ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación

"ESTUDIO DE COORDINACIÓN DE LAS PROTECCIONES EN BASE A HERRAMIENTAS COMPUTACIONALES APLICABLE A LA SUBESTACIÓN DE DISTRIBUCIÓN CERRO BLANCO"

TESINA DE SEMINARIO

Previo a la obtención del título de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACIÓN POTENCIA

Presentado por:

Pamela Denisse Henríquez Zúñiga Carlos Xavier Saltos Pincay Sixto Miguel Yánez Mayorga

> GUAYAQUIL – ECUADOR 2013

AGRADECIMIENTO

A Dios, por ser fiel compañero de nuestras luchas y darle sentido al esfuerzo.

A nuestros padres por entregarnos su confianza, apoyo y ejemplo.

A cada uno de nuestros profesores, que llevaron más allá de las aulas su generosidad de compartir conocimientos y enseñanzas.

Al Ing. Juan Saavedra profesor de la materia de graduación por su guía, apertura y orientación durante el desarrollo de este trabajo.

A nuestros amigos y compañeros, que hicieron de nuestras carreras universitarias una gran experiencia.

DEDICATORIA

Al Señor Jesús, mi Amigo Bueno, quien ha sido mi guía y soporte. A Santa María por su compañía maternal en esta travesía. A mi padre, por ser mi ejemplo de rectitud y lucha. A mi madre por sus amorosos cuidados, sus oportunas correcciones y la confianza que ha depositado en mí. Y a mi futuro esposo, por su firme decisión de acompañarme en todo esfuerzo personal y profesional pero sobre todo en el combate espiritual.

Pamela Denisse Henríquez Zúñiga

A Dios por guiarme, darme sabiduría, salud, fortaleza ante las adversidades, por brindarme su infinito Amor y bondad, y llenarme de bendiciones.

A mis hermanas, sobrinos y toda mi familia que de alguna manera me motivan a seguir hacia adelante, y tener una razón de lucha.

A mi madre Vicenta Gina Pincay Chóez por su Amor y apoyo incondicional, enseñarme que con motivación, perseverancia y mucho esfuerzo se pueden alcanzar los sueños.

Carlos Xavier Saltos Pincay

A mi Padre Celestial por haberme acompañado desde siempre, y guiarme en la toma de mejores decisiones que han hecho de mí un mejor ser humano.

A mi familia. Mi madre por ser una excelente mujer y en todo momento darme ánimos de éxito; mi padre por siempre estar junto a nosotros y darnos un buen ejemplo de vida; a mis hermanos que siempre me han motivado para que culmine mi carrera y sea un hombre de bien; y a toda mi familia que siempre estuvo ahí apoyándome incondicionalmente.

Y ahora por esta nueva familia que tengo le agradezco a Dios, que nos guie siempre.

Sixto Miguel Yánez Mayorga

		,
TDIDIINIAI	DE SUSTENTA	$A \cap I \cap M$
IKIDUNAL	DE SUSTENT	1 CIUN

Ing. Juan Saavedra Profesor Materia de Graduación Ing. Adolfo Salcedo Profesor Delegado del Decano

DECLARACIÓN EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestas en esta tesina de seminario, nos corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Pamela Denisse Henríquez Zúñiga
Carlos Xavier Saltos Pincay
Sixto Miguel Yánez Mayorga

RESUMEN

El presente documento tiene como finalidad desarrollar la coordinación de protecciones de la Subestación de Distribución de Energía Eléctrica Cerro Blanco, con la ayuda de herramientas computacionales que nos faciliten el estudio proveyéndolo de mayor precisión y fácil reajuste; permitiéndonos concentrar todos nuestros esfuerzos en el proceso de la información bajo criterios de ingeniería aplicables de manera general ante cualquier coordinación de protecciones en subestaciones.

En el *Capítulo 1* se presenta la descripción detallada de los equipos que dispone la Subestación Cerro Blanco, información proporcionada por la Empresa Eléctrica de Guayaquil, logrando visualizar de manera más clara los equipos a coordinar en el desarrollo de los capítulos posteriores.

En el *Capítulo 2* se determinan parámetros necesarios para el análisis, tales como voltajes de barras, potencia demandada, carga en el transformador y conductores, resultantes de estudios de Flujo de Carga realizados en el software Power World Simulator Versión 17. Licencia Educacional.

En el *Capítulo 3* se presenta los estudios de cortocircuito, sometiendo al sistema a condiciones de falla; obteniendo así los valores de corrientes de falla máxima y mínima y los efectos causados en cada componente de interés en el sistema.

En el *Capítulo 4* se describe la protección del transformador de potencia de la Subestación, las funciones de los relés que dispone, los criterios necesarios para sus respectivos ajustes y la calibración del relé de sobre corriente.

El *Capítulo 5* es considerado como la sección con mayor inherencia de este trabajo, ya que presenta el ajuste y selección de los correctos equipos de protección en cada punto requerido en el sistema, así como también la coordinación de los mismos bajo criterios y normas eléctricas, permitiéndonos justificar la coordinación ya efectuada, e incluso realizar mejoras, correcciones o recomendaciones para un mejor funcionamiento de las protecciones de la Subestación que sometimos al estudio.

INDICE GENERAL

AGRADECIMIENTO		
DEDICATORIA		
TRIBUNAL DE SUSTENTACIÓN		
DECLARACIÓN EXPRESA		
RESUMEN		
ABREVIATURAS		
ÍNDICE DE FIGURAS		
ÍNDICE DE TABLAS		
INTRODUCCIÓN		
CAPÍTULO 1: DESCRIPCION DE LAS INSTALACIONES		
1.1 GENERALIDADES 1		
1.2 UBICACIÓN GEOGRÁFICA1		
1.3 INFRAESTRUCTURA CIVIL		
1.4 SERVICIOS BASICOS		
1.5 INFRAESTRUCTURA ELÉCTRICA Y EQUIPOS4		
1.5.1 Red de Subtransmisión4		
1.5.2 Patio de 69 KV 5		
1.5.2.1 Estructuras5		
1.5.2.2 Aisladores y Herrajes 5		

1.5.2.5 Pararrayos en estructura 69 KV 10

1.5.2.6 Conductores		
1.5.3 Transformador de Potencia11		
1.5.3.1 Pararrayos sobre el transformador13		
1.5.4 Patio de 13.8 KV		
1.5.4.1 Seccionador de aire principal16		
1.5.4.2 Reconectadores de las Alimentadoras		
1.5.4.3 Cuchillas seccionadoras de las Alimentadoras		
1.5.4.4 Seccionadores de interconexión entre Alimentadoras 19		
1.5.4.5 Conductores		
1.5.4.6 Aisladores y Herrajes		
1.5.4.7 Transformadores de Potencial		
1.5.4.8 Transformadores de corriente21		
1.5.4.9 Transformador auxiliar22		
1.5.5 Cuarto de Control23		
1.5.5.1 Banco de baterías y cargador23		
1.5.5.2 Tablero		
1.5.5.3 Medidores25		
1.5.5.4 Dispositivos de control y protección		
1.5.5.4.1 Protección Diferencial		
1.5.5.4.2 Panel de alarmas27		
1.5.5.4.3 Otros dispositivos de control y protección		
1.5.6 Malla de tierra29		
CAPÍTULO 2: ESTUDIOS DEL FLUJO DE CARGA		
2.1. INTRODUCCIÓN		
2.2 CRITERIOS ADOPTADOS PARA EL ESTUDIO		
2.2.1 Flexibilidad Operacional		
2.2.2 Niveles de Confiabilidad		

2.2.3 Niveles de sobrecarga	. 31
2.2.4Regulación de Voltaje	. 32
2.3 ANÁLISIS DE CASOS	. 32
2.3.1 Estudios de Flujo de Carga – Caso Base Carga Máxima	. 32
2.3.2 Estudios de Flujo de Carga — Caso Base Carga Mínima	. 33
2.4 DATOS DEL SISTEMA	. 35
2.4.1 Datos de Transformador de Fuerza	. 35
2.4.2 Datos de conductores	35
2.5 RESULTADOS DE LOS ESTUDIOS DE FLUJO DE CARGA	36
2.5.1Casos base.	. 37
2.5.1.1 Voltajes en barras	. 41
2.5.1.2 Consumo	. 41
2.5.1.3 Carga de Transformadores.	42
2.5.1.4 Potencia Activa y Reactiva recibida del Sistema	42
2.5.1.5 TAP del Transformador de potencia	42
2.6 CONCLUSIONES DEL ESTUDIO DE FLUJO	43
CAPÍTULO 3: ESTUDIOS DE CORTOCIRCUITO	
CALITOLO 3. LOTODIOO DE CONTOCINCOTTO	
3.1 INTRODUCCIÓN	45
3.2 ALCANCE DE LOS ESTUDIOS DE CORTOCIRCUITO	. 47
3.3 DATOS DEL SISTEMA	. 47
3.3.1 Impedancias equivalentes en la barra de la subestación	48
3.3.1.1 Impedancias Equivalentes	48
3.3.1.2 MVA de cortocircuito.	49
3.3.1.3 Corrientes de cortocircuito	49
3.3.2Datos de Conductores	50
3.3.3Datos de Transformadores de Fuerza	. 50
3.4 RESULTADOS DE LOS ESTUDIOS DE CORTOCIRCUITO	. 51

3.4.1 Casos base.	51
3.4.1.1 Corriente de Falla en cada barra - Máxima Carga	51
3.4.1.2 Corriente de Falla en cada barra - Mínima Carga	53
3.5 CONCLUSIONES DE LOS ESTUDIOS DE CORTOCIRCUITO.	55
CAPÍTULO 4: PROTECCION DE LA SUBESTACION DE DISTRIBU	JCION
4.1. ESQUEMA DE PROTECCIONES	57
4.2. PROTECCIÓN DEL TRANSFORMADOR DE POTENCIA	58
4.2.1 Protección Diferencial 87	60
4.2.1.1 Características de la función 87T	60
4.2.1.2 Ajuste de la función 87T	61
4.2.1.3 Características de la función 87H	
4.2.1.4 Ajuste del 87H	69
4.2.2 Función 51-P del TPU 2000R	70
4.2.3 Función 50-P del TPU 2000R	71
4.2.4 Funciones 51-G del TPU 2000R	72
4.2.5 Función 46 del TPU 2000R	72
4.2.6 Función 50-G del TPU 2000R	73
4.3 CONCLUSIONES DE LA SUBESTACION DE DISTRIBUCIO	N 73
CAPÍTULO 5: COORDINACION DE LAS PROTECCIONES	
5.1 INTRODUCCION	75
5.2 ESQUEMA DE PROTECCIONES	76
5.3 PROTECCION DE RAMALES	77
5.3.1 Criterios para selección de fusibles	77
5.3.2 Levantamiento de las Alimentadoras	79
5.3.2.1 Alimentadora CERRO BLANCO 4	79

	5.3.2.2 Alimentadora ODEBRECHT	80
	5.3.2.3 Alimentadora PUERTO HONDO	81
	5.3.2.4 Alimentadora CHONGÓN	82
	5.3.3 Selección Fusibles	84
	5.3.3.1 Alimentadora CERRO BLANCO 4	84
	5.3.3.2 Alimentadora ODEBRECHT	86
	5.3.3.3 Alimentadora PUERTO HONDO	87
	5.3.3.4 Alimentadora CHONGÓN	89
5	.4 COORDINACION DEL RECONECTADOR	90
	5.4.1 Factores para aplicación del reconectador	90
	5.4.2 Operación del reconectador	91
	5.4.3 Ajuste del Reconectador	92
	5.4.3.1 Alimentadora Cerro Blanco 4:	93
	5.4.3.2 Alimentadora Chongón:	94
	5.4.3.3 Alimentadora Odebrecht:	94
	5.4.3.4 Alimentadora Puerto Hondo:	94
5	.5 PROTECCIÓN DEL TRANSFORMADOR	99
	5.5.1 Curva de daño del Transformador	99
	5.5.2 Ajuste de la Protección Diferencial 87	100
	5.5.3 Protección de Sobrecorriente	101
	5.5.3.1 Ajuste de la Función 51-P	101
	5.5.3.2 Ajuste de la Función 50-P	102
	5.5.3.3 Ajuste de la Función 51-G-2	103
	5.5.3.4 Ajuste de la Función 46	105
	.6 RESULTADOS DE LA COORDINACION DE LOS DISPOSITIVOS D PROTECCION1	
	5.6.1 Coordinación - Alimentadora Cerro Blanco 4	107
	5.6.2 Coordinación - Alimentadora Odebrecht	108
	5.6.3 Coordinación - Alimentadora Puerto Hondo 1	109
	5.6.4 Coordinación - Alimentadora Chongón	110

5.7 RESUMEN DE AJUSTE	111
5.8 CONCLUSIONES DE LA COORDINACION DE PROTECCIONE	S 112
CONCLUSIONES	
RECOMENDACIONES	
ANEXOS	
BIBLIOGRAFÍA	

ABREVIATURAS

A Amperios, unidad de fundamental de corriente.

AC Corriente alterna.

ALF Factor límite de precisión.

AMB. TEMP Temperatura ambiente.

AMP Nomenclatura en PowerWorld para Amperios.

ANSI American National Standards Institute- Instituto Nacional

Estadounidense de Estándares.

ASCR Aluminum Conductor Steel Reinforced-Conductor de

aluminio con alma de acero.

AT Alta Tension.

AWG American Wire Gauge- Calibre de Alambre

Estadounidense (CAE), referencia de clasificación de

diámetros.

BIL Basic Insulation Level- Nivel Básico de Aislamiento.

BT Baja Tension.

cc Corto Circuito.

CAPAC. Capacidad.

CT Current Transformer-Transformador de corriente.

°C Grados centígrados.

Cu Cobre.

DC Corriente continua.

Deg Grados. Nomenclatura en PowerWorld.

EEPG Empresa Eléctrica Pública de Guayaquil.

FA Sistema de ventilación forzada de un transformador.

OA Sistema de enfriamiento por aceite forzado de un

transformador.

GCB Gas Circuit Breaker- Interruptor con extensión de arco a

gas.

GIR Grupo de intervención y rescate.

HSICF Factor que compensa la conexión del transformador de

potencia en el lado de alta tensión.

I Corriente.

la Corriente en la fase a.

lal.Chongón Corriente nominal de la Alimentadora Chongón.

IAI.Cerro_Blanco4 Corriente nominal de la Alimentadora Cerro Blanco4.

Ib Corriente en la fase b.

Ic Corriente en la fase c.

Icc Corriente de Corto Circuito.

Icont Corriente continua.

Icontinua Corriente continua.

I_{dmax} Corriente directa máxima.

IEEE Institute of Electrical and Electronics Engineers- Instituto

de Ingenieros Eléctricos y Electrónicos.

IEC International Electrotechnical Commission- Comisión

Electrotécnica Internacional.

I_{Fmax} Corriente de falla máxima del sistema.

I_{Fmin} Corriente de falla mínima del sistema.

I_H Corriente en el lado de alta tensión.

Ihr Corriente de falla trifásica en el lado de alta tensión.

Ihr Corriente de restricción usada en el relé luego de la

compensación interna de fase programada en el lado de

alta tensión.

Ihs Corriente máxima de carga en los lados secundarios del

CT en alta tensión.

lintermax Corriente interna máxima.

linst Corriente instantánea.

L Corriente en el lado de baja tensión.

Le Corriente de falla trifásica en el lado de baja tensión.

ILR Corriente de restricción usada en el relé luego de la

compensación interna de fase programada en el lado de

baja tensión.

Ls Corriente máxima de carga en los lados secundarios del

CT en baja tensión.

In Corriente en el neutro.

Ipick-up Corriente de puesta en trabajo.

I_R Corriente del reconectador.

I_{R1} Corriente del reconectador de Alimentadora Cerro

Blanco 4.

l_{R2} Corriente del reconectador de la Alimentadora Chongón.

I_{R3} Corriente del reconectador de la Alimentadora

Odebrecht.

I_{R4} Corriente del reconectador de la Alimentadora Puerto

Hondo.

KA Kiloamperio.

Kg Kilogramo.

Km Kilometro.

KV Kilovoltio.

KV_{max} Kilovoltio máximo.

KVA Kilovoltio - amperio.

KVAR Kilovatios reactivos, unidad de potencia reactiva.

KW Kilovatios, unidad de potencia activa.

LG Línea a tierra.

LL Línea a Línea.

LLG Línea-Línea-Tierra.

LLL Línea-Línea (trifásica).

lim Límite.

LSICF Factor que compensa la conexión del transformador de

potencia en el lado de baja tensión.

m metros, unidad de longitud.

m.s.n.m metros sobre el nivel del mar.

metros cuadrados, unidad de área.

M Porcentaje de error intrínseco de la selección del TAP

para la corriente nominal.

MCOV Maximun Continuous Operating Voltage- Máximo voltaje

en operación continua.

MCM Mil Circular Mil. Se define como el área de una

circunferencia cuyo diámetro es una milésima de

pulgada.

MVA Megavoltios-amperios.

MVAR Mega Vatios Reactivos, unidad de potencia reactiva.

MW Mega Vatios, unidad de potencia activa.

OA Sistema de enfriamiento por aceite y aire natural de un

transformador.

PSI Pounds per square inch-libra-fuerza por pulgada

cuadrada, Unidad de presión.

p.u. por unidad.

R Resistencia en ohmios.

S/E Subestación Eléctrica.

SF6 Hexafluoruro de Azufre, gas empleado para extensión

del arco.

Std. Standard (Estándar o Norma).

TAP Punto de conexión a lo largo de un devanado que

permite un cierto número de vueltas para ser

seleccionado.

TAP en el lado de alta tensión del transformador de

corriente.

TAP_L TAP en el lado de baja tensión del transformador de

corriente.

TD Time Delay (Tiempo de Retardo).

TPU Unidad de Protección de Transformadores.

VA Voltios – amperios.

VDC Voltaje de corriente continua.

V_{nom} Voltaje nominal.

VOLT Nomenclatura en PowerWorld para Voltios.

X Reactancia en ohmios.

Z Impedancia.

Ztrafo Impedancia del Transformador de Potencia.

Ω Ohmios. Unidad de resistencia, impedancia y reactancia.

ÍNDICE DE FIGURAS

Figura 1.1 Ubicación Geográfica - Subestación CERRO BLANCO	2
Figura1.2 Vista Satelital - Subestación CERRO BLANCO	2
Figura 1.3 Vista exterior de la Subestación CERRO BLANCO	3
Figura 1.4 Aisladores 69 KV	6
Figura 1.5 Seccionador Tripolar de Aire con cuchillas de Tierra	8
Figura 1.6 Interruptor en Gas SF6	9
Figura 1.7 Pararrayos en estructura 69KV1	0
Figura 1.8 Conductor utilizado en el patio de 69 KV	1
Figura 1.9 Transformador de potencia 67000/13800 V, marca ABB	3
Figura 1.10 Patio de 13.8 KV	5
Figura 1.11 Vista interna del controlador Cooper forma 6	7
Figura 1.12 Cuchillas seccionadoras 600 A	8
Figura 1.13 Transformadores de corriente en la S/E Cerro Blanco	2
Figura 1.14Cargador GNB y baterías marca Marathon2	3
Figura 1.15 Placa del Cargador de baterías GNB2	4
Figura 1.16Medidores Schneider en la S/E Cerro Blanco	5
Figura 1.17 Panel de Control con el relé TPU2000R en la parte superior2	6
Figura 1.18 Panel de Alarmas PANALARM2	7
Figura 1.19 Varios breakers montados en el panel de control	9
Figura 2.1 Carga máxima mensual del periodo enero 2012 – febrero 2013. 3	3
Figura 2.2 Carga mínima para cada mes del año 20123	4

Figura 2.3 Resumen de datos ingresados para el flujo de potencia38
Figura 2.4 Flujo de Potencia para Carga Máxima39
Figura 2.5 Flujo de Potencia para Carga Mínima40
Figura 4.1 Esquema de Protecciones del Transformador de Potencia 57
Figura 4.2 Esquema de conexiones del TPU 2000R59
Figura 4.3 Curva clásica de operación de un relé diferencial 61
Figura 4.4 Diagrama de Flujo de operación de la Función 87T del Relé
TPU2000R para porcentaje ajustable62
Figura 4.5 Característica de la pendiente % ajustable de la protección
diferencial del relé TPU 2000R
Figura 4.6 Diagrama fasorial de las corrientes del primario y secundario del
transformador63
Figura 4.7 Característica de disparo de la Protección Diferencial
Figura 4.8 Rango de corriente de Irrupción del transformador
Figura 5.1 Esquema de Protecciones – Transformador de Potencia
Subestación CERRO BLANCO76
Figura 5.2 Esquema de Protecciones – Red de Distribución - Subestación
CERRO BLANCO
Figura 5.3 Recorrido 4 puntos de protección de Alimentadora Cerro Blanco 4
80
Figura 5.4 Recorrido 3 puntos de protección de Alimentadora Odebrecht 81

Figura 5.5 Recorrido 3 puntos de protección de Alimentadora Puerto Hondo
82
Figura 5.6 Recorrido 3 puntos de protección de Alimentadora Chongón 83
Figura 5.7 Curvas de fusibles seleccionados en Alimentadora Cerro Blanco
85
Figura 5.8 Curvas de fusibles seleccionados en Alimentadora Odebrecht 86
Figura 5.9 Curvas de fusibles seleccionados en Alimentadora Puerto Hondo
Figura 5.10 Curvas de fusibles seleccionados en Alimentadora Chongón 89
Figura 5.11 Curvas de la coordinación del reconectador y fusible 50K en la
Alimentadora Cerro Blanco 4
Figura 5.12 Curvas de la coordinación del reconectador y fusible 6K en la
Alimentadora Chongón96
Figura 5.13 Curvas de la coordinación del reconectador y fusible 6K en la
Alimentadora Odebrecht
Figura 5.14 Curvas de la coordinación del reconectador y fusible 50K en la
Alimentadora Puerto Hondo
Figura 5.15 Curva de daño del transformador de la S/E Cerro Blanco99
Figura 5.16 Curva de la función 51-G-2 del TPU 2000R
Figura 5.17 Curvas de la función 46 del TPU 2000R106
Figura 5.18Curvas de protección en la Alimentadora Cerro Blanco 4 107
Figura 5.19 Curvas de protección en la Alimentadora Odebrecht

Figura 5.20 Curvas de protección en la Alimentadora Puerto Hondo	109
Figura 5.21 Curvas de protección en la Alimentadora Chongón	110

ÍNDICE DE TABLAS

Tabla I Características Técnicas – Aisladores y Herrajes	6
Tabla II Características Técnicas – Seccionador de Aire con cuchillas	de
Tierra	8
Tabla III Características Técnicas – Interruptor en Gas	9
Tabla IV Características Técnicas – Pararrayos en estructura 69KV	10
Tabla V Conductores usados a 69 KV	11
Tabla VI Datos de placas del transformador de potencia	12
Tabla VII Pararrayos del lado de alta tensión	13
Tabla VIII Pararrayos del lado de baja tensión	13
Tabla IX Datos del seccionador de aire principal de 13.8 KV	16
Tabla X Datos del Reconectador Cooper	17
Tabla XI Controladores de los reconectadores de las Alimentadoras	17
Tabla XII Parámetros de cuchillas seccionadoras de las Alimentadoras	18
Tabla XIII Datos de los seccionadores de interconexión	19
Tabla XIV Conductores usados en 13.8 KV	19
Tabla XV Detalle de aisladores y Herrajes a 13.8 KV.	20
Tabla XVI Datos de placa de los transformadores de potencial	21
Tabla XVII Datos de placa de los transformadores de corriente	22
Tabla XVIII Parámetros del transformador auxiliar	22
Tabla XIX Datos del banco de baterías	23
Tabla XX Datos de Placa del Cargador de baterías GNB	24

Tabla XXI Datos de los medidores	
Tabla XXII Tipos de alarmas del panel PANALARM	
Tabla XXIII Dispositivos varios de Protección y Control 28	
Tabla XXIV Descripción de Breakers	
Tabla XXV Cargas máximas de las Alimentadoras	
Tabla XXVI Cargas mínimas de las Alimentadoras	
Tabla XXVII Datos de Transformador de Fuerza	
Tabla XXVIII Datos de Líneas	
Tabla XXIX Voltajes en barras para Carga Máxima 41	
Tabla XXX Voltajes en barras para Carga Mínima	
Tabla XXXI Consumo en la barra de 13.8 KV para carga máxima 41	
Tabla XXXII Consumo en la barra de 13.8 KV para carga mínima 41	
Tabla XXXIII Potencias entre barras para carga máxima	
Tabla XXXIV Potencias entre barras para carga mínima	
Tabla XXXV Potencia recibida para carga máxima	
Tabla XXXVI Potencias recibida para carga mínima	
Tabla XXXVII Ajuste del Tap del Transformador	
Tabla XXXVIII Impedancias Equivalentes máxima generación - 69 KV 48	
Tabla XXXIX Impedancias Equivalentes mínima generación - 69 KV 48	
Tabla XL MVA de cortocircuito máxima generación	
Tabla XLI MVA de cortocircuito mínima generación	
Tabla XLII Corrientes de cortocircuito para máxima generación-69KV 49	

Tabla XLIII Corrientes de Cortocircuito mínima generación-69KV 50
Tabla XLIV Corrientes de Cortocircuito en la Barra 69 KV. Carga Máxima. 51
Tabla XLV Corrientes de Cortocircuito por fase en la Barra 69 KV, Falla
LLG
Tabla XLVI Corrientes de Cortocircuito en la Barra 13,8 KV. Con
Ztrafo=5.727%
Tabla XLVII Corrientes de CC por fase en la Barra 13,8 KV. Falla LLG. Con
Ztrafo=5.727%
Tabla XLVIII Corrientes de Cortocircuito en la Barra 69 KV. Carga Mínima.
53
Tabla XLIX Corrientes de Cortocircuito por fase en la Barra 69 KV, Falla
LLG54
Tabla L Corrientes de Cortocircuito en la Barra 13,8 KV. Con Ztrafo=5.727%
54
Tabla LI Corrientes de Cortocircuito en la Barra 13,8 KV. Con Ztrafo=5.727%
54
Tabla LII Corrientes de cortocircuito máximas y mínimas de la S/E Cerro
Blanco55
Tabla LIII Porcentajes de restricción 68
Tabla LIV Máxima corriente continua de tira fusibles tipo K
Tabla LV Datos de puntos de protecciones y fusibles seleccionados en
Alimentadora Cerro Blanco 4

Tabla LVI Datos de puntos de protecciones y fusibles seleccionados en
Alimentadora Odebrecht86
Tabla LVII Datos de puntos de protecciones y fusibles seleccionados en
Alimentadora Puerto Hondo87
Tabla LVIII Datos de puntos de protecciones y fusibles seleccionados en
Alimentadora Chongón89
Tabla LIX Valores Nominales de Interrupción. 92
Tabla LX Corriente de las Alimentadoras 92
Tabla LXI Resumen de Ajuste del Relé Diferencial 87 100
Tabla LXII Resumen de Ajustes de los dispositivos de protección de la S/E
Cerro Blanco

INTRODUCCIÓN

A través de los años la energía eléctrica se ha convertido en un indicador del progreso del mundo, parte importante del desarrollo social, y elemento esencial para el desarrollo tecnológico.

Sin duda alguna, la energía eléctrica se involucra en gran parte de las actividades cotidianas del ser humano y una interrupción de este servicio produce pérdidas de diferente índole. Es por esto que, el garantizar la calidad de servicio constituye una de las principales preocupaciones de las entidades inherentes al suministro eléctrico.

La coordinación de protecciones es una de las herramientas capaces de asegurar la continuidad del servicio, y a su vez permite preservar los equipos ante la presencia de fallas, buscando minimizar la zona afectada, disminuyendo las operaciones erróneas y previendo respaldo.

El presente trabajo desarrolla la coordinación de protecciones con la ayuda de herramientas computacionales de la Subestación Cerro Blanco, la cual ya se encuentra en operación, por lo cual es necesario recalcar que la intención del documento no es realizar ajustes reales, pues estos ya existen; sino mas bien simular un proyecto de este tipo, con todos los estudios necesarios bajo el cumplimiento de las normas eléctricas, permitiéndonos incluso realizar comparaciones y recomendaciones a la Empresa Eléctrica Pública de Guayaquil, con el fin de proveer una mejora en la protección actual.

CAPÍTULO 1

DESCRIPCIÓN DE LAS INSTALACIONES

1.1 GENERALIDADES

La subestación CERRO BLANCO fue construida en el año 1988, siendo competencia de la EMPRESA ELECTRICA PÚBLICA DE GUAYAQUIL (EEPG).

Es la encargada de reducir el nivel de voltaje de potencia recibida con el fin de suministrar energía eléctrica a un sector de Vía a la Costa.

1.2 UBICACIÓN GEOGRÁFICA

Está localizada en el Km 17 Vía a la Costa junto a la empresa Holcim y dispone de un área de 1200m².

Limita al norte con la vía de ingreso a la Planta de la Empresa Holcim, al sur y al este con una gran extensión de vegetación, al oeste con la Vía a la Costa y al noroeste con el Cuartel del GIR.

A continuación se presentara la ubicación geográfica y una vista satelital de la subestación Cerro Blanco en las figuras 1.1 y 1.2 respectivamente.

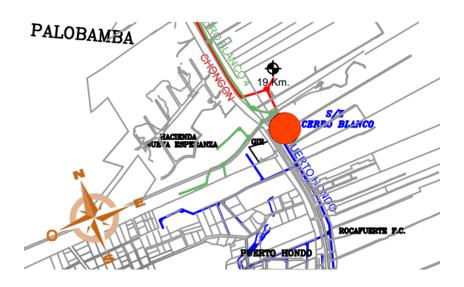


Figura 1.1 Ubicación Geográfica - Subestación CERRO BLANCO

Figura1.2Vista Satelital - Subestación CERRO BLANCO

1.3 INFRAESTRUCTURA CIVIL

La subestación dispone de una cerca perimetral de bloque rematada con malla, con una puerta metálica abatible para acceso vehicular y una puerta metálica para el acceso personal, un cuarto de operador de 9.4m² con baño y un patio de maniobras con suelo de piedra chispa.

La vía principal de comunicación a la subestación es la Vía a la Costa, la cual es pavimentada de tres carriles para cada sentido y el acceso vehicular hacia la subestación es posible mediante el ingreso a la empresa Holcim.

Figura 1.3 Vista exterior de la Subestación CERRO BLANCO.

1.4 SERVICIOS BASICOS

La subestación dispone de abastecimiento de agua potable y sistema de evacuación de las aguas servidas y aguas lluvias.

El servicio de recolección de basura está a cargo de El consorcio Puerto Limpio que realiza su recorrido en la vía principal.

Con la finalidad de cumplir con los estándares de seguridad industrial para subestaciones y proteger a su personal consta de extintores ubicados en el interior para ser utilizados en caso de incendio.

1.5 INFRAESTRUCTURA ELÉCTRICA Y EQUIPOS

1.5.1 Red de Subtransmisión

Las subestaciones reductoras son interconectadas al Sistema Nacional mediante una red de subtransmisión para realizar la entrega de potencia.

La Subestación Cerro Blanco es alimentada a nivel de 69 KV mediante la línea de transmisión aérea CEMENTO a través de la subestación ANIBAL SANTOS, con conductores 477 MCM 26/7 ACSR 72 MVA.

1.5.2 Patio de 69 KV

El patio o bahía de 69 KV se conecta a la alimentación de alta tensión a través de estructuras, equipos y accesorios que serán detallados a continuación.

1.5.2.1 Estructuras

Se dispone de una bahía conformada por dos estructuras de 7.24 m de alto con una bandeja en su parte superior para soportar un seccionador de 69KV, unida a un pórtico de tubo de hierro de 6" de diámetro, con soportes para los portafusibles y bases para los pararrayos en las tiras de unión. El material de los pórticos y los largueros es hierro ángulo de 3"x3"x1/4" para los largueros y de 2"x2"x1/4" para los tirantes. Las estructuras descansan sobre bases de hormigón armado, sujetas con pernos de acero empotrados.

1.5.2.2 Aisladores y Herrajes

Los aisladores son los encargados de soportar mecánicamente el conductor y aislarlo eléctricamente de tierra y de otros conductores, con la finalidad de evitar un funcionamiento no requerido o falla; para ello se utilizará diferentes tipos de aisladores según corresponda.

Cada aislador deberá ser asegurado con su respectivo herraje que brinda mayor seguridad al sistema y previene accidentes.

En la tabla I se detalla los aisladores y herrajes utilizados en el patio de 69 KV.

AISLADORES Y HERRAJES						
DESCRIPCIÓN	CANTIDAD					
Aisladores 69 kv tipo poste para estructura tangente	6					
Aisladores 69 kv tipo pin para estructura tangente	3					
Aisladores 69 kv de retención	-					
Conector T	3					
Conector de dos tornillos	3					

Tabla I Características Técnicas – Aisladores y Herrajes

En la figura 1.4 se muestra los aisladores en el pórtico de alta tensión junto a los portafusibles, los cuales se encuentran puenteados y no poseen sus respectivos fusibles.

