

641.52. MEDer

ESCUELA SUPERIOR POLITECNICA DEL LITORAL DEPARTAMENTO DE INGENIERIA MECANICA

Estudio Sobre el Efecto de los Puntos de Soldadura en las Propiedades Mecánicas de los Hierros Corrugados de Producción Nacional

TESIS DE GRADO Previo a la Obtención del Título de INGENIERO MECANICO

Presentada por:

JULIO CESAR MEDINA MAZON

Guayaquil - Ecuador 1981

AGRADECIMIENTO

Mi gratitud para la ESCUELA SUPERIOR POLITECNICA DEL LI-TORAL y Profesores del Departamento de Ingeniería Mecánica.

Agradecimiento especial al Director de Tesis, Ing. Antonio Viteri M., por su apoyo, guía y dirección para la culminación de este trabajo, y al personal del Laboratorio de Metalurgia Mecánica que con su ayuda fue posible llevar a cabo la parte experimental.

Dejo constancia además, de profundo agradecimiento a mis hermanos Magdalena y Reinaldo por sus consejos y apoyo en mi vida estudiantil.

DEDICATORIA

A mis Padres Cayetano y Jacinta Fuente inagotable de amor y sacrificio que han sido bases fundamentales para alcanzar esta meta.

A mi Esposa María Que con su amor y apoyo decidido estimuló la culminación de mi profesión.

A mis Hijos Julio y Elizabeth

Que este trabajo sea un ejemplo para el futuro de sus vidas.

A mis Hermanos Magdalena, Mariana, Carmen, Reinaldo, Israel, Jesús y Mariana O.

Con todo cariño

A todos mis familiares con sincero afecto

.... Ing. Antonio Viteri M.,

DIRECTOR DE TESIS

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos profesionales de la ESPOL).

JULIO CESAR MEDINA MAZON

RESUMEN

La industria de la construcción está utilizando cada vez más, puntos de soldadura en barras de acero corrugado para la construcción de armaduras de concreto y estructuras livianas. Se muestran los resultados experimentales obtenidos al realizar ensayos mecánicos, dureza, tenacidad, microestructural y análisis de fractura a barras corrugadas con puntos de soldadura, utilizando barras de producción nacional de grado intermedio y extraduro.

Los resultados son analizados y correlacionados y se efectúa la comparación con las propiedades que la barra tenía antes de realizarse la soldadura.

INDICE GENERAL

Pág.
CAPITULO I
INTRODUCCION 1
CAPITULO II
INVESTIGACION BIBLIOGRAFICA
2.1 Generalidades 3
2.2 Utilización de las barras de acero en las estructuras 3
2.3 Tipo y especificaciones de aceros usados 5
2.4 Composición química y microestructura de los aceros corruga-
dos11
2.4.1 Clasificación y composición química
2.4.2 Microconstituyentes del acero14
2.5 Normas y especificaciones que deben cumplir las barras20
2.5.1 Especificaciones Físicas
2.5.2 Especificaciones Químicas23
2.5.3 Especificaciones Mecánicas
2.5.4 Soldabilidad
CAPITULO III
PROCEDIMIENTO EXPERIMENTAL
A. Análisis de las técnicas actuales usadas en la construcción
nacional
B. Selección del material a estudiarse

	B.1 Tipos de aceros usados	32
	B.2 Procesos de fabricación	36
	B.3 Medidas usadas, rangos	36
	B.4 Función de las barras en las estructuras	38
	B.5 Ensayos y especificaciones que deben cumplir	38
	B.5.1.1 Resistencia a la tracción	39
	B.5.1.2 Doblado	39
	B.5.2 Químico	39
	B.5.3 Fisico	41
c.	Sustitución del amarre de los estribos en barras de acero es-	
	tructural por puntos de soldadura	41
D.	Preparación de probetas obtenidas de barras de acero estructu-	
	ral con puntos de soldadura	46
Ε.	Ensayos para probetas soldadas y sin soldar	48
	E.1 Ensayo de Tracción	48
	E.2 Ensayo de Doblado	53
	E.3 Ensayo de Impacto	53
	E.4 Ensayos metalográficos	56
	E.5 Ensayos de dureza y microdureza	58
CA	PITULO IV	
RE	SULTADOS Y ANALISIS	
Α.	Resultados y comparación de los valores obtenidos en los ensa-	
	yos mecánicos	60
	A.1 Resultados y análisis de los ensayos de tracción	60
	A.2 Resultados y análisis de los ensayos de doblado	65

A.3 Análisis de superficie de fractura	
A.4 Resultados y análisis del ensayo de impacto	
B. Resultados y comparación de los valores obtenidos en los en-	
sayos de dureza y microdureza 92	
C. Comparación y análisis de las estructuras observadas en los	
ensayos metalográficos 97	
C.1 Metalografia del metal base 97	
C.2 Metalografía de la unión soldada101	
D. Comparación de los valores de templabilidad obtenidos en los	
dos aceros	
CAPITULO V	
CONCLUSIONES Y RECOMENDACIONES	

INDICE DE TABLAS

TABLA Nº

1	Valores de esfuerzo para distintos grados de acero 6
2	Especificaciones físicas para barras A615
3	Especificaciones físicas para barras A616 y A61710
4	Composición química básica de aceros al carbono según
	el grado
5	Valores de esfuerzos y elongación para cada número de
	barra y grado
6	Diámetro de mandril para el ensayo de doblado de 180°
	sin fisuras
7	Identificación de barras corrugadas (ANDEC)
8	Características mecánicas de las barras con resaltes40
9	Características para el ensayo de doblado42
10	Composición química43
11	Especificaciones físicas de las barras corrugadas44
12	Resultados del ensayo de tracción en probetas sin
	puntos de soldadura61
13	Resultados del ensayo de tracción de probetas con
	puntos de soldadura62
14	Cuadro comparativo entre acero de grado intermedio y
	extraduro con soldadura y sin soldadura

15	Ensayo de doblado para barras con resaltes
16	Resultado de los ensayos de impacto93
17	Microdureza y dureza de las zonas involucradas por
	efecto del punto de soldadura para el acero de grado
	intermedio y extraduro

1

INDICE DE FIGURAS

FIG. Nº

1	Tipo de columnas de concreto reforzado 4
2.a	Columna compuesta con núcleo de hierro fundido
2.b	Columna compuesta con núcleo de acero 8
3	Curvas de enfriamiento para el hierro puro15
4	Diagrama de equilibrio hierro-carburo de hierro17
5.a	Solución de carbono en ferrita de cuerpo centrado18
5.b	Solución de carbono en austenita FCC
6	Estructura de Fe ₃ C21
7	Variación de dureza de la martensita con el porcentaje de
	carbono
8	Tipo de barras con resaltes utilizadas para concreto refor-
	zado
9	Corte de la sección transversal de un cordón de soldadura31
10.a	Estructura para concreto reforzado con amarre de los estri-
	bos con alambre
10.b	Detalle de un amarre
11.a	Estructura para concreto reforzado con puntos de soldadura34
11.b	Detalle de un punto de soldadura
12.a	Estructuras electrosoldadas de vigetas
12.b	Detalle de un punto electrosoldado

FIG.Nº

os con pun-
ensayo de
uctural en 49 51 gil51 54
51 gil51 54
gil51
yo de trac-
y extradu-
de_trac-
sin soldar
67 de tracción
67 de tracción oldar y
de tracción oldar y 68
de tracción oldar y 68 de tracción
67 de tracción oldar y 68 de tracción traduro con
de_trac- sin soldar

FIG.Nº

24 Barras de acero intermedio y extraduro sin puntos de solda-Vista superior de probetas de barras de acero corrugado sol-25 dados los estribos después del ensayo de doblado, grado in-Vista lateral de las barras después del ensayo de doblado, 26 27-28 Probeta de doblado mostrando iniciación de la fractura al pie del punto de soldadura, mostrando el ángulo al cual se 29 Superficie de fractura de probeta de doblado, mostrando el punto de iniciación y el tipo de fractura frágil que se pro-Probetas de barras de acero corrugado extraduro soldados los 30 estribos, que rompieron durante el ensayo de doblado...... 76 Probetas de tracción de grado intermedio y extraduro sin sol-31 Superficie de fractura de acero, grado intermedio, sin soldar 79 32 33 Superficie de fractura de acero, grado extraduro, sin soldar. 79 34.a Vista superior de la probeta Nº 1 de acero grado intermedio.. 81 con puntos de soldadura, después del ensayo de tracción..... 81 34.b Vista de la superficie de fractura de la probeta Nº 1 de acero de grado intermedio soldado, después del ensayo de trac-

35	Vista de la superficie de fractura de la probeta Nº 1 con
	la barra de estribo de acero, grado intermedio después
	del ensayo de tracción82
36	Vista superior de la probeta Nº 3 de acero, grado inter-
	medio, después del ensayo de tracción
37.a	Superficie de fractura de la probeta Nº 3, de acero de
	grado intermedio con barra de estribo después del ensayo
	de tracción
37.b	Vista de la superficie de fractura de la Probeta Nº 3 de
	acero, grado intermedio soldado después del ensayo de
	tracción
38.a	Vista de la superficie de fractura de la probeta Nº 4 de
	acero, grado extraduro con el estribo del ensayo de trac-
	ción
38.b	Vista de la uperficie de fractura de la probeta Nº 4 de
	acero, grado extraduro con puntos de soldadura después del
	ensayo de tensión 86
39.a	Vista de la superficie de fractura y el punto de soldadura
	para un acero de grado extraduro después del ensayo de
	tensión
39.Ь	Vista superior de la probeta № 4 de un acero de grado ex-
	traduro después del ensayo de tracción
40.a	Superficie de fractura de la probeta Nº 5 de acero de gra-
	do extraduro soldado, luego del ensayo de tensión

FIG. Nº

40.b	Superficie de fractura de la probeta Nº 5 de acero grado	
	extraduro con puntos de soldadura, después del ensayo	
	de tensión	88
41.a	Vista de la superficie de fractura y el punto de solda-	
	dura de la probeta Nº 6 de acero grado extraduro después	
	del ensayo de tensión	89
41.b	Vista de la superficie de fractura de la probeta № 6	
	de acero, grado extraduro soldado, después del ensayo	
	de tensión	89
42.a	Vista de la superficie de fractura de la probeta Nº 6	
	de grado extraduro, soldado después del ensayo de trac-	
	ción	90
42.b	Vista superior de la probeta de acero, grado extraduro	
	soldado después d <mark>el ensa</mark> yo de tensión	90
43	Detalle de la superficie de fractura de una probeta de	
	ensayo de impacto	94
44	Probeta de ensayo de impacto de grado intermedio extra-	
	duro sin puntos de soldadura	94
45	Probetas de ensayo de impacto grado intermedio con pun-	
	tos y sin puntos de soldadura	95
46	Probetas de ensayo de impacto grado extraduro soldado y	
	sin soldar	95
47	Probetas de ensay <mark>o de imp</mark> acto de grados intermedi <mark>o y</mark>	
	extraduro con puntos de soldadura	96

C	T	C		 М	0	
1	1	C4	٠	 N	-	

48	Ampliación de transformación de las microestructuras con
	su microdureza KNOOP para el acero de grado intermedio 99
49	Ampliación de transformación de las microestructuras
	con su microdureza KNOOP para el acero de grado extra÷
	duro100
50	Microestructura del centro de la barra, grado intermedio 102
51	Microestructura de la superficie de la barra, grado in-
	termedio
52	Microestructura del pie de resalte, grado intermedio103
53	Microestructura del centro de la barra, grado extraduro104
54	Microestructura de la superficie de la barra, grado ex-
	traduro
55	Microestructura del pie de resalte, grado extraduro105
56	Detalle de las posiciones donde se tomaron las fotogra-
	fías de la barra estructural con puntos de soldadura,
	acero grado intermedio112
57	Microestructura de metal base, grado intermedio113
58	Transición entre metal base y zona afectada por el calor,
	grado intermedio113
59	Microestructura afectada por el calor, grado intermedio114
60	Microestructura de linea de fusión entre zona afectada
	por el calor y material de aporte, grado intermedio114
61	Microestructura de material de aporte, grado intermedio115
62	Microestructura de línea de fusión entre material de sol-

dadura y material de estribo, grado intermedio......115

.

