ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño de Estación para Descarga de Big-Bag y Transporte Neumático de Polvos en Fase Diluida."

TESIS DE GRADO

Previo a la obtención del Titulo de:

INGENIERO MECÁNICO

Presentada por:

Carlos Alejandro Carranza Sosa

GUAYAQUIL-ECUADOR

AÑO: 2007

AGRADECIMIENTO

A todas las personas que de alguna u otra forma contribuyeron con mi desarrollo profesional y como individuo.

Al Ing. Ernesto Martínez director de tesis por su guía en el desarrollo de la misma.

Quiero dar gracias especiales a mis padres y hermanos por su apoyo constante, mi tío Ing. Sergio Sosa Salame, por su respaldo como amigo incondicional, mi enamorada Patricia Zevallos, mi primo Ing. David Carranza, mi mejor amigo Paúl Velasco, a todos por tenerlos siempre a mi lado. Al Ing. Leonardo Chiquito, por su colaboración en mi tesis.

DEDICATORIA

Mis Padres

Mis Hermanos

Mi Familia

Mis Amigos

TRIBUNAL DE GRADUACION

Ing. Julián Peña E. DELEĞADO DECANO FIMCP **PRESIDENTE**

Ing. Ernesto Martínez L. DIRECTOR DE TESIS

tng. Manuel Helguero G. VOCAL

ng. Federico Camacho B. VOCAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponden exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLTÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL).

Carlos Carranza Sosa.

ÍNDICE GENERAL

	Pág.
INDICE GENERAL	
RESUMEN	
ABREVIATURAS	
SIMBOLOGIA	IV
INDICE DE FIGURAS	V
INDICE DE TABLAS	VI
INDICE DE PLANOS	VII
INDRODUCCION	1
CAPITULO 1	
1. PROCESO DE TRANSPORTE NEUMATICO	4
1.1 Generalidades del Proceso de Transporte Neumático	5
1.2 Tipos de Transporte Neumático	9
1.3 Tipos de Compresores	13

CAPITULO 2

2. IDENTIFICACION DE LA NECESIDAD	24
2.1 Requerimientos a Satisfacer	24
2.2 Alternativas de Solución	28
2.3 Selección de la Alternativa	30
2.4 P&ID básico del Proceso	32
2.5 Diseño de Forma de la Estación de Descarga	33
CAPITULO 3	
3. DISEÑO DEL SISTEMA DE TRANSPORTE	34
3.1 Selección de Viga Guía de Tecle	35
3.2 Selección del Tecle Trole Eléctrico	39
3.3 Diseño de la Tolva de Descarga	43
3.4 Sistema de Descarga de Big-Bag	48
3.4.1 Selección del Filtro de Aspiración	49
3.4.2 Selección del Ventilador	58
3.4.3 Diseño de la Zaranda	58

3.5 Selección de la Válvula Rotativa	64
3.6 Diseño de Estación de Descarga al Silo	68
3.6.1 Diseño del Sistema de Limpieza o Desempolvado en el	Proceso de
Extracción de Polvo	69
3.6.2 Dimensionamiento de la Tubería	74
3.6.3 Selección del Compresor de Aire	85
3.7 Cronograma de Construcción y Montaje	86
CAPITULO 4	
4. ANALISIS DE COSTOS	87
4.1 Costo de Equipos	87
4.2 Costos de Materiales	88
4.3 Costos de Mano de Obra	88
CAPITULO 5	
5. CONCLUSIONES Y RECOMENDACIONES	90
5.1 Conclusiones	90

5.2 Recomendaciones	91
ANEXOS	
BIBLIOGRAFIA	

RESUMEN

Dentro de las presentaciones de materia prima tenemos a los polvos como una de ellas, éstos sirven como base para la elaboración de productos terminados o de elaboración de otro tipo de materia prima.

La transportación de estos polvos es necesaria como parte del proceso de fabricación o de almacenaje en silos, de allí que podemos tener diferentes alternativas de transporte. Se coloca el polvo en sacos para transportarlo manualmente, otra opción es mediante el uso de un transportador de banda de cangilones, pero cuando los polvos son muy finos se pierde gran cantidad de este material debido a la vibración producida por el movimiento del motor trasmitido por los diferentes mecanismos y partes del transportador. Por esta razón se acude al uso de una transportación más eficiente como es la transportación neumática, en la cual la perdida de material en el proceso es relativamente mínima y si el sistema cuenta con un buen proceso de limpieza (desempolvado) evitando dañar el medio ambiente, las perdidas de material se reducen aun más, alcanzando alturas verticales considerables de manera eficiente.

La transportación neumática de polvos se la lleva a cabo de dos maneras diferentes. Primero tenemos su transporte en Fase Densa donde éste se

conduce en grandes cantidades, se maneja un volumen considerable de material, con presión alta pero con un menor flujo de aire en su transportación. Luego tenemos su transporte en Fase Diluida donde éste se conduce en menos cantidad, se maneja un volumen menor de material, con una presión baja pero con un mayor flujo de aire en su transportación.

El objetivo de ésta tesis es trabajar con la ventaja que tiene la transportación neumática de polvos sobre los otros tipos de transporte. Se considerará en su proceso que el material está en Fase Diluida, teniendo en cuenta la extracción del material dentro del flujo de aire que lo transporta y también en el momento de la descarga. Se considera de igual manera la altura de transportación que para éste caso es de veintiún metros.

Se parte de la idea de nacionalizar un equipo, diseñando una estación de descarga, distribución y almacenamiento de los polvos en cuestión que trabaje de manera continua, transportando una capacidad de 3.5 toneladas por hora. Realizado el objetivo se contará con una estación de descarga implantada en la industria que mejore la producción, agilite el proceso de almacenamiento y transporte contribuyendo así con el desarrollo del país, cuidando también los desperdicios de material que se liberan al ambiente contaminándolo y que a su vez perjudica la salud de los operadores del equipo.

ABREVIATURAS

m Metros

cm Centímetros

mm Milímetros

m2 Metros cuadrados

m3 Metros cúbicos

Kg Kilogramos

ton Toneladas

r Radio

h Altura

D.d Diámetro

ft Fies

", plg pulgadas

μ Viscosidad dinamica

SAP Structure Analysis Program

Re Numero de Reynols

k Relacion de calor

Ma Numero de match

m Flujo masico

e Espesor

t Tiempo

T Temperatura

s Entropía

Cp Calor especifico

I Longitud

ft Pies

Ø Fase

Ci Cantidad de polvo por volumen

K2 Resistencia al flujo

P,p Presión

Pi Presión de inyección

V Velocidad

Vo Volumen inicial

Vt Volumen

rpm Revoluciones por minuto cfm Pies cúbicos por minuto

Pa Pascales

π Ρί

σ Esfuerzos

φ Angulo de fricción

ρ densidad

SIMBOLOGÍA

٥С Grados centígrados

٥K **Grados Kelvin**

Metros m Centímetros cm mm Milímetros kg Kilogramos

Toneladas métricas t

Kilovatio kw m^3 Metro cúbico m^2 Metro cuadrado

μт Micras

Gramos por metro cúbico

Toneladas por hora $\frac{t}{h}$ pie³/min Pié cúbico por minuto CFM Pies cúbicos por minuto m^3/h Metros cúbicos por hora

Densidad del sólido ρ_{s} Densidad del material $\rho_{\scriptscriptstyle m}$ Metros por segundo

 $mmCol.H_2O$ Milímetros de columna de agua

Pulgadas plg

Libras sobre pulgadas cuadradas psi

Pa **Pascales** Área Α V Velocidad Q Caudal

 m^3/s Metros cúbicos por segundo

kPa Kilopascales MPa Megapascales

 $\frac{lb}{pu \lg^2}$ Libras por pulgadas cuadradas

D diámetro M Momento

 Δp Caida de presion

 $J/kg^{\circ}C$ Joules por kilogramo por grado centígrado

Relacion de calor k fFactor de fricción

ÍNDICE DE FIGURAS

Pág.

Figura 1.1	Silos de Almacenaje: Presentaciones de acuerdo al material	8
Figura 1.2	Transporte Neumático en Fase Diluida	
Figura 1.3	Transporte Neumático en Fase Densa	11
Figura 1.4	Tipos de Transporte Neumático	12
Figura 1.5	Tipos de Compresores	13
Figura 1.6	Etapas de Trabajo para un Compresor de Embolo	15
Figura 1.7	Compresor de Movimiento Alternativo	15
Figura 1.8	Sistema de Control del Compresor	15
Figura 1.9	Soplante de Lóbulos	16
Figura 1.10	Compresores de Tornillo	17
Figura 1.11	Compresores de Paleta	
Figura 1.12	Compresores de Anillo Liquido	
Figura 1.13	Soplantes	
Figura 1.14	Ventilador	
Figura 1.15	Blowers	
Figura 1.16	Compresor Axial	
Figura 1.17	Sección de Compresores Centrífugos	
Figura 2.1	Distintos Tipos de Descarga del Big-Bg	
Figura 2.2	Dimensiones del Big-Bag	
Figura 2.3	P&D Básico del Proceso	
Figura 2.4	Diseño De Forma de la Estación de Descarga	
Figura 3.1	Viga Empotrada	
Figura 3.2	Viga con Carga en el Punto Crítico	
Figura 3.3	Viga de Sección I	
Figura 3.4	Selección del Perfil IPE 120	
Figura 3.5	Indicadores de Resultados	
Figura 3.6	Deformación en Caso de Falla	
Figura 3.7	Identificación del Tecle en el Sistema	
Figura 3.8	Tecle Trole Eléctrico	
Figura 3.9	Dimensiones de la Tolva	
Figura 3.10	Modelado de la Tolva	
Figura 3.11	Distribución de Esfuerzos en las Paredes	46

Figura 3.12	Distribución de Esfuerzos en la Parte Inferior	46
Figura 3.13	Distribución de Esfuerzos en el Cambio de Sección	47
Figura 3.14	Ventilador de 50 cfm a 0.5 plgColH2O	58
Figura 3.15	Vibrador eléctrico con control	60
Figura 3.16	Zaranda	62
Figura 3.17	Instalación de Vibrador a la salida de una Tolva	63
Figura 3.18	Ubicación de la zaranda dentro del sistema	63
Figura 3.19	Componentes Internos de Válvula Rotativa	64
Figura 3.20	Componentes Externos de Válvula rotativa	64
Figura 3.21	Especificaciones Técnicas	66
Figura 3.22	Corte de una Válvula Rotativa	66
Figura 3.23	Ventilador de 850 cfm a 1.3 plgcolH2O	74
Figura 3.24	Diagrama de Fanno	79
Figura 3.25	Recorrido de la Tubería en el Sistema	84
Figura 3.26	Blower	86

ÍNDICE DE TABLAS

		Pág.
Tabla 1	Compresores de Movimiento Alternativo	16
Tabla 2	Compresores Centrífugos	20
Tabla 3	Comparación Operativa entre Tipos de Compresores	
Tabla 4	Matriz de Decisión Nacionalizar e Importar Equipos	
Tabla 5	Especificaciones Técnicas del Tecle-Trole	42
Tabla 6	Dimensiones del Tecle Eléctrico	43
Tabla 7	Parámetros del Sistema de Filtro de Mangas	56
Tabla 8	Características de la Tela del Filtro de Mangas	57
Tabla 9	Datos Técnicos de un Vibrador de Zaranda	61
Tabla 10	Dimensiones Principales de las Válvulas Rotativas	65
Tabla 11	Parámetros del Sistema del Filtros de Mangas	73
Tabla 12	Datos para el Diagrama de Fanno	
Tabla 13	Datos Técnicos de Blower	
Tabla 14	Costos de Equipos	87
Tabla 15	Costos de Materiales	
Tabla 16	Costos de Mano de Obra	89

ÍNDICE DE PLANOS

Plano 1	Estación de Descarga: Vistas lateral y superior
Plano 2	Pórtico para soporte de la viga guía de tecle
Plano 3	Línea de Transporte
Plano 4	Zaranda
Plano 5	Filtro de Mangas

INTRODUCCIÓN

La implantación de sistemas neumáticos en las industrias son necesarios para lo que es la distribución de aire, inyección como en las fabricas de envases plásticos, o para el caso que atenderemos en el desarrollo de los siguientes capítulos que es la transportación de polvos.

Para el caso específico de lo que trataremos es una estación de descarga, transporte y almacenamiento de una materia prima de elaboración de detergentes, el sulfato de sodio.

La presentación de la materia prima que analizaremos son sacos que se encuentran en rangos de entre 500 y 1500 kilogramos o big-bag.

Necesitaremos para esto diseñar una red de distribución de aire que nos asegure el correcto desalojamiento del polvo, la distribución a través de tuberías de transporte para alcanzar su destino final en un silo de almacenamiento.

Consideraciones críticas de diseño se tomaran en cuenta para los equipos y materiales componentes de la estación de descarga, a manera general son la consideración de máxima carga en peso para la selección de la viga guía del tecle, para la tolva se la tomara como siempre llena, una zaranda que separe grumos formados por filtración de humedad dentro del saco o por defectos en el envasado del big-bag, se estimaran los recorridos de una estación de

descarga similar para la velocidad de transporte y diámetro de la tubería, parámetros que lideran los cálculos de la red de distribución como la definición del caudal de polvo circulante, de acuerdo a esto se seleccionara las características de la válvula rotativa que dosifica el material introducido al sistema y la capacidad del compresor de aire (para nosotros un blower que son equipos de inyección de aire a baja presión).

Otra consideración es la polución del medio circundante con residuos de material que le liberan en el momento de la deposición en la tolva de descarga o en el silo de almacenamiento, este material afecta tanto al ambiente como a los operadores dañando su salud, para esto se implementará también un sistema de desempolvado a base de filtros de mangas funcionando con ventiladores de tiro forzado, el filtro retiene en los insterticios de sus mangas las partículas para luego con inyección de aire a presión devolver al material al sistema.

El sistema de transportación neumática de dichos polvos se la puede llevar a cabo de dos maneras; como fase diluida o como fase densa. La fase diluida consiste en llevar partículas en suspensión cuando estas ingresan a un torrente de aire inyectado por el blower, lo que significa que se encuentra en la red mas aire que polvo, con una válvula rotativa regulando su dosificación; por contrario en la fase densa se inyecta el aire a un tanque de presión donde se encuentra el polvo, la presión obliga al polvo a salir por la tubería,

hace llevar en la red mas polvo que aire. Para nuestro caso trataremos con la transportación en fase diluida de polvos.

El resultado esperado será su correcta distribución, logrando que el sistema cumpla con los objetivos planteados de diseño, mantenimiento, implementación, operación, cuidando su contacto con la humedad del medio ambiente para evitar su deterioro y no dañar la salud de sus operadores.

Se empezara analizando sistemas neumáticos y compresores se verán las

ventajas y desventajas de la construcción del sistema, plantearemos objetivos, se realizaran los cálculos pertinentes para cumplir con nuestro cometido. Analizaremos la factibilidad del sistema y sus costos, para al final revisar conclusiones y recomendaciones.

CAPÍTULO 1

1. PROCESO DE TRANSPORTE NEUMÁTICO.

1.1 Generalidades del Proceso de Transporte Neumático.

El transporte neumático consiste en usar unidades de producción de aire (compresores, ventiladores) que eleva la presión de un gas, un vapor o una mezcla de gases y vapores al valor de trabajo deseado.

La presión del fluido se eleva reduciendo el volumen específico del mismo durante su paso a través del compresor. Los mecanismos y mandos neumáticos se alimentan desde una estación central. Entonces no es necesario calcular ni proyectar la transformación de la energía para cada uno de los consumidores.

El aire comprimido viene de la estación compresora y llega a las instalaciones a través de tuberías que eleva la presión de un gas, un vapor o una mezcla de gases y vapores. La presión del fluido se eleva reduciendo el volumen específico del mismo durante su paso a través del compresor. Comparados con turbo soplantes y ventiladores centrífugos o de circulación axial, en cuanto a la presión de salida, los compresores se clasifican generalmente como maquinas de alta presión, mientras que los ventiladores y soplantes se consideran de baja presión.

Los compresores móviles se utilizan en la construcción o en máquinas que se desplazan frecuentemente, en la transportación, dosificación y almacenamiento de polos o de granos en aspiración, y más corrientemente en presión, en cantidades que oscilan de los 100Kg/hora a 30 ton/hora, y distancias que pueden llegar hasta 500 metros, es utilizado compresores de lóbulos rotativos inyectando aire a una tubería a la cual se le suministra producto sólido, por medio de válvulas rotativas. Este producto se combina con el aire de soplado en la tubería, y es transportado a su punto final, en donde se separa nuevamente el aire del producto por medio de filtros de venteo.

En el momento de la planificación es necesario prever un tamaño superior de la red, con el fin de poder alimentar aparatos neumáticos nuevos que se adquieran

en el futuro. Por ello, es necesario sobredimensionar la instalación, con el objeto de que el compresor no resulte más tarde insuficiente, puesto que toda ampliación ulterior en el equipo generador supone gastos muy considerables.

Es muy importante que el aire sea puro. Si es puro el generador de aire comprimido tendrá una larga duración. También debería tenerse en cuenta la aplicación correcta de los diversos tipos de compresores.

Componentes que constituyen un sistema de transporte neumático:

- Unidad generadora de aire (compresor, ventilador)
- Los sistemas de extracción de aire en los silos.
- Las entradas de materiales en las tuberías.
- La red de tuberías de transporte.
- Los desvíos bi-direccionales.
- Silos de almacenamiento.

Materiales tratados en la transportación neumática.

Dentro de los materiales tenemos algunos como PVC en polvo (emulsión, micro emulsión, suspensión, masa). Carbonato de calcio, de cal, de magnesio, granulados de polipropileno, polietileno, poliestireno, harina de trigo, de maíz, de soja, azúcar, leche en polvo, sílice coloidal, carbonato cálcico sintético, yeso,

cemento, dióxido de titanio, arcilla, sulfato de sodio, entre otros compuestos químicos.

Silos de almacenamiento.

Los silos son tanques de almacenamiento de polvos o granos. Los silos son construidos en acero, poliéster, aluminio o en inoxidable con capacidades de 10 m3 a 300 m3., los cuales pueden estar equipados con sistemas de extracción adaptados a los productos almacenados, fondos vibrantes, fondos fluidizados, extractores planetarios, agitador rotatorio.

Los silos se dotan de accesorios necesarios para el buen funcionamiento tales como filtros, válvulas, sondas de nivel, discos de ruptura, etc. En la figura1.1 se muestran diferentes silos dependiendo de acuerdo al material.

FIGURA1.1.- SILOS DE ALMACENAJE: PRESENTACIONES DE ACUERDO AL MATERIAL.

1.2 Tipos de Transporte Neumático.

Las dos principales categorías de transporte neumático pueden ser definidas como: sistemas de baja presión y sistemas de alta presión.

La primera categoría, la de baja presión se la identifica también como Transporte Neumático en Fase Diluida, que utiliza presión de aire inferior a 1 bar. Estos sistemas utilizan presiones tanto positivas como negativas para empujar materiales a través de la línea de transporte a velocidades relativamente altas. Son considerados como sistemas de baja presión y alta velocidad, utilizando una elevada relación aire/material. Si analizamos un sistema típico de baja presión, el cual usa como alimentador una válvula rotativa notaremos una elevada velocidad de arrastre de aproximadamente 10m/s al inicio del sistema, aumentando hasta 25m/s al final de la línea.

Estos sistemas generalmente usan un soplador de aire de baja presión o un ventilador como fuente de energía.

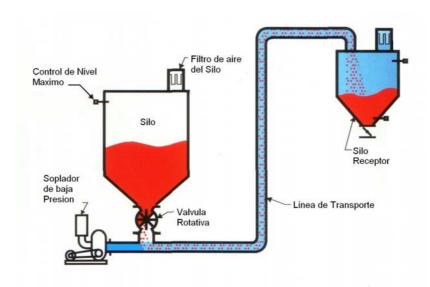


FIGURA 1.2.- TRANSPORTE NEUMÁTICO EN FASE DILUIDA.

La segunda categoría de alta presión se la conoce como **Transporte**Neumático en Fase Densa, que utiliza presiones de aire superior a 1 bar.

Estos sistemas utilizan presión positiva para impulsar los materiales a través de la línea de transporte con velocidades relativamente bajas. Generalmente se consideran como sistemas de alta presión y bajas velocidades utilizando una relación aire/material baja. Si analizamos un sistema típico de alta presión, el cual utiliza un tanque de presión para mantener la presión en la línea de transporte, notaremos que la velocidad varía entre 0.25m/s al comienzo y 2.5m/s al final de la línea.

La presión final de transporte estará por encima de 3 bares. Este sistema generalmente usa un compresor de aire de alta presión como fuente de energía.

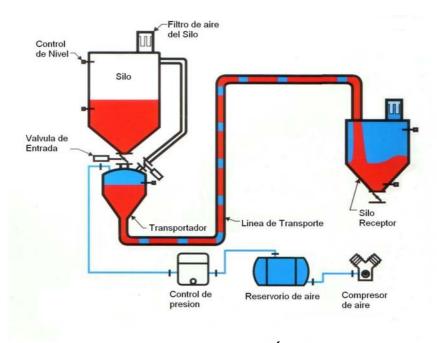


FIGURA 1.3.- TRANSPORTE NEUMÁTICO EN FASE DENSA.

Los tipos de transporte neumático los tenemos de acuerdo al proceso que se realice dentro de una industria. Tenemos transporte neumático para: almacenaje, transporte, dosificación y pesado de los líquidos.

Almacenaje

Transporte

Dosificación

Pesado de líquidos

FIGURA 1.4.- TIPOS DE TRANSPORTE NEUMÁTICO.