Figura 1.4 Aisladores 69 KV

1.5.2.3 Seccionador tripolar de aire con cuchillas de tierra

Se los conoce también con el nombre de separadores o desconectadores. Son dispositivos que sirven para conectar y desconectar diversas partes de una instalación eléctrica, para efectuar maniobras de operación o bien de mantenimiento, su misión de estos aparatos es la de aislar tramos de circuitos de una forma visible.

Los circuitos a interrumpir deben hallarse libres de corriente, es decir, el seccionador debe maniobrar en vacío. No obstante, debe ser capaz de soportar corrientes nominales, sobreintensidades y corrientes de cortocircuito durante un tiempo especificado.

Cerro Blanco emplea un seccionador MEMCO de dos cuchillas, la primera sirve para conectar o desconectar la subestación a la línea de subtransmisión; y la segunda, para poner la subestación a tierra e impedir cualquier accidente debido a una maniobra imprudente u otra causa. Las dos palancas de maniobra tienen un enclavamiento mecánico que impide cerrar ambos juegos de cuchillas, lo que ocasionaría un cortocircuito. Las características del seccionador se muestran en la Tabla II a continuación.

SECCIONADOR TRIPOLAR DE AIRE CON CUCHILLAS DE TIERRA							
MADCA	Tino	KV	BIL	I _{continua}	l _{inst}		
MARCA	Tipo	máx	(KV)	(A)	(KA)		
MEMCO	EAB	69	350	600	40		

Tabla II Características Técnicas – Seccionador de Aire con cuchillas de Tierra

Figura 1.5 Seccionador Tripolar de Aire con cuchillas de Tierra

1.5.2.4 Interruptor en gas SF6 (GCB)

El interruptor o disyuntor es considerado uno de los dispositivos de mayor importancia dentro de la configuración y operación de una subestación eléctrica, ya que permite insertar o desconectar cualquier tipo de circuito energizado capaz de aportar corrientes de falla.

Frente a la necesidad de despejar mayores corrientes debido al uso de transformadores de gran capacidad, se logro sustituir al aceite o al aire de los interruptores por el gas hexafluoruro de azufre (SF6).

Con regularidad, se adquieren interruptores con transformadores de corriente incorporados o 'tipo bushings'.

El GCB descansa sobre una base de hormigón armado de 1.4m x 1.25m, y está sujeto con pernos de acero empotrados, las especificaciones técnicas del interruptor utilizado se muestran a continuación.

INTERRUPTOR EN GAS SF6 (GCB)							
MADCA	ADCA TIDO		BIL	lcont	ΚV	I.interrmax	AÑO
MARCA	TIPO	SERIE	(KV)	(A)	max	(KA)	Fabricación
SIEMENS	SPS2-72.5-40-2	53357-1	350	1200	72,5	40,2	2003

Tabla III Características Técnicas – Interruptor en Gas

El interruptor posee transformadores de corriente incorporados o 'tipo bushings" de relación 600:5 como se aprecia en la figura 1.6.

Figura 1.6 Interruptor en Gas SF6

1.5.2.5 Pararrayos en estructura 69 KV

Los pararrayos son la primera línea de protección de sobretensiones. Estos dispositivos se colocan por lo general lo más cerca de los equipos que se desean proteger para suprimir las sobretensiones internas o descargas atmosféricas que podrían causar gran daño a la subestación.

En la subestación Cerro Blanco se encuentran pararrayos ABB en cada una de las fases en lado de alta, cuyos valores de placa se resumen en la tabla siguiente.

	PARARRAYOS EN ESTRUCTURA 69 KV								
FACE	ASE MARCA	# CEDIE	ld max	Vnom	MCOV	# UNIDAD			
FASE		# SERIE	(KA)	(KV)	(KV)	APILADA			
А	WESTINGHOUSE	87E2128	32	60	47	1			
В	WESTINGHOUSE	87E2127	32	60	47	1			
С	WESTINGHOUSE	87E2126	32	60	47	1			

Tabla IV Características Técnicas – Pararrayos en estructura 69KV

Figura 1.7 Pararrayos en estructura 69KV

1.5.2.6 Conductores

La Eléctrica de Guayaquil ha estandarizado el uso de conductor de cobre desnudo para los 69 KV.

USADO 69KV		ATERRIZAMIENTO		
TIPO DE 4/0 AWG Cu		4/0 AWG Cu Desnudo		
LONGITUD	35	25		

Tabla V Conductores usados a 69 KV.

Figura 1.8 Conductor utilizado en el patio de 69 KV

1.5.3 Transformador de Potencia

Ya que la función principal de una subestación es reducir la tensión para suministrar energía a las cargas a un nivel establecido, el transformador de potencia se convierte en su elemento de mayor importancia.

La subestación Cerro Blanco dispone de un transformador de potencia marca ABB de 67000/13800 Voltios, 18/24 MVA, con una conexión delta-estrella sólidamente aterrizado colocado sobre una base de hormigón armado de 3.5m x 2.5m. A continuación se muestra sus respectivos datos de placa y su constitución física en la Figura 1.9.

ALTA TENSION Y BAJO CARGA EN BAJA TENSION Serie 200332 Fases 3 Frecuencia 60 Hz. Tipo TD2LF Anio de Fabricacion 2003 Proced. de Fabricacion AT 18/24/26,9 MVA BT 18/24/26,9 BT 18/24/26,9 BT 18/24/26,9 BT 13/8 +/- 16x5/8% BT 13/8 +/- 16x5/8% BT 13/8 +/- 16x5/8% BT 753,0 / 1004,1 / 1125,4 BT 13/8 +/- 16x5/8% BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 6,64% BT BT 753,0 / 1004,1 / 1125,4 6,64% BT BT 753,0 / 1004,1 / 1125,4 6,64% BT Mat. de bobinados Cobre AT 140/350 BIL AT Aislamiento Interno (KV) ABT 24/110 BIL AT 140/350 BIL AT AT 140/350 BIL AT AT 140/350 BIL AT AT 140/350 BIL AT AT <th></th> <th></th> <th>NMUTADOR EN VACIO EN</th>			NMUTADOR EN VACIO EN		
Fases 3 Frecuencia 60 Hz. Tipo TD2LF Anio de Fabricacion 2003 Proced. de Fabricacion AT 18/24/26,9 MVA BT 18/24/26,9 BT 13,8 +/- 16x5/8% BT 13,8 +/- 16x5/8% BT 753,0 / 1004,1 / 1125,4 67/13,8 KV 6,64% Impedancia (%) AT 140/350 BIL Aislamiento Interno (KV) ABT 24/110 BIL NBT 34/110 BIL ABT ASIA 140/350 BIL ABT ASIA AVA (110 BIL) ABT ASIA 34/110 BIL ABT ASIA 34/110 BIL ABT ASIA AVA (110 BIL) ABT ASIA AVA (110 BIL) ABT ASIA AVA (110 BIL) AVA (110 BIL) <t< th=""><th></th><th>BAJO CARGA I</th><th></th></t<>		BAJO CARGA I			
Frecuencia 60 Hz. Tipo TD2LF Anio de Fabricacion 2003 Proced. de Fabricacion AT 18/24/26,9 MVA BT 18/24/26,9 kVolt. AT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 67/13,8 KV 6,64% Impedancia (%) AT 140/350 BIL Mat. de bobinados Cobre AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL ABT 24/110 BIL NBT 34/110 BIL ABT 24/110 BIL NBT 34/110 BIL ACeite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento C6,9 MVA					
Tipo TD2LF Anio de Fabricacion 2003 Proced. de Fabricacion AT 18/24/26,9 MVA BT 18/24/26,9 kVolt. AT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% BT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 ABT 24/110 BIL NBT					
Anio de Fabricacion 2003 Proced. de Fabricacion AT 18/24/26,9 MVA BT 18/24/26,9 kVolt. AT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% BT 13,8 +/- 16x5/8% AT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 67/13,8 kV 6,64% 18 MVA 6,64% Mat. de bobinados Cobre AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL ABT 24/110 BIL ABT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL ACeite Nynas 10 GBN Norma ANSI CS7 Calentamiento OA / FA 26,9 MVA					
Proced. de Fabricacion Colombia MVA AT 18/24/26,9 kVolt. AT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% BT 13,8 +/- 16x5/8% BT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 667/13,8 KV 6,64% 18 MVA 6,64% Mat. de bobinados Cobre Aislamiento Interno (KV) ABT 24/110 BIL NBT 34/110 BIL AT AISlamiento Externo (KV) ABT 24/110 BIL ASI 34/110 BIL NBT 34/110 BIL ACeite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento Aceite 50/Cu 55°C Ca6,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	•				
MVA AT 18/24/26,9 BT 18/24/26,9 BT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% BT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 BT 6,64% Mat. de bobinados Cobre AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL ACeite NSI C57 Refrigeracion OA / FA 18/24 MVA Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°					
MVA BT 18/24/26,9 kVolt. AT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% Amp. AT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 67/13,8 kV 6,64% 18 MVA 6,64% At 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL ABT 24/110 BIL NBT 34/110 BIL ACeite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA 18/24 MVA Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m	Proced. de Fabricación	A.T.			
kVolt. AT 67,0 +/- 2x2,685% BT 13,8 +/- 16x5/8% Amp. AT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 66/4% BT 140/350 BIL ABT 24/110 BIL ABT 34/110 BIL ABT 34/110 BIL NBT 34/110 BIL NBT 34/110 BIL Norma ANSI C57 ANSI C57 Refrigeracion Aceite 50/Cu 55°C ACeite 50/Cu 55°C Calentamiento Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud P. Activa 24250 Kg Aceite 12500 Kg	MVA				
BT					
BT 13,8 +/- 16x5/8% AT 155,1 / 206,8 / 231,8 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 BT 753,0 / 1004,1 / 1125,4 G7/13,8 KV 18 MVA 6,64% Mat. de bobinados Cobre AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL Aceite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento OA / FA Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	kVolt.				
Amp. BT 753,0 / 1004,1 / 1125,4 Impedancia (%) BT 753,0 / 1004,1 / 1125,4 Mat. de bobinados Cobre Aislamiento Interno (KV) ABT 140/350 BIL ABT 34/110 BIL AT 140/350 BIL ABT 24/110 BIL ABT 24/110 BIL NBT 34/110 BIL NBT 34/110 BIL Aceite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	-				
BI	Amn	AT			
Impedancia (%) 18 MVA 6,64% Mat. de bobinados Cobre AT 140/350 BIL ABT 24/110 BIL ABT 34/110 BIL ABT 24/110 BIL Asislamiento Externo (KV) ABT 24/110 BIL ABT 34/110 BIL Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	,p.	BT	753,0 / 1004,1 / 1125,4		
Mat. de bobinados Cobre AISlamiento Interno (KV) ABT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL Norma ANSI C57 Refrigeracion OA / FA Calentamiento Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m Pesos Aceite 12500 Kg	Impedancia (%)	67/13,8 KV	6.64%		
Aislamiento Interno (KV) AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL NSI C57 ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m Pesos Aceite 12500 Kg	Impedancia (70)	18 MVA	0,0476		
Aislamiento Interno (KV) ABT 24/110 BIL NBT 34/110 BIL Aislamiento Externo (KV) ABT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	Mat. de bobinados		Cobre		
NBT 34/110 BIL Aislamiento Externo (KV) AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg		AT	140/350 BIL		
Aislamiento Externo (KV) AT 140/350 BIL ABT 24/110 BIL NBT 34/110 BIL Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento Aceite 60/Cu 65°C Altitud 1000 m.s.n.m Pesos Aceite 12500 Kg	Aislamiento Interno (KV)	ABT	24/110 BIL		
Aislamiento Externo (KV) ABT 24/110 BIL NBT 34/110 BIL Norma Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C Calentamiento 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg		NBT	34/110 BIL		
NBT 34/110 BIL Aceite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA 18/24 MVA Aceite 50/Cu 55°C Calentamiento 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg		AT	140/350 BIL		
Aceite Nynas 10 GBN Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	Aislamiento Externo (KV)	ABT	24/110 BIL		
Norma ANSI C57 Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg		NBT	34/110 BIL		
Refrigeracion OA / FA Calentamiento 18/24 MVA Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	Aceite		Nynas 10 GBN		
18/24 MVA Calentamiento 18/24 MVA Calentamiento 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Pesos Aceite 12500 Kg	Norma		ANSI C57		
18/24 MVA Calentamiento 18/24 MVA Calentamiento 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Pesos Aceite 12500 Kg	Refrigeracion		OA / FA		
Calentamiento Aceite 50/Cu 55°C 26,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg			18/24 MVA		
Z6,9 MVA Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	Calentamiento	А			
Aceite 60/Cu 65°C Altitud 1000 m.s.n.m P. Activa 24250 Kg Pesos Aceite 12500 Kg					
Altitud 1000 m.s.n.m P. Activa 24250 Kg Aceite 12500 Kg	Calentamiento				
P. Activa 24250 Kg Pesos Aceite 12500 Kg	Altitud				
Pesos Aceite 12500 Kg		P. Activa	24250 Kg		
	Pesos				
, jotal i Susuu kg		Total	50500 Kg		

Tabla VI Datos de placas del transformador de potencia.

Figura 1.9 Transformador de potencia 67000 /13800 V, marca ABB

1.5.3.1 Pararrayos sobre el transformador

Los pararrayos son los encargados de mitigar y reducir las sobretensiones en los transformadores, tanto en lado de alta como de baja tensión.

Fase	Marca	Tipo	# serie	ld max (KA)	V _{nom} (KV)	MCOV (KV)	# Unidad Apilada
Α	ABB	GOB-380	75063495		100	12	1
В	ABB	GOB-380	75063494		100	12	1
С	ABB	GOB-380	75063493		100	12	1

Tabla VII Pararrayos del lado de alta tensión.

Food	Mores	Tino	# corio	ld max	V_{nom}	MCOV	# unidad
Fase	Marca	Tipo	# serie	(KA)	(KV)	(KV)	Apilada
А	ABB	POLIM-S	6038711	10	9	11,3	1
В	ABB	POLIM-S	6038712	10	9	11,3	1
С	ABB	POLIM-S	6038710	10	9	11,3	1

Tabla VIII Pararrayos del lado de baja tensión.

1.5.4 Patio de 13.8 KV

La bahía de 13.8 KV es una estructura sólida, compacta, ensamblada en el sitio, 100% soldada, que se implanta sobre una superficie de 4 x 8 metros, y que se sostiene por 6 pórticos metálicos tipo columna circular, de 6", de hierro cédula 40, ubicadas en configuración cuadrada, cada 4 m.

Las pórticos metálicos verticales de esta bahía, se interconectan entre sí, por piezas estructurales horizontales, fabricadas en tubo de hierro de 6" cédula 40, o también en ángulos UPN, en U, de tal forma que se constituye una estructura compacta, debidamente amarrada en su parte superior. Las pórticos, en su parte inferior, son apernadas al piso a través de la placa de apoyo que tiene soldada en su base, y de pernos de anclaje.

Dispone de cuatro niveles de barra, tres seccionadores de interconexión, un seccionador principal, cuatro salidas de Alimentadoras y capacidad para cinco.

Dispone de una barra principal y otra de transferencia que permite ceder la carga de una Alimentadora en el caso que se requiera retirar o desconectar la protección ubicada al arranque de ésta.

En la parte superior de la estructura se ubican tres seccionadores tripolares cuya función es permitir la transferencia de carga.

La subestación tiene 4 salidas instaladas de Alimentadoras: CHONGÓN, CERRO BLANCO 4, ODEBRECHT y PUERTO HONDO, las que actualmente se encuentran operando. Sin embargo la estructura está construida para tener finalmente cinco salidas de ser necesario.

Para protección de la Alimentadora se dispone de un reconectador, el cual es capaz de detectar fallas y abrir sus contactos en un tiempo determinado, reconectar la Alimentadora, para verificar si la falla ha sido temporal o permanente y en caso de persistir la falla desconectar la Alimentadora definitivamente.

En la Figura 1.10 puede verse la disposición general del patio de 13.8 KV.

Figura 1.10 Patio de 13.8 KV.

1.5.4.1 Seccionador de aire principal

El seccionador principal de 13.8 KV tiene las siguientes características que se resumen en la Tabla IX.

SECCIONADOR H.K.PORTER								
Tino	KV BIL I _{continua} I _{inst}							
Tipo	máx	(KV)	(A)	(KA)				
EAB	15 110 1200 61							

Tabla IX Datos del seccionador de aire principal de 13.8 KV

1.5.4.2 Reconectadores de las Alimentadoras

Ya que las Alimentadoras son las principales responsables de la continuidad del servicio, disponen de reconectadores ubicados a la salida de cada una, permitiendo maniobrar los circuitos de la red de distribución eléctrica desde la subestación hacia la carga y realizar su objetivo principal que es la desconexión de cargas en caso de falla, reconexión de prueba y desconexión definitiva frente a una falla permanente.

Entre las variadas funciones que presenta el reconectador COOPER utilizado en la subestación Cerro Blanco esta su capacidad de guardar historiales de fallas, mostrar valores de protección, ordenar el encendido de alarmas, etc.

A continuación se presenta una tabla con las diferentes características de los reconectadores de las Alimentadoras.

RI	RECONECTADORORES COOPER DE LAS ALIMENTDORAS								
Alimontodoro	# Corio	Madia ajalanta	K۷	BIL	loont (A)	linst			
Alimentadora	# Serie	Medio aislante	max (KV)	(KV)	Icont (A)	max (KA)			
Chongon	CP571273400		14,4	110	560	10			
Cerro Blanco 4	CP571017807	Vacío	14,4	110	560	10			
Odebrecht	CP571010670		14,4	110	560	10			
Puerto Hondo	CP571017812		14,4	110	560	10			

Tabla X Datos del Reconectador Cooper.

Cada reconectador tiene su respectivo controlador, como se muestra de forma seguida en la Tabla XI.

Alimentadora	Marca	Forma	Serie
Chongon	Cooper	6	CP571273400
Cerro Blanco 4	Cooper	6	CP571273370
Odebrecht	Cooper	6	CP571273353
Puerto Hondo	Cooper	6	CP571273392

Tabla XI Controladores de los reconectadores de las Alimentadoras.

Figura 1.11 Vista interna del controlador Cooper forma 6.

1.5.4.3 Cuchillas seccionadoras de las Alimentadoras.

Las cuchillas monofásicas empleadas a nivel de 13.8 KV, al igual que en alta, son utilizadas para efectuar maniobras de operación o en caso de mantenimiento.

		laant	lin at	Marca/tipo Entrada y Salida de la alimentadora			
Alimontodoro	BIL (KV)	lcont	linst				
Alimentadora		` '		Fase	Fase	Fase	
		(A) (KA)	(A)	(KA)	а	b	С
Chongon	110	600	40	MEMCO	MEMCO	MEMCO	
Cerro Blanco 4	110	600	40	MEMCO	MEMCO	MEMCO	
Odebrecht	110	600	40	MEMCO	MEMCO	MEMCO	
Puerto Hondo	110	600	40	MEMCO	MEMCO	MEMCO	

Tabla XII Parámetros de cuchillas seccionadoras de las Alimentadoras.

Figura 1.12 Cuchillas seccionadoras monofásicas 600 A.

1.5.4.4 Seccionadores de interconexión entre Alimentadoras

S	Seccionadores de interconexion entre alimentadoras						
Alimentadora Marca Tipo KV max BIL (KV) CAPAC. (A) linst (KA							
Chongon	MEMCO	EAB	15	110	600	40	
Cerro Blanco 4	MEMCO	EAB	15	110	600	40	
Odebrecht	MEMCO	EAB	15	110	600	40	
Puerto Hondo	MORPAC		15,5	110	600	40	

Tabla XIII Datos de los seccionadores de interconexión.

1.5.4.5 Conductores

Los conductores utilizados a nivel de 13.8 KV son de cobre, desnudo para las barras y aislado para puentes.

USADO PARA	BARRA	BARRA	PUENTES	ATERRIZAM.
USADO PARA	PRINCIPAL	TRANSFERENCIA	REC - CUCHILLA	ATERRIZAM.
TIPO DE CABLE	1000 MCM	500 MCM	500 MCM	4/0 AWG
THE O DE CABLE	Cu Desnudo	Cu Desnudo	Aislado 15KV	Cu Desnudo
LONGITUD (METROS)	72	65	25	20

Tabla XIV Conductores usados en 13.8 KV

1.5.4.6 Aisladores y Herrajes.

Los equipos empleados en las estructura del lado de baja tensión a 13.8 KV, se presentan a continuación en la Tabla XV.

DESCRIPCION	CANT.
Aislador de suspensión 15KV	90
Caja fusible 100A - 15KV	3
Grapa línea viva	3
Grapa terminal 500 MCM	18
Grapa terminal 1000 MCM	18
Grillete tipo "T" 500 MCM	12
Grillete tipo "T" 1000 MCM	12
Perno de ojo 5/8"	36
Terminales tipo talón 4/0	9
Terminales tipo talón 500 MCM	27

Tabla XV Detalle de aisladores y Herrajes a 13.8 KV.

1.5.4.7 Transformadores de Potencial

La función de un Transformador de Potencial o PT, es conectarse mediante un devanado primario a los circuitos de alta tensión, para reducir el voltaje y aislar su lado secundario, y así proveer la señal de forma segura a los circuitos de medida, relés o controladores conectados en el lado de baja tensión. Además, puesto que el propósito principal es el muestreo de voltaje un PT debe ser particularmente preciso como para no distorsionar los valores verdaderos.

La subestación Cerro Blanco emplea transformadores de potencial ABB, cuyas características de muestran en la Tabla XVI.

	Transformador de potencial						
Fase	Marca	Tipo	Serie	Relación (70:1)	BIL (KV)	Burden (VA)	
Α	SANGAMO		177557004	8400/120	110	1200	
В	ABB	VOG - 11	10319613	8400/120	110	1200	
С	SANGAMO		177557049	8400/120	110	1200	

Tabla XVI Datos de placa de los transformadores de potencial.

1.5.4.8 Transformadores de corriente

De forma general, se puede decir que los transformadores de corriente se utilizan para tomar muestras de corriente de la línea y reducirla a un nivel seguro y medible, para las gamas normalizadas de instrumentos, aparatos de medida u otros dispositivos de medida y control. Estos valores normalizados son comúnmente 1 y 5 amperios.

Un CT brinda conexión entre el circuito al cual se le mide la corriente y los instrumentos de medición. Esto es muy importante cuando se realiza mediciones con voltajes elevados, por lo cual existen diversos tipos constructivos para brindar el asilamiento eléctrico de seguridad.

En la subestación Cerro Blanco se emplean transformadores de corriente marca ABB cuyos parámetros se especifican en la Tabla XVII. Además en la Figura 1.13 se los puede observar, luego de los bushings, dispuestos en forma de discos.

	Transformador de corriente ABB							
Fase	Tipo	Serie	Relación (70:1)	BIL (KV)	Burden	Precisión		
А	KOT-11	29317015	1200/5	110	B-1,8	C-200		
В	KOT-11	29317013	1200/5	110	B-1,8	C-200		
С	KOT-11	29317014	1200/5	110	B-1,8	C-200		

Tabla XVII Datos de placa de los transformadores de corriente.

Figura 1.13Transformadores de corriente en la S/E Cerro Blanco.

1.5.4.9 Transformador auxiliar

Se dispone de un transformador auxiliar de las siguientes características.

Marca	Tipo	Serie	Relación	Capacidad(KVA)
E.E.E.	CSP	13/17209	7620/120-240 V	10

Tabla XVIII Parámetros del transformador auxiliar

1.5.5 Cuarto de Control

1.5.5.1 Banco de baterías y cargador

La S/E posee un cargador de baterías marca GNB, encargado de alimentar cuatro baterías marca Marathon, conectadas en serie. En la Figura 1.14 se observa la ubicación real dentro de la subestación y sus datos de placa en las tablas XIX y XX respectivamente.

Figura 1.14 Cargador GNB y baterías marca Marathon

Banco de baterías			
Capacidad 100 Amperios-hora, estaciona			
Voltaje	48 VDC		
Cantidad de baterías	4		
Voltaje de cada batería	12 VDC		
Conexión	Serie		

Tabla XIX Datos del banco de baterías

Car	Cargador de baterías GNB				
Modelo	GGS48S50				
Serial No.	95PS775 PART No. 87865				
AC Volts	120/208/240 DC VOLTS 48 NOM				
AC AMPS	50/29/25 DC AMPS 50				
FREQ./PHASE	60/1	60/1 AMB. TEMP. 50 ℃			

Tabla XX Datos de Placa del Cargador de baterías GNB.

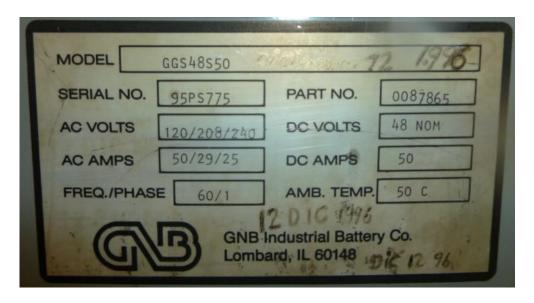


Figura 1.15 Placa del Cargador de baterías GNB.

1.5.5.2 Tablero

La S/E posee un tablero metálico con paneles de breakers AC y DC donde van montados el medidor Quantum y acoplados los dispositivos de medición, protección, alarma y relés de protección diferencial. Otro tablero metálico están montados los medidores Fulcrum.

1.5.5.3 Medidores

Los medidores utilizados en esta S/E tienen la capacidad de registrar las magnitudes eléctricas que comúnmente se monitorean como son: voltaje de cada fase, corriente de cada fase, potencia activa, potencia reactiva y energía, sus características principales se resumen en la Tabla XXI.

En esta S/E se utiliza un medidor para cada una de Alimentadoras en operación y un medidor totalizador, que recoge la lectura global de las cuatro Alimentadoras, cada medidor está instalado con una base socket clase 20 trifásica de 13 terminales y un switch de prueba de 9 terminales.

Medidor	Servicio	Marca	Tipo	Serie	Voltaje	Clase	Elem.
ION	Totalizador	Schneider	8600	MT-1102B014-01	120	10	2 1/2
ION	Chongon	Schneider	8600	MT-1104A239-01	120	20	2 1/2
ION	Odebretch	Schneider	8600	MT-1102B101-01	120	20	2 1/2
ION	Cerro Blanco	Schneider	8600	MT-1102B103-01	120	20	2 1/2
ION	Puerto Azul	Schneider	8600	MT-1102B099-01	120	20	2 1/2

Tabla XXI Datos de los medidores

Figura 1.16 Medidores Schneider en la S/E Cerro Blanco

1.5.5.4 Dispositivos de control y protección.

1.5.5.4.1 Protección Diferencial

La protección diferencial que se requiere para esta S/E es proporcionada por la Unidad de Protección de Transformadores 2000R (TPU2000R), marca ABB, es un relé basado en microprocesadores que protege transformadores trifásicos de transmisión y distribución de energía, ofrece protección diferencial sensible de alta velocidad para fallas internas de fase y tierra, así como protección de respaldo de sobrecorriente para fallas pasantes. La restricción armónica impide la operación con irrupción magnetizante y sobreexcitación. [1]

Las funciones específicas de este dispositivo se detallarán posteriormente en el Capítulo 4, en la Figura 1.17 se observa el relé montado en el panel de control de la S/E.

Figura 1.17 Panel de Control con el relé TPU2000R en la parte superior.

1.5.5.4.2 Panel de alarmas

La subestación tiene un panel de alarmas marca PANALARM, que se muestra en la Figura 1.18, la Tabla XXII se detallan los tipos de alarmas que están indicadas en este panel.

Panel de Ala	rmas PANALARM	
Anagada	Alta temperatura de bobina	
Apagado	y aceite	
Apagado	Bajo nivel de aceite	
Apagado	Relé de presión súbita y	
Apagado	Válvula de sobrepresión.	
Apagado	Malfunction de TPU	
Apagado	Baja presión de gas GCB	
Apagado	Falta Voltaje AC	
Apagado	Disparo de Alimentadora	
Apagado	Puerto Hondo	
Apagado	Disparo de Alimentadora	
Apagado	Odebrecht	
Apagado	Disparo de Alimentadora	
Apagado	Cerro Blanco 4	
Apagado	Disparo de Alimentadora	
Apagado	Chongon	

Tabla XXII Tipos de alarmas del panel PANALARM

Figura 1.18 Panel de Alarmas PANALARM

1.5.5.4.3 Otros dispositivos de control y protección

Descripción	Marca	Tipo	Cant.
Panel de Alarmas	PANALARM	910DC48T	1
Relé Lockout auxiliar baja frecuencia	G.E.	HEA61	1
Relé para protección del Transformador	ABB	TPU2000R	1
Switch apertura - cierre	G.E.		1
Lamparas indicadoras	G.E.		3
Relé Lockout auxiliar protección TPU	G.E.	HEA 61	1
Regletas con cortocircuito 6 puntos	G.E.	EB27B065	2
Regletas de 12 puntos	G.E.	EB25L12	4
Breakers 1P-20	G.E.	THQC	8
Breakers 2P-20	G.E.	THQC	9
Breakers 2P-40	G.E.	THQC	1
Breakers 2P-50	G.E.	THQC	2
Relé auxiliar 12V DC para pito			1
Contactor con bloques auxiliares	TELEMECANIQUE		1
Contactor con temporizador	TELEMECANIQUE		1

Tabla XXIII Dispositivos varios de Protección y Control

Breakers					
Servicio	Descripción				
Transformador De Poder	2P -40A				
Cargador de Baterías	2P- 20A				
Cerro Blanco 4	1P-20A				
Odebrecht	1P -20A				
Chongon	1P-20A				
Pto. Hondo	1P-20A				
GCB	1P-20A				
Alumbrado Norte	1P-20A				
Alumbrado Sur	1P-20A				
Alumbrado Caseta	1P-20A				
Alumbrado Cerramiento	1P-20A				

Tabla XXIV Descripción de Breakers

Figura 1.19 Varios breakers montados en el panel de control.

1.5.6 Malla de tierra

La malla de tierra tiene por objeto proteger al personal y equipos de las sobretensiones y esfuerzos eléctricos y mecánicos producidos por voltajes de maniobra, falla de aislamiento o descargas atmosféricas, así como también, provocar la circulación de corrientes altas al producirse contactos con partes vivas de energía.[2]

El sistema de aterrizamiento de la S/E Cerro Blanco está diseñada por :

- 22 varillas de Copperweld de 5/8"x8" para puesta a tierra.
- 140 m de cable de cobre desnudo #4/0 AWG.

CAPÍTULO 2

ESTUDIOS DE FLUJO DE CARGA

2.1. INTRODUCCIÓN

Realizaremos el Estudio de Flujo de Carga con la finalidad de establecer los voltajes de las barras, potencia consumida por la subestación y determinar si existe o no sobrecarga en las líneas de distribución; análisis para el cual utilizamos una herramienta computacional PowerWorld Simulator Versión 17 licencia educacional.

PowerWorld Simulator es un programa computacional utilizado para el análisis y simulación de sistemas de potencia, y se ha convertido en uno de los más usados en la actualidad, ya que las compañías eléctricas han incrementado su tamaño y número de interconexiones, esto ha ocasionado mayor complejidad en la planeación de las futuras expansiones del sistema, llevándoles a considerar una gran variedad de posibilidades de diseño y realizar estudios de los efectos sobre el sistema de cada alternativa. También es necesario reunir y manejar un gran número de datos con la mayor

exactitud posible para todas las redes para así lograr un análisis detallado de los diferentes casos que sufre la red. [3]

2.2 CRITERIOS ADOPTADOS PARA EL ESTUDIO

2.2.1 Flexibilidad Operacional

El sistema podrá funcionar mediante un suministro de energía proveniente de la línea de subtransmisión CEMENTO a través de la subestación ANIBAL SANTOS de la ciudad de Guayaquil sin ninguna restricción.

2.2.2 Niveles de Confiabilidad.

El sistema debe proveer la continuidad del servicio de forma prioritaria a las Urbanizaciones de gran demanda que estén alimentadas a nivel de 13.8 KV ante la existencia de falla de un elemento del Sistema.

2.2.3 Niveles de sobrecarga.

No se aceptan sobrecarga en los Elementos de Distribución del Sistema mayores a la cargabilidad establecida en las especificaciones técnicas. Para el caso de los Transformadores Convencionales de Fuerza, la carga no debe exceder su capacidad OA (capacidad con enfriamiento por aceite y aire natural).

2.2.4 Regulación de Voltaje.

Los voltajes a nivel de barras del Sistema no deben exceder del 5% del valor de la tensión nominal y tampoco pueden estar por debajo de un 5%, ante cualquier contingencia operativa.

2.3 ANÁLISIS DE CASOS

En el presente análisis se consideran los siguientes casos para el estudio:

- ✓ CASO 1: Estudios de flujo de carga caso base carga máxima.
- ✓ CASO 2: Estudios de flujo de carga caso base carga mínima.