FIG.Nº

63	Detalle de las posiciones donde se han tomado las foto-
	grafías de la barra estructural con puntos de soldadura
	para el acero de grado extraduro116
64	Microestructura de metal base, grado extraduro117
65	Transición entre motal base y zona afectada por el calor,
	grado extraduro117
66	Microestructura afectada por el calor, grado extraduro118
67	Microestructura de línea de fusión entre zona afectada
	por el calor y el material de aporte, grado extraduro118
68	Microestructura de material de soldadura, grado extraduro.119
69	Microestructura de línea de fusión entre material de sol-
	dadura y material de estribo, grado extraduro119
70	Microestructura del metal de aporte con figuras anotadas
	en el acero de grado extraduro120
71	Banda de templabilidad para el acero de grado intermedio124
72	Banda de Templabilidad para el acero de grado extraduro125

CAPITULO I

INTRODUCCION

Desde hace algunos años las empresas nacionales están laminando barras de acero corrugado para ser usadas en las construcciones civiles y estructuras mecánicas.

Las propiedades mecánicas y composición química de estos aceros son controlados por los laboratorios de las plantas laminadoras y de las Escuelas Politécnicas, donde se verifica la conformidad con las normas de calidad dictadas por el INEN. Sin embargo, en lo que respecta hasta el momento no se había realizado ningún estudio con resultados confiables que den al constructor una idea clara de lo que sucede en el acero durante el proceso de soldadura y sus cambios en las propiedades, sólamente se conoce que por lo general la mayoría de los ingenieros civiles prefieren no soldar estos aceros por temor a producir puntos con propiedades mecánicas deficientes. Algunos constructores con la finalidad de agilitar e impulsar el ritmo de la obra han usado soldadura sin conocer los cambios que un pequeño punto de soldadura puede producir en las propiedades mecánicas de estos aceros, conse cuencias posteriores han producido cambios en los sistemas de cons-trucción.

El presente trabajo trata de hacer un estudio sobre los grados de aceros en varillas corrugadas más usadas desde el punto de vista de

sus propiedades mecánicas antes y después de aplicar puntos de soldadura similares a los que podrían usarse para soldar los amarres.

De los resultados obtenidos se darán recomendaciones para sus usos, y para el caso de soldaduras se buscarán procedimientos que mejoren o restituyan sus propiedades.

CAPITULO II

INVESTIGACION BIBLIOGRAFICA

2.1 GENERALIDADES

Actualmente en la industria de la construcción existen diversos tipos de aceros y métodos de construcción en lo que se refiere a columnas de concreto reforzado. En este capítulo se realiza una investigación bibliográfica sobre los aceros y técnicas recomendadas.

2.2 UTILIZACION DE LAS BARRAS DE ACERO EN LAS ESTRUCTURAS

En la construcción de columnas que están expuestas a esfuerzos de compresión y a esfuerzo de flexión. La carga de compresión la resiste principalmente el concreto y la carga de flexión la soporta las barras de acero, que son armaduras de barras verticales de espesores gruesos, amarrados con anillos en forma circunferencial o rectangular, espaciados de 203 mm. (8") a 305 mm. (12"), como se indica en la Figura Nº 1.

Estos anillos son unidos a las barras por medio de amarres con alambre o con puntos de soldadura; los anillos circunferenciales pueden ser individuales o en forma de espiral.

Existe una gran diferencia al construir estas armaduras con ani- -

FIGURA Nº 1

TIPOS DE COLUMNAS DE CONCRETO REFORZADO . -

1 e

llos individuales y con anillos formando una espiral, ya que la segunda es más eficiente que la de anillos individuales. Una columna de anillos individuales soporta una carga de alrededor del 85% de la carga de la columna espiral con una misma área (2).

Otros tipos de columnas de concreto son las columnas compuestas. Una columna compuesta es un miembro estructural, que además de las estructuras de barras y anillos indicados arriba tienen en su parte central un tubo o perfil de acero; en alcunas aplicaciones se utilizan tubos de fundición de hierro. La Figura Nº 2 (a) y (b) muestra un esquema de este tipo de columna.

La carga en una columna es considerada uniformemente distribuida entre el concreto y el miembro de acero estructural. Las especificaciones de estas estructuras indican que el número mínimo de barras en una columna es de cuatro y su diámetro mínimo es de 15,88 mm. (1).

2.3 TIPOS Y ESPECIFICACIONES DE ACEROS USADOS

Las especificaciones normalizadas para barras de acero utilizadas en la construcción de concreto reforzado se encuentran bajo las designaciones A615, A616 y A617 (1), que determinan los límites de fluencia mínimos de las barras lisas y corrugadas clasificándolas en distintos grados, como se indica en la Tabla Nº 1.

ESPECIFICACION A615.- En esta especificación se encuentran las barras corrugadas de los grados 40, 60 y 75. Para barras lisas cu-

5

TABLA Nº 1

VALORES DE ESFUERZOS PARA DISTINTOS GRADOS DE ACERO

GRAD0	LIMITE DE FLUENCIA MINIMO	RESISTENCIA MAXIMA A LA TRACCION
40	40.000 psi	70.000 psi
50	50.000 psi	80.000 psi
60	60.000 psi	90.000 psi
75	75.000 psi	100.000 psi

yo diámetro llega hasta 31,8 mm. (1 ¼") o en bobinas utilizadas en las estructuras cuyos amarres forman una espiral, vienen bajo las especificaciones de grados 40 y 60.

ESPECIFICACION A616.- En esta especificación se encuentran las barras corrugadas de los grados 50 y 60. Para redondos lisos cuyo diámetro hasta 31,8 mm. y en bobinas que se utilizan en estructuras con amarres en forma espiral, vienen bajo las especificacio nes de los grados 50 y 60.

ESPECIFICACION A617.- En esta especificación se encuentran las barras corrugadas de los grados 40 y 60. Para redondos lisos cuyo diámetro hasta 31,8 mm. y en bobinas que se utilizan en estructuras con amarres en forma espiral, vienen bajo las especificaciones de los grados 40 y 60.

Las secciones y dimensiones de las barras corrugadas según las especificaciones indicadas se muestran en las Tablas Nº 2 y Nº 3.

El acero a utilizarse en estas aplicaciones debe cumplir especificaciones químicas, físicas y de resistencia, las cuales deberán ser controladas por cada fabricante, con la finalidad de propor cionar cierto margen de garantía a los usuarios.

Los análisis químicos deberán realizarse para cada colada y los valores de contenido de Carbono, Manganeso, Fósforo, Azufre y otros elementos deberán estar dentro del rango correspondiente para el tipo de acero que se está fabricando.

7

FIGURA Nº 2

a) Columna compuesta con núcleo de hierro fundido.

b) Columna compuesta con núcleo de acero

TIPOS DE COLUMNA COMPUESTA

.

TABLA Nº 2

ESPECIFICACIONES FISICAS PARA BARRAS A615 (Manual ASTM, Tomo 4, 1972)

	Peso Nominal Kg/m	DIMENSIONES NOMINALES		REQUISITO DE LOS RESALTES (mm.)			
Designación de la Barra №		Diámetro mm.	Area de la Sección Transversal mm.2	Perímetro mm.	Máximo Espaciamiento	Minima altura	Anchura máxima de la base (to- mando el 12.5% del perímetro nominal.
3	0.560	9.52	71	29.9	6.7	0.38	3.5
4	0.994	12.70	129	39.9	8.9	0.51	4.9
5	1.552	15.88	200	49.9	11.1	0,71	6.1
6	2.235	19.05	284	59.8	13.3	0.96	7.3
7	3.042	22.22	387	69.8	15.5	1.11	8.5
8	3.973	25.40	510	79.8	17.8	1.27	9.7
9	4.960	28.65	645	90.0	20.1	1.42	10.9
10	6.403	32.26	819	101.4	22.6	1.62	11.4
11	7.906	35.81	1006	112.4	25.1	1.80	13.6
14	11.384	43.00	1452	135.1	30.1	2.16	16.5
18	20.238	57.33	2581	180.1	40.1	2.59	21.9

9

TABLA Nº 3

ESPECIFICACIONES FISICAS PARA BARRAS A-616 y A-617

(Manual ASTM, Tomo 4, 1972)

Designacion de la Barra Nº	Peso Nominal Kg/m.	DIMENSIONES NOMINALES			REQUISITOS DE LOS RESALTES (mm.)		
		Diámetro mm.	Area de la Sección Transversal mm.2	Perímetro	Máximo Espaciamiento	Mínima Altura	Anchura máxima de la base (tomando el 12.5% del pe- rímetro nominal)
3	0.560	9.52	71	29.9	6.7	0.38	3.5
4	0.994	12.70	129	39.9	8.9	0.51	4.9
5	1.552	15.88	200	49.9	11.1	0.71	6.1
6	2,235	19.05	284	59.8	13.3	0.96	7.3
7	3.042	22.22	387	69.8	15.5	1.11	8.5
8	3.973	25.40	510	79.8	17.8	1.27	9.7
9	4.960	28.65	645	90.0	20.1	1.42	10.9
10	6.403	32.26	819	101.4	22.6	1.62	11.4
11	7.906	35.81	1006	112.5	25.1	1.80	13.6.

10

Los análisis físicos chequean el diámetro nominal y ovalidad de la barra, así como también distribución y altura de los resaltes para el caso de barras corrugadas.

Los análisis de resistencia que se deben efectuar a lotes de producción no mayor de veinte toneladas dan los valores de límite elástico, resistencia máxima a la tracción y ductibilidad, determinantes para cálculos en su aplicación.

2.4 COMPOSICION QUIMICA Y MICROESTRUCTURAS DE LOS ACEROS CORRUGADOS

2.4.1 CLASIFICACION Y COMPOSICION QUIMICA

La composición química de los aceros utilizados en el concreto reforzado es muy diversa, variando entre y otra acería. Básicamente,el fabricante de acero trata de alcanzar los valores de límite elástico, resistencia máxima y elongación correspondiente para cado grado, variando el contenido de los micro -constituyentes, tratando de equilibrar propiedades mecánicas con soldabilidad, facilidad de laminación, tenacidad y costos.

Las propiedades mecánicas para cada uno de los grados están mostrados en la Tabla Nº 1. Los aceros al carbono que logran los valores de límite elástico especificados para cada grado se los encuentra en la Tabla Nº 4, donde también se indica su composición química.

En la tabla Nº 4 se indica que los aceros comerciales al carbono contienen pequeñas cantidades de otros elementos como el. Manganeso, Azufre y Fósfor además del hierro y el carbono, como parte de su composición química.

El azufre en los aceros comerciales se mantiene por debajo de 0.05% debido al efecto nocivo que causa. Este se combina con el hierro para formar sulfuro de hierro (S Fe) que se presenta en forma eutéctico con bajo punto de fusión en los límites de grano y aumenta la posibilidad de fragilidad en caliente del acero.

El Manganeso está presente en todos los aceros comerciales al carbono en rango de 0.03 al 1.00% y su función es contrarrestar el efecto nocivo del Azufre, pues el Manganeso se combina con el Azufre formando un Sulfuro de Manganeso (SMn) en vez de sulfuro de hierro. El sulfuro de Manganeso, puede salir a la escoria o permanecer como inclusión bien distribuida en toda estructura.

El contenido de fósforo generalmente se mantiene por debajo del 0.04%, mayores cantidades de fósfor reducen la ductibilidad debido a la formación de esteadita que es un fosfuro de hierro (Fe P) que aumenta la tendencia del acero a agrietarse cuando se trabaja en frío.

En la industria del acero con la finalidad de mejorar la soldabilidad, resistencia a la corrosión, ductilidad y relación entre límite elástico y resistencia máxima, se realizan modificaciones en estas composiciones químicas básicas, disminu-

TABLA Nº 4

COMPOSICION QUIMICA BASICA DE ACEROS AL CARBONO SEGUN EL GRADO

Grado	Nº SAE	с	Mn	P, max.	S, max.
40	1024	0.19- 0.25	1.35- 1.65	0.04	0.05
50	1041	0.36- 0.44	1.35- 1.65	0.04	0.05
60	1050	0.48- 0.55	0.60- 0.90	0.04	0.05
75	1052	0.47- 0.55	1.20 1.50	0.04	0.05

yendo el contenido de carbono y agregando elementos como: cromo, níquel, vanadio y otros que actúan como elevadores de las resistencias mecánicas sin aumentar tanto las difcultades de soldadura como lo hace el carbono.

