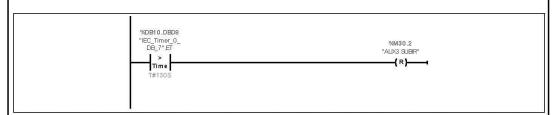



Automation Portal			
Symbol	Address	Туре	Comment
"ENTRADA AUTOMATICA"	' %M21.3	Bool	
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
Network 60:			
	%DB10.DBD8 "EC.Timer_0_ DB.7" ET >		%M21.4 "AUX1 FCBAJAI {s}
Symbol	Address	Туре	Comment
	Address %DB10	Type Block SFB	Comment
Symbol "IEC_Timer_0_DB_7" "IEC_Timer_0_DB_7".ET		Type Block_SFB Time	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	Comment
"IBC_Timer_0_DB_7" "IBC_Timer_0_DB_7".ET "AUX1 FC BAJAR" Network 61:	%DB1 0. DBD8 %M21.4 %DB1 0. DBD8 "EC_Timer_0_ DB_7" ET T#20S	Block_SFB Time Bool	9/M21.4 "AUX1 FCBA/AI {R}
"IEC_Timer_0_DB_7" "IEC_Timer_0_DB_7".ET "AUX1 FC BAJAR" Network 61:	%DB1 0. DBD8 %M21.4 %DB1 0. DBD8 "EC_Timer_0_DB_7" ET	Block_SFB Time Bool	9/M21.4 "ALX1FCBA_VA
"IBC_Timer_0_DB_7" "IBC_Timer_0_DB_7".ET "AUX1 FC BAJAR" Network 61:	%DB1 0. DBD8 %M21.4 %DB1 0. DBD8 "EC_Timer_0_ DB_7" ET T#20S	Block_SFB Time Bool	9/M21.4 "AUX1 FCBA/AI {R}


Symbol	Address	Туре	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB10.DBD8	Time	
"AUX1 FC SUBIR"	%M21.5	Bool	

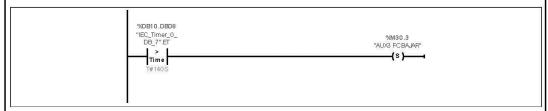


Network 71:

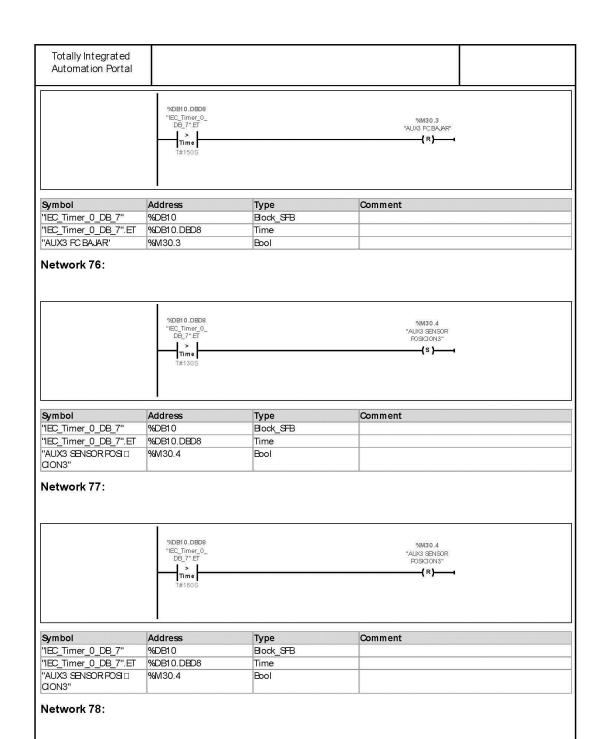


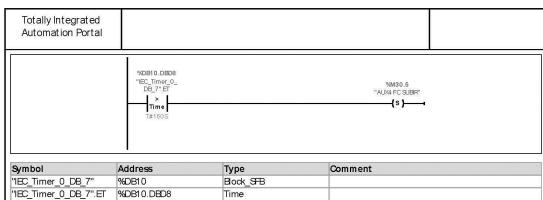
Symbol	Address	Туре	Comment	
"IEC_Timer_0_DB_7"	%DB10	Block_SFB		
"IEC_Timer_0_DB_7".ET	%DB1 0. DBD8	Time		
"AUX2 SENSOR POSI□	%M30.1	Bool		
aon2"				