2.3.1 Estudios de Flujo de Carga - Caso Base Carga Máxima

La Empresa Eléctrica Pública de Guayaquil nos facilitó un histórico de cargas de todas las Alimentadoras de la Subestación Cerro Blanco (Ver Anexo 1), este histórico corresponde al periodo enero 2012 – febrero 2013 con observaciones cada 15 minutos, permitiéndonos encontrar las demandas máximas mensuales y así estableciendo la máxima carga del periodo de estudio, ver Tabla XXI.

Carga Máxima						
Alimentadora	MW	MVA	MVAR			
Cerro Blanco	1,24532239	1,27478247	0,27119522			
Chongon	6,36940869	6,71578906	2,12860181			
Odebretch	0,04942225	0,0575224	0,02942938			
Puerto Hondo	9,70821777	9,9160918	2,01858643			

Tabla XXV Cargas máximas de las Alimentadoras.

Observamos en la Figura 2.1 las cargas máximas para cada mes del periodo enero 2012 – febrero 2013 de las cuatro Alimentadoras: Cerro Blanco 4, Chongón, Odebrecht, Puerto Hondo.

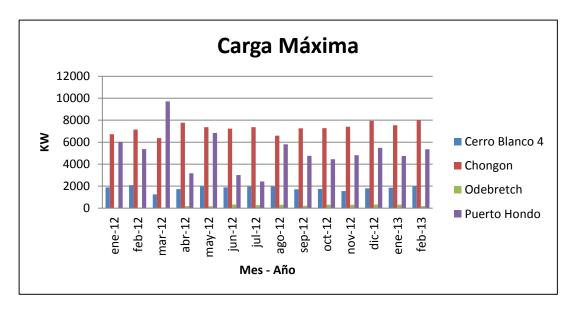


Figura 20.1 Carga máxima mensual del periodo enero 2012 – febrero 2013.

2.3.2 Estudios de Flujo de Carga - Caso Base Carga Mínima

Mediante el mismo análisis del histórico de cargas realizado en el caso de carga máxima, encontramos las demandas mínimas mensuales y así establecimos la mínima carga del periodo de estudio, ver Tabla XXII.

Carga Mínima					
Alimentadora	MW	MVA	MVAR		
Cerro Blanco	0,03549	0,038072	0,011803		
Chongon	0,175353	0,189384	0,000963		
Odebretch	4,18E-05	0,000684	0		
Puerto Hondo	0,086927	0,095745	0,039267		

Tabla XXVI Cargas mínimas de las Alimentadoras.

Observamos en la Figura 2.2 las cargas mínimas para cada mes del periodo enero 2012 – febrero 2013 de las cuatro Alimentadoras: Cerro Blanco, Chongón, Odebrecht, Puerto Hondo.

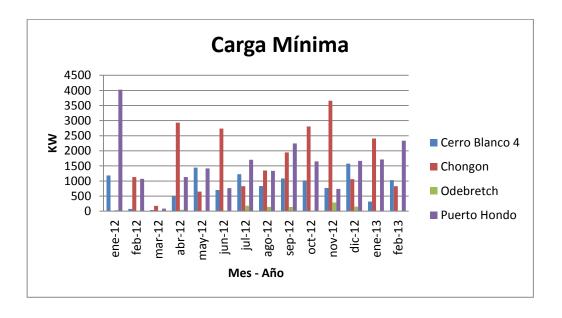


Figura 21.2 Carga mínima para cada mes del año 2012.

2.4 DATOS DEL SISTEMA

Es necesario conocer las características de los equipos utilizados en el estudio de la Subestación de Distribución para la respectiva coordinación de los elementos de protección y para un buen funcionamiento de todo el sistema.

Los datos y características de los equipos que se requieren son: transformador de fuerza, conductores, líneas y barras.

2.4.1 Datos de Transformador de Fuerza.

Maraa	7 (0/)	(MVA)	Canavián	V1/V2	Presión	Peso	Año
Marca	Z (%)	OAFAFO	Conexión	(KV)	(PSI)	(kg)	Fabr.
ABB	6,64	18/24/26,9	Δ-Υ	69/13.8	14,7	50500	2003

Tabla XXVII Datos de Transformador de Fuerza

2.4.2 Datos de conductores.

El espaciamiento equivalente utilizado en las 4 Alimentadoras de la Subestación Cerro Blanco es 0,73m. Además se estableció una zona donde está ubicada la subestación con temperatura ambiente 40°C y donde hay viento, la potencia máxima del conductor establecida es 10 MVA.

Líneas		Calibre del cond. AWG o MCM	Dist (m)	Impedancia en Ω/km por conductor		Impedancia en pu por conductor	
De Barra	A Barra	O IVICIVI		R	Х	R	Х
Odebrecht	Valle alto		4500		0.2074	0,408081	0,679112
Cerro Blanco 4	Poste Holcim	226.4	250	0.4707		0,022671	0,037728
Puerto Hondo	Complejos	336,4	700	0,1727	0,2874	0,063479	0,10564
Chongon	Residencial		2080			0,188624	0,3139

Tabla XXVIII Datos de Líneas

Se realizó el diagrama unifilar de la Subestación Cerro Blanco con los datos de las Tablas XXII, XXIII, XXIV, utilizando el programa PowerWorld Simulator Version 17 licencia educacional, el cual se lo muestra a continuación.

2.5 RESULTADOS DE LOS ESTUDIOS DE FLUJO DE CARGA.

Los resultados de Flujo de carga serán presentados principalmente en forma gráfica por ser el método más conciso y usualmente más informativo. El flujo del sistema puede ser rápidamente analizado con la presentación gráfica y relacionar la configuración del sistema, condiciones operativas y resultados.

El análisis del flujo de carga muestra lo siguiente:

- Voltaje en barras.
- Consumo de las cargas.
- Factor de Potencia.
- Requerimientos de potencia Reactiva.

- Carga sobre todos los conductores y transformadores, verificar que la carga esté dentro de la capacidad de transmisión para condiciones normales y contingencias operativas.
- Ajustes de TAPS de los Transformadores.

2.5.1 Casos base.

A continuación se presentan los resultados gráficos del Flujo de Carga para máxima y mínima carga. En la Figura 2.3 se muestra un resumen los datos ingresados en el programa para realizar el estudio de flujo de carga.

En las Figuras 2.4 y 2.5 se muestran los resultados gráficos del flujo de potencia para carga máxima y carga mínima respectivamente.

Para carga máxima se observa que el transformador está operando al 72% de su capacidad límite, la cual está establecida en 24 MVA.

Para carga mínima se observa que el transformador está operando al 1% de su capacidad límite, la cual está establecida en 24 MVA.

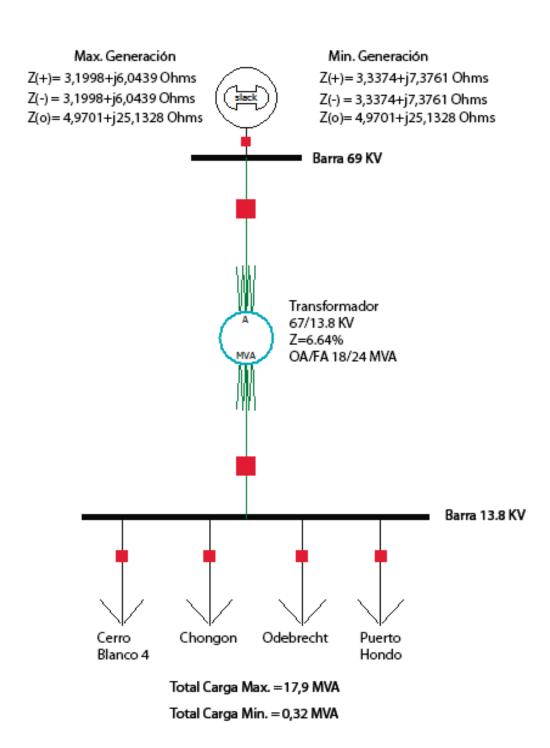


Figura 22 Resumen de datos ingresados para el flujo de potencia.

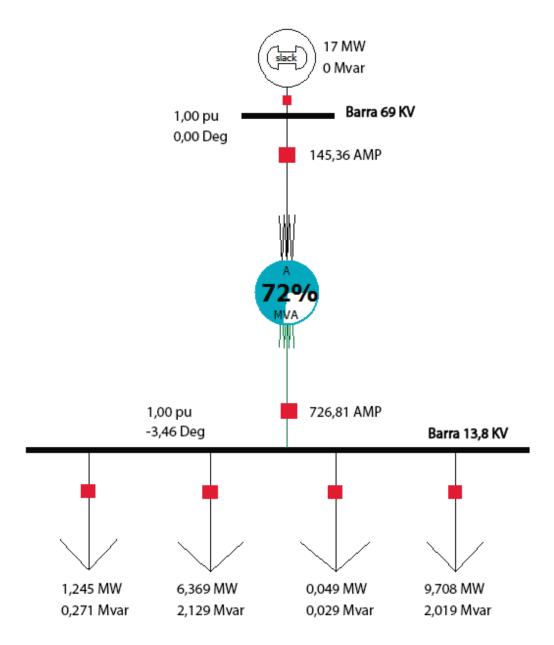


Figura 23.4 Flujo de Potencia para Carga Máxima

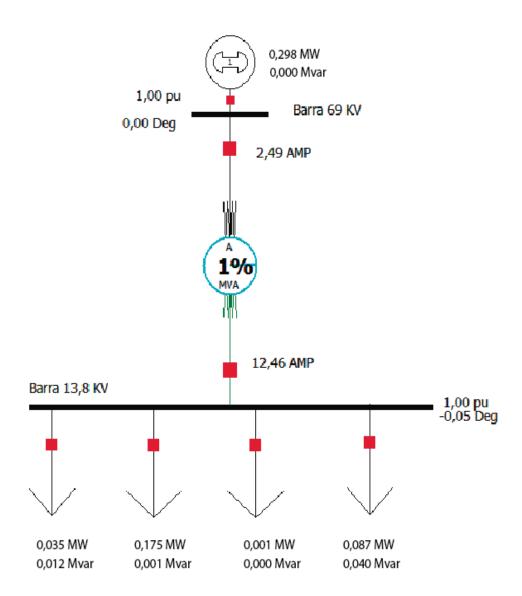


Figura 24.5 Flujo de Potencia para Carga Mínima

2.5.1.1 Voltajes en barras.

NO	Nombre	V. Nom (KV)	Voltaje (p.u.)	Fase	Voltaje(KV)
1	Barra 69	69	1	00	69
2	Barra 13,8	13,8	1	-3,46°	13,8

Tabla XXIX Voltajes en barras para Carga Máxima.

NO	Nombre	V. Nom (KV)	Voltaje (p.u.)	Fase	Voltaje(KV)
1	Barra 69 KV	69	1	00	69
2	Barra 13,8 KV	13,8	1	-0,059°	13,8

Tabla XXX Voltajes en barras para Carga Mínima.

2.5.1.2 Consumo.

Consumo para Carga Máxima					
Cerro Blanco 4 1,25 [MW] 0,27 [MVAR]					
Chongon 6,37 [MW] 2,13 [MVAR]					
Odebrecht 0,049 [MW] 0,029 [MVAR]					
Puerto Hondo	9,71 [MW]	2,02 [MVAR]			

Tabla XXXI Consumo en la barra de 13.8 KV para carga máxima.

Consumo para Carga Mínima				
Cerro Blanco 4 32,49 [KW] 11,8 [KVAR]				
Chongon	0,96 [KVAR]			
Odebrecht	0,042 [KW]	0,0 [KVAR]		
Puerto Hondo	86,93 [KW]	39,27 [KVAR]		

Tabla XXXII Consumo en la barra de 13.8 KV para carga mínima.

2.5.1.3 Carga de Transformadores.

Desde	Hasta	MW	MVAR	MVA	MVA lim	%lim
Barra 69	Barra 13,8	17,37	4,44	17,92	24	72,4

Tabla XXXIII Potencias entre barras para carga máxima.

Desde	Hasta	MW	MVAR	MVA	MVA LIM	%lím
Barra 69	Barra	0,3	0,05	0,32	24	1,3

Tabla XXXIV Potencias entre barras para carga mínima.

2.5.1.4 Potencia Activa y Reactiva recibida del Sistema.

Potencia recibida para carga máxima					
Barra 69	17,37 MW	4,44 MVAR			

Tabla XXXV Potencia recibida para carga máxima.

Potencia recibida para carga minima					
Barra 69	0,3 MW	0,05 MVAR			

Tabla XXXVI Potencias recibida para carga mínima.

2.5.1.5 TAP del Transformador de potencia.

Transformador	TAP en alta tensión		
SIEMENS 67/13,8KV 18/24 OA/FA	2,50%		

Tabla XXXVII Ajuste del Tap del Transformador.

2.6 CONCLUSIONES DEL ESTUDIO DE FLUJO.

El flujo de potencia desarrollado en este capítulo para la carga en la subestación Cerro Blanco ha permitido determinar y comprobar los siguientes parámetros.

- La Carga de la Subestación Cerro Blanco es suplida en su totalidad y bajo condiciones normales por la red de Subtransmisión de la Empresa Eléctrica, en este caso a través de la Planta Aníbal Santos, tanto para los casos bases de Mínima y Máxima Carga.
- Los voltajes de las barras son 1,00 p.u. en la barra de 69 KV y 1,00 p.u. en la de 13.8 KV para la condición de carga máxima. Los voltajes de las barras son 1,00 p.u. y 1,00 p.u respectivamente. para la condición de carga mínima. Resultados que indican un correcto trabajo del sistema dentro de los niveles requeridos del ±5% del voltaje nominal.
- La potencia que consume la subestación Cerro Blanco desde la línea de subtransmisión CEMENTO es de 17,37 MW y 4,44 MVAR para carga máxima, y 0,3 MW y 0,05 MVAR para carga mínima.
- El ajuste del transformador de potencia es del 2,5%, lo cual corresponde al TAP en la posición B a una relación de transformación 68800:13800.

• El flujo de potencia no excede el 72% de la capacidad en FA (24 MVA) del transformador de potencia con sus cuatro Alimentadoras operando.

CAPÍTULO 3

ESTUDIOS DE CORTOCIRCUITO

3.1 INTRODUCCIÓN.

En el análisis de cortocircuito, las fallas del sistema se manifiestan como condiciones anormales de operación que nos podrían conducir a uno de los siguientes fenómenos:

- ✓ Indeseables flujos de Corrientes.
- ✓ Presencia de Corrientes de magnitudes exageradas que podrían dañar los equipos.
- ✓ Caída de Voltaje en la vecindad de la falla que puede afectar adversamente la operación de las maquinas rotatorias.
- ✓ Creación de condiciones peligrosas para la seguridad del personal.

Ya que el objetivo del presente trabajo es el estudio de protecciones de la Subestación Cerro Blanco, requiere realizar estudios de cortocircuito para resolver las situaciones críticas señaladas, y obtener la información básica para la coordinación de las protecciones. Se los realizarán en base a los siguientes objetivos:

- ✓ Determinar el efecto de las corrientes de falla en los componentes del sistema tales como cables, barras y transformadores durante el tiempo que persista la misma.
- ✓ Los estudios determinan las zonas del sistema en donde la falla puede resultar en depresión inaceptable de voltajes.
- ✓ Determinar el ajuste de los equipos de protección, los cuales son establecidos considerando el sistema bajo condiciones de falla.

3.2 ALCANCE DE LOS ESTUDIOS DE CORTOCIRCUITO.

Considerando que el sistema de la Subestación Cerro Blanco se caracteriza por ser un sistema típicamente aterrizado el estudio de cortocircuito considera los siguientes tipos de falla como las principales a analizar:

- > Falla Trifásica
- > Falla de línea a tierra

La falla trifásica a tierra es a menudo, para este tipo de sistema, la más severa de todas, por ello es costumbre de simular solamente la falla trifásica cuando se busca las magnitudes máximas de corriente de falla; sin embargo en la Subestación Cerro Blanco se verificará la corriente de falla en todos los escenarios posibles, es decir también las fallas de línea a línea y de dos líneas a tierra, pero también se verificará que la Corriente de Falla a Tierra no exceda la corriente trifásica.

3.3 DATOS DEL SISTEMA.

La información básica es aplicable a todos los casos del sistema y depende del tipo de corriente de falla a determinar.

3.3.1 Impedancias equivalentes en la barra de la subestación.

Para poder realizar el estudio de cortocircuito necesitamos las Impedancias de Thévenin en la barra de Interconexión a 69 KV de la Subestación Cerro Blanco la cual nos proporcionó la EEPG, tanto para máxima como para mínima generación. La información suministrada tiene como base 100 MVA y 69 KV los cuales se indican en las Tablas XXXVIII y XXXIX.

3.3.1.1 Impedancias Equivalentes.

Tipo de	R +j X	R +j X	X/R	
impedancia	p.u.	Ohmios		
Positiva (+)	0,0672086+j0,1269470	3,1998+j6,0439	1,8888	
Negativa (-) 0,0672086+j0,1269470		3,1998+j6,0439	1,8888	
Cero 0,1043929+j0,5278888		4,9701+j25,1328	5,0567	

Tabla XXXVIII Impedancias Equivalentes máxima generación - 69 KV.

Tipo de	R +j X	R +j X	X/R	
impedancia	p.u.	Ohmios	7/ 1	
Positiva (+)	0,0700984+j0,1549280	3,3374+j7,3761	2,2102	
Negativa (-) 0,0700984+j0,1549280		3,3374+j7,3761	2,2102	
Cero 0,1043929+j0,5278888		4,9701+j25,1328	5,0567	

Tabla XXXIX Impedancias Equivalentes mínima generación - 69 KV.

3.3.1.2 MVA de cortocircuito.

De igual manera, la EEPG nos proporcionó los MVA de cortocircuito para cada barra de 69 KV, en máxima y mínima generación las cuales se pueden observar en la Tablas XL y XLI.

Tipo	Potencia de Falla				
Falla	(MVA)				
LLL	696				
LG	367				
LL	603				
LLG	646				

Tabla XL MVA de cortocircuito máxima generación

Tipo	Potencia de falla			
Falla	(MVA)			
LLL	588			
LG	344			
LL	509			
LLG	546			

Tabla XLI MVA de cortocircuito mínima generación

3.3.1.3 Corrientes de cortocircuito

Tipo de	la	la	lb	lb	lc	lc	ln	ln
Falla	(KA)	(deg)	(KA)	(deg)	(KA)	(deg)	(KA)	(deg)
LLL	5,8252	-62,1022	5,8252	177,8978	5,8252	57,8978	0	0
LG	3,0708	-73,0137	0	0	0	0	3,0708	-73,0137
LL	0	0	5,0448	-152,102	5,0448	27,8978	0	0
LLG	0	-99,0395	4,8848	-163,907	5,4014	38,5596	2,0669	103,1352

Tabla XLII Corrientes de cortocircuito para máxima generación-69KV.

Tipo de	la	la	lb	lb	lc	lc	ln	ln
Falla	(KA)	(deg)	(KA)	(deg)	(KA)	(deg)	(KA)	(deg)
LLL	4,9206	-65,6553	4,9206	174,3447	4,9206	54,3447	0	0
LG	2,8763	-73,7242	0	0	0	0	2,8763	-73,7242
LL	0	0	4,2614	-155,655	4,2614	24,3447	0	0
LLG	0	0	4,1811	-169,357	4,5692	36,8631	2,0204	102,9717

Tabla XLIII Corrientes de Cortocircuito mínima generación-69KV.

3.3.2 Datos de Conductores.

Los conductores son elementos pasivos en el análisis de cortocircuito y sus características técnicas son similares a las aplicadas en los estudios de flujo de carga.

3.3.3 Datos de Transformadores de Fuerza.

Al igual que los conductores los Transformadores también son elementos pasivos en el análisis de cortocircuito, sus características técnicas son análogas a las aplicadas en los estudios de flujo de carga.

3.4 RESULTADOS DE LOS ESTUDIOS DE CORTOCIRCUITO.

Las corrientes de cortocircuito han sido calculadas considerando los criterios técnicos indicados en la sección 2.3. La falla Trifásica a tierra y línea a tierra se aplica a cada barra del sistema.

3.4.1 Casos base.

En el Anexo 2 se adjunta los resultados gráficos de los resultados de las corridas de Corto Circuito del Caso base, que se resume a continuación:

3.4.1.1 Corriente de Falla en cada barra - Máxima Carga.

Para la barra de 69 KV, en la Tabla XLIV se muestran los resultados de las corrientes de cortocircuito en Amperios y en p.u. con sus respectivos ángulos para cada tipo de falla indicada en la sección 3.2, de la misma manera en la Tabla XLVI se presentan los resultados para cada tipo de falla ocurrida en la barra de 13,8 KV.

Tipo de falla		Icc a 69 KV	_	Capacidad de cc.
	(A)	p.u.	(°)	(MVA)
LLL	5825,11	6,962	-62,1	696
LG	3070,79	3,670	-73,01	367
LL	5044,69	6,029	-152,1	603
LLG	2066,87	2,470	103,1	247

Tabla XLIV Corrientes de Cortocircuito en la Barra 69 KV. Carga Máxima.

Para el caso de una falla LLG en la Barra 69 KV se debe considerar que la corriente de falla mencionada en la Tabla XLIV corresponde a la suma

vectorial de las dos corrientes que pasan por las fases fallidas, cuyos valores se muestran detalladamente en la Tabla XLV y que son de vital importancia para el cálculo de la capacidad de interrupción.

Tipo de falla	Icc a 69 KV					
i ipo de ialia	la		lb		lc	
HG	(A)	(°)	(A)	(°)	(A)	(°)
LLG	0	0	4884,52	-163,9	5401,13	38,56

Tabla XLV Corrientes de Cortocircuito por fase en la Barra 69 KV, Falla LLG.

Tipo de falla	Icc a 13,8 KV (A)	Icc a 13,8 KV p.u.	Ángulo (°)	Capacidad de cc. (MVA)
LLL	9679,83	2,314	-81,05	231
LG	10804	2,582	-83,36	258
LL	8382,98	2,004	-171,05	200
LLG	12195,6	2,915	93,74	292

Tabla XLVI Corrientes de Cortocircuito en la Barra 13,8 KV. Con Ztrafo=5.727%

Para el caso de una falla LLG en la Barra 13.8 KV se debe considerar que la corriente de falla mencionada en la Tabla XLVI corresponde a la suma vectorial de las dos corrientes que pasan por las fases fallidas, cuyos valores se muestran detalladamente en la Tabla XLVII y que son de vital importancia para el cálculo de la capacidad de interrupción.

Tino do follo			Icc a 13,8 KV			
Tipo de falla	la		lb		lc	
HG	(A)	(°)	(A)	(°)	(A)	(°)
LLG	0	0	9908,84	151,2	10803,8	43,15

Tabla XLVII Corrientes de CC por fase en la Barra 13,8 KV. Falla LLG. Con Ztrafo=5.727%

3.4.1.2 Corriente de Falla en cada barra - Mínima Carga.

Para la barra de 69 KV, en la Tabla XLVIII se muestran los resultados de las corrientes de cortocircuito en Amperios y en p.u. con sus respectivos ángulos para cada tipo de falla indicada en la sección 3.2, de la misma manera en la Tabla L se presentan los resultados para cada tipo de falla ocurrida en la barra de 13,8 KV.

Tipo de falla	Icc a 69 KV	Icc a 69 KV	Ángulo	Capacidad de cc.
	(A)	p.u.	(°)	(MVA)
LLL	4920,52	5,881	-65,66	588
LG	2876,3	3,438	-73,72	344
LL	4261,3	5,093	-155,66	509
LLG	2020,44	2,415	102,97	241

Tabla XLVIII Corrientes de Cortocircuito en la Barra 69 KV. Carga Mínima.

Para el caso de una falla LLG en la Barra 69 KV se debe considerar que la corriente de falla mencionada en la Tabla XLVIII corresponde a la suma vectorial de las dos corrientes que pasan por las fases fallidas, cuyos valores se muestran detalladamente en la Tabla XLIX y que son de vital importancia para el cálculo de la capacidad de interrupción.

Tipo do follo	Icc a 69 KV					
Tipo de falla	la		lb		lc	
HG	(A)	(°)	(A)	(°)	(A)	(°)
LLG	0	0	4180,95	-169,4	4569,02	36,86

Tabla XLIX Corrientes de Cortocircuito por fase en la Barra 69 KV, Falla LLG.

Tipo de falla	Icc a 13,8 KV	Icc a 13,8 KV	Ángulo	Capacidad de cc.
	(A)	p.u.	(°)	(MVA)
LLL	9089,08	2,173	-83,39	217
LG	10305	2,463	-83,39	246
LL	7871,38	1,881	-171,24	188
LLG	11871,4	2,838	93,8	284

Tabla L Corrientes de Cortocircuito en la Barra 13,8 KV. Con Ztrafo=5.727%

Para el caso de una falla LLG en la Barra 13.8 KV se debe considerar que la corriente de falla mencionada en la Tabla L corresponde a la suma vectorial de las dos corrientes que pasan por las fases fallidas, cuyos valores se muestran detalladamente en la Tabla LI y que son de vital importancia para el cálculo de la capacidad de interrupción.

Tipo do follo	lcc a 13,8 KV						
Tipo de falla	la		lb		lc		
HG	(A)	(°)	(A)	(°)	(A)	(°)	
LLG	0	0	9439,89	150,0	10259,8	43,96	

Tabla LI Corrientes de Cortocircuito en la Barra 13,8 KV. Con Ztrafo=5.727%

Finalmente presentamos los valores máximos y mínimos posibles de corrientes de cortocircuito a nivel de 69KV y de 13,8KV, en la Tabla LII.

	69	KV	13,8KV		
	Imax	Imin	Imax	Imin	
Amp	5825,11	2876,3	10804	7871,38	
p.u	6,962	3,438	2,582	1,881	
Falla	LLL	LG	LG	LL	

Tabla LII Corrientes de cortocircuito máximas y mínimas de la S/E Cerro Blanco

3.5 CONCLUSIONES DE LOS ESTUDIOS DE CORTOCIRCUITO.

El estudio de cortocircuito considera los siguientes tipos de falla:

- √ Falla Trifásica
- ✓ Falla de línea a tierra
- √ Falla de línea a línea
- √ Falla de línea-línea-tierra

Las fallas trifásicas y línea a tierra que fueron simuladas en cada barra del sistema, cuyos resultados son mostrados de manera gráfica en el Anexo 2.a. y 2.b. y permiten establecer lo siguiente:

- En el análisis de cortocircuito en la barra de 69 KV, la corriente de falla máxima corresponde a la falla trifásica de 5825,11 [A] y 6,962 [p.u]; mientras que la corriente de falla mínima corresponde a la corriente de fase producida por una falla de línea a tierra con un valor de 2876,3 [A] y 3,438 [p.u].
- Para la barra de 13.8 KV, la corriente de falla máxima corresponde a la falla de línea a tierra con un valor de 10804 [A] y 2,582 [p.u], mientras que la corriente de falla mínima la produce la falla de línea a línea con un valor de 7871,38 [A] y 1,881 [p.u].
- Comprobamos que debido a el Sistema Nacional de nuestro país es aterrizado, por lo cual, en el lado de alta tensión la corriente de falla máxima es producida por la falla trifásica, ya que la conexión a tierra existente logra a nivel de 69 KV atenuación de fallas.
- En el lado de baja tensión la corriente de falla máxima es producida por la falla de línea a tierra, debido a la conexión del trasformador de potencia DELTA – Y aterrizado sin resistencia puesta a Tierra, como política de la Empresa Eléctrica, por la cual no existe atenuación en la red de distribución.

CAPÍTULO 4

PROTECCIÓN DE LA SUBESTACION DE DISTRIBUCION

4.1. ESQUEMA DE PROTECCIONES

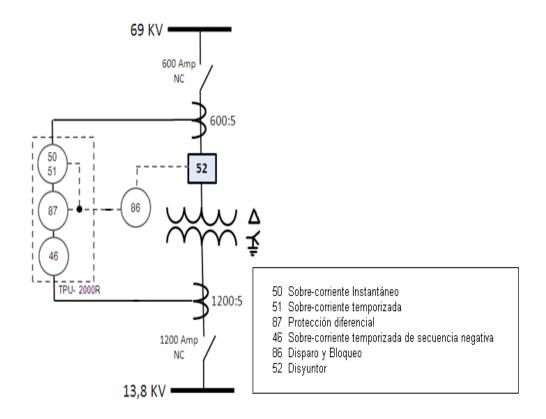


Figura 25.1 Esquema de Protecciones del Transformador de Potencia

El esquema de protecciones del transformador de potencia de la subestación

Cerro Blanco comprende el relé TPU 2000R de la marca ABB que sirve para

su protección primaria y la protección secundaria de la red. Este relé posee

las funciones 87 T, 87 H, 46, 50, 51, 50N y 51N y en caso de falla ordena la

apertura a los contactos del interruptor a gas SF6 (GCB - Gas Circuit

Breaker).

son:

4.2. PROTECCIÓN DEL TRANSFORMADOR DE POTENCIA

Las funciones principales que dispone el relé TPU 2000R de la serie ABB

Protección de fase

✓ Protección diferencial

Con restricción de armónicos: 87T.

Sin restricción de armónicos: 87H.

✓ Sobre-corriente temporizada: 51.

✓ Sobre-corriente temporizada de secuencia negativa: 46.

✓ Sobre-corriente Instantáneo: 50.

Protección de tierra

✓ Sobre-corriente temporizada: 51N y 51G.

✓ Sobre-corriente instantánea: 50N.

La conexión del TPU 2000R tiene una configuración ΔYn1, la cual es mostrada en el esquema de la Figura 4.2, con sus respectivas corrientes.

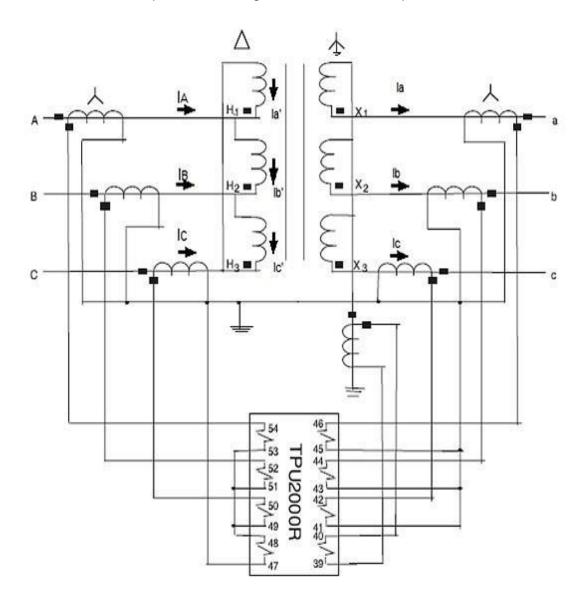


Figura 26.21 Esquema de conexiones del TPU 2000R.

4.2.1 Protección Diferencial 87

4.2.1.1 Características de la función 87T

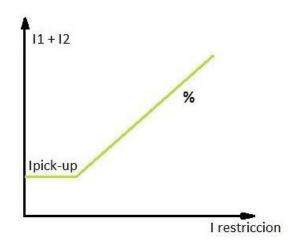
La Protección Diferencial se lo realiza a través del relé 87T, el cual es un dispositivo micro procesado de protección contra cortocircuitos internos del transformador que se conecta a los circuitos secundarios de dos transformadores de corriente (CT's) situados en ambos lados del elemento a proteger.

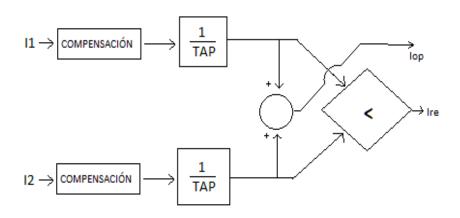
Ya que los relés a través de los años han sido mejorados a la par con el avance tecnológico, no requieren que la compensación de ángulos debido a la conexión del transformador de potencia se corrija mediante una conexión adecuada de los transformadores de corriente, sino que en su lugar, una vez que se identifique el ángulo de desfase entre el lado de alta y baja tensión, dentro del relé diferencial se realizará la compensación. Por sencillez, los CT's generalmente se conecta en estrella en ambos lados.

El relé diferencial moderno se encarga de calcular la corriente de operación como la suma fasorial (considerando magnitud y ángulo de fase) de las corrientes de restricción como factor del TAP del transformador de potencia por medio de sus CT's de alta y baja, posee un disparo instantáneo que al detectar que la corriente diferencial es mayor que un porcentaje de la mínima

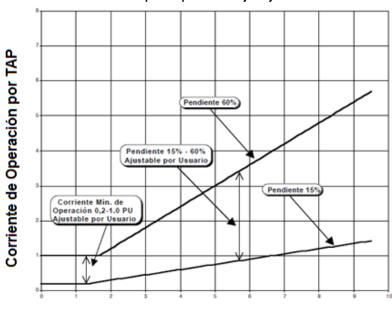
corriente de puesta en trabajo (I pick-up), manda a los interruptores a abrir los contactos.