2.4.2 MICROCONSTITUYENTES DEL ACERO

El hierro es un metal alotrópico, lo que significa que puede existir en más de un tipo de estructura cristalina, depen diendo de la temperatura; la figura Nº 3 muestra estos cam bios alotrópicos indicando la temperatura a las cuales se produce.

Los cambios alotrópicos, clasifican al hierro según su estructura cristalina, en Hierro Alfa (α), Hierro Gamma (γ) y Hierro Delta (δ) (3). El paso de Magnético a Para-magnético que se produce a 768°C (1414°F) no involucra cambio de estructura cristalina.

Las aleaciones Hierro y Carbono dan origen a aceros y fundiciones de Hierro; si el porcentaje de carbono es menor al 2% se lo clasifica como acero o en caso contrario se lo clasifica como fundición de hierro.

Los aceros cuyo principal o único elemento aleante es el carbono, se lo clasifica como acero al carbono. Cuando además de carbono, tiene otros elementos aleantes que modifican sus propiedades, se lo llama Acero Aleado o Acero de alta resisFIGURA Nº 3

15

tencia y baja aleación, dependiendo del porcentaje de elemen tos aleantes.

A su vez los Aceros al carbono pueden ser clasificados según su porcentaje de contenido de carbono en:

	KANGU 26
Acero de bajo porcentaje de Carbono (hierro dulce)	hasta 0.25
Acero de medio porcentaje de Carbono	0.30-0.50
Acero de alto porc <mark>ent</mark> aje de Carbono	0.55-0.95
(4) (Carl A. Keyser, Cap. Nº 8)	

El diagrama de equilibrio hierro carbono mostrado en la Figura Nº 4, es el medio de información para determinar mediante la composición química las microestructuras que un acero puede tener. A continuación detallamos las microestructuras que se pueden encontrar en estos aceros.

<u>Ferrita</u>.- Es una modificación estructural del hierro puro a temperatura ambiente, es bastante suave y ductil; su resistencia a la tracción es sólo de 3.163 kg/cm.², es ferromagnético a temperatura bajo los 768° C,tiene una estructura cúbica de cuerpo centrado (B.C.C.), los espacios interatómicos son pequeños y marcadamente achatados y no pueden acomodar fácilmente ni el pequeño átomo esférico del carbono, como se muestra en la Figura Nº 5 (a). Por lo tanto la solubilidad del carbono en la ferrita es muy lenta. El átomo de carbono es muy pe-

DAVIDA NA

.

FIGURE ST S

Tamaño del átomo de carbón

) Tamaño del átomo de hierro

Espacios de intersticios para átomos de carbón

a) Solución de carbón en ferrita de cuerpos centrados. La mayor abertura en el cristal de hierro B.C.C., es apreciablemente menor que el átomo de carbón. Por lo tanto la solubilidad del carbón en ferrita, es muy baja.

Tamaño del átomo de carbón

) Tamaño del átomo de hierro

- * Espacios de intersticios para átomos de carbón
- b) Solución de carbón en austenita F.C.C. La mayor abertura en el cristal de este hierro, es casi el tamaño del átomo del carbón.
queño para una solución sólida por sustitución, y demasiado grande para una solución sólida de intersticios, la cual se realiza pero con dificultad.

<u>Austenita</u>.- Es una solución sólida intersticial de carbón disuelto en hierro gamma (F.C.C). La máxima solubilidad es del 2% de carbono a 1.129°C (2.065°F). Las propiedades promedio son: resistencia a la tensión 10.564 kg/cm² (150.000 lb/pulg²), elongación 10% en 50 mm. (2 pulg.), 40 RC de dureza aproximadamente y alta tenacidad, generalmente no es estable a temperatura ambiente pero bajo ciertas condiciones es posible que se presente a temperatura ambiente. La mayor abertura del espacio intersticial de la estructura F.C.C. es lo suficiente mente grande para permitir que se aloje un átomo de carbono, pero demasiado pequeña para permitir que se alojen dos átomos de carbono. Según se muestra en la Figura Nº 5 (b).

<u>Cementita</u>.- O Carburo de Hierro, fórmula química conocida como Fc3C, contiene 6.67% de carbono/en peso y es un compuesto intersticial típicamente duro y frágil de baja resistencia a tensión de aproximadamente 352 kg/cm² (5.000 lb/pulg.²), pero de alta resistencia a la compresión (5). Es la estructura más dura que aparece en el diagrama, su estructura cristalina es ortorrómbica, correspondiéndole 12 átomos de hierro y 4 átomos de carbono a cada celda unitaria. Figura Nº 6.

Perlita.- Es la mezcla eutectoide que contiene 0.80 de carbo-

no y se forma a 722°C (1.333°F) a un enfriamiento muy lento. Es una mezcla muy fina tipo placa o laminar de ferrita y cementita. La base o matriz ferrítica que forma la mayoría de la mezcla eutectoide contiene delgadas placas de cementita, las propiedades promedio son las siguientes: resistencia a la tensión 8.450 kg/cm² (120.000 lb/pulg²); elongación 20% en 50 mm.; 20RC de dureza.

Cuando no se cumplen las condiciones de equilibrio en aceros con porcentaje de carbono superior a 0.20 se forma un compuesto microestructural llamado Martensita que se presenta en forma de agujas. Al incrementarse cada vez más la rapidez de enfriamiento, la proporción de Martensita aumenta, a expensas de la perlita aumentando la dureza y disminuyendo la ductibilidad del Acero. La Martensita tiene una estructura tetragonal centrada en el cuerpo.

Es una solución sólida de hierro, supersaturada con átomos de carbono. En la Figura Nº 7 se muestra el efecto ejercido por el carbono sobre la dureza de la Martensita (4).

2.5 NORMAS Y ESPECIFICACIONES QUE DEBEN CUMPLIR LAS BARRAS

2.5.1 ESPECIFICACIONES FISICAS

Las especificaciones que deben cumplir están relacionadas con el diámetro y características físicas de los resaltes.

Los resaltes transversales pueden ser perpendiculares o incli-

21 FIGURA Nº 5 ESTRUCTURA DE Fe3 C. (R.W.G.Wycoff, Crystal Structure, New York: Interscience Publishers, 1948)

VARIACION DE DUREZA DE LA MARTENSITA COM EL PORCENTAJE DE CARBONO nados respecto al eje de la barra, pueden coincidir en la sección transversal o estar alternados, (6)(9), de esta manera las barras con estas configuraciones el coeficiente de adherencia siempre tiene que sobrepasar del 40% o más al coeficiente de adherencia de una barra lisa con el mismo diámetro nominal. Si los resaltes transversales son inclinados respecto al eje de la barra, el ángulo de inclinación no será menor de 45°.Si este ángulo estuviera comprendido entre 45° u 70° los resal tes deberán tener inclinación contraria en las dos caras de la barra. Si este ángulo es mayor de 70° el cambio de inclinación no será necesario. Además, cada barra deberá tener dos resaltes o dos ranuras longitudinales situadas a 180° la una de la otra en toda la longitud de la barra, de tal forma que la suma de sus anchos no sobrepase el 25% del perímetro de la barra.

El espaciamiento, altura y claros entre resaltes y resaltes, según los requerimientos prescritos están en la Figura Nº 8, y Tablas Nº 2 y Nº 3.

2.5.2 ESPECIFICACIONES QUIMICAS

El análisis de la composición química para cada acero se debe realizar durante la producción de la colada para determinar los porcentajes de Carbono, Manganeso, Fósforo y Azufre que son los elementos primordiales de un acero. Otros elementos se deben considerar durante la producción ya que determinan

Cont....

24

.

25

.

las propiedades mecánicas como en el caso del fósfor que no debe exceder del 0.05% y del azufre del 0.04%.

La composición química representa el requisito indispensable para los constructores.

2.5.3 ESPECIFICACIONES MECANICAS

En estas especificaciones se encuentran los ensayos de trac - ción y doblado.

En el ensayo de tracción se encuentran las siguientes propiedades mecánicas: resistencia a la tracción límite mínimo de fluencia y alargamiento procentual de las barras cuyas designaciones son: A615, A616 y A617 que se encuentran en la Tabla Nº 5.

Los ensayos de doblado o de flexión se los debe realizar a una temperatura ambiente no menos de 15,5°C (60° F). Los requerimientos de los ángulos de doblado de las barras está en la Tabla Nº 6.

Las probetas para los ensayos de doblado deben ser los sufi cientemente largos como para estar entre los tres puntos de apoyo del aparato para el doblado, la aplicación de la fuerza debe ser uniforme durante la operación del doblado, los puntos en contacto del aparato con la barra no deben de rotar, sólo deben de moverse en la dirección del doblado.

VALORES DE ESFUERZOS Y ELONGACION PARA CADA NUMERO DE BARRA Y GRADO

Lapeerriederon	1-015	1		
	Grado 40	Grado 60	Grado 75	
Esfuerzo de tensión mínimo psi	70.000	90.000	100.000	
Límite de fluencia psi	40.000	60.000	75.000	
Porcentaje de elongación mínimo en 203 mm.	1.000		0.15	
$\frac{\text{BARRA N}^{2}}{\substack{3\\4,5,6\\7\\8\\9\\10\\11\\14,18}$ Porcentaje mínimo de elongación en 50 mm. $\frac{\text{BARRA N}^{2}}{11,14,18}$	11 12 11 10 9 8 7 	9 9 8 8 7 7 7 7 7 7	···· ···· 5 5	
		1		
Especificación A-61	6 y A-617			
	Grado 50	Grad	lo 60	
Esfuerzo de tensión mínimo psi	80.000 9		0.000	
Limite de fluencia psi	50.000	60.	000	
Porcentaje de elongación minimo en 203 mm.				
BARRA Nº 3 4,5,6 7 8 9,10,11	6 7 6 5 5	6 6 5 4 - 4	.5	

Especificación A-615

DIAMETRO DE MANDRIL PARA EL ENSAYO DE DOBLADO DE 180° SIN FISURAS

Número	Diámetro del mandril para ensayo de doblado d = diámetro nominal de la barra				
de Barra	Grado 40	Grado 60	Grado 75		
3,4,5	4d	4d			
6	5d	5d			
7,8	5d	6d			
9,10,11	5d	8d	8d № 11 solamente 90°		
	P	A (10			
Número	Especificación Diámetro del d = diámetro	<u>A-616 y A-617</u> mandril para ensa niminal de la bar	yo de doblado rra		
Número Designación de Barra	Especificación Diámetro del d = diámetro Grado 50	A-616 y A-617 mandril para ensa niminal de la bar Grad	nyo de doblado ma lo 60		
Número Designación de Barra 3,4,5,6	Especificación Diámetro del d = diámetro Grado 50 6d	A-616 y A-617 mandril para ensa niminal de la bar Grad	yo de doblado ra lo 60		
Número Designación de Barra 3,4,5,6 7,8	Especificación Diámetro del d = diámetro Grado 50 6d 6d	A-616 y A-617 mandril para ensa niminal de la bar Grad 60	lyo de doblado ra lo 60		
Número Designación de Barra 3,4,5,6 7,8 9,10	Especificación Diámetro del d = diámetro Grado 50 6d 6d 8d	A-616 y A-617 mandril para ensa niminal de la bar Grad 60 60 80	iyo de doblado ra lo 60		
Número Designación de Barra 3,4,5,6 7,8 9,10 11	Especificación Diámetro del d = diámetro Grado 50 6d 6d 8d 8d	A-616 y A-617 mandril para ensa niminal de la bar Grad 60 80 80	yo de doblado ra lo 60 l 1 90°		

Especificación A-615

2.5.4 SOLDABILIDAD

La garantía de soldabilidad de las barras de acero a las que nos referimos debe ser establecida entre fabricante y constructor de acuerdo a las características de composición química y del tipo de soldadura a ser utilizado. En una unión soldada está compuesta de todas las partes que son afectadas por el calor durante la soldadura, estas partes se conocen como:

Metal de Aporte
 Zona afectada por el calor (HAZ)
 Metal Base

La metalurgia de cada zona de la unión soldada está intíma mente relacionada con el tipo de material, en la Figura Nº 9 (7) se encuentra un detalle de la sección transversal de un cordón de soldadura.