Para el propósito de esta tesis nos ubicaremos en un sistema de transporte, distribución y almacenamiento de polvos en Fase Diluida.

1.3 Tipos de Compresores.

Según las exigencias referentes a la presión de trabajo y al caudal de suministro, se pueden emplear diversos tipos de construcción. Se distinguen dos tipos básicos de compresores:

El primero trabaja según el principio de desplazamiento. La compresión se obtiene por la admisión del aire en un recinto hermético, donde se reduce luego el volumen. Se utiliza en el compresor de émbolo (oscilante o rotativo). El otro trabaja según el principio de la dinámica de los fluidos. El aire es aspirado por un lado y comprimido como consecuencia de la aceleración de la masa (turbina). Los tipos de compresores mas utilizados son: CENTRIFUGOS y ALTERNATIVOS. Todos los compresores deben tener un separador de líquidos y sólidos antes de la etapa de compresión.

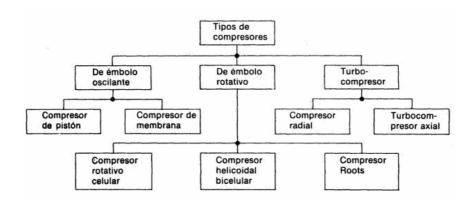


FIGURA 1.5.- TIPOS DE COMPRESORES.

14

Compresor de Movimiento Alternativo.

Este es el tipo de compresor más utilizado actualmente. Es apropiado para

comprimir a baja, media o alta presión.

Potencia del motor: de 1 a 10.000 C.V.

Presión de descarga: de 1 a más de 700 atm o desde unos 1 .100 KPa (1 bar)

a varios miles de KPa (bar).

Velocidad: de 125 a 1.000 r.p.m.

Para obtener el aire a presiones elevadas, es necesario disponer varias etapas

compresoras. El aire aspirado se somete a una compresión previa por el primer

émbolo, seguidamente se refrigera, para luego ser comprimido por el siguiente

émbolo. El volumen de la segunda cámara de compresión es, en conformidad

con la relación, más pequeño. Durante el trabajo de compresión se forma una

cantidad de calor, que tiene que ser evacuada por el sistema refrigeración.

Los compresores de émbolo oscilante pueden refrigerarse por aire o por agua, y

según las prescripciones de trabajo las etapas que se precisan son:

hasta 400 kPa (4 bar), 1 etapa hasta 1.500 kPa (15 bar), 2 etapas más de 1.500 kPa (15 bar), 3 etapas o más

No resulta siempre económico, pero también pueden utilizarse compresores

de 1 etapa, hasta 1.200 kPa (12 bar) de 2 etapas, hasta 3.000 kPa (30 bar) de 3 etapas, hasta 22.000 kPa (220 bar)

FIGURA 1.6.- ETAPAS DE TRABAJO PARA UN COMPRESOR DE EMBOLO.

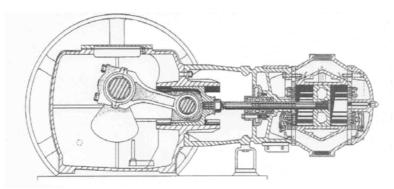


FIGURA 1.7.- COMPRESOR DE MOVIMIENTO ALTERNATIVO.

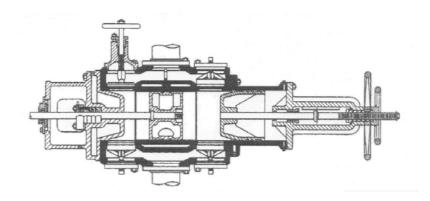


FIGURA 1.8.- SISTEMAS DE CONTROL DEL COMPRESOR.

TABLA 1

COMPRESORES DE MOVIMIENTO ALTERNATIVO

Componentes mecánicos		
Pistón	Aceite lubricante	
Cilindro	Controles	
Válvulas	Relación de compresión (5:1 por ΔT y fallo mecánico)	
Espacio muerto	Motores	
Depósitos amortiguadores	Materiales de construcción	

Compresores Rotatorios.

Los tipos principales son:

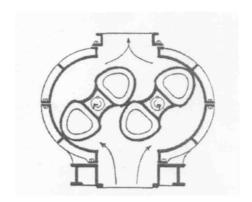


FIGURA 1.9.-SOPLANTE DE LÓBULOS.

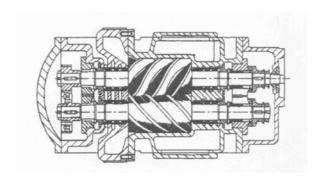


FIGURA 1.10.- COMPRESORES DE TORNILLO

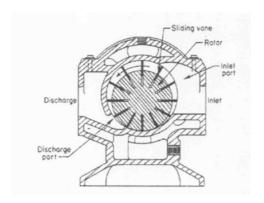


FIGURA 1.11.- COMPRESORES DE PALETAS.

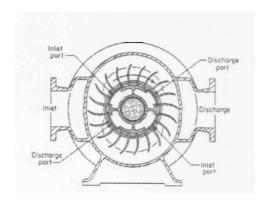
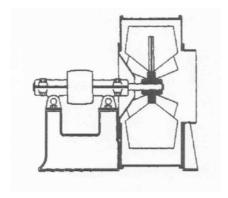



FIGURA 1.12.- COMPRESORES DE ANILLO LÍQUIDO.

Compresores Centrífugos.

Los componentes mecánicos dependen de la conversión de energía cinética en energía de presión. Pueden ser de tres tipos:

Compresores centrífugos, que aceleran el fluido en dirección radial.

FIGURA 1.13.- SOPLANTES

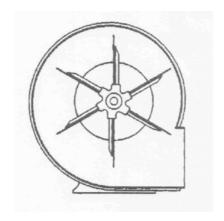


FIGURA 1.14.- VENTILADOR.

Sopladores o Blowers:

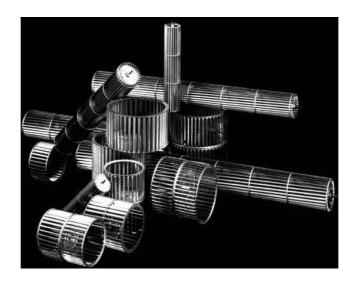


FIGURA 1.15.- BLOWERS

Compresores axiales, que aceleran el fluido en la dirección del eje (Ventiladores y Soplantes).

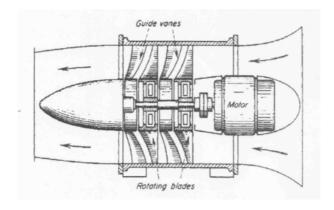


FIGURA 1.16.- COMPRESOR AXIAL.

Compresores de flujo mixto.

Los compresores centrífugos operan con velocidades de flujo de hasta 140 m3/s y presiones de hasta 700 bares.

TABLA 2
COMPRESORES CENTRÍFUGOS

Componentes mecánicos.										
Rodetes	Equilibrado									
Partes fijas	Motores									
Estructura	Relación de compresión (1.2 a 1.5 por etapa)									
Cojinetes	Controles									
Sellamiento	Materiales de construcción									

La figura 1.16 muestra la sección de un compresor centrífugo de diez etapas del tipo de separación horizontal:

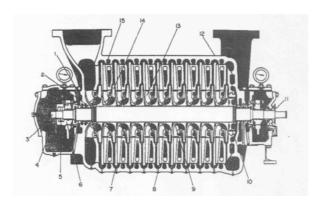


FIGURA 1.17.- SECCIÓN DE COMPRESOR CENTRIFUGO.

- 1. Cámara de aislamiento que elimina la fuga externa de gas a la atmósfera.
- Los cierres de entrepaño que pueden eliminar o controlar las fugas manteniendo el nivel de referencia.
- Las extensiones de los entrepaños permiten el accionamiento simultáneo de hasta cinco manguitos.
- 4. Las cámaras de los cojinetes forman parte de la cámara para asegurar un aislamiento inamovible.
- **5.** El cojinete de tracción el del tipo de doble cara para localizar exactamente el rotor y soportar las cargas vibrantes.
- 6. La construcción integral del cojinete permite también el máximo aumento de presión a través de la carcasa. Elevado coeficiente de seguridad.
- 7. Codos de retorno de 180º para el paso desde el difusor hasta el diafragma.
- **8.** Desagües entre las etapas para arrastrar o separar el condensado.
- 9. Los cierres del tipo laberinto entre las etapas son fácilmente reemplazables.
- 10. Tambor de compensación. El orificio del rodete esta expuesto a la presión de entrada y el dorso a la presión de descarga.
- 11. Separación máxima para mayor accesibilidad.
- **12.** Relación máxima de compresión, hasta diez etapas por carcasa.
- 13. Las paletas de guía son de tipo fijo o ajustable. El gas procedente del diafragma es conducido al orificio del rodete con el ángulo exactamente

correcto.

- **14.** Los rodetes montados sobre el rotor constituyen el elemento primario de generación de presión del compresor.
- 15. Los diafragmas son las paredes de separación entre las etapas. Forman pasos abiertos del difusor y pasos de retorno con el fin de dirigir el gas hacia el rodete de la siguiente etapa.

Turbocompresores.

Trabajan según el principio de la dinámica de los fluidos, y son muy apropiados para grandes caudales. Se fabrican de tipo axial y radial. El aire se pone en circulación por medio de una o varias ruedas de turbina. Esta energía cinética se convierte en una energía elástica de compresión. La rotación de los alabes acelera el aire en sentido axial de flujo.

A continuación se presentará una tabla en donde se analizaran las características de los compresores.

TABLA 3

COMPARACIÓN OPERATIVA ENTRE TIPOS DE COMPRESORES.

Tipo	Ventajas	Desventajas
Alternativo	-Gran flexibilidad en rango operacionalManeja menor caudal a altas presionesMayor eficiencia adiabática y menor coste de potenciaMenos sensible a cambios en la composición del gas.	-Alto coste inicialAlto coste de mantenimientoMayor tiempo de paradaTamaño y peso elevadoMotores de baja velocidad y alto mantenimiento.
Centrifugo	-Menor coste inicialMenor coste de mantenimientoMenor tiempo paradoMenor tamaño y masaMotores de alta velocidad y bajo mantenimiento.	-Rango operativo limitado por golpe de arieteLimite inferior de caudalAlto coste de potencia de motorSensible a cambios en composición y densidad del gas.

CAPITULO 2

2. IDENTIFICACIÓN DE LA NECESIDAD.

2.1 Requerimientos a Satisfacer.

La estación de descarga terminada e instalada deberá satisfacer las siguientes especificaciones de funcionamiento:

Descarga completa de big-bag con ayuda de un sistema de descarga: Big-bag y de Silo de almacenamiento.

Se considerara que el polvo transportado de lo realiza en Fase Diluida debido al caudal que se manejara.

Se debe controlar la pérdida de material en su proceso de transportación implantando un sistema de limpieza o de desempolvado que retenga el material liberado al ambiente en el momento de la descarga del big-bag y de descarga al silo de almacenamiento.

La estación de descarga deberá de trabajar de manera continua transportando un total en volumen de polvo de 3.5 toneladas por hora a través de tubería que descargara y finalmente alcanzar una deposición al Silo de almacenamiento a una altura de veintiún metros.

Big Bag.

El Big Bag es una presentación de almacenamiento de polvos, que consiste en un saco gigante y su presentación en nuestro mercado local va desde 500 Kg. hasta los 1500 kg.

Dispositivos necesarios para el vaciado de big-bag sea cual sea el tamaño o el peso.

FIGURA 2.1.- DISTINTOS TIPOS DE S PARA DESCARGA DE BIG-BAG.

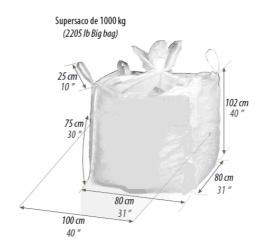


FIGURA 2.2.- DIMENSIONES DE BIG-BAG.

Selección del Compresor.

La selección de los compresores se realiza por consideraciones de potencia, más que por técnicas o económicas.

Podemos seleccionarlo en función de presión de descarga y caudal.

El compresor seleccionado deberá administrar la suficiente presión para transportar el polvo desde su descarga del Big Bag, hasta su descarga al Silo venciendo todas las perdidas de presión en la tubería causada por el recorrido horizontal y vertical, los cambios de sección de las tuberías y las perdidas de presión por los accesorios (válvulas).

2.2 Alternativas de Solución.

La selección de la alternativa se considera entre:

- Importar el equipo.
- Nacionalizar el equipo (construir el equipo).
- Según los resultados obtenidos al finalizar los cálculos de diseño en medida que se cumpla con los requerimientos de la estación de descarga, los cálculos económicos donde se considera la construcción de la estación de descarga y comparando costos entre las dos alternativas de solución.

Importación del Equipo:

Ventaja

 Como ventaja tenemos el aval de compañías que se dedican y tienen experiencia en el diseño y construcción de equipos de esta índole; que a su vez manejan distintas líneas y líneas anexas.

Desventajas

 Tiempo de implementación del equipo, debido al tiempo de entrega después de la compra.

- La instalación de equipo debido a que el servicio de la mayoría de empresas que venden sus equipos internacionalmente, concluye en una prueba de arranque.
- Costos de compra del equipo que incluyen:
 El equipo en si, transportación e impuestos.
- Repuestos para el mantenimiento preventivo y correctivo de la línea de producción.

Construcción del equipo:

Ventajas

- El tiempo de implementación del equipo una vez construido es mucho menor, y su instalación de igual manera.
- Los costos de fabricación ya que se puede buscar y construir las piezas en nuestro mercado.
- Los repuestos a si mismo son mas fáciles de adquirir ya que se construye el equipo con los materiales y equipos existentes en nuestro mercado.
- Se parte de un modelo base para la construcción del equipo.
- El mantenimiento se lo realiza con personal que maneja en mantenimiento en toda la fábrica y ya no se tendría que buscar servicios de mano calificada.

- Al tener un record de de construcción se hace mas fácil cualquier tipo de de implementación, corrección, adecuación e innovación del equipo de acuerdo con las necesidades actuales y futuras de la fabrica, ya que estableceremos nuestros propios indicadores, controladores y variantes en el proceso.
- Aporte al conocimiento y desarrollo de la ingeniería en nuestro medio, al incursionar en proyectos de transformación de la industria, la que cuenta con la capacidad de nuestros profesionales.

Desventaja

 Una desventaja propia de la incursión son los detalles de la construcción que se van puliendo en el camino, en el sentido de que no se cuenta con la experiencia de las compañías que fabrican este tipo de equipos, que las cubriría la garantía que dan de su funcionamiento.

2.3 Selección de la Mejor Alternativa.

Para ponderar las alternativas de solución se deberán coger parámetros de acuerdo a las necesidades del producto, como las de la industria y factores económicos.

Dentro de los parámetros de selección tenemos:

- Costos.
- Mantenimiento.
- Tiempo de implementación.
- Fácil operación.
- Calidad del producto.

De acuerdo con estas condiciones podemos ponderar cual de las dos alternativas es la ideal para la solución del problema. Para su determinación recurriremos a una matriz de decisión.

TABLA 4

MATRIZ DE DECISIÓN: NACIONALIZAR O IMPORTAR EQUIPOS

	Costo	Mantenimient o	Tiempo de implementación	Facilidad de operación	Calidad del producto
Valores Alternativa	40	20	20	20	100
Nacionalizar	35	15	20	20	90
Importar	40	10	15	15	80

2.4 P&ID básico del Proceso.

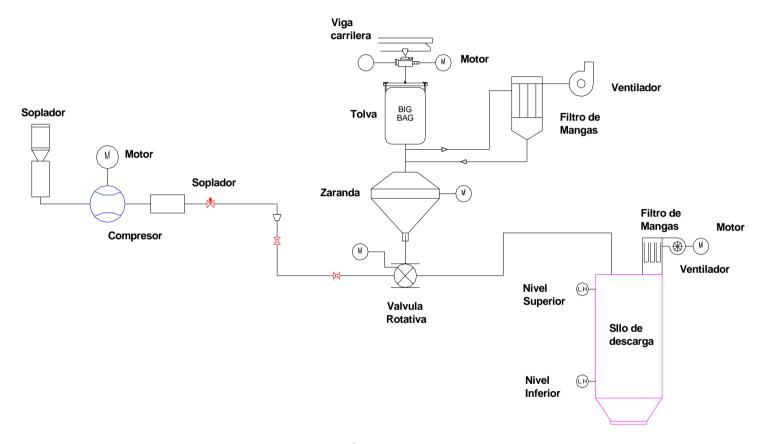


FIGURA 2.3.- P&ID BÁSICO DE PROCESO.

2.5 Diseño de Forma de la Estación de Descarga.

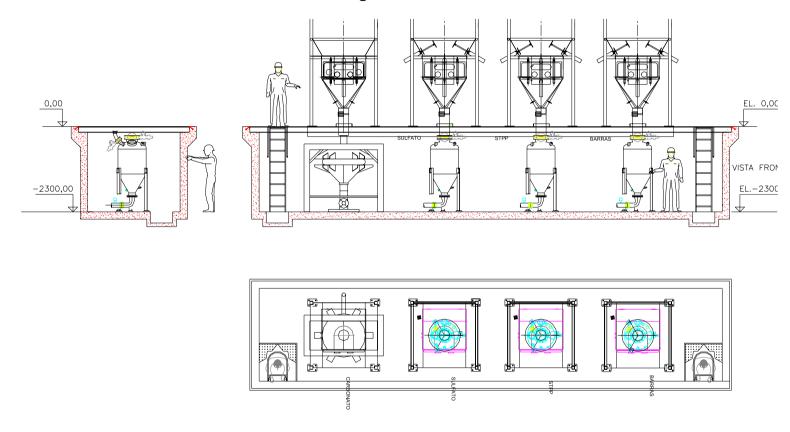


FIGURA 2.4.- DISEÑO DE FORMA DE LA ESTACIÓN DE DESCARGA.

CAPITULO 3

3. DISEÑO DE SISTEMA DE TRANSPORTE.

La selección del sistema de transporte debe tomar en cuenta parámetros que cumplan con los objetivos planteados de realizar una descarga completa, con la consideración de que el polvo se transportará en fase diluida a razón de 3.5 toneladas por hora, controlando las pérdidas de material en la descarga y su recorrido para que dicha transportación se realice de manera continua hasta alcanzar su deposición en su correspondiente silo que se considera de 18 toneladas.

Para alcanzar este objetivo se diseñara un sistema que cumpla con los requerimientos planteados con la selección de equipos, dimensionamiento de estructuras y la tubería de transporte con una metodología de diseño.

Después de realizar estos pasos se analizará la factibilidad del sistema para su implementación.

3.1 Selección de viga guía de tecle.

La viga tendrá que soportar el peso generado por un Big-Bag que esta oscilando entre 500 - 1500 kilogramos que es la presentación de la materia prima a transportar.

Para el cálculo se considerará la condición de carga más crítica que son los 1500 Kg y con un peso del tecle considerado de 100 Kg que nos da un total de 1600 Kg, para una viga empotrada en ambos extremos de 1714.5 mm.

Con el propósito de obtener estos datos para la selección haremos uso del programa SAP para cálculo de estructuras metálicas.

Lo consideramos como una viga empotrada en ambos extremos:

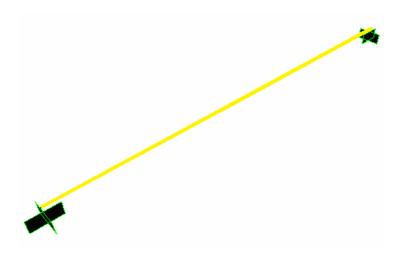


FIGURA 3.1.- VIGA EMPOTRADA

El punto crítico donde sufrirá la mayor deformación es el centro:

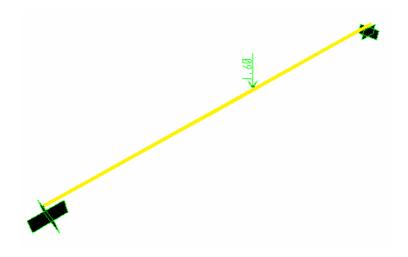


FIGURA 3.2.- VIGA CON CARGA EN PUNTO CRITICO

La viga es de sección I:

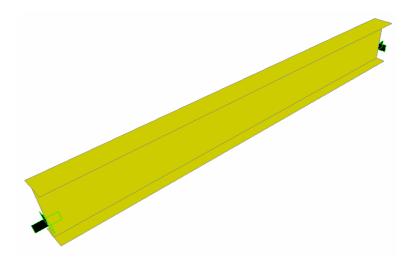


FIGURA 3.3.- VIGA DE SECCIÓN I

Del programa se selecciono una viga IPE 120:

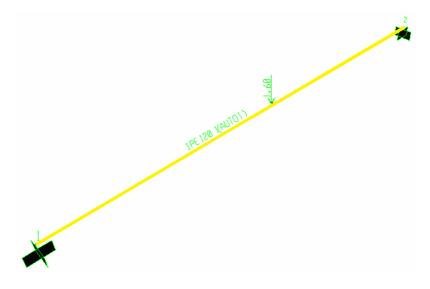


FIGURA 3.4.- SELECCIÓN DE PERFIL IPE 120

La selección de la IPE 120 está dentro de los parámetros correctos:

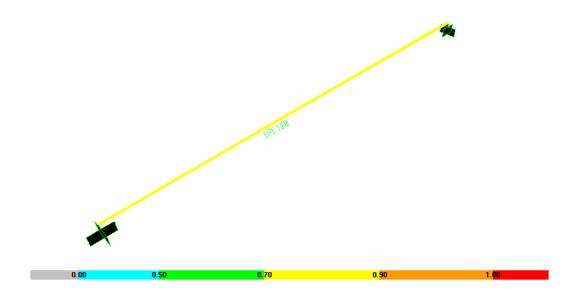


FIGURA 3.5.- INDICADORES DE RESULTADOS

Los colores indican la distribución de los esfuerzos en la viga; podemos denotar por colores también:

- Turquesa: Viga sobredimensionada.
- Entre verde y amarillo: Esta la selección correcta.
- Naranja: Esta propensa a la falla.
- Rojo: La viga falla necesita seleccionar otro perfil o cambiar los parámetros de diseño.