A continuación se muestra en la figura 4.3 la característica de disparo de la protección diferencial.




Figura 27.3 Curva clásica de operación de un relé diferencial

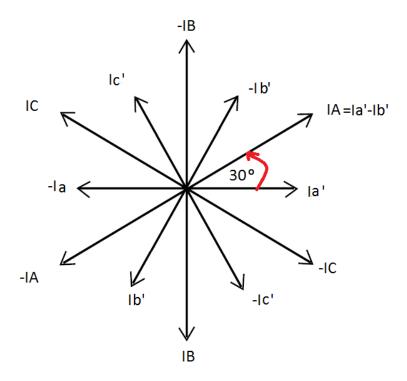
4.2.1.2 Ajuste de la función 87T


Para el ajuste del relé diferencial, se utilizara la curva de operación de pendiente % ajustable con pasos de 5%, la cual hemos escogido por simplificación.

En esta curva el punto de operación se alcanza cuando la diferencia entre las dos corrientes de restricción, expresada como porcentaje de la menor corriente de restricción, excede el ajuste de la pendiente de %.

A continuación se muestra un diagrama de flujo de operación del relé 87T y su curva característica.

Figura 28.42 Diagrama de Flujo de operación de la Función 87T del Relé TPU2000R para porcentaje ajustable.


Figura 29.5 Característica de la pendiente % ajustable de la protección diferencial del relé TPU 2000R.

Menor Corriente de Restricción por TAP

Para determinar el ajuste de la curva se requiere tomar en cuenta diferentes parámetros que detallaremos a continuación.

• Desfase entre corrientes del lado primario y secundario

Para determinar el desfase entre las corrientes de alto y bajo voltaje del transformador de potencia se requiere graficar sus respectivas corrientes en un diagrama fasorial como se muestra en la figura 4.6.

Figura 30.6 Diagrama fasorial de las corrientes del primario y secundario del transformador

Este método nos muestra claramente que la corriente del primario adelanta en 30 grados a la del secundario.

Máximas corrientes de carga

Para calcular las máximas corrientes de carga se debe considerar la potencia máxima y su respectico nivel de voltaje en el lado de alta (I_H) y el lado de baja (I_L) del transformador de potencia:

$$I_H = \frac{KVA(FA)}{\sqrt{3}KV_H} = \frac{24000}{\sqrt{3} 69} = 200,81 [A]$$
 (4.1)

$$I_L = \frac{KVA(FA)}{\sqrt{3}KV_L} = \frac{24000}{\sqrt{3} \ 13,8} = 1004,09 \ [A]$$
 (4.2)

• Elección de Relación de Transformación para CT's

Regidos bajo la norma americana C37.110-1998, el CT debe elegirse tal que la corriente en el secundario no exceda 20 veces la corriente nominal bajo las condiciones de máxima falla simétrica en el primario.

Aunque la mayor corriente de falla se produciría justamente en la ubicación del CT, este escenario es poco probable, por lo tanto se considerara como máxima corriente de falla los valores obtenidos en el capítulo 3.

Para el lado de alta tensión, la mayor corriente la produce una falla trifásica con I_{HF} =5825,11 [A], mientras que en el lado de baja tensión la corriente es producida por una falla de línea a tierra cuyo valor es I_{LF} =10804 [A].

Conociendo ya estos valores, se escoge el CT con una relación de transformación de manera que la corriente de falla en el lado del secundario sea menor a 100 [A] para evitar que al circular una corriente muy grande por el burden del circuito de protección se produzca una diferencia de potencial tan grande que sature al CT.

Con el análisis previo se ha escogido un transformador de corriente de 600:5 para el lado de alta y de 1200:5 en el lado de baja tensión; comprobando que la elección es correcta mediante las ecuaciones (4.3) y (4.4).

$$I_{HF} \frac{5}{600} = 5825,11 \frac{5}{600} = 48,54 [A] < 100[A]$$
 (4.3)

$$I_{LF} \frac{5}{1200} = 10804 \frac{5}{1200} = 45.02 [A] < 100[A]$$
 (4.4)

Corrientes máximas de carga en secundarios de CT's

Así, la corriente máxima de carga en los lados secundarios del CT es:

$$I_{HS} = 200,81 \frac{5}{600} = 1,67 [A]$$
 (4.5)

$$I_{LS} = 1004,09 \frac{5}{1200} = 4,18 [A]$$
 (4.6)

Porcentaje de error intrínseco Mismatch

Este porcentaje es el que otorga un margen de seguridad para los errores de rendimiento de los CT's. Para determinar el porcentaje de error intrínseco es necesario determinar las corrientes de restricción usadas en el relé luego de la compensación interna de fase programada. De este modo, la corriente debe ser afectada por un factor que compense la conexión del transformador de potencia al que llamaremos HSICF para el lado de alta y LSICF para el lado de baja tensión.

$$I_{HR} = I_{HS} * HSICF = 1,67 * 1 = 1,67$$
 (4.7)

$$I_{LR} = I_{LS} * LSICF = 4.18 * \sqrt{3} = 7.24$$
 (4.8)

Con los valores obtenidos se debe escoger los ajustes del TAP del lado de alta y baja los cuales se encuentran en un rango de 2 a 9 con pasos de 0,1A por lo que se seleccionan TAP_H =2 A y TAP_L =9 A, respectivamente; se tomaron estos valores debido a la restricción física del dispositivo de protección.

El porcentaje de error intrínseco de la selección del TAP para la corriente nominal se puede calcular con la siguiente ecuación:

$$M = \frac{100\left(\frac{I_{HR}}{I_{LR}} - \frac{TAP_H}{TAP_L}\right)}{S} = \frac{100\left(\frac{1,67}{7,24} - \frac{2}{9}\right)}{\frac{1,67}{7,24}} = 3,65\%$$
 (4.9)

Porcentaje por error de los CT's

Este porcentaje de error resulta de no linealidad de la curva de saturación de los CT's, así mientras más se acerca al codo de operación se incrementan los errores. Para este caso en particular considerando la magnitud de las corrientes de falla y las relaciones de transformación de los CT'S se considera un factor límite de precisión (ALF, por sus siglas en inglés), igual a 20, el porcentaje escogido de acuerdo a la norma IEC 60044 para protección diferencial es del 5% al 10%.

Porcentaje de Regulación de Voltaje TAP

Si el transformador tiene cambiador de TAP es posible variar la relación de transformación, y cualquier sistema de protección diferencial debe ser capaz

de mantenerse trabajando sin verse afectada. El porcentaje que otorga la norma IEC60044 es de 10%.

Porcentaje de Restricción de Armónicas por la corriente de magnetización (INRUSH)

La finalidad de considerar este porcentaje en el ajuste del relé diferencial es proporcionarle la capacidad de diferenciar entre corrientes de magnetización y de cortocircuito, y así evitar operaciones incorrectas; lo que se denomina restricción por armónicos.

A pesar que ambas se caracterizan por ser de gran magnitud, la corriente de magnetización presenta diferencias con la corriente de cortocircuito en la forma de onda debido a presencia de armónicos.

De esta manera, el relé podrá determinar que se encuentra frente a una falla interna porque la corriente de restricción es puramente sinusoidal mientras que, es rica en armónicas durante la energización o la sobre-excitación del transformador.

Ya que el transformador de potencia de la S/E Cerro Blanco es un transformador moderno la intensidad de las armónicas es muy bajo y regidos bajo su norma de construcción ANSI C57 como lo indica su placa, su porcentaje correspondiente es máximo 5% para la restricción del relé.

Finalmente se mostrara en la tabla LIII, los valores de porcentaje requeridos para la selección de la pendiente de la curva de disparo del relé diferencial 87T.

ERROR	PORCENTAJE %	NORMA
Mismatch	3,65	Blackburn
Error CT's	5	IEC 60044
TAP	10	IEC 60044
Inrush	5	ANSI C57,110
Suma	23,65	

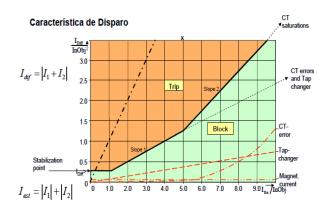
Tabla LIII Porcentajes de restricción

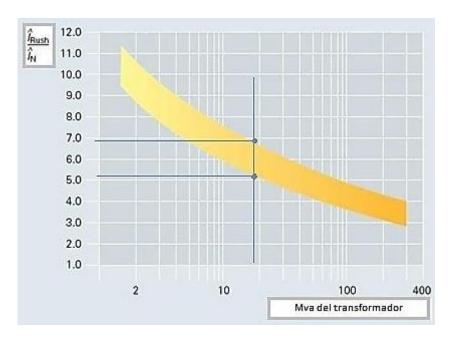
Sin embargo, el Std.C37.91-2008 [9], recomienda dejar un margen sobre el valor calculado, por lo que la pendiente se seleccionó en un valor del 30%.

La corriente de puesta en trabajo establecida para el 87T fue determinada mediante la ecuación 4.10.

$$I_{pick-up} = 0.2 * \left(\frac{I_{HR}}{TAP_H} + \frac{I_{LR}}{TAP_I}\right) = 0.2 \left(\frac{1,67}{2} + \frac{7,24}{9}\right) \approx 0.3 A$$
 (4.10)

La figura 31.7 muestra la característica de disparo de la protección diferencial del transformador.




Figura 31.7 Característica de disparo de la Protección Diferencial

4.2.1.3 Características de la función 87H.

El 87H es un diferencial instantáneo sin restricción de armónico en el lado de alta tensión, que tiene por objeto evitar que dispare el relé por una corriente Inrush cuando se energiza el transformador.

4.2.1.4 Ajuste del 87H.

Según la norma ANSI IEEE para transformadores de 18 a 24 MVA la corriente de inrush es entre 5 a 7 veces mayor que la corriente nominal, como se muestra en la Figura 4.8.

Figura 32.8 Rango de corriente de Irrupción del transformador.

Se recomienda escoger un valor mayor a este, por lo tanto se considerara la de corriente de irrupción del transformador como 8 veces la corriente con auto-enfriamiento OA.

La corriente secundaria de los TC del lado de 69 KV en su capacidad OA es:

$$I = \frac{18000}{\sqrt{3}*69*120} = 1.26 \text{ [A]}$$
 (4.11)

AJ.87H=1.26*
$$\frac{8}{\text{TAP}}$$
=1.26* $\frac{8}{2}$ =5.04 (4.12)

4.2.2 Función 51-P del TPU 2000R

La función 51-P denominada así por la norma ANSI es una protección de Sobrecorriente Temporizada y protege al transformador contra las corrientes de nivel de falla, el TPU 2000R manda la señal al interruptor de abrir al transformador y protegerlo en base a un retardo de tiempo programable al excederse el umbral del ajuste de arranque de la función 51-P. La ecuación de sobrecorriente es una curva ANSI definida de acuerdo a los requerimientos de tiempo de operación.

Las funciones 51-P disponen de dos modos de reposición. En el modo de reposición instantánea, la función se repone inmediatamente cuando la corriente cae por debajo del ajuste de arranque durante medio ciclo. En el modo de reposición retardada, la función sigue una característica de reposición lenta que depende de la duración de la condición de sobrecorriente y de la magnitud de la corriente de carga luego de la condición de sobrecorriente.

Si los TCs están configurados en Delta, los valores de arranque deben definirse como si los TCs estuvieran conectados en Estrella. Para los cálculos del arranque se deben utilizar las corrientes de línea, NO las corrientes medidas en las entradas del relé.

En el TPU de tres devanados, los TCs deben estar configurados en Estrella. [1]

4.2.3 Función 50-P del TPU 2000R

La función 50-P denominada así en la norma ANSI es una protección de sobrecorriente instantáneo para el transformador y los ajustes de arranque de la función 50-P de sobrecorriente instantánea son múltiplos de los ajustes de arranque de sobrecorriente temporizada del 51-P.

Para el lado de alta tensión se escoge una corriente del 125% al 200% de la corriente máxima de falla del lado del secundario, como aconseja la norma C37.91. 2008 [4].

Para el lado de baja se utilizó el mismo criterio que aconseja la norma, de modo que la corriente instantánea de operación sea 150% la corriente máxima de falla, y la operación del instantáneo no debe ser menor al tiempo de operación de los reconectadores.

4.2.4 Funciones 51-G del TPU 2000R

La función de protección de sobrecorriente temporizada de tierra 51-G denominada así por la norma ANSI el ajuste del TAP se lo hace según la norma C37.91.2008 [2] que indica que debe ser 10% de la corriente de plena carga.

Si se tiene el transformador de corriente en el neutro del transformador a 600:5, el ajuste del 51-G se hace en un valor de 1, mínimo TAP del relé el más cercano a lo indicado en la norma. Se escoge una curva extremadamente inversa para que su operación sea rápida y que coordine además con la función de tierra del reconectador.

4.2.5 Función 46 del TPU 2000R

La función de sobrecorriente temporizada de secuencia negativa denominada en la norma ANSI como 46 sirve para proteger al transformador de fallas de fase a fase, y también detecta en el sistema de distribución grandes desbalances de la corriente de secuencia negativa.

La función de secuencia negativa puede definirse por debajo de la corriente nominal porque las corrientes normales de carga equilibrada no generan corriente de secuencia negativa. Se puede obtener una mayor sensibilidad para las fallas entre fases. En una falla entre fases, la corriente de secuencia negativa es el 58% de la corriente en las fases fallidas.

Hay dos modos de reposición disponibles para las funciones 46. En el modo de reposición instantánea, la función se repone inmediatamente cuando la corriente cae por debajo del ajuste de arranque durante medio ciclo. En el modo de reposición retardada, la función sigue una característica de reposición lenta que depende de la duración de la condición de sobrecorriente y de la magnitud de la corriente de carga luego de la condición de sobrecorriente. [1]

4.2.6 Función 50-G del TPU 2000R

La función 50-G denominada así en la norma ANSI es una protección de sobrecorriente instantánea del transformador y los ajustes de arranque son múltiplos del ajuste de arranque de la función de sobrecorriente temporizada del 51-G.

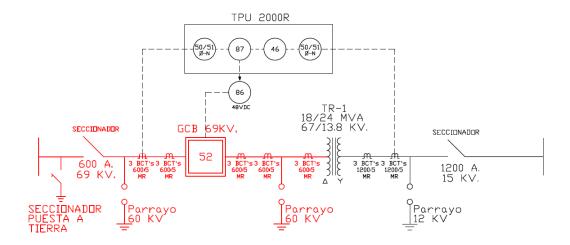
4.3 CONCLUSIONES DE LA PROTECCIÓN DE LA S/E

La protección diferencial otorgada por el relé 87 que dispone el TPU 2000R se ajustó bajo la normativa requerida en los siguientes valores:

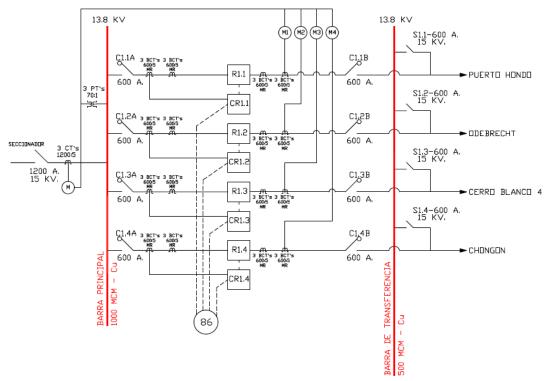
 Pendiente de la curva de disparo del relé diferencial 87T de 30% con un valor de 0,3 de pick - up. El diferencial instantáneo 87H que evita disparos por corriente Inrush se ajustó según la norma ANSI IEEE en 5,04.

CAPÍTULO 5

COORDINACIÓN DE LAS PROTECCIONES.


5.1 INTRODUCCION

La intención de este capítulo es lograr una correcta coordinación de las protecciones con la ayuda del programa computacional CYMTCC 4.5 Rev 13, el cual dispone de una extensa gama de elementos de protección con sus respectivas graficas tiempo-intensidad y los estudios de flujo de carga y cortocircuito realizados en capítulos anteriores.


Para lograr los criterios de selectividad, estabilidad, seguridad y rapidez, la coordinación debe realizarse desde el punto más lejano de carga hacia la S/E; evitando así colapsos por falsos disparos, logrando proveer respaldo y aumentando la disponibilidad y continuidad del servicio.

De esta manera, los elementos a coordinar corresponderán a los fusibles ubicados a lo largo de las Alimentadoras, en ramales y sub-ramales, seccionadores y reconectadores presentes en el patio de maniobras hasta llegar a la protección del transformador la cual ha sido desarrollada en el capítulo 4 y tendrá en este una mayor ampliación.

5.2 ESQUEMA DE PROTECCIONES

Figura 33.1Esquema de Protecciones – Transformador de Potencia Subestación CERRO BLANCO

Figura 5.2 Esquema de Protecciones – Red de Distribución - Subestación CERRO BLANCO

El esquema de protecciones de la subestación Cerro Blanco dispone del relé TPU 2000R para protección primaria del transformador y secundaria de la red con sus respectivas funciones descritas en el capítulo 4, la cual frente a una falla ordena la apertura a los contactos del interruptor a gas SF6 (GCB).

Entre las barras principales y de transferencia se observa el reconectador Cooper VWE con su respectivo controlador Cooper de Forma 6. Estos dan paso a las Alimentadoras trifásicas denominadas principales o troncales, las cuales poseen ramales secundarios o sub-ramales bifásicos y monofásicos (no mostrados en el esquema de protecciones), protegidos generalmente por fusibles.

5.3 PROTECCION DE RAMALES

Los ramales son protegidos con fusibles. La Empresa Eléctrica Pública de Guayaquil emplea tipo K, los mismos que cumplen las normas ANSI C37.42-1989 [5].

5.3.1 Criterios para selección de fusibles

Para determinar el correcto fusible se deberá tomar en cuenta la corriente de la carga, voltaje del sistema, tipo del sistema y máxima corriente de falla en el lugar donde se coloquen.

Los fusibles de clase K soportan una corriente continua de 1.5 veces la corriente nominal como se observa en la Tabla LIV.

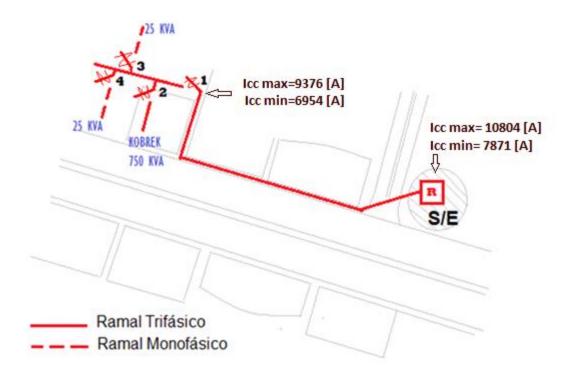
Nominación K	Corriente continua (A)	Nominación K	Corriente continua (A)
6	9	40	60
8	12	50	75
10	15	65	95
12	18	80	120
15	23	100	150
20	30	140	190
25	38	200	200
30	45		

Tabla LIV Máxima corriente continua de tira fusibles tipo K.

La corriente de carga del circuito es necesaria para determinar el correcto fusible, la cual debe ser hallada considerando los parámetros antes mencionados y las posibles sobrecargas como lo muestran siguientes expresiones.

$$I_{1\emptyset} = \frac{s}{v} \times 1.25 \tag{5.1}$$

$$I_{3\emptyset} = \frac{s}{\sqrt{3} \, x \, V} \, x \, 1.25 \tag{5.2}$$


Donde el voltaje utilizado es 7620V y 13800V en los ramales monofásicos y trifásicos respectivamente.

5.3.2 Levantamiento de las Alimentadoras

Para efecto de obtención de la información necesaria se realizó el levantamiento de las 4 Alimentadoras de la S/E Cerro Blanco.

5.3.2.1 Alimentadora CERRO BLANCO 4

La Alimentadora Cerro Blanco 4 tiene una ruta paralela a la vía a la costa dirección Guayaquil – Salinas, la cual aproximadamente a 2 Km de la S/E dispone de tres fusibles, uno por fase, los cuales se encuentra en la troncal y se muestran en el punto 1 de la figura 5.3 y a pocos metros de esta protección por medio de un sub-ramal trifásico alimenta a la empresa KOBREK representado por el punto 2 de la figura 5.3. La troncal continúa a lo largo de la dirección ya descrita para alimentar a una zona residencial por medio de derivaciones monofásicas con transformadores de 25 KVA como se observa en los puntos 3 y 4. La Alimentadora continúa su ruta alimentando a sectores residenciales.

Figura 34.3 Recorrido 4 puntos de protección de Alimentadora Cerro Blanco4.

5.3.2.2 Alimentadora ODEBRECHT

La Alimentadora Odebrecht tiene una ruta de salida de la S/E, la cual cruza transversalmente la vía a la costa hasta el carril que tiene como el sentido Salinas – Guayaquil, pero desplazándose en sentido contrario de la circulación vehicular de la vía, la cual aproximadamente a 3 Km de la S/E alimenta la urbanización Villa Club dividiendo su carga en ramales monofásicos con transformadores de 50 KVA como se muestra en los puntos 1, 2 y 3 de la figura 5.4.

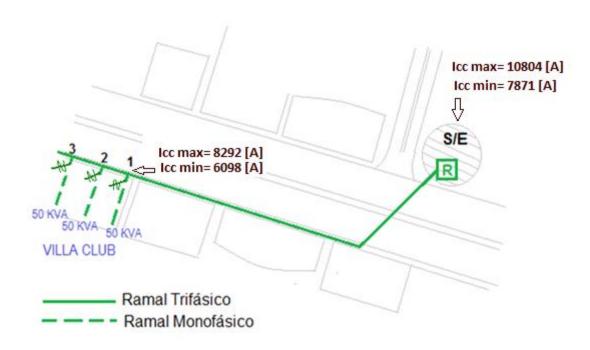


Figura 35.4 Recorrido 3 puntos de protección de Alimentadora Odebrecht.

5.3.2.3 Alimentadora PUERTO HONDO

La ruta que sigue la Alimentadora Puerto Hondo es en dirección a lo largo de la vía Guayaquil – Salinas pero en sentido contrario a la circulación vehicular. A 600 metros la troncal se deriva a un sub-ramal trifásico el cual posee derivaciones monofásicas que alimentan a la zona residencial con transformadores de 25 y 37,5 KVA como se muestra en el punto 1 de la figura 5.5. Por medio de un ramal monofásico el Alimentadora alimenta la cancha deportiva ROCAFUERTE con un transformador de 50 KVA como se indica en el punto 2. A unos 300 metros aproximadamente la troncal presenta

dos derivaciones trifásicas que alimentan a la empresa ORVIPESA S.A. y a una empresa de mariscos representados en el punto 3 y 4 respectivamente.

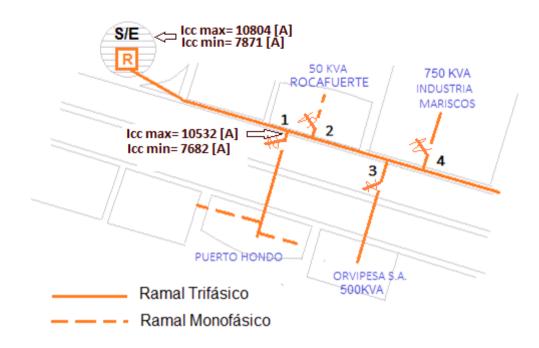


Figura 36.5 Recorrido 3 puntos de protección de Alimentadora Puerto Hondo

5.3.2.4 Alimentadora CHONGÓN

La ruta de la Alimentadora Chongón es paralela a la vía a la costa dirección Guayaquil – Salinas, aproximadamente a 2 Km de la S/E dispone de un ramal monofásico que alimenta a un pequeño sector residencial por medio de un transformador de 25 KVA y a 60 metros un segundo ramal monofásico con un transformador de 25 KVA de igual manera para alimentar un sector residencial los cuales son representados en los puntos 1 y 2 en la figura 5.6 respectivamente. A 100 metros se deriva un ramal trifásico que alimenta a

una industria procesadora de mármol PROCEMARMOL como se muestra en el punto 3. La troncal continúa alimentando a sectores residenciales por medio de ramales monofásicos como se muestra en el punto 4. A 3,5 Km de la S/E dispone de un INTELLIRRUPTER, elemento de apertura automática que trabaja como un restaurador por pulsos, ubicado estratégicamente con la finalidad de aislar zonas con fallas recurrentes, en este caso producidas por abundante vegetación.

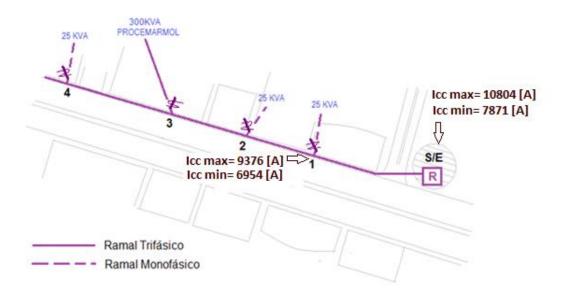


Figura 37.6 Recorrido 3 puntos de protección de Alimentadora Chongón.

5.3.3 Selección Fusibles

Con todos los criterios mencionados en el capítulo y la información obtenida en el levantamiento, determinaremos la corriente de carga y el correcto fusible a utilizar en el punto especificado de cada Alimentadora.

5.3.3.1 Alimentadora CERRO BLANCO 4

La selección de los fusibles se presenta en la siguiente tabla:

Punto	Ramal	Voltaje [V]	Potencia [KVA]	Corriente [A]	Fusible
2	Trifásico	13800	750	39,22	30K
3	Monofásico	7620	25	4,1	6K
4	Monofásico	7620	25	4,1	6K


Tabla LV Datos de puntos de protecciones y fusibles seleccionados en Alimentadora Cerro Blanco 4.

Para seleccionar el fusible correcto en el punto 1, el cual corresponde a un fusible en serie con el reconectador cuya función es dar protección de respaldo a la carga que se encuentra aguas abajo, hemos considerado los factores:

- La mayor carga conectada a este punto corresponde a la empresa alimentada en el punto 2, la cual no supera los 40 A.
- La carga restante corresponde a ramales monofásicos para alimentar a zonas residenciales.

- Crecimiento de carga futura.

Bajo estos criterios seleccionamos un fusible de 50K, el cual soporta una corriente continua de 75 [A] satisfaciendo los criterios anteriores.

Figura 38.7 Curvas de fusibles seleccionados en Alimentadora Cerro Blanco4.

5.3.3.2 Alimentadora ODEBRECHT

La selección de los fusibles se presenta en la siguiente tabla:

Punto	Ramal	Voltaje [V]	Potencia [KVA]	Corriente [A]	Fusible
1	Monofásico	7620	50	8,2	6K
2	Monofásico	7620	50	8,2	6K
3	Monofásico	7620	50	8,2	6K

Tabla LVI Datos de puntos de protecciones y fusibles seleccionados en Alimentadora Odebrecht.

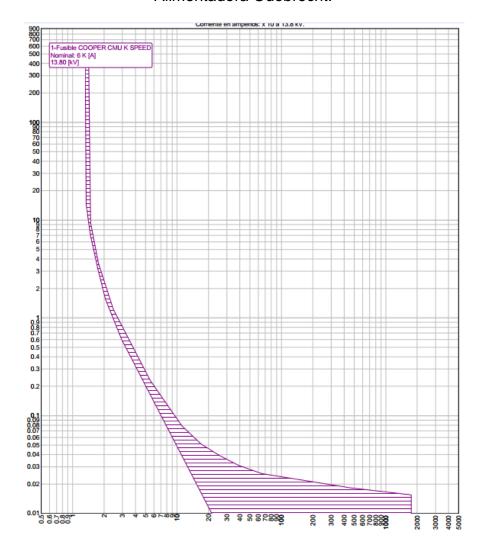
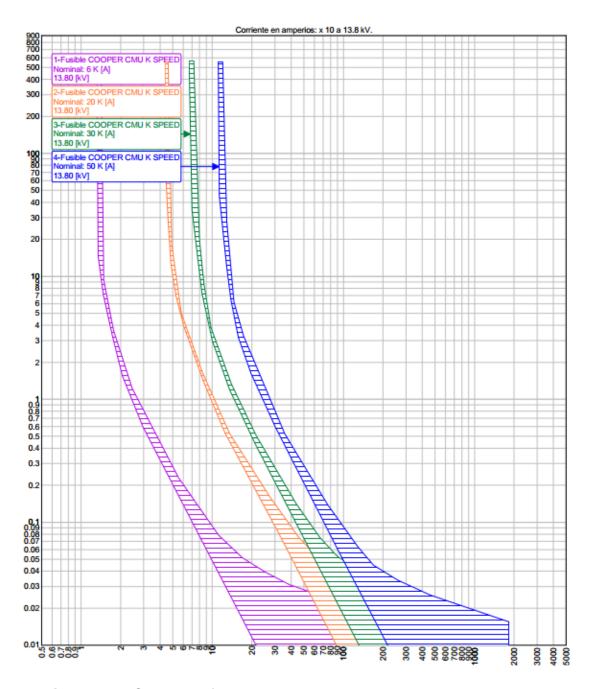


Figura 5.8 Curvas de fusibles seleccionados en Alimentadora Odebrecht.

5.3.3.3 Alimentadora PUERTO HONDO


La selección de los fusibles se presenta en la siguiente tabla:

Punto	Ramal	Voltaje [V]	Potencia [KVA]	Corriente [A]	Fusible
2	Monofásico	7620	50	8,2	6K
3	Trifásico	13800	500	26,14	20K
4	Trifásico	13800	750	39,22	30K

Tabla LVII Datos de puntos de protecciones y fusibles seleccionados en Alimentadora Puerto Hondo.

Para determinar el fusible correcto en el punto 1, se considera la carga conectada al sub-ramal, el cual alimenta la zona residencial Puerto Hondo a través de derivaciones monofásicas con transformadores de distribución de 25 y 50 KVA con corrientes máximas de 7 A, posibles sobrecargas y expansión de carga futura; seleccionando un fusible de 50K.

En la figura 5.9 se muestran las curvas de los fusibles seleccionados en el Alimentadora Puerto Hondo.

Figura 39.9 Curvas de fusibles seleccionados en Alimentadora Puerto Hondo.

5.3.3.4 Alimentadora CHONGÓN

La selección de los fusibles se presenta en la siguiente tabla:

Punto	Ramal	Voltaje [V]	Potencia [KVA]	Corriente [A]	Fusible
1	Monofásico	7620	25	4,1	6K
2	Monofásico	7620	25	4,1	6K
4	Trifásico	13800	300	15,68	12K
4	Monofásico	7620	25	4,1	6K

Tabla LVIII Datos de puntos de protecciones y fusibles seleccionados en Alimentadora Chongón.

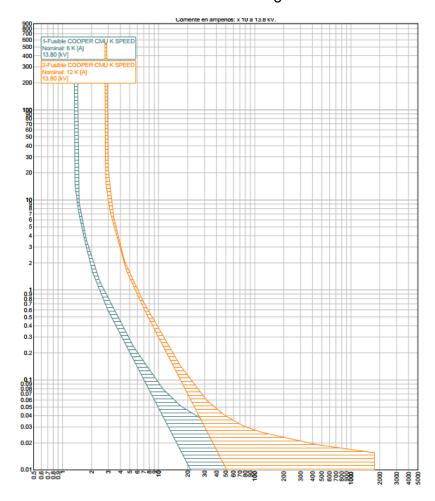


Figura 40.10 Curvas de fusibles seleccionados en Alimentadora Chongón.

5.4 COORDINACIÓN DEL RECONECTADOR

La subestación Cerro Blanco dispone de un reconectador Cooper VWE en cada una de sus Alimentadoras con su respectivo controlador Cooper de Forma 6, cuyas características fueron especificadas en el Capítulo 1; posee un funcionamiento electrónico y un amplio número de curvas para hacer más versátil el ajuste del reconectador.

5.4.1 Factores para aplicación del reconectador

Para una válida aplicación de reconectadores deben ser considerados los siguientes factores:

- La tensión nominal del sistema debe ser igual o menor a la tensión de diseño del reconectador.
- La corriente máxima permanente de carga en el punto del sistema donde se ubicará, debe ser menor o igual a la corriente nominal de reconectador.
- Debe tener una capacidad de ruptura mayor o igual, a la corriente máxima de falla en el punto de aplicación.
- La corriente mínima de operación debe escogerse de modo que detecte todas las fallas que ocurran dentro de la zona que se ha encomendado proteger (sensibilidad).
- 5. Las curvas tiempo-corriente y la secuencia de operación deben seleccionarse adecuadamente, de modo que sea posible coordinar su

operación con otros elementos de protección instalados en el mismo sistema. [6]

5.4.2 Operación del reconectador

Transformadores de corriente incorporados al reconectador proveen la información de corriente de fallas al control electrónico. Estos CT's tienen una relación de transformación única (1000:1) para todos los niveles de tensión, por lo que el valor de mínimo despeje de corriente no depende de la corriente continua ni de la de interrupción del reconectador.