La zona de metal de soldadura está formada por una combina ción de metal de aporte y metal base. En realidad esta zona no es muy crítica dependiendo de la cantidad de elementos aleantes del metal base que puedan formar microestructuras frágiles o de humedad que promueva la formación de porosidades.

La zona afectada por el calor que permanece en estado sólido solamente absorve el calor generado por la fuente del calor en soldadura, por efecto de la conducción calorífica sufre un ciclo de calentamiento y enfriamiento ya que las temperaturas para las distintas secciones de esta zona varían desde la temperatura de fusión hasta unos 100° C, que son los factores que producen cambios en la microestructura y propiedades mecánicas del metal. Estos cambios se producen en aquellos aceros que son tratables térmicamente, y es la zona más crítica en una unión soldada.

La zona de metal base es la que no sufre ningún cambio permaneciendo con la microestructura del metal base.

FIGURA Nº 9

CORTE DE LA SECCION TRANSVERSAL DE UN CORDON DE SOLDADURA

CAPITULO III

PROCEDIMIENTO EXPERIMENTAL

A.- ANALISIS DE LAS TECNICAS ACTUALES USADAS EN LA CONSTRUCCION NACIONAL

En los actuales momentos en la construcción nacional se encuentra que para las estructuras de hormigón reforzado se utilizan diversas técnicas para unir los estribos con las barras estructurales. Para el caso de pilotes de cimentación, se ha observado que algunos constructores realizan la unión mediante amarres con alambres, siendo ésta la técnica tradicional en nuestro país, como se muestra en la Figura Nº 10. Sin embargo, otros constructores realizan estas uniones mediante puntos de soldadura, éste último método cada día está siendo más usado, Figura Nº 11. Por otro lado, se ha introducido en el país la utilización de vigetas electrosoldadas para la construcción de losas de hormigón. Figura Nº 12.

B.- SELECCION DEL MATERIAL A ESTUDIARSE

B.1 TIPOS DE ACEROS USADOS

Los aceros seleccionados para el presente trabajo, son las ba rras corrugadas producidas por una empresa nacional (8), que son los usados por los constructores debido a la facilidad de obtenerlos en el mercado de este país. Existen dos clases: gra-

FIGURA Nº 10-a.- Estructura para concreto reforzado con amarre de los estribos con alambre.

FIGURA Nº 10-b.- Detalle de un Amarre

FIGURA Nº 11-a.- Estructura para Concreto Reforzado con Puntos de Soldadura.

FIGURA Nº 11-b.- Detalle de un Punto de Soldadura

. .

35

FIGURA Nº 12-a.- Estructura Prefabricada con Puntos de Soldadura

FIGURA Nº 12-b.- Detalle de un Punto de soldadura

do intermedio y extraduro, los cuales son identificados por los fabricantes mediante unas marcas realizadas entre las corrugas localizadas a una distancia aproximadamente de un metro y con sisten en un sobrerelieve como se indica en la Tabla Nº 7. Además uno de sus extremos es pintado con un color característico para cada grado.

B.2 PROCESOS DE FABRICACION

Las barras corrugadas para construcciones se producen a partir de palanquillas importadas, laminadas en caliente o producidas por colada contínua. El 40% de palanquillas procesadas proviene de la producción nacional obtenida a partir de chatarra y recortes de palanquillas de la acería.

Es importante anotar que la composición de los aceros está dada por la composición química de la palanquilla, en el proceso de laminación en caliente y no existe ninguna alteración significativa en su composición química durante el proceso de lami nación.

B.3 MEDIDAS USADAS, RANGOS

En los últimos años los constructores han tenido la tendencia de construir miembros estructurales altamente solicitados, con la utilización de aceros con mayor resistencia que equivale a ventajas económicas. Los aceros, objeto de este estudio, co rresponden al grado intermedio A-44/28, cuyas resistencias mí-

IDENTIFICACION DE BARRAS CORRUGADAS (ANDEC)

TIPO	GRADO	M ARCA	COLOR
Con resaltes intermedios	A-44/28		Amarillo
Con resaltes extraduros	A-63/42		Rojo

nimas a la tracción y límite mínimo de fluencia es de 4.400 --Kg/cm² y 2.800 kg/cm², respectivamente.

El acero extraduro corresponde al A-63/42, con resistencia mí-nima a la tracción de 6.300 kg/cm² y límite mínimo de fluencia es 4.200 kg/cm².

Los dos tipos de aceros vienen en longitudes de 6, 9 y 12 metros.

B.4 FUNCION DE LAS BARRAS EN LAS ESTRUCTURAS

Las barras corrugadas vienen a ser los miembros estructurales fundamentales para columnas, vigas y lozas en las construcciones civiles como también en construcciones mecánicas. Cada uno de los aceros anteriormente mencionados tienen su límite mínimo de tracción diferente, de acuerdo con su porcentaje de carbono, ya que en un acero al aumentarle el porcentaje de carbono, aumenta su límite de fluencia y su resistencia a la tracción, pero en cambio se transforma en un acero más duro. En los aceros, al aumentar su dureza aumenta su fragilidad, o lo que es lo mismo disminuye su ductilidad.

B.5 ENSAYOS Y ESPECIFICACIONES QUE DEBEN CUMPLIR

Según las Normas del INEN, Instituto Ecuatoriano de Normalización (9), los ensayos que deben cumplir son los siguientes:

B.5.1 MECANICOS

B.5.1.1 RESISTENCIA A LA TRACCION

Los valores de la resistencia a la tracción, límite de fluencia y el alargamiento procentual de las barras utilizadas en este trabajo de acuerdo con las Normas del INEN, se encuentran en la Tabla Nº 8.

B.5.1.2 DOBLADO

Para efectuar los ensayos de doblado es conveniente que la operación se efectúe permitiendo el escurrimiento libre del material; para lo cual, las normas del INEN recomiendan efectuar el doblado sobre los nervios longitudinales, debiendo las barras soportar un ángulo de doblado de 180°, para lo cual se deberá usar un diámetro de mandril determinado para cada diámetro de barra, de acuerdo con las especificaciones del INEN, como se indica en la Tabla Nº 9.

B.5.2 QUIMICOS

Los valores límites para el contenido de Carbono, Manganeso, Fósforo, Azufre, Silicio y otros elementos constitu yentes en el acero de las barras están normalizados por el INEN y se encuentran en la Tabla Nº 10.

CARACTERISTICAS MECANICAS DE LAS BARRAS CON RESALTES

ENSAYOS	UNIDADES	VALORES Y GRADOS DEL ACERO A-43 A-62		
Resistencia de la tracción	Kgf/mm ²	44	63	
Límite ^d e Fluencia	Kgf/mm ²	28	42	
Alargamiento Porcentual	%	22	15	

Tomado de Norma INEN: 102

Los diámetros nominales con que se fabrican las barras y las características físicas de los resaltes existentes en las barras están establecidas en la Tabla Nº 11. En la figura Nº 13 se encuentra la diferencia entre las barras de producción nacional fabricadas por distintas empresas del país.

C. <u>SUSTITUCION DEL AMARRE DE LOS ESTRIBOS EN BARRAS DE ACERO ESTRUCTU-</u> RAL POR PUNTOS DE SOLDADURA.

El auge de grandes construcciones civiles y portuarias ha permitido desarrollar la tecnología de los pilotes. Para edificios de gran altura donde es necesario cimentar el terrenc utilizando pilotes de varios tipos como los de mangle y de concreto reforzado que son los más utilizados en nuestro medio.

Los pilotes de concreto reforzado son construidos de dos formas: pretensados y fraguados en sitio que llevan una armadura de acero estructural con estribos en forma de espiral, las uniones se las realiza con amarre o punto de soldadura. Los amarres con punto de soldadura permiten una mayor resistencia en la unión debido al material de aporte del electrodo, además se lo realiza con mayor rapidez comparado con el sistema de amarre con alambre y princi palmente forman una estructura más sólida que permite su manipuleo y facilitan la introducción de ésta en la perforación realizada

CARACTERISTICAS PARA EL ENSAYO DE DOBLADO

Ensayo de Doblado	Unidades	Valores y grados del acero			
180°		A-43	A-62		
d - 16	mm .	D = 3d	D = 5d		
16 - a - 40	mm.	D = 3d	D = 6d		

d = diámetro nominal de la barra, en mm.

D = diámetro del mandril de doblado, en mm.

Tomado de la Norma del INEN: 102

COMPOSICION QUIMICA

GRADO INEN	GRADO COMPOSICION QUIMICA PROMEDIO: AISI-SAE NUMERO PARA ACEROS AL CARBONO				SAE				
	AISI-SAE	% C	% Mn	% P Max.	% S Max.	% Si	% Cr	% Ni	% Va
A-43	1030	0.28- 0.34	0.60- 0.90	0.04	0.05	0.15 0.30			
A-62	1048	0.44- 0.52	1.10- 1.40	0.04	0.05	0.15 0.30			
	1048 MODIF.	0.42- 0.49	1.05 1.39	0.04	0.05	0.15 0.37	0.15 Max.	0.12 Max.	0.05 Max.
	1052	0.47- 0.55	1.20- 1.50	0.04	0.05	0.15 0.37			
	GRADO INEN A-43 A-62	GRADO INENGRADO NUMEROA-43AISI-SAEA-431030A-6210481048104810521052	GRADO INEN GRADO NUMERO AISI-SAE % C A-43 1030 0.28- 0.34 A-62 1048 0.44- 0.52 1048 0.42- 0.49 0.42- 0.49 1052 0.47- 0.55	GRADO INEN GRADO NUMERO COMPOSIC PA AISI-SAE % C % Mn A-43 1030 0.28- 0.34 0.60- 0.90 A-62 1048 0.44- 0.52 1.10- 1.40 1048 0.42- 1.39 1.05 1.39 1052 0.47- 0.55 1.20- 1.50	GRADO INEN GRADO NUMERO COMPOSICION QUI PARA ACER A-43 AISI-SAE % C % Mn % P Max. A-43 1030 0.28- 0.34 0.60- 0.90 0.04 A-62 1048 0.44- 0.52 1.10- 1.40 0.04 1052 0.47- 0.55 1.20- 1.50 0.04	GRADO INEN GRADO NUMERO COMPOSICION QUIMICA PR PARA ACEROS AL CO PARA ACEROS AL CO PARA ACEROS AL CO PARA ACEROS AL CO PARA ACEROS AL CO Max. A-43 AISI-SAE % C % Mn % P Max. % S Max. A-43 1030 0.28- 0.34 0.60- 0.90 0.04 0.05 A-62 1048 0.44- 0.52 1.10- 1.40 0.04 0.05 IO48 0.42- 0.55 1.05 1.39 0.04 0.05 IO52 0.47- 0.55 1.20- 1.50 0.04 0.05	GRADO INEN GRADO NUMERO COMPOSICION QUIMICA PROMEDIO: PARA ACEROS AL CARBONO A-43 AISI-SAE % C % Mn % P Max. % S i Max. % S i Max. A-43 1030 0.28- 0.34 0.60- 0.90 0.04 0.05 0.15 0.30 A-62 1048 0.44- 0.52 1.10- 1.40 0.04 0.05 0.15 0.30 1048 0.42- 0.52 1.05 1.39 0.04 0.05 0.15 0.37 1052 0.47- 0.55 1.20- 1.50 0.04 0.05 0.15 0.37	GRADO INEN GRADO NUMERO COMPOSICION QUIMICA PROMEDIO: AISI-SA PARA ACEROS AL CARBONO A-43 AISI-SAE % C % Mn % P Max. % S Max. % S Max. A-43 1030 0.28- 0.34 0.60- 0.90 0.04 0.05 0.15 0.30 A-62 1048 0.44- 0.52 1.40 0.04 0.05 0.15 0.30 0.15 0.30 1048 0.42- 0.55 1.05 1.50 0.04 0.05 0.15 0.37 0.15 Max.	GRADO INEN GRADO NUMERO COMPOSICION QUIMICA PROMEDIO: AISI-SAE PARA ACEROS AL CARBONO A-43 AISI-SAE % C % Mn % P Max. % Si % Cr % Ni A-43 1030 0.28- 0.34 0.60- 0.90 0.04 0.05 0.15 0.30 % % A-62 1048 0.44- 0.52 1.10- 1.40 0.04 0.05 0.15 0.30 0.15 0.30 0.15 0.37 0.12 Max. 1052 0.47- 0.55 1.20- 1.50 0.04 0.05 0.15 0.37 0.15 Max. 0.12 Max.