Network 72:

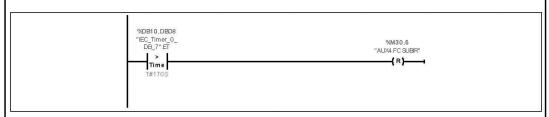


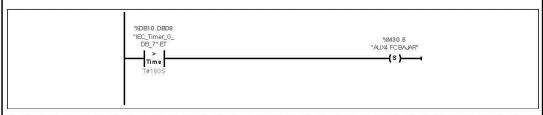
Network 73:


Symbol	Address	Туре	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB10.DBD8	Time	
"AUX3 SUBIR"	%M30.2	Bool	

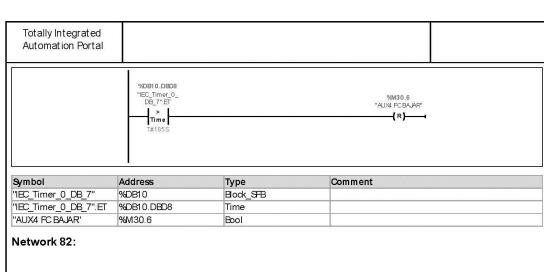

Network 74:

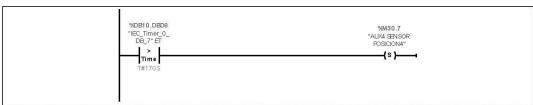
Symbol	Address	Туре	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB10.DBD8	Time	
"AUX3 FC BAJAR"	%M30.3	Bool	


Network 75:

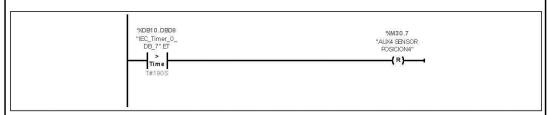

Syllibol	Auuress	туре	Chillient
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB10.DBD8	Time	
"AUX4 FC SUBIR"	%M30.5	Bool	

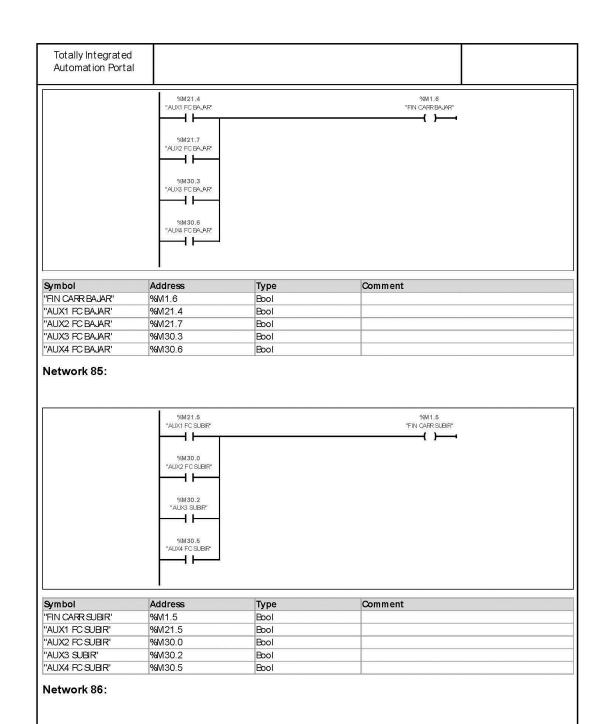
Network 79:

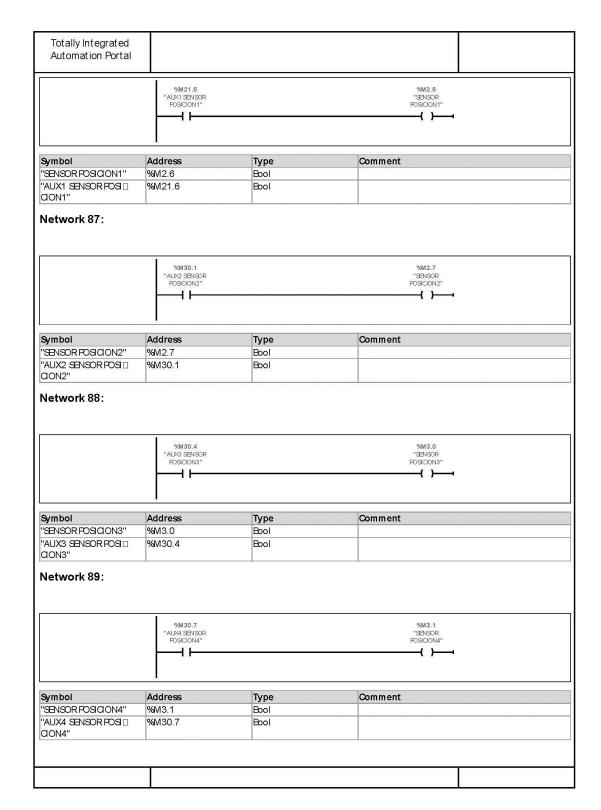

Symbol	Address	Туре	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB10.DBD8	Time	
"AUX4 FC SUBIR"	%M30.5	Bool	


Network 80:

Symbol	Address	Туре	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB1 0.DBD8	Time	
"AUX4 FC BAJAR"	%M30.6	Bool	

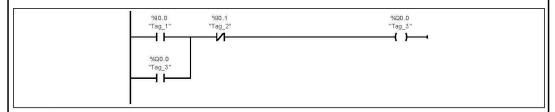

Network 81:


Symbol	Address	Туре	Comment
"IEC_Timer_0_DB_7"	%DB10	Block_SFB	
"IEC_Timer_0_DB_7".ET	%DB10.DBD8	Time	
"AUX4 SENSOR POSI□	%M30.7	Bool	
aon4"			


Network 83:

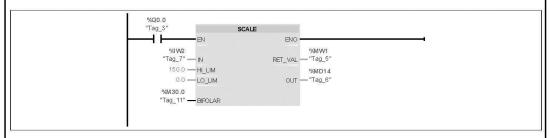
Symbol	Address	Туре	Comment	
"IEC_Timer_0_DB_7"	%DB10	Block_SFB		
"IEC_Timer_0_DB_7".ET	%DB1 0.DBD8	Time		
"AUX4 SENSOR POSI□	%M30.7	Bool		
aon4"				

Network 84:



Main [OB1]

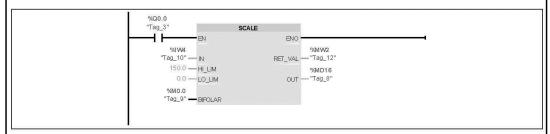
Main Propert	ies				
General					
Name	Main	Number	1	Туре	OB ProgramCycle
Language	LAD				
Information					
Title	"Main Program Sweep (Cycle)"	Author		Comment	SUBRUTINA DE PROGRAD MACION PARA EL COND TROL DE NIVEL
Family		Version	0.1	User-defined ID	


Name	Data type	Offset	Comment	
▼ Input				
Initial_Call	Bool		Initial call of this OB	
Remanence	Bool		=True, if remanent data are available	
Temp				

Network 1:

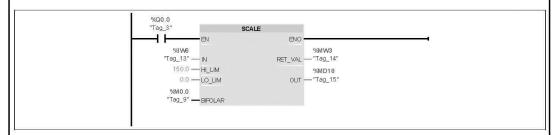
Symbol	Address	Туре	Comment	
"Tag_1"	%10.0	Bool		
"Tag_2"	%10.1	Bool		
"Tag_3"	%Q0.0	Bool		

Network 2:

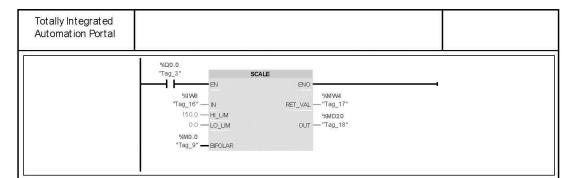


Symbol	Address	Туре	Comment	
"Tag_3"	%Q0.0	Bool		
"Tag_5"	%MV/1	Word		

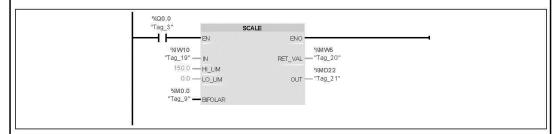
Totally Integrated Automation Portal	
Automation Fortal	


Symbol	Address	Туре	Comment	
"Tag_6"	%MD14	Real		
"Tag_7"	%IVV2	Int		
"Tag_11"	%M30.0	Bool		

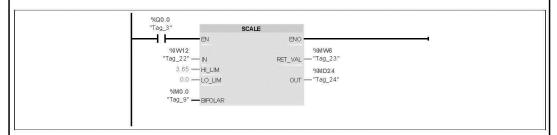
Network 3:


Symbol	Address	Туре	Comment	
"Tag_3"	%Q0.0	Bool		
'Tag_8''	%MD16	Real		
"Tag_9"	%M0.0	Bool		
"Tag_10"	%IVV4	Int		
"Tag_12"	%MVV2	Word		

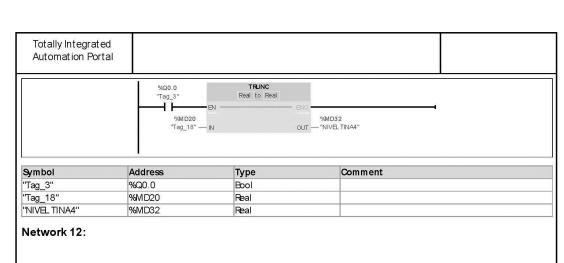
Network 4:

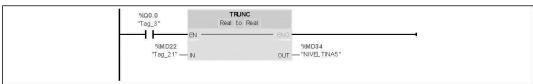

Symbol	Address	Туре	Comment	
'Tag_3"	%Q0.0	Bool		
'Tag_9''	%M0.0	Bool		
'Tag_13"	%IVV6	Int		
'Tag_14"	%MVV3	Word		
'Tag_15"	%MD18	Real		

Network 5:

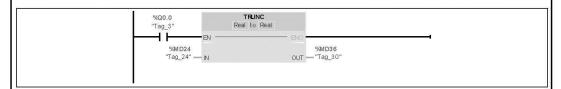

Symbol	Address	Туре	Comment	
"Tag_3"	%Q0.0	Bool		
"Tag_9"	%M0.0	Bool		
"Tag_16"	%IV/8	Int		
"Tag_17"	%MVV4	Word		
"Tag_18"	%MD20	Real		

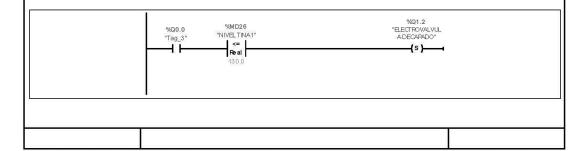
Network 6:


Symbol	Address	Type	Comment	
"Tag_3"	%Q0.0	Bool		
"Tag_9"	%M0.0	Bool		
"Tag_19"	%IVV10	Int		
"Tag_20"	%MVv5	Word		
"Tag_21"	%MD22	Real		


Network 7:

Symbol	Address	Туре	Comment
"Tag_3"	%Q0.0	Bool	
"Tag_9"	%M0.0	Bool	
Alfred Department of the Property of the Prope			


Symbol	Address	Туре	Comment
"Tag_22"	%W12	Int	
"Tag_23"	%MVV6	Word	
"Tag_24"	%MD24	Real	
Network 8:			
	%Q0.0 "Tag_3" — I - %MD14 "Tag_6" =		%MD26 0UT — "NIVELTINA1"
Symbol	Address	Туре	Comment
"Tag_3"	%Q0.0	Bool	- Janinent
'Tag_6''	%MD14	Real	
'NIVEL TINA1"	%MD26	Real	
Network 9:	%Q0.0 "Tag_3" — %MD16 "Tag.9"		9/MD28
Network 9:	"Tag_3"	Real to Real	
	"Tag_3"	Real to Real	%MD28
Symbol	"Tag_3" 	Real to Real	%MD28 DUT — "NIVELTINA2"
Symbol "Tag_3"	"Tag_3"	Real to Real IN Type	%MD28 DUT — "NIVELTINA2"
Symbol "Tag_3" "Tag_8" "NIVELTINA2"	"Tag_3"	Real to Real IN Type Bool	%MD28 DUT — "NIVELTINA2"
Symbol "Tag_3" "Tag_8" "NIVEL TINA2" Network 10:	"Tag_3" %MD16 %MD16 %MD16 %MD28 %MD28 %MD18 %MD1	Real to Real IN Type Bool Real Real Real TRUNC Real to Real	%MD28 DUT — "NIVELTINA2"
Symbol "Tag_3" "Tag_8" "NIVELTINA2"	"Tag_3"	Real to Real IN Type Bool Real Real Real TRUNC Real to Real	9MD28 PUT — "NIVELTINA2" Comment
Symbol Tag_3" Tag_8" "NIVEL TINA2" Network 10:	"Tag_3"	Real to Real Type Bool Real Real Real TRUNC Real to Real	%MD30 Comment Comment %MD30 "NIVELTINA3"
Dymbol Tag_3" Tag_8" NIVEL TINA2" Network 10:	### Address #### Address ##################################	Real to Real IN Type Bool Real Real Real TRUNC Real to Real	%MD30 Comment Comment %MD30 "NIVELTINA3"

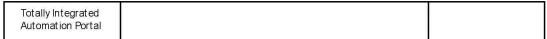

Symbol	Address	Туре	Comment	
"Tag_3"	%Q0.0	Bool		
'Tag_21"	%MD22	Real		
"NIVEL TINA5"	%MD34	Real		

Network 13:

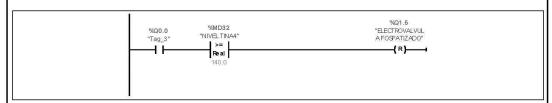
Symbol	Address	Туре	Comment	
'Tag_3"	%Q0.0	Bool		
"Tag_24"	%MD24	Real		
"Tag_30"	%MD36	Real		

Network 14:

Automation Portal			
Symbol	Address	Туре	Comment
"Tag_3"	%Q0.0	Bool	
"NIVELTINA1"	%MD26	Real	
"ELECTROVALVULA DED CAPADO"	%Q1.2	Bool	
		Re al 140.0	
			(×)—
Symbol	Address		Comment
"Tag_3"	Address %Q0.0	Type Bool	
"Tag_3" "NIVEL TINA1"	Address %Q0.0 %MD26	Type Bool Real	
Symbol "Tag_3" "NIVEL TINA1" "E.ECTROVALVULA DED CAPADO" Network 16:	Address %Q0.0	Type Bool	