Los CT's censan de forma continua las corrientes de línea y esta es monitoreada por el control electrónico. Cuando el nivel de corriente excede el mínimo nivel de disparo programado, se activa la lógica de detección y temporización. Luego de un retraso determinado con una curva característica tiempo-corriente programada, el circuito de disparo se energiza, enviando una señal al reconectador que abre los contactos de las tres fases. Un temporizador opera entonces, provocando así el cierre de contactos y reajusta la lógica para empezar la temporización en su próxima operación. Después de que el tiempo programado acaba, una señal de cierre es enviada al reconectador y el monitoreo de corriente empieza nuevamente [7].

5.4.3 Ajuste del Reconectador

Todos los reconectadores Cooper tipo VWE tienen una máxima corriente continua de 560 [A] y una capacidad de interrupción de 12000 [A] como lo muestra la tabla 5.3.1

Tipo	Máxima corriente continua (A)	Valores nominales de interrupción (Arms, simétricos)
WE	560	12000
WE	560	10000
VWE	560	12000
VWVE27	560	12000
WVE27	560	8000
WVE38X	560	8000
VWVE38X	560	12000

Tabla LIX Valores Nominales de Interrupción.

También el reconectador tiene los siguientes valores mínimos de corriente de despeje posibles: 100, 140, 200, 280, 400, 560, 800, 1120.

La norma C37.91. 2008 indica que la corriente de puesta en trabajo debe estar entre 125 y 200% de la corriente nominal de la Alimentadora como se muestra en la tabla 5.3.2.

#	ALIMENTADORAS	P [KW]	In [A]	In*1,5 [A]
1	Cerro Blanco 4	2400,00	76,05	114,08
2	Chongón	8200,00	272,89	409,34
3	Odebrecht	600,00	18,28	27,42
4	Puerto Hondo	7200,00	227,42	341,13

Tabla LX Corriente de las Alimentadoras

Para la selección del ajuste de la mínima corriente de operación del reconectador, se debe tener en cuenta los mantenimientos programados en las Alimentadoras donde hay transferencia de carga de una Alimentadora a otra. Por lo tanto tenemos:

$$I_{R1} = I_{R2} = I_{R3} = I_{R4} = I_{Al.Chong\'on} + I_{Al.Cerro_Blanco4}$$
 (5.3)

$$I_R = 272,89[A] + 227,42[A] = 500,31[A]$$
 (5.4)

Se escogió la opción del reconectador que más cerca a este valor, en este caso a su inmediato superior con un valor de 560 [A] de corriente mínima de operación.

Se escogió dos curvas rápidas y una lenta en cada Alimentadora con el objetivo de tener al transformador sometido el menor tiempo posible a una corriente de falla, se seleccionó la curva rápida 101 y lenta 117 en cada Alimentadora porque el tiempo de coordinación entre curvas de dispositivos de protección debe ser mayor o igual a 0,2 segundos.

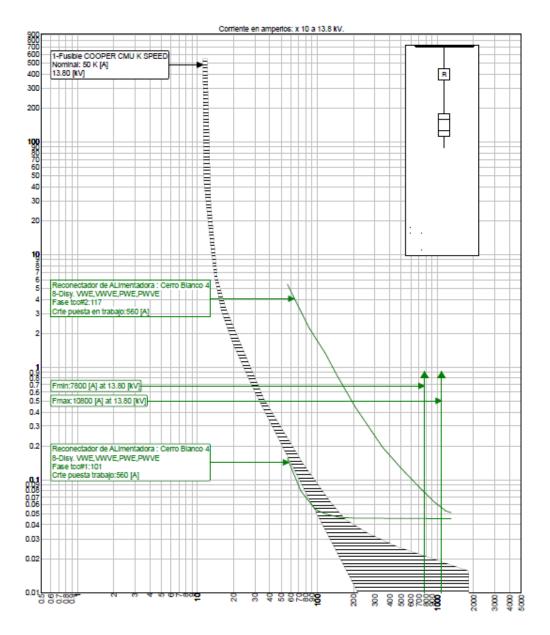
5.4.3.1 Alimentadora Cerro Blanco 4

Se escogió el fusible de 50 K explicado en el capítulo 5.2, como podemos observar la curva de protección del fusible 50 K se encuentra entre la curva rápida y lenta del reconectador, pero al ocurrir una falla se observa que

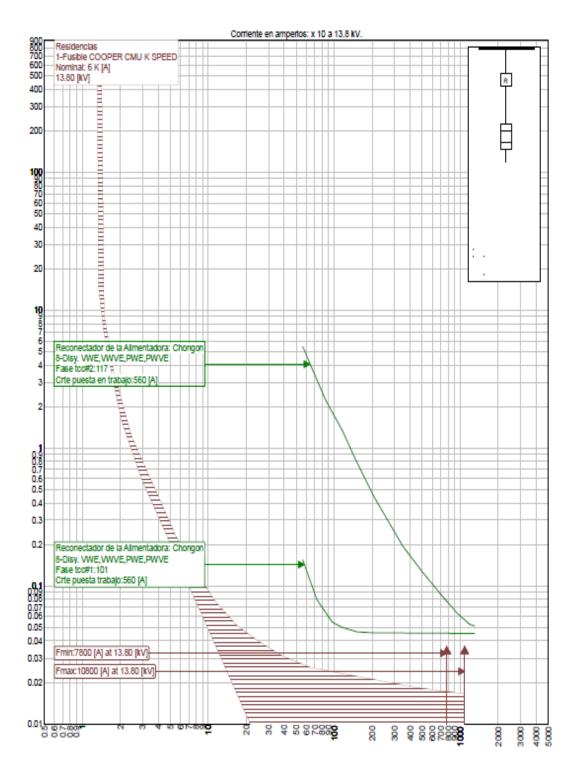
primero se va a fundir el fusible antes de actuar el reconectador ya que las corrientes de fallas del sistema ($I_{Fmin} = 7800\,A$ y $I_{Fmax} = 10800\,A$) son muy altas. Eso quiere decir que no va actuar el reconectador para fallas en los ramales de la Alimentadora Cerro Blanco 4 hasta que se funda dicho fusible. Como se muestra en la figura 5.11.

5.4.3.2 Alimentadora Chongón

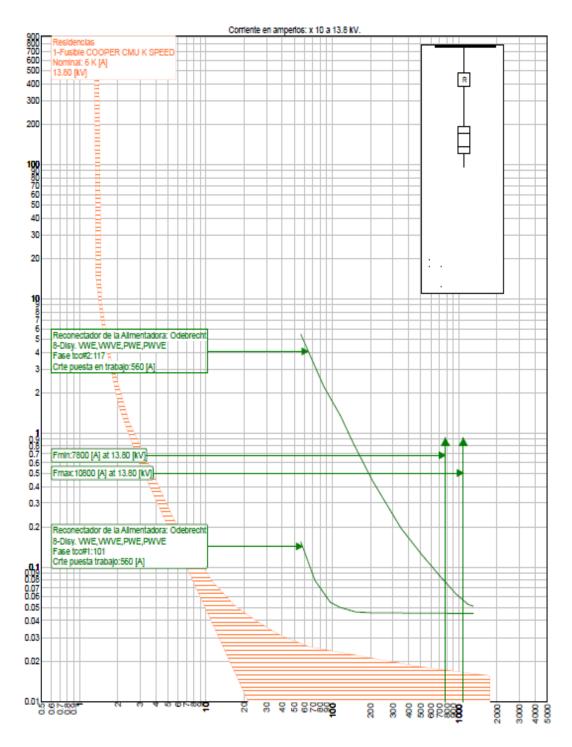
El fusible escogido para esta Alimentadora es el 6 K explicado en el capítulo 5.2, vemos que no va actuar el reconectador hasta que se funda el fusible por el motivo de que la curva de protección del fusible 6k está por debajo de la curva rápida del reconectador. Como se muestra en la figura 5.12.


5.4.3.3 Alimentadora Odebrecht

Se escogió el fusible 6K explicado en el capítulo 5.2, observamos que la curva del fusible no está entre las curvas de protección del reconectador como por lo general debe ser; así mismo, notamos que esta configuración funde el fusible antes que actúe el reconectador ya que la curva del fusible 6K está por debajo de la curva rápida del reconectador. Ver figura 5.13.


5.4.3.4 Alimentadora Puerto Hondo

El fusible escogido para el análisis de protección de esta Alimentadora es 50K explicado en el capítulo 5.2, en este caso la curva de protección del fusible está entre las curvas rápidas y lentas del reconectador pero como


vemos en la figura 5.14 el fusible se fundirá antes que actúe el reconectador debido a las altas corrientes mínima y máxima de falla. Por consiguiente el reconectador no va a funcionar para fallas en los ramales de la Alimentadora antes de que se funda el fusible.

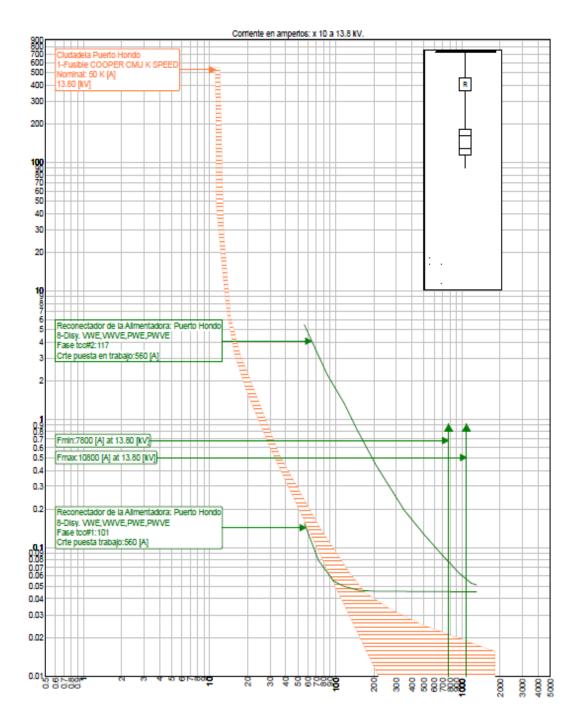

Figura 41.11 Curvas de la coordinación del reconectador y fusible 50K en la Alimentadora Cerro Blanco 4.

Figura 42.12 Curvas de la coordinación del reconectador y fusible 6K en la Alimentadora Chongón.

Figura 43.13 Curvas de la coordinación del reconectador y fusible 6K en la Alimentadora Odebrecht.

Figura 44.14 Curvas de la coordinación del reconectador y fusible 50K en la Alimentadora Puerto Hondo.

5.5 PROTECCIÓN DEL TRANSFORMADOR

5.5.1 Curva de daño del Transformador

En la S/E Cerro Blanco el transformador fue construido bajo el Estándar IEEE C57.12. 00-2000 [8], y en la cual se identifica como de Categoría III, por ser de servicio trifásico y tener 18 MVA de mínima capacidad.

En el Anexo 4 se muestran las curvas, las cuales reflejan las consideraciones de daño térmico y mecánico, que son utilizadas como curvas de protección del transformador y la elección de la curva correspondiente al transformador de la S/E Cerro Blanco. La Figura 5.15 nos muestra la curva de daño del transformador de la S/E.

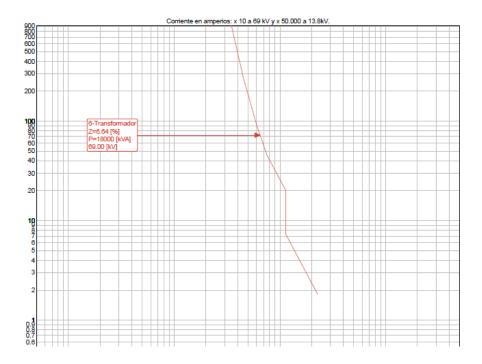


Figura 45.15 Curva de daño del transformador de la S/E Cerro Blanco.

Todas las curvas de los demás dispositivos de protección quedarán a la izquierda de la curva de daño del transformador, para así cumplir el principal objetivo de la protección, que es resguardar el transformador.

5.5.2 Ajuste de la Protección Diferencial 87

El Ajuste del relé de protección diferencial o denominado en la norma ANSI como 87 se la realizó en el Capítulo 4, a continuación en la Tabla LXI se presenta el resumen de la configuración establecida.

Ajuste del Relé Diferencial 87								
Transformador 18/24 MVA								
Alta Tensión	_							
Conexión en Alta	Delta							
Corriente nominal en alta	200,8175 [A]							
Relación de CT	600:5							
Corriente en secundario CT	1,67 [A]							
Corriente pickup alta (TAP)	2,0 [A]							
Baja Tensión								
Conexión en Baja	Y aterrizado							
Corriente nominal en baja	1004,0874 [A]							
Relación de CT	1600:5							
Corriente en secundario CT	7,24 [A]							
Corriente pickup baja (TAP)	9,0 [A]							
Error								
Error por TAP	0,1							
Error por CT	0,05							
Mismatch	0,036							
Error por Inrush	0,05							
Ajuste								
Pickup mínimo 87T	0,3[A]							
Pendiente 87T	30%							
Ajuste del 87H	5,04							

Tabla LXI Resumen de Ajuste del Relé Diferencial 87.

5.5.3 Protección de Sobrecorriente

5.5.3.1 Ajuste de la Función 51-P

Las características del relé de protección de Sobrecorriente Temporizada o denominada en la norma ANSI como 51 se la detalló en el capítulo 4. La ecuación de la curva de sobrecorriente temporizada es una curva ANSI definida de acuerdo a los requerimientos de tiempo de operación. Por lo tanto es necesario seleccionar la corriente de ajuste en el lado de baja y en el lado de alta del transformador de corriente.

IH =
$$\frac{24000}{\sqrt{3}*69*120}$$
 = 1,68 [A] (5.5)

$$IL = \frac{24000}{\sqrt{3}*13,8*240} = 4,17 [A] (5.6)$$

El ajuste para 51-P-1 lado de alta tensión (lado de 69 KV), asegurando una sobrecarga máxima del 30% en el transformador sin que se afecte su tiempo de vida útil, es de 2.2[A] y para el 51-P-2 lado de baja tensión (lado de 13,8 KV), es de 5,4 [A], se selecciona la curva del tipo Extremadamente Inversa porque el objetivo primario es ajustarlo con la curva lenta del Reconectador. (Ver Anexo 5).

El ajuste del dial del tiempo (TD) se hace en 2 tanto para el lado de baja como para el lado de alta tensión de manera que se cumpla que la curva de protección de sobrecorriente esté por debajo de la curva de daño del

transformador, y que el intervalo de coordinación entre los relés sea mayor o igual 0,2 [s]. Se selecciona el mismo tiempo para el relé en el lado de alta y en el lado de baja, ya que ambos actúan sobre el mismo elemento de interrupción, el GCB..

5.5.3.2 Ajuste de la Función 50-P

El ajuste de la función de protección de sobrecorriente Instantáneo de fase o denominado en la norma ANSI como 50-P se lo hace eligiendo un múltiplo del valor seleccionado en las funciones 51-P.

Para el lado de alta tensión (lado de 69 KV), se escoge una corriente del 125% al 200%, (a menudo se establece en 175%), de la corriente máxima de falla del lado del secundario, como sugiere la norma C37.91. 2008 [4].

Utilizando los valores de análisis de cortocircuito obtenidos en el capítulo 3, la corriente de falla máxima en el lado secundario del transformador de potencia (lado de 13,8 KV), es de 10804 [A], este valor reflejado en el lado del primario es de 2160,8 [A], y elegimos una corriente al 200% que es igual a 4321.6 [A], de tal modo que tenemos una corriente de 36 [A] en el lado secundario del transformador de corriente, y cuyo múltiplo equivalente seleccionado es de 21,5 operando en 0,01 [s].

Para el lado de baja tensión (lado de 13,8 KV), se utilizaron los valores del análisis de cortocircuito realizado en el capítulo 3, por lo tanto la corriente de

falla máxima es de 10804 [A], la cual se consideró como el ajuste para la función 50-P-2, con lo que el múltiplo equivalente es de10,7, de tal modo que tenemos una corriente de 45 [A], en el secundario del transformador de corriente. Como la operación del instantáneo dentro del programa computacional no permite un tiempo de operación de cero, se coloca un tiempo de operación de 0.01 [s], el cual es el mínimo aceptado.

5.5.3.3 Ajuste de la Función 51-G-2

Las características del relé de protección de Sobrecorriente Temporizada de Tierra o denominada en la norma ANSI como 51-G, (se denomina 51-G-2 por estar en el lado de 13,8 KV), se la detalló en el capítulo 4.

El ajuste del TAP del 51-G se lo realiza de acuerdo a la norma C37.91.2008 [4] que sugiere el 10% de la corriente de plena carga. Si la corriente plena carga es de 1004 [A], entonces el ajuste sería 100,4 [A].

Pero debemos tomar en cuenta el transformador de corriente del neutro que se tiene en el transformador de potencia, como tiene una relación de transformación de 600:5, el ajuste del 51-G-2 se hace en un valor de 1, mínimo TAP del relé, que equivale a 120 [A] el más cercano a lo indicado en la norma. Se escoge una curva extremadamente inversa y TD=7 para que coordine además con la función de tierra del reconectador, por lo tanto

tenemos una curva con característica de tiempo extremadamente inversa, como se define en Std. C37.112 [9].

La figura 5.16 muestra las curvas de la función 51-G-2 del TPU 2000R coordinada con las curvas del reconectador de protección de puesta a tierra.

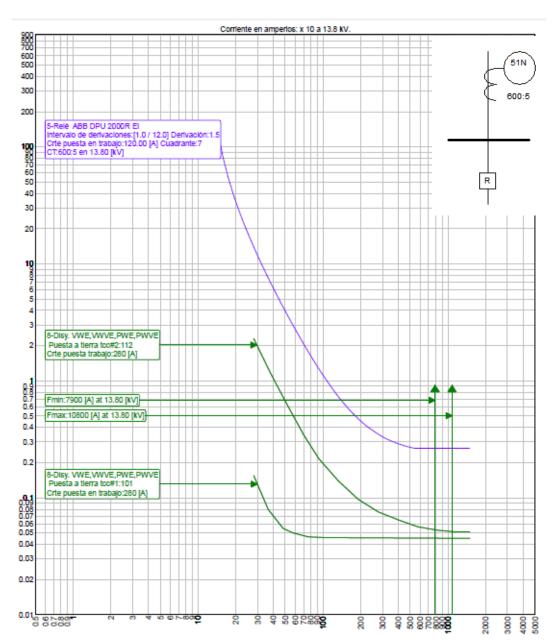


Figura 46.16 Curva de la función 51-G-2 del TPU 2000R.

5.5.3.4 Ajuste de la Función 46

Las características de la función de sobrecorriente temporizada de secuencia negativa o denominado en la norma ANSI como 46, se detallaron en el capítulo 4.

El ajuste de esta protección puede hacerse menor que las corrientes de carga pues la corriente de secuencia negativa suele tener un valor pequeño. La norma C37.91.2008 [4] sugiere tomar un 58% de la corriente máxima de carga, debido a que en las fallas de línea a línea, la corriente de secuencia negativa es el 58% de la corriente de la línea.

Las corrientes secundarias del lado de 69 y 13,8 KV son respectivamente:

$$I = \frac{24000}{69 \cdot 120 \cdot \sqrt{3}} \cdot 0,58 = 0,9706 \text{ [A]}$$
 (5.7)

$$I = \frac{24000}{13.8 \cdot 240 \cdot \sqrt{3}} \cdot 0,58 = 2,43 \text{ [A]}$$
 (5.8)

La corriente de puesta en trabajo de la protección 46-1 (lado de 69 KV), se ajusta en 1[A] mientras que la protección 46-2 (lado de 13,8 KV), se ajusta en 2,4 [A],. Se escogen las curvas de tiempo del tipo inversa con un TD=2 para el lado de alta y de baja, por lo cual las curvas en el diagrama se ubicarán en la misma posición debido a que actúan y ordenan la apertura del mismo elemento (el GCB) en ambos casos.

La Figura 5.17muestra las curvas de protección de la función 46 del TPU 2000R, del lado de alta y baja.

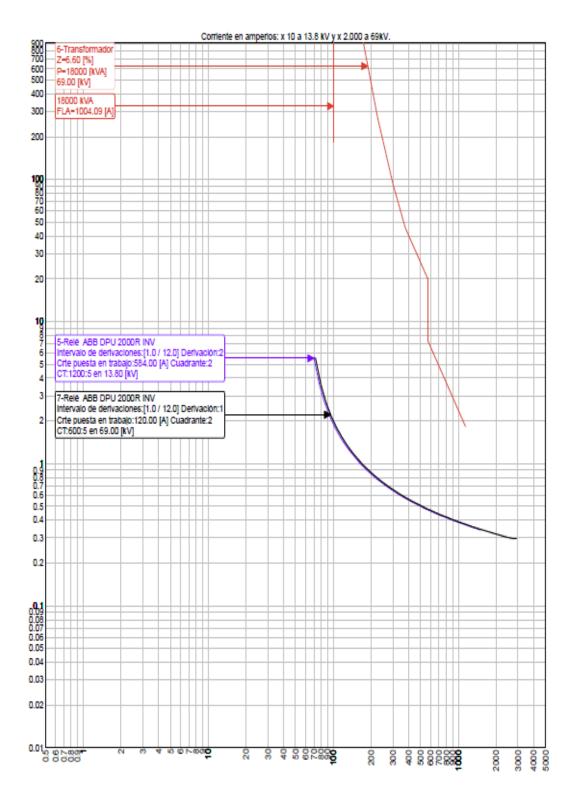


Figura 47.17 Curvas de la función 46 del TPU 2000R.

5.6 RESULTADOS DE LA COORDINACION DE LOS DISPOSITIVOS DE PROTECCION

5.6.1 Coordinación - Alimentadora Cerro Blanco 4

La Figura 5.18 muestra los resultados de la coordinación de los dispositivos de protección en la Alimentadora Cerro Blanco 4.

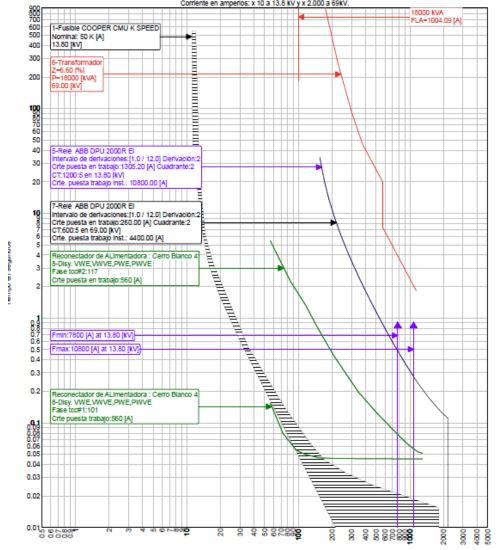


Figura 48.18 Curvas de protección en la Alimentadora Cerro Blanco 4.

5.6.2 Coordinación - Alimentadora Odebrecht

La Figura 5.19 muestra los resultados de la coordinación de los dispositivos de protección en la Alimentadora Odebrecht.

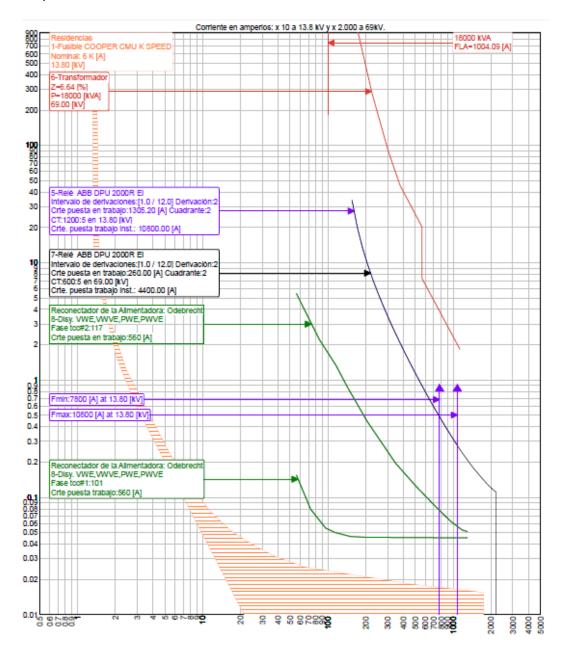
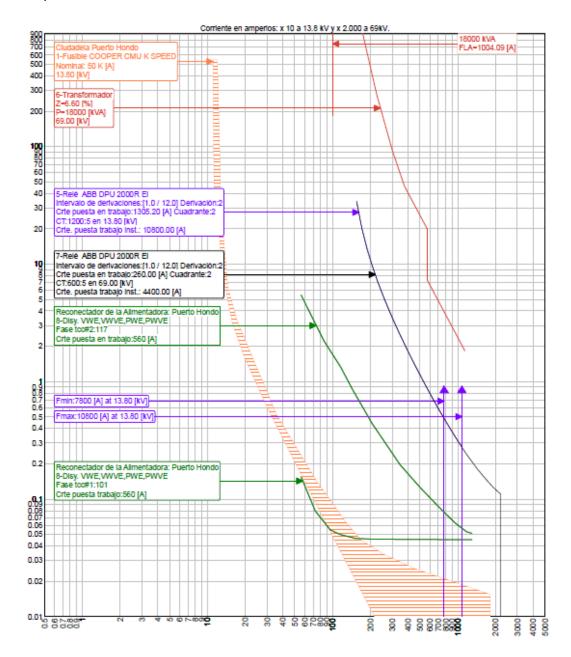



Figura 49.19 Curvasde protección en la Alimentadora Odebrecht.

5.6.3 Coordinación - Alimentadora Puerto Hondo

La Figura 5.20 muestra los resultados de la coordinación de los dispositivos de protección en la Alimentadora Puerto Hondo.

Figura 50.20 Curvas de protección en la Alimentadora Puerto Hondo.

5.6.4 Coordinación - Alimentadora Chongón.

La Figura 5.21 muestra los resultados de la coordinación de los dispositivos de protección en la Alimentadora Chongón.

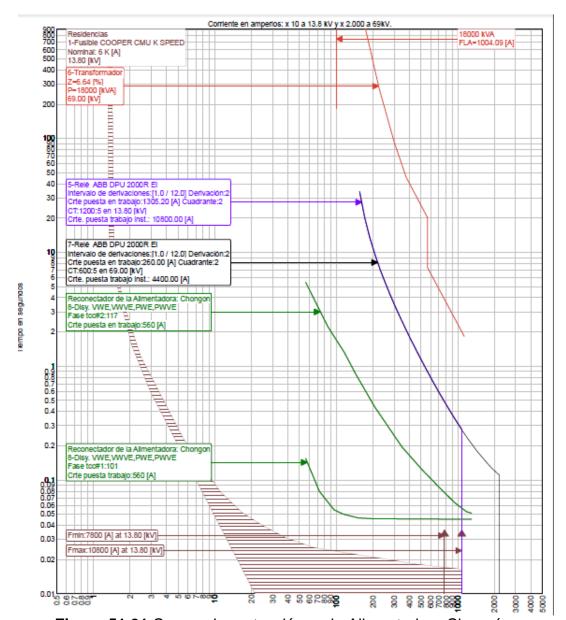


Figura 51.21 Curvas de protección en la Alimentadora Chongón.

Observamos que para cualquier falla en uno de los ramales o transformadores, primero operan sus respectivos fusibles, quedando así fuera de servicio la menor sección posible, debido a una contingencia.

La operación de los reconectadores será únicamente cuando se trate de una falla en la Alimentadora o como respaldo de algún fusible.

La curva de la función 51 del TPU 2000R o protección de sobrecorriente temporizada de fase está por debajo de la curva de daño del transformador, protegiéndolo contra corrientes de fallas ya sea en el lado de 69 KV o en el lado de 13,8 KV.

Observamos que la protección de sobrecorriente instantánea de fase o función 50 del TPU 2000R está ajustada en 4400 [A] del lado de 69 [KV], ajuste realizado bajo la norma C37.91.2008, y 10800 [A] del lado de 13,8 KV ajuste realizado de acuerdo a los resultados del análisis de cortocircuito realizado en el capítulo 3.

5.7 RESUMEN DE AJUSTE

La Tabla LXII muestra el ajuste de los dispositivos de protección de la S/E Cerro Blanco.

	K۷	I nom.	Relacion	Factor	Factor	laj.	I	I	Tipo	
Tipo	LL	[A]	СТ	СТ		Sec	Sec.	Primario	Curva	TD
87-T		200,8	600:5	120	1	2	1,67	200,8	INST	
07-1	-	1004	1200:5	240	1,73	9	7,24	1739,2	11/01	-
87-H	-	150,6	600:5	120	8	5,02	10,04	1205	-	-
51-P-1	69	200,8	600:5	120	1,3	2,2	2,17	261	E.I.	2
51-P-2	13,8	1004	1200:5	240	1,3	5,4	5,4	1296	E.I.	2
50-P-1	69	200,8	600:5	120	2	22,1	36,6	4400	INST	-
50-P-2	13,8	1004	1200:5	240	1	10,7	45	10800	INST	-
51-G-2	13,8	1004	600:5	120	0,1	1	1	120	E.I	7
46-1	69	200,8	600:5	120	0,58	1	1	120	INV	2
46-2	13,8	1004	1200:5	240	0,58	2,4	2,4	584	INV	2
Rec-L-C.Blanco4	13,8	103	1000:5	200	1	1,6	2,8	560	117	1
Rec-R-C.Blanco4	13,8	103	1000:5	200	1	1,6	2,8	560	101	1
Rec-L-Odebrecht	13,8	25	1000:5	200	1	1,6	2,8	560	117	1
Rec-R-Odebrecht	13,8	25	1000:5	200	1	1,6	2,8	560	101	1
Rec-L-Pto.Hondo	13,8	307	1000:5	200	1	1,6	2,8	560	117	1
Rec-R-Pto.Hondo	13,8	307	1000:5	200	1	1,6	2,8	560	101	1
Rec-L-Chongon	13,8	360	1000:5	200	1	1,6	2,8	560	117	1
Rec-R-Chongon	13,8	360	1000:5	200	1	1,6	2,8	560	101	1

Tabla LXII Resumen de Ajustes de los dispositivos de protección de la S/E Cerro Blanco.

5.8 CONCLUSIONES DE LA COORDINACION DE PROTECCIONES

- El reconectador VWE no se pudo coordinar con los fusibles de la red distribución como se recomienda en [13], donde sugiere una curva rápida del reconectador, seguida de la curva del fusible y finalmente la curva lenta del reconectador. En su lugar los ajustes se realizaron de tal manera que la sección fuera de servicio sea la mínima posible. Así, el área de protección de los reconectadores no incluye a los distintos ramales de la Alimentadora.
- La capacidad de interrupción del reconectador COOPER VWE es de
 12 [KA], lo cual es mayor que corriente máxima de falla que es de

10800 [A], calculada a partir del análisis de cortocircuito, cumpliendo así uno de los criterios considerados para una adecuada aplicación de reconectadores.

CONCLUSIONES

- 1 La potencia que consume la subestación Cerro Blanco desde la línea de subtransmisión CEMENTO es de 17,37 MW y 4,44 MVAR para carga máxima, y 0,3 MW y 0,05 MVAR para carga mínima sin exceder el 72% de la capacidad en FA (24 MVA) del transformador de potencia con sus cuatro Alimentadoras operando.
- 2 Teniendo una conexión Delta-Estrella aterrizada en el transformador, el valor de corriente más elevado para caso de fallas, obtenido mediante el análisis del flujo, fue el correspondiente a una falla trifásica en el lado primario y una falla de línea a tierra en el secundario.
- 3 Debido a la sensibilidad de la carga ante interrupciones continuas, las curvas de los reconectadores se colocaron por encima de la curva de los fusibles de los ramales. Esto hace que el área de protección de los reconectadores no incluya estas derivaciones.
- 4 El ajuste y coordinación desarrollada en este trabajo asegura una correcta protección al transformador de potencia, equipo de mayor importancia e inversión económica.

RECOMENDACIONES

- 1. La Empresa Eléctrica Pública de Guayaquil tiene instalado en la mayoría de sus S/E un relé de frecuencia o denominado en la norma ANSI como 81, ya que esta provee una protección contra cambios en la frecuencia del voltaje, ya sea que esta esté bajo o sobre la frecuencia nominal que es de 60 Hz. Para la cual recomendamos instalar esta protección, ajustada a un valor muy por debajo de los 60Hz, de tal manera que permita el alivio de la carga de menor importancia y provea una mayor calidad de servicio a la carga critica.
- 2. Se recomienda instalar un INTELLIRUPTER en el punto 1 de la Alimentadora Puerto Hondo que da servicio a la ciudadela Puerto Hondo, debido a que es una zona residencial y con mayor probabilidad de fallas debido a las conexiones rústicas realizadas por los habitantes del sector, ya que con este dispositivo, el transformador de la S/E, conectores, líneas experimentan esfuerzos por sobrecorrientes únicamente de la falla inicial, no de cada operación de restablecimiento, lo que prolonga la vida útil de estos componentes, ya que se disminuiría el daño acumulativo de las fallas directas,

especialmente en el transformador de potencia y mejorando la calidad de la energía, sin perturbar a los usuarios del lado de la fuente con caídas de voltaje y parpadeos.