ESPECIFICACIONES FISICAS DE LAS BARRAS CORRUGADAS DE PRODUCCION NACIONAL

REQUISITO	AREA DE LA SECCION TRANSVERSAL	PERIMETRO	DIMENSIONES DE LOS RESALTES			
	(a)		(b)	(c)	(d)	
UNIDAD	mm.	mm.	mm.	mm.	mm.	
LIMITE			Máx.	Mín.	Máx.	
8 10 12 14 16 18 20 22 25 28 32 36 40	50 79 113 154 201 254 314 280 491 616 804 1017 1257	25,1 31,4 37,7 44,0 50,3 56,5 62,8 69,1 78,5 88,0 100,5 113,0 125,7	5,60 7,00 8,40 9,80 11,20 12,60 14,00 15,40 15,40 17,50 19,60 22,40 25,20 28,00	0,32 0,40 0,48 0,67 0,72 0,88 1,01 1,11 1,26 1,39 1,64 1,84 1,96	3,10 3,90 4,70 5,50 6,20 7,00 7,80 8,60 9,80 11,00 12,00 14,00 15,70	

(a) Valor calculado a partir de la sección transversal.
(b) Espaciamiento promedio de los resaltes transversales.
(c) Altura promedio de los resaltes transversales.
(d) Ancho en la base de los resaltes longitudinales o ancho de la ranura.

b)

a)

DETALLE DE LAS BARRAS CORRUGADAS CON RESALTES, DE PRODUCCION NACIONAL

FIGURA Nº 13

para la fundición en sitio de los pilotes.

D. PREPARACION DE PROBETAS OBTENIDAS DE BARRAS DE ACERO ESTRUCTURAL CON PUNTOS DE SOLDADURA.

Las probetas fueron construidas simulando las técnicas utilizadas y las condiciones presentes en los sitios donde las realizan los constructores, con la finalidad de obtener resultados compatibles con la realidad. Es decir, una barra estructural de 20 mm. de diámetro nominal con estribos, cuyo diámetro nominal es de 8 mm., se unió por medio de dos puntos de soldadura que van colocados en la parte superior e inferior del estribo considerando que el estribo es horizontal. Según como se muestra en la Figura № 14.

Los parámetros para generar el arco eléctrico del punto de soldadura se han realizado de acuerdo a lo que en estos momentos lo hacen los constructores: una máquina de soldar de corriente alterna (que es la más utilizada), electrodos AWS 6011 (punto azul) con una corriente de 90 ó 100 amperios y con un voltaje de 24 a 30 voltios.

Las probetas son de grado intermedio y extraduro, cuya longitud de 500 mm. colocando las barras de estribo a una distancia de 80 a 100 mm. utilizando tres estribos por cada probeta, colocando un estribo en el centro de la barra y las dos restantes a puntos equi distantes.

Para los ensayos de doblado y tensión se utilizaron probetas con puntos de soldadura y sin puntos de soldadura.

Las probetas para el ensayo de impacto se obtuvieron a partir de barras corrugadas cuyo diámetro nominal de 20 mm., de los dos grados anteriormente mencionados, maquinadas y rectificadas en las cuatro caras de la probeta cuyas dimensiones son las indicadas en la Figura Nº 15. Así se obtuvieron las probetas sin puntos de soldadura por el lado posterior a la ranura para luego ser enfriadas al ambiente, maquinadas y rectificadas hasta llegar a las dimensiones antes mencionadas en la Figura Nº 15.

Para los ensayos metalográficos, de dureza y microdureza se tomó para el análisis: la sección longitudinal de la parte correspondiente a una unión entre la barra estructural y el estribo con sus correspondientes puntos de soldadura, según se muestra en la Figura Nº 16, en la cual se pueden observar las transformaciones que ocurren a la barra estructural como también el material de aporte entregado por el electrodo durante el proceso de soldadura.

E. ENSAYOS PARA PROBETAS SOLDADAS Y SIN SOLDAR

E.1 ENSAYOS DE TRACCION

El ensayo de tracción se lo realiza para determinar las propiedades mecánicas, la probeta se la coloca en los cabezales de la máquina de prueba y se la somete a una carga axial, por medio de un sistema hidráulico o mecánico, la fuerza aplicada va aumentando gradualmente y si se conoce el área transversal original de la probeta se puede calcular el esfuerzo desarrollado a cualquier carga. La deformación o alargamiento se mide a

FIGURA Nº 16.- Corte en la Sección Longitudinal de la Barra Estructural en la Unión con el Estribo con Punto de Soldadura. partir de una longitud inicial establecida, generalmente de 50 mm. La Figura Nº 17 muestra la relación entre esfuerzo unitario y la deformación unitaria encontrada experimentalmente mediante el gráfico esfuerzo deformación para un material dúctil y para un material frágil.

Las propiedades mecánicas que se pueden encontrar de este ensayo son las siguientes:

 Límite Elástico. - Es el punto a que corresponde el esfuerzo máximo que la probeta puede soportar sin que ocurra deformación permanente.

Los aceros de alta resistencia no tienen punto definido de fluencia, pero se puede encontrar el esfuerzo de fluencia en forma convencional, trazando una paralela a la línea de proporcionalidad, desde una deformación de 0,2%, como se indica en la Figura Nº 17 b.

- <u>Resistencia Máxima</u>.- Conforme aumenta la carga aplicada sobre la probeta, el esfuerzo y la deformación se incrementan como se indica en la Figura № 17. El punto M corresponde a la resistencia máxima de la curva YM, para un material dúctil.

Para un material frágil la resistencia máxima coincide con la resistencia de ruptura.

FIGURA Nº 17

a) Gráfica esfuerzo-deformación para un acero dúctil

- <u>Resistencia a la Ruptura</u>.- Para un material dúctil cuando se llega al esfuerzo máximo la probeta experimenta una deformación localizada o formación de cuello, luego la carga empieza a disminuir y el área transversal de la probeta decrece hasta que el material falla.
- <u>Ductilidad</u>.- Se determina a partir de la cantidad de deformación que le es posible soportar a la probeta hasta llegar a la fractura. Puede ser determinada por la elongación o por la reducción de área que experimente la probeta en su punto de fractura.
- <u>Elongación</u>.- Se determina uniendo los pedazos de la probeta fracturada y midiendo la longitud entre marcas colocadas antes del ensayo.

Elongación (por ciento) = $\frac{Lf - Lo}{Lo} \times 100$

Lf = Longitud de la medida final Lo = Longitud de la medida inicial

Al reportarse el porcentaje de elongación debe especificar la longitud inicial ya que la elongación variará de acuerdo a la longitud inicial.

 <u>Reducción de Area</u>. – Se determina a partir de los dos pedazos de la probeta rota bajo tensión midiendo el área transversal mínima del cuello, con la fórmula:

Reducción en área (porcentaje) = $\frac{Ao - Af}{Ao} \times 100$

Ao = Area inicial

Af = Area final

E.2 ENSAYO DE DOBLADO

El Ensayo de Doblado ofrece un medio simple y satisfactorio para obtener un índice de ductilidad. El ensayo consiste en doblar una barra a un ángulo determinado y observar si ocurre o nó agrietamiento en la superficie exterior de la probeta doblada. El ángulo de doblado se determina en el momento que se presentan fisuras durante el ensayo. La Figura Nº 18 presenta un esquema correspondiente a este ensayo.

E.3 ENSAYO DE IMPACTO

Aunque la tenacidad de un material puede obtenerse calculando el área bajo la curva en el diagrama esfuerzo-deformación, la probeta de impacto indica la tenacidad relativa, la probeta se construyó como se indica en la Figura № 15 y fue colocada en la máquina de ensayo para determinar tenacidad por el método Charpy.

La máquina utilizada para este ensayo tiene un péndulo con una cantidad de energía potencial definida, cuando se libera el péndulo esta energía se convierte en energía cinética hasta que golpea a la probeta. Una parte de la energía se utilizará paFIGURA Nº 18

ra romper la probeta y la energía restante hará subir el péndulo, la diferencia de altura entre la posición inicial y final del péndulo, estará determinada por la energía absorbida por la probeta en el momento de la fractura, la cual está dada en una escala graduada. Figura № 19.

El Ensayo de Impacto no entrega la tenacidad verdadera sino su comportamiento en función de una ranura en particular, sin embargo los resultados son útiles para propósitos de comparación. Una prueba con alta resistencia al impacto generalmente garantizará un servicio satisfactorio de las piezas expuestas a carga de choque o impacto.

E.4 ENSAYOS METALOGRAFICOS

La Metalografía y Microscopía estudia las microestructuras de un metal o aleación que tiene gran efecto sobre las propiedades mecánicas del metal.

La experiencia ha demostrado que para observar la microestructura en el microscopio depende mucho del cuidado que se tenga para preparar la muestra. El microscopio más costoso no revelará la microestructura de una muestra que haya sido preparada en forma deficiente, el procedimiento que se sigue para obte ner la probeta se lo pule primero en lija gruesa y fina, para luego pasarlo a un último pulido en paño hasta obtener una superficie plana sin rayaduras semejantes a las de un espejo, es momento es momento apropiado para realizar el ataque químico

EQUIPO UTILIZADO EN EL ENSAYO DE IMPACTO

con el propósito de hacer visibles las características microestructurales del metal en el microscopio.

E.5 ENSAYOS DE DUREZA Y MICRODUREZA

Es dificil definir la propiedad de dureza, sólo que hace una relación de cada valor de dureza que se obtiene de una probeta, estos valores no se pueden utilizar directamente en trabajos de diseño como se puede hacer con un valor de resistencia a la tracción ya que los valores de dureza no tienen significado intrínseco. La dureza no es una propiedad fundamental de un material, sino que está relacionada con las propiedades elásticas y plásticas. El valor de dureza obtenido de una prueba determinada sirve sólo como comparación entre materiales o tratamientos y se puede utilizar para estimar otras propiedades mecánicas.

Los tratamientos térmicos o mecánicos efectuados en una probeta metálica resultan generalmente con un cambio de dureza.

Los ensayos de dureza se los realiza imprimiendo en la probeta -que debe estar en reposo sobre una plataforma rígida, un marcador o identador de geometría determinada, bajo una carga estática conocida que se aplica directamente o por medio de sistema de palanca, dependiendo del sistema de prueba, la dureza se expresa por un número inversamente proporcional a la profundidad de la identación para una carga y marcador específico. Los métodos comunes para pruebas de dureza son:

TABLA Nº 12

RESULTADOS DEL ENSAYO DE TRACCION EN PROBETAS SIN PUNTOS DE SOLDADURA

Probeta Nº	Diámetro de la Muestra	Sección de la Probeta	Longitud Inicial	Longitud Final	Límite de Fluencia	Resisten- cia a la Tracción	Resisten- cia a la Rotura	Alargamiento
	mm.	mm ²	mm.	mra.	Kgf/mm ²	Kgf/mm ²	lgf/mm ²	%
				INTERMED	10			
1 2 3	20.58 20.73 20.60	331.64 337.51 333.3	102.90 103.65 103	132.05 137.0 131	31.27 30.81 30.90	50.66 49.1 53.11	40.8 43.55 48.61	30.27 32.18 27.18
				EXTRADUR	<u>)</u>			
2 4 5	21.03 20.62 20.84	347.35 333.94 341.10	105.15 105.10 104.2	128.2 123.20 128.2	43.07 47 43.14	70.61 76.38 69.64	59.31 63.16 58.96	21.92 19.50 20.13

En la Tabla Nº 12 y Figura Nº 20, encontramos que los valores de límite de fluencia, resistencia máxima a la tracción y resistencia a la rotura, son mayores en un 30% aproximadamente, en el extraduro comparado con el de grado intermedio, debido a la presencia de un contenido mayor de carbono.