Para el caso de la deformación:

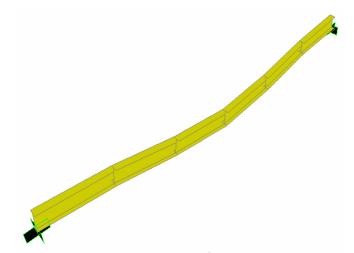


FIGURA 3.6.- DEFORMACIÓN EN CASO DE FALLA

Los resultados del análisis se los muestra en los anexos.

Como conclusión tenemos que un perfil IPE 120 soporta perfectamente las condiciones requeridas; pero como utilizaremos un tecle-trole eléctrico para colocar el big-bag dentro del sistema, se necesitará cambiar el perfil a uno IPE 160 ya que este tiene el alma de la viga con mayor altura para que puedan encajar bien las ruedas del carro eléctrico del tecle. Este perfil IPE 160 está en mejores condiciones de soportar las condiciones de trabajo.

3.2 Selección del Tecle trole eléctrico.

Las características técnicas del tecle le deben dar la facilidad de trabajar con la carga que va a mover, necesitamos uno que pueda mover una carga de 1.5 toneladas o 1500 Kg.

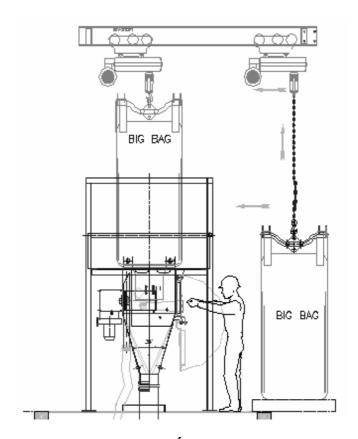


FIGURA 3.7.- IDENTIFICACIÓN DEL TECLE DEL SISTEMA

A continuación se muestra un modelo de tecle con carro eléctrico de transporte con cadena de levantamiento en la figura 3.8:

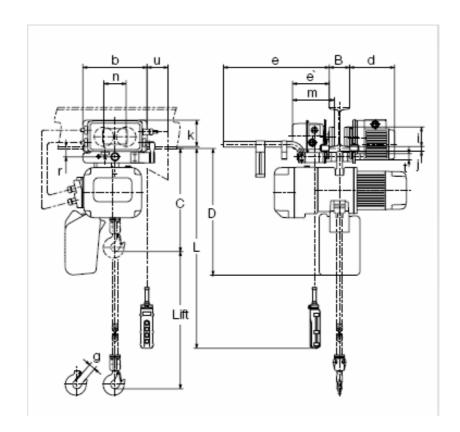


FIGURA 3.8.- TECLE TROLE ELÉCTRICO

En catálogos se pueden apreciar las especificaciones para la selección de un tecle eléctrico:

TABLA 5 ESPECIFICACIONES TECNICAS DEL TROLE ELÉCRICO

Specifications

W.L.L. da	Stan- dard	Push Button	d Button Cord	Lifting Motor 3 Phase		Traversing Motor 3 Phase		Lifting Speed (m/min)		Traversing Speed (m/min)		Flange Width Adjustability :B (mm)		Min. Radius	Load Chain Diameter (mm)x	Classification			Test	Net Weight	Weight for additional One
(t)		Lift (m)			Out- Put (kW)	Intermittent Rating (%ED)	Out- Put (kW)	Intermittent Rating (%ED)	50Hz	60Hz	50Hz	60Hz	Standard	Option W30*	· curve	Chain Fall Lines	180	ASME	FEM	Load (t)	(kg)
125kg			0.56	60	0.4	40	14.2	17.0	20(10)	24(12)			800	ø5.0x1	M5	H4	2m	156kg	62	0.55	
250kg			0.56	60	0.4	40	9.7	11.6	20(10)	24(12)		90X 154 to 305 80X 80X	800	ø5.0x1	M5	H4	2m	313kg	62	0.55	
250kg			0.9	60	0.4	40	14.9	17.9	20(10)	24(12)			800	ø6.3x1	M5	H4	2m	313kg	69	0.85	
500kg			0.56	60	0.4	40	3.7	4.4	20(10)	24(12)	58 to 127		800	ø6.3x1	M4	H4	1Am	625kg	63	0.85	
500kg			0.9	60	0.4	40	7.6	9.1	20(10)	24(12)	[128 to 153]		800	ø6.3x1	M5	H4	2m	625kg	69	0.85	
1		2.7	0.9	60	0.4	40	3.9	4.7	20(10)	24(12)			800	ø8.0x1	M4	Н4	1Am	1.25	72	1.38	
1			1.4	60	0.4	40	6.1	7.3	20(10)	24(12)			800	ø8.0x1	M4	Н4	1Am	1.25	81	1.38	
1	3		1.8	60	0.4	40	7.3	8.8	20(10)	24(12)			800	ø8.0x1	М5	Н4	2m	1.25	92	1.38	
1.5	٥		1.8	60	0.4	40	5.1	6.1	20(10)	24(12)			800	ø10.0x1	М5	Н4	2m	1.88	108	2.3	
2			1.8	60	0.4	40	3.6	4.3	20(10)	24(12)			800	ø10.0x1	M4	Н4	1Am	2.5	109	2.3	
2			2.8	60	0.4	40	6.0	7.2	20(10)	24(12)		8	800	ø10.0x1	M4	Н4	1Am	2.5	121	2.3	
2			3.5	60	0.4	40	7.1	8.5	20(10)	24(12)	82 to 153	179 to 305	800	ø10.0x1	M5	H4	2m	2.5	148	2.3	
2.5			3.5	60	0.4	40	5.7	6.9	20(10)	24(12)	[154 to 178]		1000	ø11.2x1	M4	H4	1Am	3.13	160	2.9	
3		2.9	2.8	60	0.4	40	3.0	3.6	20(10)	24(12)			1000	ø10.0x2	M4	H4	1Am	3.75	144	4.6	
3		2.0	3.5	60	0.4	40	4.1	4.9	20(10)	24(12)			1000	ø12.5x1	M4	H4	1Am	3.75	164	3.4	
3			4.6	60	0.4	40	5.6	6.7	20(10)	24(12)			1000	ø12.5x1	M4	H4	1Am	3.75	170	3.4	
5			3.5	60	0.75	40	2.9	3.5	20(10)	24(12)	100 to 178	179 to 305	1800	ø11.2x2	M4	H4	1Am	6.25	209	5.9	

[•]W.L.L.: indicates maximum load (working load limit) which a hoist is designed to support in general service.

FUENTE: CATALOGO

Los que nos da un motor de 2.8 KW.

Las dimensiones de tecles son de acuerdo a los modelos:

[•]W30*: means 305mm Flange width adjustability as an option.

Minimum Radius for Curve may vary depending on beam width. For more detail, contact the nearest Kito distributor.
 Figures in parentheses show Low Traversing Speed.

[•]Figures in [1] show one inch (25mm) wider than standard as option by using standard range suspension shaft and adding extra spacers.

TABLA 6
DIMENSIONES DEL TECLE ELÉCTRICO

Dimensions (mm)

Code	Minimum Headroom :C	D	b	d	e	e`	g	i	j	k	m	n	r	t	u
ERM001H-S	370	470	315	220	515	179	24	95	24	130	204	109	51	31	82
ERM003S-S	370	470	315	220	515	179	24	95	24	130	204	109	51	31	82
ERM003H-S	390	500	315	220	515	179	24	95	24	130	204	109	51	31	82
ERM005L-S	370	470	315	220	515	179	24	95	24	130	204	109	51	31	82
ERM005S-S	390	500	315	220	515	179	24	95	24	130	204	109	51	31	82
ERM010L-S	420	500	315	220	515	179	31	95	24	130	204	109	51	31	82
ERM010M-S	420	500	315	220	515	179	31	95	24	130	204	109	51	31	82
ERM010S-S	450	620	315	220	515	179	31	95	24	130	204	109	51	31	82
ERM015S-S	495	640	325	225	520	184	34	110	29	125	212	118	60	36	77
ERM020L-S	550	640	325	225	520	184	37	110	29	125	212	118	60	36	77
ERM020M-S	550	640	325	225	520	184	37	110	29	125	212	118	60	36	77
ERM020S-S	600	820	325	225	520	184	37	110	29	125	212	118	60	36	77
ERM025S-S	615	830	340	226	521	185	40	125	29	131	215	132	68	43	69
ERM030C-S	735	870	340	226	521	185	44	125	29	131	215	132	68	43	69
ERM030L-S	645	830	340	226	521	185	44	125	29	131	215	132	68	43	69
ERM030S-S	645	830	340	226	521	185	44	125	29	131	215	132	68	43	69
ERM050L-S	830	900	400	281	528	192	46	140	44	145	233	150	86	54	39

FUENTE: CATALOGO

De aquí sacamos la dimensión de las ruedas que es de 135 mm por lo que fue necesario aumentar el alma de la viga a un IPE 160 para dale libertad a las ruedas.

3.3 Diseño de la tolva de descarga.

Para el diseño de la tolva se analizaran los esfuerzos a los que estará sometido el material con respecto al peso del volumen de polvo.

El volumen estimado a retener es de 0.81 metros cúbicos, que corresponden al 65% del saco, si consideramos el flujo másico del sistema, notamos que el volumen de la tolva se descargará en 16.8 minutos lo que le va proporcionar continuidad para la reposición del nuevo saco (big-bag). Para el efecto de retención o captación del material en la tolva se la diseñara con las siguientes dimensiones:

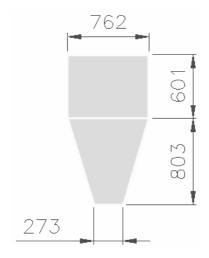


FIGURA 3.9.- DIMENSIONES DE LA TOLVA (MM)

El ángulo de inclinación de la tolva con respecto a la vertical será ϕ_W = 73° para conservar la condición de volumen, esto se da dependiendo el ángulo de fricción

entre las paredes de la tolva, el material almacenado y la geometría seleccionada. Al igual que se analizo la viga, la tolva se analizará con el programa SAP para el cálculo de estructuras metálicas.

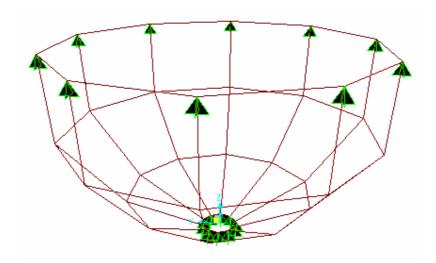


FIGURA 3.10.- MODELADO DE LA TOLVA

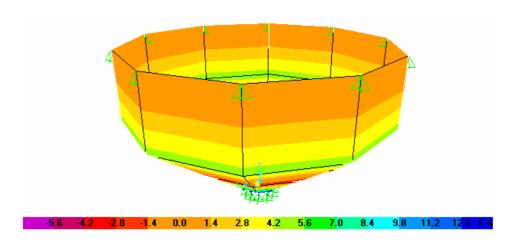


FIGURA 3.11.- DISTRIBUCION DE ESFUERZOS EN LAS PAREDES

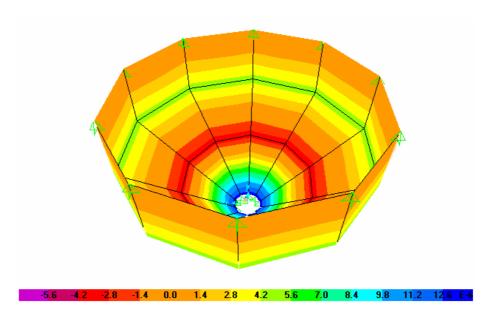


FIGURA 3.12.- DISTRIBUCION DE ESFUERZOS EN LA PARTE INFERIOR

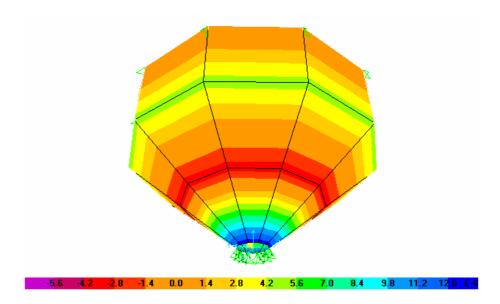


FIGURA 3.13.- DISTRIBUCION DE ESFUERZOS EN EL CAMBIO DE SECCION

Los resultados del análisis se los muestra en los anexos.

Debemos saber el espesor de la plancha, para esto tenemos que, el esfuerzo máximo:

$$\sigma_{\text{max}} = Ka\rho h$$

$$\sigma_{\text{max}} = \tan^2 \phi (1.2)(1.404)$$

$$\sigma_{\text{max}} = \tan^2 (30)(1.2)(1.404)$$

$$\sigma_{\text{max}} = (0.33)(30)(1.2)(1.404)$$

$$\sigma_{\text{max}} = 0.56 \frac{Ton}{m^2}$$
(1)

El momento:

$$M = \frac{\sigma l^2}{8}$$

$$M = \frac{0.56 (1.4^2)}{8}$$

$$M = 0.13 Ton. - m$$

$$M = 13.700 Kg - cm$$
(2)

Ahora el espesor:

$$e = \sqrt{\frac{6M}{\sigma b}}$$

$$e = \sqrt{\frac{6(13.700)}{1.404(100)}}$$

$$e = 0.77 cm = 7.7 mm$$

$$e = 8 mm$$
(3)

Por lo tanto se necesitará una plancha de 8 milímetros.

3.4 Sistema de descarga de Big-Bag.

Al sistema corresponde lo que se refiere a desalojamiento de la materia prima del saco Big-Bag hasta el ingreso del polvo al sistema de transporte para ser depositado al silo de almacenaje.

Para esto el sistema debe contar con un filtro que se encarga de devolver el aire sin polvo al exterior; dicho polvo se levanta en el instante de caer el material dentro de la tolva de recepción, para este efecto se utilizaran los filtros de aspiración con un ventilador que pondrá a circular el aire con partículas suspendidas.

Este material se debe clasificar para separar partículas de tamaños no convenientes que puedan entrar al sistema y así se mantenga el fluido de la mezcla en libre circulación, esto con el uso de una zaranda.

Todo es sistema de descarga tiene que asegurar que el sulfato de sodio se pueda mover sin problemas a lo largo del recorrido de la tubería de transporte hasta su destino en el silo de almacenamiento.

3.4.1 Selección de filtro de aspiración.

La selección del filtro la hacemos con consideraciones como el tamaño de la partícula, el volumen de aire que se maneja en el sistema, la velocidad de filtrado y la eficiencia que se desea obtener del filtro.

Para este caso la mejor solución es utilizar filtro de mangas debido a que la captación de partículas las produce con presión negativa generada por un ventilador de tiro inducido.

El filtro está conformado de unas bolsas de de tela que retienen las partículas en sus intersticios formando una capa filtrante a medida que circula el volumen de aire con las partículas en suspensión. De esta manera se va engrosando la capa con el aumento de la pérdida de carga del sistema.

Disminuciones en el caudal se evitan mediante una limpieza periódica de las mangas.

Filtración

- El aire con partículas suspendidas entran al filtro y en choque con paneles se divide en varios flujos de aire.
- Las partículas liberadas por la polución de la descarga en la tolva se atrapan en el filtro cuando el aire pasa por los tejidos.
- Terminada la descarga se devuelve aire sin partículas al medio ambiente por medio de un ventilador de tiro inducido.

Limpieza

 Las partículas depositadas en la superficie de la bolsa se las desprende inyectando aire comprimido desde la tobera hacia la bolsa, o en su defecto de forma mecánica. El polvo recogido se devuelve a la línea de transporte pasando por la válvula rotativa a la línea de transporte.

Siguiendo con la selección del filtro, analizaremos factores determinantes de diseño, citamos al modo de limpieza de las mangas, para nuestro caso el más efectivo debido a que no deteriora las mangas ni al sistema por vibraciones, es el de chorro de aire; consiste en disparar aire comprimido hacia la superficie de la tela para desprender el material retenido.

Otro factor es el de la velocidad de filtración que consiste en considerar el volumen de aire con partículas en suspensión que se filtra en una superficie (en este caso la superficie de la manga) en una hora.

Finalmente la caída de presión en el filtro ya que mientras más grande sea el valor mayor será el tamaño y la capacidad del ventilador que se necesitará para el sistema.

Área filtrante de la manga.

El área filtrante considera el caudal que se desea filtrar, para el efecto se considerará el 5 % del polvo transmitido es el que se libera al momento de la descarga lo que representa un caudal de 72.016 m3 / h, con una velocidad de filtración de 6 pies/min.

Tenemos entonces la velocidad:

$$V = 6 ft / min = 109.76 m/h = 1.83 m/min = 0.031 m/s$$

Y el área sería:

$$A = \frac{Q}{V}$$

$$A = \frac{72.016}{109.76} = 0.66 m^2$$

Caída de presión del filtro.

Las pérdidas por presión son producto de la circulación del aire cuando se está filtrando. Esta caída de presión aumenta a medida que pasa el aire a través de la manga ya que se acumula el polvo en la superficie filtrante.

Se evitar el incremento de la caída de presión si se dispara aire comprimido cada cierto tiempo para limpiar las mangas.

Cuando las mangas están limpias la caída de presión resulta de la siguiente expresión:

$$(Pe)_{\Delta w} = 1.045 x V x P_j^{-0.65}$$
 (4)

Transcurrido cierto tiempo t, la caída de presión seria:

$$\Delta P = (Pe)_{\Delta w} + K_2 x W_0 x V \tag{5}$$

$$W_0 = C_i x V x t \tag{6}$$

Donde:

• C_t es la cantidad de polvo por unidad de volumen que circula.

$$C_i = 0.015$$

• La velocidad de filtración V de diseño es:

$$V = 1.83 \frac{m}{\text{min.}} = 0.031 \frac{m}{s}$$

- t es el tiempo utilizado para la limpieza de mangas transcurrido entre los pulsos de aire comprimido (t en segundos).
- K₂ es un valor experimental de resistencia al flujo debido a la acumulación en la superficie de la manga de polvo.

$$K_2 = 1.5 \times 10^5$$

• P_i es la presión de inyección de los pulsos de aire comprimido.

$$P_i = 100 \, psi = 690 \, KPa$$

• W_o es la masa de polvo como una función del tiempo.

Tenemos entonces la caída de presión de la inyección de aire para la limpieza de mangas:

$$(Pe)_{\Delta w} = 1.045 \ x \ 0.031 \ x \ 690^{-0.65}$$

 $(Pe)_{\Delta w} = 0.5 \ KPa$

Con cinco minutos de tiempo entre pulsos, lo mismo que 300 segundos, la masa de polvo será:

$$W_0 = 0.015 \times 0.031 \times 120 = 0.06 \frac{Kg}{m^2}$$

Y la caída de presión:

$$\Delta P = 0.5 + 1.5 \times 10^5 \times 0.06 \times 0.031 / 1.000 = 0.27 \text{ KPa}$$

$$\Delta P = 27 \ mmCol.H_2O = 1 \ p \lg col.H_2O$$

Selección del material de la manga.

El material de las manga es por lo regular fibras textiles o sintéticas. La capacidad de filtración es de acuerdo al tamaño de la partícula que se desee filtrar, para este caso la tela tipo PTFE es perfecta para retener partículas con diámetros entre 95 y 200 µm que es el tamaño de la del sulfato de sodio.

La selección es basada bajo los siguientes parámetros antes de seleccionar el tipo de material que se adapta mejor al sistema:

- Tamaño de las partículas
- Relación aire-tela
- Química del flujo de gas
- Abrasión de partículas
- Factores mecánicos como tipo de limpieza, instalación, etc.

Generalmente las mangas de filtro tejido son utilizadas para filtros de aire de sacudido o reverso.

