ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica

y Ciencias de la Producción

"DISEÑO DE UNA LAVADORA SEMIAUTOMATICA DE CILINDROS PARA BEBIDAS GASEOSAS"

TESIS DE GRADO

Previa la obtención del Título de

Biblioteca Central

INGENIERO MECÁNICO

Presentada por:

FRANCISCO GEOVANNY ANCHALUISA GUANO

GUAYAQUIL - ECUADOR

AÑO

1998

AGRADECIMIENTO

Biblioteca Central

Al Ing. Ernesto Martinez L. Director de Tesis por su invalorable apoyo У acertada dirección, así como a cada una de las personas e instituciones que han colaborado en la realización del presente trabajo.

DEDICATORIA

Biblioteca Central

A MIS PADRES

A MIS HERMANOS

TRIBUNAL DE GRADUACIÓN

Biblioteca Central SEG Ing. Ernesto Martinez L. Ing. Eduardo Rivadeneira P. DECANO DE LA FIM DIRECTOR DE TESIS

NU CRO

Ing. Manuel Helguero G.

VOCAL

DECLARACION EXPRESA

"La responsabilidad del contenido de esta Tesis de Grado, me corresponde exclusivamente, y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

1. 821

heholu

FRANCISCO GEOVANNY ANCHALUISA GUANO

RESUMEN

En la presente tesis se revisa el proceso general de envasado de cilindros para jarabe de bebidas gaseosas y de forma particular se analiza la fase de lavado de dichos cilindros que en la actualidad se realizan en forma manual, considerando que la fase de llenado es mucho más rápido que la de lavado y debido al incremento en la demanda de los cilindros de jarabe se hace necesario buscar otra forma de llevar a cabo el lavado de cilindros con el objeto de disminuir los tiempos, costos y espacios que en la actualidad se utilizan.

La embotelladora Qüin Cola tiene planeado modificar su línea de envasado de cilindros para jarabe, con este propósito he sido contratado para hacer un análisis actual de la línea de envasado la misma que está formada por la fase de lavado y la de llenado; la presente tesis hace únicamente un enfoque de la fase de lavado, con la información recogida se realizan los cálculos y diseños necesarios para las modificaciones.

Conocido el proceso y la problemática del envasado de cilindros se establece una automatización del sistema junto con sus requerimientos. Como parte de las alternativas de solución se plantean la compra de una línea nueva de llenado, la compra de una línea semiautomática, como también la fabricación de una lavadora de cilindros.

Habiendo escogido la fabricación de la lavadora se realiza el diseño de la misma. Los diseños realizados son: sistema de limpieza de los cilindros, cálculo estructural, sistema hidráulico, sistema de calefacción, sistema motriz y el sistema eléctrico.

Esta tesis establece dimensiones para diferentes tipos de capacidades requeridas además no solo puede ser utilizada para el lavado de cilindros, ya que con pequeñas modificaciones se podrá utilizar para limpieza de envases de diferentes formas y materiales (vidrio, plástico o metal).

Para conocer la factibilidad de ejecución del diseño se realiza un análisis de costos de todo el material, tiempo y equipo utilizado así como del costo de la mano de obra. Los rubros requeridos en este diseño sirven para comparar cuantitativamente con otra máquina lavadora de similares características traída del exterior y puesta a funcionar en Embotelladora Qüin Cola.

INDICE GENERAL

RESUMEN ÍNDICE GENERAL ABREVIATURAS SIMBOLOGÍA ÍNDICE DE FIGURAS ÍNDICE DE TABLAS ANTECEDENTES

Biblioteca Central

CAPÍTULO 1: DEFINICIÓN DEL PROBLEMA

	1.1 Proceso de llenado de cilindros de jarabe)
	1.2 Automatización del sistema	5
	1.3 Establecimiento de los parámetros	3
CAPÍTULO 2:	ALTERNATIVAS DE SOLUCIÓN	
	2.1 Línea automática de llenado	>

2.1	Linea automatica de llenado
2.2	Línea semiautomática de llenado
2.3	Fabricación de lavadora de cilindros

Pág.

CAPÍTULO 3: CONDICIONES DEL DISEÑO

Biblioteca Central
3.1 Parámetros para la limpieza de los cilindros
3.2 Cálculo estructural
3.2.1 Diseño del eje
3.2.2 Diseño de la bancada
3.2.3 Selección del rodamiento
3.3 Sistema hidráulico
3.3.1 Caudal consumido en cada etapa
3.3.2 Dimensionamiento de cisternas
3.3.3 Selección de la bomba76
3.4 Sistema de calefacción
3.4.1 Capacidad del calentador
3.4.2 Diseño y selección del calentador
3.5 Sistema motriz
3.5.1 Alternativas de rotación
3.5.2 Selección del sistema de rotación100

CAPÍTULO 4: SISTEMA DE CONTROL

4.1 Sistema eléctrico1	Sist	iste	ema	i eléctrico1	03
------------------------	------	------	-----	--------------	----

CAPÍTULO 5: ANÁLISIS DE COSTOS

5.1 Costo del material empleado
5.2 Costo de equipos
5.3 Costo de mano de obra directa

CONCLUSIONES Y RECOMENDACIONES

APÉNDICES

BIBLIOGRAFÍA

ABREVIATURAS

AISI ASTM	American Iron and Steel Institute American Society for Testing and Materials
A°	Amperios
a.c.	Corriente alterna
BTU	Unidad Térmica Británica
Cr	Crítico
°C	Grados centígrados
DE	Diámetro exterior
DI	Diámetro interior
E	Exponente
Н	Hora
H _f	Pérdida por fricción
HP	Caballo de fuerza
J	Joule
K	Kilo
Kg	Kilogramo
lt	Litros Biblioteca Central
M	Mega
máx	Máximo
mín	Minuto
mm	Milímetro
m^2	Metro cuadrado
m^3	Metro cúbico
n.a.	Normalmente abierto
n.c.	Normalmente cerrado
Ра	Pascales
PET	Tereftalato de poliestireno
psi	Libras por pulgada cuadrada
PVC	Cloruro de polivinil
rd	Radianes
SAE	Sociedad de ingenieros automecánicos de Estados Unidos

sg s ²	Segundo
s^2	Segundo al cuadrado
V	Voltios
W	Vatios

Biblioteca Central

SIMBOLOGÍA

А	-	Área
В		Bomba de agua
С	_	Coeficiente de tubería
Cp		Calor específico
c	==	Distancia del eje neutro a la fibra más alejada ó extrema
D		Diámetro
Dm		Temperatura logarítmica media
F		Fusible, fase, carga
h	·	Distancia, coeficiente convectivo de transferencia de calor
h _{fg}		Calor latente de vaporización
I		Momento de inercia de masa
J		Segundo momento polar de área
K	Antonio -	Contactor
k	=	Factor de modificación de límite de fatiga, radio de giro
L		Duración ó vida, longitud
1		Longitud
М		Momento (de fuerza), motor
m		Tasa de flujo másico
N	=	neutro, número
n		Factor de seguridad
Р		Fuerza
Q		Tasa de transferencia de calor, caudal
r		Radio de giro
S		Resistencia, sensor
Т		Momento de torsión, temperatura, relé térmico, temporizador
t		Tiempo
U	=	Coeficiente total de transferencia de calor
V	-	Volumen
W	=	Peso, carga
Х		Distancia entre ejes
α		Aceleración angular

- ε = Emisividad
- Δ = Desviación, intervalo
- ω = Velocidad angular, frecuencia angular
- ϕ = Diámetro
- ρ = Densidad
- σ = Esfuerzo normal
- τ = Esfuerzo cortante
- $\theta =$ Ángulo

Biblioteca Central

Bibliotoca Central

ÍNDICE DE FIGURAS

Página

Figura 1.	Tratamiento de agua potable	21
Figura 2.	Proceso de elaboración de jarabe terminado	24
Figura 3.	Proceso de elaboración de Qüin cola en cilindros	27
Figura 4.	Sistema de retorno de los cilindros	29
Figura 5.	Tiempo utilizado en cada estación de lavado	37
Figura 6.	Esquema de partes principales de la lavadora	39
Figura 7.	Diagrama de cuerpo libre del eje	40
Figura 8.	Análisis de un punto periférico sometido a esfuerzo axial y	10
	torsión	44
Figura 9.	Círculo de Mohr construido a partir de los esfuerzos que actúan sobre el eje	46
Figura 10.	Diagrama de Goodman modificado que muestra la resistencia	40
	del eje de acero SAE 4140 / ASSAB 709	55
Figura 11.	Esquema de la bancada	59
Figura 12.	Esquema de soldadura de la matriz hexagonal con la	
	cabina de lavado	62
Figura 13.	Diagrama de riego de la lavadora	69
Figura 14.	Sistema de cisternas	73
Figura 15.	Acople del circuito de lavado con la tubería de alimentación	75
Figura 16.	Dimensiones de las cisternas	77
Figura 17.	Área de transferencia de calor en la cisterna de lavado	82
Figura 18.	Esquema del sistema de vapor	97
Figura 19.	Diagrama de fuerza	104
Figura 20.	Circuito de control de las bombas	106
Figura 21.	Circuito de control del motorreductor	107
Figura 22.	Electroválvula de control del enjuague final	108
Figura 23.	Diagrama de control de temperatura	109

ÍNDICE DE TABLAS

4

TT 1 1 4		Página
Tabla 1.	Esfuerzos principales en el eje	47
Tabla 2.	Resistencia a la carga estática del eje	
Tabla 3.	Resistencia a la fatiga del eje	. 53
Tabla 4.	Matriz de decisión para selección de material para	
T 11 5	construir eje.	. 54
Tabla 5.	Rodamiento axial	67
Tabla 6.	Espesor de pared de bujes de bronce, pulgadas	68
Tabla 7.	Consumo y caída de presión en el sistema hidráulico.	74
Tabla 8.	Caudal y presión consumido en cada etapa	76
Tabla 9.	Selección de la bomba	79
Tabla 10.	Dimensiones de tubería de acero (IPS)	89
Tabla 11.	Características del calentador tipo serpentín	91
Tabla 12.	Características del calentador tipo haz de tubos	92
Tabla 13.	Matriz de decisión para selección del sistema de calefacción	93
Tabla 14.	Selección de la trampa de vapor	96
Tabla 15.	Matriz de decisión para selección del sistema de rotación	101
Tabla 16.	Características del motorreductor	102

ANTECEDENTES

La presencia de las embotelladoras de bebidas gaseosas en el Ecuador se remonta a los años 1878, cuando apareció por primera vez una bebida gaseosa de nombre FIORAVANTI, desde aquella época hasta nuestros días han ido apareciendo un sin número de marcas de gaseosas, así como de embotelladoras.

A lo largo de la historia se han requerido de envases para expender las bebidas gascosas desde las primeras botellas de vidrio de 200 c.c. hasta los envases plásticos de 2 litros utilizados en la actualidad. Ha habido una evolución en este campo de los envases para gascosas que se entregan al consumidor final, se dejaron atrás los clásicos envases pequeño, mediano y familiar; se pasó a los primeros envases de 1 litro, luego al de 1 ¼ de litro, de allí al de 1 ½ de litro, al de 2 litros y últimamente ha salido al mercado el envase de ½ litro; se estaba segmentando el mercado de consumidores y de la misma forma tenían que responder las embotelladoras, es en este momento cuando salen al mercado los cilindros para bebidas gaseosas. Los cilindros están orientados hacia el segmento del mercado de los vendedores de gaseosas en vasos (bares, lugares de comidas rápidas, etc.).

Hasta ese momento todos los envases que existían en el mercado era de vidrio o plásticos, retornables o no retornables, los cilindros se construyen en acero inoxidable; estos cilindros brindan mucha seguridad, comodidad y facilidad de

almacenaje y transporte, estos pueden ser los PREMIX (premezclado) ó POSTMIX (para mezclar al momento de servirse).

Con el paso del tiempo el uso de los cilindros de bebida gaseosa se ha extendido notoriamente en todo el mundo, presentándose ahora una nueva necesidad, el lavado y el llenado del cada vez creciente número de cilindros. En esta tesis únicamente se aborda el análisis del proceso de lavado de los cilindros, pues el proceso de llenado aún no representa un problema grave; más aún, puede ser tema de análisis de otra tesis.

El concepto de utilizar una lavadora automática de cilindros proviene del hecho que se requiere lavar un promedio de 60 cilindros por hora y que no se dispone de suficiente personal y tiempo para hacer esta operación. Sin embargo, el principio de funcionamiento se lo puede recoger de máquinas ya existentes en el exterior, esto unido a la formación y experiencia profesional que se tiene permite concebir el diseño para fabricar una lavadora, con mano de obra y dirección técnica ecuatoriana. A diferencia de la máquina existente en el exterior, esta máquina se ajusta a las necesidades y tecnología disponible en la planta embotelladora Qüin Cola.

CAPITULO I

DEFINICIÓN DEL PROBLEMA

El propósito de este capítulo es mostrar al lector el proceso actual de llenado de los cilindros con gaseosa de marca Qüin Cola.

1.1 PROCESO DE LLENADO DE CILINDROS DE JARABE

Antes de conocer el proceso de llenado de los cilindros con jarabe de bebida gaseosa se debe conocer muy someramente la forma en la cual se prepara el jarabe.

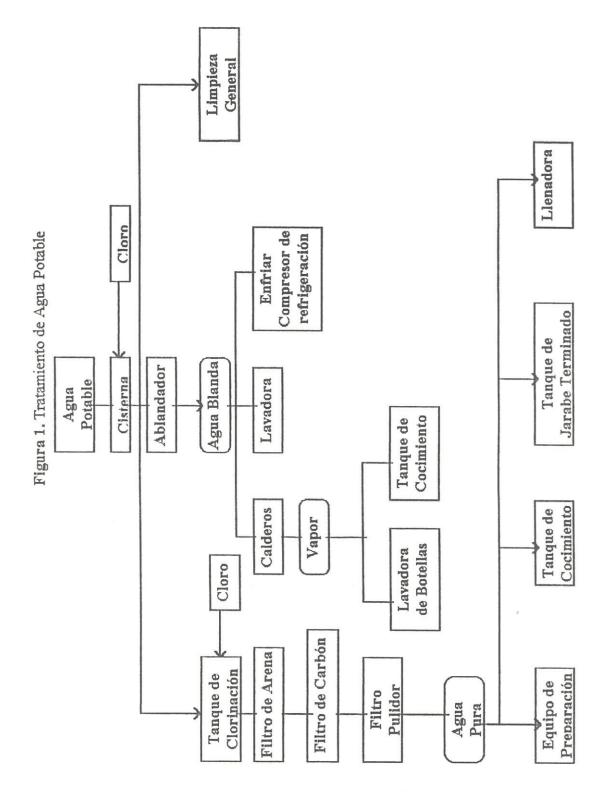
PROCESO DE ELABORACIÓN.

En la elaboración de la bebida gaseosa se realizan en forma simultánea tres procesos(1).

- 1. Proceso de tratamiento de agua
- 2. Proceso de elaboración de jarabe terminado
- 3. Elaboración de la bebida gaseosa

1. PROCESO DE TRATAMIENTO DE AGUA

20


El agua potable que llega a la embotelladora se depositada en las cisternas de la planta, aquí se le agrega cloro antes de ser usado. El agua es utiliza para preparar el jarabe terminado, lavar las botellas y hacer la limpieza general de la planta.

En el proceso de tratamiento de agua para el jarabe terminado el agua potable entra a un tanque de clorinación, luego de atravesar un filtro de arena pasa a un filtro de carbón, finalmente pasa por un filtro pulidor, de esta manera se obtiene agua pura; la misma que se divide para ser usada en el tanque de cocimiento, equipo de preparación y en el tanque de jarabe terminado.

El agua para realizar el proceso de lavado, antes de llegar a la lavadora, pasa por un ablandador, el agua entra a los calderos, estando en forma de vapor pasa a los tanques de cocimiento y por otro lado entra también a la lavadora de botellas, para calentamiento de la misma.

Un último uso que tiene el agua es para hacer la limpieza general de la planta, empleándose directamente el agua que se mantiene en la cisterna.

En la figura 1 se muestra el proceso de tratamiento del agua potable.

2. PROCESO DE ELABORACIÓN DE JARABE TERMINADO

Para obtener el jarabe terminado se utiliza: polvo ayuda filtro, carbón activado, agua y azúcar que entran a un tanque de cocimiento, estos se calientan hasta los 85°C utilizando vapor de agua por un tiempo de 30 a 45 minutos; una vez realizada la cocción, esta mezcla pasa a ser filtrada y este líquido circula el tiempo que sea necesario hasta que no se observe impurezas ó la presencia de polvo ayuda, pues éste se va eliminado al circular por el filtro.

El resultado es un líquido transparente que se hace circular por un intercambiador de calor el mismo que se encuentra conectado a un banco de hielo, en esta etapa el líquido transparente desciende de la temperatura original de 85°C hasta los 22°C ó cualquier otra temperatura inferior a los 25°C, con la finalidad de evitar la evaporación de los aceites esenciales; así enfriada la mezcla toma el nombre de jarabe simple. Después este se almacena en un tanque de jarabe terminado, donde se mezcla finalmente con conservantes y el concentrado según el sabor solicitado para la producción diaria, obteniéndose como producto final el jarabe terminado listo.

Con excepción del sabor cola que deberá permanecer preparada por lo menos 24 horas antes de ser empleada, todos los demás sabores que se producen son preparados el día de su utilización luego irán al equipo de preparación, posteriormente van a la llenadora si se tratan de los cilindros Premix ó al tanque de jarabe terminado si son los cilindros Postmix. La figura 2 muestra el proceso de elaboración del jarabe terminado.

<u>3. ELABORACIÓN DE LA BEBIDA GASEOSA</u>

La producción de bebidas gaseosas se realiza básicamente en cilindros de acero inoxidable y en botellas de vidrio con tapa corona ó botellas de plástico PET* con tapa rosca, en diferentes medidas de presentación. Brevemente se explica la forma de procesar las botellas de vidrio y las de plástico.

Las botellas de vidrio inician su proceso con las botellas vacías, encajonadas y a su vez estas cajas en palets, que provienen del mercado que ya las ha consumido ó de la bodega de envases si son nuevas; le sigue el proceso Ilamado de despaletizado, por medio de un transportador de cajas llegan a la desencajonadora, para luego ir a la lavadora de botellas. Luego de ser lavadas las botellas pasan a la primera inspección, esta depende del obrero que realiza dicha labor ; la línea cuenta con un inspector automático de botellas que detecta impurezas en el interior de la misma, de existirlo se retira la botella para un nuevo lavado manual, llegándose ha desechar las botellas que presenten roturas ó diferentes logotipo.

*PET: Terettalato de Polietileno con estructura molecular muy apretada que no permite la fuga de CO2.

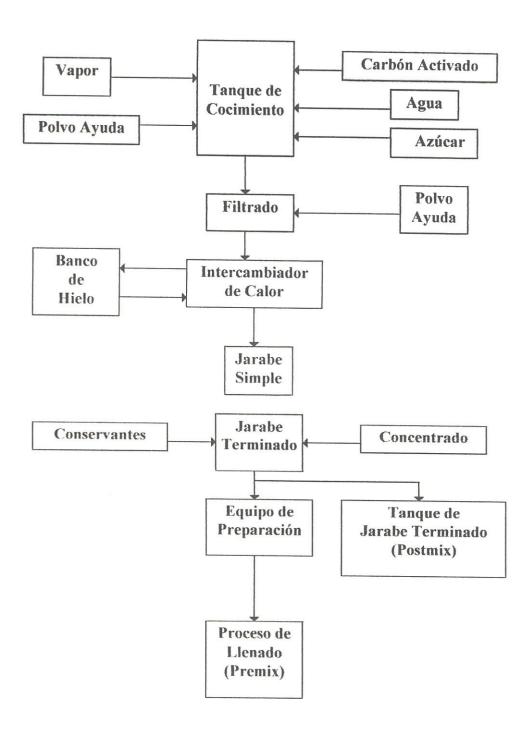


Figura 2. Proceso de Elaboración de Jarabe Terminado

Las botellas PET son envases no retornables y provienen de BEGASA, una planta elaboradora de envases plásticos contigua a la embotelladora, pasando de la máquina conformadora a la colocación de etiqueta y base; continuando su recorrido las botellas pasan directamente por la línea de llenado, pues su proceso de fabricación es completamente estéril.

Una vez listas las botellas, plástica ó vidrio, entran a la llenadora mediante bandas transportadoras; en la llenadora la bebida ya se encuentra gasificada.

Con las botellas llenas y tapadas se pasa a la inspección, esta vez se controla la cantidad del contenido, coronado e impurezas; así las botellas que pasan la inspección pasan a la encajonadora, que coloca las botellas en las jabas plásticas y son luego paletizadas. Las botellas PET se depositan en jabas y luego son embaladas directamente sobre una lámina de cartón y luego son recubiertas de una lámina de plástico que se sella con el calor. El producto terminado pasa a la bodega.

La producción de Qüin cola en cilindros se inicia con la recepción de los cilindros ya utilizados en el mercado, estos pasan a la bodega para luego ser llevados al área de lavado, aquí primeramente se despresuriza cada cilindro y se remueve su tapa. La tapa es lavada y enjuagada por separado, en tanto que el cilindro es pre-lavado, luego lavado y finalmente enjuagado. Con el cilindro y la tapa completamente limpios se pasa a la fase de llenado.

La bebida gaseosa que se envasa en los cilindros puede ser por el proceso PREMIX ó POSTMIX. En el proceso POSTMIX el jarabe terminado se envasa directamente en los cilindros y luego se los presuriza, para el proceso PREMIX la bebida gaseosa se envasa luego que ha pasado por el equipo de preparación, cuando se le ha agregado gas. Finalmente los cilindros son embodegados.