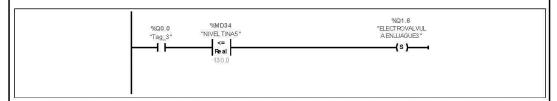

Symbol Address Type Comment "Tag_3" %Q0.0 Bool "NIVELTINA2" %MD28 Real "ELECTROVALVULA BN□ %Q1.3 Bool JJAGUE1" Bool

Network 17:

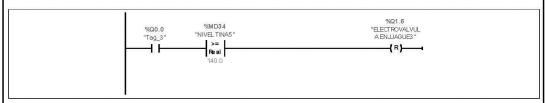


Symbol	Address	Type	Comment
"Tag_3"	%Q0.0	Bool	
"NIVELTINA2"	%MD28	Real	
		· · · · · · · · · · · · · · · · · · ·	

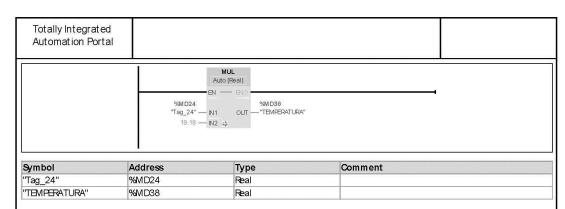
Automation Portal				
Symbol	Address	Туре	Comment	
"ELECTROVALVULA EN 🗆	%Q1.3	Bool		
JUAGUE1"				
Network 18:	%Q0.0 "Tag_3"	%MD30 "NIVELTINA3" <=	%Q1.4 "ELECTROVALVUL A ENJUAGUEZ" {\$}	
Symbol	Address	Туре	Comment	
Tag_3"	%Q0.0	Bool		
"NIVEL TINA3"	%MD30	Real		
"ELECTROVALVULA EN	%Q1.4	Bool		
JUAGUE2"	/031.4	Ш		
	%Q0.0 "Tag_3"	%MD30 "'NIVELTINA3"] >=	%Q1.4 "ELECTROVALVUL A ENJUAGUEZ"	
		"NIVEL TINA3"	"ELECTROVALVUL	
Symbol	"Tag_3"	"NIVEL TINA3" >= Real 140.0	"BLECTROVALVUL ABNJJAGUEZ" 	
Symbol Tag 3"	Address	"NIVEL TINA3" >=	"ELECTROVALVUL A ENJJAGUE2"	
Tag_3"	Address %Q0.0	"NIVEL TINA3" >=	"BLECTROVALVUL ABNJJAGUEZ" 	
	Address	"NIVEL TINA3" >=	"BLECTROVALVUL ABNJJAGUEZ" 	
Tag_3" "NIVELTINA3" "ELECTROVALVULA EN	Address %Q0.0 %MD30	"NIVEL TINA3" >=	"BLECTROVALVUL ABNJJAGUEZ" 	
Tag_3" 'NIVEL TINA3" 'ELECTROVALVULA END JUAGUE2" Network 20:	Address %Q0.0 %MD30 %Q1.4	"NIVELTINA3" >=	"ELECTROVALVUL AENJUAGUE2" (R) Comment "Gan 5 "ELECTROVALVUL AFOSFATIZADO" (S)	
Tag_3" 'NIVEL TINA3" 'ELECTROVALVULA END JUAGUE2" Network 20:	#Tag_3" Address %Q0.0 %MD30 %Q1.4	"NIVELTINA3" >=	"ELECTROVALVUL AEN.JAGUE2" (R) Comment %Q1.5 "BLECTROVALVUL AFOSFATIZADO"	
Tag_3" "NIVEL TINA3" "ELECTROVALVULA BN□ JUAGUE2" Network 20:	Address %Q0.0 %MD30 %Q1.4	"NIVELTINA3" >=	"ELECTROVALVUL AENJUAGUE2" (R) Comment "Gan 5 "ELECTROVALVUL AFOSFATIZADO" (S)	