La cantidad de mangas se calcula dividiendo el área de filtrado necesitada para el área unitaria de una manga. Esto si se tiene seleccionado antes la longitud y el diámetro de las mangas se calcula el área unitaria:

$$L = 0.5 m$$

$$\phi = 0.25m$$

$$A_U = \pi \phi L$$

$$A_U = \pi (0.25)(0.5) = 0.39 m^2$$

$$\# Mangas = \frac{A_T}{A_U} = \frac{0.66 m^2}{0.39 m^2} = 2$$

$$\# Mangas = 2$$

Se presenta a continuación una tabla de datos para el sistema de filtros:

TABLA 7

PARÁMETROS DEL SISTEMA DE FILTRO DE MANGAS

Sistema de limpieza	Pulse Jet
Presión de limpieza	690 KPa
Área de filtrado	0.66 m2
Longitud de las mangas	500 mm
No. de cámaras	1
No. de mangas	2
Diámetro de las mangas	250 mm
Volumen del gas	72.016 m3/h
Tipo de fibra	PTFE
Vida útil	12 meses

A continuación alguna de las características de las telas para los filtros:

TABLA 8
CARACTERÍSTICAS DE LAS TELAS

	Polipro	oileno	Poliéster	Acrílico	Fibra de vidrio	Nomex	Ry	lon	P84	Teflón
Temp. de Función. Continuo Máx.	77°	С	135°C	130°C	260°C	204°C	190	0°C	260°C	260°C
Abrasión	Excel	ente	Excelente	Bueno	Regular	gular Excelent B		eno	Bueno	Bueno
Absorción de energía	Bue	no	Excelente	Bueno	Regular	Bueno	Bu	eno	Bueno	Bueno
Propiedade s filtrantes	Bue	no	Excelente	Bueno	Regular	Excelent e	Exce	lente	Excelent e	Regular
Calor húmedo	Excel	ente.	Pobre	Excelent e	Excelente	Bueno	Bue	eno	Bueno	Excelent e
Alcalinos	Excel	ente	Regular	Regular	Bueno	Bueno	Exce	lente	Regular	Excelent e
Ácidos minerales	Excel	ente	Regular	Bueno	Pobre	Regular	Exce	lente	Bueno	Excelent e
Oxígeno (15%+)	Excel	ente	Excelente	Excelent e	Excelente	Excelent e	Po	bre	Excelent e	Excelent e
Costo relativo	\$		\$	\$\$	\$\$\$	\$\$\$\$	\$\$\$	\$\$\$	\$\$\$\$\$\$	\$\$\$\$\$\$\$
Excepto de vid		Proposito dei acabado							Disponible p iguientes ma	teriales
Chamus	Chamuscado Recomendado para un mejor desprendimiento de la capa de polvo								oliéster, polip co, Nomex, p P84.	
Glaceado/e	eggshell	Ofr		(puede impe	dir el flujo de	e aire)		Р	oliéster, polip	ropileno
Silicon			Contribuye al d Propor	esarrollo de ι ciona resister			al	Poliéster		
Retardad Ilam	а					eba de llamas)		Р	oliéster, polip	ropileno
Cubiertas a (Base de	látex)		jora la eficiencia polvo (en alguna	as aplicacione	es puede imp	edir el flujo de			Poliéster y ad	crílicos
Acabado Penetració	n PTFE		limita	a la resistenc el desalojo d	le la capa de	polvo			Nomex	
Membrana BHA-T			Para recolectar la ación, el desalo				aire		mex, poliéste	r, acrílico
Fibra de vid			Objetivo del a					icacio		
Silicona, graf teflón	ito,	Protege	e las fibras de vi es lubrica		ión	Para condicio aplicaciones o	nes no de cem	ácidas ento v	, primariamer fundición de r	ite para netales
Resistente ácidos	a F	rotege a	a las fibras de vi		e de A	plicaciones de	caldera	as de c	arbón, negro alderas indus	de humo,
Teflón B		,	a la resistencia d proporcio Energía química	na i limitada	ra a fibra y Calderas de carga base industriales y eléctric					
Blue Max CR		Redu	ona mejor resisto ce la abrasión e resistente al ata os, mejor coberto	ntre las fibras aque de	s, Cal	deras de carbo incineradora			y bajo), negr lechos fluidif	
BHA-TEX Membrana de PTFE Para atrapar partículas finas, mejor eficiencia De filtración, desprendimiento de polvo Hornos de cemento/cal, incineradoras, calderas carbón, hierro sílice/aleaciones, hornos										

TABLA PROPORCIONADA POR LA COMPAÑÍA BHA GROUP

3.4.2 Selección de Ventilador.

La selección del ventilador es de uno de las siguientes características:

• Caudal: 72.016 m3/h = 50 cfm

• Caída de presión de: 1 plgCol.H2O/2 mangas = 0.5 plgCol.H2O

FIGURA 3.14.- VENTILADOR DE 50 CFM A 0.5 PLGCOLH2O

3.4.3 Diseño de la zaranda.

Los elementos que conformaran la zaranda son:

- Un vibrador eléctrico
- Una malla redonda de acuerdo a la línea de descarga
- Placas de sujeción y de soporte
- Vástagos para fijación y deslizamiento

La fuerza que deberá vencer el vibrador será igual a la de la columna de polvo de la línea de descarga:

Dimensiones de la columna:

- r = 273 mm
- h = 214 mm

Esto nos da un volumen de 0.05 m3.

Sabiendo que la densidad del polvo es 1200 Kg/m3

Tenemos el peso en newtons:

$$W = 589,25 N$$

Dimensiones de la zaranda:

- Diámetro de la zaranda= 136 mm
- Placa de asiento fijadora de la zaranda= 483 x 483 mm
- Placa de soporte del vibrador= 296 x 5 mm
- Vástagos de fijación= 484.7 mm
- Todas las uniones son soldadas.

Seleccionaremos un vibrador eléctrico de velocidad y fuerza de impacto ajustable.

FIGURA 3.15.- VIBRADOR ELÉCTRICO CON CONTROL

De acuerdo a los resultados tenemos:

- El vibrador debe ser de 200 lb de fuerza
- 2.6 Amperios
- 115-230 Voltios
- 1 fase
- 950-2500 vibraciones por minuto de trabajo continuo, o
- 2500-4000 vibraciones por minuto de trabajo intermitente
- Se recomienda las condiciones de trabajo continuo.

A continuación se presentan datos técnicos de resultados de la siguiente tabla:

TABLA 9

DATOS TÉCNICOS DE UN VIBRADOR DE ZARANDA

DATOS TÉCNICOS

	Fuerza	a (Impacto) lbs./N				Vibracione	s por Minuto	Pes	0	
Modelo	lbs.	Ajustable N	Amp.	***Volt	Fases	Trab. Contínuo	Trab. Intermit	lbs.	kg.	dB*
SCR-50	50	223	2.5	115/230	1	950-2500	2500-4000	8	3.6	71
SCR-60	60	267	2.5	115/230	1	950-2500	2500-4000	5 and 8**	2.3/3.6	68
SCR-100	100	445	1.3	115/230	1	950-2500	2500-4000	4	1.8	68
SCR-200	200	890	2.6	115/230	1	950-2500	2500-4000	12	5.4	70
SCR-300	300	1335	1.7	115/230	1	950-2500	2500-4000	8	3.6	70
SCR-350	350	1558	3.0	115/230	1	950-2500	2500-4000	20	9.1	71
SCR-400	400	1780	2.0	115/230	1	950-2500	2500-4000	9	4.1	70
SCR-500	500	2225	3.5	115/230	1	950-2500	2500-4000	41	18.4	70
SCR-1000	1000	4449	6.5	115/230	1	950-2500	2500-4000	53	24.0	72

^{*} Decibeles a 3' (1 metro en la escala A) N = Fuerza centrífuga en Newtons ** 5 Lbs. Aluminio, 8 Lbs Hierro *** 50 o 60 Hz

DIMENSIONES

		L			W			Н			Α			В			C*			D			Е	
Modelo	pulg.	/	mm	pulg.	/	mm	pulg.	/	mm	pulg.	/	mm	pulg.	/	mm	pulg.	/	mm	pulg.	/	mm	pulg.	1	mm
SCR-50	5 ⁷ /a		149	5		127	35/8		64	4		102		_		3/8		10	3		76	35/16		100
SCR-60	63/s		162	41/2		114	31/4		83	35/8		64	15/16		33	5/16		8	3		76		_	
SCR-100	63/4		187	6		152	41/4		108	5	-	127		_		3/8		10	4		102			165
SCR-200	83/16		208	47/8		124	41/8		105	31/2		89		_		1/2		12	4		102	61/2		165
SCR-300	81/2		216	41/8		105	5		127	3		76	53/4		145	5/16		8	39/16		90	61/2		
SCR-350	81/4		210	55/8		143	51/4		133	41/2		114		_		1/2		12	51/16		128		_	165
SCR-400	9		229	41/8		105	5		127	3		76	53/4		145	5/16		8	39/16		90	61/2		
SCR-500	133/16		335	53/4		146	61/2		165	41/2		114	815/16		227	1/2		12	51/16		128		_	
SCR-1000	141/4		362	61/2		165	71/2		190	5		127	93/8		238	5/8		16	6		140		_	

*Tamaño del perno a utilizar NOTA : datos técnicos y dimensiones son sujetos a cambios sin previo aviso

C

B

C

SCR-50, SCR-100

SCR-200, SCR-350

SCR-60, 300, 400, 500 & 1000

FUENTE: CATALOGO

A continuación un seleccionaremos la malla:

FIGURA 3.16.- ZARANDA

Lo que nos interesa de la malla es que ésta separe los grumos que se forman por filtración de humedad dentro de los big-bag para que no lleguen a tapar la línea de transporte. De acuerdo a esta premisa seleccionaremos una malla de MESCH 6, lo que significa que tiene seis divisiones por cada pulgada de la misma.

Estos elementos acoplados a un bastidor conforman la zaranda que se colocará en la línea de transmisión antes de la tolva de recepción.

A continuación un ejemplo de instalación del vibrador en una tolva:

FIGURA3.17.- INSTALACIÓN DE VIBRADOR A LA SALIDA DE UNA TOLVA

La ubicación de la zaranda para la clasificación de partículas:

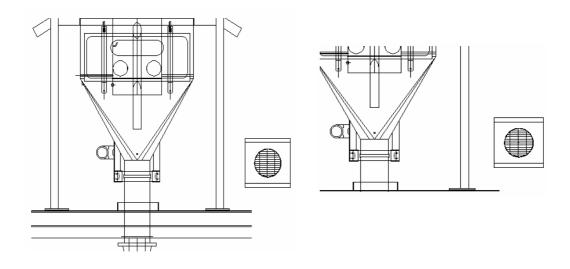


FIGURA 3.18.- UBICACIÓN DE LA ZARANDA DENTRO DEL SISTEMA

3.5 Selección de la válvula rotativa.

A continuación se presenta una imagen de una válvula rotativa seccionada para poder apreciar sus componentes:

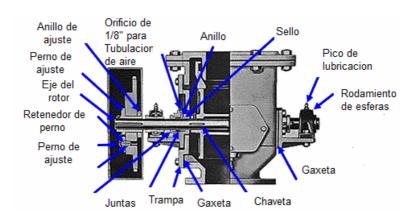


FIGURA 3.19.- COMPONENTES INTERNOS DE VÁLVULA ROTATIVA

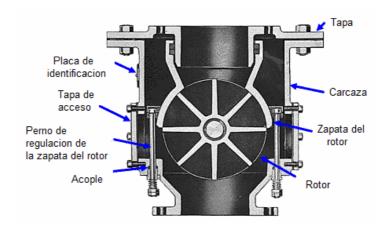
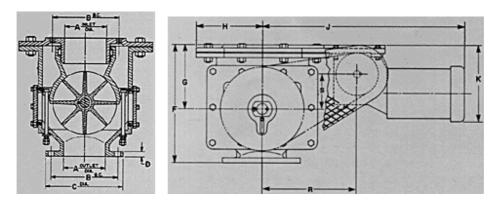



FIGURA 3.20.- COMPONENTES EXTERNOS DE VÁLVULA ROTATIVA

Las dimensiones principales son:

TABLA 10
DIMENSIONES PRINCIPALES DE LAS VÁLVULAS ROTATIVAS

DATOS DIMENSIONALES

	Pot.	PÉS (CÚB. PO	R ROT.	Α	В		С	D	Е
4"	1/3	0.0	9	0.06	4"	7 1/3	2"	9"	5/8"	5/8"
6"	1/2	0.1	7	0.12	6"	9 1/	2"	11"	3/4"	3/4"
8"	3/4	0.4	4	0.35	8"	11 3/	4"	13 1/2	" 3/4"	3/4"
				·						·
Tam	naño	F	G	Н		J		K	L	
4	4"	15"	8"	8 1/4"	2'-	3 7/16	"	9 5/8"	13 7/1	6"
(6"	17"	9 1/4"	9 1/2"	2'-	4 9/16	"	9 7/8"	15 1/1	6"
8	8"	20"	10 3/4"	11 1/8"	2'-6	3 15/16	3"	9 7/8"	16 1/4	, "
Tam	naño		M	N		Р		R	S	
4	4"	(9 5/8"	1"	10	1/8"	12	3/8"	4 1/16"	
(6"	1	1 3/8"	1 7/16"	11	3/4"	13	1/2"	5 1/16"	
3	8"	12	2 9/16"	1 7/16"	13	1/16"	14	7/8"	6 9/16"	

Especificaciones técnicas (dimensiones):

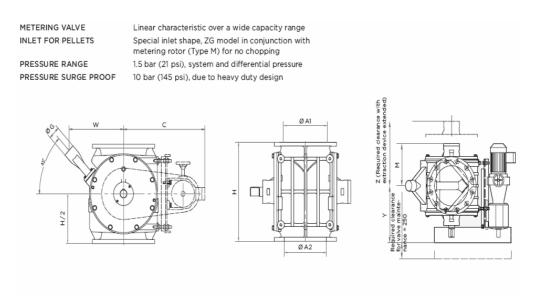


FIGURA 3.21.- ESPECIFICACIONES TÉCNICAS

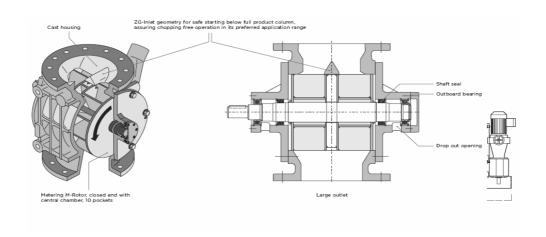


FIGURA 3.22.- CORTE DE UNA VÁLVULA ROTATIVA

Consideramos el volumen de polvo que contiene un saco 1.5 toneladas:

$$Volumen = 1500 \ Kg / 1200 \ Kg / m^3$$

 $Volumen = 1.25 \ m^3$

Ahora si 3.5 toneladas se transportan en una hora (60 minutos), y sabemos que esto representa 2.92 metros cúbicos, tendríamos que en 25.8 minutos se depositaria el contenido del saco. Si consideramos que 0.06 pies cúbicos es lo que se deposita por cada rotación según la tabla 10, para una tubería de cuatro pulgadas y deseamos transportar el equivalente al 65% del saco, podríamos sacar la relación:

$$\# revoluciones = \frac{0.81 \, m^3}{1.7 x 10^{-3} \, m^3} \tag{7}$$

revoluciones = 476.47

Entonces para el tiempo que demora un saco tenemos:

$$\frac{\#revoluciones}{\min} = \frac{476.47}{25.8}$$

#RPM = 20

Por lo tanto el rotor de la válvula rotativa debe girar a 20 rpm.

Ahora debemos seleccionar una válvula que cumpla con las siguientes características:

Diámetro 4 pulgadas y con un moto-reductor girando a 20 rpm.

3.6 Diseño de estación de descarga al silo.

La estación de descarga comprende el sistema que recoge el polvo descargado y lo transporta desde su recepción por medio de tuberías al correspondiente silo de almacenamiento que en nuestro caso se lo considera de 18 toneladas.

El sistema consiste de una tubería de transportación que llevará polvo suspendido en aire que es inyectado al sistema con un blower (para sistemas de baja presión) y un sistema de limpieza (desempolvado) el cual retira las partículas de material que se dispersan producto de la descarga y se pueden salir del silo al medio ambiente, con filtros de mangas recogemos estas partículas para devolverlas al sistema.

Este sistema debe asegurar la transportación del material y su correcto almacenamiento. El diseño del sistema de desempolvado, la tubería de transporte y la selección del blower se las desarrollara a continuación.

3.6.1 Diseño del sistema de limpieza en el proceso de extracción de

polvo.

Al igual que lo hecho en el sistema de descarga se necesitará diseñar los

filtros de mangas para aspiración del polvo, dimensionar las mangas y

seleccionar un ventilador que ponga a circular el aire.

Las condiciones para las operaciones de filtrado y limpieza se las

conserva con la diferencia que el caudal de aire y la velocidad de

circulación dentro de los filtros aumenta ya que manejamos un mayor

volumen por lo tanto seguimos el procedimiento.

Área filtrante de la manga.

El área filtrante considera el caudal que se desea filtrar, para el efecto se

considerará que alrededor del 5 % del volumen de polvo que se recepta

al momento del almacenamiento lo que representa un caudal de 1440 m3

/ h, con una velocidad de filtración de 9 pies/min.

Ahora la velocidad:

V = 9 ft / min = 165 m / h = 2.75 m / min = 0.046 m / s

Con este dato el área es:

$$A = \frac{Q}{V} \tag{8}$$

Donde:

Q: es Caudal en metros cúbicos por segundo

V: Velocidad en metros por segundo

$$A = \frac{1440}{165} = 8.72 \ m^2$$

Caída de presión del filtro

Cuando las mangas están limpias la caída de presión se la obtiene de la formula:

$$(Pe)_{\Delta w} = 1.045 x V x P_j^{-0.65}$$
 (9)

Luego que transcurre cierto tiempo t, la caída de presión es:

$$\Delta P = (Pe)_{\Delta w} + K_2 x W_0 x V \tag{10}$$

$$W_0 = C_i x V x t \tag{11}$$

Donde:

• Ct es la cantidad de polvo que circula por unidad de volumen.

$$C_i = 0.015$$

• La velocidad de filtración V de diseño es:

$$V = 5.5 \frac{m}{\min} = 0,092 \frac{m}{s}$$

- t es el tiempo entre pulsos para la limpieza de la manga.
- K2 es la resistencia a fluir debido a la acumulación de polvo en la superficie de la manga.

$$K_2 = 1,5x10^5$$

• Pj es la presión a la cual se inyectan los pulsos de aire comprimido.

$$P_j = 150 \, psi = 1034 \, KPa$$

• Wo es la masa de polvo en función del tiempo.

Entonces la caída de presión luego de inyectar el pulso de aire para la limpieza de las mangas es:

$$(Pe)_{\Delta w} = 1.045 \times 0,092 \times 1034^{-0.65}$$

 $(Pe)_{\Delta w} = 1.06 \text{ KPa}$ (9)

Si el tiempo entre pulsos es de cinco minutos, lo mismo que 300 segundos, tenemos que la masa de polvo en función del tiempo es:

$$W_0 = 0.015 \times 0.092 \times 300 = 0.414 \frac{Kg}{m^2}$$

Caída de presión:

$$\Delta P = 1.06 + 1.5 \times 10^5 \times 0.414 \times 0.092 / 1.000 = 5.7 \text{ KPa}$$

 $\Delta P = 592 \text{ mmCol.H}_2 O = 23 \text{ p lg Col.H}_2 O$

El tipo de manga es el mismo que el seleccionado anteriormente.

Seleccionado la longitud y diámetro de la manga tenemos:

$$L = 1 m$$

$$\phi = 0.15m$$

$$A_U = \pi \phi L$$

$$A_U = \pi (0.15)(1) = 0.47 m^2$$

$$\# Mangas = \frac{A_T}{A_U} = \frac{8.72 m^2}{0.47 m^2} = 18$$

$$\# Mangas = 18$$

De igual manera se obtienen datos para nuestro sistema de filtros de mangas:

TABLA 11
PARÁMETROS DEL SISTEMA DE FILTRO DE MANGAS

Sistema de limpieza	Pulse Jet
Presión de limpieza	1034 KPa
Área de filtrado	8.72 m2
Longitud de las mangas	1000 mm
No. de cámaras	3
No. de mangas	18
Diámetro de las mangas	150 mm
Volumen del gas	1440 m3/h
Tipo de fibra	PTFE
Vida útil	12 meses

Selección de Ventilador.

La selección del ventilador es de uno de las siguientes características:

• Caudal: 1440 m3/h = 850 cfm

• Caída de presión de: 23 plgCol.H2O/18 mangas = 1.3 plgClo.H2O.

FIGURA 3.23.- VENTILADOR DE 850 CFM A 1.3 PLGCOLH2O

3.6.2 Dimensionamiento de tubería.

El dimensionamiento de la tubería de transporte parte de las premisas que se tienen para alcanzar los objetivos propuestos tales como las propiedades del aire.

Densidad del aire: $\rho = 1.23 \frac{Kg}{m^3}$

Peso especifico: $\gamma = 1.20 \ N/m^3$

Viscosidad dinámica: $\mu = 1.79 \ x \ 10^{-5} \frac{Ns}{m^2}$

Viscosidad cinemática: $v = 1.46 \times 10^{-5} \frac{m^2}{s}$

Relación de calor especifico: k = 1.4

Constante del gas: $R = 8,314 \ J/Kg \ ^{\circ}K$

También las condiciones de inicio de diseño de la estación:

Flujo másico:

 $\dot{m} = 3.5 \ ton/h$

Densidad de la mezcla:

Donde la densidad del sulfato de sodio es 1200 kilogramos por metro cubico.

$$\rho_m = \rho_s \left(1 - \varepsilon \right) + \rho_g \varepsilon \tag{12}$$

У

$$\varepsilon = \frac{\rho_s - \rho_g}{\rho_s} \tag{13}$$

Donde:

ρs = Densidad del sólido.

ρg = Densidad el gas.

 ε = Factor de densidad de mezcla.

Entonces:

$$\rho_m = 1200 (1 - 0.999) + 1.23(0.999)$$

$$\rho_m = 2.43 \frac{Kg}{m^3}$$

Rugosidad para tubería de acero comercial o hierro forjado:

e = 0.045

Características de la tubería:

$$l_o = 10 m$$

Para calcular la presión con la que se va a manejar el sistema utilizaremos la curva de Fanno (diagrama de temperatura versus entropía: T-s), la cual analiza flujo adiabático a través de un ducto de área constante con fricción. Se considera como un flujo estable a lo largo del recorrido; que para éste cálculo será 3.5 ton/hr.