El proceso que cumple el cilindro desde su recepción hasta su entrega a bodega se lo puede resumir en la figura número 3.

1.2 AUTOMATIZACIÓN DEL SISTEMA

Hoy en día los costos de producir tienden a disminuir, esto se logra con la disminución de los costos de la materia prima ó la producción óptima y el incremento del grado de eficiencia logística.

En este segmento de bebidas gaseosas expendidas en cilindros también se hace necesario aplicar una tecnología adecuada a fin de proveer plantas o líneas llenadoras de cilindros con gaseosa, a la vez que estas líneas tengan mucha versatilidad en su capacidad. No obstante, en la actualidad el mercado internacional se ofertan plantas especializadas en ofrecer varias soluciones para lavado y llenado, de muy variadas capacidades que van desde los 20 hasta los 1200 cilindros lavados ó llenados por hora. Comúnmente estas plantas son seguras y eficientes.

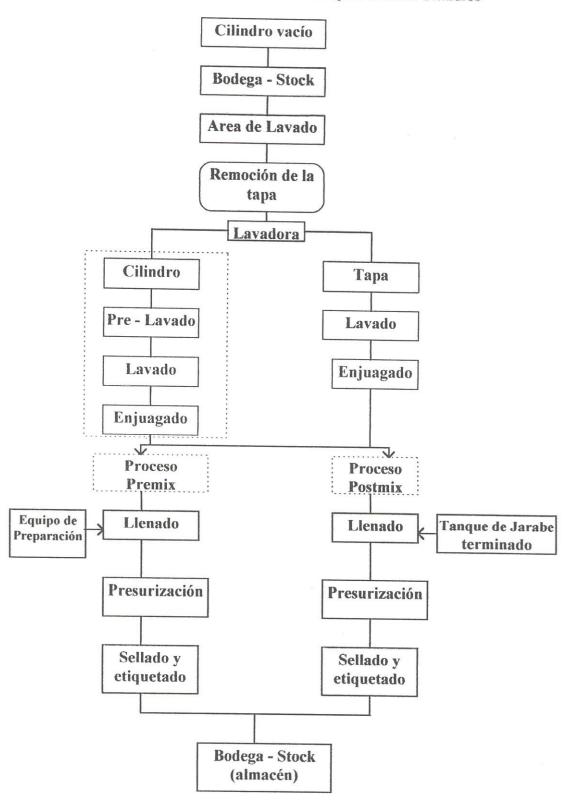


Figura 3. Proceso de Elaboración de Qüin Cola en Cilindros

Existen programas que aseguran un grado máximo de limpieza aún en producciones exigentes. Los cilindros que no se hallen completamente limpios no pasan a la fase de llenado.

De igual manera existen plantas semiautomáticas para lavar alrededor de 1200 cilindros por hora, una planta para lavado de 600 cilindros por hora requiere solo de dos personas, ayudando a reducir costos de energía y operación.

Lo que se desea alcanzar es un nivel en cual los cilindros con bebidas gaseosas cumplan un ciclo ó sistema retornable tal como se indica en la figura 4.

1.3 ESTABLECIMIENTO DE LOS PARÁMETROS

El diseño de la máquina lavadora no será de uso exclusivo para cilindros, debe ser versátil en su capacidad y aplicación. En su parte medular presenta un mecanismo que puede aplicarse para el lavado de otros elementos, tales como tanques, botellas, frascos, etc. ; los rangos de operación variaran según las necesidades de trabajo en cada elemento.

El sistema utilizado es de rotación (tipo carrusel) para aprovechar mejor el poco espacio disponible, deberá tener 5 ó 6 estaciones para hacer el proceso de lavado.

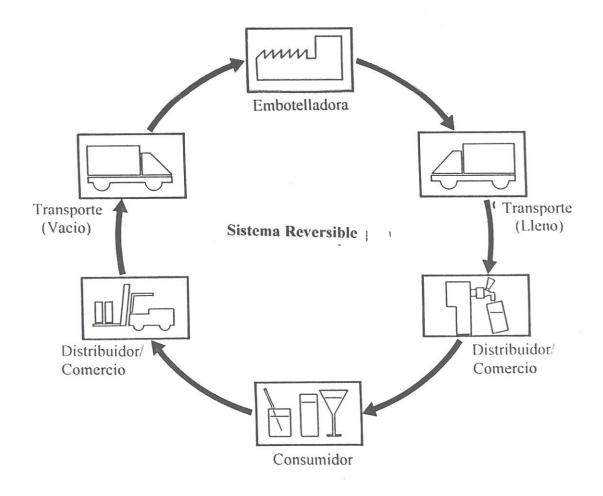


Figura 4. Sistema de retorno de los cilindros

En cada estación habrá un número de boquillas determinadas que harán el lavado, siendo el tiempo de permanencia el necesario para asegurar un buen contacto entre el líquido y la pared interior del cilindro. Todo diseño de lavadora deberá considerar la existencia de estaciones, de prelavado, lavado, enjuague y la etapa de carga y descarga; pudiendo hacerse esta última etapa en forma manual.

Para el caso de una lavadora de cilindros la máquina operará a una capacidad de 60 cilindros por hora, haciendo unos ligeros cambios de velocidad la misma máquina podrá operar a 100, 120 cilindros-hora.

La máquina lavadora será diseñada para que trabaje con cilindros de 640 mm (25") ó 424 mm (16 11/16") de altura, con 216 mm (8 ½") de diámetro.

Al momento de seleccionar los materiales de los componentes de la maquinaria hay que considerar el ambiente de trabajo, el cual es sumamente húmedo.

- TIPO DE ENERGÍA :

La máquina para su funcionamiento dispone de energía eléctrica, aire comprimido para elementos de mando y sujeción y vapor para calentamiento.

La máquina debe presentar como características:

- Bajo costo inicial comparado con una máquina importada

- Disponibilidad del material requerido en nuestro país
- Ser de fácil operación
- Tener bajos gastos de operación
- Ser de bajo costo de mantenimiento

Con todas las consideraciones y requerimientos anotados se debe comenzar a hacer los cálculos y el diseño de la máquina lavadora.

CAPITULO II

ALTERNATIVAS DE SOLUCIÓN

Las alternativas de solución se ubican en el rango de escoger una línea automática de llenado y lavado, una línea semiautomática de llenado ó la fabricación de una lavadora ; todas estas alternativas tienen como "común denominador" la eficiencia y continuidad de los procesos de lavado y/ó envasado de cilindros.

2.1 LÍNEA AUTOMÁTICA DE LLENADO

Esta solución muestra como aspectos positivos las siguientes observaciones:

- Controla de una sola vez todo el proceso de lavado y llenado de los cilindros con bebida gaseosa ó jarabe terminado.

 Un funcionamiento correcto de todas las partes constitutivas de la máquina, con la garantía de ser construidas bajo normas internacionales y contar con un gran periodo de vida útil

- Alto número de cilindros envasados por minuto.

- La máquina es operada por una sola persona, reduciéndose el consumo de recursos.

Por otra parte, para hacer efectiva la compra de la línea de llenado hay que tener presente también:

- El elevado costo inicial de la maquinaria.

- Fuga de divisas del país , y de la embotelladora Qüin Cola en particular.

- Se tiene que adaptar a las necesidades de espacio mínimo requeridas por el fabricante para instalar la nueva maquinaria. La distribución de planta existente puede llegar a alterarse.

- Adquirir una máquina con un rango de producción mínima establecida por el fabricante, pudiendo llegar a darse el caso que dicho rango de producción sea excesivo para las necesidades de la embotelladora.

- Minimizar la preparación y capacidad de trabajo de Ingenieros, Tecnólogos y obreros nacionales.

- Tener un mercado listo a absorber la alta tasa de producción que entrega la maquinaria.

- Retrasos en los tiempos de desaduanización y en el pago de impuestos.

2.2 LÍNEA SEMIAUTOMÁTICA DE LLENADO

Si se define bien la necesidad de la embotelladora se llega a la conclusión que existe retraso en el lavado de los cilindros por lo tanto, una solución muy razonable es adquirir solo la lavadora. Con esta alternativa se estará en capacidad de:

- Hacer una menor inversión en comparación con la compra de una línea automática.

- Tener una máquina nueva construida bajo normas internacionales, garantizándose un largo tiempo de vida útil. - Dar una mayor dinámica al proceso de elaboración de Qüin Cola en cilindros.

- Lavar rápidamente, llegándose ha mantener un stock de cilindros limpios y listos para ser llenados.

Hay que tener en consideración también las posibilidades de:

- Existir retraso en los tiempos de entrega, desaduanización de la maquinaria.

- El área requerida para instalar la línea no está a disposición de la planta.

- Requiere de dos personas en forma estable para operar la máquina.

- No es una solución completa porque no se logra reemplazar del todo la mano del hombre por una máquina.

2.3 FABRICACIÓN DE LAVADORA DE CILINDROS

En la fabricación de la lavadora se deben adicionar a las ventajas anotadas en las otras alternativas los siguientes argumentos :

- Construir una máquina a la medida de las necesidades de la embotelladora.

- Menor costo de la máquina por construirse aquí en el Ecuador .

- La nueva máquina ocupará únicamente el espacio asignado y aprovechará las instalaciones disponibles en la planta.

- Lograr el desarrollo del área de la construcción de maquinaria ecuatoriana, pues utilizando tecnología disponible en nuestro medio se llega a fabricar una máquina de elevada productividad. Abriéndose el paso a la construcción de otras máquinas con características similares ó de mayor capacidad.

 Solo se fabrica la parte necesaria por el momento, lográndose administrar de una mejor forma los recursos de la embotelladora.

- Se cuenta con la suficiente experiencia y tecnología para construir la lavadora utilizando profesionales y mano de obra ecuatoriana.

- Disminuye la dependencia del suministro de tecnología y maquinaria del extranjero.

Existen aspectos que pueden oscurecer la elección de esta alternativa, encontrándose sus causas en:

- No conocer el tiempo que toma la fase de diseño y el de construcción de la máquina.

Con todas estas consideraciones hechas se llega a la conclusión que la mejor opción resulta ser la construcción de la máquina lavadora de cilindros, dicha máquina se la debe primeramente diseñar bajo las necesidades ó características de trabajo bajo las cuales va a estar sometida la misma. A todo lo antes anotado debemos agregar que el diseño deberá tener el menor costo inicial posible, tomar en cuenta la disponibilidad de materiales, la facilidad de operación, considerar los gastos de operación y el costo de mantenimiento.

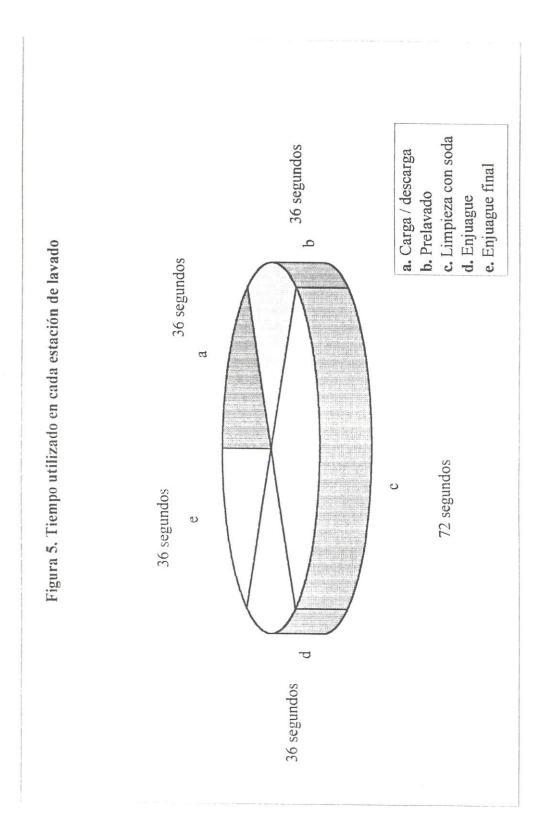
CAPITULO III

CONDICIONES DEL DISEÑO

3.1 PARÁMETROS PARA LA LIMPIEZA DE LOS CILINDROS

El sistema emplea seis compartimentos, estaciones de lavado, los que giran por medio de un eje central y se hallan encerrados por una cabina de forma hexagonal, la misma que posee una abertura por la cual se introducen y se retiran los cilindros. Cada estación de lavado emplea 36 segundos para realizar su labor, figura 5, por tanto en una hora (3600 segundos) se pueden lavar 100 cilindros; la fase de lavado con solución de soda cáustica se hace en 2 etapas utilizando un total de 72 segundos. Las estaciones de lavado son:

a. Carga y descarga del cilindro.


b. Prelavado interior y exterior con agua recuperada.

c. Limpieza interior y exterior con una solución de soda cáustica.

d. Enjuague con agua recuperada.

e. Enjuague final con agua fresca.

Cada cilindro se coloca boca abajo y junto a él su correspondiente tapa. De las seis estaciones de lavado cinco son completamente automáticas, siendo la etapa de carga

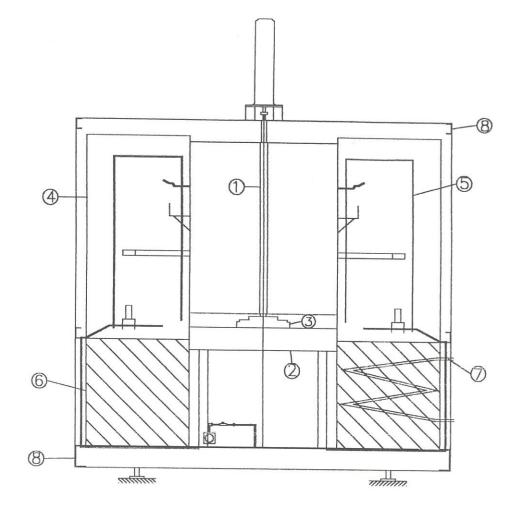
y descarga realizada en forma manual por un solo operador.

El agua utilizada en cada estación es mantenida en tres tipos diferentes de cisternas, ubicadas convenientemente debajo del eje central. Los sistemas de bombas permiten hacer circular en circuito cerrado el agua contenida en las cisternas, por medio de rociadores el agua es regada a presión sobre los cilindros. Un intercambiador de calor permite mantener la solución de soda a determinada temperatura en la cisterna , esto a su vez ayuda a elevar la temperatura en las otras dos cisternas vecinas.

El diseño de forma de la máquina lavadora, figura 6, muestra sus elementos principales; los cálculos de diseño se presentan en el desarrollo de este capítulo.

3.2 CALCULO ESTRUCTURAL

3.2.1 DISEÑO DEL EJE


a. Consideraciones:

-El eje se ubica en forma vertical.

-En el análisis de fuerzas se asume que todas ellas están ubicadas sobre el eje.

-El eje se somete a una carga axial variable P y a un par torsor intermitente T, figura 7.

-El eje diseñado se analiza para que tenga resitencia a la carga estática, a la fatiga en el caso de esfuerzos fluctuantes y buena rigidez.

LISTADO DE PARTES PRINCIPALES

- 1.- EJE MOTRIZ
- 2.- BANCADA
- 3 .- BASE DE EJE MATRIZ
- 4.- CABINA PARA LAVADO
- 5.- CIRCUITO DE LAVADO
- 6.- CISTERNA
- 7.- INTERCAMBIADOR
- 8.- CARCAZA EXTERIOR

Figura 6. ESQUEMA DE PARTES PRINCIPALES DE LA LAVADORA

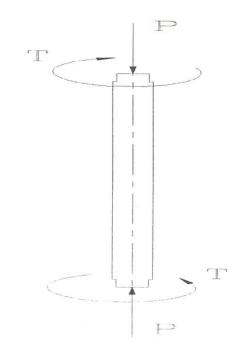


Figura 7. Diagrama de cuerpo libre del eje

b. Análisis dinámico:

Para que el eje gire se debe aplicar sobre este una cantidad mínima de energía cinética rotacional, la misma que se obtiene con la frecuencia angular y la inercia total de la máquina lavadora.

* Inercia de la máquina

La inercia de la máquina se obtiene a partir de la sumatoria de las inercias del eje, de los cilindros, de las cabinas en forma hexagonal y de sus accesorios.

- *inercia de las cabinas en forma hexagonal:* para fines prácticos se aproxima esta forma hexagonal a un círculo y se calcula la inercia con la ecuación 1, como un aro que rota respecto a su eje(2); la masa de las cabinas y accesorios es de 236.42 Kg. y un radio de giro de 0.66 m.

$$I = M^* R^2 \tag{1}$$

 $I = 236.42 \text{ Kg.} * (0.66)^2 \text{m}^2 = 103 \text{ Kg-m}^2.$

- inercia de cada cilindro: para calcular esta inercia se utiliza la ecuación 2, teorema de los ejes paralelos por cuanto los cilindros giran en torno a un eje desplazado de su centroide (2); la masa de cada cilindro es de 5.45 Kg., con un radio 0.1075 m y una distancia entre ejes de 0.4115 m.

$$I = mr^2 + mx^2$$

$$I = 5.45 \text{ Kg.} * (0.1075)^2 \text{ m}^2 + 5.45 \text{ Kg.} * (0.4115)^2 \text{ m}^2 = 0.9858 \text{ Kg-m}^2$$

- *inercia del eje:* se obtiene a partir de la ecuación 3(2); la masa es de 15.582 Kg. y un radio aproximado de 0.025m.

$$I = \frac{1}{2} * m * r^{2}$$

$$I = \frac{1}{2} * 15.582 \text{ Kg.} * (0.025)^{2} \text{ m}^{2} = 0.0048687 \text{ Kg-m}^{2}$$
(3)

Luego, sumando todas las inercias parciales se obtiene la inercia total de la máquina , $I = 108.92 = 109 \text{ Kg-m}^2$.

* Energía cinética rotacional

La energía necesaria para que la máquina lavadora cargada con seis cilindros gire un arco de 60 grados se determina con la ecuación 4, (2); a una frecuencia angular de 2.1 rd/sg.

$$T = \frac{1}{2} * [* \omega^2$$
 (4)

 $T = \frac{1}{2} * 109 \text{ Kg-m}^2 * (2.1)^2 \text{ rd/s}^2 = 240.35 \text{ N-m}$

c. Análisis de carga estática

Las fuerzas que actúan sobre la columna (eje) son :

42

1. Peso de los 6 comportamientos		1.867 N.
2. Peso de los seis cilindros		321 N.
3. Peso de los accesorios	+	<u>603 N.</u>
Peso total soportado por la columna		2.791 N.

Aproximando, se tiene una carga de P = 2.8 KN.

El análisis de la condición crítica por carga estática ocurre en la mitad y en la periferia del eje, ocurriendo la condición de mayor esfuerzo cuando un punto de la superficie del eje se somete en forma simultánea a cargas axiales y de torsión, figura 8.

$$\sigma_y = -\frac{P}{A} = -\frac{4*P}{\pi^* d^2}$$
(a)

$$\tau_{yx} = \frac{T * r}{J} = \frac{16 * T}{\pi * d^3}$$
(b)

Las ecuaciones (a) y (b) permiten calcular el esfuerzo axial en compresión y el esfuerzo de torsión en un eje macizo de diámetro d; el eje analizado no soporta carga de flexión. Utilizando el círculo de Mohr ó ecuaciones obtenidas a partir del mismo se puede determinar los dos esfuerzos principales (3).

$$\sigma_{A,}\sigma_{B} = \frac{\sigma_{y}}{2} = \left[(\sigma_{y}/2)^{2} + \tau_{yx}^{2} \right]^{1/2}$$
(c)

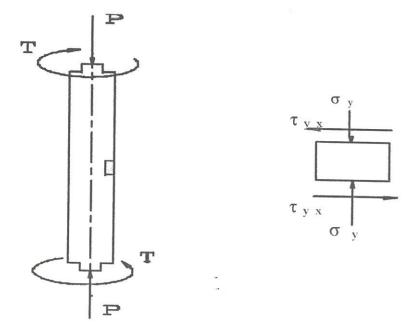


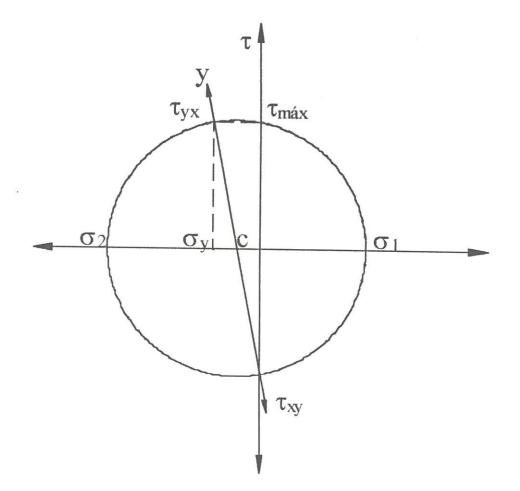
Figura 8. Análisis de un punto periférico sometido a esfuerzo axial y torsión

Estos esfuerzos se combinan y se logra obtener el esfuerzo cortante máximo.

$$\tau_{max} = \frac{2}{\pi * d^3} \left[(Pd)^2 + (8T)^2 \right]^{\frac{1}{2}}$$
(5)

Haciendo el diseño del eje con base en la teoría del esfuerzo cortante máximo, el valor admisible de $\tau_{máx}$ del material a construir dicho eje es:

$$\tau_{max} \le \underline{S}_{sy} \\ n_d$$
(6)


siendo , $\tau_{máx} = \tau_{adm}$

$$\frac{S_{sy} - S_y}{2}$$
(7)

* Diámetro del eje

El diámetro del eje a utilizarse es 38.1 mm $(1\frac{1}{2})$, pero se analiza un diámetro de 31.75 mm $(1\frac{1}{4})$ para garantizar la resistencia del eje ante posibles reducciones de diámetro.