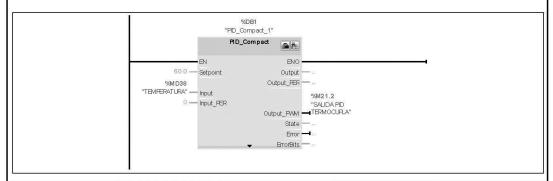
Network 21:


Symbol	Address	Туре	Comment
"Tag_3"	%Q0.0	Bool	
"NIVELTINA4"	%MD32	Real	
"ELECTROVALVULA FOSO	%Q1.5	Bool	
FATIZADO"			

Network 22:


Symbol	Address	Туре	Comment	
"Tag_3"	%Q0.0	Bool		
"NIVEL TINA5"	%MD34	Real		
"ELECTROVALVULA EN□ JUAGUE3"	%Q1.6	Bool		

Network 23:



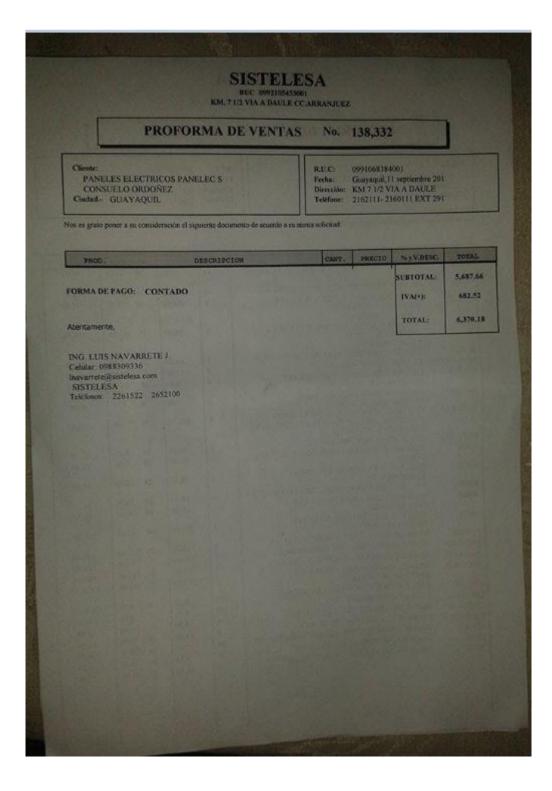
Symbol	Address	Type	Comment	
"Tag_3"	%Q0.0	Bool		
"NIVELTINA5"	%MD34	Real		
"ELECTROVALVULA EN JUAGUE3"	%Q1.6	Bool		

Network 24:

Network 25:

Symbol	Address	Туре	Comment
"TEMPERATURA"	%MD38	Real	
"SALIDA FID TERMOCU□	%M21.2	Bool	
PLA"			
"RD_Compact_1"	%DB1	Block_FB	

Network 26:


Symbol	Address	Туре	Comment	
"SALIDA RD TERMOCUD PLA"	%M21.2	Bool		
"RESISTENCIAS 1-2-3"	%Q2.0	Bool		
"PROGRAMADOR SEMA□ NAL"	%M21.3	Bool		

Network 27:

Totally Integrated Automation Portal				
	9M21.3 9MM "FROGRAMADOR "SALIE SEMANAL" TERMO		%02.1 "RESTENCIAS4- 5-6"	
Symbol	Address	Туре	Comment	
"SALIDA FID TERMOCUII	%M21.2	Bool	Comment	
PLA"				
"RESISTENCIAS 4-5-6"	%Q2.1	Bool		
"PROGRAMADOR SEMA NAL"	% V 21.3	Bool		
Property		1	-	