Las formulas para desarrollar la curva son:

$$T + \frac{(\rho V)^2 T^2}{2Cp p^2/R^2} = T_o = cte$$
 (14)

$$s - s_1 = Cp \ln \frac{T}{T_1} - R \ln \frac{p}{p_1}$$
(15)

Con las siguientes condiciones ideales de temperaturas en nuestro medio:

$$T_1 = 35 \,^{\circ}C = 308 \,^{\circ}K$$
 y $T_2 = 38 \,^{\circ}C = 311 \,^{\circ}K$

Y el calor específico Cp es:

$$Cp = \frac{Rk}{k-1} \tag{16}$$

Ahora:

$$Cp = \frac{8.314x10^{2}(1.4)}{1.4-1}$$
$$Cp = 2910.01 \frac{J}{Kg^{\circ}K}$$

Υ

$$\frac{T}{T_o} = \frac{308}{311} = 0.9904$$

Bajo esos resultados tenemos Ma = 0.22

Por ecuaciones:

$$\rho V = \frac{p}{RT} Ma \sqrt{RTk} = \rho V = cte$$
(17)

Usaremos la fórmula para rangos de presión entre 10 y 25 psi. Si tomamos una presión promedio alta, para tener el valor de la constante:

$$\rho V = 319,2$$

Reemplazando:

$$Cp = 2910.01 \frac{J}{Kg^{\circ}K}$$
 y $\rho V = 319,2$

En las ecuaciones de la temperatura y la entropía tenemos el siguiente cuadro:

TABLA 12

DATOS PARA EL DIAGRAMA DE FANNO

P (psi)	P (Pa)	T (k)	S-S1
25	172375	279,239737	7,797E+02
24	165480	277,071109	7,910E+02
23	158585	274,689111	8,013E+02
22	151690	272,067128	8,103E+02
21	144795	269,174665	8,179E+02
20	137900	265,976736	8,237E+02
19	131005	262,433158	8,273E+02
18	124110	258,497727	8,283E+02
17	117215	254,117293	8,261E+02
16	110320	249,230692	8,200E+02
15	103425	243,767551	8,091E+02
14	96530	237,64696	7,925E+02
13	89635	230,776008	7,687E+02
12	82740	223,048213	7,362E+02
11	75845	214,341878	6,926E+02
10	68950	204,518416	6,354E+02

ELABORADA POR EL AUTOR DE LA TESIS

De acuerdo a la tabla del Diagrama de Fanno, encontramos que para p= 18 psi los valores de s-s1 comienzan a decaer; lo que nos indica que ésa es la presión máxima a la que trabajará el sistema.

$$p_{\text{max}} = 18 \ psi$$

DIAGRAMA DE FANNO

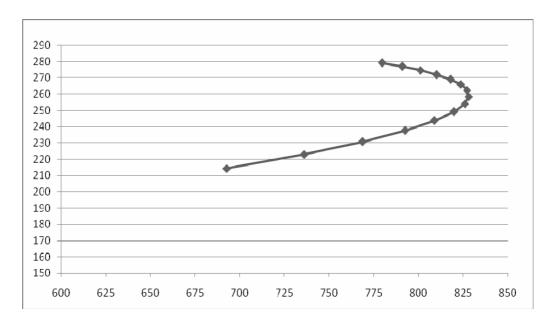


FIGURA 3.24.- DIAGRAMA DE FANNO ELABORADA POR EL AUTOR DE LA TESIS

De la fórmula original tenemos que para una presión de 18 psi:

$$\rho V = \frac{p}{RT} Ma\sqrt{RTk} \tag{17}$$

$$\rho V = \frac{124110}{8,314x10^2(308)} \left(0.22\sqrt{8.314x10^2(308)(1.4)} \right)$$

$$\rho V = 63.84$$

Entonces:

$$V = \frac{63.84}{2.43}$$

$$V = 26 m/s$$

Ahora despejando la formula de másico es igual:

$$m = \rho AV \tag{18}$$

$$AV = \frac{\dot{m}}{\rho}$$

$$Q = \frac{0.972}{2,43}$$

$$Q = 0.40 \frac{m^3}{s} \implies Q = 850 \text{ cfm}$$

Para esto:

$$Q = AV$$

$$A = \frac{Q}{V}$$

$$A = \frac{0.40}{26}$$

$$A = 0.0154 \ m^2$$

Si:

$$A = \frac{\pi D^2}{4}$$

$$D = \sqrt{\frac{4A}{\pi}}$$

$$D = \sqrt{\frac{4\left(1.54 \times 10^{-2}\right)}{3.1416}}$$

$$D = 0.140 \ m$$

$$D = 5.21$$
"

Por la consideración de las pérdidas por diferencias de altura habrá que inyectar más presión de aire lo que se consigue reduciendo el diámetro a cuatro pulgadas.

Como resultado obtuvimos que la tubería que debemos manejar es de:

$$D = 4 plg.$$

Ahora consideremos los resultados para obtener la longitud de la tubería, con la siguiente ecuación:

$$\frac{1}{k} \frac{\left(1 - Ma^{2}\right)}{Ma^{2}} + \frac{k+1}{2k} \ln \left[\frac{\left[k + \frac{1}{2}\right] Ma^{2}}{1 + \left[k - \frac{1}{2}\right] Ma^{2}} \right] = f \frac{\left(l^{*} - l\right)}{D}$$
(19)

Tenemos:

$$\frac{1}{1.4} \frac{\left(1 - 0.22^{2}\right)}{0.22^{2}} + \frac{1.4 + 1}{2\left(1.4\right)} \ln \left[\frac{\left[1.4 + \frac{1}{2}\right]0.22^{2}}{1 + \left[1.4 - \frac{1}{2}\right]0.22^{2}} \right] = f \frac{\left(l^{*} - l\right)}{D}$$

$$f\frac{\left(l^*-l\right)}{D} = 11.6$$

Características de la tubería:

La rugosidad del acero comercial o hierro forjado es: e=0.045

Calculamos Reynolds:

$$Re = \frac{\rho VD}{\mu}$$
 (20)

$$Re = \frac{2.43(26)0.1016}{1.79x10^{-5}}$$

$$Re = 368608.27$$

$$y$$
 $e/D = 0.045/101.16$

$$e/D = 4.45 \times 10^{-4}$$

En el diagrama de Moody con Re y e/D tenemos la fricción igual

$$f = 0.016$$

Entonces:

$$f\frac{\left(l^*-l\right)}{D} = 11.6$$

$$l^* - l = \frac{D(11.6)}{f}$$

$$l^* - l = \frac{0.1016 (11.6)}{0.016}$$

$$l^* - l = 75$$

$$l^* = 75 + l$$

$$l^* = 75 + 10$$

$$l^* = 85 m$$

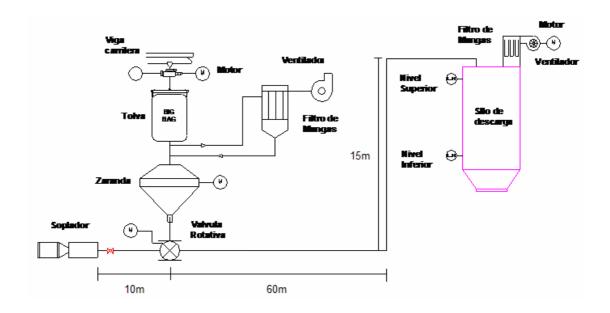


FIGURA 3.25.- RECORRIDO DE LA TUBERIA DEL SISTEMA

La longitud máxima que puede soportar el sistema es de 85 m.

Como conclusión tenemos que podemos montar una tubería con:

Diámetro: D = 4 plg

Longitud: I = 85 m

Bajo condiciones como:

Q = 850 cfm

p = 18 psi

V = 26 m/s

3.6.3 Selección del compresor de aire.

En la selección de un compresor o en este caso de tipo BLOWER deberá manejar un caudal:

Q = 850 cfm

Para la selección tenemos que debe de manejar 850 cfm y que nos proporcione una presión de 1 bar de acuerdo con los resultados expresados anteriormente para el cálculo de la tubería.

Se presentan datos técnicos de dos modelos diferentes de Blowers (Sopladores) con características similares:

TABLA 13

DATOS TÉCNICOS DE BLOWER

Datos t	técn	ico	s														
Modelo OMEGA	-P	21P	22P	23P	24P	41P	42P	43P	52P	53P	61P	62P	63P	64P	82P	83P	84P
Caudal max.	m∜min	5,0	6,3	8,4	10,6	12,4	15,9	22,5	28,3	41,5	33,2	41,6	41,6	74,2	96,7	129,3	156
	m∂h	300	390	500	630	745	950	1350	1700	2490	1990	2500	2500	4450	5800	7760	9360
Veloc. giro máx.	rpm	6200	6000	5800	5450	5000	4900	4500	4200	4200	3900	3700	3700	3400	3000	2700	2500
Pres. dlf. max.	mbar																
Sobrepr.	mbar	1000	1000	1000	900	1000	1000	1000	1000	1000	1000	1000	1000	900	1000	1000	800
Vacio	mbar	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500
Pot. max. acc.	kW	10	12,5	15	16	23	31	43	55	75	65	81	81	110	183	200	250
Medidas	mm																
Longitud sin arbo accionamiento	ol de	325	360	415	480	395	445	545	545	785	550	625	625	1070	825	1040	1370
Anchura	mm	206	206	206	206	300	300	300	365	365	440	440	440	490	625	625	625
Altura	mm	170	170	170	170	240	240	240	290	290	330	330	330	440	460	610	710
Brida de conexión	n DN mm	50	65	65	80	90	100	100	150	150	150	200	200	250	250	300	300
Peso	kg	32	36	42	51	86	100	114	163	205	264	326	326	410	600	890	1150

FIGURA 3.26.- BLOWER

3.7 Cronograma de Construcción y Montaje.

El Cronograma de Construcción y Montaje se lo muestra en los anexos.

CAPÍTULO 4

4. ANALISIS DE COSTOS.

Los costos de equipos y mano de obra son basados en precios en nuestro medio

4.1 Costos de Equipos.

TABLA 14
COSTOS DE EQUIPOS

	EQUIPOS											
DESCRIPCIÓN	PRECIO UNIT.(\$)	PRECIO TOTAL(\$)										
Ventilador 50 CFM	1	112.80	112.80									
Ventilador 850 CFM	1	409.60	409.60									
Blower	1	12580.00	12580.00									
Tecle 2 Ton	1	4800.00	4800.00									
Vibrador 1Ø 2 HP	1	685.00	685.00									
		TOTAL	18587.40									

4.2 Costos de Materiales.

TABLA 15
COSTOS DE MATERIALES

	MATER	IAL		
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.(\$)	PRECIO TOTAL(\$)
Viga IPE160	Un	1	56.40	56.40
Plancha de acero ASTM A36				
1220x2440x8 mm	Un	1	216.00	216.00
Tubo Ø4" CED.40 con costura	Un	15	17.00	255.00
Accesorios 4"	Un	4	16.80	67.20
Plancha perforada MESH No. 6	m2	1	12.82	12.82
Válvula rotativa	Un	1	9100.00	9100.00
Válvulas de paso	Un	4	39.60	158.40
Válvulas para mangas	Un	20	114.00	2280.00
Mangas Ø250x500 mm	Un	2	33.33	66.66
Mangas Ø150x1000 mm	Un	18	66.67	1200.06
			TOTAL	13412.54

	CONSUM	IBLES		
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.(\$)	PRECIO TOTAL(\$)
Electrodos E6011 1/8"	Kg	3	1.65	4.95
Electrodos E7018 1/8"	Kg	6	1.85	11.10
Discos de corte	Un	5	1.20	6.00
Discos de pulir	Un	5	1.15	5.75
Oxígeno	m3	10	2.39	23.90
Acetileno	Kg	6	9.66	57.96
Pintura de fondo	Gl	1	16.45	16.45
Pintura para acabado	GI	1	16.58	16.58
Catalizador	GI	0.2	11.90	2.38
Reductor	GI	0.2	11.90	2.38
			TOTAL	147.45

4.3 Costos de Mano de Obra.

TABLA 16
COSTOS DE MANO DE OBRA

MANO DE OBRA DE FABRICACIÓN											
DESCRIPCIÓN UNIDAD CANTIDAD UNIT.(\$) PRECIO TOTAL(\$											
Tolva	Global	1	450.00	450.00							
Zaranda	Global	1	920.00	920.00							
			TOTAL	1370.00							

MANO DE OBRA MONTAJE						
DESCRIPCIÓN	UNIDAD	CANTIDAD	PRECIO UNIT.(\$)	PRECIO TOTAL(\$)		
Tubería	Kg	1366.00	2732.00	2732.00		
Tolva	Kg	93.47	186.94	186.94		
			TOTAL	2918.94		

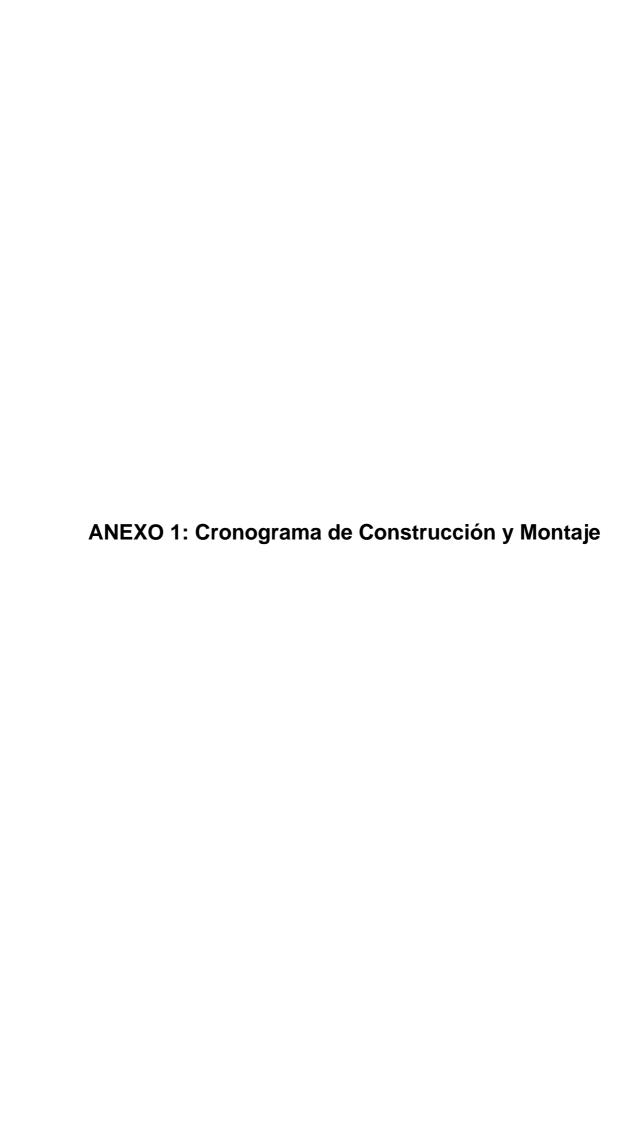
COSTO DE PERSONAL						
DEDCOMAL	CANTIDAD	EARRICA CIÓNIGIA	IMPLEMENTOS	COSTO	COSTO	
PERSONAL	CANTIDAD	FABRICACIÓN(\$/h)	SEG.(\$/h)	UNIT.(\$/h)	TOTAL(\$/h)	
Soldadores	2	2.40	1.21	3.61	7.22	
Armadores	1	2.25	0.45	2.70	2.70	
Ayudantes	2	1.96	0.41	2.37	4.74	
Supervisor	1	4.16	0.38	4.54	4.54	
			TOTAL(\$)	13.22	19.20	

Dias Laborables	21.00
Horas de Trabajo	168.00
Total Personal(\$)	3225.60

GLOBAL				
DESCRIPCIÓN	PRECIOS			
	TOTALES(\$)			
EQUIPOS	18587.40			
MATERIAL	13412.54			
CONSUMIBLES	147.45			
FABRICACION	1370.00			
MONTAJE	2918.94			
PERSONAL	3225.60			
TOTAL	39661.93			

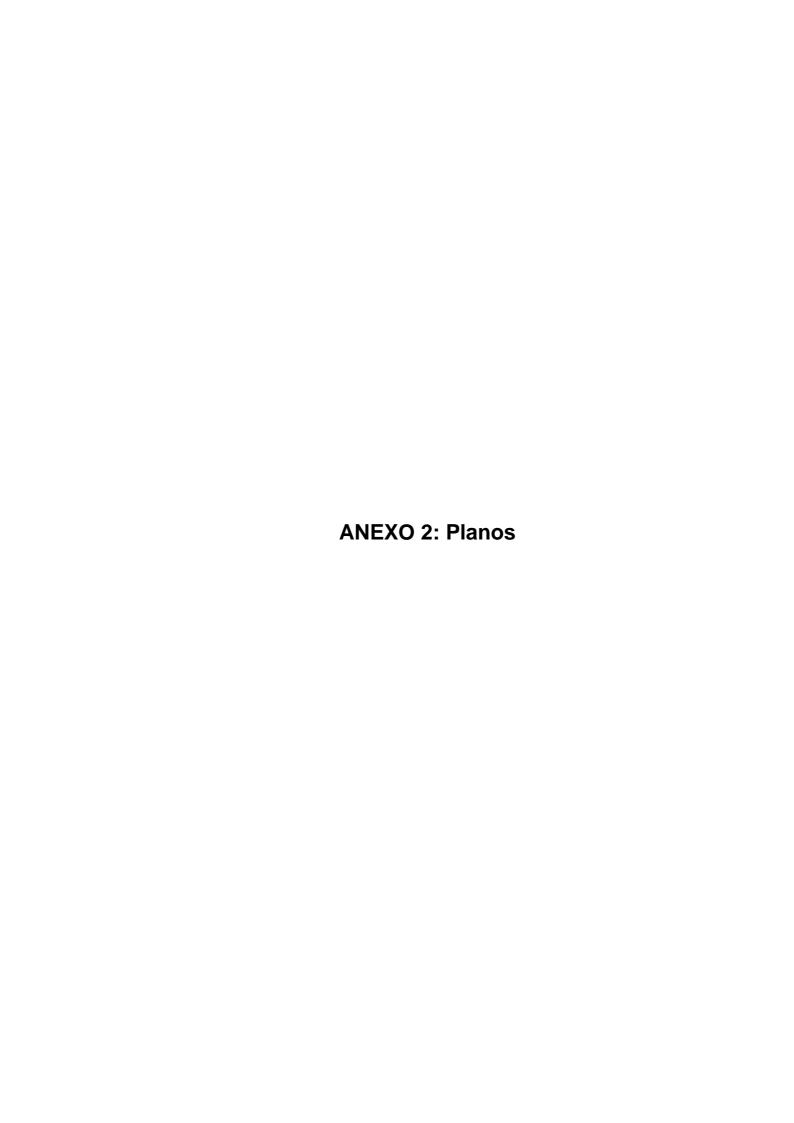
CAPÍTULO 5

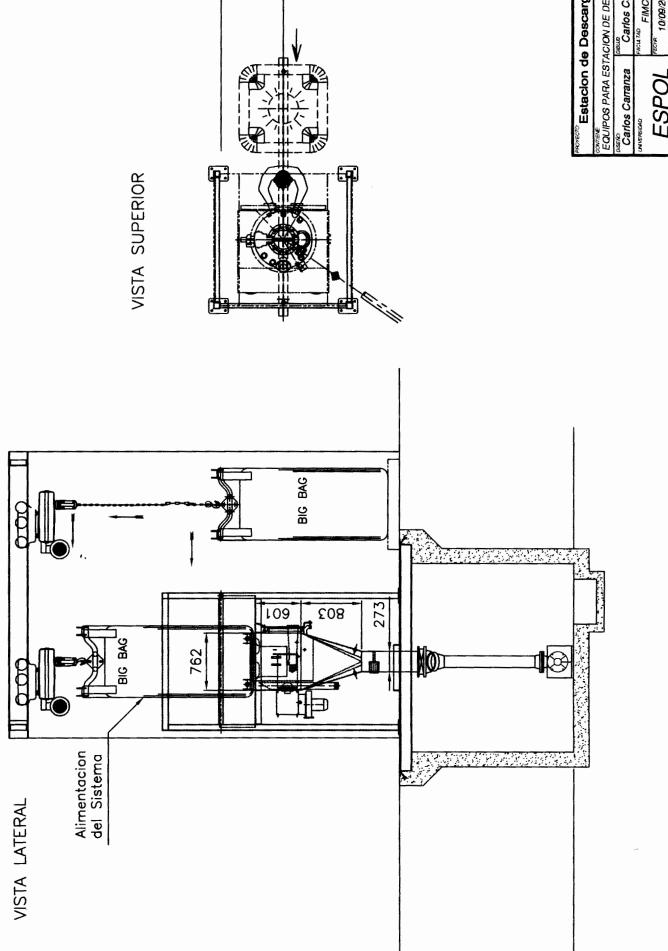
5. CONCLUSIONES Y RECOMENDACIONES


5.1.- Conclusiones:

- Los objetivos del proyecto fueron alcanzados de acuerdo a los objetivos planteados.
- La implantación del proyecto resulta factible ya que los equipos y materiales son de fácil adquisición en nuestro medio.
- Gracias a la implementación del proyecto se generarán nuevas fuentes de trabajo.
- La estación de descarga cumple con los requerimientos planteados anteriormente.