Los valores de carga axial y torque se calcularon en las secciones **b** y **c**, los mismos que son: P=2800N y T=60 N-m.; los datos antes anotados se reemplazan en la ecuaciones (a) y (b) y con dichos valores se construye el círculo de Mohr, figura 9, a partir del cual se

obtienen los esfuerzos máximos, así como el cortante máximo al cual trabaja el eje. Una forma más rápida de obtener el τ_{max} es utilizando la ecuación 5:

 $\tau_{max} = \frac{2 * \left[(2800 \text{ N} * 0.03175 \text{m})^2 + (8 * 240 \text{ N-m})^2 \right] \frac{1}{2}}{\pi * (0.03175 \text{m})^3}$

 $\tau_{max} = 38.2 \text{ MPa}$

TABLA I.

ESFUERZOS PRINCIPALES EN EL EJE

Esfuerzo máximo	Esfuerzo mínimo	Esfuerzo cortante
σ_l . (MPa)	σ ₂ . (MPa)	máximo. $\tau_{máx}$ (MPa)
36.49	-39.99	38.24

Conocido el valor de τ_{max} se procede a buscar alternativas de material para construir el eje, la tabla II muestra el factor de seguridad obtenido con diversos materiales ; las propiedades de los aceros son tomadas de (4).

d. Análisis de resistencia a la fatiga

Primero se calcula el valor de la resistencia a la fatiga del material del eje y luego se calculan los esfuerzos, finalmente se relacionan estos valores para obtener el factor de seguridad.

TABLA II. RESISTENCIA A LA CARGA ESTÁTICA DEL EJE

Factor de	e seguridad N	m	Q	4	თ
Resistencia	fluen. en cortante MPa	121	190	138.1	342.5
Re	de fluencia MPa	242	380	276.2	685
Esfuerzo cortante	máximo MPa	38.2	38.2	38.2	38.2
Tipo de	acero	Inoxidable AISI 304	Transmisión SAE 1040	Transmisión SAE 1018	Cons.máquinaria SAE 4140/ASSAB 709

De (4) se tiene que las resistencias mínimas del acero 1018 son $S_{ut} = 476$ MPa y $S_{yt} = 276.2$ MPa.

Marín (3), propone algunos factores que modifican el límite de resistencia a la fatiga del elemento mecánico, los mismos que se anotan en la ecuación 8:

$$S_{e} = S'_{e} * k_{a} * k_{b} * k_{c} * k_{d} * k_{e}$$
(8)

- Límite a la fatiga, S'e

El valor de S'e se obtiene con la ecuación 9:

$$S'_{e} = 0.504 * S_{ut}$$
 (9)

S'_c = 0.504 * 476 MPa = 239.9 MPa = 240 MPa.

- Factor de superficie, ka

Se lo calcula mediante la fórmula 10:

$$k_a = a S^{b}_{ut}$$
(10)

donde Sut es la resistencia mínima a tensión; a y b dependen del acabado superficial

$$S_{ut} = 476 \text{ MPa}$$
, a =4.51 MPa y b = -0.265
 $k_a = 4.51 * (476)^{-0.265} = 0.88$

- Factor de tamaño, k_b

Este factor se lo calcula a partir de la ecuación 11:

$$k_{\rm b} = \left(\frac{d}{7.62} \right)^{-0.1133} \tag{11}$$

$$k_b = (31.75 / 7.62)^{-0.1133} = 0.85$$

- Factor de carga, k_c

El eje trabaja soportando carga axial y de torsión , pero la carga axial es menor por lo tanto: $k_c = 0.577$

- Factor de temperatura, k_d

El eje trabaja en un ambiente de temperatura normal, $k_d = 1$

- Factor de efectos diversos, ke

Se toma al eje como una barra circular sujeta a torsión, $k_{e} = 0.8$

Todos los factores anteriormente obtenidos se reemplazan en la ecuación 8.

 $S_e = 240 * 0.88 * 0.85 * 0.577 * 0.8 = 82.87 \text{ MPa}$

* Cargas fluctuantes

El eje se somete a torsión pulsante y a carga axial variable, estos valores se corrigen con factores de acuerdo con el tipo de carga. Shigley, (3), indica que cualquier componente de esfuerzo axial alternante debe multiplicarse por 1.083. De tablas y ecuaciones tomadas de (3), se anota que la torsión pulsante debe corregirse por un factor $K_{fs} = 1.304$.

50

$$T_{m} = \frac{T_{máx} + T_{min}}{2} = \frac{(240 + 0) \text{ N-m}}{2} = 12 \text{ 0 N-m}}{2}$$

$$T_{a} = \frac{T_{máx} - T_{min}}{2} = \frac{(240 - 0) \text{ N-m}}{2} = 120 \text{ N-m}}{2}$$

$$P_{m} = \frac{P_{máx} + P_{min}}{2} = \frac{(2800 + 2470) \text{ N}}{2} = 2635 \text{ N}}{2}$$

$$P_{a} = \frac{P_{máx} - P_{min}}{2} = \frac{(2800 - 2470) \text{ N}}{2} = 165 \text{ N}.$$

Las componentes de esfuerzo alternante y medio son :

$$\sigma_{ym} = -\frac{4*P_m}{\pi*d^2} = -\frac{4*2635 \text{ N}}{\pi*(0.03175)^2 \text{ m}^2} = -3.3 \text{ MPa}$$

$$\sigma_{ya} = -k_a \underline{4 * P_a}_{\pi * d^2} = -\underline{1.083 * 4 * 165 N}_{\pi * (0.03175)^2 m^2} = -0.225 \text{ MPa}$$

$$\tau_{yxm} = \underline{T_m} * \underline{r} = \underline{120 \text{ N-m}} * \underline{16} = 19.1 \text{ MPa}$$

J $\pi * (0.03175)^3 \text{m}^3$

$$\tau_{yxa} = K_{fs} * T_{\underline{a}} * r_{\underline{a}} = 1.304 * \frac{120 \text{ N-m}}{\pi * (0.03175)^3 \text{m}^3} = 24.9 \text{ MPa}$$

Después se utilizan estas componentes para determinar σ'_a y σ'_m utilizando el esfuerzo de von Mises, en la ecuación simplificada 12.

$$\sigma'_{a} = (\sigma_{y}^{2} + 3\tau_{yx}^{2})^{\frac{1}{2}}$$
(12)
$$\sigma'_{a} = ((-0.225)^{2} + 3(24.9)^{2})^{\frac{1}{2}} = 43.13 \text{ MPa}$$

$$\sigma'_{m} = ((-3.3)^{2} + 3(19.1)^{2})^{\frac{1}{2}} = 33.24 \text{ MPa}$$

La ecuación 13 corresponde a la relación de Goodman modificada, la cual se emplea para obtener el factor de seguridad.

$$\frac{\underline{\sigma}_{a_}}{S_e} + \underline{\sigma}_{m_} = \frac{1}{n}$$

Reemplazando valores en 13 se obtiene,

 $\frac{43.13}{82.87} + \frac{33.24}{476} = \frac{1}{n}$

52

n = 1.7

Repitiendo el mismo procedimiento de cálculo se analizan otros tipos de acero ,estos resultados se muestran en la tabla III.

e. Selección del material para construir el eje

La matriz de decisión, tabla IV, es la base para seleccionar el material con el cual se elabora el eje, como se observa en dicha tabla todos los materiales analizados muestran un buen factor de seguridad, pero se busca la opción que de mayor duración; de esta tabla se escoje el acero ASSAB 709/ AISI 4140. La figura 10 muestra el diagrama de Goodman modificado para el acero seleccionado. TABLA III. RESISTENCIA A LA FATIGA DEL EJE

Tipo de	Resis. última	Lím. resis. fatiga	Resis. última Lím. resis. fatiga Esfuerzo a medio Amplitud de Factor de	Amplitud de	Factor de
acero	Sut. MPa	Se. MPa	intervalo MPa	esfuerzo MPa	seguridad N
Inoxidable AISI 304	587	96.74	33.24	43.13	2
Transmisión SAE 1040	630	101.78	33.24	43.13	2.1
Transmisión SAE 1018	476	82.87	33.24	43.13	1.7
Cons. máquinaria SAE 4140/ASSAB 709	883	131	33.24	43.13	2.7

TABLA IV. MATRIZ DE DECISIÓN PARA SELECCIÓN DE MATERIAL PARA CONSTRUIR EL EJE

-		T		1		1	
Calificación	tinal		69%	71%		%02	73%
Resistencia corrosión	0.15	0.0	100%	50%		50%	55%
Disponibilidad comercial	0.2		100%	100%		100%	100%
Maquinabilidad	0.15		70%	65%		75%	50%
Resistencia mecánica	0.3		60%	63%		50%	85%
Bajo costo	0.2		25%	75%		80%	60%
Objetivos:	Calificación	Alternativas:	Inoxidable AISI 304	Transmisión SAE 1040	Transmitte	SAE 1018 SAE 1018	Cons.máquinaria SAE 4140

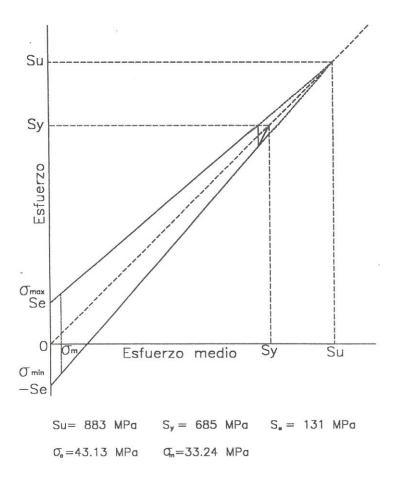


Figura 10.— Diagrama de Goodman modificado que muestra la resistencia del eje de acero SAE 4140/ASSAB 709

f. Análisis de rigidez en el eje

Para asegurar que no existan problemas de pandeo en el eje, este se analiza como una columna cargada excéntricamente, para lo cual se calcula el valor del esfuerzo producido por la compresión.

De (3) tomamos la fórmula 14 para obtener la relación de esbeltez real y luego comparar esta con $(1/k)_2$.

$$1/k = 1/(I/A)^{1/2}$$
 (14)

siendo, l: longitud de la columna, m.

I: inerecia, m⁴

A: área de la barra, m²

Con valores de longitud 0.98 m, área $0.0007917m^2$, inercia de 4.98 E-8 m⁴ obtenemos l/k = $1.036 / (4.98E-8 / 0.0007917)\frac{1}{2} = 131$

La relación de esbeltez límite se calcula con la ecuación 15.

$$(1/k)_2 = 0.282 * (AE / P_{er})^{1/2}$$
 (15)
 $(1/k)_2 = 0.282 * ((0.0007917 m^2 *207 E9 Pa)/ 455 N)^{1/2}$
 $(1/k)_2 = 169.2$

Siendo $(l/k) < (l/k)_2$ se utiliza la ecuación 16 para determinar el esfuerzo de compresión.

$$\sigma_{c} = \frac{P}{A} * (1 + (cc/k^{2}))$$

$$\sigma_{c} = \frac{455 \text{ N} * [1 + (0.3 \text{ m}^{*} 0.0158 \text{m})/(0.00793 \text{m})^{2}]}{(0.0007917)^{2} \text{ m}^{2}}$$

 $\sigma_c = 44 \text{ MPa}$

El valor de σ_c es mucho menor que el esfuerzo de fluencia, 276.2 Mpa; obteniéndose un factor de seguridad de 6, pero como el diámetro de trabajo es 38 mm se asegura la rigidez del eje.

3.2.2 DISEÑO DE LA BANCADA

La bancada sirve de asiento a la base del eje y al eje motriz mismo; su diseño garantiza seguridad y se lo realizado bajo ciertas asunciones.

* Consideraciones:

- La bancada se construye en canales "U", en la medida de 100 x 50 x 3 mm.

- Las propiedades de los canales se toman del catálogo "Perfiles de acero", (5).

- El factor de seguridad que tiene la bancada se lo obtiene de la resistencia a la carga estática.

* Cálculos:

a. Equilibrio estático

La bancada soporta una fuerza P= 2.8 KN la misma que se reparte entre los dos

57

(16)

canales "U"; esta bancada tiene la forma de un cuadrado de 0.40m de lado. La figura 11 indica las reacciones en los apoyos:

 $R_1 = R_2 = P/4$; siendo P la carga total que soporta el eje.

 $R_1 = R_2 = 0.7 \text{ KN}$

b. Factor de seguridad

Singer, referencia 6, presenta la fórmula 17 para calcular el esfuerzo en la vigas.

$$\sigma_{max} = \frac{M}{W}$$
(17)

siendo M: momento máximo soportado por la viga [N-m]

W: módulo de la sección [m³]

 $M = R_1 * \frac{1}{2} = \frac{700 \text{ N} * 0.4 \text{m}}{2} = 140 \text{ N-m}$

 $W = 1.770 * 10^{-5} m^3$

 $\sigma_{max.} = \frac{140 \text{ N-m}}{1.770 * 10^{-5} \text{ m}^3} = 7.9 \text{ MPa}$

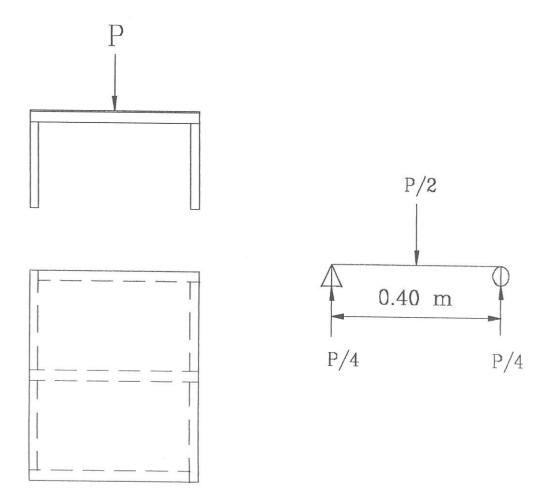


Figura 11. Esquema de la bancada

Finalmente se calcula el factor de seguridad con el valor de resistencia a la fluencia S_y del acero.

$$n = \underline{S_y} = \underline{317} = 40$$

$$\sigma_{max} = 7.9$$

Con este valor de seguridad la viga soporta perfectamente la carga que actúa sobre ella.

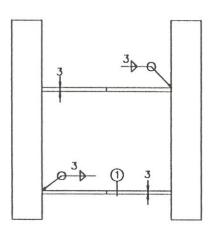
c. Cálculo de las uniones soldadas

En el diseño de la bancada y en general de toda la máquina lavadora se debe considerar el proceso de unión de soldadura de tipo eléctrica por ser versátil en el trabajo. En la estructura de la máquina lavadora se utiliza dos tipos ordinarios de uniones soldadas, a tope y en ángulo.

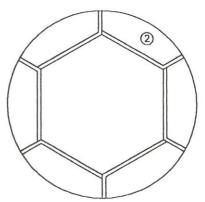
En toda la estructura de la máquina lavadora las planchas usadas en las uniones a tope pueden ser biseladas, biseladas a un solo lado ó no biseladas. Si no existe refuerzo la práctica usual es formar el cordón y luego mecanizarlo con una moladora hasta tener una superficie pareja y libre de defectos.

Se asume como área total el producto de la longitud total de la soldadura por el espesor de la chapa más delgada que se une. En el diseño de soldaduras comúnmente

se basa el tamaño de la junta en la magnitud del esfuerzo en el área de la garganta y en la dimensión mínima de la anchura del cordón conformada por dos catetos iguales.


El cálculo de las uniones soldadas se lo realiza para el caso más crítico, el mismo que ocurre al unir la matriz hexagonal hecha en acero A32 de 3mm de espesor con las cabinas de lavado hechas en acero inoxidable de 2mm de espesor. La garganta es de 3mm y el filete de dicha soldadura se somete a flexión y cortante, figura 12.

Se determina el factor de seguridad contra falla por fatiga en el metal soldante de la matriz hexagonal. Las propiedades del acero ASTM A-32 se toman de la referencia (8), $S_y = 220$ MPa y $S_u = 341$ MPa. El esfuerzo cortante en la base es:


$$\tau = \frac{W}{A} + \frac{MC}{I}$$

siendo, W = 658 N A= 6 * (1.41 h * b) = 6 * (1.41 * 0.003 * 0.35) = 0.008883 M = 658 N * 0.14 m = 92 N-m C= d/2 = 0.002 / 2 = 0.0010 1 = 0.707 h * I_u = 0.707 * 0.005 * (6 * bd² / 2) = 0.707*0.002*3*0.35*(0.002)² = 5.94 E-9 $\tau = 15.5$ MPa

Utilizando nuevamente la ecuación (9) se calcula el límite de fatiga,

1.-- MATRIZ HEXAGONAL PLANCHA NEGRA A-32 2.-- CABINA DE LAVADO, ACERO INOXIDABLE

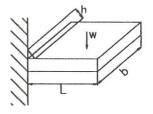


Figura 12. Esquema de Soldadura de la Matriz Hexagonal con la Cabina de Lavado

$$S'e = 0.504$$
 Sut = 0.504 * 341 MPa = 172 MPa

El cordón de soldadura es una superfície esmerilada, a= 1.58, b= -0.085 y Su= 341 MPa, estos valores se reemplazan en la ecuación (10).

$$k_a = a S^b{}_{ut}$$
(10)

$$k_a = 0.96$$

El valor de k_b se lo obtiene con d_e= 0.808 (0.707 h * b)^{1/2} = 54 mm. El cordón de soldadura se somete a flexión y por la referencia (3) k_b = 0.6.

El valor de k_e se lo obtiene de (3), al trabajar en cortante k_e = 0.577; y k_d - 1 k_e = 1 / k_f = 1 / 2.7 = 0.37

Al reemplazar en la ecuación (8) se obtiene $S_{se} = 172 * 0.96 * 0.6 * 0.577 * 1 * 0.37 = 21.1 MPa.$

Se calculan los esfuerzos alternante y medio,

 $\tau_a = 15.5 / 2 = 7.75 \text{ M Pa}$ y $\tau_m = 15.5 / 2 = 7.75 \text{ MPa}$

La ecuación 13 corresponde a la relación de Goodman modificada, la cual se emplea para obtener el factor de seguridad.

$$\frac{\tau_n}{S_{er}} + \frac{\tau_m}{S_u} = \frac{1}{n}$$
(13)

Reemplazando valores en 13 se obtiene,

$$\frac{7.75}{21.1} + \frac{7.75}{341} = \frac{1}{n}$$

n = 2.6

La soldadura se calculó para un valor mínimo de la garganta de 3mm, como el factor de seguridad es 2.6 cualquier valor superior a 3mm soporta el trabajo al cual va a ser sometido las uniones soldadas.

3.2.3 SELECCIÓN DEL RODAMIENTO

Para seleccionar el rodamiento hay que tener en cuenta las fuerzas que actúan en el eje, a continuación se debe determinar la carga radial equivalente F_e con la fórmula 18, tomada de (3).

 $F_e = XVF_r + YF_a$

(18)

donde, $F_e = carga radial equivalente$

F_r = carga radial aplicada

 $F_a = carga de empuje aplicada$

V = factor de rotación

X = factor radial

Y = factor de empuje

Como la carga radial es nula, la ecuación 18 se reduce a la expresión 18.a

$$F_{c} = Y F_{n}$$
(18.a)

Siendo Y=1 por trabajar a baja velocidad, la carga radial equivalente es igual a la carga de empuje aplicada.

 $F_e = 1 * 2800 N = 2800 N.$

Consultando el manual de rodamientos de la NTN, (7), se encuentra que el nivel de carga dinámico se lo obtiene con la ecuación 18.b, dicho valor sirve para buscar el número de rodamiento en el catálogo

$$L_{10h} = \frac{10^6}{60*n} * (C/P)^3$$
(18.b)

C = $(60 * n * L_{10h} / 10^6)^{1/3} * F_e$, siendo:

 $L_{10h} = 20.000$ horas

n = 20 RPM

C= $(60 * 20 * 20.000 / 10^6)^{1/3} * 3472$ N.

C= 10015 N.

Con esta información se busca en el manual de NTN un rodamiento de tipo axial capaz de soportar un nivel de carga mínimo de 10015 N, a un diámetro interior de 35 mm; se selecciona el rodamiento número 51106(véase tabla V).

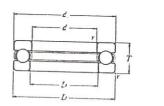
El rodamiento se lo ubica en la base del eje, en tanto que en el otro extremo se coloca un buje de bronce. El espesor de la pared del buje se obtiene de la tabla VI, referencia 8, para un diámetro de 32 mm (1 1/4") el espesor de pared es de 4.8 mm (3/16").