Respecto a la ductilidad medida a partir del alargamiento porcentual, observamos que el intermedio muestra un alargamiento promedio de 30%, mientras que el extraduro al ser menos dúctil se alarga el 20% del promedio obtenido de tres pruebas, existiendo una diferencia del 10%.

Analizando las probetas sin soldar y soldadas del acero de grado intermedio cuyos valores de resistencia se encuentran en las Tablas Nº 12, Nº 13, y en el Gráfico de la Figura Nº 21, observa mos que en las probetas con puntos de soldadura aumentan los valores de las resistencias en un 30% aproximadamente, pero disminuye el % de alargamiento en aproximadamente 5.3% lo cual es mostrado esquemáticamente en la Tabla Nº 14.

Para los aceros de grado extraduro la presencia de puntos de soldadura aumentan los valores de las resistencias en un 30% apro ximadamente comparadas con las probetas sin puntos de soldadura, como se indica en la Figura Nº 22 y Tabla Nº 14. Es importante anotar que en los aceros extraduros soldados, la resistencia máxima a la tracción y la resistencia a la rotura tienen igual valor y rompen sin presentar estricción. Este comportamiento se

TABLA Nº 14

	GRADO						
	INTERMEDIO			EXTRADURO			
	Sin Soldar	Con Sol- dadura	Dife- rencia	Sin Soldar	Con Sol- dadura	Dife- rencia	
Límite de Fluencia Kg./mm²	31.14	42.87	+11.73	44.40	61.30	+16.90	
Resistencia a la Tracción Kg./mm²	50.96	73.13	+22.17	72.21	92.93	+20.72	
Resistencia a la Rotura Kg./mm²	44.32	67.10	+22.78	60.48	92.93	+32.45	
Alargamiento %	29.88	24.63	-5.25	20,.52	6.2	-14.32	
				1 1			

* Promedio obtenido de tres ensayos

CUADRO COMPARATIVO ENTRE ACERO DE GRADO INTERMEDIO Y EXTRADURO CON SOLDADURA Y SIN SOLDADURA

llega a determinar que se ha transformado en un material frágil. Además el % de alargamiento ha disminuido de un 20% a 6%.

En la Figura Nº 23 se encuentran las curvas correspondientes de las probetas con puntos de soldadura para los aceros de grado intermedio y extraduro, en el cual se sigue manteniendo la diferencia en sus valores de resistencia como en el gráfico sin puntos de soldadura, el % de elongación es menor en el extraduro. Observándose que el acero intermedio con puntos de soldadura cambia su comportamiento una vez soldado, asemajandose a las pro piedades de tracción de un acero extraduro, con la desventaja de poseer menor ductilidad y mayor hterogeneidad de sus propiedades.

El alargamiento disminuye en las probetas con puntos de soldadura para los dos grados, de estos resultados se puede evaluar que la disminución de la ductilidad es considerable ya que los dos aceros se presentan como materiales frágiles, con la presencia de puntos de soldadura. Como la tenacidad es el área la curva esfuerzo deformación se encuentra que la tenacidad disminuy en % considerable

A.2 RESULTADOS Y ANALISIS DE LOS ENSAYOS DE DOBLADO

La Tabla № 15 muestra un esquema general como se realiza el ensayo de doblado con las medidas correspondientes para cada grado, tomando en cuenta las normas exigidas por INEN utilizadas en la empresa nacional.

FIGURA Nº 20

FIGURA Nº 30.- Probetas de Barras de Acero Corrugado Extraduro soldados los estribos, que rompieron durante el Ensayo de Doblado.

A.3 ANALISIS DE SUPERFICIE DE FRACTURA

Se analizaron las superficies de fractura correspondientes a los ensayos de tensión de doblado.

Para el ensayo de tensión tenemos superficies de fractura dúc til y frágil, un fractura dúctil ocurre después de una considerable deformación plástica previo a la falla asociada con la formación de cuello en la sección de fractura tomando la forma de fractura copa y cono. La fractura empieza con la formación de cavidades en el centro de la región donde se forma el cuello, bajo un esfuerzo contínuo aplicado al material, las cavidades se unen para formar una grieta en el centro de la probeta, la grieta avanza hasta la superficie de la probeta en dirección perpendicular al esfuerzo aplicado. La fractura termina a lo largo de una superficie que forma un ángulo de aproximadamente 45° con el eje de tensión. Las Figuras Nº 31, Nº 32 y Nº 33 muestran fracturas dúctiles de aceros de grado intermedio y extraduro sin puntos de soldadura.

La fractura frágil generalmente comprende la rápida propagación de una grieta, con el mínimo de absorción de energía sin deformación plástica, ni reducción de área. La superficie de fractura frágil muestra una apariencia granular debido a los cam bios de-orientación de los planos de deslizamiento como también de un grano a otro.

Las probetas de grado intermedio y extraduro con puntos de sol-

FIGURA Nº 31.- Probetas de Tracción de Grados Intermedio y Extraduro, sin soldadura.

FIGURA Nº 32.- Superficie de fractura de acero, Grado Intermedio, sin Soldadura

FIGURA Nº 33.- Superficie de Fractura de Acero, Grado Extraduro, sin Soldadura.

dadura son barras que han sido alteradas las microestructuras en la zona del punto de soldadura, que es una sección pequeña comparada con la masa de toda la barra, la fuente de calor del arco eléctrico es superficie para llevar al acero a la temperatura de austenización y que al enfriarse tiene una gran velocidad que son las razones para que exista transformaciones dentro de su microestructura, entonces, en la sección transversal de esta zona encontraremos dos zonas con diferente tamaño de grano. La zona afectada por el calor tendrá un tamaño de grano muy fino con orientaciones al azar.

De esta manera, al observar las probetas Nº 1 ó Nº 3 del ensayo de tracción con puntos de soldadura del acero de grado in termedio que se encuentran en las Figuras Nº 34, Nº 35, Nº 36 y Nº 37, en las que se detalla la superficie de fractura en las que no existe reducción de área o formación de cuello en la sección de fractura. La fractura ha empezado en el pie del punto de soldadura, en ninguna se ha encontrado que la falla haya empezado en otro punto que no sea en la zona afectada por el calor.

Al observar la superficie de fractura encontramos que existen dos secciones fáciles de diferenciar, la una que empieza en la zona afectada por el calor y se dirige hasta elcentro de la probeta en forma de triángulo, donde ha empezado la fractura y se ha propagado hacia el resto de la superficie. En esta zona no existe línea de propagación sino que tiene una apariencia

FIGURA Nº 34-a.- Vista superior de la Probeta Nº 1 de Acero grado Intermedio con puntos de Soldadura, después del Ensayo de Tracción.

FIGURA Nº 34-b.- Vista de la superficie de fractura de la Probeta Nº 1 de acero grado Intermedio soldado, después del Ensayo de Tracción.

FIGURA Nº 35.- Vista de la Superficie de Fractura de la Probeta Nº 1 con la Barra de Estribo de Acero, Grado Intermedio después del Ensayo de Tracción.

FIGURA Nº 36.- Vista Superior de la Probeta Nº 3 de Acero, Grado Intermedio, después del Ensayo de Tracción.

FIGURA Nº 37-a.- Superficie de Fractura de la Probeta Nº 3, de Acero Grado Intermedio con Barra de Estribo después del Ensayo de Tracción.

FIGURA Nº 37-b.- Vista de la Superficie de Fractura de la Probeta Nº 3 de Acero, grado Intermedio Soldado después del Ensayo de Tracción.

granular típica de un material frágil, la otra zona de mayor área donde se observan líneas de propagación de fisura desde el centro de la probeta hacia la superficie, esto indica que ha existido una deformación pequeña en el momento de la falla y que de todas maneras presenta una apariencia granular que corresponde a una falla por fractura frágil, debido a una sobre carga que soporta el material una vez que el área transversal soportante ha disminuido debido a la presencia de la fisura inicial.

Las características antes anotadas se pueden determinar con los valores de la Tabla Nº 13, y las curvas de las Figuras Nº 21 y Nº 23.

Para las probetas de acero de grado extraduro, las superficies de fractura del ensayo de tracción se muestran en las Figuras № 38, № 39, № 40, № 41, y № 42 donde se pueden observar las mismas condiciones o características de fragilidad encon tradas para el acero de grado intermedio, además de ésto se ha encontrado que la fractura comienza al pie de la soldadura, iniciándose como una fisura que es relativamente pequeña comparada con la de grado intermedio, presenta una morfología de alta fragilidad que al producirse en los primeros momentos del ensayo de tensión, crea una disminución de área soportante, agravada con el efecto de entalla que se presenta en este tipo de concentración de tensiones.

Las líneas de propagación de la fractura tienen origen en la zo-

FIGURA Nº 38-a.- Vista de la Superficie de Fractura de la Probeta Nº 4 de Acero, Grado Extraduro con el Estribo después del Ensayo de Tracción.

FIGURA Nº 38-b.- Vista de la superficie de fractura de la Probeta Nº 4 de Acero, Grado Extraduro con Puntos de Soldadura después del Ensayo de Tensión.

Acero de Grado Extraduro después del Ensayo de Tracción.

87

FIGURA Nº 40-a.- Superficie de Fractura de la Probeta Nº 5 de Acero Grado Extraduro Soldado, luego del Ensayo de Tensión

FIGURA Nº 40-b.- Superficie de Fractura de la Probeta Nº 5 de Acero Grado Extraduro con Puntos de Soldadura, despúes del Ensayo de Tensión.

FIGURA Nº 41-a.- Vista de la Superficie de Fractura y el Punto de Soldadura de la Probeta Nº 6, de Acero Grado Extraduro después del Ensayo de Tensión.

FIGURA Nº 41-b.- Vista de la superficie de fractura de la Probeta Nº 6 de Acero, Grado Extraduro Soldado, después del Ensayo de Tensión

FIGURA Nº 42-a.- Vista de la Superficie de Fractura de la Probeta Nº 6 de Grado Extraduro, soldado después del Ensayo de Tracción.

na afectada por el calor, y se propagan al resto de la superficie, lo que indica como una fractura frágil ya que no aparece la mínima de formación en el momento de la falla, lo mismo ocurre para las probetas del ensayo de doblado. Estos resultados ya se encontraron en las Figuras Nº 22 y Nº 23 y en la Tabla Nº 13.

A.4 RESULTADO Y ANALISIS DEL ENSAYO DE IMPACTO

Las probetas para este ensayo fueron de los grados intermedio y extraduro sin soldar y con puntos de soldadura, los resulta dos obtenidos están indicados en la Tabla Nº 16, en la que indica la energía absorbida para romper la probeta a temperatura ambiente, este valor da una información relativa a la tenaci dad.

Al comparar la energía absorbida por las probetas sin puntos de soldadura, la de grado intermedio absorbe más energía que las de extraduro lo que representa que este último tiene menor tenacidad que el acero de grado intermedio.

Al colocar un punto de soldadura a cada acero la energía absorbida para romper la probeta disminuye, lo que indica que disminuye la tenacidad. Esta disminución es del orden del 0.3 (Kgf-m) tanto en los aceros de grado intermedio como en los extraduros; sin embargo se estima que si el punto de soldadura se lo realizaba del mismo lado de la ranura, esta diferencia sería mayor por cuanto se hubiera facilitado la propagación de la fractura. Se muestran en las Figuras Nº 43, Nº 44, Nº 45, Nº 46 y Nº 47 que detallan las diferentes probetas en que las probetas soldadas tienen relativamente una superficie mayor de fractura frágil que las probetas sin soldar para los dos tipos de acero.

B. RESULTADOS Y COMPARACION DE LOS VALORES OBTENIDOS EN LOS ENSAYOS DE DUREZA Y MICRODUREZA.

Los Ensayos de Dureza solamente fueron aplicables para determina ciones en áreas grandes; sin embargo, cuando se analizó la varia ción de dureza en los diferentes puntos de la zona afectada por el calor y el metal de soldadura se debió preferir el ensayo de microdureza Knoop por cuanto permite su aplicación puntual en áreas mucho más pequeñas. Con la finalidad de establecer un patrón de comparación, los valores obtenidos, fueron luego transformados a valores de dureza Rockwell B y C.

De los resultados obtenidos y mostrados en la Tabla № 17 se puede deducir:

- a) El metal base del grado intermedio tiene una dureza menor que el extraduro.
- b) Ambos grados al ser soldados, duplican su dureza en la zona afectada por el calor.
- c) Para los dos grados, el metal de soldadura y el metal de estribo tienen prácticamente iguales valores de dureza.