ANEXOS

ANEXO 1

Histórico de carga en las Alimentadoras de la subestación Cerro Blanco

En este anexo se describe el proceso para determinar los valores de máxima carga y de mínima carga de la S/E Cerro Blanco.

La Empresa Eléctrica de Guayaquil nos proporcionó el Historial de Carga del periodo Enero 2012 – Febrero 2013, de cada Alimentadora, con lecturas cada 15 minutos. En la tabla A1.1 presentamos un extracto de los valores facilitados por la Empresa.

Para determinar el valor de Carga Máxima y Mínima encontramos el valor de carga total para cada instante mediante la suma de las lecturas de cada Alimentadora.

A continuación presentamos un extracto de la tabla con los valores de carga de cada Alimentadora y total del periodo Enero 2012 – Febrero 2013, ordenado de mayor a menor, donde el primer valor corresponde a la Carga Máxima posible.

Date/Time	kW sd del	kVAR sd del	kVAR sd rec	kVA sd del	la	lb	lc
01/02/2012 0:15	1735,25928	590,936096	0	1833,2218	69,86734	85,653831	74,000587
01/02/2012 0:30	1751,83093	591,615906	0	1849,11121	70,401482	86,33342	74,677277
01/02/2012 0:45	1651,54053	580,16864	0	1750,72571	66,200768	81,734238	70,656769
01/02/2012 1:00	1799,06262	609,883667	0	1899,71094	71,857307	88,659149	76,543617
01/02/2012 1:15	1671,83752	583,36322	0	1770,88818	66,747116	82,824303	71,616272
01/02/2012 1:30	1639,95557	577,281433	0	1738,82349	65,145317	81,561531	70,325722
01/02/2012 1:45	1738,98547	592,605896	0	1837,32446	69,659752	85,527618	74,029221
01/02/2012 2:00	1777,22925	610,924255	0	1879,42297	71,35659	87,006699	75,485085
01/02/2012 2:15	1765,11206	603,004089	0	1865,39624	70,652733	86,858467	75,232597
01/02/2012 2:30	1671,0249	593,063721	0	1773,35999	66,914063	82,684982	71,295952
01/02/2012 2:45	1754,48828	591,324524	0	1851,55566	70,073059	86,550629	74,655251
01/02/2012 3:00	1750,16296	579,040161	0	1843,72876	69,826469	86,196243	74,297379
01/02/2012 3:15	1661,79614	516,544312	0	1740,32861	65,968079	80,908333	69,805969
01/02/2012 3:30	1609,8042	508,644318	0	1688,49158	63,872826	78,562134	67,617744
01/02/2012 3:45	1755,87134	602,665222	0	1856,5061	70,440056	86,050568	74,473534
01/02/2012 4:00	1681,84265	595,973755	0	1784,58728	67,927498	82,606873	70,985565
01/02/2012 4:15	1729,33337	615,289612	0	1835,63098	69,46637	84,870461	72,874664
01/02/2012 4:30	1627,1554	587,949463	0	1730,42944	65,537033	80,095566	68,981697
01/02/2012 4:45	1667,20972	583,607666	0	1766,52722	67,273003	81,970268	70,79303
01/02/2012 5:00	1720,71448	592,209045	0	1819,84863	69,368034	84,672058	73,014175
01/02/2012 5:15	1704,11267	587,638	0	1802,66797	68,491135	83,949638	72,655113
01/02/2012 5:30	1659,42468	581,14624	0	1758,32422	66,87088	81,606995	70,855637
01/02/2012 5:45	1699,66809	581,588318	0	1796,50586	67,819221	83,764671	72,92627
01/02/2012 6:00	1603,25781	574,569336	0	1703,27356	63,959194	79,61422	69,113602
01/02/2012 6:15	1683,95386	593,262451	0	1785,48865	67,14859	83,446358	71,834763
01/02/2012 6:30	1628,8689	567,005798	0	1724,8656	64,682503	81,048027	69,280014
01/02/2012 6:45	1599,80103	565,817688	0	1697,04846	64,46315	78,953766	68,227615
01/02/2012 7:00	1619,76685	573,52063	0	1718,35754	65,602127	79,944077	68,782997
01/02/2012 7:15	1601,40198	575,094177	0	1701,64417	64,40712	79,196693	68,521095

Tabla A1.1 Extracto Historial Carga – Alimentadora Cerro Blanco 4/02/2012.

En la tabla A1.2 y A1.3 presentamos un extracto de la parte final de la tabla con los valores de carga de cada Alimentadora y total del periodo Enero 2012 – Febrero 2013, ordenado de mayor a menor, donde los valores resaltado corresponde a la Carga Mínima posible y Carga Máxima, cuando se encuentran operando las cuatro Alimentadoras.

Una vez encontrado el instante en que se produce la Carga Máxima y Mínima, buscamos el valor correspondiente de KW, KVA, KVAR de cada Alimentadora en dicho instante en el Historial de Carga facilitado por la

Empresa Electica; los cuales han sido descritos en el Capítulo 2 y utilizados en el Flujo de Carga.

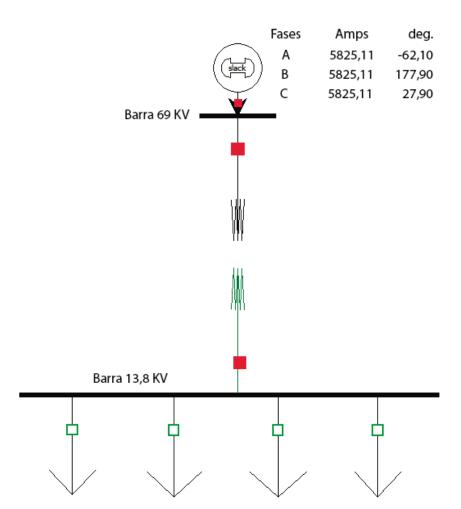
	Cerro Blanco	Chongon	Odebretch	Puerto Hondo	Total
Date/Time	kW sd del	kW sd del	kW sd del	kW sd del	Total
02/03/2012 11:15	1245,322388	6369,40869	49,422253	9708,217773	17372,3711
02/03/2012 11:30	1287,446533	6452,90234	51,023087	9510,089844	17301,4618
02/03/2012 11:00	1177,456909	6325,91797	36,426064	9554,629883	17094,4308
02/03/2012 10:45	1095,99231	6186,00293	34,145317	9227,021484	16543,162
22/05/2012 15:00	1972,88208	7362,65039	168,039719	6835,932617	16339,5048
22/05/2012 14:30	1910,760376	7220,44287	181,996262	7007,462891	16320,6624
22/05/2012 14:45	1853,336548	7331,87988	185,151794	6939,233398	16309,6016
22/05/2012 14:15	1942,794434	7213,43555	179,855316	6960,273438	16296,3587
22/05/2012 14:00	1906,382324	7255,74609	182,707886	6608,867676	15953,704
02/03/2012 10:00	1167,22644	5867,69385	35,96183	8876,649414	15947,5315
02/03/2012 10:30	1203,793457	5706,55176	36,040993	8921,521484	15867,9077
02/03/2012 10:15	1243,868652	5619,42481	35,074051	8938,272461	15836,64
22/05/2012 13:45	1847,90564	7246,57178	82,621704	6546,942871	15724,042
14/12/2012 14:15	1803,091431	7942,48389	324,796204	5487,133789	15557,5053
14/02/2013 14:45	2006,561646	8007,48535	181,673996	5351,292969	15547,014
14/12/2012 15:45	1802,633789	8002,58789	299,415344	5402,247559	15506,8846
14/12/2012 14:30	1795,212769	7778,95557	323,0755	5603,641602	15500,8854
14/12/2012 15:30	1811,537476	7960,59131	299,628326	5423,258789	15495,0159
14/12/2012 15:15	1790,477783	7893,92188	317,294128	5491,043945	15492,7377
22/05/2012 12:00	1927,007813	6665,91992	179,487534	6685,519043	15457,9343
14/02/2013 14:30	2033,06189	8135,30908	177,938126	5087,532227	15433,8413
14/02/2013 15:00	1974,283936	7905,7583	181,412476	5291,084961	15352,5397
22/05/2012 11:45	1812,345947	6790,07178	179,343033	6570,460938	15352,2217
26/02/2013 15:15	1922,854736	7779,04004	183,764832	5447,915039	15333,5746

Tabla A1.2 Extracto Historial de Carga ordenado de mayor a menor la carga total – valor resaltado Carga Máxima.

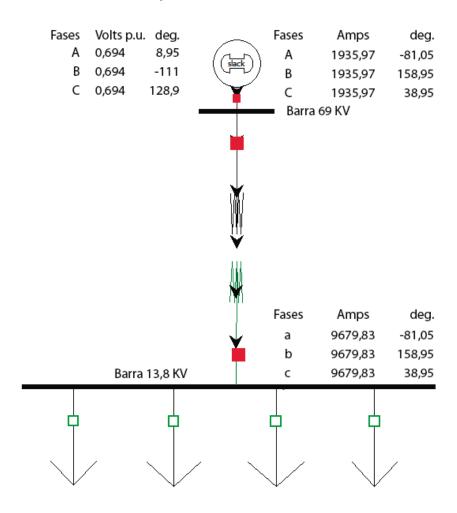
	Cerro Blanco	Chongon	Odebretch	Puerto Hondo	Total
Date/Time	kW sd del	kW sd del	kW sd del	kW sd del	Total
27/12/2012 8:15	1005,73645	0	317,187256	2315,875	3638,79871
02/07/2012 13:15	1548,93713	0	180,827393	1790,062866	3519,82739
13/05/2012 14:30	1441,35584	647,808594	8,083514	1414,244141	3511,49208
27/12/2012 8:00	852,676941	0	286,373596	2212,91333	3351,96387
05/05/2012 20:15	839,773804	0	15,056937	2425,919922	3280,75066
05/05/2012 20:00	768,203918	0	14,860897	2347,42749	3130,49231
20/03/2012 0:00	594,334595	1330,22522	0,112524	1164,05127	3088,72361
05/05/2012 19:45	723,150146	1,45773	14,383627	2308,979004	3047,97051
13/05/2012 14:15	1403,62769	0	8,150743	1258,794067	2670,5725
13/05/2012 14:00	1222,34692	0	8,44353	1087,825317	2318,61577
04/02/2012 13:00	73,570396	1129,20374	5,407526	1070,146606	2278,32826
25/08/2012 15:30	737,368591	0	149,082504	1345,293457	2231,74455
03/11/2012 6:45	0	1912,09961	218,381409	0	2130,48102
14/07/2012 9:30	1703,9585	0	0	0	1703,9585
16/08/2012 11:15	0	985,565613	0	477,170868	1462,73648
14/07/2012 10:00	1244,57727	0	0	0	1244,57727
14/07/2012 9:45	1220,5658	0	0	0	1220,5658
14/07/2012 10:15	1209,57019	0	0	0	1209,57019
07/03/2012 4:00	20,485756	395,867615	1,019647	0	417,373018
19/03/2012 23:45	35,490295	175,352905	0,041771	86,927345	297,812316
03/11/2012 8:00	0	0	286,161743	0	286,161743
03/11/2012 8:15	0	0	285,789978	0	285,789978
03/11/2012 7:45	0	0	226,887894	0	226,887894
03/11/2012 8:30	0	0	165,697968	0	165,697968
03/11/2012 8:45	0	0	150,970474	0	150,970474
03/11/2012 7:30	0	0	150,60466	0	150,60466
03/11/2012 7:00	0	0	150,025192	0	150,025192
03/11/2012 7:15	0	0	149,995087	0	149,995087
04/02/2012 12:15	0	0	0	0	0
04/02/2012 12:30	0	0	0	0	0

Tabla A1.3 Extracto Historial de Carga ordenado de mayor a menor la carga total – resaltado valor de Carga Mínima operando las cuatro Alimentadoras.

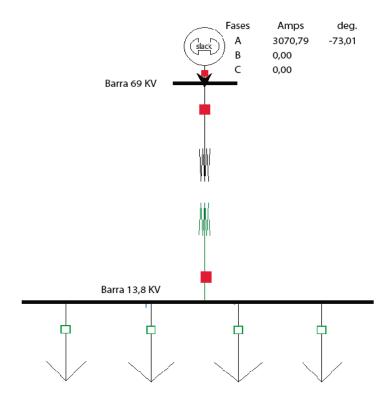
ANEXO 2

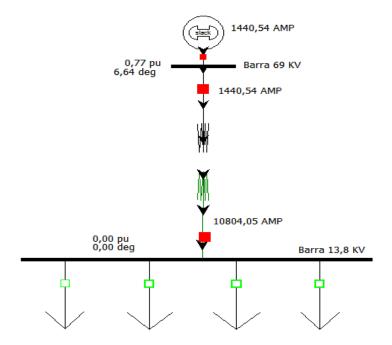

Estudio de corto circuito

El estudio de Corto Circuito se realizó utilizando la herramienta computacional PowerWorld Simulator Versión 17 licencia educacional, para cada tipo de falla descrita en la sección 3.2, y se obtuvieron los resultados mostrados en los gráficos correspondientes a las secciones 2.a y 2.b de máxima y mínima generación respectivamente.

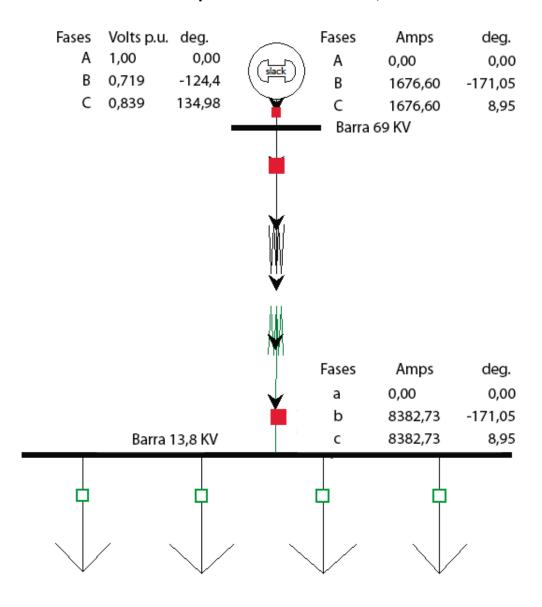

ANEXO 2.a

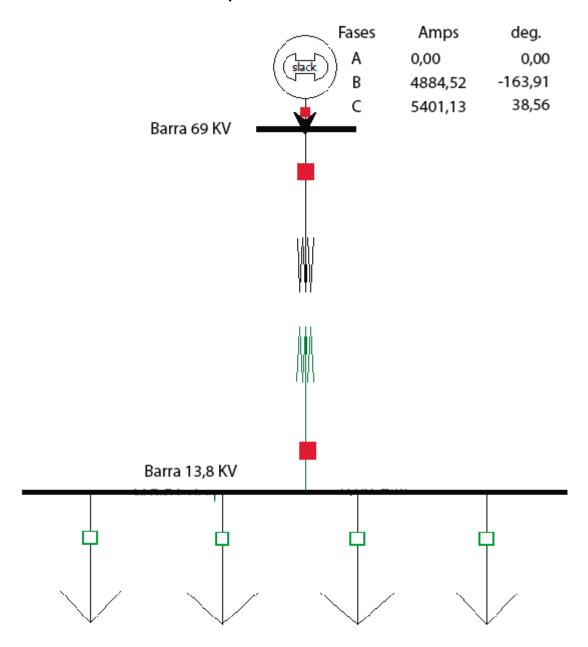
Estudio de Corto Circuito en Máxima Generación

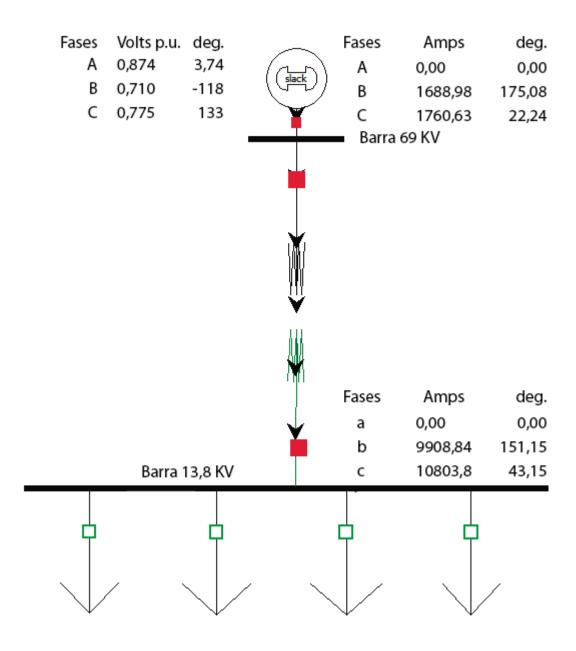

Falla LLL aplicada en la Barra de 69 KV

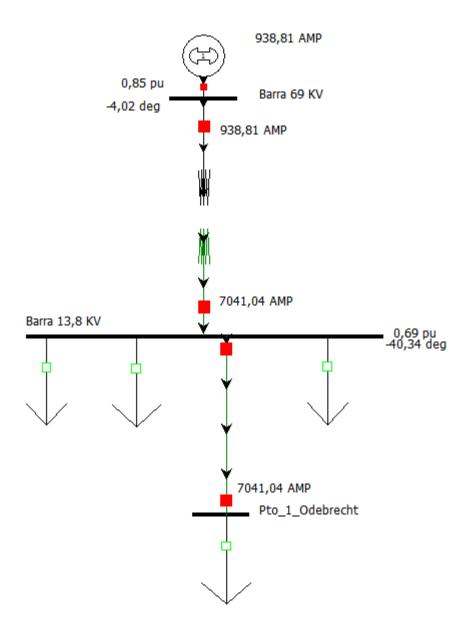

Falla LLL aplicada en la Barra de 13,8 KV

Falla LG aplicada a la Barra de 69 KV

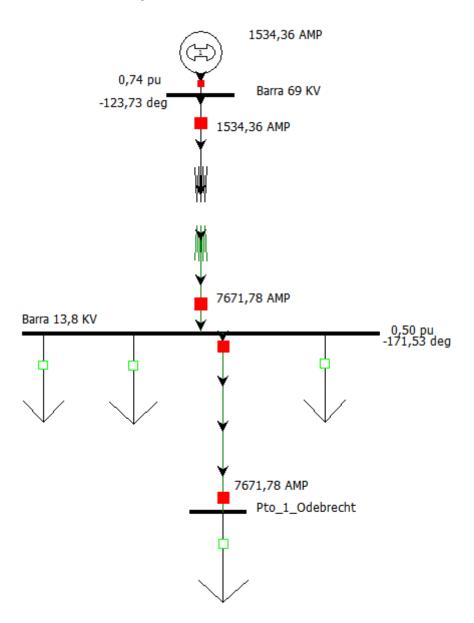

Falla LG aplicada a la Barra de 13,8 KV


Falla LL aplicada a la Barra de 69 KV


Falla LL aplicada a la Barra de 13,8 KV

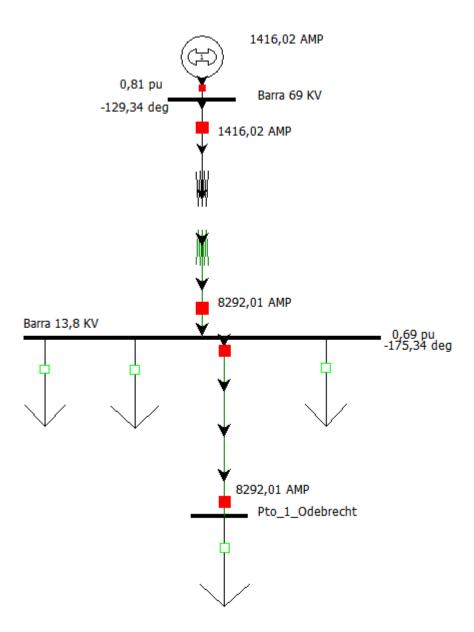

Falla LLG aplicada a la Barra de 69 KV

Falla LLG aplicada a la Barra de 13,8 KV

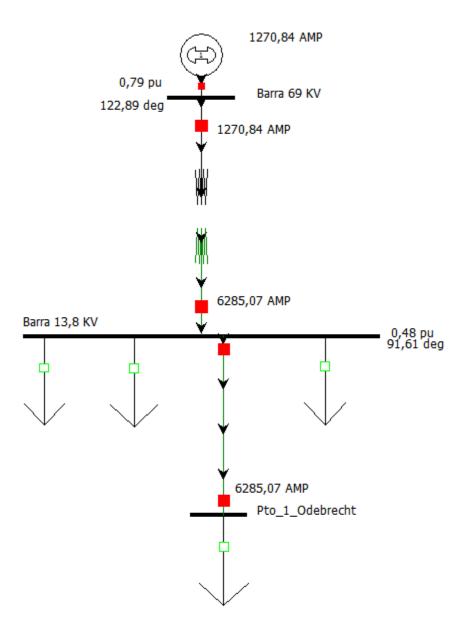


Falla LG aplicada a la Barra Pto_1_Odebrecht

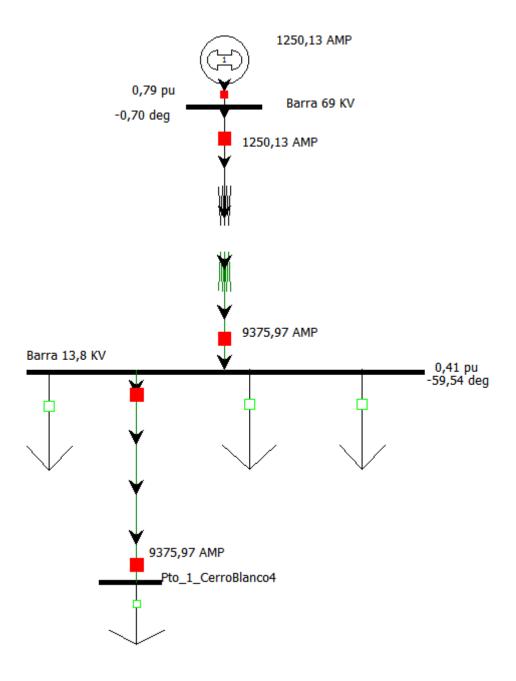
1328,79 AMP 0,84 pu Barra 69 KV -130,17 deg 1328,79 AMP 6643,96 AMP Barra 13,8 KV 0,88 pu -162,22 deg 6643,96 AMP Pto_1_Odebrecht


Falla LL aplicada a la Barra Pto_1_Odebrecht

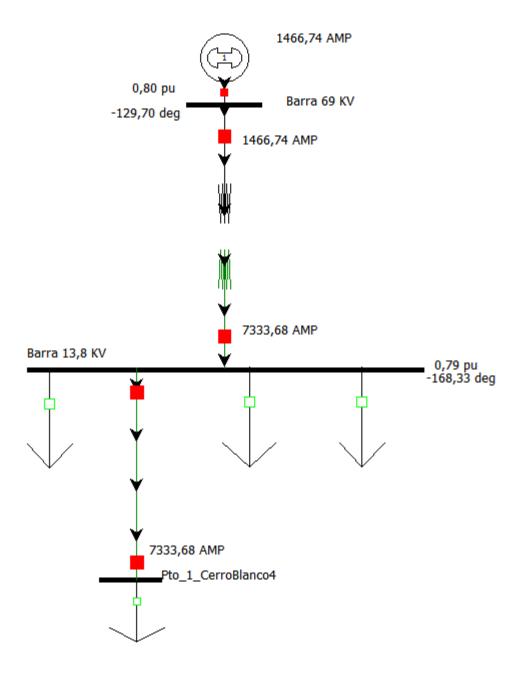
Falla LLL aplicada a la Barra Pto_1_Odebrecht

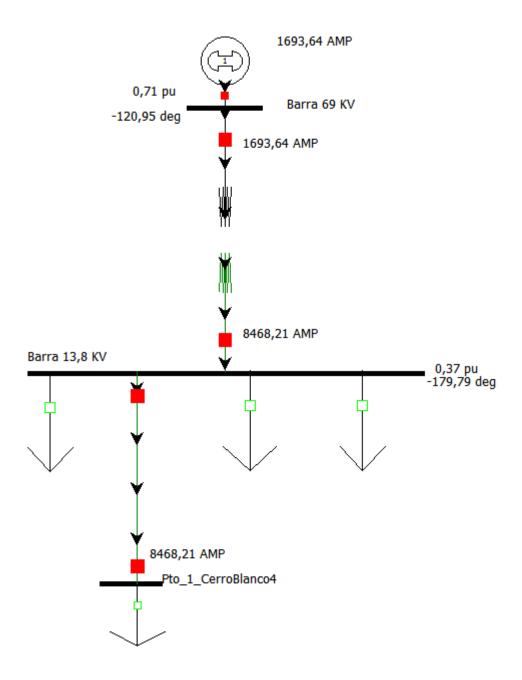

Falla LLG aplicada a la Barra Pto_1_Odebrecht

Fase b

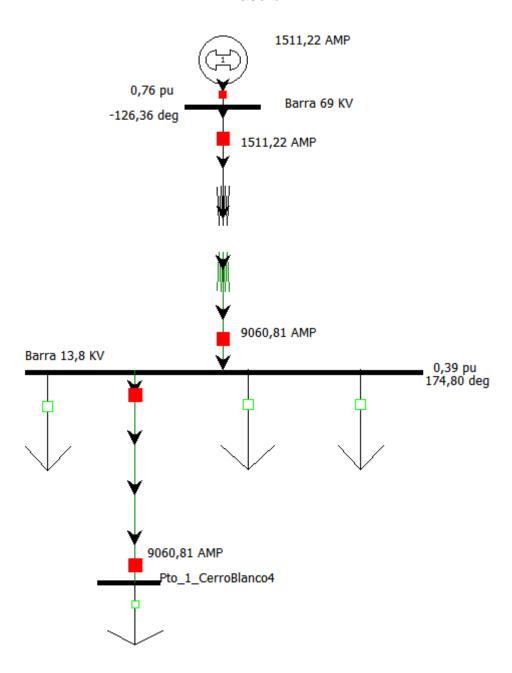


Falla LLG aplicada a la Barra Pto_1_Odebrecht

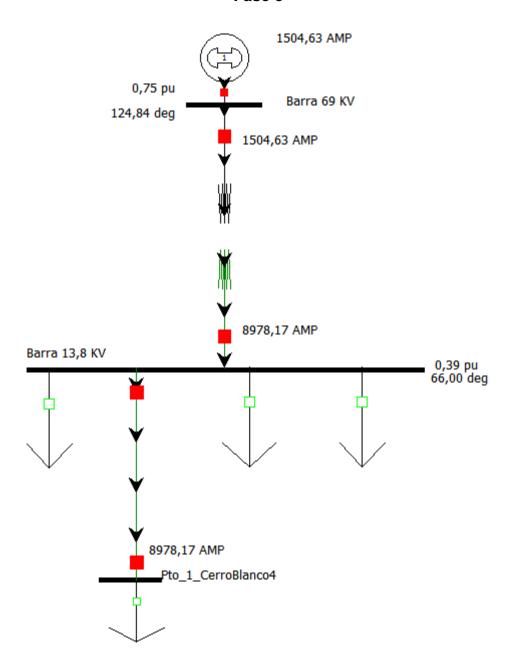

Fase c


Falla LG aplicada a la Barra Pto_1_CerroBlanco4

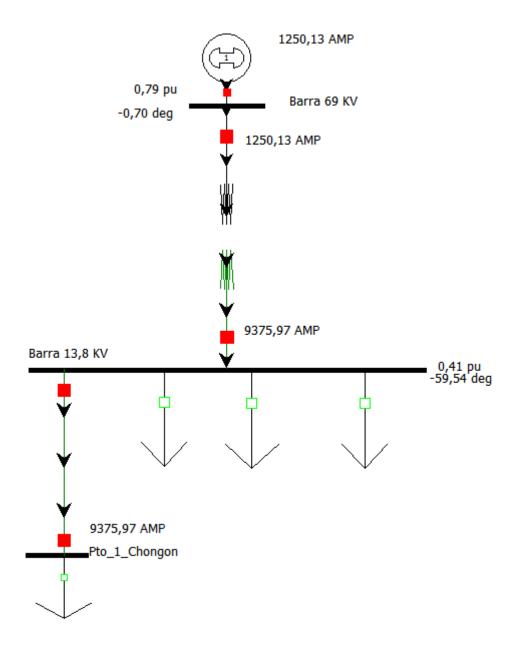
Falla LL aplicada a la Barra Pto_1_CerroBlanco4



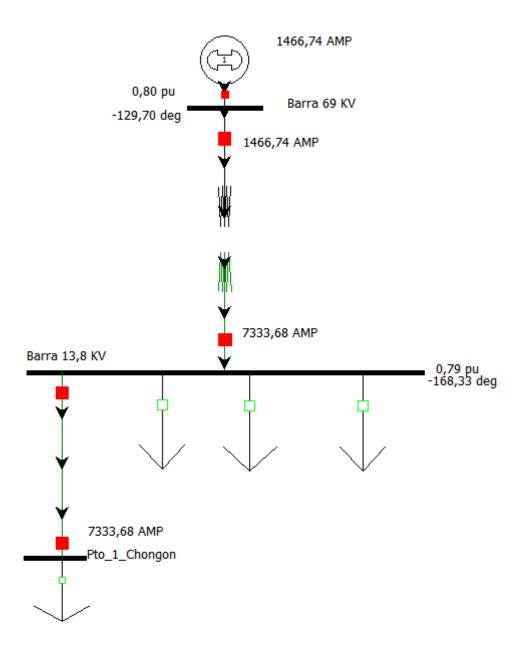
Falla LLL aplicada a la Barra Pto_1_CerroBlanco4

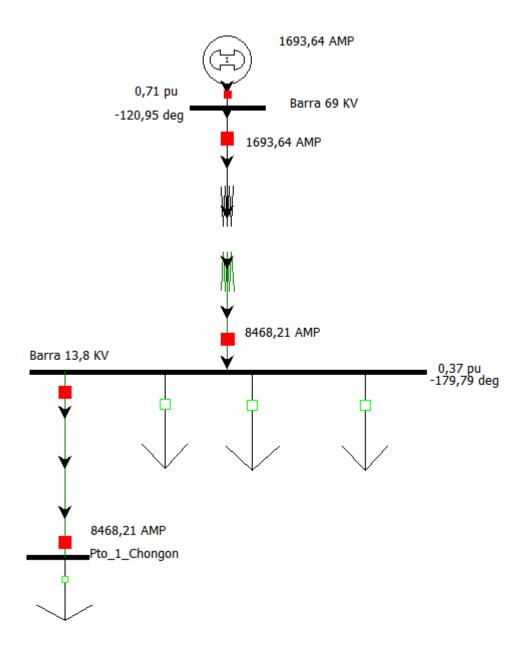

Falla LLG aplicada a la Barra Pto_1_CerroBlanco4

Fase b

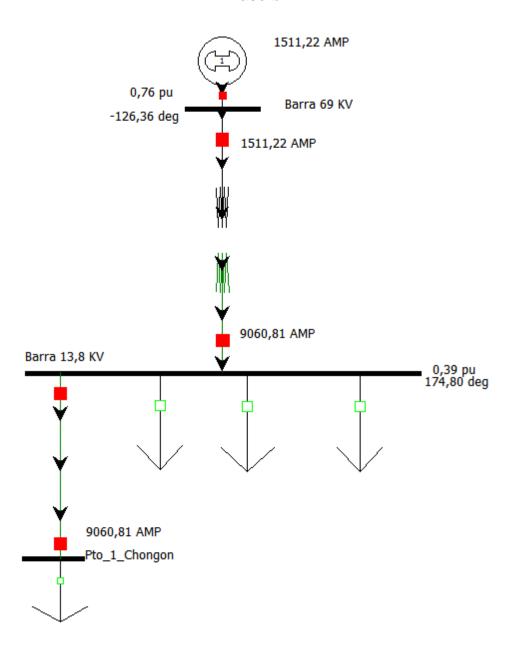


Falla LLG aplicada a la Barra Pto_1_CerroBlanco4

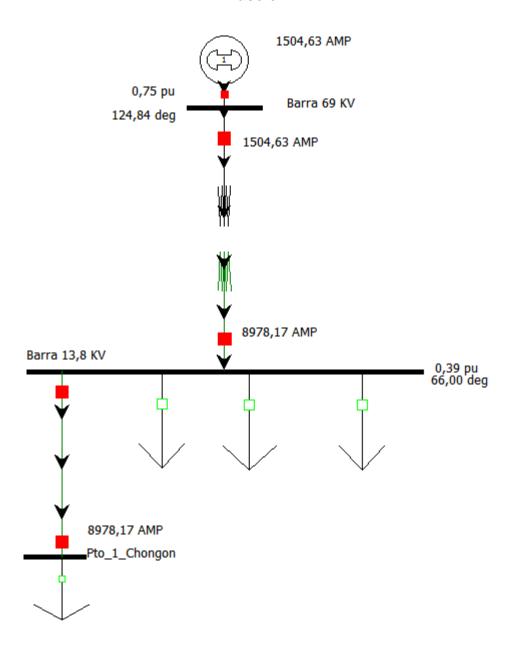

Fase c


Falla LG aplicada a la Barra Pto_1_Chongón

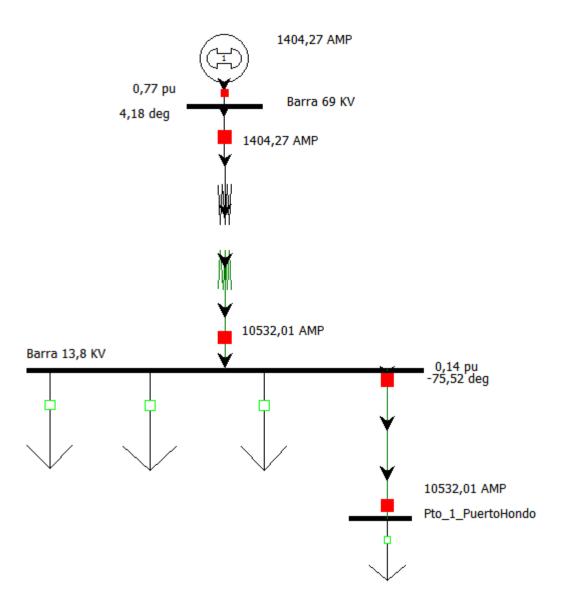
Falla LL aplicada a la Barra Pto_1_Chongón