3.3 SISTEMA HIDRÁULICO

3.3.1 CAUDAL CONSUMIDO EN CADA ETAPA

a. Esquema del circuito

El circuito está compuesto por ramales en serie y en paralelo ,figura 13, utilizando tubería de acero inoxidable de 3/4" de diámetro y dos ramales de ¼" de diámetro; empleándose 17 rociadores de agua por cada etapa ,cada rociador consume 0.46 l/min. a una presión de 4 bar(58 psi).


b. Pérdida de presión en el circuito

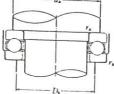

Los ramales AH, AG y A'X se encuentran en serie, pero en el punto A nacen los ramales AH, AX y AG que se encuentran en paralelo entre sí; otra conexión en paralelo se encuentra en el punto X con los ramales XC', XD' y XA'. Totalizando las perdidas que ocurren en cada ramal se obtiene la carga de presión necesaria para

TABLA V. RODAMIENTO AXIAL, (REF. 7)

Thrust Ball Bearing 5

Single direction type

Equivalent bearing load dynamic $F_{i} = F_{i}$ static $P_{i,s} = F_{s}$

d 10~50mm

BO	undary m	aimen Im	sions	Basic load N It	of	8 8	speeds min	Bearing		nsions Im	Abuth	nent a ension	nd fillet	Mass kg lb
d	D	Т	Fi min	dynamic C	static Cua	grease	oil		d1. max 1		dinin d, min	D, max	τ _{αν} Παλ ,	(approx.)
10	24 26	9 11	0.3	10 000 2 250 12 700 2 8 50	14 000 3 150 17 100 3 850	6 700 5 800	9 500 8 300	51100 51200	 24 26	11 12	18	16 16	03	0 021
12	26 28	9 11	0.3	10 300 # 320 13 200	15 400 3 450 19 000 4 250	6 400 5 600	9 200 8 000	51101 51201	26 28	13	20 22	18	03	0 030 C 966 0 023 C 051
15	28 32	9 12	0.3	15 500 2 3 70 16 600 3 750	16 800 3 750 24 800 5 600	6 200 5 000	8 800 7 100	51102 51202	28	14 16 17	23	18	0.3	0 034 0 075 0 024 0 053
17	30 35	9 12	0.3	10 800 2 430 17 200 3 850	18 200 4 100 27 300 6 150	6 000 4 800	8 500 6 800	51103 51203	30 35	17 18 19	25 25	22 22	0.6	0 048 C 101 C 026 C 057
20	35 40	10 14	03	14 200 3 200 27 300 6 300	24 700 5 550 37 500 8 500	5 200 4 100	7 500	51104 51204	35 40	21	28 29 32	24 26 28	0.6	0 054 0 119 0 040 0 088
25	42 47 52 60	11 15 18 24	0.6 0.6 1	15 600 4 400 27 800 6 250 35 500 8 050 55 500 15 500	37 000 8 350 50 500 11 300 61 500 13 800 89 500 20 100	4 600 3 700 3 200 2 600	6 500 5 300 4 600 3 700	51105 51205 51305 51405	42 47 52	26 27 27	35 38° 41	32 34 36	0 6 0.6 0.6 1	0 081 0 179 0 060 0 132 0 111 0 245 0 176 0 388
30	~ 47 52 60 70	11 16 21 28	0.6 0.6 1 _	2C 400 4 600 25 300 6 600 4 3 000 5 600 72 500 16 200	42 000 9 500 58 000 13 100 78 500 17 700 126 000 18 200	4 300 3 400 2 800 2 200	6 200 4 900 3 900 3 200	51106 51206 51306	60 47 52 60	27 32 32 32	46 40 43 48	39 37 39 42	1 0.6 0.6 1	0 330 0 728 0 069 0 152 0 139 0 306 0 269 0 593
35	52 62 68 80	12 18 24 32	0.6 1 1 1.1	2C 400 4 83C 39 000 6 830 6 830 12 830 87 000 15 530	44 500 10 000 78 000 17 600 105 000 23 500 155 000 35 000	3 900 2 900 2 400 1 900	5 600 4 200 3 500 2 800	51406 51107 51207 51307 51407	70 52 62 68 80	32 37 37 37 37 37	54 45 61 55 62	46 42 46 48 53	1 0.6 1 1	0 518 1 14 0 085 0 187 0 218 E 474 C 383 0 844 0 759 1 67
40	60 68 78 90	13 19 26 36	0.6 1 1 1.1	26 900 6 050 47 050 10 650 69 000 15 650 11 2 000 25 300	63 000 14 100 98 500 22 100 135 000 30 000 205 000 46 000	3 500 2 700 2 200 1 700	5 000 3 900 3 100 2 500	51108 51208 51308 51408	60 68 78 90	42 42 42 42	52 57 63 (70	48 51 55 60	0.6 1 1	0 125 0 276 C 276 C 508 0 548 1 21
5	65 73 85 100	14 20 28 39	0.6 1 1 1.1	27 900 6 255 48 000 10 750 80 000 18 000 18 000 29 150	69 000 15 500 23 600 163 000 36 500 242 000 54 500	3 200 2 600 2 000 1 600	4 600 3 700 2 900 2 200	51109 51209 51309	65 73 85	47 47 47	57 62 69	53 56 61	1 0.6 1 1	1 08 2 38 0 148 0 326 0 317 0 699 0 684 1 51
0	70 78 95	14 22 31	0.6 1 1.1	28 800 6 450 48 500 10 900 96 500 21 700	54 500 75 500 17 000 111 000 25 100 202 000 45 500	3 100 2 400 1 800	4 500 3 400 2 600	51409 51110 51210 51310	100 70 78 95	47 52 52 52	78 62 67 77	67 58 61 68	1 0.6 1	1 43 3 15 0 161 0 355 0 378 0 633 0 633 0 951 2 10

1) The innerving DD dimension of above the maximum permissible dimension 2: The outerving DD dimension /) shows the minimum permissible dimension Note The innerving DD on bearings manket to an asterisk is smaller than the outerving DD. Therefore we using both a bearing there is no need to grind an undercut on the innerving DD as shown in the drawing, and the shape of the housing holes may be gylinglical.

TABLA VI. ESPESOR DE PARED DE BUJES DE BRONCE, PULGADAS, (REF. 8)

Diámetro del muñón(pulg.)	< 0.25	0.25 a 0.5	0.5 a 1	1a1.5	1.5 a 2.5	2.5 a 4	4 a 5.5
Buje sólido, normal	1/16	3/32	1/8	3/16	1/4	3/8	1/2
Buje partido, normal	3/32	1/8	5/32	7/32	5/16	15/32	5/8
Buje sólido, delgado	1/16	3/32	3/32	1/8	3/16	1/4	3/8
Buje partido, delgado	1/16	3/32	1/8	3/16	1/4	3/8	1/2
					Contraction of the second se		

68

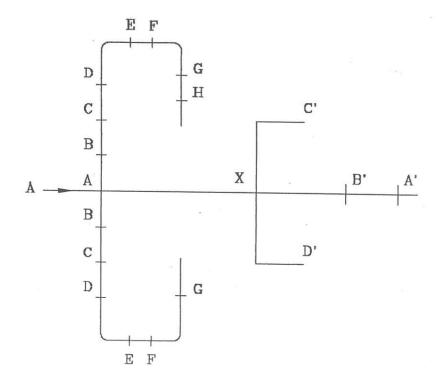


Figura 13. Diagrama del circuito de lavado

hacer circular el agua en cada cisterna.

El cálculo de las pérdidas en cada tramo de tubería se realiza utilizando la ecuación 19, la misma que emplea unidades del Sistema Inglés, (8).

$$Hf = 1045 \quad \underline{(Q/C)}^{1.852} \\ ID^{4.857}$$
(19)

Hf = Perdida por fricción en pies de agua (cabezal)

ID = Diámetro interior de la tubería (pulgadas)

C = Coeficiente de tubería,

PVC = 150 Acero inoxidable = 140

Q= Flujo en galones por minuto, GPM

- Ramal AH

Tubería	:	0.0125	j psi	= 0.086	KPa
Altura	:	1.15	psi	= 7.9	KPa
Accesorios	S:	0.0013	psi	= 0.0089	6kpa

Pérdidas = 7.99 KPa =1.16 psi Caudal = 3.22 l/min

- Ramal AG

Tubería	;	0.0083	psi	= 0.057	KPa
Altura	:	1.15	psi	= 7.9	KPa
Accesorios	:	0.0013	psi	= 0.0089	<u>6KPa</u>
			Pérdidas	= 7.96	KPa = 1.16 psi
			Caudal	= 2.76 1/1	nin

- Ramal XA'

Tubería	: 0.000035	psi		= 0.24	Pa
Accesorio	s: 2.842E-9 psi		= <u>2 E-5</u>	Pa	
		Pérdidas	= 0.24	Pa = 3	5 E-6 psi
		Caudal	= 0.92	l/min	

- Ramal XC'

Tubería : 0.0019 psi		= 0.013	KPa
Accesorios: 1.1E-6 psi		= <u>7.6E-6</u>	KPa
Pé	rdidas	= 0.013	KPa = 0.002 psi
Ca	udal	= 0.46 l/m	nin.

- Ramal XD' = Ramal XC'

Pérdidas = 0.043 KPa = 0.002 psi Caudal = 0.46 l/min. - Ramal AX

Tubería	: 0.000023	psi	= 0.00016 KPa
Accesorio	s: 2.02E-8 psi		= <u>0.14E-3 KPa</u>
		Pérdidas	= 0.00016 KPa = 0.000023 psi
		Caudal	= 1.84 l/min.

- Ramal FA

Tubería : 0.0018 psi = 0.012 KPa Accesorios: 0.028 psi = 0.1931 KPa Pérdidas = 0.2051 KPa = 0.030 psi Caudal = 7.82 l/min.

La pérdida total de presión en el circuito hidráulico es de 8.2085 KPa (1.19 psi), requiriendo un consumo de líquido de 7.82 l/min.

Las etapas de prelavado y de enjuague trabajan a 4 bar de presión, utilizando 7.82 lt/min. (2 galones/minuto) cada una; la etapa de limpieza con solución de soda cáustica requiere de 15.64 lt/min. (4 galones/minuto) a 4 bar de presión. La etapa de enjuague final es una fase de refuerzo del lavado por ello trabaja a 3 bar, con la finalidad de hacer más eficiente la lavadora esta etapa no utiliza cisterna porque consume agua fresca a razón de 7.82 lt/min. (2 galones/minuto). La figura 14 muestra el sistema de cisternas utilizado en la lavadora.

Figura 14. Sistema de cisternas

Biblioteca Central

La conexión del líquido proveniente de la cisterna con el circuito hidráulico se realiza en cada cabina de lavado por medio de un acople, figura 15, el mismo que se compone de una zapata hecha de celerón (micarta), que se desliza sobre la parte curva de la cabina de lavado, y de una placa en la cual se conecta la alimentación de líquido. Un par de resortes se encargan de mantener siempre unidos estos elementos.

3.3.2 DIMENSIONAMIENTO DE CISTERNAS

Conocido el consumo de agua en cada etapa de lavado y el número de cisternas requeridos se procede a dimensionar las mismas:

- 1 cisterna de 0.112 m³ (29.5 galones) para la etapa de prelavado.

- 2 cisternas de 0.224 m³ (59 galones) cada una. Una para lavado con soda cáustica y otra para enjuague.

TABLA VII.

CONSUMO Y CAÍDA DE PRESIÓN EN EL SISTEMA HIDRÁULICO

Ramal	Carga (KPa)	Caudal (l/min.)
XA'	0.00024	0.92
XC'	0.013	0.46
XD'	0.013	0.46
AX	0.00016	1.84
AH	7.99	3.22
AG	7.96	2.76
FA	0.2051	7.82

La etapa de enjuague final no utiliza cisterna porque esta se conecta directamente a la línea principal de agua de la planta. Las dimensiones de las cisternas constan en la figura 16 y los detalles se encuentran en los anexos.

TABLA VIII.

CAUDAL Y PRESIÓN CONSUMIDO EN CADA ETAPA

Número de	Capacidad de	Caudal	Presión	Etapa de
cisterna	la cisterna (m ³)	(lt/min.)	(bar)	lavado
1	0.112	7.82	4	Prelavado
2	0.224	15.64	4	Lavado(soda)
3	0.224	7.82	4	Enjuague
		7.82	3	Enjuague final

3.3.3 SELECCIÓN DE LA BOMBA

Para la selección de la bomba hay que considerar a demás de las pérdidas por la presión de descarga en cada etapa de lavado, la caída de presión en el circuito hidráulico, en el tendido de tubería desde la cisterna hasta la entrada al circuito hidráulico y la altura hasta donde es llevada el agua; estos valores se detallan a continuación en el orden antes indicado.

CISTERNA

1.– Prelavado: 0.112 m ³ 2.– Lavado: 0.224 m ³ 3.– Enjuague: 0.224 m ³

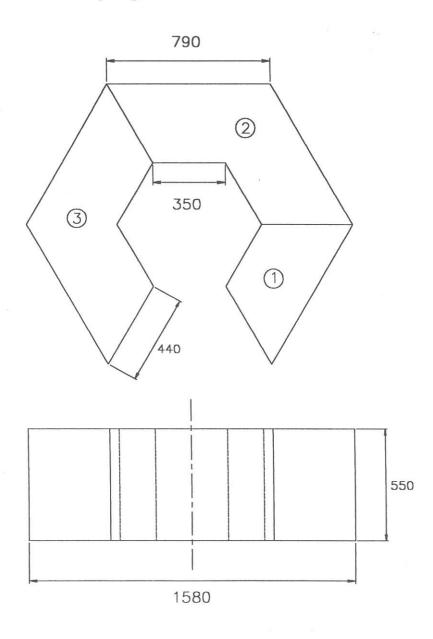


Figura 16. Dimensiones de las Cisternas

-Cisterna para prelavado:

(58 + 1.19 + 0.43 + 0.42) psi = 60.04 psi = 414 KPa

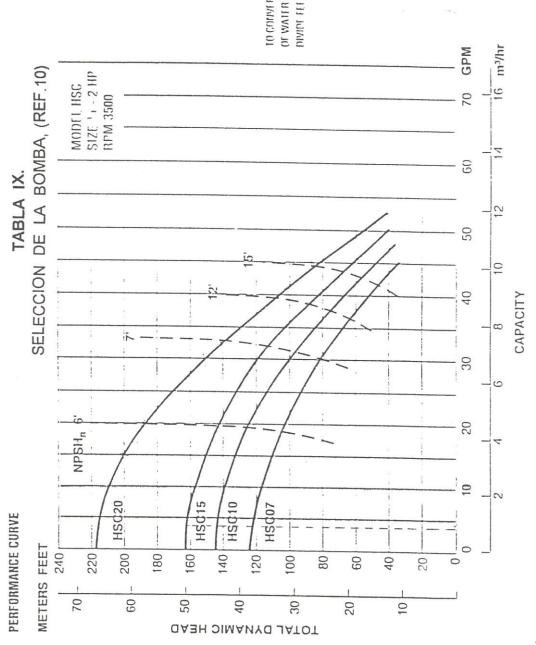
-Cisterna para lavado con soda:

(58 + 1.19 + 1.65 + 0.42) psi = 61.26 psi = 422.4 KPa

-Cisterna para enjuague:

(58 + 1.19 + 0.43 + 0.42) psi = 60.04 psi = 414 KPa

Utilizando un factor de corrección de 1.15 se obtienen valores finales de la pérdida de presión, con estos valores se procede a seleccionar la bomba.


Prelavado : 69 psi = 476 KPa

Lavado : 70.5 psi = 486 KPa

Enjuague : 69 psi = 476 KPa

Debido a que los valores de las pérdidas en las tres cisternas son parecidos ,se facilita la selección de un tipo único de bomba. La tabla IX muestra la curva característica de la bomba marca Goulds modelo HSC, estas bombas centrífugas transportan bajo caudal a alta presión; se selecciona el modelo HSC15 de 1.5 HP (11.2 Kw).

La instalación de cada bomba incluye la colocación de una válvula de alivio de presión de 70 psi, con esto se protege la bomba de posibles daños ocasionados por el exceso de presión.

OF WATER TO PSI -DIVIDE FEET BY 2-31 TO CONVERT FEET

3.4 SISTEMA DE CALEFACCIÓN

La etapa de lavado de los cilindros se realiza con una solución de soda, un sistema de calefacción de determinada capacidad mantiene la soda a 82 °C. Debido a que el vapor es un recurso disponible en todas las embotelladoras de gaseosas se diseñan dos tipos de calentadores que funcionan con este recurso, sin embargo, los calentadores eléctricos y a gas son otras opciones que son revisadas a fin de seleccionar la mejor alternativa de calefacción.

3.4.1 CAPACIDAD DEL CALENTADOR

Luego de haber cubicado la cisterna que contiene la solución de soda cáustica se debe instalar un calentador, capaz de suministrar la energía necesaria para elevar la temperatura de 0.136 m³ de soda a 18°C hasta alcanzar los 82°C, en un tiempo de 30 minutos.

* Asunciones:

- El análisis se realiza en condiciones críticas y estando el sistema en estado estable.

- En la radiación la emisividad del acero inoxidable de bajo carbono es $\varepsilon = 0.6$.
- La radiación de energía se realiza hacia un receptor completamente absorbente.

* Propiedades:

De la Encyclopedia of Chemical Technology, (11), se toman las propiedades de la soda cáustica al 2% a la temperatura promedio $T_{\rm fc}$

$$T_{\rm f} = (18 + 82)^{\circ} C = 50^{\circ} C = 323^{\circ} K$$

- densidad: $\rho = 1007 \text{ Kg/m}^3$

- calor específico: $C_p = [(0.98 \times 4182) + (0.02 \times 1480)] = 4128 \text{ J/Kg} * ^{\circ}\text{K}$

* Condiciones de operación:

- Volumen de la solución, V: 0.224 m3

- Temperatura inicial de la soda, T_{s.i}: 18°C

- Temperatura final de $la \text{ soda}, T_{s,f}$: 82°C

- Temperatura exterior de la cisterna, $T_{e,o}$: 86°C

- Temperatura del ambiente adyacente a cisterna, $T_{\alpha}:65^{o}\mathrm{C}$

- Temperatura interior de la pared, $T_{\rm p,i}\!\!:70^{o}\mathrm{C}$

- Temperatura del agua adyacente $, T_a : 32^{\circ}C$

- Áreas de transferencia en la cisterna:

Área 1 = 0.247 m^2 Área 2 = 0.88 m^2 Área 3 = 0.247 m^2 Área 4 = 0.385 m^2 Área piso =Área cubierta = 0.4485 m^2

La figura 17 esquematiza la cisterna e indica las áreas por las que se realiza transferencia de calor.

AREAS

- 1. 0.247 m²
- 2. 0.88 m²
- 3. 0.247 m²
- 4. 0.385 m²
- 5. Piso: 0.4485 m²

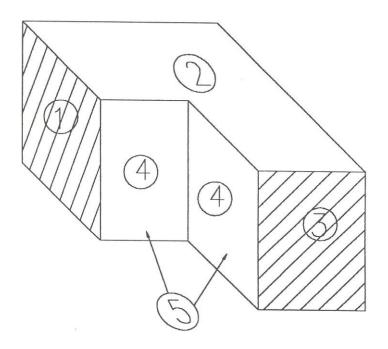


Figura 17. Area de Transferencia de Calor en la Cisterna de Lavado * Cálculos:

El calentador debe suministrar un nivel de energía capaz de elevar la temperatura de la solución y de compensar las pérdidas por transferencia de calor.

a. Energía necesaria para calentar la soda, Qa:

$$Qa = \rho * V * C_p * \frac{dT}{dt}$$

$$Qa = 1007 \frac{\text{Kg}}{\text{m}^3} * 0.224 \text{ m}^3 * 4128 \underbrace{\text{J}}_{\text{Kg}} * ^{\circ}\text{K} \frac{(82-18)^{\circ}\text{K}}{1800 \text{ s}}$$

Qa = 33107 J/s = 33107 W

b. Calor perdido por las paredes de la cisterna, Qp:

- Calor perdido por radiación, Q radiación:

Para determinar la pérdida de calor por radiación primero se calcula la razón de radiación , h_r ,mediante la ecuación 20 sugerida por Donald Kern, (12).

$$h_{r} = \underbrace{0.173 * \epsilon * [(T_{c,o} / 100)^{4} - (T_{p,i} / 100)^{4}]}_{T_{c,o} - T_{p,i}}$$
(20)

 $h_{r} = \underbrace{0.173 * 0.6 * [(646.8 / 100)^{4} - (618 / 100)^{4}]R^{4}}_{(646.8 - 618)^{\circ}R} = 1.051 \text{ BTU/h*ft}^{2* \text{ }\circ}F$ $T_{c,o} = 86^{\circ}\text{C} = 646.8^{\circ}\text{R} \qquad T_{p,i} = 70^{\circ}\text{C} = 618^{\circ}\text{R}$

Área total de radiación = Área 2 + Área piso + Área cubierta = $1.777 \text{ m}^2 = 19 \text{ ft}^2$

 $Q_{radiación} = h_r * Area * \Delta T$ $Q_{radiación} = (1.051 \text{ BTU/h} * \text{ft}^2 * ^{\circ}\text{F}) \times (19 \text{ ft}^2) \times (28.8 ^{\circ}\text{F}) = 575 \text{ BTU/hora}$ $Q_{radiación} = 168.5 \text{W}$

- Calor perdido por convección, Q convección:

El calor total perdido por convección es la suma de los calores perdidos por cada una de las paredes de la cisterna.

 $Q_{convección} = (Q1 + Q3) + (Q2) + Qpiso + Qcubierta$

Q1 + Q3:

Las paredes 1 y 3 son placas verticales y su coeficiente de convección se determina a partir de la ecuación 22, (12).

$$h_{c} = 0.3 * \Delta t^{0.25}$$

$$\Delta t = (86 - 32)^{o}C = 54^{o}C = 97.2^{o}F$$

$$h_{c} = 0.3 * (97.2)^{0.25} = 0.942 \text{ BTU/h} * \text{ft}^{2} * ^{o}F$$

$$\text{Årea } 1 + \text{Årea } 3 = 0.495 \text{ m}^{2} = 5.32 \text{ ft}^{2}$$

$$Q1 + Q3 = h_{c} * \text{Årea} * \Delta t = (0.942 \text{ BTU/h} * \text{ft}^{2} * ^{o}F) \times (5.32 \text{ ft}^{2}) \times (97.2^{o}F) = 487 \text{ BTU/hora}$$

$$Q1 + Q3 = 143 \text{ W}$$

$$Q2:$$

La pared 2 es una placa vertical y su coeficiente de convección se determina a partir de la ecuación 22.