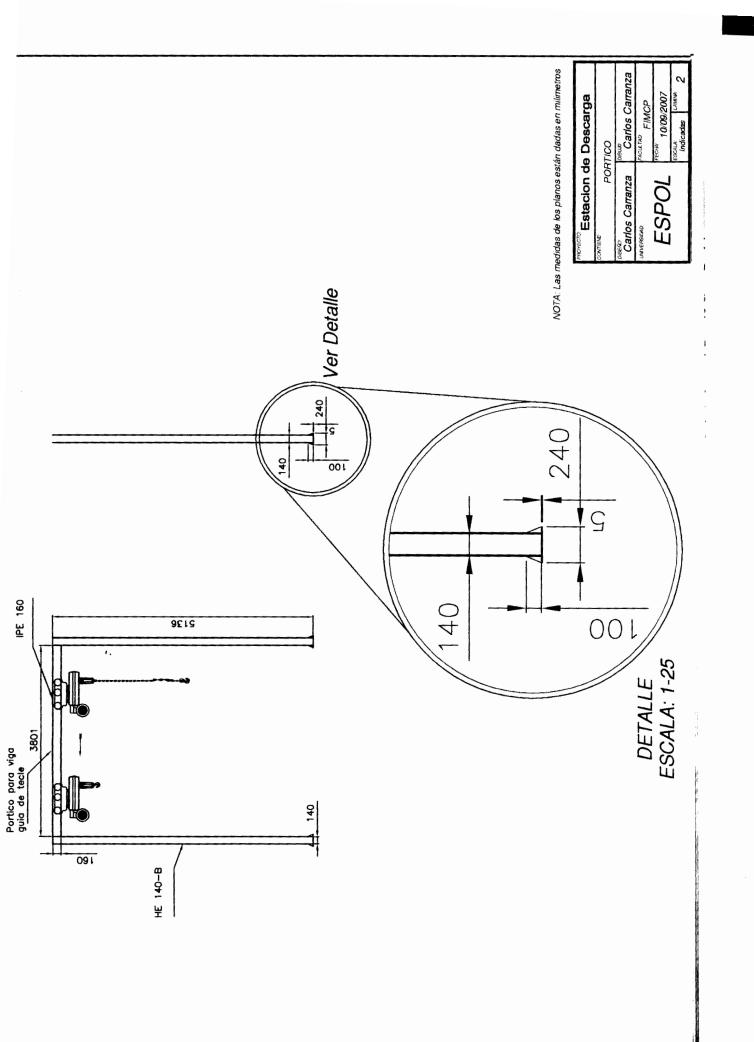
 El método de diseño de la viga como de la tolva se realizaron con el programa SAP para calculo de estructuras lo que nos proporciona resultados confiables para su construcción.

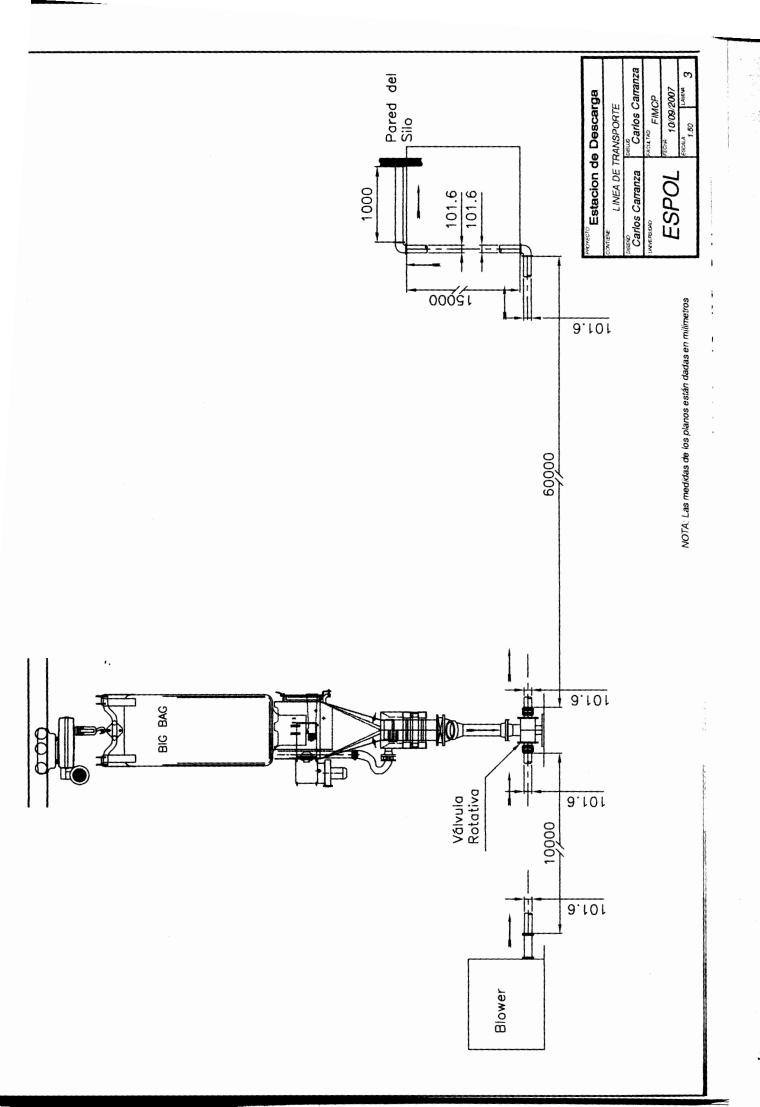

5.2.- Recomendaciones:

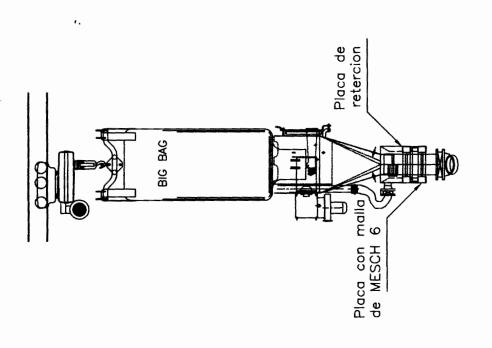

- Se puede aumentar la eficiencia del sistema con masajeadores neumáticos para la descarga del big-bag, asegurando de ésta manera el desalojo completo del material.
- Los mejores ventiladores para el sistema de desempolvado son los tipo caracol.
- Hay que tener cuidado con la instalación de los ventiladores en lo que se refiere a la alineación ya que puede producir exceso de vibraciones que sumadas a las del vibrador de la zaranda provocarían problemas en la línea de descarga.
- El proceso de vaciado de la materia prima no puede iniciar si es que no se enciende la zaranda.
- El vibrador de la zaranda debe ser puesto en funcionamiento en condiciones de trabajo continuo, ya que así se controlan de manera adecuada los grumos que se puedan colar al sistema.

ANEXO 1: Cronograma de Construcción y Montaje

Proyecto: Te					-			32	ω.	30	29	28	27	2 28	8	24	23	8	2	20	19	8	17	ਰ ਹ	4	ಪ	12	3 .	5 6	10 00	7	6	O1	4	ω	N	
Proyecto: Tesis de Carlos								Compra de Tecle	Compra de Blower	Compra de ventiladores para filtros	Compra de mangas p	Compra de malla para zaranda	Compra	Inatalación eléctrica de Tecle	Instalación electr	Instalación eléctrica de zaranda	instalación eléctr	Montaje Eléctrico	Montaje de tecle	Montaje de tubería neumatica	Montaje de tubería de polvo	Montaje de blower	Montaje de filtro de mangas	Montaje de estación de desca	Montaje de zaranda	Montaje de rotativa	Montaje Mecánico	Montaje		Construcción de portico para vigas	Construcción de base para blower	Construcción de Zaranda	Construcción de Filtro de mangas	Construcción de soporte para tuberías	Construcción de estación de descarga	Construcción	The Control of the Co
División	Tarea							The second space of the second		res para filtros	Compra de mangas para filtros de mangas	a zaranda		rica de Tecle	Instalación electrica filtro de mangas	rica de zaranda	instalación eléctrica para el blower			ría neumatica	ría de polvo	ver .	de mangas	Montaje de estación de descarga Montaje de portico para vidas	nda	iva				ico para vigas	e para blower	anda	o de mangas	orte para tuberías	ición de descarga		The second secon
T	τ							1 día?	1 día?	1 dia?	1 dia?	1 día	1 dia?	2 días	2 días	2 dias	3 días	15 días	1 día	3 días	7 días	2 días	1 dla	2 días	2 días	1 día	16 dias	18 días		5 días	3 dias	15 días	15 días	3 días	10 dlas	15 días	
Resumen	Hito							lun 03/09/07	lun 03/09/07	1un 03/09/07	lun 03/09/07	lun 03/09/07	lun 03/09/07	lun 24/09/07	mar 25/09/07	jue 06/09/07	jue 06/09/07	jue 06/09/07	vie 21/09/07	lun 03/09/07	lun 03/09/07	mar 04/09/07	lun 24/09/07	mie 19/09/07	mar 04/09/07	lun 03/09/07	lun 03/09/07	lun 03/09/07		lun 03/09/07	lun 03/09/07	lun 03/09/07	lun 03/09/07	lun 03/09/07	lun 03/09/07	lun 03/09/07	
	•							lun 03/09/07	lun 03/09/07	1un 03/09/07	lun 03/09/07	lun 03/09/07	Jun 03/09/07					mlé 26/09/07		mié 05/09/07	mar 11/09/07			mar 18/09/07		lun 03/09/07	Jun 24/09/07	mié 26/09/07		vie 07/09/07	mié 05/09/07	vie 21/09/07	vie 21/09/07	mié 05/09/07	vie 14/09/07	vie 21/09/07	The second secon
Hito externo	areas externas				٠,							. 7		2	. 17	1	8		16,32			3	5.29,30	1 4 3	13,28								. ,				Control of Spinor man over 170
The state of the s					••								1					1			ì					F	1	1								1	The state of the s
Nation of								THE TRACE OF THE PARTY OF THE P																													the advance of the control of the co
								The second secon				 		T.											1				: : ::::::::::::::::::::::::::::::::::		ze so za yi le syd						(
								The same of the sa						EW		i de Guder			I										· .	, ,							

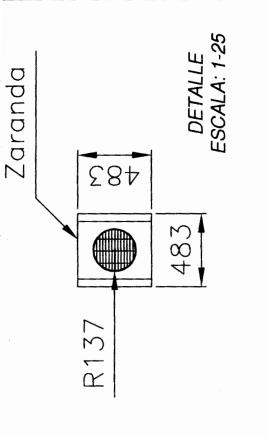





618

EQUIPOS PARA ESTACION DE DESCARGA Carlos Carranza Estacion de Descarga ACUTAD FIMCP 10/09/2007 1:50 **ESPOL**

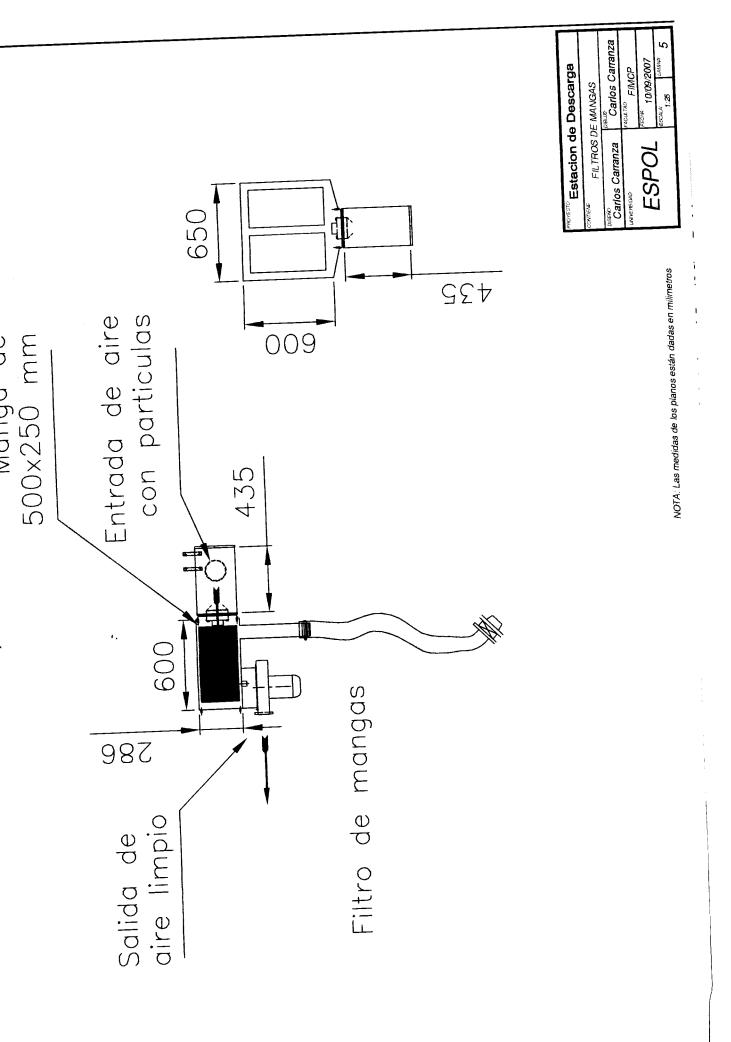
NOTA: Las medidas de los planos están dadas en milimetros



Vibrador

909

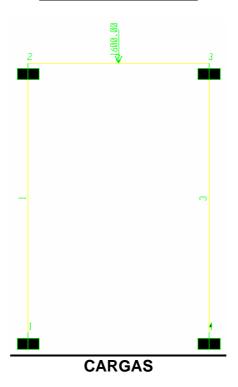
ESCALA: 1-50

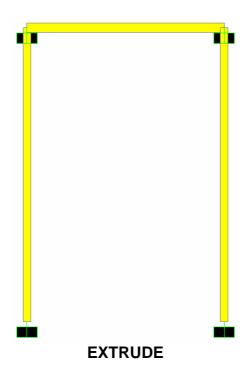


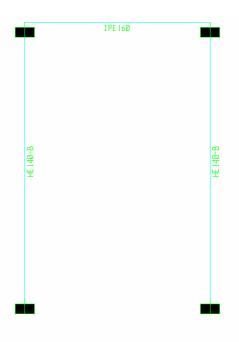
DETALLE ESCALA: 1-25

484

ргочесто Estacion de Descarga	Descar	ga
conπex€. ZARA	ZARANDA	
DISERS Carranza	Carlos C	carlos Carranza
UNVERSICAD	FACLL TAD FIMCP	CP
ESPOL	10/08/2007	2007
	Escata: Indicadas	LAMBNA: 4


NOTA: Las medidas de los planos están dadas en milimetros





CALCULO DE PORTICO PARA VIGA GUIA DE TECLE

ANALIZADO EN SAP

ANALISIS DE ESFUERZOS

COLUMNAS: HE 140-B VIGA: IPE 160

RESULTADOS

TABL	E: Assemble	ed Joint Mass	ses			
Joint	U1	U2	U3	R1	R2	R3
				Kgf-mm-	Kgf-mm-	Kgf-mm-
Text	Kgf-s2/mm	Kgf-s2/mm	Kgf-s2/mm	s2	s2	s2
1	0.0088	0.0088	0.0088	0	0	0
2	0.0116	0.0116	0.0116	0	0	0
3	0.0116	0.0116	0.0116	0	0	0
4	0.0088	0.0088	0.0088	0	0	0

TABLE: Base Reactions						
OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY
Text	Text	Kgf	Kgf	Kgf	Kgf-mm	Kgf-mm
DEAD	LinStatic	0	0	2000.4	0	3563014.37
DSTL1	Combination	0	0	2800.56	0	4988220.12
DSTL2	Combination	0	0	2400.48	0	4275617.25

ZCentroidFY	XCentroidFZ	YCentroidFZ	ZCentroidFZ
mm	mm	mm	mm
0	-1781.15	0	8753.05
0	-2493.61	0	12254.27
0	-2137.38	0	10503.66

TABLE	: Elemen	t Forces - Frai	mes				
Frame	Station	OutputCase	CaseType	Р	V2	М3	ElemStation
Text	mm	Text	Text	Kgf	Kgf	Kgf-mm	mm
1	0	DEAD	LinStatic	-86.57	0	0	0
1	2565	DEAD	LinStatic	-3.754E-15	0	0	2565
1	5130	DEAD	LinStatic	86.57	0	0	5130
1	0	DSTL1	Combination	-121.2	0	0	0
1	2565	DSTL1	Combination	-5.256E-15	0	0	2565
1	5130	DSTL1	Combination	121.2	0	0	5130
1	0	DSTL2	Combination	-103.89	0	0	0
1	2565	DSTL2	Combination	-4.505E-15	0	0	2565
1		DSTL2	Combination	103.89	0	0	5130
2	0	DEAD	LinStatic	0	-827.06	-701467.5 -	0
2	428.75	DEAD	LinStatic	0	-820.29	348316.95	428.75
2	857.5	DEAD	LinStatic	0	-813.53	1933.44	857.5
2	1286.25	DEAD	LinStatic	0	-806.76	349283.67	1286.25
2	1715	DEAD	LinStatic	0	-800	693733.75	1715
2	1715	DEAD	LinStatic	0	800	693733.75	1715
2	2143.75	DEAD	LinStatic	0	806.76	349283.67	2143.75
2	2572.5	DEAD	LinStatic	0	813.53	1933.44	2572.5
2	3001.25	DEAD	LinStatic	0	820.29	348316.95	3001.25
2		DEAD	LinStatic	0	827.06	-701467.5	3430
2	0	DSTL1	Combination	0	-1157.88	982054.49	0
2	428.75	DSTL1	Combination	0	-1148.41	487643.73	428.75
2	857.5	DSTL1	Combination	0	-1138.94	2706.81	857.5
2	1286.25	DSTL1	Combination	0	-1129.47	488997.14	1286.25
2	1715	DSTL1	Combination	0	-1120	971227.25	1715
2	1715	DSTL1	Combination	0	1120	971227.25	1715
2	2143.75	DSTL1	Combination	0	1129.47	488997.14	2143.75
2	2572.5	DSTL1	Combination	0	1138.94	2706.81	2572.5
2	3001.25	DSTL1	Combination	0	1148.41	487643.73	3001.25
2	3430	DSTL1	Combination	0	1157.88	982054.49	3430
2		DSTL2	Combination	0	-992.47	-841761	0

2	428.75	DSTL2	Combination	0	-984.35	417980.34	428.75
2	857.5	DSTL2	Combination	0	-976.23	2320.12	857.5
2	1286.25	DSTL2	Combination	0	-968.12	419140.4	1286.25
2	1715	DSTL2	Combination	0	-960	832480.5	1715
2	1715	DSTL2	Combination	0	960	832480.5	1715
2	2143.75	DSTL2	Combination	0	968.12	419140.4	2143.75
2	2572.5	DSTL2	Combination	0	976.23	2320.12	2572.5
						-	
2	3001.25	DSTL2	Combination	0	984.35	417980.34	3001.25
2	3430	DSTL2	Combination	0	992.47	-841761	3430
3	0	DEAD	LinStatic	-86.57	0	0	0
3	2565	DEAD	LinStatic	-3.754E-15	0	0	2565
3	5130	DEAD	LinStatic	86.57	0	0	5130
3	0	DSTL1	Combination	-121.2	0	0	0
3	2565	DSTL1	Combination	-5.256E-15	0	0	2565
3	5130	DSTL1	Combination	121.2	0	0	5130
3	0	DSTL2	Combination	-103.89	0	0	0
3	2565	DSTL2	Combination	-4.505E-15	0	0	2565
3	5130	DSTL2	Combination	103.89	0	0	5130

TABLE: Element Joint Forces - Frames												
Frame	Joint	OutputCase	CaseType	F3	M2							
Text	Text	Text	Text	Kgf	Kgf-mm							
1	1	DEAD	LinStatic	86.57	0							
1	2	DEAD	LinStatic	86.57	0							
1	1	DSTL1	Combination	121.2	0							
1	2	DSTL1	Combination	121.2	0							
1	1	DSTL2	Combination	103.89	0							
1	2	DSTL2	Combination	103.89	0							
2	2	DEAD	LinStatic	827.06	-701467.5							
2	3	DEAD	LinStatic	827.06	701467.5							
		DOT! 4		4.4== 00	-							
2	2	DSTL1	Combination	1157.88	982054.49							
2	3	DSTL1	Combination	1157.88	982054.49							
2	2	DSTL2	Combination	992.47	-841761							
2	3	DSTL2	Combination	992.47	841761							
3	4	DEAD	LinStatic	86.57	0							
3	3	DEAD	LinStatic	86.57	0							
3	4	DSTL1	Combination	121.2	0							
3	3	DSTL1	Combination	121.2	0							
3	4	DSTL2	Combination	103.89	0							
3	3	DSTL2	Combination	103.89	0							

TABL	E: Joint React	tions		
Joint	OutputCase	CaseType	F3	M2
Text	Text	Text	Kgf	Kgf-mm
1	DEAD	LinStatic	86.57	0
1	DSTL1	Combination	121.2	0
1	DSTL2	Combination	103.89	0
2	DEAD	LinStatic	913.63	-701467.5
				-
2	DSTL1	Combination	1279.08	982054.49
2	DSTL2	Combination	1096.35	-841761
3	DEAD	LinStatic	913.63	701467.5
3	DSTL1	Combination	1279.08	982054.49
3	DSTL2	Combination	1096.35	841761
4	DEAD	LinStatic	86.57	0
4	DSTL1	Combination	121.2	0
4	DSTL2	Combination	103.89	0

RESULTADOS DEL ANALISIS DE LA VIGA GUIA DE TECLE

Distribución de los pesos

TABL	E: Assembled Jo	oint Masses				
Joint	U1	U2	U3	R1	R2	R3
				Ton-mm-	Ton-mm-	Ton-mm-
Text	Ton-s2/mm	Ton-s2/mm	Ton-s2/mm	s2	s2	s2
1	0,000001811	0,000001811	0,000001811	0	0	0
2	0.000001811	0.000001811	0.000001811	0	0	0

Reacciones en las bases

TABLE: Base	e Reactions						
OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ
Text	Text	Ton	Ton	Ton	Ton-mm	Ton-mm	Ton-mm
DEAD	LinStatic	0	0	1,6355	2012,04	-7177,14	0
DSTL1	Combination	0	0	2,2897	2816,85	-10048	0
DSTL2	Combination	0	0	1,9626	2414,44	-8612,57	0