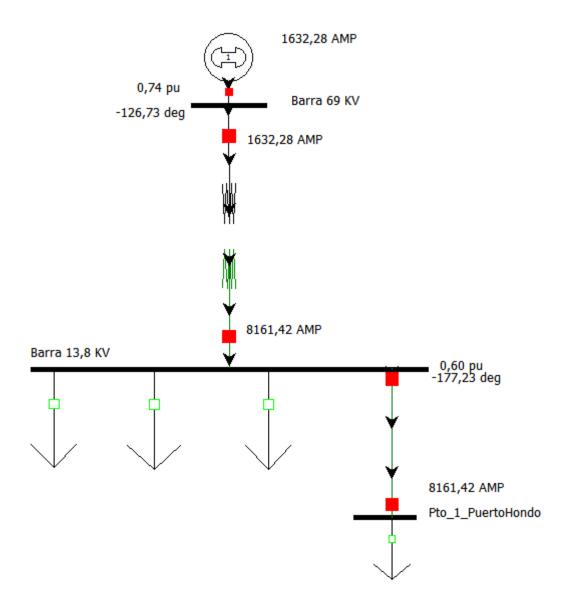
Falla LLL aplicada a la Barra Pto_1_Chongón


Falla LLG aplicada a la Barra Pto_1_Chongón

Fase b



Falla LLG aplicada a la Barra Pto_1_Chongón


Fase c

Falla LG aplicada a la Barra Pto_1_PuertoHondo

Falla LL aplicada a la Barra Pto_1_PuertoHondo

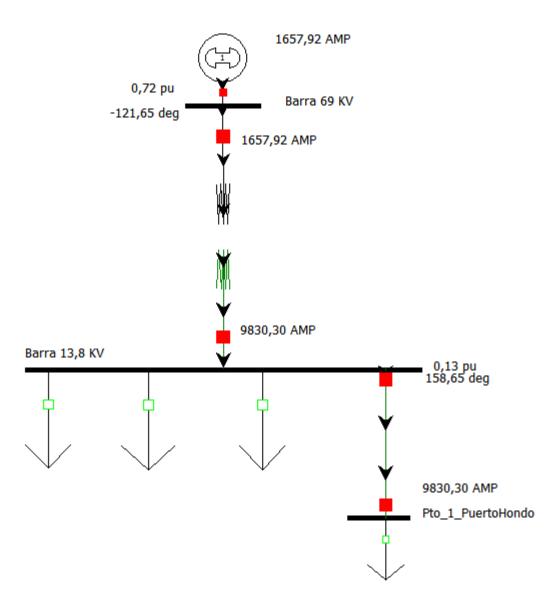
1884,80 AMP

Barra 69 KV

1884,80 AMP

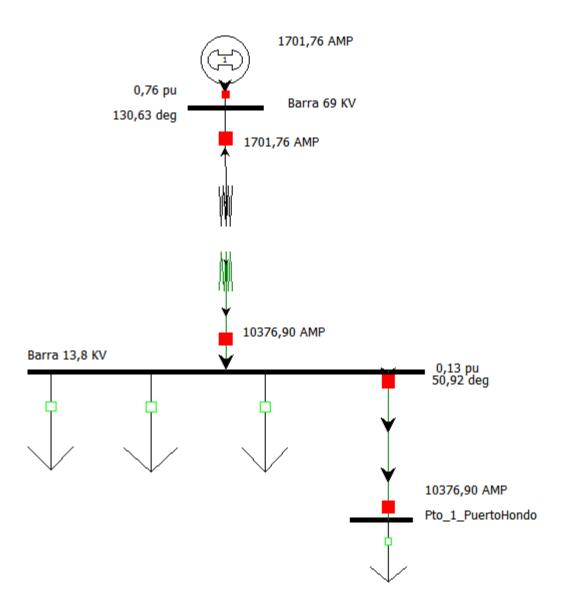
9423,99 AMP

0,12 pu
165,91 deg


9423,99 AMP

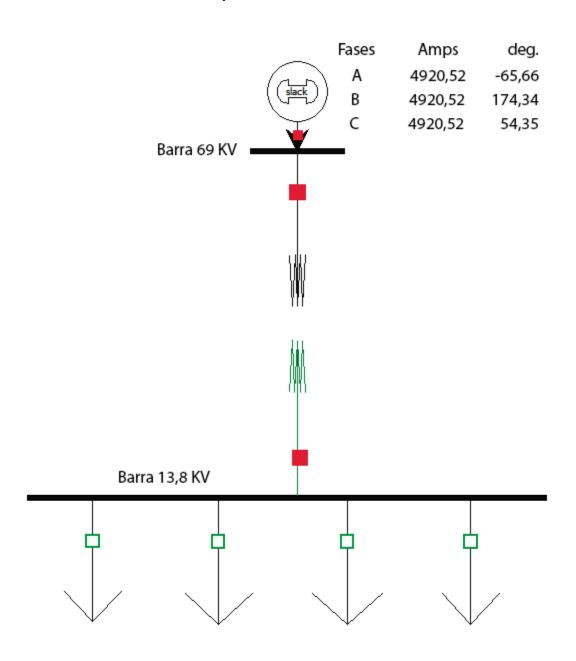
Pto_1_PuertoHondo

Falla LLL aplicada a la Barra Pto_1_PuertoHondo


Falla LLG aplicada a la Barra Pto_1_PuertoHondo

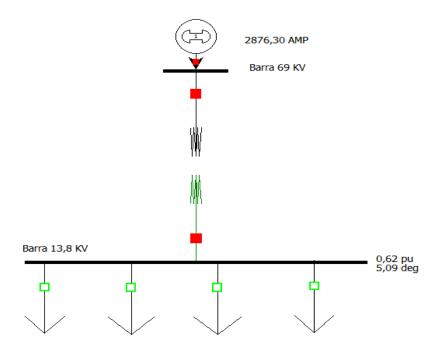
Fase b

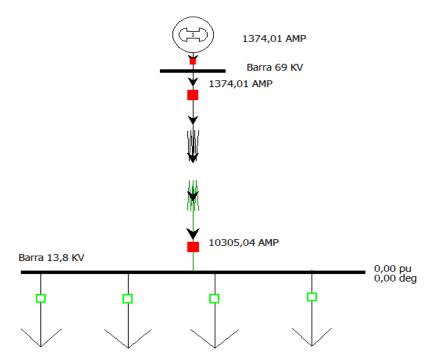
Falla LLG aplicada a la Barra Pto_1_PuertoHondo


Fase c

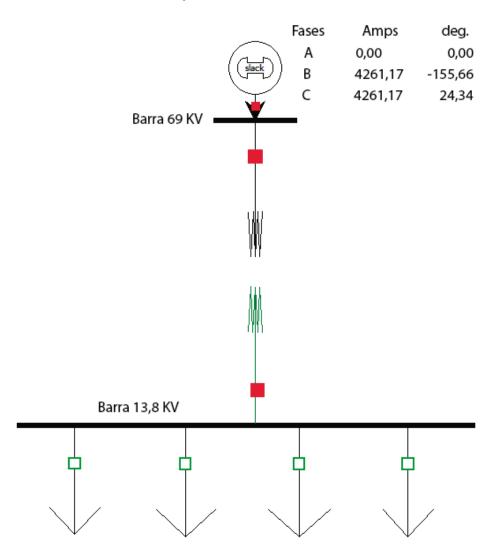
ANEXO 2.b

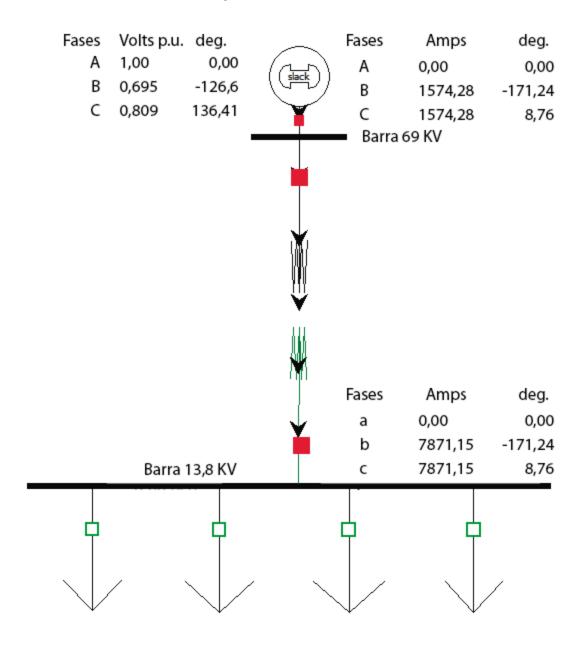
Estudio de Corto Circuito en Mínima Generación

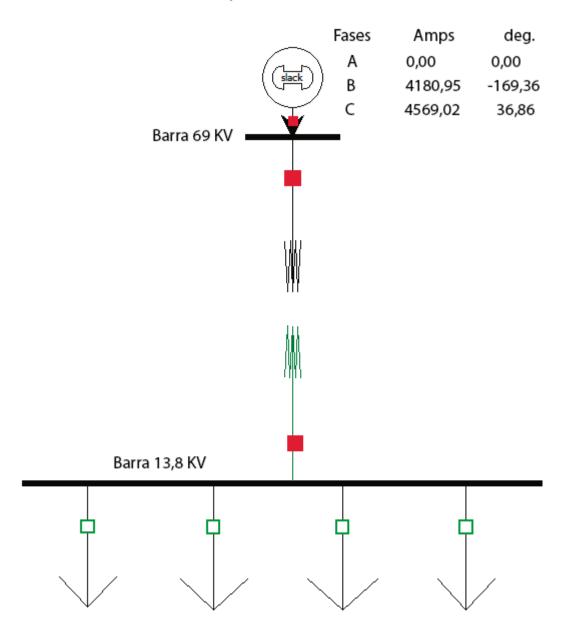

Falla LLL aplicada en la Barra de 69 KV

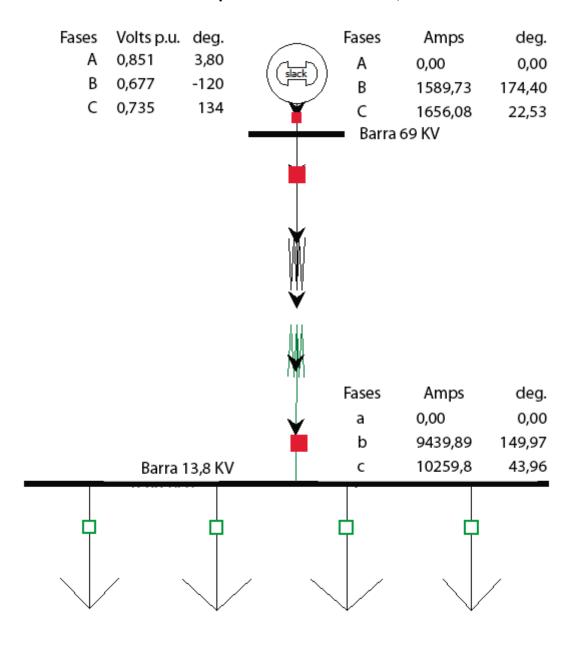

Barra 69 KV Amps deg. Fases -81,24 9098,08 a b 9088,88 158,76 Barra 13,8 KV 9088,88 38,76 c

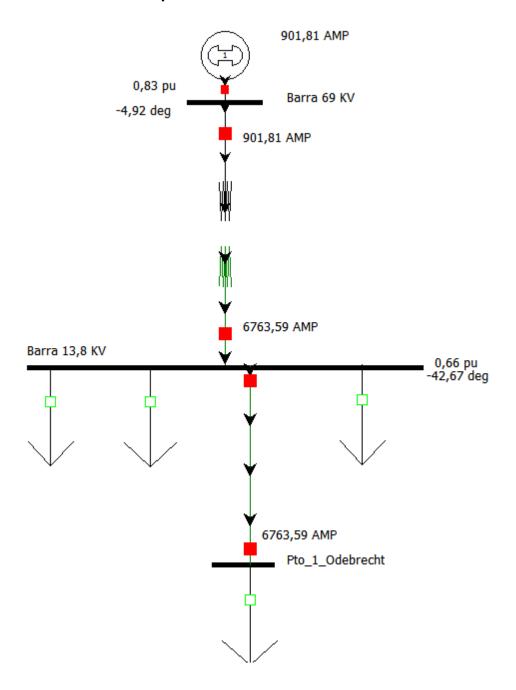
Falla LLL aplicada en la Barra de 13,8 KV

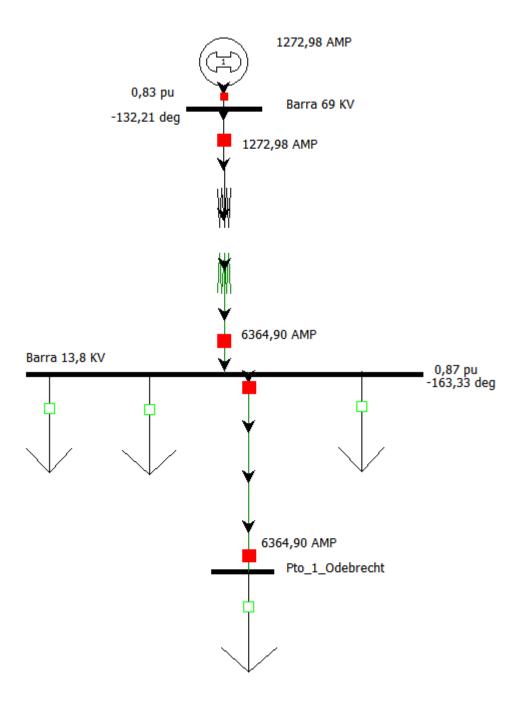

Falla LG aplicada a la Barra de 69 KV

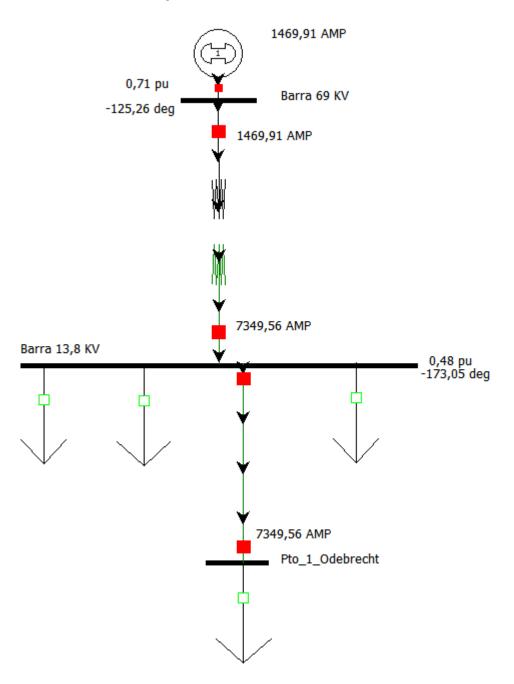

Falla LG aplicada a la Barra de 13,8 KV


Falla LL aplicada a la Barra de 69 KV


Falla LL aplicada a la Barra de 13,8 KV

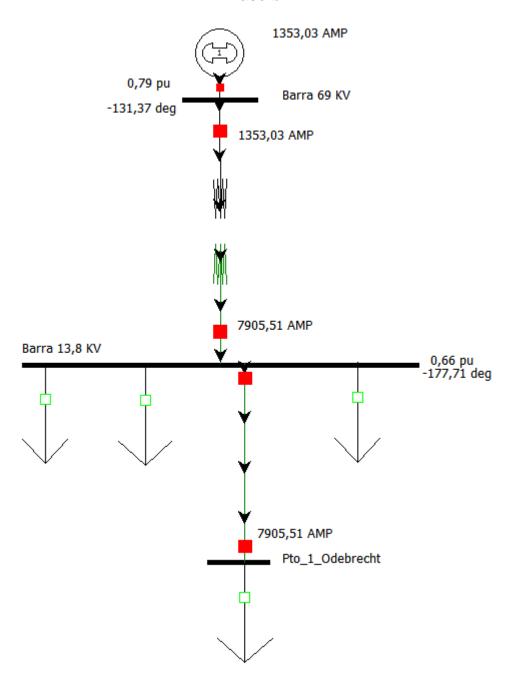

Falla LLG aplicada a la Barra de 69 KV


Falla LLG aplicada a la Barra de 13,8 KV

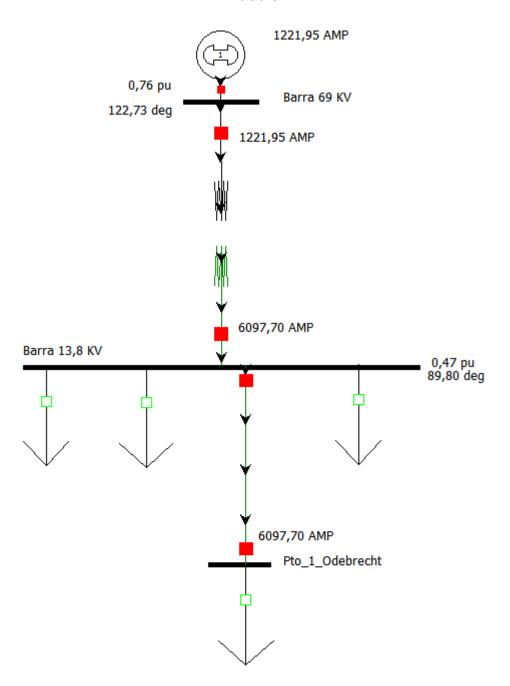


Falla LG aplicada a la Barra Pto_1_Odebrecht

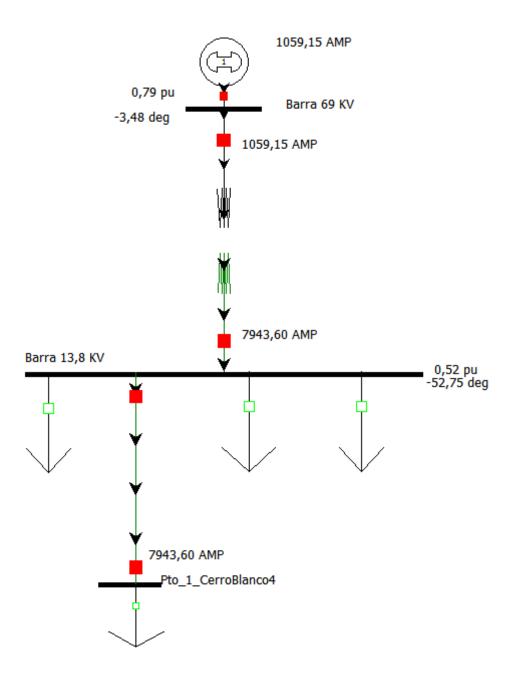
Falla LL aplicada a la Barra Pto_1_Odebrecht

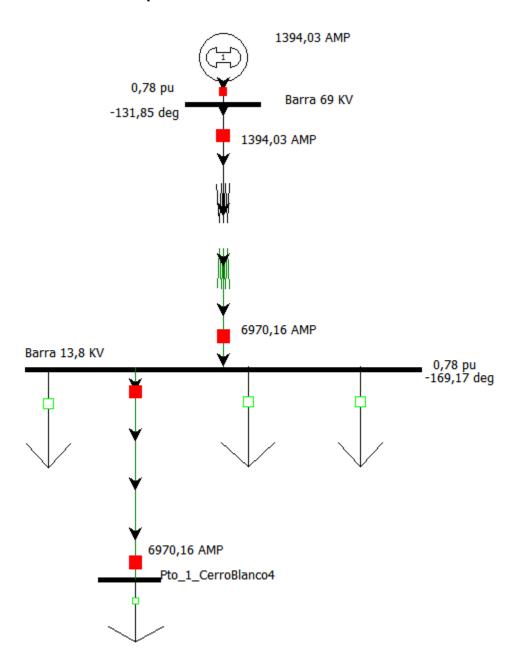


Falla LLL aplicada a la Barra Pto_1_Odebrecht

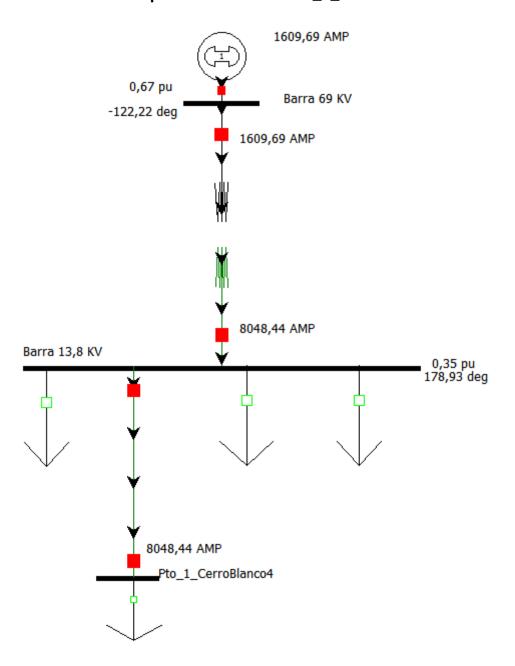

Falla LLG aplicada a la Barra Pto_1_Odebrecht

Fase b

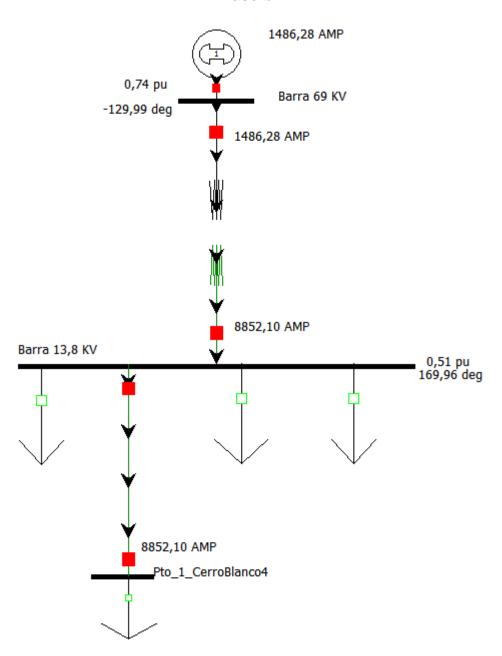



Falla LLG aplicada a la Barra Pto_1_Odebrecht

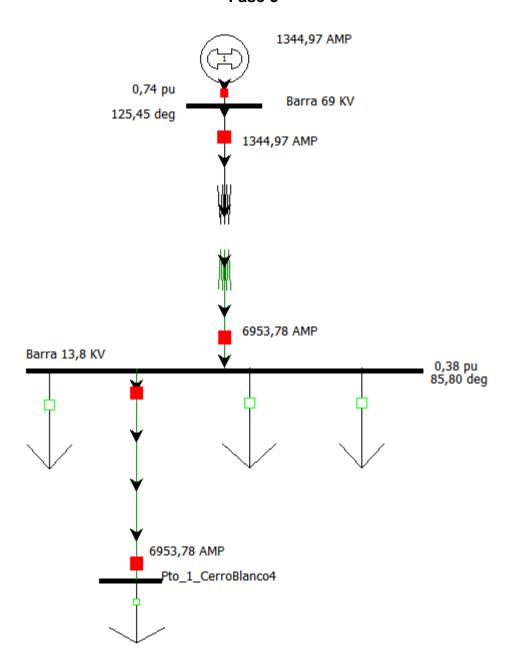
Fase c



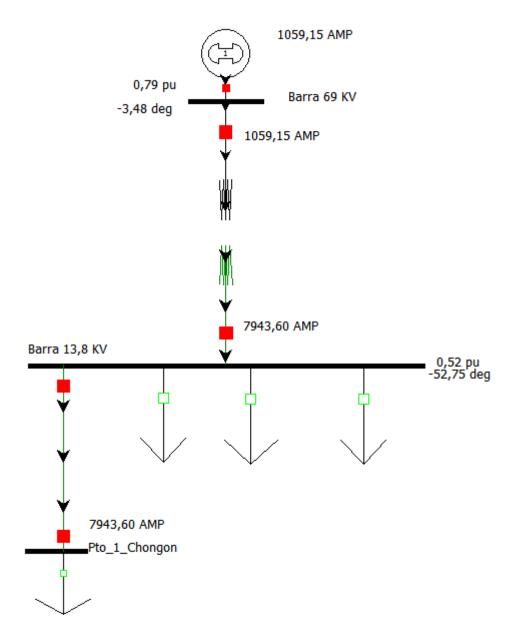
Falla LG aplicada a la Barra Pto_1_CerroBlanco4

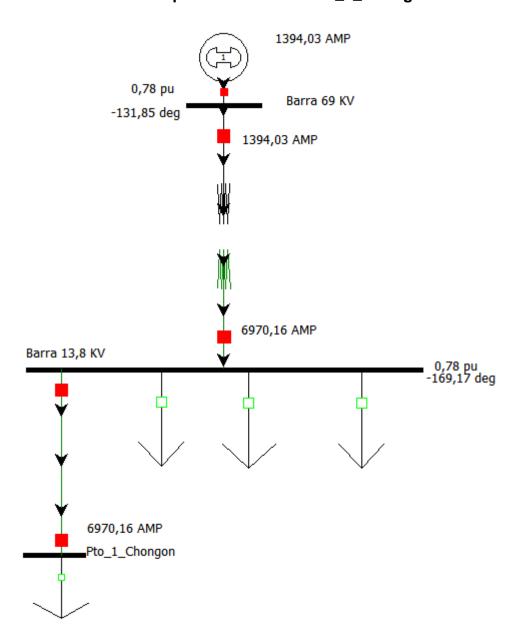

Falla LL aplicada a la Barra Pto_1_CerroBlanco4

Falla LLL aplicada a la Barra Pto_1_CerroBlanco4

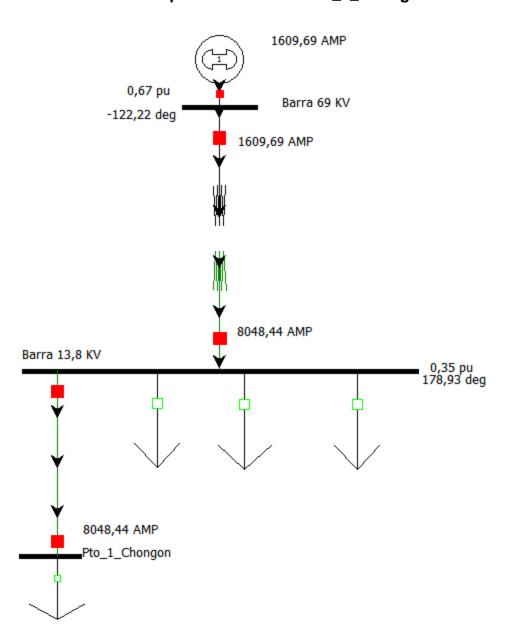

Falla LLG aplicada a la Barra Pto_1_CerroBlanco4

Fase b

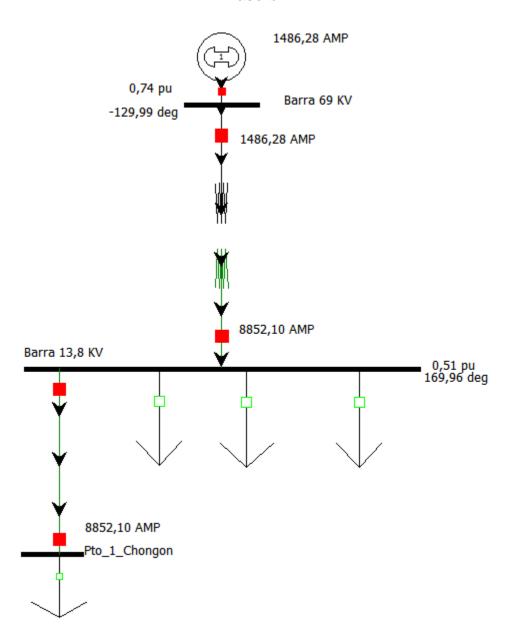



Falla LLG aplicada a la Barra Pto_1_CerroBlanco4

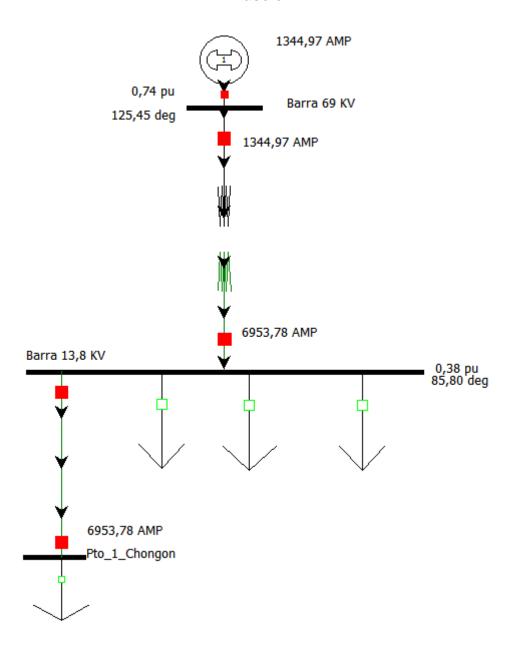
Fase c



Falla LG aplicada a la Barra Pto_1_Chongón


Falla LL aplicada a la Barra Pto_1_Chongón

Falla LLL aplicada a la Barra Pto_1_Chongón


Falla LLG aplicada a la Barra Pto_1_Chongón

Fase b

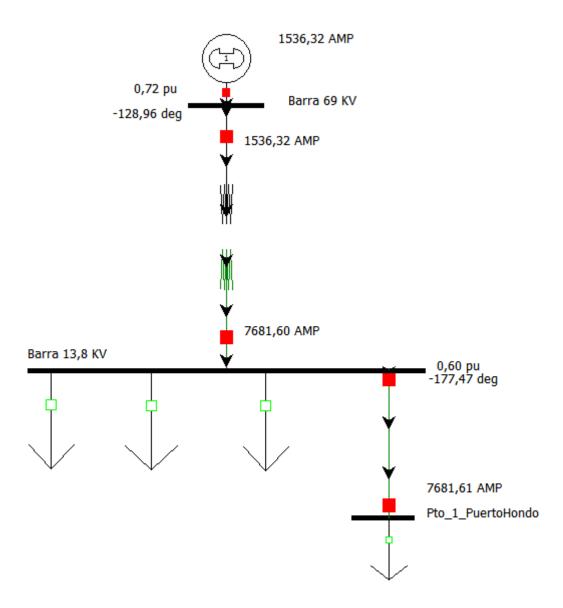
Falla LLG aplicada a la Barra Pto_1_Chongón

Fase c

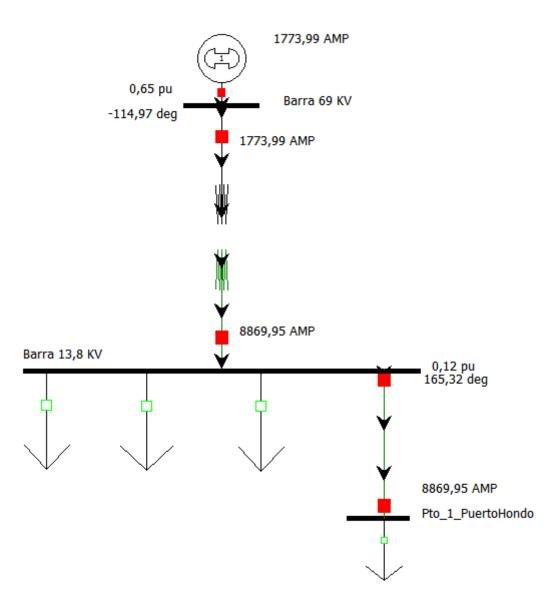
0,74 pu
3,79 deg

Barra 69 KV

1293,46 AMP

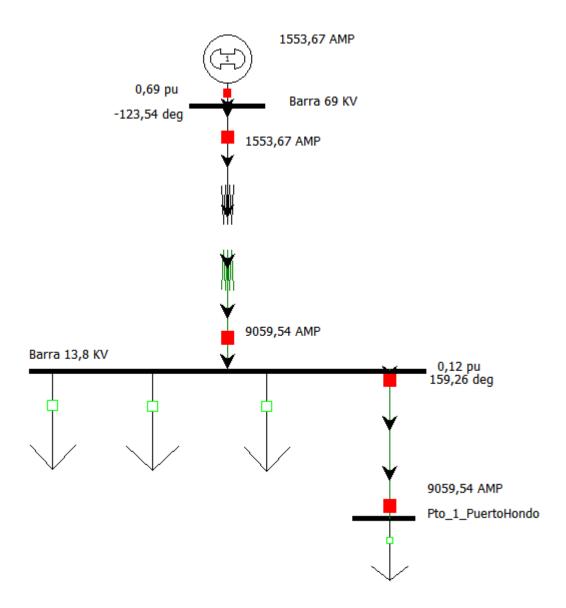

9700,92 AMP

0,13 pu
-76,42 deg

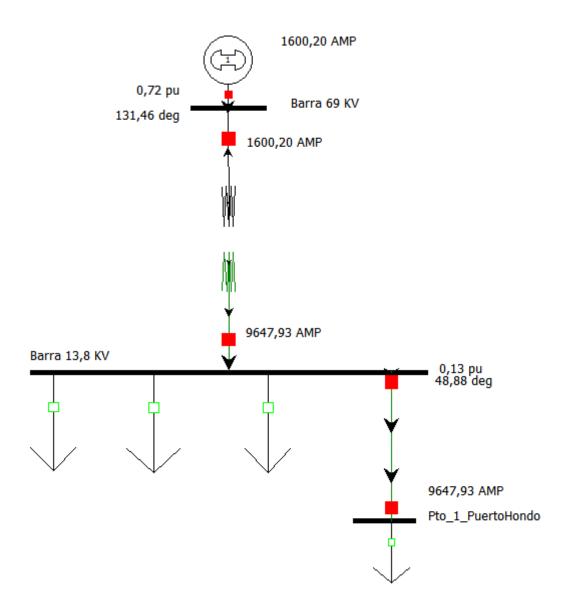

9700,92 AMP

Pto_1_PuertoHondo

Falla LG aplicada a la Barra Pto_1_PuertoHondo


Falla LL aplicada a la Barra Pto_1_PuertoHondo

Falla LLL aplicada a la Barra Pto_1_PuertoHondo


Falla LLG aplicada a la Barra Pto_1_PuertoHondo

Fase b

Falla LLG aplicada a la Barra Pto_1_PuertoHondo

Fase c

ANEXO 3

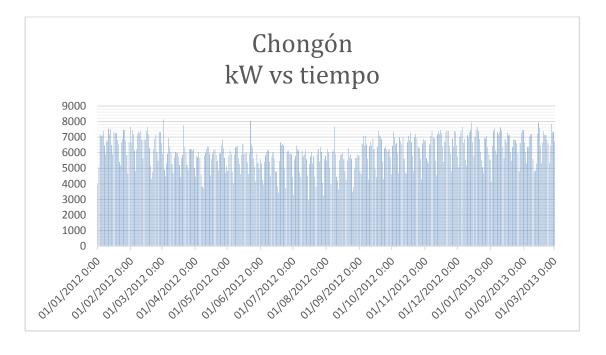
Determinación de la corriente nominal de las Alimentadoras.