(21)

$$h_{c} = 0.3 * \Delta t^{0.25}$$

$$\Delta t = (86 - 65)^{\circ}C = 21^{\circ}C = 37.8^{\circ}F$$

$$h_{c} = 0.3 * (37.8)^{0.25} = 0.7438 \text{ BTU/h} * \text{ft}^{2} * ^{\circ}F$$

$$\text{Årea } 2 = 0.88 \text{ m}^{2} = 9.47 \text{ ft}^{2}$$

$$Q2 = h_{c} * \text{Årea} * \Delta t = (0.7438 \text{ BTU/h} * \text{ft}^{2} * ^{\circ}F) \times (9.47 \text{ ft}^{2}) \times (37.8^{\circ}F) = 266$$

$$BTU/\text{hora}$$

$$Q2 = 78 \text{ W}$$

$$(22)$$

Qpiso :

El piso es una placa horizontal hacia abajo y su coeficiente de convección se determina a partir de la ecuación 23, (12).

$$h_{c} = 0.38 * \Delta t^{0.25}$$
(23)

$$\Delta t = (86 - 35)^{\circ}C = 51^{\circ}C = 91.8^{\circ}F$$

$$h_{c} = 0.38 * (91.8)^{0.25} = 1.176 \text{ BTU/h} * \text{ft}^{2} * ^{\circ}F$$

$$\text{Årea piso} = 0.4485 \text{ m}^{2} = 4.82 \text{ ft}^{2}$$

$$\text{Qpiso} = h_{c} * \text{Årea} * \Delta t = (1.176 \text{ BTU/h} * \text{ft}^{2} * ^{\circ}F) \times (4.82 \text{ ft}^{2}) \times (91.8^{\circ}F) = 520 \text{ BTU/h}$$

$$\text{Qpiso} = 152.5 \text{ W}$$

$$Ocubierta :$$

La cubierta es una placa horizontal hacia arriba y su coeficiente de convección se determina a partir de la ecuación 24, (12).

 $\Delta t = (86 - 65)^{\circ}C = 21^{\circ}C = 37.8^{\circ}F$

Bibliofoca Contral

 $h_c = 0.2 * (37.8)^{0.25} = 0.496 BTU/h * ft^2 * {}^{o}F$

Área cubierta = $0.4485 \text{ m}^2 = 4.82 \text{ ft}^2$

Qcubierta = $h_c * \text{ Årea} * \Delta t = (0.496 \text{ BTU/h} * \text{ft}^2 * \text{°F}) x(4.82 \text{ ft}^2) x (37.8^{\circ}\text{F})$

Qcubierta = 90.4 BTU/h = 26.5 W

La totalidad de calor perdido por convección es:

 $Q_{\text{convección}} = (143 + 78 + 152.5 + 26.5)W = 400 W$

- Calor perdido por las paredes, Op:

 $Qp = Q_{\text{convección}} + Q_{\text{radiación}} = (400 + 168.5)W$

Qp= 568.5 W

c. Energía suministrada por el calentador:

 $Q_{calentador} = Qa + Qp = (33107 + 568.5)W$

 $Q_{calentador} = 33675.5 W$

3.4.2 DISEÑO Y SELECCIÓN DEL CALENTADOR

Aprovechando la disponibilidad de vapor en las embotelladoras se hacen los diseños de dos modelos de calentadores a vapor, de serpentín y banco de tubos; en esta sección se realizan los cálculos de sus características.

CALENTADOR TIPO SERPENTÍN:

La condición para diseñar el calentador a vapor es que la presión disponible es de 4.37 bares, a 147 °C ; también hay que tener en cuenta las dimensiones físicas de la cisterna

a. Área del calentador:

El área del calentador se puede obtener a partir de la ecuación 25 indicada por Kern. $Q = U_D * A * \Delta t$ (25)

- UD: coeficiente total de diseño

El coeficiente total de diseño se calcula a partir de la ecuación 26, (12).

$$\frac{1}{U_D} = \frac{1}{U_C} + R_d \tag{26}$$

Kern ,(12), establece para todos los servicios de calentamiento que empleen vapor de agua usar un valor de 1500 BTU/h * ft² * °F como coeficiente de convección interior h_i , exterior h_o , entre capas h_{io} .

$$h_{io} = h_i * Di/De = 1500 * (0.884/1.05) = 1262.857$$

Luego, se procede a calcular U_C.

 $U_{C} = (h_{io} * h_{o}) / (h_{io} + h_{o}) = (1500 * 1262.857) / (1500 + 1262.857) = 685.62$

Con un factor de obstrucción promedio de R_d – 0.0025 se calcula $U_{\rm D}$

$$\frac{1}{U_D} = \frac{1}{685.62} + 0.0025$$

 $U_D = 253 \text{ BTU/h} * \text{ft}^2 * {}^{\text{o}}\text{F}$

- Δt: variación de temperatura entre el líquido y el vapor

temperatura del líquido = 18° C temperatura del vapor = 147° C $\Delta t = (147 - 18)^{\circ}$ C = 129° C = 232.2° F

-Q : flujo de calor en el intercambiador

De la sección 3.4.1 se conoce la capacidad del calentador $Q_{calentador} = 33675.5 \text{ W} = 115002 \text{ BTU/h}.$

Finalmente a partir de la ecuación 25 se puede obtener el área de transferencia de calor del calentador

$$A = \frac{Q}{U_{D} * \Delta t} = \frac{115002 \text{ BTU/h}}{(253 \text{ BTU/h} * \text{ft}^2 * ^\circ\text{F}) \text{ x} (232.2^\circ\text{F})} = 1.96 \text{ ft}^2$$

 $A = 0.18 \text{ m}^2$

b. Área de la tubería:

Kern presenta la tabla X en la que se muestra las dimensiones de tubería de acero. De dicha tabla se escoge la tubería de $\frac{3}{4}$ " IPS ,cuya superfície exterior es 0.275 ft²/ft.

TABLA X. DIMENSIONES DE TUBERIA DE ACERO (IPS), (REF. 12)

Tamaño nominal del tubo,	DE, plg	Cédula No.	DI, plg	Area de flujo por tubo,	lineal, pi		Peso por pie lineal, lb de
IPS plg				rlg ²	Exterior	Interior	acero
18	0.405	40* 80†	0.269 0.215	$ \begin{array}{c} 0.058 \\ 0.036 \end{array} $	0.106	0.070 0.056	0.25 0.32
34	0.540	40* 80†	0.364 0.302	$0.104 \\ 0.072$	0.141	0.095 0.079	0.43 0.54
38	0.675	40* 80†	0.493 0.423	0.192 0.141	0.177	0.129 0.111	0.57 0.74
75	0.840	40* 80†	$\begin{array}{c} 0.622\\ 0.546\end{array}$	$ \begin{array}{c} 0.304 \\ 0.235 \end{array} $	0.220	0.163 0.143	0.85 1.09
34	1.05	40* 80†	0.824 0.742	$\begin{array}{c} 0.534 \\ 0.432 \end{array}$	0.275	0.216 0.194	1.13 1.48
1	1.32	40* 80†	1.049 0.957	0.864 0.718	0.344	$0.274 \\ 0.250$	1.68 2.17
114	1.66	40*	1.380	1.50	0.435	0.362	2.28
		SOT	1.278	1.23		0.335	3.00
112	1.90	40* 80†	1.610 1.500	$\begin{array}{c} 2.04 \\ 1.76 \end{array}$	0.498	$\begin{array}{c} 0.422 \\ 0.393 \end{array}$	2.72 3.64
2	_2.38	40* 80†	2.067 1.939	$\begin{array}{c}3.35\\2.95\end{array}$	0.622	0.542 0.508	3.66 5.03
214	2.88	40* 80†	$\begin{array}{c}2.469\\2.323\end{array}$	$\begin{array}{c} 4.79 \\ 4.23 \end{array}$	0.753	0.647 0.609	5.80 7.67
3	3.50	40* 80†	3.06S 2.900	$\begin{array}{c} 7.38 \\ 6.61 \end{array}$	0.917	0.804 0.760	7.58 10.3
4	4.50	40* 80†	4.026 3.826	$\begin{array}{c} 12.7\\11.5\end{array}$	1.178	$1.055 \\ 1.002$	10 8 15.0
6	6.625	40* 80†	$ \begin{array}{r} 6.065 \\ 5.761 \end{array} $	$\begin{array}{c} 28.9 \\ 26.1 \end{array}$	1.734	$1.590 \\ 1.510$	19.0 28.6
8	8.625	40* 80†	7.981 7.625	$\begin{array}{c} 50.0\\ 45.7\end{array}$	2.258	$2.090 \\ 2.000$	$\begin{array}{r} 28.6 \\ 43.4 \end{array}$
10	10.75	40* 60	10.02 9.75	$78.8 \\ 74.6$	2.814	$2.62 \\ 2.55$	40.5 54.8
$-\frac{12}{14}$	$12.75 \\ 14.0 \\ 16.0 \\ 18.0 \\ 20.0 \\ 22.0 \\ 24.0 \\ 14.0 \\$	- 30 30 20‡ 20 20‡ 20 20‡	$\begin{array}{c} 12.09\\ 13.25\\ 15.25\\ 17.25\\ 19.25\\ 21.25\\ 23.25\\ \end{array}$	115 138 183 234 291 355 425	$\begin{array}{c} 3.338\\ 3.665\\ 4.189\\ 4.712\\ 5.236\\ 5.747\\ 6.283\end{array}$	$\begin{array}{c} 3.17\\ 3.47\\ 4.00\\ 4.52\\ 5.05\\ 5.56\\ 6.09 \end{array}$	$\begin{array}{r} 43.8\\ 54.6\\ 62.6\\ 72.7\\ 78.6\\ 84.0\\ 94.7\end{array}$

· Comúnmente conocido como estándar.

†Comúnmente conocido como extragrueso.

Aproximadamente.

c. Número de vueltas del calentador:

Primero se establece el diámetro adecuado para el calentador, $D_{calentador} = 0.3m = 0.984$ ft. Luego con la relación 27, (12), se obtiene el número de vueltas N.

 $N = \frac{\text{Área del calentador}}{\text{Perímetro del calentador } * \text{Área de la tubería}}$ (27)

Perímetro del calentador = $\pi * D_{calentador}$

$$N = \frac{1.96 \text{ ft}^2}{(\pi * 0.984 \text{ ft}) \text{ x} (0.275 \text{ ft}^2/\text{ft})} = 2.3$$

N = 2 vueltas

d. Longitud de la tubería:

La ecuación 28 sirve para calcular la longitud total del intercambiador.

$$L = N * \pi * D_{calentador}$$
(28)

 $L = 2 * \pi * 0.984$ ft = 6.18 ft

L = 1.88 m

e. Flujo de vapor en el calentador:

El calentador utiliza vapor a una temperatura de 147°C y 4.37 bares de presión, estas y otras propiedades del vapor se tomaron de Incropera , (13); el calor de vaporización es $h_{fg} = 2123$ KJ/Kg.

$$Q = m * h_{fg}$$

Conocido la energía suministrada por el calentador ,Q , y el calor de vaporización , h_{fg} ,se puede obtener el flujo de vapor a partir de la ecuación 29.

m =
$$\underline{Q}_{h_{fg}}$$
 = $\frac{33675.5 \text{ J/s}}{2123 \text{ E3 J/Kg}}$ = 0.016 Kg/s

m = 57.1 Kg/hora

Utilizando un factor de corrección de 1.2 se obtiene finalmente el flujo de vapor: m = 1.2 * 57.1 Kg/hora = 68.5 Kg / hora

TABLA XI.

CARACTERÍSTICAS DEL CALENTADOR TIPO SERPENTÍN

Área del calentador	Diámetro del	Número de vueltas	Longitud de la tubería
(m ²)	calentador (m)	del calentador	(m)
0.18	0.3	2	1.88

CALENTADOR TIPO BANCO DE TUBOS:

Utilizando el área del calentador tipo serpentín se revisa otra alternativa y para ello se diseña un calentador tipo banco de tubos, este diseño utiliza tubería de acero inoxidable SCH-10 de 19 mm ($^{3}/_{4}$ ") de diámetro interior y tramos de 0.30 m de longitud. El arreglo de los tubos es del tipo triangular , con un espaciado de tubos de

(29)

50.8 mm (2"). Con la ecuación 30 se calcula el número de tubos requeridos para elaborar el nuevo calentador.

Área del calentador = N * π * D_i * L

(30)

 $N = \frac{0.18 \text{ m}^2}{\pi * 0.02245 \text{ m} * 0.30 \text{ m}} = 8.5 \text{ tubos}$

TABLA XII.

CARACTERÍSTICAS DEL CALENTADOR TIPO HAZ DE TUBOS

Área del	Número de	Longitud de		Espaciado entre
calentador (m ²)	tubos	cada tubo (m)	Tipo de arreglo	tubos (m)
0.18	9	0.30	Triangular	0.0508

SELECCIÓN DEL CALENTADOR

Conocidas las características de los calentadores a vapor tipo serpentín y haz(banco) de tubos, tablas XI y XII, más la inclusión de las alternativas de calentadores a gas y eléctrico se elabora la matriz de decisión, tabla XIII; en esta matriz se evalúan los TABLA XIII. MATRIZ DE DECISION PARA SELECCION DEL SISTEMA DE CALEFACCION

Calificación final			79%	68%	72%	77%
Seguridad	0.2		75%	75%	85%	65%
Facilidad de mantenimiento Seguridad	0.05		85%	65%	85%	60%
Bajo costo mantenimiento	0.2		%06	60%	%06	85%
Bajo costo operación	0.3		75%	75%	45%	80%
Facilidad montaje	0.05		80%	50%	80%	60%
Bajo costo inicial	0.2	-	75%	65%	75%	85%
Objetivos:	Calificación	Alternativas:	Vapor, serpentín	Vapor, haz de tubos	Eléctrico	Gas

parámetros de mayor interés en este diseño. El tipo de calentador escogido es el de vapor/serpentín porque se ajusta a nuestros requerimientos , presentando un justo precio y costos comparativamente bajos de operación.

La trampa de vapor utilizada en esta tesis es del tipo flotador y termostática, la misma que se determinó a partir de la "Tabla de guía para seleccionar trampas de vapor" del libro Calderas Industriales y Marinas (14); las características de la misma se encuentran en el manual de Armstrong (15). Para entrar a este manual hay que conocer la cantidad de condensado en el serpentín , esto se determina a partir de Q = A * U * Dm, tomada de (15).

Q: calor total transferido por el serpentín, 33.6 KW
A: área de la superficie exterior del serpentín, 0.18 m²
U: coeficiente total de transferencia de calor, 10220 K J/H- m²-°C
Dm: temperatura logarítmica media, 90.52 °C

Q=166 521 KJ/H

El calor latente del vapor a 4.37 bar es 2123 KJ/Kg , luego podemos obtener los kilos de condensado por hora.

 $m = \frac{166\ 521\ \text{KJ/H}}{2\ 123\ \text{KJ/Kg}} = 78.43\ \text{Kg/H}$

Utilizando un factor de seguridad de 3 obtenemos un valor de condensado de 235.3 Kg/H, con este valor y considerando una presión diferencial de 3.4 Bar se selecciona en la tabla XIV la trampa de vapor 75-A3, para un diámetro de tubería de 20 mm. (3/4"), con orificio de 4.3 mm (11/64").

El esquema de instalación del control de temperatura, válvula solenoide, filtros, válvulas de control y trampa de vapor utilizado en el diseño del calentador vapor/serpentín se muestran en la figura 18; en el anexo "Sistema de calefacción" se detalla las características del serpentín, así como del controlador de temperatura.

Para proteger el serpentín se recomienda instalar una trampa de vapor tipo balde invertido, esto garantiza una buena calidad del vapor de ingreso.

3.5 SISTEMA MOTRIZ

Antes de revisar alternativas de rotación se debe conocer la potencia mínima para rotor la estructura. El tiempo utilizado en realizar el giro lo obtenemos con la ecuación 31, sabiendo que la frecuencia angular es 2.1 rad/s., parte del reposo y el arco desplazado es $\theta = \pi/3$.

$$t = (\omega - \omega_o) / \alpha \tag{31}$$

El valor de la aceleración angular, α , se lo obtiene con la ecuación 32

TABLA XIV. Seleccion de la trampa de vapor, Ref.(15)