GlobalX	GlobalY	GlobalZ	XCentroidFX	YCentroidFX	Z CentroidFX
mm	mm	mm	mm	mm	mm
0	0	0	0	0	0
0	0	0	0	0	0

0 0 0 0 0

XCentroidFY	YCentroidFY	ZCentroidFY	XCentroidFZ	YCentroidFZ	Z CentroidFZ
mm	mm	mm	mm	mm	mm
0	0	0	4388,28	1230,21	0
0	0	0	6143,59	1722,29	0
0	0	0	5265,93	1476,25	0

Fuerzas cortantes y Momentos de torsión

TABLE: Element Forces - Frames										
Frame	Station	OutputCase	CaseType	P	V2	V3	T	M2	M3	
							Ton-	Ton-		
Text	mm	Text	Text	Ton	Ton	Ton	mm	mm	Ton-mm	
1	0	DEAD	LinStatic	0	-0,8178	0	0	0	-695,95	
1	428,63	DEAD	LinStatic	0	-0,8133	0	0	0	-346,39	
1	857,25	DEAD	LinStatic	0	-0,8089	0	0	0	1,27	
1	1285,88	DEAD	LinStatic	0	-0,8044	0	0	0	347,02	
1	1714,5	DEAD	LinStatic	0	-0,8	0	0	0	690,88	
1	1714,5	DEAD	LinStatic	0	0,8	0	0	0	690,88	
1	2143,13	DEAD	LinStatic	0	0,8044	0	0	0	347,02	
1	2571,75	DEAD	LinStatic	0	0,8089	0	0	0	1,27	
1	3000,38	DEAD	LinStatic	0	0,8133	0	0	0	-346,39	
1	3429	DEAD	LinStatic	0	0,8178	0	0	0	-695,95	

Fuerzas y momentos combinados

TABLE:	Eleme	nt Joint Forces - I				
Frame	Joint	OutputCase	CaseType	F1	F2	F3
Text	Text	Text	Text	Ton	Ton	Ton
1	1	DEAD	LinStatic	0	0	0,8178
1	2	DEAD	LinStatic	0	0	0,8178

M1	M2	M3
Ton-mm	Ton-mm	Ton-mm
0	-695,95	0
0	695,95	0
0	-974,33	0
0	974,33	0
0	-835,14	0
0	835,14	0

Desplazamientos en las juntas

TABLE: Joint Displacements										
Joint	OutputCase	CaseType	U1	U2	U3					
Text	Text	Text	mm	mm	mm					
1	DEAD	LinStatic	0	0	0					
1	DSTL1	Combination	0	0	0					
1	DSTL2	Combination	0	0	0					
2	DEAD	LinStatic	0	0	0					
2	DSTL1	Combination	0	0	0					
2	DSTL2	Combination	0	0	0					

TABL	E: Joint Displa	cements			
Joint	OutputCase	CaseType	R1	R2	R3
Text	Text	Text	Radians	Radians	Radians
1	DEAD	LinStatic	0	0	0
1	DSTL1	Combination	0	0	0
1	DSTL2	Combination	0	0	0
2	DEAD	LinStatic	0	0	0
2	DSTL1	Combination	0	0	0

Reacciones en las juntas

					,	_		
TABL	E: Joint Reacti							
Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
						Ton-	Ton-	Ton-
Text	Text	Text	Ton	Ton	Ton	mm	mm	mm
1	DEAD	LinStatic	0	0	0,8178	0	-695,95	0
1	DSTL1	Combination	0	0	1,1449	0	-974,33	0
1	DSTL2	Combination	0	0	0,9813	0	-835,14	0
2	DEAD	LinStatic	0	0	0,8178	0	695,95	0
2	DSTL1	Combination	0	0	1,1449	0	974,33	0
2	DSTL2	Combination	0	0	0,9813	0	835,14	0

Dimensiones de los elementos

TABLE: O				
JointElem JointObject		GlobalX	GlobalY	GlobalZ
Text	Text	mm	mm	mm
1	1	2673,78	1230,21	0
2	2	6102,78	1230,21	0

Datos de diseño

TABLE: Steel Design 1 - Summary Data - AISC-LRFD93								
Frame	DesignSect		DesignTyp	e Status	Ratio			
Text	Text Text		Text	Text	Unitless			
1 IPE120		120	Beam	No Message	es 0,704653			
RatioTy	ype	Combo	Location	ErrMsg	WarnMsg			
Text		Text	mm	Text	Text			
PMM		DSTL1	3429	No Messages	No Messages			

RESULTADOS DEL ANALISIS DE LA TOLVA

	TABLE: Assembled Joint Masses								
Joint	U1	U2	U3	R1 Ton-mm-	R2 Ton-mm-	R3 Ton-mm-			
Text	Ton-s2/mm	Ton-s2/mm	Ton-s2/mm	s2	s2	s2			
1	2.997E-07	2.997E-07	2.997E-07	0	0	0			
2	2.997E-07	2.997E-07	2.997E-07	0	0	0			
3	0.000001276	0.000001276	0.000001276	0	0	0			
4	0.000001276	0.000001276	0.000001276	0	0	0			
5	2.997E-07	2.997E-07	2.997E-07	0	0	0			
6	0.000001276	0.000001276	0.000001276	0	0	0			
7	2.997E-07	2.997E-07	2.997E-07	0	0	0			
8	0.000001276	0.000001276	0.000001276	0	0	0			
9	2.997E-07	2.997E-07	2.997E-07	0	0	0			
10	0.000001276	0.000001276	0.000001276	0	0	0			
11	2.997E-07	2.997E-07	2.997E-07	0	0	0			
12	0.000001276	0.000001276	0.000001276	0	0	0			
13	2.997E-07	2.997E-07	2.997E-07	0	0	0			
14	0.000001276	0.000001276	0.000001276	0	0	0			
15	2.997E-07	2.997E-07	2.997E-07	0	0	0			
16	0.000001276	0.000001276	0.000001276	0	0	0			
17	2.997E-07	2.997E-07	2.997E-07	0	0	0			
18	0.000001276	0.000001276	0.000001276	0	0	0			
19	2.997E-07	2.997E-07	2.997E-07	0	0	0			

TABLE: Auto Wave 3 - Wave Characteristics - General								
WaveChar	WaveType	KinFactor	SWaterDepth	WaveHeight	WavePeriod	WaveTheory		
Text	Text	Unitless	mm	mm	Sec	Text		
Default	From Theory	1	45000	18000	10	Linear		
Delault	Theory	Ţ	45000	10000	12	Linear		

TABLE: Base Reactions							
OutputCase	CaseType	StepType	StepNum	GlobalFX	GlobalFY	GlobalFZ	GlobalMX
Text	Text	Text	Unitless	Ton	Ton	Ton	Ton-mm
DEAD	LinStatic			6.429E-17	6.69E-17	0.4596	-2.309E-14
MODAL	LinModal	Mode	1	-0.00004985	-0.00002123	-0.000179	0.05037
MODAL	LinModal	Mode	2	-0.00004139	0.000002632	0.0001034	-0.07309
				-			
MODAL	LinModal	Mode	3	0.000009947	0.00002153	0.00009107	-0.16
MODAL	LinModal	Mode	4	0.0002883	-0.0002265	0.0005496	0.92
MODAL	LinModal	Mode	5	-0.0014	-0.0001721	-0.0024	4.1
MODAL	LinModal	Mode	6	0.0062	-0.0041	-0.0092	49.9
MODAL	LinModal	Mode	7	0.0004513	0.0002995	0.0011	-2.27
						-	
MODAL	LinModal	Mode	8	-0.0058	-0.0023	21010.3452	16.73
MODAL	LinModal	Mode	9	3553.193	-14456.3085	-0.0014	16224712.54
MODAL	LinModal	Mode	10	-14456.3176	-3553.1943	-0.0248	3987894.64
MODAL	LinModal	Mode	11	8319.8592	74381.5067	-0.0037	-43320405
MODAL	LinModal	Mode	12	74381.4859	-8319.8764	-0.0655	4845553.51

GlobalMY	GlobalMZ	GlobalX	GlobalY	GlobalZ
Ton-mm	Ton-mm	mm	mm	mm
6.395E-14	-1.821E-14	0	0	0
-0.0741	-0.06822	0	0	0
0.02928	0.05291	0	0	0
0.05533	0.12	0	0	0
-1.4	-0.17	0	0	0
-0.03074	-1.17	0	0	0
-32.18	1.11	0	0	0
3.08	0.48	0	0	0
-8.5	0.58	0	0	0
3987838.98	1.98	0	0	0
-16224734	-1.24	0	0	0
4845588.68	4.47	0	0	0
43320339.95	-13.78	0	0	0

XCentroidFX	YCentroidFX	ZCentroidFX
mm	mm	mm
1.901E+17	493.44	1179.41
-594.81	300.54	2074.11
337.69	654.16	1710.09
4455.52	2597.56	1022.94
139.41	104.18	869.48
-509.04	139.97	1797.93
579672509	911626445	781.65
-		
12490000000	7942572720	2818.49
-16056646.1	1091.27	2000.78
0.00006585	-0.0002576	1453.51
-0.0003083	0.0007282	1453.51
0.0002362	-0.0003512	663.01
0.0001555	-0.0005073	663.01

XCentroidFY	YCentroidFY	ZCentroidFY
mm	mm	mm
199.16	1.827E+17	238.99
3920.01	1854.07	2300.19
9814.77	8053.63	7138.17
4418.45	2079.25	3269.02
629.87	-311.23	2667.59
7966.79	5505.33	6619.48
-1383008766	879408570	4233.37
11970000000	18820000000	2929.74
2528.83	-40972026	1463.88
-0.00007378	0.00004066	1453.51
0.003311	0.001861	1453.51
0.00002084	-0.00003705	663.01
0.006191	0.001923	663.01

XCentroidFZ mm	YCentroidFZ mm	ZCentroidFZ mm
-2.319E-14	-3.092E-14	1021.85
163.66	-8.62	1147.42
-968.1	-525.34	1190.33
-719.31	-931.65	1010.47
3008.84	582.7	1562.64
1073.41	-1236.57	1241.85
-4005.99	-3533.45	1127.65

-1582.2	-1214.55	1396.83
0.0001501	-0.0006371	253.63
-847609888	3448519155	1356.22
193073588.2	47453710.23	1411.1
-180632402	-1614977728	944.69
-91533933	10238787.53	1318.54

TABL	.E: Joint Read	ctions					
Joint	OutputCase	CaseType	StepType	StepNum	F1	F2	F3
Text	Text	Text	Text	Unitless	Ton	Ton	Ton
							-
40	MODAL	LinModal	Mode	7	-852.3521	-462.7449	1263.1883
40	MODAL	LinModal	Mode	8	444.9461	-323.2747	-379.5512
40	MODAL	LinModal	Mode	9	-343.7483	-1548.7502	676.9007
40	MODAL	LinModal	Mode	10	1444.4616	-1079.4467	-571.8545
40	MODAL	LinModal	Mode	11	3702.4793	5012.5489	-387.8144
40	MODAL	LinModal	Mode	12	2012.4326	2916.7112	682.1619
1	DEAD	LinStatic			0.0229	6.939E-17	0.0125
1	MODAL	LinModal	Mode	1	1509.3283	0.000002015	1385.8787
1	MODAL	LinModal	Mode	2	-377.702	935.3648	-352.0336
1	MODAL	LinModal	Mode	3	2065.8783	171.0116	1925.4825
•		Zii ii vi o dai	ouo	ŭ	2000.07.00		-
1	MODAL	LinModal	Mode	4	-1808.441	1202.4743	1604.7961
1	MODAL	LinModal	Mode	5	-994.2318	-2187.2204	-882.2732
1	MODAL	LinModal	Mode	6	-1061.391	4009.3399	-539.3089
1	MODAL	LinModal	Mode	7	1669.2031	2549.4097	848.1464
					-		-
1	MODAL	LinModal	Mode	8	4685.8987	-0.0022	1721.4891
					-		
1	MODAL	LinModal	Mode	9	1025.8664	-4071.8312	-130.5409
1	MODAL	LinModal	Mode	10	4173.7792	-1000.8072	531.1127
1	MODAL	LinModal	Mode	11	453.6413	3795.6486	217.5713
1	MODAL	LinModal	Mode	12	4055.6629	-424.5574	1945.1365
2	DEAD	LinStatic			0.0185	0.0135	0.0125
2	MODAL	LinModal	Mode	1	1221.0723	887.1609	1385.8787
2	MODAL	LinModal	Mode	2	-231.2989	-1227.6605	-846.9691
2	MODAL	LinModal	Mode	3	1773.5826	-780.0125	1764.6682
2	MODAL	LinModal	Mode	4	1128.2332	-2210.8266	-343.1825
2	MODAL	LinModal	Mode	5	1914.9366	813.1335	1798.8892
2	MODAL	LinModal	Mode	6	-852.744	-2085.1314	-973.2911
_		viodal		O	-	2000.1014	373.2311
2	MODAL	LinModal	Mode	7	3103.7099	3432.0737	-250.8215
					-		-
2	MODAL	LinModal	Mode	8	3790.9692	-2754.3025	1721.4892
2	MODAL	LinModal	Mode	9	3595.3541	-2186.7846	206.57

2 2 2 5	MODAL MODAL MODAL DEAD	LinModal LinModal LinModal LinStatic	Mode Mode Mode	11	2288.7362 567.2366 3951.9947 0.0071	3620.4096 3899.3148 -310.9592 0.0218	506.4096 1319.342 1445.7568 0.0125
5	MODAL	LinModal	Mode	1	-466.4081	-1435.4565	1385.8787
5	MODAL	LinModal	Mode	2	141.5008	1897.1791	1722.4583
5	MODAL	LinModal	Mode	3	1104.0641	690.2144	929.8107
5	MODAL	LinModal	Mode	4	335.2136	2043.9033	1816.8946
5	MODAL	LinModal	Mode		2435.0161	519.2507	-229.5015
5	MODAL	LinModal	Mode		4472.1952	-1581.8541	-62.2174
5	MODAL	LinModal	Mode	7	-889.8079	-1786.769	1003.1625
5	MODAL	LinModal	Mode	8	1448.0251	-4456.5524	1721.4892
5	MODAL	LinModal	Mode	9	3230.6032	2790.7694	464.7784
5 5 5 7 7	MODAL MODAL MODAL DEAD MODAL	LinModal LinModal LinModal LinStatic LinModal	Mode Mode Mode	10 11 12 1	2688.8219 503.7475 3811.9625 -0.0071 -466.4081	3255.6623 4039.3812 -374.4476 0.0218 1435.4566	288.274 1917.1665 394.1608 0.0125 1385.8787
7	MODAL	LinModal	Mode	2 3	522.9984	-2018.6687	1940.0271
7	MODAL	LinModal	Mode		-982.5745	-25.7153	260.203
7	MODAL	LinModal	Mode	4	1876.3798	-1533.5556	-779.7201
7	MODAL	LinModal	Mode	5	1587.725	-1447.5388	1657.0495
7	MODAL	LinModal	Mode	6	1091.1723	2289.0419	934.8387
7	MODAL	LinModal	Mode	7	4427.3726	674.6079	-369.1672
7	MODAL	LinModal	Mode	8	1448.0231	-4456.5544	1721.4889
7	MODAL	LinModal	Mode	9	-1616.046	3982.0192	545.4573
7 7 7 9	MODAL MODAL MODAL DEAD	LinModal LinModal LinModal LinStatic	Mode Mode Mode	11	3880.0691 350.9171 3829.0134 -0.0185	-1590.9866 4022.2827 -527.2849 0.0135	-39.9701 1782.7014 -808.008 0.0125
9	MODAL	LinModal	Mode	1	1221.0723	-887.1609	1385.8787
9	MODAL	LinModal	Mode	2	-843.8833	1424.2348	1416.5714
9 9 9	MODAL MODAL MODAL	LinModal LinModal LinModal	Mode Mode Mode		1577.0084 2221.3741 -73.4137	-295.1697 498.0048 2302.3753	-1335.001
9	MODAL	LinModal	Mode	7	3172.3726	-2223.5759	639.9789
9	MODAL	LinModal	Mode		544.2682	3344.041	775.0048
9	MODAL	LinModal	Mode		3790.9739	-2754.2978	-1721.489
9	MODAL	LinModal	Mode	9	4246.6885	-259.3009	417.7904

9 9	MODAL MODAL	LinModal LinModal	Mode Mode	10 11	361.2516 319.9567	-4221.6269 3871.6606	-352.9487 967.306
9 11	MODAL DEAD	LinModal LinStatic	Mode	12	3979.6741 -0.0229	-558.2242 3.123E-17	1701.5331 0.0125
11 11	MODAL MODAL	LinModal LinModal	Mode Mode	1 2	1509.3283 377.702	0.000005965 -935.3648	1385.8787 -352.0336
11 11 11 11 11	MODAL MODAL MODAL MODAL MODAL MODAL	LinModal LinModal LinModal LinModal LinModal LinModal	Mode Mode Mode Mode Mode	3 4 5 6 7 8	2065.8783 -1808.441 -994.2317 1061.3922 -1669.203 4685.8979	-171.0116 1202.4742 -2187.2204 -4009.3414 -2549.4092 -0.0044	1925.4825 1604.7961 882.2732 -539.3096 848.1464 -1721.489
11 11 11	MODAL MODAL MODAL	LinModal LinModal LinModal	Mode Mode Mode	9 10 11	1025.8666 4173.7804 453.6433	-4071.8309 -1000.8181 3795.652	130.5413 -531.1125 -217.5722
11 13	MODAL DEAD	LinModal LinStatic	Mode	12	4055.6639 -0.0185	-424.6063 -0.0135	1945.1358 0.0125
13 13	MODAL MODAL	LinModal LinModal	Mode Mode	1 2	1221.0723 231.2989	887.1609 1227.6605	1385.8787 -846.9691
13 13	MODAL MODAL	LinModal LinModal	Mode Mode	3 4	1773.5826 1128.2332	780.0125 -2210.8267	1764.6682 343.1825
13 13 13	MODAL MODAL MODAL	LinModal LinModal LinModal	Mode Mode Mode	5 6 7	1914.9366 852.7441 3103.7099	813.1335 2085.1337 -3432.0739	1798.8893 -973.2904 -250.8214
13 13 13	MODAL MODAL MODAL	LinModal LinModal LinModal	Mode Mode Mode	8 9 10	3790.9715 3595.3545 2288.7307	2754.3022 -2186.7847 3620.4165	1721.4891 -206.5702 -506.4097
13	MODAL	LinModal	Mode	11	567.235	3899.3146	1319.3405
13 15 15 15	MODAL DEAD MODAL MODAL	LinModal LinStatic LinModal LinModal	Mode Mode Mode	12 1 2	3952.001 -0.0071 -466.4081 -141.5008	-310.9504 -0.0218 -1435.4565 -1897.1791	1445.7632 0.0125 1385.8787 1722.4583
15	MODAL	LinModal	Mode	3	1104.0641	-690.2144	929.8107
15	MODAL	LinModal	Mode	4	335.2135	2043.9033	1816.8946
15	MODAL	LinModal	Mode	5	2435.0159	519.2506	229.5013
15	MODAL	LinModal	Mode	6	4472.1987	1581.8566	-62.2184
15	MODAL	LinModal	Mode	7	889.8079	1786.769	1003.1625

							-
15	MODAL	LinModal	Mode	8	1448.0238	4456.5539	1721.4889
15	MODAL	LinModal	Mode	9	3230.603	2790.7693	-464.7783
15	MODAL	LinModal	Mode	10	2688.8195	3255.6609	-288.2756
15	MODAL	LinModal	Mode	11	503.7467	4039.3822	- 1917.1684
15	MODAL	LinModal	Mode	12	3811.9311	-374.4486	-394.1569
17	DEAD	LinStatic			0.0071	-0.0218	0.0125
17	MODAL	LinModal	Mode	1	-466.4081	1435.4565	1385.8787
				_			.
17	MODAL	LinModal	Mode	2	-522.9984	2018.6687	1940.0271
17	MODAL	LinModal	Mode	3	982.5745	25.7153	260.203
17	MODAL	LinModal	Mode	4	1876.3798	-1533.5556	779.7201
17	MODAL	LinModal	Mode	5	1587.7249	-1447.5389	1657.0495
					-		
17	MODAL	LinModal	Mode	6	1091.1699	-2289.0402	934.8368
					-		
17	MODAL	LinModal	Mode	7	4427.3729	-674.6082	-369.1671
17	MODAL	LinModal	Mode	0	1448.0258	11EC EE22	- 1721.4891
17	MODAL	Liniviodai	Mode	8	1440.0200	4456.5532	1721.4091
17	MODAL	LinModal	Mode	9	1616.0458	3982.0192	-545.4574
				_	-		
17	MODAL	LinModal	Mode	10	3880.0713	-1590.9874	39.9708
							-
17	MODAL	LinModal	Mode	11	350.9184	4022.2821	1782.7016
17	MODAL	LinModal	Mode	12	3829.0214	-527.2766	807.9983
19	DEAD	LinStatic			0.0185	-0.0135	0.0125
19	MODAL	LinModal	Mode	1	1221.0723	-887.1609	1385.8787
19	MODAL	LinModal	Mode	2	843.8833	-1424.2348	1416.5714
13	WODAL	Lilliviodai	Mode	_	040.0000	-1424.2340	-
19	MODAL	LinModal	Mode	3	1577.0084	295.1697	1350.8279
19	MODAL	LinModal	Mode	4	2221.3741	498.0048	1335.001
19	MODAL	Lillivioual	Mode	4	2221.3741	490.0040	1333.001
19	MODAL	LinModal	Mode	5	-73.4136	2302.3756	1253.6143
19	MODAL	LinModal	Mode	6	3172.3751	2223.579	639.9795
19	MODAL	LinModal	Mode	7	-544.2685	-3344.0413	775.0046
13	WODAL	Lilliviodai	Mode	′	-344.2003	-3344.0413	773.0040
19	MODAL	LinModal	Mode	8	3790.9688	2754.3046	1721.4881
13	MODAL	Lillivioual	Wode	O	-	2734.3040	1721.4001
19	MODAL	LinModal	Mode	9	4246.6893	-259.3014	-417.7906
19	MODAL	LinModal	Mode	10	361.2507	-4221.6287	352.9496
19	MODAL	LinModal	Mode	11	319.9578	3871.6624	-967.3056
19	MODAL	LinModal	Mode	12		-558.245	1701.5405
-				_			