Para la determinación de la corriente nominal de las cuatro Alimentadoras de la Subestación de la S/E Cerro Blanco se utilizó los valores de potencia suministrados por la Empresa Eléctrica Pública de Guayaquil del periodo Enero 2012 – Febrero 2013 de cada Alimentadora, con lectura cada 15 minutos.

En la tabla A3.1 se muestra un extracto de los valores suministrados por la EEPG.

Con estos valores se grafica las curvas de carga de las Alimentadoras de la S/E Cerro Blanco que se mostrará a continuación, con el objetivo de conocer la potencia máxima y poder calcular la corriente nominal para cada una de las Alimentadoras.

La Potencia activa máxima en la Alimentadora Cerro Blanco4 es 2400 [KW] como se muestra en la Figura A3.1.


La Potencia activa máxima en la Alimentadora Chongón es 8400 [KW] como se muestra en la Figura A3.2.

	Cerro Blanco	Chongon	Odebretch	Puerto Hondo
Date/Time	kW sd del	kW sd del	kW sd del	kW sd del
02/03/2012 11:15	7065,192871	8135,30908	6008,38818	9708,217773
02/03/2012 11:30	6965,43457	8092,68164	4831,3877	9554,629883
02/03/2012 11:00	6696,481445	8053,7627	4758,85547	9510,089844
02/03/2012 10:45	4901,819824	8039,97656	3412,04102	9227,021484
22/05/2012 15:00	4710,020996	8039,84668	3145,36108	8938,272461
22/05/2012 14:30	4180,494141	8007,48535	2922,34082	8921,521484
22/05/2012 14:45	3491,757813	8002,58789	2903,90576	8876,649414
22/05/2012 14:15	3349,834473	7988,46631	2879,0188	7669,923828
22/05/2012 14:00	2855,70752	7984,63135	2804,7749	7645,451172
02/03/2012 10:00	2293,124512	7960,59131	2760,07886	7430,088379
02/03/2012 10:30	2292,077148	7959,30957	2091,51831	7241,44043
02/03/2012 10:15	2286,361084	7951,02441	1735,52625	7103,321777
22/05/2012 13:45	2240,500732	7950,1084	1703,49756	7007,462891
14/12/2012 14:15	2218,897949	7945,65186	1637,29663	6960,273438
14/02/2013 14:45	2216,617676	7942,48389	1602,75708	6939,233398
14/12/2012 15:45	2214,463135	7933,11719	1587,51294	6835,932617
14/12/2012 14:30	2211,611084	7923,8457	1558,18713	6685,519043
14/12/2012 15:30	2205,741211	7909,94678	1533,72473	6608,867676
14/12/2012 15:15	2203,388428	7909,68701	1469,23621	6589,899902
22/05/2012 12:00	2202,791504	7905,7583	1304,04639	6570,460938
14/02/2013 14:30	2202,606445	7893,92188	1300,75623	6546,942871
14/02/2013 15:00	2201,909424	7881,97705	1278,22485	6428,541016
22/05/2012 11:45	2200,327393	7863,21826	1255,63831	6387,943359
26/02/2013 15:15	2197,09375	7843,29736	1253,66834	6359,09668
22/05/2012 11:00	2193,994385	7834,48731	1240,65723	6333,978516
26/02/2013 15:00	2193,162354	7831,2085	1228,96606	6295,767578
14/02/2013 15:15	2192,917969	7805,52441	1222,78601	6207,999512

Tabla A3.1 Extracto Historial de Carga de las Alimentadoras de la S/E Cerro Blanco.

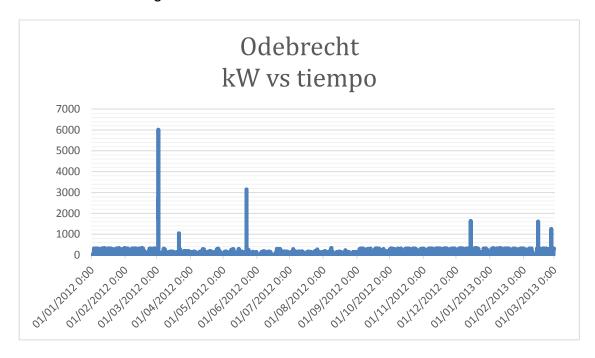


Figura A3.1 Gráfico de barras de la potencia activa de la Alimentadora Cerro Blanco 4.

Figura A3.2 Gráfico de barras de la potencia activa de la Alimentadora Chongón.

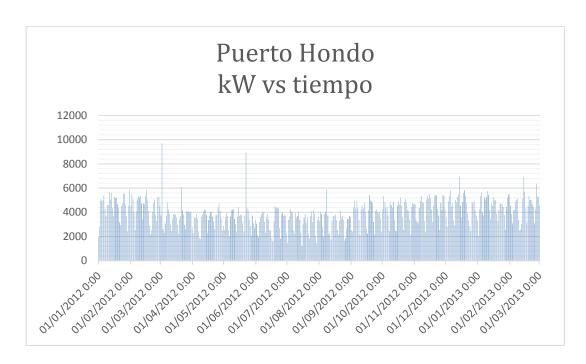

La Potencia activa máxima en la Alimentadora Odebrecht es 600 [KW] como se muestra en la Figura A3.3.

Figura A3.3 Gráfico de barras de la potencia activa de la Alimentadora Odebrecht.

.

La Potencia activa máxima en la Alimentadora Puerto Hondo es 7200 [KW] como se muestra en la Figura A3.4.

Figura A3.4 Gráfico de barras de la potencia activa de la Alimentadora Puerto Hondo.

Por lo tanto los valores de corriente nominal para las Alimentadoras de la Subestación Cerro Blanco son los que se muestran en la Tabla A3.1

#	ALIMENTADORAS	P [KW]	In [A]
1	Cerro Blanco 4	2400	102,46
2	Chongón	8400	358,60
3	Odebrecht	600	25,61
4	Puerto Hondo	7200	307,37

Tabla A3.1 Valores de corriente nominal de las Alimentadoras de la Subestación Cerro Blanco.

ANEXO 4

Determinación de la curva de daño del transformador

En este anexo se muestra la curva de daño del transformador utilizada para el transformador de la S/E Cerro Blanco, la cuales son descritas en la norma IEEE Std C57.12.00-2000 (Requisitos de normas generales para transformadores de distribución sumergidos en líquido, Poder y Regulación [8]).

Los dispositivos de protección, tales como relés y fusibles, tienen características de funcionamiento bien definidas que relacionan las magnitudes de corriente de falla con su tiempo de operación.

Se desea que las curvas características de estos dispositivos estén coordinadas con las curvas de los transformadores (ver IEEE Std C57.109-1993, [10]) que reflejen su capacidad de resistencia durante una falla. Tales curvas para la Categoría I, II, III, IV y transformadores (se describen en la norma IEEE C57.12.00-2000), son presentadas en este anexo como curvas de protección contra fallas. Estas curvas se aplican a los transformadores diseñados de acuerdo a las normas IEEE Std. C57.12.00-2000. Las curvas

de protección de fallas, presentadas en este anexo, toman en consideración que el daño del transformador es acumulativo, y que el número de fallas a las cuales un transformador puede estar expuesto es diferente para cada una de las diferentes aplicaciones. Por ejemplo, los transformadores con conductores en el lado secundario encerrados en un conducto o aislado de alguna otra manera, que normalmente se encuentran en sistemas de potencia industrial, comercial e institucional, experimentan una baja frecuencia de fallas. En contraste, los transformadores con líneas aéreas conectadas a los devanados secundarios, como los que encontramos en las subestaciones de distribución, tienen una alta incidencia relativa de fallas, y el uso de reconectadores o interruptores de re-cierre automático pueden someter al transformador a repetidas sobrecorrientes debido a la falla.

En el uso de curvas de protección, para seleccionar las características tiempo-corriente de los dispositivos de protección, un ingeniero de protección debe tomar en cuenta no solo el nivel inherente de la incidencia de fallas pero también la ubicación de cada dispositivo de protección y su rol en la protección del transformador. El equipo de protección del Alimentadora del lado secundario es la primera línea de defensa contra fallas experimentadas por los transformadores de potencia y su característica de tiempo-corriente debe ser seleccionada por referencia a la curva de protección de fallas frecuentes. Más específicamente, las características de tiempo-corriente de los dispositivos de protección de los Alimentadoraes deben estar por debajo

y a la izquierda de la curva de protección apropiada de falla frecuente. El principal dispositivo de protección del lado secundario (si se aplica) y el dispositivo de protección del lado primario típicamente operan para proteger las fallas pasantes en el raro evento de una falla entre el transformador y el dispositivo de protección del Alimentadora, o en el raro caso de que un dispositivo de protección del Alimentadora falle al operar u opere muy lentamente debido a un incorrecto ajuste (alto) o setting. Las características tiempo-corriente de estos dispositivos deben ser seleccionados para alcanzar la coordinación en referencia a la curva de protección de fallas frecuentes. Además, estas características de tiempo-corriente deben ser seleccionadas para lograr la coordinación deseada entre varios dispositivos de protección.

Para transformadores de Categoría III (1668 KVA a 10000 KVA monofásico, 5001 KVA a 30000 KVA trifásico) se aplican 2 curvas de protección para fallas pasantes. Ver Figura A4.1.

a) La curva de la izquierda refleja las consideraciones de daño térmico y mecánico y puede ser usada para seleccionar las características de tiempo—corriente de los dispositivos de protección del Alimentadora para aplicaciones de fallas frecuentes (por ejemplo, fallas que ocurren más de 5 veces durante la vida útil del transformador). Hay diferentes curvas para diferentes impedancias de transformadores. Las curvas se derivan de considerar que las corrientes de falla son del 50 al 100 % de la máxima

corriente de falla posible y se refleja como l²t =K; K es 2 para el peor caso de servicio mecánico.

b) La curva de la derecha refleja las consideraciones de daño térmico y puede ser usada para seleccionar las características de tiempo-corriente del dispositivo de protección del Alimentadora para aplicaciones de fallas infrecuentes. Esta curva puede también ser usada para seleccionar el principal dispositivo de protección del lado secundario (si se aplica) y las características de tiempo-corriente del principal dispositivo de protección del lado primario para todas las aplicaciones con excepción del nivel anticipado de la incidencia de falla [11].

La delineación de las aplicaciones de fallas frecuentes versus fallas infrecuentes para transformadores de Categoría II y III pueden estar relacionados a la zona o ubicación de la falla como se muestra en la Figura A4.2. Por conveniencia, las curvas de protección de fallas para transformadores de Categoría I, II, III, IV se resumen en la Tabla A4.1.

Un asunto de coordinación cuando los transformadores delta-estrella son protegidos también está considerado aquí. (El devanado primario está conectado en delta y el devanado secundario está conectado en estrella.)

Asuma que la relación de transformación es 1:1. En el lado secundario, la corriente en cada devanado por fase es la misma que la corriente de la línea. Cuando una falla trifásica ocurre, las corrientes de línea del lado primario son 1.73 veces las corrientes de los devanados primarios.

Cuando sucede una falla de línea a tierra en el lado secundario del transformador, las corrientes de línea en el lado primario son 57.7% de la corriente de línea en el lado primario. Las características de operación del fusible del lado primario o relé deberán ser cambiados a la derecha en los gráficos de coordinación.

Cuando ocurre una falla bifásica en el lado secundario del transformador, la corriente en las fases falladas es 86.6% de las corriente trifásica en el lado secundario. Sin embargo, en el lado primario, la corriente será 100% de la corriente de falla trifásica y el 50% de la corriente de falla trifásica en las otras dos fases. Las curvas aplicables para el lado primario deben estar desplazadas hacia la izquierda en los gráficos de coordinación de falla bifásica.

Los pasos para la coordinación son los siguientes:

 Seleccione la categoría de los datos de placa mínimos del devanado principal (75000 KVA es Categoría IV).

- Seleccione la impedancia que utiliza para graficar las curvas de la Categoría IV (Z para 132/13.2 KV= 7.94% a 30000 KVA).
- c) Calcular la "constante K".

$$K = \left[I^2 t = \left(\frac{100}{7.94}\right)^2 * 2\right]$$
 (A4.1)

- d) Tiempos de la corriente base normal a 2 s>> 12.59.
- e) El punto del 50% es

$$t = \left[\frac{317.24}{(12.59/2)^2}\right]$$
 =8s (A4.2)

La coordinación de los relés de sobrecorriente para este ejemplo está mostrada en la Figura A4.3.

Categoría	Monofásico (KVA)	Trifásico (KVA)	Curva de protección
I	5 – 500	15 - 500	Figura A.1
	501 - 1667	501 - 5000	Figura A.2
III	1668 - 10000	5001 - 30000	Figura A4.1
IV	≥ 30000	≥ 30000	Figura A.4

Tabla A4.1 Resumen de curvas de protección contra fallas; mínimo KVA de los datos de placa del devanado principal.

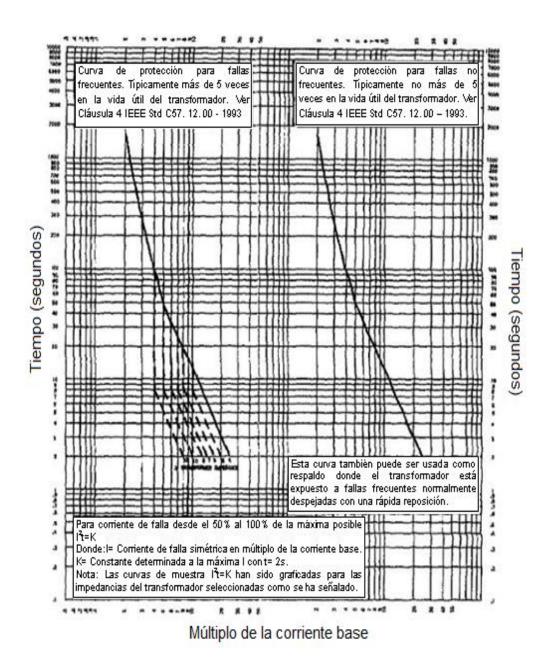


Figura A4.1 Transformadores de Categoría III:

1668 KVA a 10000 KVA monofásico; 5001 KVA a 30000 KVA trifásico.

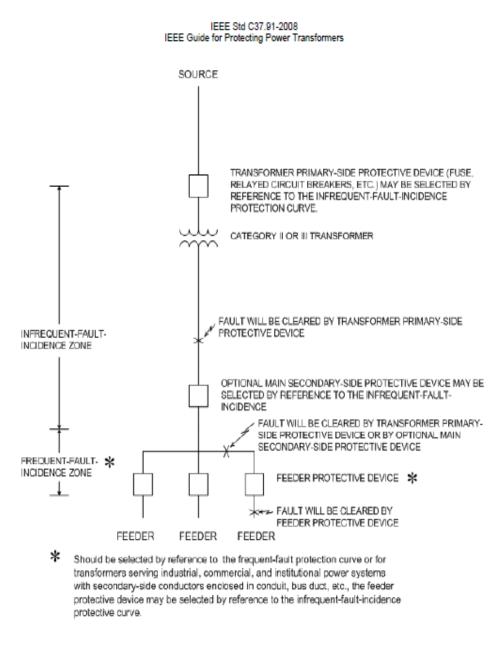


Figura A4.2 Zonas de incidencia de fallas infrecuentes y frecuentes para transformadores de Categoría II y Categoría III.

A 5 5 5 7 5 15 9 2 3 2 2 2 2 3 900 900 900 400 900 400 Minimum meiting time-current cur of transformer primary fuse, referred to 12.0 KV Note: Princry-side protective device curves are shown reflected to the secondary side by the three phase transformer ratio so that their operating time is properly shown directly at the secondary-side fault current value. Total clearing time-current cur of transformer S 2 2 2 2 2 5 primary fuse, referred to 12.0 KV 30 Infrequent-fault-incidence through-fault protection TIME(SECONDS) Total electing curve for automatic circuit recloser 2 'A' (fast) plus 2 '8' (slow) operations Frequent-fault-Incidence through-fault protection 3 7500kVA Z=7.8% 我然后 路 林 280 A automatic circuit reclosers, 550 A minimum trip; 12 'A' (fast) plus 2 'B' (slow) operations. 49 IFL*360.8 A 1 39 fourt =4630 A 8 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 SECONDARY CURRENT (AMPERES X 10)

SECONDARY CURRENT (AMPERES X 10)

Figura A4.3 Protección de un transformador de Categoría III con líneas secundarias aéreas, para una falla trifásica en el lado secundario.

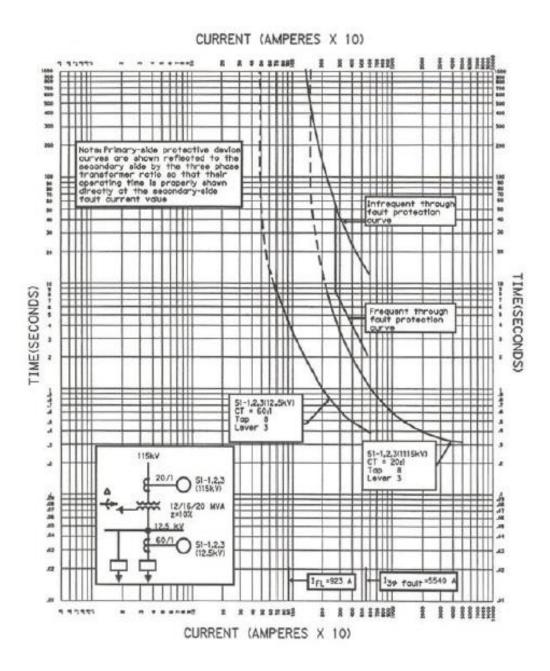


Figura A4.4 Protección de un transformador de Categoría III para una falla trifásica secundaria.

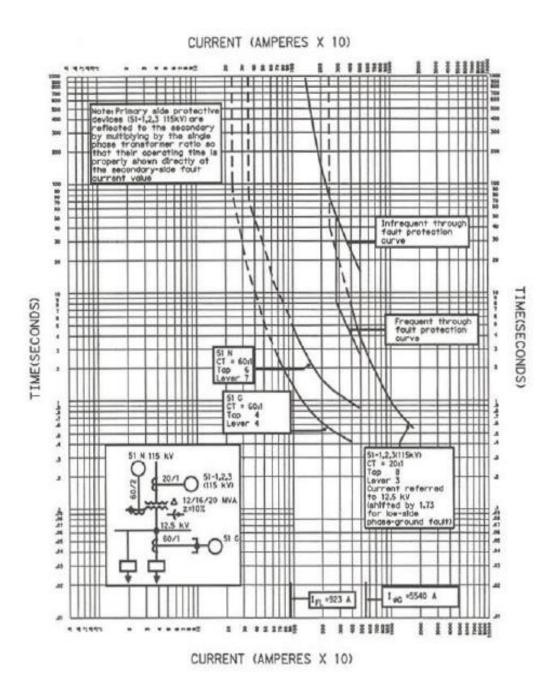


Figura A4.5 Protección de un transformador de Categoría III para una falla línea a tierra secundaria.

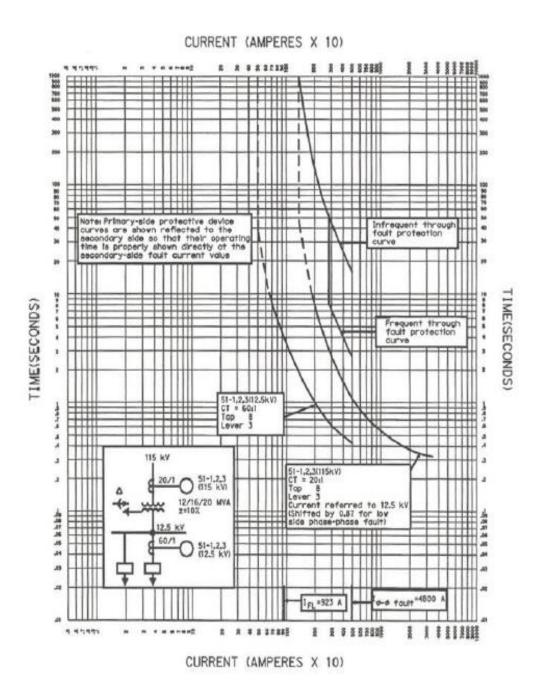


Figura A4.6 Protección de un transformador de Categoría III para una falla de línea a línea secundaria.

ANEXO 5

Ecuación de la Curva de Sobrecorriente Temporizada utilizada por el relé TPU-2000R.

En este anexo se encuentran las ecuaciones de la curva del relé TPU-2000R para la protección de sobrecorriente Temporizada (51), las cuales dependen de la coordinación que necesitemos realizar. Para determinar los tiempos de coordinación se utiliza las siguientes ecuaciones, cuyos coeficientes se encuentran detallados en la Tabla A5.1.

Ecuación de la curva de sobre-corriente temporizada ANSI

Tiempo de Disparo=
$$\left(\frac{A}{M^{P}-1} + B\right) \left(\frac{14n-5}{9}\right)$$
 (A5.1)

Tiempo de Reposición=
$$\left(\frac{D}{1-EM}\right)\left(\frac{14n-5}{9}\right)$$
 (A5.2)

M = Múltiplos de la corriente de arranque (I/Ipu).

n = Ajuste del Dial de Tiempo (rango de 1 a 10 en pasos de 0,1).

Curva	Α	В	С	Р	D	E
Extremadamente Inversa	6,407	0,025	1	2	3	0,998
Muy Inversa	2,855	0,0712	1	2	1,346	0,998
Inversa	0,0086	0,0185	1	0,02	0,46	0,998
Inversa - Tiempo corto	0,00172	0,0037	1	0,02	0,092	0,998
Ext. Inversa Tiempo Corto	1,281	0,005	1	2	0,6	0,998
Ext. Inversa Tiempo Largo	64,07	0,25	1	2	30	0,998
Muy Inv. Tiempo Largo	28,55	0,712	1	2	13,46	0,998
Inversa Tiempo largo	0,086	0,185	1	0,02	4,6	0,998
Curva del Reconectador #8	4,211	0,013	0,35	1,8	3,29	1,5

Tabla A5.1 Constantes de las Características de Sobrecorriente

Temporizada.

Notas:

- El tiempo en segundos para la Curva Extremadamente Inversa Tiempo
 Largo es 10 veces el de la Curva Extremadamente Inversa.
- El tiempo en segundos para la Curva Muy Inversa Tiempo Largo es 10 veces el de la Curva Muy Inversa.
- El tiempo en segundos para la Curva Inversa Tiempo Largo es 10 veces el de la Curva Inversa.
- El tiempo en segundos para la Curva Inversa Tiempo Corto es 1/5 veces el de la Curva Inversa.
- El tiempo en segundos para la Curva Extremadamente Inversa Tiempo
 Corto es 1/5 veces el de la Curva Extremadamente Inversa. [1]

ANEXO 6

Curvas del controlador Cooper forma 6 para el reconectador VWE.

De las curvas utilizadas por el reconectador, algunas de ellas utilizan la siguiente fórmula para hallar el tiempo de coordinación. El resto de curvas que no tienen coeficiente, son guardadas en el controlador del reconectador punto a punto. La reconexión de todas estas curvas es instantánea. [12]

Disparo=
$$\left(\frac{A}{M^{P}-1} + B\right)$$
TD (A6.1)

NOMBRE	CURVA	Α	В	С	Р
С	133	876.047	0.029977	0.380004	180.788
K-Phase	162	119.847	-0.000324	0.688477	201.174
Р	115	Punto por punto			

Tabla A6.1 Constantes de las características de las curvas del reconectador.

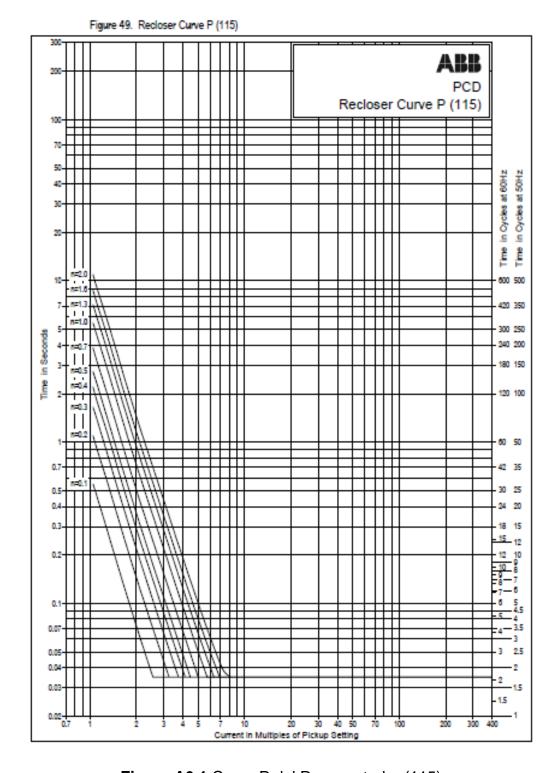


Figura A6.1 Curva P del Reconectador (115).

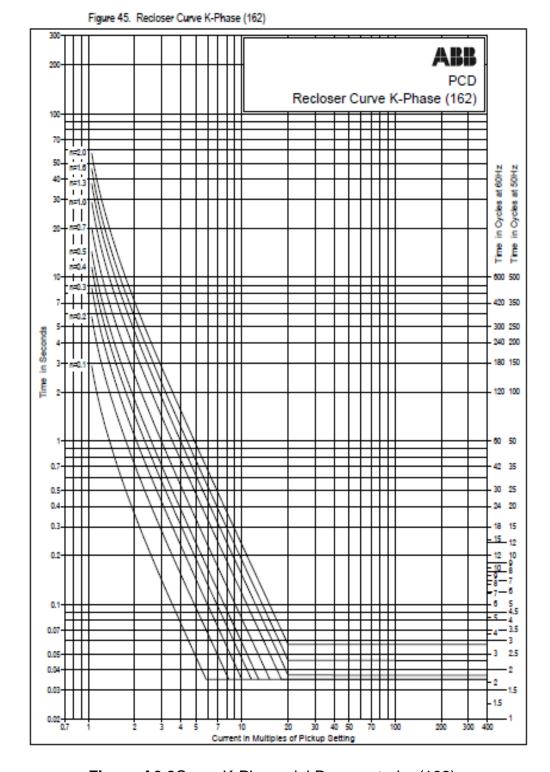


Figura A6.2Curva K-Phase del Reconectador (162).

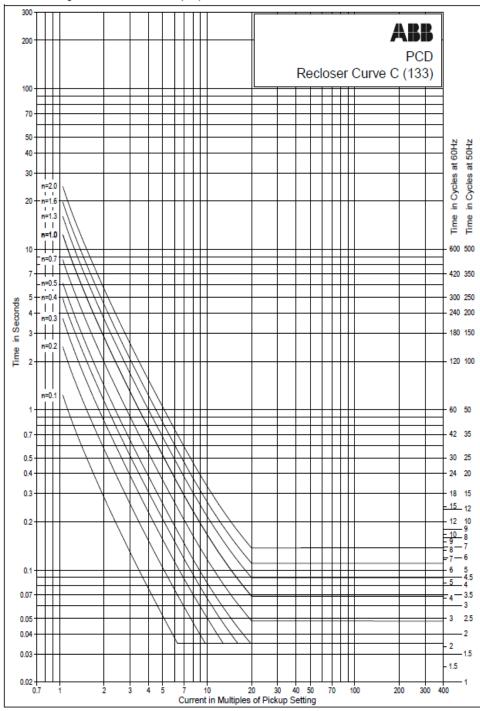


Figure 37. Recloser Curve C (133)

Figura A6.3Curva C del Reconectador (133).

ANEXO 7

Factor multiplicador para capacidad de interrupción IEEE Std C37.13-1989.

		multiplicador para la corriente de cortocircuito ca		
Factor de potencia del sistema %	Razón X/R del sistema	Disyuntores sin fusibles	Disyuntores con fusibles	
20	4.90	1.00	1.00	
15	6.60	1.00	1.07	
12	8.27	1.04	1.12	
10	9.85	1.07	1.15	
8.5	11.72	1.09	1.18	
7	14.25	1.11	1.21	
5	20.00	1.14	1.26	

Tabla A7.1 Factor multiplicador para capacidad de interrupción.

BIBLIOGRAFÍA

- [1] Manual de Instrucciones, TPU2000R Unidad de Protección de Transformadores, ABB Inc., Edición D Diciembre 2001.
- [2] Eléctrica de Guayaquil, Memoria Técnica General Subestaciones, Enero 2010.
- [3] John J. Grainger, Sistemas de Potencia Análisis y Diseño, Tercera Edición.
- [4] C37.91.2008 IEEE Guide for Protecting Power Transformer.
- [5] ANSI C37.42-1989, Switchgear Distribution Cutouts and Fuse Links -Specifications.
- [6] Felipe A. Yam Pérez, Reseña y operación de los reconectadores eléctricos.
- [7] Cooper, Electrical Distribution System Protection.
- [8] C57.12.00-2000 IEEE Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers.

- [9] C37.112, IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays.
- [10] IEEE Std C57.109-1993, IEEE Guide for Liquid-Immersed Transformers

 Through-Fault-Current Duration.
- [11] IEEE Std. C37.91-2000, IEEE Guide for Protective Relay Applications to Power Transformers.
- [12] Form 6 Microprocessor-Based Recloser Control Programming Guide.
- [13] McGraw-Edison Company, Manual Overcurrent Protection for Distribution System, Power System Division.