Tempas de Flotador y Termostática Series A y B

Helegun

Pressie	Pression (downta)	-	2	2 BAR					5 BAR					9 BAR					12.5 BAR		
Direxione	Conexiones de l'itterias	15	20.25	32	40	50	:5	20. 25	32	9	20	15	20 23	32	10	- 50	51-	50.02	22	10	
Nú de P	Número de Modelo	30-AI-2	30-A3 30-A1-3 30-A4 30-A1-4		30-A6	30-A8	75-AI-2	75-A3 75-A1-3 75-A1-2 75-A1-2	75.45	5.49	5 1 1 1	Current L			125-77		F		5 	975 fee	12
CUEME	Tamano del Orificio		M	5.5	16	9:6	۴۵	F 1 :	11		л.	."		7) .	Ľ	35	7 .	.:	< <u></u>	2	
-	0.02	193	193	6	377	1 023	114	114	163	1.1	и» цг. • 1	B	8		163	318	53	0	1.	2	
	0.03	273	273	409	534	1 455	159	159	227	8	(1 · (1 · (1 ·	8	C:	153	227	ÉÚF		99	71	57	5
~~~~	0.07	341	341	500	727	1 636	182	182	273	318	195	102	102	182	273	500	36	36	135	182	273
	0.1.	409	409	557	852	1 864	227	227	::	54.2	5.5		94+	::	3.11	523	5 <del>,</del>	51-	551		511
	0.25	568	568	200	1 045	2 227	231	201	<u>.</u> ;		12.21	C3 L	()	0)	464	tuti		63	Steel	t z	5
lsi	0.70	685	685	864	1 273	2 682	375	375	545	818	1 636	239	239	103	636	1 227	127	127	284	500	955
ouə	1.40	864	364 1	1 082	1 614	3 364	500	500	632	·90	÷60 .	u) (-)	0) (*)	223	173	1 591	500	662	195	535	1.20
1911	0.60	1 000	1 000 1	1 250	1841	3 900	165	105	1 30.2		A Production	(. ;; ;;	ι. Γ.	F1.7	000	5.01	(mu)	0.2.	UUI'	1	•••
0 U	3.00	I	1	1	1	!	66.4	664	891 1	117	2 727	386	386	668	1 000	2 068	562	500	351	167	1 636
<u>ois</u>	3.50	I	1	1	I	1	727	10-	305	?,	0.00	22		150	1 159	2004	E.	11.		210	÷.
919	4.60	I	١	1	١	1	781	734	1 0:15	* ~	100.00	10) 10) *1	10 10 1	() () ()	1 255	2 545	3.5	316	515	000	038
(	5.00	I	1	1	1	1	850	850	1 136	1 909	3 477:	.65	131	886	1 386	2 818	109	60t	614	1 000	2 159
	7.00	1	1	١	I	I	I	1	I	1	1			000 +	1 660	i.i e.	ц. Т,	155	5	5.114	
	8.50	1	1	1	I	١	1	!	1	1	-	6 ) 71 ) 14 -	683	000	1 - 1	3 636	501	98t	773	1 239	2773
	10.50	1	I	١	1	1	1	ł	;	1	1	1	1	1	!	1	51	4 		111	9-2-2
	0000+					1	1	1	}	1	1	1	1	1	1	1	5.	202	11.19	1.155	1.1 1.1

Las capacidades dadas son las capacidades de descarga continua en Hilos por hora de concensado caliente a la presión diferencial indicada MOTA : Las trampas de hierro fundido no deberán ser usadas en sistemas en los cuales esta presente excesivo shock tridrauhoo o termico.

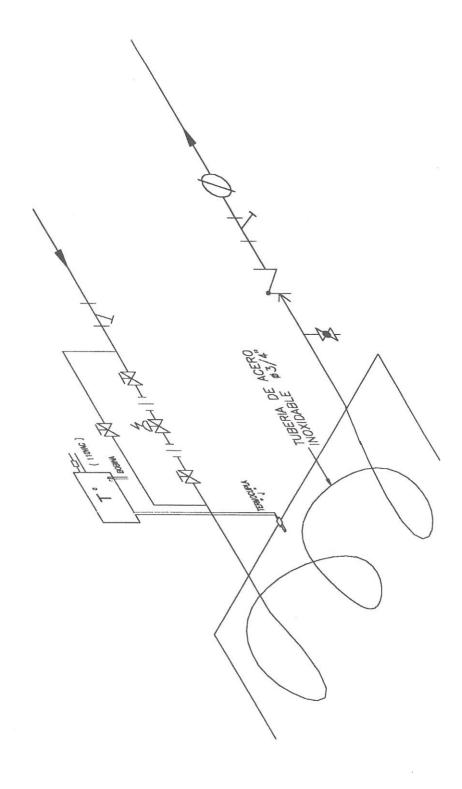



FIGURA 18.- ESQUEMA DEL SISTEMA DE VAPOR

$$\alpha = (\underline{\omega^2 - \omega_0^2})$$
(32)  
2 *  $\theta$ 

 $\alpha = 2.1 \text{ rad/s}^2$ 

Reemplazando valores en la ecuación 31, se obtiene el tiempo de 1 segundo.

De la sección 3.2.1 correspondiente al diseño del eje se sabe que una energía cinética rotacional de 240.34 J. son necesarios para girar la estructura , considerando el tiempo de 1 segundo para realizar dicho desplazamiento se obtiene la potencia consumida por la máquina lavadora, 240 Watt (0.32 HP).

### 3.5.1 ALTERNATIVAS DE ROTACIÓN

La parte fundamental de la máquina lavadora es el sistema motriz rotacional, el cual permite hacer desplazamientos periódicos en arcos de 60°, para ello se revisan varias alternativas de rotación.

- a. Rotación con impulsión neumática.
- b. Rotación con sistema piñón-cadena.
- c. Rotación con motorreductor.

Características:

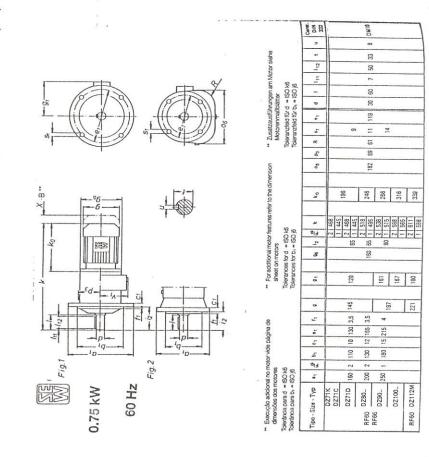
- a. Rotación con impulsión neumática.
- Muy factible por la baja potencia consumida.

- Para obtener la rotación se utiliza el mecanismo intermitente, tipo trinquete, este mecanismo requiere de un cuidadoso control ,puesto que tiende a descalibrarse con facilidad bajo el régimen de trabajo que llevaría; a demás se debe tener cuidado con el material utilizado en la construcción del mismo.
- El costo es muy alto porque requiere hacer nuevas instalaciones de aire comprimido (5 bar.), tendido de tubería y unidad de mantenimiento.
- Rotación con sistema piñón-cadena.
- Factible por la baja velocidad de trabajo



- El costo es relativamente bajo, en comparación al neumático.
- Utiliza varias reducciones hasta llegar a la velocidad requerida, aunque no siempre se alcanza en forma exacta la velocidad de diseño.
- Emplea muchos elementos mecánicos, ampliando los ítems de mantenimiento.
- c) Rotación con motorreductor.
- Es un sistema compacto.

- No requiere de muchos elementos, se acopla directamente al eje motriz ; esto lo hace ideal para ser utilizado en espacios reducidos.
- El motorreductor entrega directamente las revoluciones necesarias, descartándose todo sistema de reducción de velocidad.
- Su costo se compensa con la disminución de partes mecánicas requeridas y el tiempo empleado en hacer mantenimiento a la máquina.
- Se lo encuentra en el mercado local, con respaldo de mantenimiento y repuestos.


### 3.5.2 SELECCIÓN DEL SISTEMA DE ROTACIÓN

Las alternativas analizadas se evalúan en la matriz de decisión, tabla XV, de ellas se escoge el sistema de rotación accionado por un motorreductor de engranajes helicoidales, modelo RF 66 DZ80N4, con un peso aproximado de 28 Kg. Las características del motorreductor se encuentran en la tabla XVI, su motor es trifásico y tiene freno eléctrico; se arranca y se para por medio de un sistema eléctrico de control.

TABLA XV. MATRIZ DE DECISION PARA SELECCION DEL SISTEMA DE ROTACION

Calificación final				67%		82%	0 E D/	% 60
Seguridad	0.15			%06		100%	1000	%001
Precisión Facilidad de con el tiempo mantenimiento Seguridad	0.15			75%		20%	050/	0/.Co
Precisión con el tiempo	0.2			%02		100%	1000	0/ 001
Bajo costo Facilidad de Menor número inicial montaje de piezas	0.2			75%		75%	850 <u>/</u>	0/00
Facilidad de montaje	0.1	2)		70%		60%	850/2	2
Bajo costo inicial	0.2		30%			80%	60%	
Objetivos:	Calificación	Alternativas:	Impulso	neumático	Piñón/	cadena	Motorreductor	