FUERZAS

F11	F22	F12	FMax	FMin	FAngle	FVM
Ton/mm	Ton/mm	Ton/mm	Ton/mm	Ton/mm	Degrees	Ton/mm
0.000062	-0.000072	-0.000037	0.000072	-0.000082	-14.446	0.000133
0.000062	-0.000072	0.000037	0.000072	-0.000082	14.446	0.000133
0.00004	-0.000055	0.000024	0.000046	-0.000061	13.332	0.000093
0.00004	-0.000055	-0.000024	0.000046	-0.000061	-13.332	0.000093
0.412396	1.374653	4.991517	5.908176	-4.121127	47.753	8.73147
-0.412396	-1.374653	4.991517	4.121127	-5.908176	42.247	8.73147
0.328872	1.096238	1.589364	2.347575	-0.922465	51.786	2.920207
-0.328871	-1.096238	1.589364	0.922465	-2.347575	38.214	2.920207
-0.721928	-1.138227	-0.524006	-0.366244	-1.493911	-34.168	1.348618
-0.578472	-0.660039	-1.389157	0.7705	-2.009011	-44.159	2.485506
-0.140571	-1.092166	-0.742614	0.265595	-1.498332	-28.676	1.647267
-0.028787	-0.719555	0.000912	-0.028786	-0.719556	0.076	0.705603
-0.447586	-1.662049	-7.190121	6.160899	-8.270534	-42.586	12.542421
0.622	1.903239	-7.074084	8.36565	-5.840412	-47.587	12.367431
-0.405361	-1.267566	-2.715139	1.912687	-3.585615	-40.489	4.83458
0.428076	1.51056	-2.814863	3.835744	-1.897108	-50.442	5.058535
-1.627528	-1.567703	4.297737	2.700225	-5.895457	45.199	7.613585
-2.114547	-3.191099	2.962443	0.358125	-5.663772	39.851	5.85106
-1.116739	-1.879045	1.05932	-0.372087	-2.623697	35.105	2.45886
-1.538213	-3.283958	2.031203	-0.200273	-4.621898	33.373	4.525087
1.397914	2.844629	7.400452	9.556992	-5.314449	47.791	13.052571
0.362909	-0.605388	8.028771	7.922116	-8.164595	43.275	13.932028
1.072495	2.707568	3.512625	5.496539	-1.716477	51.551	6.526325
0.176785	-0.278131	3.055308	3.01309	-3.114436	42.871	5.306835
-6.801981	-5.704937	-1.247806	-4.890412	-7.616506	-56.865	6.684268
-6.164288	-3.579294	-5.943698	1.210815	-10.954396	-51.134	11.607266
-5.267118	-6.268224	-2.88151	-2.843008	-8.692334	-40.073	7.676392
-4.917519	-5.102897	0.221321	-4.770262	-5.250154	33.638	5.027416
1.752779	-0.858202	-10.032683	10.564552	-9.669975	-41.293	17.529323
3.367602	4.524539	-8.178274	12.144777	-4.252636	-47.023	14.738651
1.568316	0.769755	-2.75553	3.953343	-1.615272	-40.878	4.962232
2.453599	3.720696	-3.980838	7.118085	-0.94379	-49.521	7.633862
-14.237466	13.403374 13.403374	8.324585	15.716853	-16.550946 -16.550949	74.469	27.947846 27.947852
-14.237466 -9.249265	9.660717	-8.324592 -5.467615	15.716857 11.127799	-10.550949	-74.469 -74.98	18.918703
-9.249265 -9.249265	9.66072	5.467612	11.127799	-10.716347	74.98	18.918702
2.917762	4.402408	3.473637	7.212155	0.108015	51.031	7.158758
0.074351	-5.075626	4.88761	3.02379	-8.025064	31.109	9.889948
0.937069	-0.53169	-1.160362	1.575917	-1.170538	-28.835	2.387121
1.253844	0.524227	-2.074743	2.995607	-1.217536	-40.014	3.755438
20.31169	-4.940808	-9.954212	23.763641	-8.392759	-19.126	28.889298
20.520054	-4.246264	9.341489	23.648376	-7.374586	18.515	28.071822
14.960717	-0.012257	6.35755	17.295937	-2.347477	20.169	18.581225
14.937506	-0.089628	-6.120493	17.114868	-2.266991	-19.583	18.35367
	0.000020	320.00			. 5.550	. 5.55501

3.20914	-12.323829	-17.908423	14.962642	-24.077331	-33.277	34.115378
4.054637	-9.505505	-11.014075	10.208212	-15.65908	-29.192	22.566914
0.647416	-12.061062	-6.701085	3.527943	-14.941589	-23.261	16.982654
2.152691	-7.043482	-11.432212	9.876855	-14.767646	-34.045	21.4824
8.204693	-23.44244	-1.051077	8.239563	-23.47731	-1.9	28.504688
7.82147	-24.719849	14.160008	13.120237	-30.018616	20.516	38.302863
3.430082	-19.938191	9.328564	6.697238	-23.205347	19.302	27.180008
2.74783	-22.212362	-1.109779	2.797076	-22.261608	-2.541	23.783823

MOMENTOS

M11	M22	M12	MMax	MMin	MAngle
Ton-mm/mm	Ton-mm/mm	Ton-mm/mm	Ton-mm/mm	Ton-mm/mm	Degrees
0.000009093	0.00001325	-5.281E-07	0.00001331	0.000009027	-82.869
0.000009093	0.00001325	5.281E-07	0.00001331	0.000009027	82.869
-0.000006553	-0.00001801	-0.000001456	-0.000006371	-0.00001819	-7.131
-0.000006553	-0.00001801	0.000001456	-0.000006371	-0.00001819	7.131
1.96544	0.75469	1.56176	3.03505	-0.31492	34.406
-1.96544	-0.75469	1.56176	0.31492	-3.03505	55.594
-8.93048	-3.6494	0.47448	-3.6071	-8.97277	84.907
8.93048	3.6494	0.47448	8.97277	3.6071	5.093
0.915	-0.17395	-0.35153	1.01862	-0.27757	-16.424
1.22698	-0.03717	-0.16932	1.24927	-0.05945	-7.498
3.69689	1.56029	-0.00866	3.69692	1.56025	-0.232
1.15285	0.44841	-0.12885	1.17568	0.42558	-10.047
-1.30668	-0.49575	-1.92945	1.07038	-2.87281	-50.934
1.01939	0.52407	-1.95389	2.74126	-1.1978	-41.388
9.15871	4.01026	-0.52069	9.21084	3.95813	-5.717
-9.80917	-4.27967	-0.50457	-4.23401	-9.85484	-84.829
0.10083	-0.57888	0.55595	0.41258	-0.89062	29.281
0.75812	-0.48515	0.76025	1.11853	-0.84556	25.364
0.33975	0.2586	0.18905	0.49253	0.10583	38.943
4.36854	2.47111	-0.00819	4.36858	2.47107	-0.247
-0.90052	0.15074	1.44665	1.1643	-1.91408	54.984
0.49634	0.34994	1.35052	1.77564	-0.92936	43.449
-5.3887	-2.99322	0.14577	-2.98438	-5.39754	86.53
3.17323	1.70876	0.23858	3.21111	1.67087	9.023
-0.08031	-0.96281	-0.44422	0.10457	-1.14768	-22.596
-1.05209	-1.24071	-0.34636	-0.78743	-1.50537	-37.384
2.26076	2.31897	0.1417	2.43452	2.14521	50.804
0.86913	1.17489	-0.13856	1.22834	0.81568	-68.907
1.45401	0.78695	-0.98166	2.15725	0.08371	-35.617
-1.00682	0.08322	-1.0203	0.69495	-1.61855	-59.055
1.14402	0.75871	-0.05137	1.15075	0.75198	-7.465
-2.38001	-2.13844	0.05931	-2.12466	-2.39378	76.924
-1.94946	-2.87695	0.11788	-1.93472	-2.8917	7.131
-1.94946	-2.87695	-0.11788	-1.93472	-2.8917	-7.131
1.44298	3.94037	0.31741	3.98008	1.40327	82.869

1.44298	3.94037	-0.31741	3.98009	1.40327	-82.869
-1.0192	-0.44681	0.73071	0.05175	-1.51776	55.694
1.31827	0.87709	0.74255	1.87231	0.32305	36.727
-1.12076	-1.7086	-0.22321	-1.04561	-1.78375	-18.607
0.85884	1.1007	-0.1744	1.192	0.76754	-62.368
2.12626	2.98442	-0.13481	3.0051	2.10558	-81.279
1.95497	2.88741	0.02686	2.88818	1.95419	88.352
-1.7146	-4.04493	-0.31843	-1.67187	-4.08765	-7.643
-1.85966	-4.25079	0.34757	-1.81017	-4.30028	8.105
-0.20684	0.25161	0.31994	0.41596	-0.37119	62.81
0.93647	1.47629	0.43641	1.71951	0.69325	60.868
-1.23306	-2.28619	-0.25197	-1.17588	-2.34337	-12.786
0.2111	-0.1542	-0.06128	0.22111	-0.16421	-9.274
1.06399	2.18369	-0.29989	2.25895	0.98873	-75.912
0.54579	1.6286	-0.04292	1.6303	0.54409	-87.734
-0.8001	-2.20897	-0.13937	-0.78644	-2.22263	-5.595
-1.45466	-3.17529	0.28135	-1.40982	-3.22012	9.055

CORTANTES

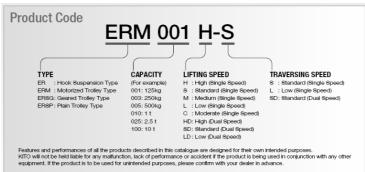

V13	V23	VMax	VAngle
Ton/mm	Ton/mm	Ton/mm	Degrees
-4.133E-09	4.435E-08	4.454E-08	95.324
4.133E-09	4.435E-08	4.454E-08	84.676
8.461E-10	5.728E-08	5.729E-08	89.154
-8.461E-10	5.728E-08	5.729E-08	90.846
0.046893	0.000038	0.046893	0.046
0.046893	-0.000038	0.046893	-0.046
	-		-
0.044746	0.000007749	0.044746	0.009923
0.044746	0.000007749	0.044746	0.009923
-0.005448	-0.002856	0.006151	-152.333
-0.004659	-0.00331	0.005716	-144.606
-0.006607	-0.001897	0.006874	-163.984
-0.006768	-0.001804	0.007005	-165.079
-0.037625	0.002108	0.037684	176.794
-0.037731	-0.001281	0.037753	-178.056
-0.049873	-0.000099	0.049873	-179.887
-0.049851	0.000595	0.049855	179.316
0.000188	-0.005901	0.005904	-88.179
0.001008	-0.003167	0.003323	-72.349
0.012279	-0.002971	0.012633	-13.604
0.012111	-0.003531	0.012615	-16.256
0.001463	-0.000772	0.001654	-27.828
0.001077	0.005039	0.005153	77.934
0.025876	0.002125	0.025963	4.694
0.025955	0.000935	0.025972	2.063

0.004436	-0.004093	0.006036	-42.7
0.004638	-0.006655	0.008112	-55.124
-0.005275	-0.00532	0.007492	-134.761
-0.005317	-0.004795	0.00716	-137.953
0.011529	0.005366	0.012717	24.957
0.011449	-0.001121	0.011504	-5.593
-0.01342	0.001333	0.013486	174.327
-0.013403	0.002661	0.013665	168.77
0.000915	-0.009634	0.009677	-84.576
-0.000915	-0.009634	0.009677	-95.424
-0.000187	-0.012496	0.012497	-90.859
0.000187	-0.012496	0.012497	-89.141
-0.012416	-0.003974	0.013037	-162.252
-0.012307	0.005525	0.01349	155.823
0.009111	0.001919	0.009311	11.892
0.009089	-0.000026	0.009089	-0.164
0.00016	0.010931	0.010932	89.159
0.001651	0.010235	0.010367	80.835
-0.000514	0.012843	0.012854	92.293
-0.000819	0.012986	0.013012	93.611
-0.005822	-0.001514	0.006016	-165.421
-0.005044	0.006795	0.008463	126.587
0.005906	0.004708	0.007553	38.558
0.005747	0.003007	0.006486	27.617
0.001604	0.007709	0.007874	78.243
0.003321	0.003942	0.005155	49.894
-0.002465	0.008125	0.008491	106.879
-0.002817	0.008896	0.009331	107.569

FUERZAS Y MOMENTOS EN UNIONES

F1	F2	F3	M1	M2	М3
Ton	Ton	Ton	Ton-mm	Ton-mm	Ton-mm
0.0115	-0.0158	0.0063	0.004519	4.007E-17	-0.004206
-					
0.00004428	0.0196	0.0063	-0.003656	-0.002656	0.004206
-0.0104	0.0126	-0.0025	0.14	0.04362	-0.19
-0.001	-0.0163	-0.0025	-0.14	-0.04903	0.19
-754.6642	-654.8383	-692.9394	207.58	-9.178E-08	2321.48
995.4404	-86.1948	692.9394	167.94	122.02	2321.48
489.8106	568.7821	494.6048	23929.76	7528.31	-27784.38
-730.5868	172.2509	-494.6048	23784.61	7975.04	-27784.38
183.0103	308.2894	209.7492	60.11	-80.87	395.27
-65.3424	-103.2619	-69.9373	-73.44	-144.97	-950.99
-159.9307	-226.1068	-174.5878	-7320.52	-2301.72	8115.52

42.2628	21.0792	34.7759	-951.5	-309.21	1751.8
1100.9261	957.3215	1033.2704	-328.79	-14.78	-2161.97
		-			
-1488.7658	160.2552	1052.0224	-264.69	-148.34	-1981.4
-762.2571	-857.2981	-771.113	-30410.32	-9599.35	36357.71
1150.0968	-260.2786	789.8651	-31093	-10394.6	37211.23
-504.8321	97.5995	-354.6284	201.9	-2.02	680.45
1159.6122	-539.6335	741.3776	-32.51	-28.71	-145.51
326.755	-74.3624	225.7677	11173.86	3665.4	-14932.06
-981.535	516.3964	-612.517	18171.01	6109.86	-22432.41
4000 5705	4070 4000	4055 5005	444	0.00	074.00
-1223.5765	-1370.4962	1255.5995	111	3.68	374.09
1414.9851	41.1496	1073.6158	183.55	132.39	762.74
906.9965	1229.4728	981.7468	32984.83	10479.19	-41467.83
-1098.4051	99.8739	-799.7631	29561.93	9730.31	-37938.56
417.4297	2547.1674	943.2965	-77.19	67.74	170.69
375.9362	-1669.823	-127.9408	100.93	98.09	-308.04
-309.9939	-2280.7015	-794.0934	-24812.89	-7767.24	31939.24
-483.3721	1403.357	-21.2624	-5989.78	-1751.05	8133.28
1437.4828	421.541	1195.3489	121.4	43.07	-268.43
-2283.7806	872.3952	1517.3325	74.74	-41.79	-79.38
-966.2199	-359.8606	-817.5236	-35116.1	-11380.3	46037.08
1812.5177	-934.0755	1139.5072	-42463.48	-14020.37	55438.05
-2342.9481	3719.6979	-860.7439	-42403.46 -977.77	-0.00001526	921.62
290.8974	-4386.449	-860.7439	791.03	574.72	-921.62
290.6974	-4300.449	860.744	-32858.06	-10024	42789.57
				11203.88	
-47.5721	3637.5702	860.7447	32474.66		-42789.53
-334.9563	-719.4658	-435.0443	-218.57	-108.1	203.25
435.9342	492.1762	455.8595	-340.41	-119.91	321.63
-195.4398	479.1836	-31.5484	36536.57	11697.67	-47936.03
94.4618	-251.894	10.7331	31068.35	10169.12	-40878.11
2130.6364	-5856.4297	174.6721	889.28	-26.57	-826.93
-1801.3972	5982.4675	109.3847	-661.27	-532.41	788.47
-1817.802	5030.8532	-140.4803	34533.82	10551.72	-44903.6
1488.5627	-5156.891	-143.5765	-39087.21	-13387.39	51411.92
3681.4456	1641.1597	3190.4378	66.73	-58.72	-82.71
-2708.5478	1699.5487	1630.8328	-353.02	-202.53	501.57
-2700.3470	1099.5407	1030.0320	-333.02	-202.55	301.37
-3210.7402	-1847.0923	2887.0547	-25055.69	-8415.4	33551.32
2237.8424	-1493.616	1327.4496	-53652.81	-17539.45	70919.54
1641.4295		627.8821	596.57	6.57	-739.48
2869.1783	2601.638	2813.0907	-335.32	-292.86	549.63
-1574.2699	1736.9623	-765.3892	49467.48	15690.77	-64898.38
	11 30.3020	-			2 .000.00
-2936.3379	-1831.671	2675.5836	-13495.61	-4843.19	17547.6


EJEMPLO DE MODELO DE TECLE

Especificación de modelos de tecles

			W.L.L. (t)												
Models	Lifting Speed		125ka	kg 250kg 500kg 1		1	1 1.5	2	0.5	3	5	Large Capacity Type			уре
			IZSKQ	250kg	SOURG	'	1.0	2	2.5	3	5	7.5	10	15	20
		Moderate								•					
Hook Suspension Type ER	Cinalo	Low			•	•		•		•	•		•		
	Single Speed	Medium				•		•							
		Standard		•	•	•	•	•	•	•			•	•	•
		High	•	•											
	Dual Speed	Low			•	•		•		•	•				
		Standard		•	•	•	•	•	•	•					
		High	•	•											
		Moderate								•					
Motorized Trolley Type	a	Low			•	•		•		•	•		•		
ERM Geared Trolley Type ERSG Plain Trolley Type	Single Speed	Medium				•		•							
	Оросси	Standard		•	•	•	•	•	•	•		•	•	•	•
		High	•	•											
		Low			•	•		•		•	•				
ERSP	Dual Speed	Standard		•	•	•	•	•	•	•					
	Opecu	High	•	•											

[•]W.L.L.: indicates maximum load (working load limit) which a hoist is designed to support in general service.

Codificación de tecles de acuerdo al modelo

Nuestro modelo según la tabla correspondería:

ERM 020 M-S

Donde:

• ERM: Tecle tipo motorizado

• 020: 2 toneladas

• M: Tipo médium (una sola velocidad)

• S: Estándar

Especificación de velocidades

		50 Hz										60	Hz			
W.L.L.		Single Speed						Dual Speed			ingle Spe	ed		Dua	al Speed	
(t)	Moderate	Low	Medium	Standard	High	Low	Standard	High	Moderate	Low	Medium	Standard	High	Low	Standard	High
125kg					14.2			14.5/4.8					17.0			17.4/5.8
250kg				9.7	14.9		7.2/2.4	15.1/5.0				11.6	17.9		8.6/2.9	18.1/6.0
500kg		3.7		7.6		3.6/1.2	7.6/2.5			4.4		9.1		4.3/1.4	9.1/3.0	
1		3.9	6.1	7.3		3.6/1.2	7.3/2.4			4.7	7.3	8.8		4.3/1.4	8.8/2.9	
1.5				5.1			5.1/1.7					6.1			6.1/2.0	
2		3.6	6.0	7.1		3.7/1.2	7.2/2.4			4.3	7.2	8.5		4.4/1.5	8.6/2.9	
2.5				5.7			5.8/1.9					6.9			6.9/2.3	
3	3.0	4.1		5.6		4.1/1.4	5.8/1.9		3.6	4.9		6.7		5.0/1.7	7.0/2.3	
5		2.9				2.9/1.0				3.5				3.5/1.2		
7.5				2.3								2.8				
10		1.7		3.4						2.0		4.1				
15				2.3								2.8				
20				1.7								2.0				
raver	sing	Spe	eed	m/min)												
14/1 1				50	Hz				60 Hz							
W.L.L. (t)			Single Sp				Dual Spe				Single Sp				Dual Spe	
.,		Low		Stand	dard		Standa	rd		Low		Stan	dard		Standa	rd
125kg to 5t		10		20)		20/5			12		24	4		24/6	
7.5 to 20t		10								12						

Con velocidad de:

7.2 m/min para uno de 60 Hz de una sola velocidad.

BIBLIOGRAFÍA

- Chiquito Leonardo, "Diseño de un Sistema de Extracción de Humos y Polvos secundarios para el Proceso de producción de acero mediante Horno de Arco Eléctrico", (Tesis, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, 2006).
- Avallone Eugene A., Baumeister III Theodore, MARKS, Manual del Ingeniero Mecánico, Novena Edición, Tomos I y II, Mc Graw Hill.
- Mecanica de Fluidos, Irving H. Shames, Tercera Edición, McGraw-Hill.
- Andrade Francisco Ing., Ventilación Industrial, Diplomado en Manejo Ambiental, ESPOL, julio 2001.
- Perry Robert-Green Don, PERRY, Manual del Ingeniero Químico, Séptima Edición, Volumen II, Mc Graw Hill.
- Suárez E. Luis Dr.-Vásquez Driánfel, Introducción Visual a SAP2000, Seminario Internacional de Computers and Structures, Inc. (CSI), México 2.004.