Anexo 3: Cotizaciones

	PROFORMA DE VENTAS No. 138,332							
Chenter No. 138,332								
PANELES ELECTRICOS PANELEC S CONSUELO ORDONEZ Cindail- GUAYAQUEL			R.U.C: 099106338400) Fecta: Guayaquii,11 septiembre 201 Direction: KM 7 1/2 VIA A DAULE Telefone: 2162111-2169111 EXT 29)					
	mer a su consideración el ospitente decumento de acuerdo a su sem	a solicies						
PROD.								
10788	100016113 RELE ENCH 4 CONM 23GVAC RESET 115938	CAR	PRECI	0 2 1/00	WAR BOOK AND THE			
10936	100016459 PAGE TOOM ZIGVAC RESET		14 7.5					
100024552	100016408 BASE RELAY P778704 4 CONM VARIADOR MM440 HIP 220V 3F 4 7/3 9A 0SE0440-71 C 177-54 A	11 4	14 43	BUNNE	1000			
100	THE RESERVE OF THE PROPERTY OF	11/19	1 480.0	200				
26750	+ Bop STEMENS VARIADOR MM440 3HP 220V 3F II 7/10 4A 6SE6440-2EC 23-5D A1				345.68			
	6SE5440-2UC22-2BA1	1 3	1 718.00	28 201.04	516,96			
K-0217	+ BOP SIEMENS TABLERO MET SBOX PESADO BIST-50X40X20			The same	110,30			
MFO-200/5/	* CONTROL CLARKIENTE SOUCA		69.30	25 17.33	31.98			
100227810	Luz piloto LED 220VAC / VDC verde REF. JSB6216-6AA40-1AA0		18.00	20 10.80	43.20			
100227802	Lus pièce LED 220VAC / VDC rejo	1	9,64	28 16.20	41.65			
100229955	TCL 35H0216-6AA20-1AA0	1	9,64	28 2.70	6.94			
	CPU 1214C AC/DC/RELE ALIMENTACION 110/220VAC INCORPORA 14 DE 24 VDC, 10 DO REF-0ES7214-18G31-OXB	1	695,00	20 139.00	556.00			
PET-010/240	RELOJ MEGA 240V PRO INDIANT	1						
40450	100014653 PULSADOR EMERG METALICO INC 5120589	1	44,46 26.80	20 8,89 28 7,58	35,57			
40410	100014647 PULSADOR METAL 22MM	-4	10.97	NO 1886	19.36			
40420	VERDE5081819 100014652 PULSADOR METAL 22MM RORO5027265		10.92	IN 12.29	31.59			
40460	100014650 SELEC MET 22MM 0-1 INA	4 7	10,97	28 12-29	31_59			
18471	ENCLAV5027267 100017639 FUENTE SITOP SAMP, REF		100000	28 30,56	78.57			
	6EP1333-3BA00 5030854	1	314.00	20 62,80	251.20			
208266	MODULO /SEÑAL 16DI A 24VDC /16 DQ rele	2	514.00	20 205.60	822.40			
00262429	6ES7231-4HD32-0XB0 AAI estrada analogica MODULO DE SEÑAL ANALOGICO 4AO salida	1	707.00	20 79.20	316,80			
00286479	SIMATIC EIMI COMFORT PANELS REF	1	1,315,00	20 141.40 20 263.00	565.60			
BC-410	6AV2123-2GB03-0AX0 CABLE CONCENTRICO 4X10 (EN BOBINA)	100	744	72-11-11	1,052.00			
BC-312	CABLE CONCENTRICO JX12	100	3.20	0 0.00	320.00			
P-72A-X/5	AMPERIMETRO CSC 72X72 S/ESCALERA	1	15,00	19 1.50	171.00			
	CONMUT AMP GRANDE 3TC (R-S-T) 100041517 RELE ENCHUF JCONMUTADO 230VAC	26	14.00	10 1.40	12.60			
	100036305 (97717) BASE RELAY PT78703 - 3 CONM	20	4.58	20 31.72 20 18.32	176.88			
	00050990 BREAKER 2P 2A RIEL 5152067	4	26.86	28 30.00	73.28			