# TABLA XVI. CARACTERISTICAS DEL MOTORREDUCTOR, REF. (16)



### **CAPITULO IV**

### SISTEMA DE CONTROL

### **4.1 SISTEMA ELÉCTRICO**

### a. Diagrama de fuerza

El diagrama de fuerza, figura 19 contiene las conexiones de fusibles, contactores y relé térmico que protegen y accionan el funcionamiento del motorreductor, freno y de las tres bombas.

Las características del material eléctrico utilizado son:

- F.P. : fusible principal de 40 A°

- $F_1$  : fusible del motorreductor de 2 A^o
- F2, F3, F4 : fusible de cada bomba de 10 A°

- K1, K2, K3, K4: contactores del motorreductor y de las bombas, del tipo 3TF40.

- T₁: relé térmico del motorreductor del tipo 3UA50, en escala de 1.2 a 2.0 amperios

- T₂, T₃, T₄ : relé térmico de cada bomba del tipo 3UA50, en escala de 5 a 8 amperios



Figura 19. Diagrama de Fuerza.

### b. Diagrama de control de las bombas

La figura 20 corresponde al diagrama de control de las bombas, ellas se prenden en forma individual con los pulsadores de marcha  $PM_1$ ,  $PM_2$  y  $PM_3$ ; se apagan con los pulsadores de paro  $PP_1$ ,  $PP_2$  y  $PP_3$ .

### c. Diagrama de control del motorreductor

Dos pulsadores de marcha,  $PM_1$  y  $PM_2$ , arrancan el motor del reductor, el motorreductor gira en 1 segundo un arco de 60 grados, en esta ubicación un sensor inductivo S₁ envía una señal que corta la alimentación del motor del reductor. Un temporizador T corta la señal de giro del reductor antes que transcurran 35 segundos.

### d. Electroválvula de control del enjuague final

Como parte del diagrama de control del motorreductor la electroválvula se energía con la señal que le llega a la bobina del temporizador, en este tiempo se mantiene abierta; al desenergizarse la válvula se cierra.

### e. Diagrama de control de temperatura

El sistema Chromalox controla la temperatura a la que se debe encontrar la solución de soda y de ello depende la apertura de la válvula solenoide de vapor.

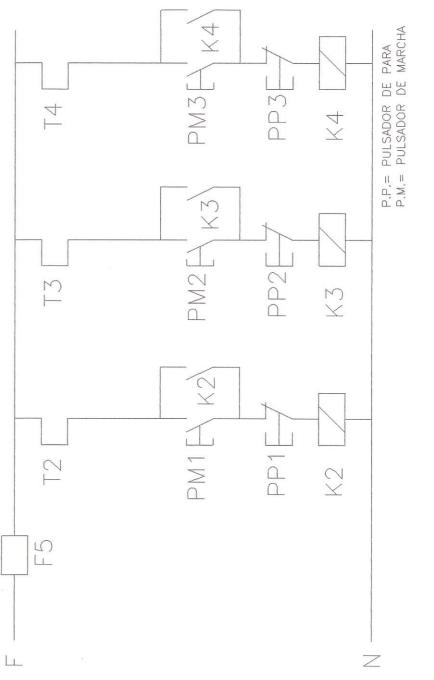
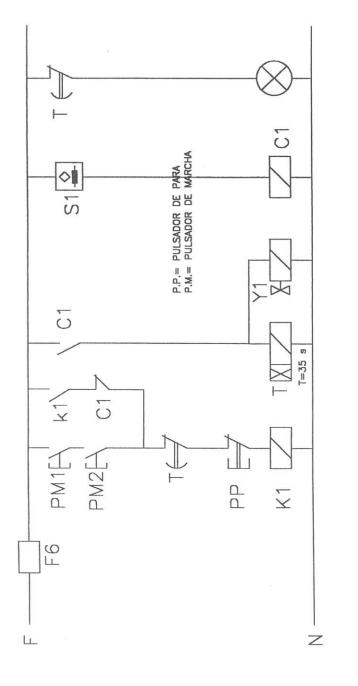




FIG. 20 CIRCUITO DE CONTROL DE LAS BOMBAS





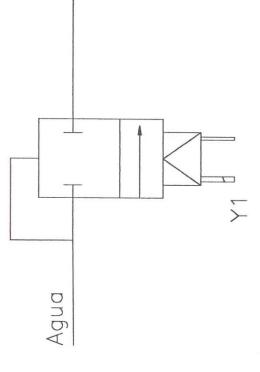



FIG. 22 ELECTROVALVULA DE CONTROL DEL ENJUAGUE FINAL

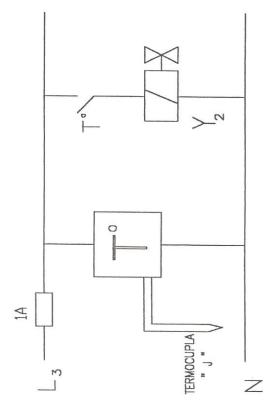



FIGURA 23. DIAGRAMA DE CONTROL DE TEMPERATURA

#### **CAPITULO V**

### ANÁLISIS DE COSTOS

Este capítulo presenta un análisis detallado de los costos de materiales, equipos y mano de obra utilizado en el diseño de la máquina lavadora.

#### 5.1 COSTO DEL MATERIAL EMPLEADO

Cantidad	Unidad	Descripción	Costo	
8.9	kg	acero ASSAB 709, Ø38 mm	74,983.00	
12	kg	acero A-36, Ø190 mm	34,550.00	
6.5	kg	acero SAE 1018, Ø100 mm	39,325.00	
0.25	kg 🖕	bronce fosfórico(SAE 40), Ø50 mm	8,800.00	
2	kg	celerón (micarta), 9" x 8" x 1.25 "	215,644.00	
1	unidad	ángulo "L" , (30 x 30 x 3) mm x 6 m	30,250.00	
1	unidad	ángulo "L" , (50 x 50 x 3) mm x 6 m	51,370.00	
9	m	canal "U", (100 x 50 x 4) mm	151,800.00	
14	m	canal "U", (50 x 25 x 3) mm	86,075.00	
2	unidad	plancha acero, A-36	342,980.00	
		(1220 x 2440 x 3) mm		
3	unidad	plancha acero inoxidable 304 L	2,205,000.00	
		(1220 x 2440 x 2) mm		
3	unidad	plancha acero inoxidable 304 L	3,501,000.00	
		(1220 x 2440 x 3) mm		
27	m	tubería Ø22.5 mm (3/4"), soldable	2,098,305.00	
		acero inox., 304 L, sch-10		
36	unidad	codo 3/4" x 90° soldable	216,000.00	
		acero inoxidable, sch-10		
2.5	m	manguera Ø 25 mm	55,000.00	
6	unidad	abrazadera Ø 30 mm	27,000.00	
102	unidad	rociadores	3,570,000.00	
6	unidad	perno M10 x 1.25 x 50	12,000.00	

Cantidad Unidad		Descripción	Costo	
16	unidad	perno M10 x 1.50 x 20	11,200.00	
28	unidad	perno M8 x 1.25 x 25	19,600.00	
6	unidad	perno M6 x 1.0 x 16	3,000.00	
6	unidad	perno M6 x 1.0 x 25	4,200.00	
6	unidad	tuerca M10 x 1.25	4,200.00	
16	unidad	tuerca M10 x 1.5	8,000.00	
8	unidad	tuerca M8 x 1.25	2,400.00	
6	unidad	anillo de presión M11		
8	unidad	anillo de presión M9	1,800.00	
5	m	tubería Ø26.67 mm (3/4"), roscable	1,600.00	
		acero inox., 304 L, sch-40	388,576.00	
6	m	tubería Ø 3/4", ISO II - galvanizada	40,500,00	
2	unidad	nudo Ø 3/4", para vapor	49,500.00	
3	unidad	válvula compuerta Ø 3/4", vapor	31,900.00	
1	unidad	válvula check Ø 3/4", vapor	441,870.00	
1	unidad	válvula esférica Ø 3/4", vapor	138,380.00	
2	unidad	filtro de vapor, Ø 3/4"	96,800.00	
4	m	tubería para vapor Ø 3/4", sch 40	234,960.00	
2	unidad	te $\emptyset$ 3/4", vapor	75,680.00	
2	unidad	codo Ø 3/4", vapor	11,880.00	
7	m	tubería Ø 2" p.v.c.	8,580.00	
4	unidad		186,500.00	
13		tuerca y empaques codo Ø 3/4" x 90° inox. roscable	12,320.00	
1	unidad		195,000.00	
2.5	kg	codo 3 vias Ø 3/4"	25,000.00	
7	-	soldadura Ø1/8" ,E-6011	27,500.00	
10	unidad	soldadura Ø1/8" ,E312-16 (R 91)	924,000.00	
12	unidad	resorte Ø16 x Ø3, acero	500,000.00	
3	unidad	resorte Ø32 x Ø3, acero	300,000.00	
10	m	válvula de presión 3/4", 100 psi	2,277,000.00	
10		alambre # 8	17,600.00	
10	m	alambre # 14	5,500.00	
10	m	alambre # 16	5,500.00	

Sub-total

S/. 18,730,128.00

### 5.2 COSTO DE EQUIPOS

Cantidad	Descripción	Costo	
1	motorreductor Sew, 0.25 Kw	7,312,045.00	
1	acople Lovejoy	200,673.00	
1	rodamiento axial de bolas	35,200.00	
	NTN, serie 51106	00,200.00	
3	bomba Goulds	10,181,903.00	
	HSC 15, 1.12 Kw (1.5 hp)	, ,	
1	trampa de vapor, 75 A-3, Ø20mm (3/4")	1,019,100.00	
	flotador-termostático	, ,	
1	válvula solenoide para vapor Ø3/4, 110v.	1,334,410.00	
1	panel de control de temperatura	2,712,000.00	
1. A.	Chromalox, con termocupla tipo J	, , ,	
1	Electroválvula Ø3/4", para control de	538,560.00	
	enjuague final		
4	pulsador paro, n.c.	158,400.00	