Se muestran en las Figuras Nº 43, Nº 44, Nº 45, Nº 46 y Nº 47 que detallan las diferentes probetas en que las probetas soldadas tienen relativamente una superficie mayor de fractura frágil que las probetas sin soldar para los dos tipos de acero.

92

RESULTADOS Y COMPARACION DE LOS VALORES OBTENIDOS EN LOS ENSAYOS DE DUREZA Y MICRODUREZA.

Los Ensayos de Dureza solamente fueron aplicables para determina ciones en áreas grandes; sin embargo, cuando se analizó la varia ción de dureza en los diferentes puntos de la zona afectada por el calor y el metal de soldadura se debió preferir el ensayo de microdureza Knoop por cuanto permite su aplicación puntual en áreas mucho más pequeñas. Con la finalidad de establecer un patrón de comparación, los valores obtenidos, fueron luego transformados a valores de dureza Rockwell B y C.

De los resultados obtenidos y mostrados en la Tabla Nº 17 se puede deducir:

- a) El metal base del grado intermedio tiene una dureza menor que el extraduro.
- b) Ambos grados al ser soldados, duplican su dureza en la zona afectada por el calor.
- c) Para los dos grados, el metal de soldadura y el metal de estribo tienen prácticamente iguales valores de dureza.

TABLA Nº 16

RESULTADO DE LOS ENSAYOS DE IMPACTO

GRADO	CONDICION	Nº DE PROBETA	ENERGIA ABSORBIDA Kg-m	
				Promedio
INTERMEDIO	Sin puntos de Soldadura	12 13 14 15	1.8 1.78 1.80 1.45	1.79
	Con Puntos de Soldadura	11 22 33 44	1.45 1.50 1.30 1.45	1.42
FXTRADURO	Sin Puntos de Soldadura	1 2 3 4	1.65 1.55 1.60 1.45	1.56
	Con Puntos de Soldadura	1 2 3 4	1.35 1.20 1.30 1.15	1.25

-

FIGURA Nº 43.- Detalle de la Superficie de Fractura de una Probeta de Ensayo de Impacto.

FIGURA Nº 44.- Probeta de Ensayo de Impacto de Grado Intermedio Extraduro sin Puntos de Soldadura.

FIGURA Nº 45.- Probetas de Ensayo de Impacto Grado Intermedio con puntos y sin puntos de Soldadura.

FIGURA Nº 46.- Probetas de Ensayo de Impacto Grado Extraduro Soldado y sin Soldar.

FIGURA Nº 47.- Probetas de Ensayo de Impacto de Grados Intermedio y Extraduro con Puntos de Soldadura. Las Figuras Nº 48 y Nº 49 muestran un corte transversal de la unión soldada donde se puede observar claramente la zona afectada por el calor y los cambios microestructurales que produce el calor introducido durante el proceso de soldadura.

C. COMPARACION Y ANALISIS DE LAS ESTRUCTURAS OBSERVADAS EN LOS ENSAYOS METALOGRAFICOS

C.1 METALOGRAFIAS DE METAL BASE:

Primeramente se realiza el análisis metalográfico de los aceros antes de efectuarse los puntos de soldadura, con la finalidad de observar posibles heterogeneidades que puedan afectar al comportamiento del acero luego del proceso de soldadura.

Se realizó un corte longitudinal a lo largo del eje de la barra con la finalidad de observar la microestructura presente tanto en el centro como en la superficie de la barra, en igual forma se observó la microestructura al pie del resalte. Las microestructuras obtenidas se muestran en las Figuras Nº 50, Nº 51 y Nº 52 para el grado intermedio; y en las Figuras Nº 53, Nº 54 y Nº 55 para el grado extraduro.

Comparando las figuras Nº 50 y Nº 53 encontramos que ambos grados en su zona central muestran una estructura perlítica en una matríz ferrítica, siendo en el grado intermedio mayor el porcentaje de ferrita presente y las colonias de perlita más bastas.

Las figuras № 51 y № 54 muestran que las barras en ambos grados

TABLA Nº 17

MICRODUREZA Y DUREZA DE LAS ZONAS INVOLUCRADAS POR EFECTO DEL PUNTO DE SOLDADURA PARA EL ACERO DE GRADO INTERMEDIO Y EXTRADURO

	GRADO							
ZONA	INTERM	EDIO	EXTRADURO					
	Microdureza KNOOP	Dureza	Microdureza KNOOP	Dureza				
Metal Base	207	91 RB	240	98 RB				
Zona Afectada por el calor	400	40 RC	500	48 RC				
Metal de Aporte	306	29 RC	295	28 RC				
Metal de Estri- bo.	215	93 RB	205	91 RB				

FIGURA Nº 48.- Ampliación de Transformación de las microestructuras con su microdureza KNOOP para el Acero de Grado Intermedio.

FIGURA Nº 49.- Ampliación de Transformación de las microestructuras con su microdureza KNOOP para el Acero de Grado Extraduro.

sufren descarburización durante el proceso de laminación debido a la reacción del carbono del acero con el oxígeno del aire. El acero de grado intermedio se presenta en su superficie como un acero casi ferrítico, lógicamente esta variación en el contenido de carbono en la sección transversal para los dos grados, producirá a su vez una variación de dureza transversal, aumentando desde la superficie hacia el centro de la barra.

Observaciones realizadas en el pie del resalte de barras de acero de grado intermedio y extraduro, Figuras Nº 52 y Nº 55, no mostraron granos deformados ni tampoco microfisuras, lo cual garantiza que las barras de acero en estos puntos no presentan zonas endurecidas por deformación si zonas débiles que soporten menor ductilidad que el resto de la barra

C.2 METALOGRAFIA DE UNION SOLDADA

El efecto del calor suministrada por el arco eléctrico del punto de soldadura, permite que el material llegue a la temperatura de austenización y bajo velocidades de enfriamiento que pueden ser lentas o rápidas ocurren transformaciones metalográficas, ya que los átomos de carbono pueden difundirse hacia afuera de la estructura de austenita, de este modo los átomos de hierro pueden lle gar a tener una estructura reticular bcc (cúbica centrada en el cuerpo).

Con un aumento de velocidad de enfriamiento no hay tiempo sufi ciente para que el carbono se difunda de la solución aunque tie-

NITAL 2% 200 X FIGURA Nº 50.- Microestructura del Centro de la Barra GRADO: Intermedio

102

.

FIGURA Nº 51.- Microestructura de la Superficie de la Barra GRADO: Intermedio

FIGURA Nº 52.- Microestructura del Pie de Resalte GRADO: Intermedio

NITAL 2% 200 X FIGURA Nº 54.- Microestructura de la Superficie de la Barra GRADO: Extraduro

NITAL 2% 200 X FIGURA Nº 55.- Microestructura del Pie de Resalte GRADO: Estraduro

ne lugar algún movimiento de los átomos de hierro la estructura no puede llegar a ser bcc, ya que el carbono está atrapado en la solución; la estructura resultante, es llamada martensita que es una solución sólida sobresaturada de carburo atrapado en una estructura tetragonal centrada en el cuerpo. Las dos dimensiones de la celda unitaria son iguales, pero la tercera está ligeramente extendida, debido al carbono atrapado, esta estructura reticular altamente distorsionada es la principal razón para la alta dureza de la martensita. Después de un enfriamiento drástico (temple) la martensita aparece microscópicamente como una estructura blanca acicular o tipo aguja, descrita a veces como un haz de pajitas.

Si la velocidad de enfriamiento es lenta la microestructura que se obtendrá será de perlita gruesa con una dureza baja. Conforme la velocidad de enfriamiento aumenta, la fineza de la perlita disminuye y la dureza empieza a aumentar, este incremento de la dureza es el resultado de disminuir la separación entre las placas de constitución dura cementita dentro de la ferrita blanda.

Para determinadas velocidades de enfriamiento podemos encontrar una microestructura llamada bainita que consta de delgadas placas de carburuo por lo general orientadas paralelamente a lo largo de la longitud mayor de las agujas de ferrita que forma la matriz. La dureza de la bainita varía desde 40 RC hasta 60 RC, este incremento de dureza como en la perlita es el reflejo del decremento en tamaño y espciamiento de las plaquetas de carburo. La Figura Nº 56 indica el detalle de las posiciones donde se han tomado las fotografías de la barra estructural con puntos de soldadura para el acero de grado intermedio.

La Figura Nº 57 indica las microestructuras que se encuentran en el metal base que no ha tenido transformaciones metalográficas por efecto del calor durante el proceso de soldadura, se observa matríz ferrítica en un 70% y el resto es perlita gruesa y repre sentan las características de un acero blando cuya dureza es de 91 RB aproximadamente, según fue determinado en el correspondiente ensayo y se indica en la Tabla Nº 17. Esta microestructura es alterada por efecto del calor, según se puede observar en la Fi gura Nº 58 donde se muestra la diferencia microestructural entre el metal base y la zona afectada por el calor donde empieza a transformarse. una microestructura blanda a una microestructura dura, porque en la matriz de ferrita se encuentran láminas delgadas de cementita que es fácil apreciar. Los límites de grano de la ferrita han variado, observando que presentan agujas, típico de microestructuras formadas a alta velocidad de enfriamiento.

En la Figura № 59 tenemos la microestructura que se encuentra en la zona afectada por el calor donde el metal base ha llegado a la temperatura de austenización por efecto del calor suminis trado por el arco eléctrico, la cantidad de masa que llega a esta temperatura es pequeña comparada con el resto de la masa de la barra estructural, que se encuentra a temperatura ambiente , permitiendo tener una diferencia de temperatura bien alta, y por la conductibidad térmica del acero la velocidad de enfriamiento es alta, produciéndose las condiciones óptimas para que ocurran transformaciones metalográficas que de acuerdo al contenido de carbono del acero producen distorsión de la red cristalográfica a la formación de nuevas estructuras en ambos casos causando un aumento considerable de dureza. Al darse estas condiciones podemos encontrar en la Figura № 59 una combinación de Martensita y Bainita basta, que son las que producen la elevada dureza (40 RC) encontrada en el ensayo correspondiente e indicada en la Tabla № 17.

Al avanzar hacia el metal de soldadura, se atraviesa la línea de fusión mostrada en la Figura Nº 60 en la cual se puede observar la diferencia de microestructura entre la zona afectada por el calor y el metal base.

La figura № 61 muestra la microestructura que se encuentra en el metal de soldadura que corresponde a una mezcla de material de aporte suministrado por el electrodo y de material base. El ma terial de aporte tiene un contenido de carbono que es de 0.10 -0.12 % según informaciones del fabricante, lo cual hace que el metal de soldadura tenga un contenido promedio de carbono inferior al contenido de metal base, esto hace que no se pueda obtener microestructuras altamente duras y se presenta un microestructura fina con zonas ferríticas y áreas probablemente de bainita, con una dureza aproximada del 29 RC.

En la Figura Nº 62 se muestra la linea de fusión del metal de sol-

dadura con el metal de estribo donde se observa que dentro del material de soldadura existe una matríz de ferritas tipo avalancha y una poca cantidad de perlita fina dentro de la matríz ferrítica. En el metal de estribo encontramos perlita muy fina que corresponde a una microestructura típica de un acero normalizado que se presenta bajo estas condiciones ya que el diámetro de la barra de estribo es pequeño. Para efectos de este estudio, las estructuras correspondientes en esta línea de fusión no revisten importancia.

Para el acero de grado extraduro, en la Figura Nº 63 se indica el detalle de la zona donde se han tomado las microfotografías de la barra estructural con puntos de soldadura. La Figura Nº 64 indica la microestructura del metal base sin transformaciones metalográficas donde se observan granos de perlita gruesa en una matríz de ferrita. Al compararlo con el de grado intermedio, en el extraduro existe mayor cantidad de perlita que de ferrita, en cambio que en el de grado intermedio, Figura Nº 57 se observó lo contrario. Esto es debido al mayor contenido de carbono existente en el acero de grado extraduro.

En la Figura Nº 65 encontramos la microfotografía de la línea de transición entre el metal base y zona afectada por el calor, donde se puede observar el cambio metalográfico que ocurre por efecto del calor introducido durante el proceso de soldadura en el metal base, donde se observa que existen unas zonas blancas de ferrita rodeando a colonias de perlita muy fina y bainita. La Figura Nº 66 corresponde a la microestructura observada en la zona afectada por el calor, donde se presenta una estructura martensítica y bainítica de gran dureza (50 RC), según se comprobó en el ensayo de dureza correspondiente. La dureza de esta microestructura se debe al mayor porcentaje de carbono presente que permite que ocurran las transformaciones indicadas, aunque tenga la misma velocidad de enfriamiento que la del acero de grado intermedio, esto es debido a que la velocidad crítica de enfriamiento es me-nor en el grado extraduro que el de grado intermedio, entendién dose por velocidad crítica de enfriamiento a la velocidad mínima en la cual un acero se transforma en martensita en un 100%.

En la Figura № 67 tenemos la microfotografía que corresponde a la línea de fusión entre la zona afectada por el calor y el material de soldadura donde se puede observar la marcada diferencia microestructural entre estas dos áreas.

La Figura Nº 68 representa la microestructura de metal de soldadura presente en el cordón, el cual es una mezcla de metal de aporte de bajo contenido de carbono (0.10%) con el metal base de medio contenido de carbono (0.45%), donde se puede claramente observar una estructura widmanstätten, propias de acero conteniendo 0.20%-0.40% de carbono y su formación es favorecida con la alta velocidad de enfriamiento del metal de soldadura. Esta estructura es una forma peculiar de presentarse la ferrita acicular que al tener una orientación preferente hacen disminuir la ductilidad y la tenacidad de esta zona. La dureza observada fue de 30 RC.

En la figura № 69 encontramos la fotografía de la línea de fu -

sión entre el metal de aporte y el metal de estribo.

En algunos casos, cuando se realizan soldadura de material extraduro sin las debidas precauciones contra la humedad ambiental o por presencia de humedad en el revestimiento del electrodo, se producen fisuras en la línea de fusión del cordón de soldadura, según se muestra en la Figura Nº 70 observada al pie de uno de los puntos de soldadura. Estudiando la morfología y la posición de estas fisuras, se concluye que éstas son debido a absorción de hidrógeno del metal de soldadura cuando está líquido y que al solidificarse es desalojado. La presencia de estas fisuras producen efecto de entalla aumentando los esfuerzos residuales y la concentración de esfuerzos que producirán un decremento de la resistencia de la barra.

D. <u>COMPARACION DE LOS VALORES DE TEMPLABILIDAD OBTENIDOS EN LOS DOS ACE-</u> ROS.

El método más ampliamente utilizado para determinar la templabilidad es el ensayo Jominy, esta prueba ha sido estandarizada por la ASTM, la SAE y la AISI. La probeta e calienta a la temperatura de austenización y se enfría por la punta con un chorrro de agua, de esta manera toda probeta recibe la misma velocidad de enfriamiento y como se supone que la conductibidad térmica es la misma para todos los aceros, esta rapidez de enfriamiento es la misma para determinada posición sobre la probeta de ensayo sin importar la composición del acero del cual está hecha la probeta, de esta manera cada probeta

FIGURA Nº 56.- Detalle de las Posiciones donde se tomaron las fotografías de la Barra Estructural con Puntos de Soldadura, Acero Grado Intermedio.

200 X

FIGURA Nº 57.- Microestructura de Metal Base. Grado Intermedio.

FIGURA Nº 58.- Transición entre Metal Base y Zona Afectada por el Calor. Grado Intermedio.

FIGURA Nº 63.- Detalle de las posiciones donde se han tomado las fotografías de la barra estructural con puntos de soldadura para el acero de Grado Extraduro.

NITAL 2% 200 X FIGURA Nº 64.- Microestructura de Metal Base. Grado: Extraduro

Material de Aporte

FIGURA Nº 65.-Transición entre Metal Base y Zona Afectada por el Calor.

Grado: Extraduro

se somete a una serie de velocidades de enfriamiento variando desde muy rápidas en el extremo templado hasta muy lentas en el enfriado por aire. De esta manera se han graficado las curvas de templabilidad de diez probetas para el acero de grado intermedio y de un igual número de probetas para el grado extraduro se ha tomado de la tesis de grado de Ing. Barreiro. (12)

Las Figuras № 71 y № 72 indican los resultados obtenidos en este ensayo para los dos grados de acero estudiados, observándose que los valores de dureza caen dentro de lo que se conoce como banda de templabilidad que es una característica de cada acero para obtener durezas elevadas en la zona templada; así, para el acero de grado intermedio la dureza máxima es de 49 RC y la mínima 45 RC, que corresponde a una microestructura de bainita o martensita mezclada con ferrita que es una zona de dureza con microestructuras frágiles.

En el acero de grado extraduro la zona templada tiene una dureza mínima de 54 RC y una dureza máxima de 57 RC que corresponde a microestructuras de bainita o mariensita o una mezcla de las dos, pero que es una microestructura altamente frágil lo que indica a groso modo que tenemos zonas templadas con microestructuras duras en porcentajes diferentes para la misma velocidad de enfriamiento ya que es función del contenido de carbono para obtener zonas templadas.

Los siguientes puntos de la banda de templabilidad indican que la dureza en el acero extraduro es siempre mayor que el de grado intermedio para las mismas velocidades de enfriamiento. Este ensayo permite comprobar que al colocar el punto de soldadura el metal que llega a la temperatura de austenización se transforma en microestructuras con dureza similar o igual a la indicada en este ensayo, ya que tenemos todas las velocidades de enfriamiento que puedan existir y que algunas deben ser iguales con las velocidades de enfriamiento del material soldado.

En el caso de los puntos de soldadura, el metal base se funde en la zona donde se establece el arco eléctrico, alcanzándose así temperaturas superiores al punto de fusión concentradas en esta pequeña arca debido al calor introducido en el proceso de soldadura. Este calor se disipa hacia el aire o a través del metal base calentándolo a éste hasta temperaturas mayores a la temperatura de austenización en ciertas zonas. Una vez que se suspende el arco, el metal de soldadura y el metal base comienza a enfriarse, que para este caso es enfriamiento al aire. Tomando en cuenta que las temperaturas varían a medida que nos lejamos del punto de soldadura, y la temperatura ambiente es constante, se establecerán gradientes de temperatura diferentes para cada punto, y por lo tanto se producirán distintas velocidades de enfriamiento. Produciéndose así un caso similar a lo observado en el ensayo Jominy, y las microestructuras que se observan también serán similares a las ya observadas en el ensayo Jominy.

La comparación realizada nos demuestra que en el ensayo Jominy predice con bastante aproximación lo que sucederá en un acero sometido a tratamiento térmico ya sea independientemente o en un proceso de Lógicamente, las curvas de templabilidad obtenidas dependerán de la composición química del acero y principalmente de su carbono equivalente.

FIC	GURA	Nº	71
-			_

P

0.30 0.75 0.040.05 0.2

Mn

S

.

GRAIN

C

ASTM END QUENCH TEST

HEAT NO.

OF	STEEL	(A	250)	
TCN	12-102550 00			

TYPE

1030

D	ATE				_
	PE SF	TORY ECIM	EN		
Si	Ni	Cr	Mo	NORM. TEMP. *F.	QUENCH TEMP. F.

-	-		-		-		-	-		-	-	-	-	-					_				-		
-	-			_	-	5	-	-		-		_	-			-	-	_		-		-	2	-	
			VE	LOC	IDA	DI	DE	EN	FRI	AM	EEN	TO	AP	ROX	IMAI	A °	F/SI	EGUI	NDO	A 130	00°F			-	
000	195	125	77.0	42.0	33.0	26.0	18 0	16.3	14.0	124	0 01	-	8.3	0 1	2		0.1								
-			-		-		-	-		-			-		-		-						1		1-
-		1		-	+	-		-	2			-			-	-	=	-	-	-	-	-	-	-	-
-	==	-			-	_	-	-		-	12	=	-		-	E	-	-		-		-	-		1
	-	-	-	-	-	-		-		-		-			-	-	-	_		-	-			1	-1-
-	i	-			-	-	=	-		-		-	-								-	-	-		
	-	-		-	-			-		-		-	-			=	-				-	-			
-	-	+	-	-	-		-		-	1		-		-	-	-	-	_		-	-	-		-	-
Ś	2	-		-		2	-	_		1	-		-	-	-	==	-		-	-			-	-	
8	X	-			-		-	_	-	-		-	-	-	-		-1-			-	-		-		-
-	\bigotimes	X	-				-				1	-						_				-	-	-	-
-	<u>4</u>	3				-	-	_		-		-	-		-				-			-	-		
-		8	8-	-	-	-		_				-	-			-							-	-	
	=	B	8	-	-		-	_					-							-		-	-	-	-
		-	\otimes	1-	-		-	-		-	.17	1	-		+						-	-			
-		-	-6		-		-	-		-		-	-		-	-							-	-	
-				XX		X	-	-				-	_				-					-	-	-	-
-		1		-	XX	X	X	80	N	20	vir.	-	-		-			-		-			-	-	
-		-			-		-	20	XX	2	\propto	\otimes	\propto	XXX	XX		Tan			-	-		-	-	-
		-			-		-			-		1-	-	M	XX	\propto	\otimes	***	***	800	0000	*			
-	-	F			-	-	-	-	-	-	-	-	-			-	-		- X	XXXX		4	-	-	
-		-	-		-		-	-				1-					-	-				+		-	

BANDA DE TEMPLABILIDAD PARA EL ACERO DE GRADO INTERMEDIO

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

- 1.- Los valores de límites de fluencia, resistencia máxima a la tracción y alargamiento para los aceros de grado intermedio y extraduro analizados, se encuentran dentro de norma.
- 2.- Existe descarburación en la superficie de las barras de los dos grados, ya que la microestructura del centro de la barra es diferente a la microestructura de la superficie.
- 3.- En el pie del resalte no se ha encontrado fisuras en ninguno de los grados analizados, tampoco se observa microestructura deformada.
- 4.- Las microestructuras están de acuerdo al porcentaje de carbono que indica el fabricante, en lo que respecta a los porcentajes de perlita y ferrita.
- 5.- No existe textura ni perlita baldeada en la microestructura por efecto de laminación.
- 6.- El calor suministrado por la soldadura produce cambios microes tructurales en la zona adyacente.
- 7.- La zona afectada por el calor en los grados intermedio y extradu-

ro presenta estructuras de martensita y bainita que producen un aumento considerable de la dureza y una disminución de la ductilidad.

- 8.- Los aceros de grados intermedio y extraduro no soportan doblado, luego de ser soldados debido a la microestructura de temple que se forma en la zona templada por el calor.
- 9.- Los puntos de soldadura producen cambios muy significativos en la curva esfuerzo-deformación de los dos aceros aumentando sus valo-res límite de fluencia, resistencia máxima y disminuyendo sus valores de elongación.
- 10.- Aunque el ensayo Charpy no mostró gran variación de valores, sin embargo de la disminución del área debajo de la curva esfuerzo-deformación del material soldado se puede concluir que la unión soldada presenta menor ductilidad que el material antes de la soldadura.
- 11.- De los ensayos realizados, se concluye que estos aceros no son recomendables para ser soldados en las condiciones en que este trabajo actualmente se realiza.

あいかいよ

10.10

BIBLIOGRAFIA

- 1.- Manual ASTM, Tomo 4, 1972
- 2.- Building Construction, Materials and Types of Construction, Fourth edition, of Huntington and Mickadeit
- 3.- Introducción a la Metalurgia Física, Segunda Edición, Avner
- 4.- Ciencia de Materiales para Ingeniería, Carl A. Keyser
- 5.- Materiales para Ingeniería, Van Black
- 6.- The Marking, Shaping and Treating of Steel. United States Steel Corporation.
- 7.- Seminario sobre "Tecnología de la Soldadura al Arco Eléctrico", por Ing. Rubén Espinoza.
- Manual de Control de Calidad de Acerías Nacionales del Ecuador, (ANDEC).
- 9.- "Barras de Acero para Hormigón Armado", INEN.
- 10.- Welding Metallurgy, Linnert, Volumen 2
- 11.- Tesis de Grado del Ingeniero Mecánico Francisco Barreiro Patiño.