5	pulsador marcha, n.a.	198,000.00	
1	interruptor fin de carrera	352,000.00	
	tipo inductivo, M18		
1	luz piloto con foco 110 v. a.c.	41,500.00	
1	bobina para electroválvula	71,280.00	
1	temporizador (on delay), 5 - 100 seg.	355,300.00	
	110 v. a.c., 2 n.c.		
1	tablero 1100 x 550 x 320	539,000.00	
4	contactor Siemens	545,600.00	
	3 TF40		
1	juego de contacto auxiliar	124,000.00	
	2 n.c.		
1	térmico Siemens 3UA50 225,		
	de (1.2 - 2.0) amperios		
3	térmico Siemens 3UA50	Siemens 3UA50 676,500.00	
	de (5.0 - 8.0) amperios		
2	relé 110 v. a.c. con base	60,500.00	
	con 2 contactos conmutables		
1	breaker 40 amperios, 3Ø	253,000.00	

Cantidad	Descripción	Costo	
3	canaleta / 40 x 40	99,000.00	
3	fusible de 1 A°	37,620.00	
1	fusible de 2 A°	12,540.00	
3	fusible de 10 A°	37,620.00	
1	fusible de 40 A°	12,540.00	
21	bornas de paso	97,020.00	
4	bornas a tierra	46,200.00	

Sub-total

### S/. 27,277,011.00

### 5.3 COSTO DE MANO DE OBRA DIRECTA

Parte ó pieza	Cantidad	Trabajo realizado	Costo	
Arbol	1	Desbastado	200,000.00	
de la		refrentado		
lavadora				
Base	1	Desbastado	200,000.00	
de eje		refrentado		
		taladrado		
Brida	2	Desbastado	250,000.00	
		refrentado		
		taladrado		
Matriz	2	corte	100,000.00	
hexagonal		esmerilado		
		taladrado		
Templador	1	corte	32,000.00	
		esmerilado		
		soldadura		
Bocin	1	desbastado	100,000.00	
superior		refrentado		
-		taladrado		

Parte ó pieza	e ó pieza Cantidad Trabajo realizado		Costo	
Bancada para base de eje	1	corte, esmerilado soldadura	124,000.00	
Control de giro	1	corte, cilindrado taladrado, machuelo	150,000.00	
Zapata para acople	5	corte, esmerilado taladrado	75,000.00	
Placas para zapata	5	corte, esmerilado taladrado	100,000.00	
Cabina de lavado	6	corte, esmerilado soldadura	1,176,830.00	
Circuito para lavado	6	corte, esmerilado soldadura	450,000.00	
Cisternas	3	corte,esmerilado soldadura	1,385,125.00	
Serpentín	1	corte, doblado soldadura	1,650,000.00	
Tendido de tuberia		instalación de bomba instalación de tubería	2,400,000.00	
Sistema de vapor		instalación de tube- ría y accesorios de vapor	800,000.00	
Carcaza exterior		corte, esmerilado soldadura	311,040.00	
Sistema eléctrico		instalación del siste- ma de fuerza y control	2,800,000.00	

Sub-total

12,303,995.00

S/.



114

Biblioteca Central

El costo de materiales, equipos y mano de obra es S/. 58'311.134 sucres ; a estos valores hay que agregar S/. 8'000.000 de sucres por dirección técnica. El costo total del proyecto es de S/. 66'311.134 ó USD \$ 15.226 ; comparando este valor con los USD \$ 20.000 que cuesta importar una máquina de similares características se logra un considerable ahorro.

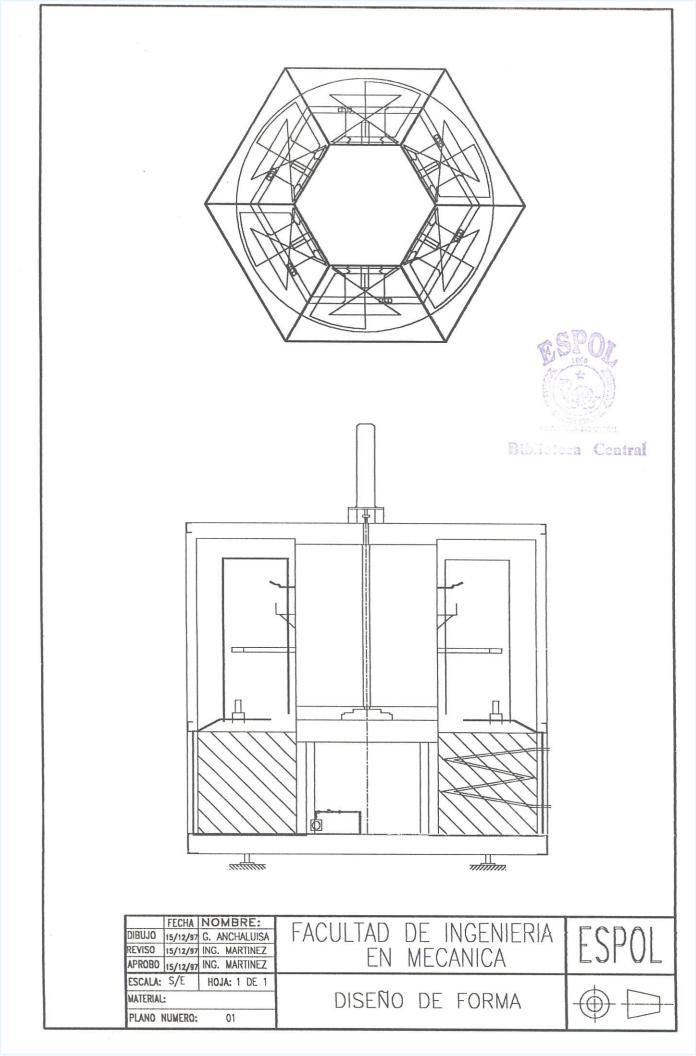


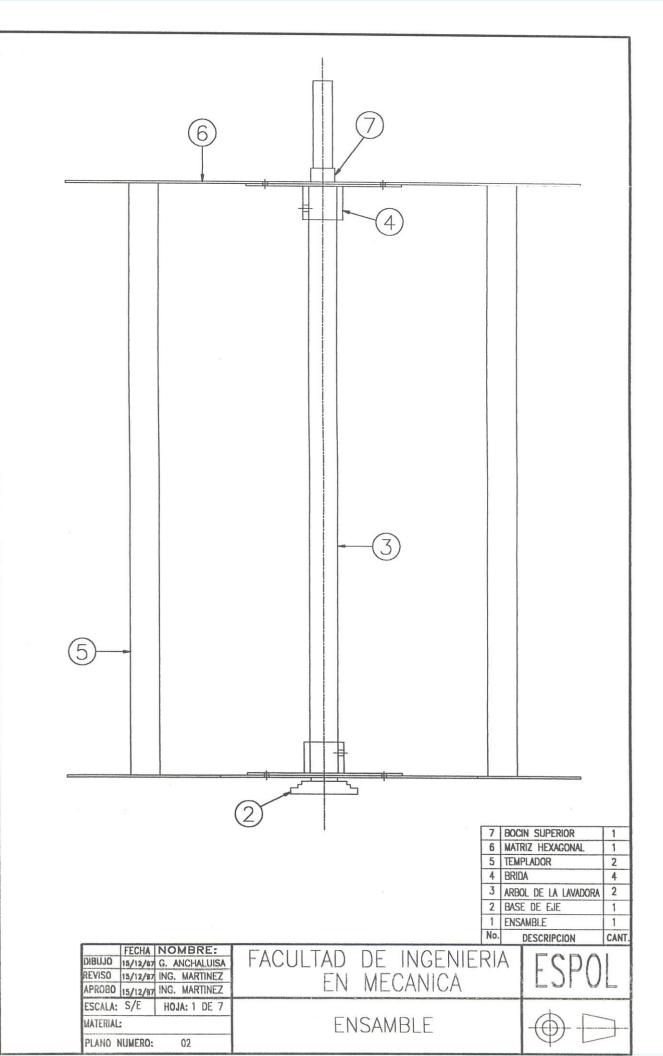
Biblioteca Central

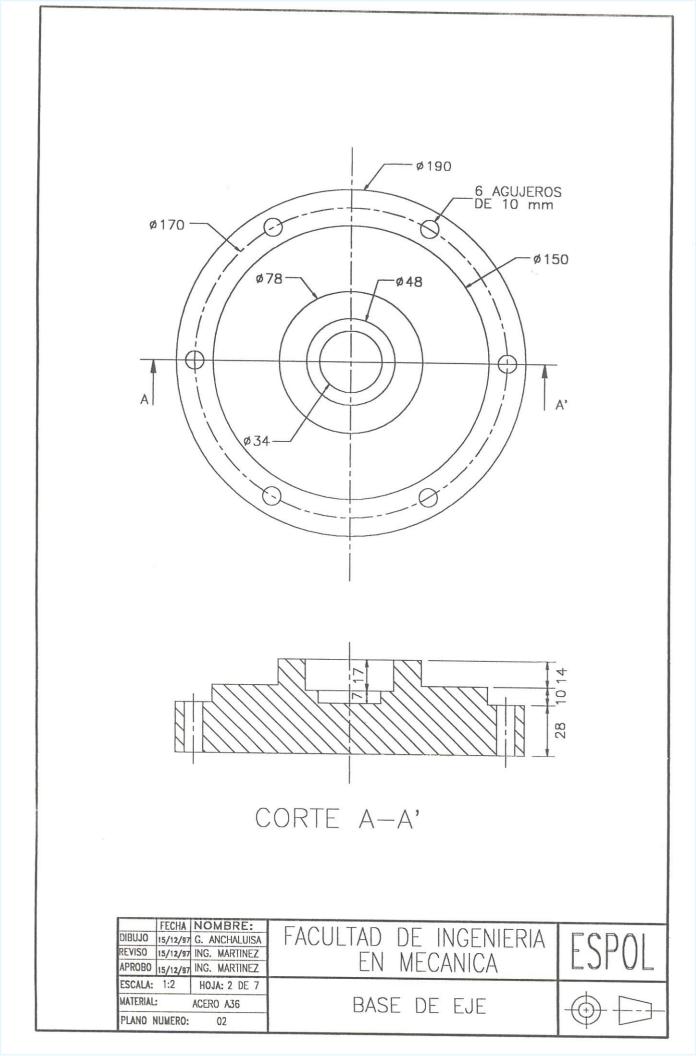
## **CONCLUSIONES Y RECOMENDACIONES**

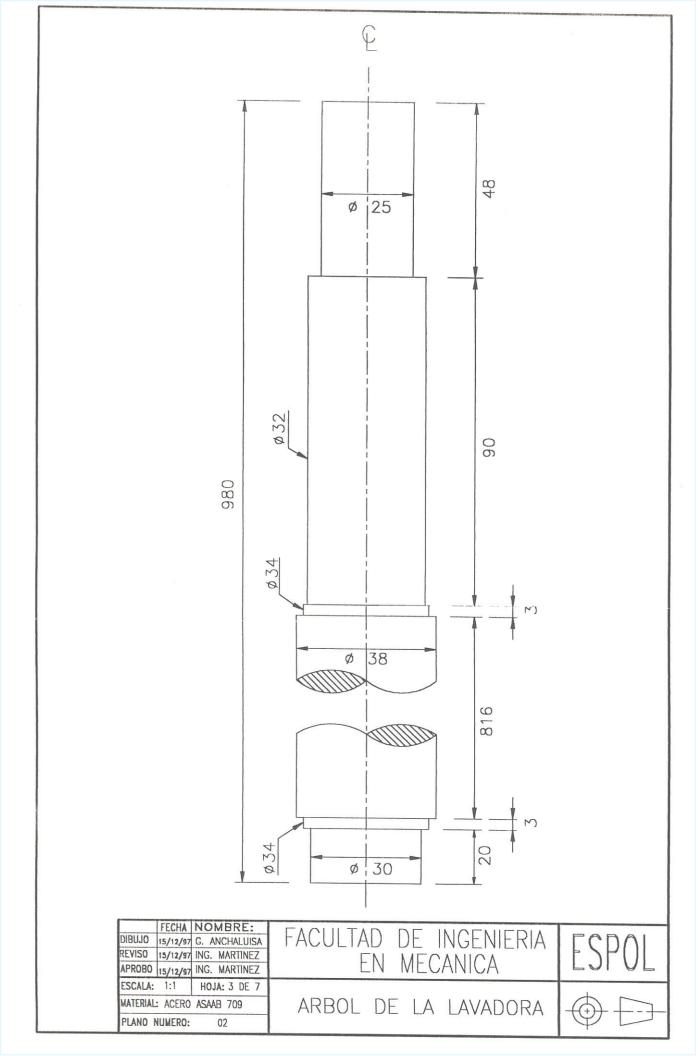
Existe la posibilidad cierta de poder construir la máquina lavadora de cilindros en nuestro país, pues se tiene todos los materiales, equipos y mano de obra capacitada para lograr este proyecto.

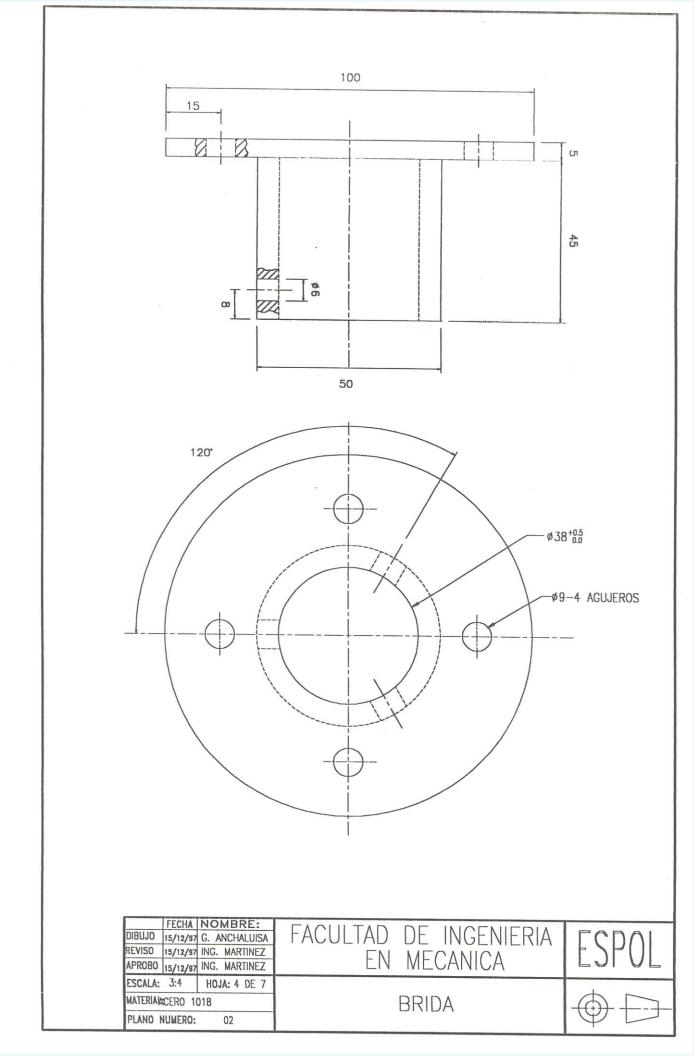
La cotización de la construcción del diseño tiene un costo inferior al de una máquina importada, esto lo hace competitivo al mismo. Una máquina lavadora importada de Brasil cuesta USD \$ 20.000, la del diseño cuesta USD \$ 15.226, un 32% menos, con ello se reduce la fuga de divisas de la compañía y del país.

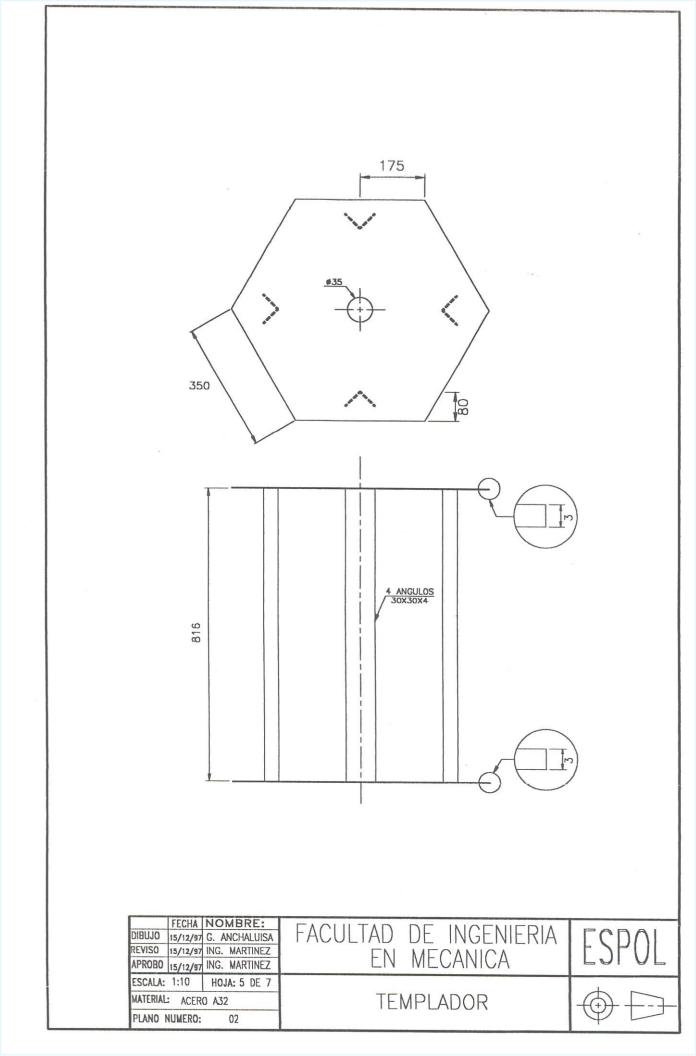

El diseño de la lavadora ayuda a desarrollar el área de la construcción de maquinaria en nuestro país, ello produce un efecto multiplicativo al generar la apertura de nuevas oportunidades de trabajo. Al construirse en el país ya no se requiere hacer un desembolso inicial fuerte, ahora los gastos se dan a medida que la obra avance.

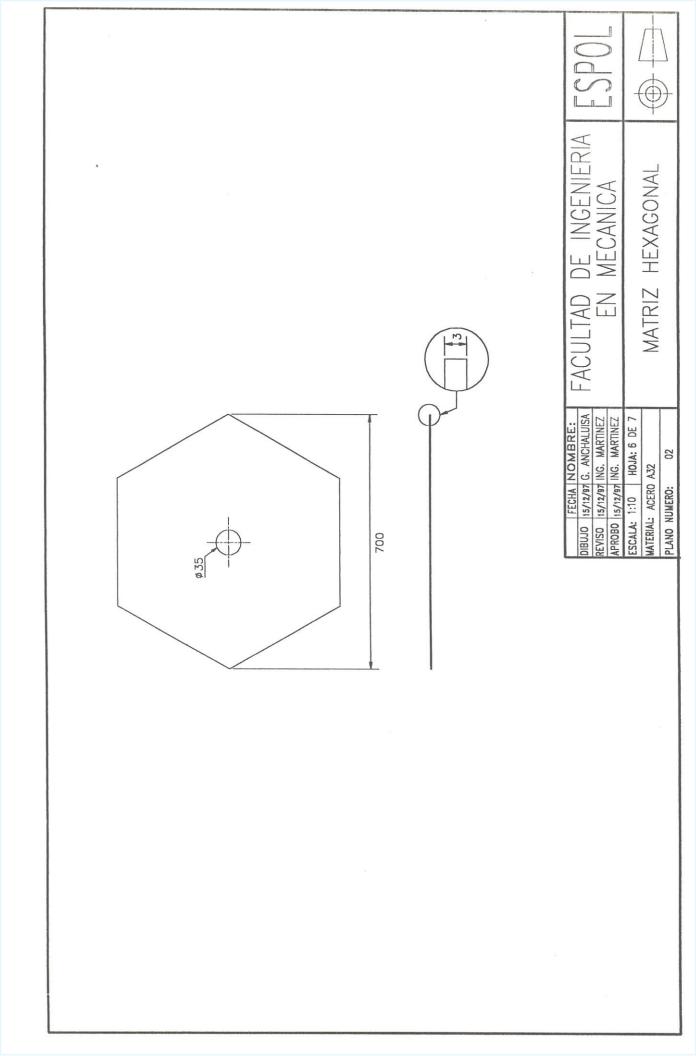

Por ser un diseño se pueden admitir modificaciones, sin perder la idea básica de ahorrar espacio y optimizar el empleo de recursos.

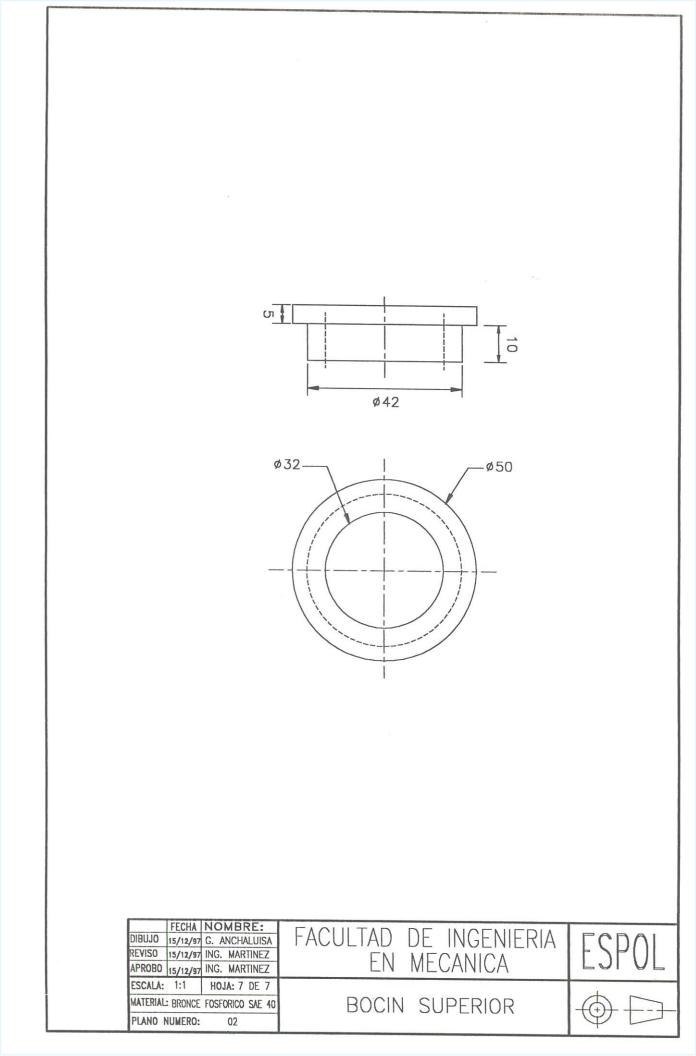

Se recomienda aislar la tubería por donde circula vapor e instalar una trampa en la entrada del vapor al serpentín, esto ayuda a mejorar y extender el correcto funcionamiento del calentador.

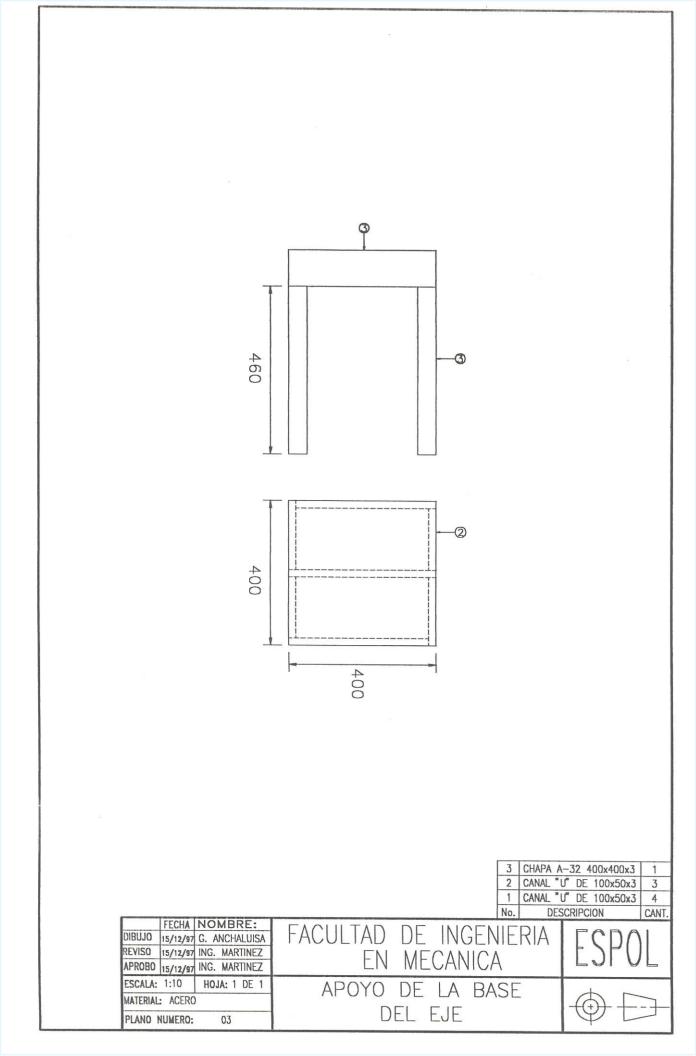

Dos ideas se proponen como un complemento a la presente tesis: a). diseñar un sistema de colocar y retirar los cilindros, con ello se logra hacer automática la máquina lavadora. ; b). instalar un extractor de vapores en la lavadora para disminuir la incomodidad que representa para el operador trabajar en un sitio en el cual la temperatura es elevada.

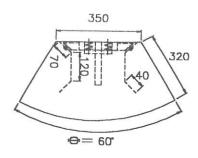

# APENDICE

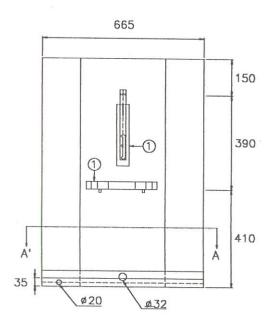


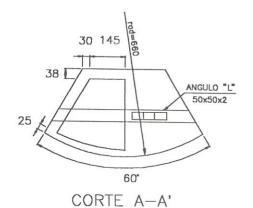



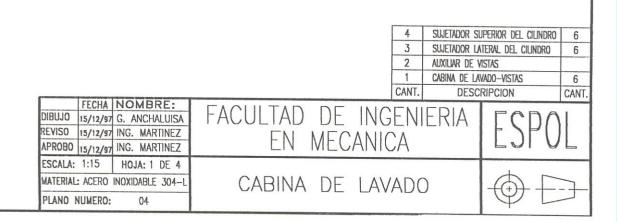



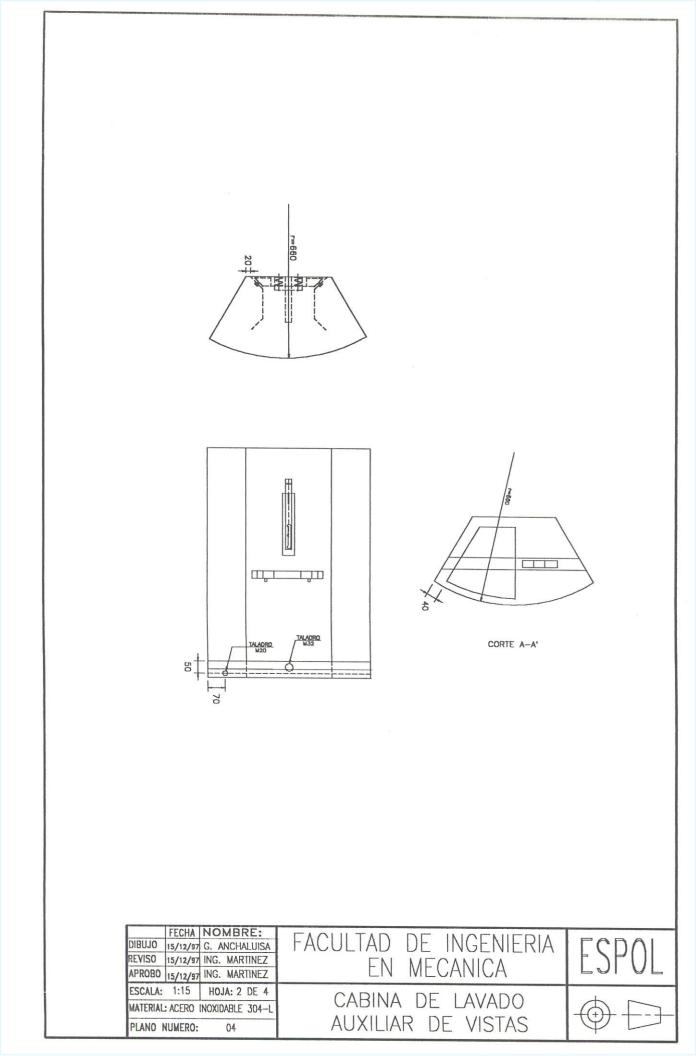



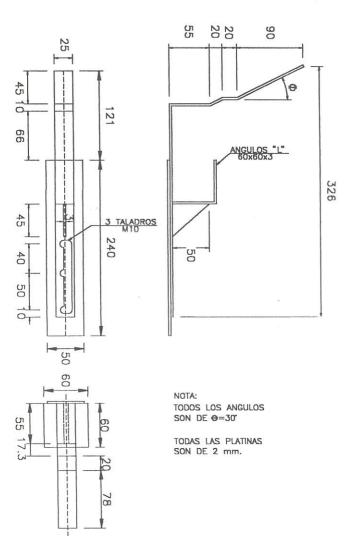



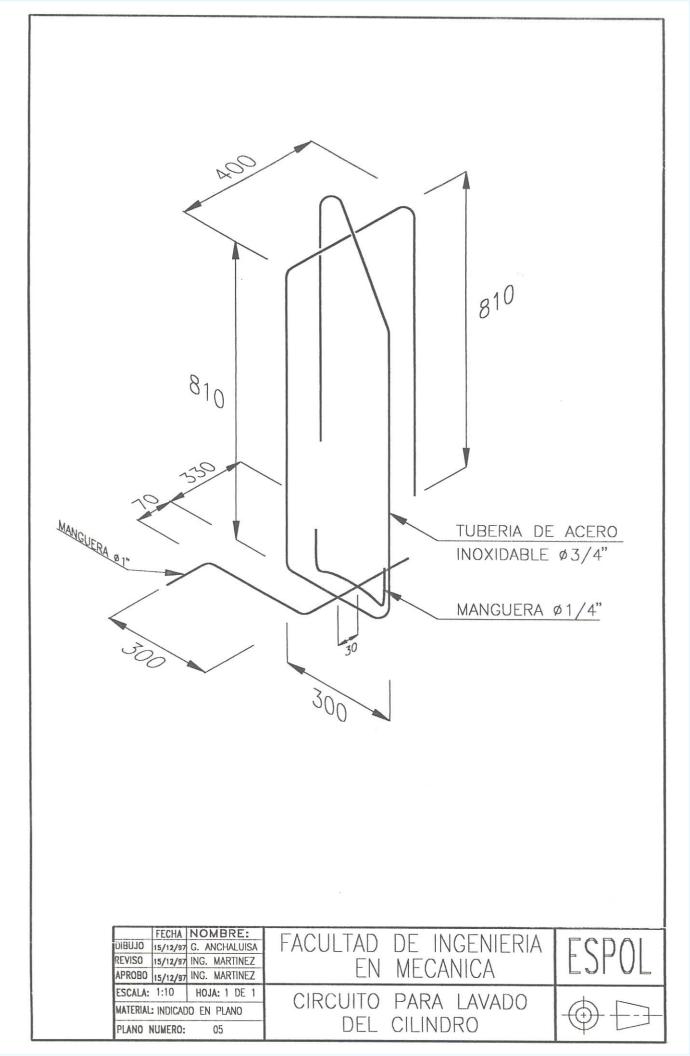



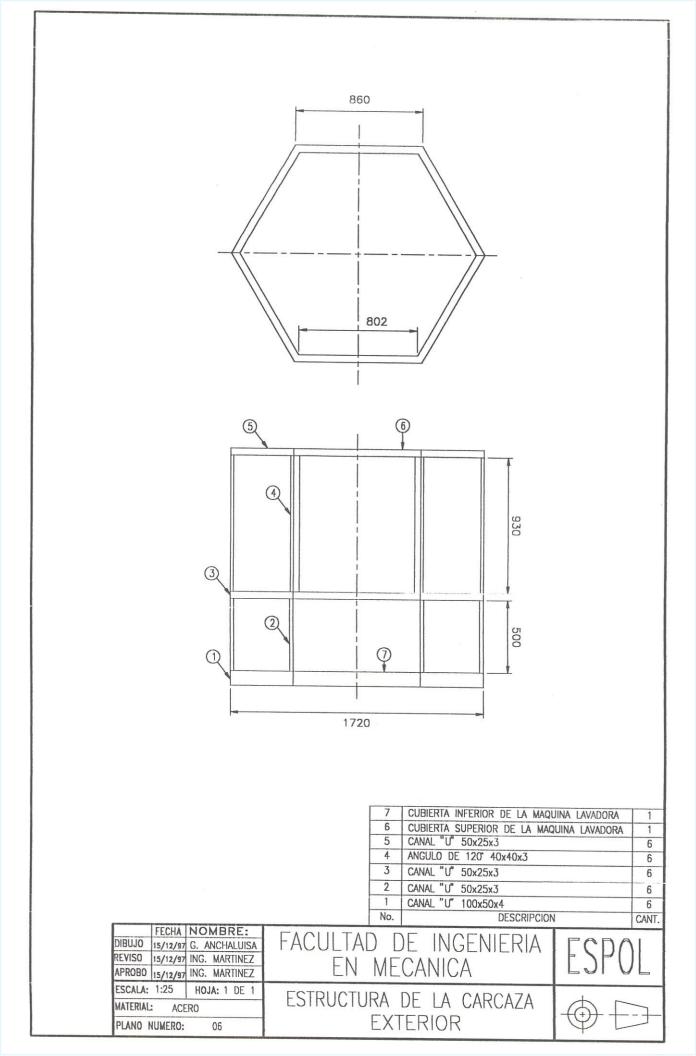


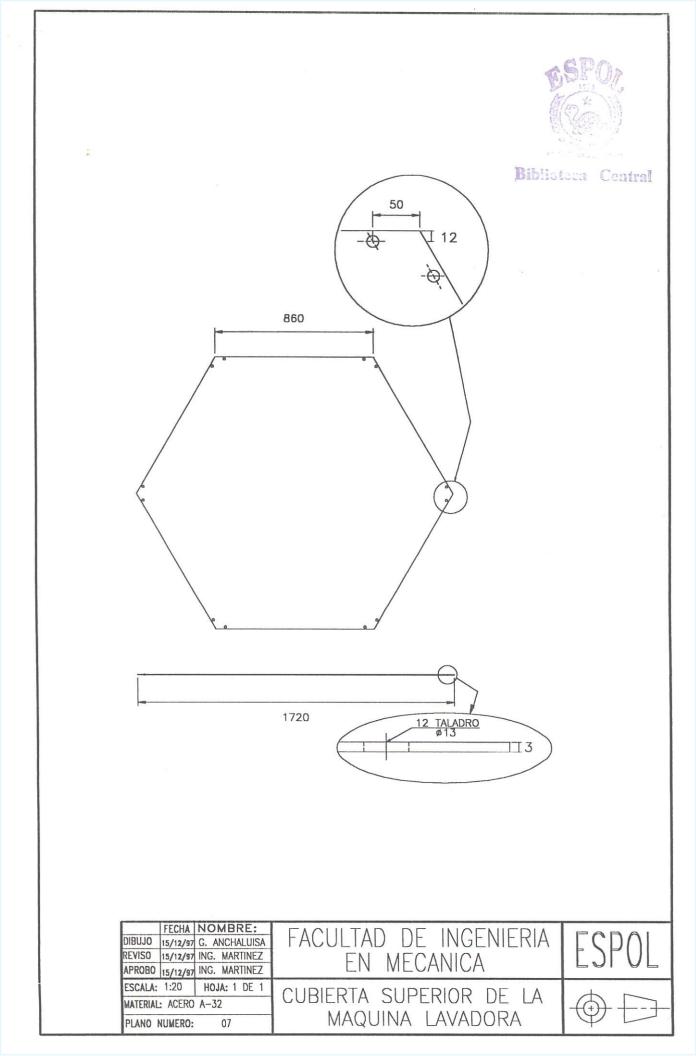


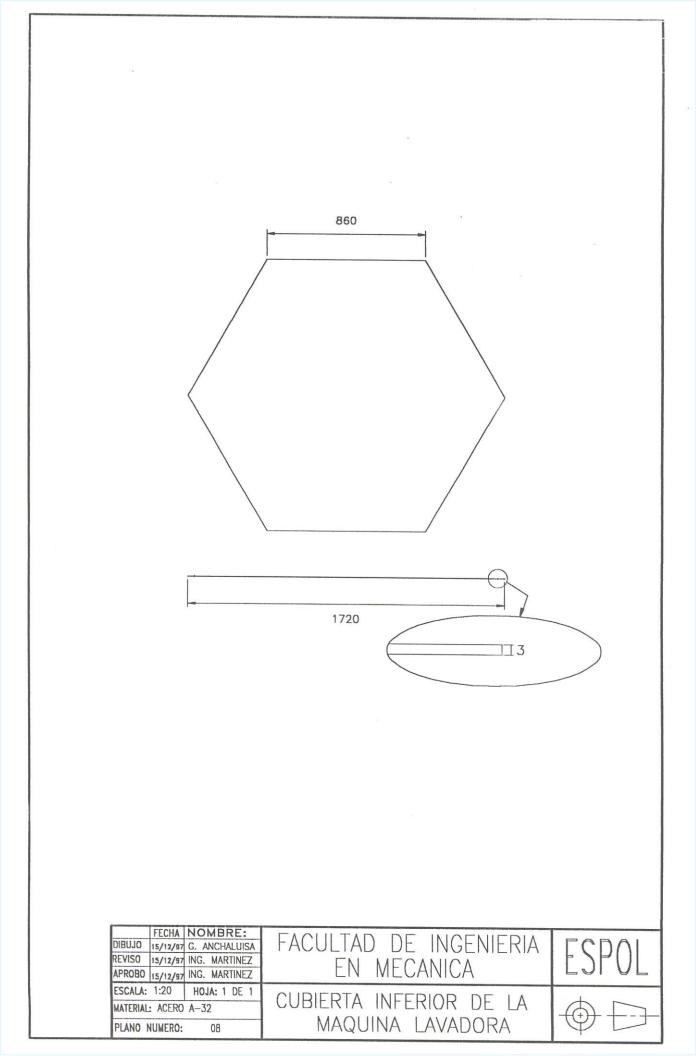



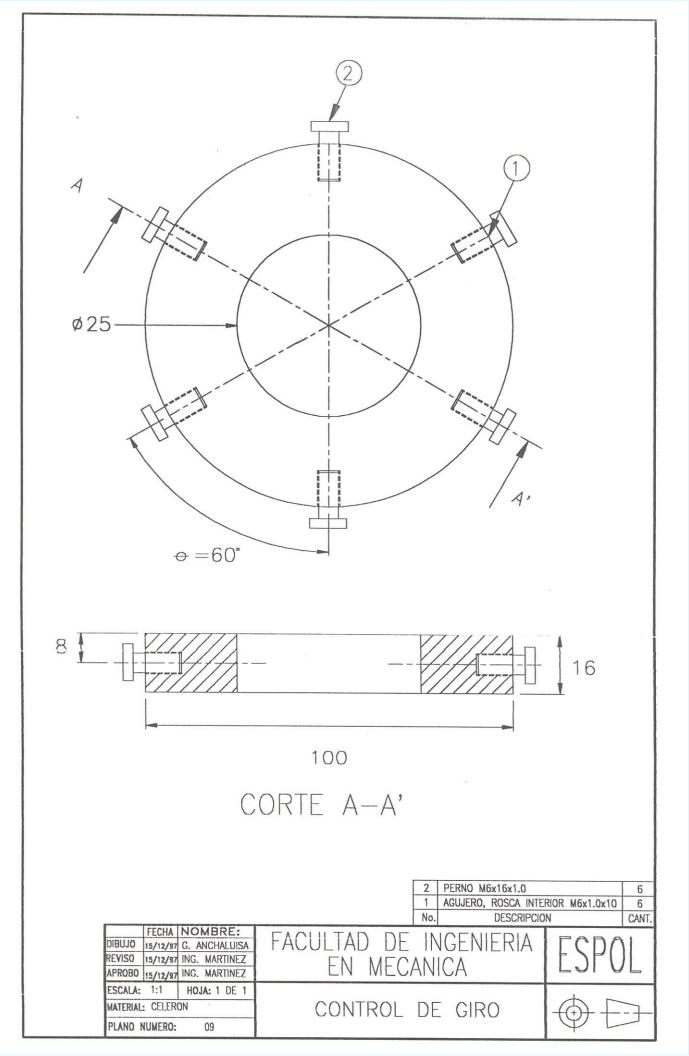


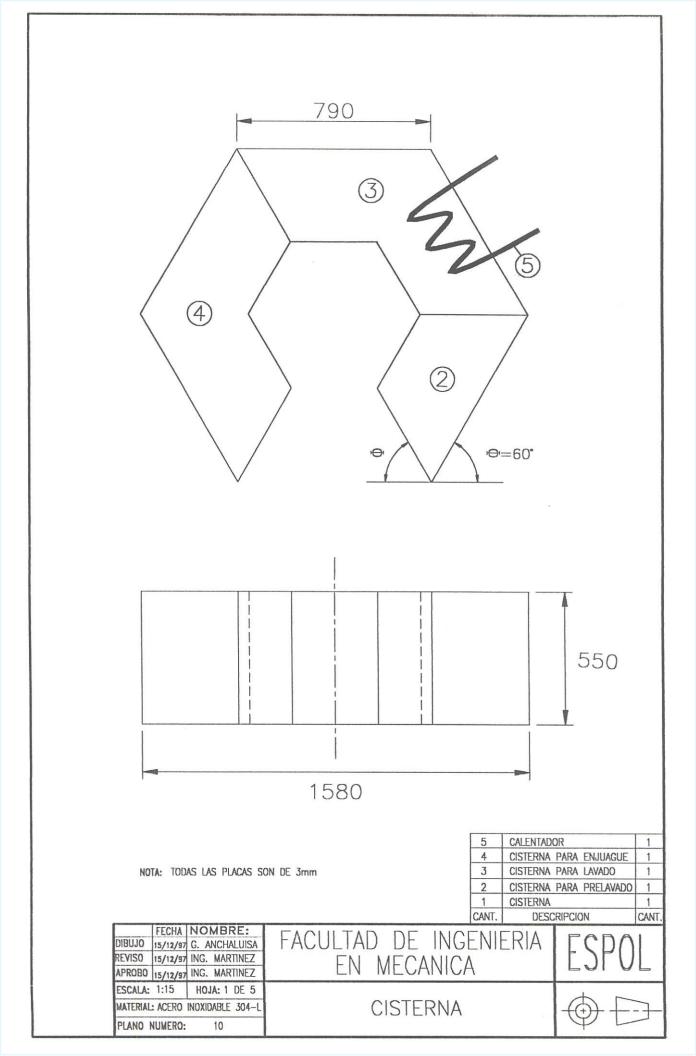



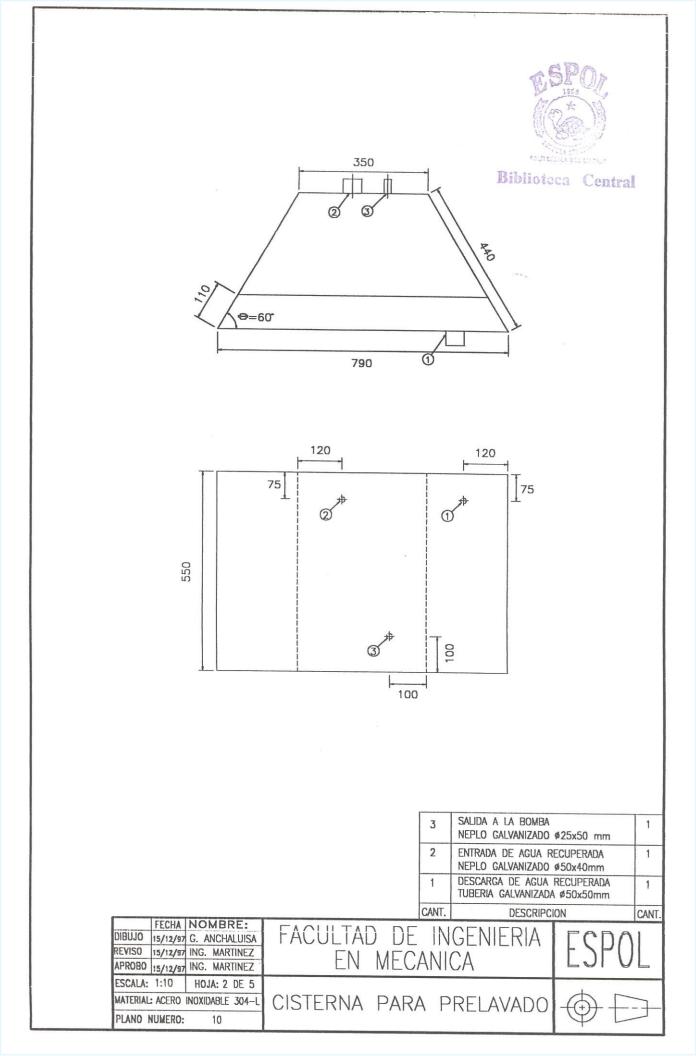



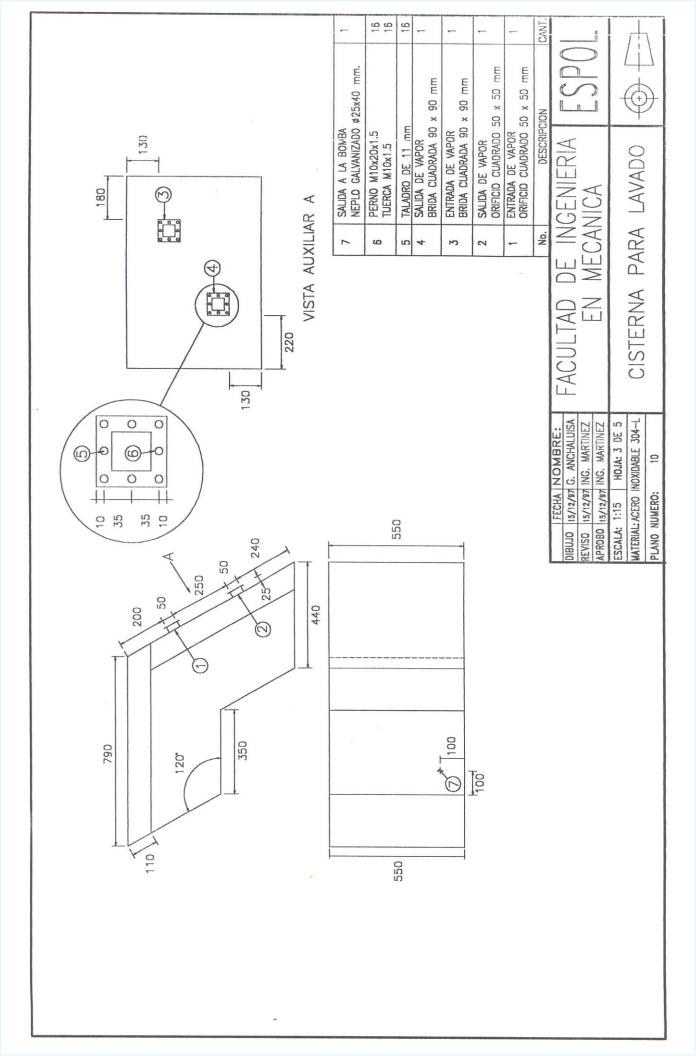



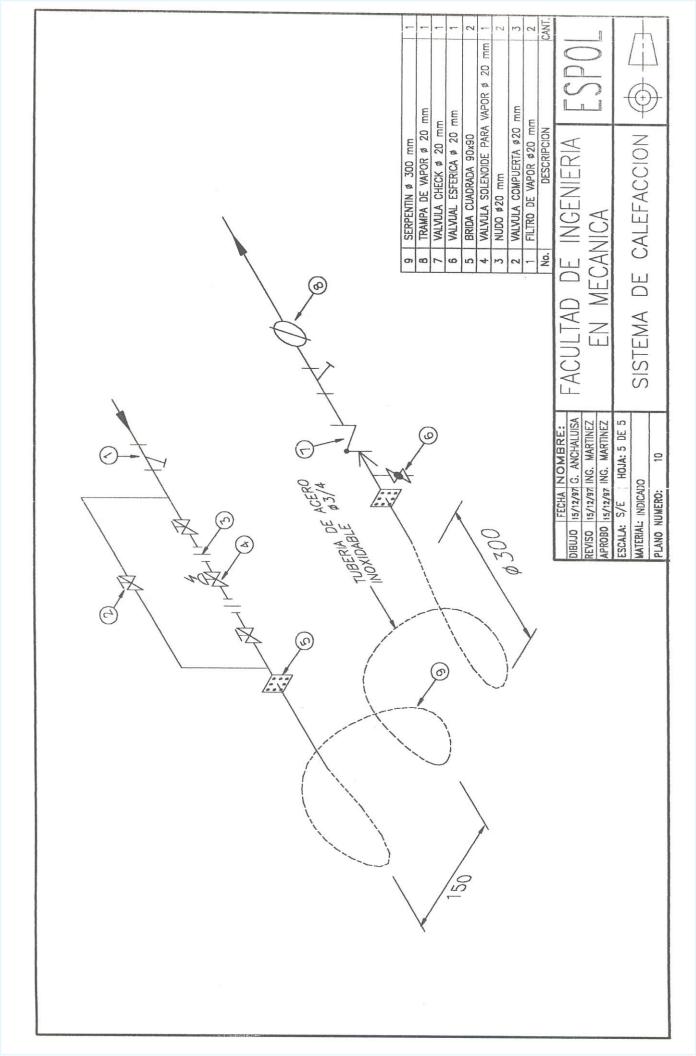


FECHA         NOMB           DIBUJO         15/12/97         G. ANCH           REVISO         15/12/97         ING. MA	ialuisa FAC	ULTAD	DE INGEI		FSPOL
APROBO 15/12/97 ING. MA		EN	MECANIC	A	LUIVL
ESCALA: 1:5 HOJA:	+ DE 4		R SUPER		
MATERIAL: ACERO INOXIDABL	E 304-L		N SUFLA	NON	(+)++-
PLANO NUMERO: 04		DEL	CILINDRC	)	$\Psi$

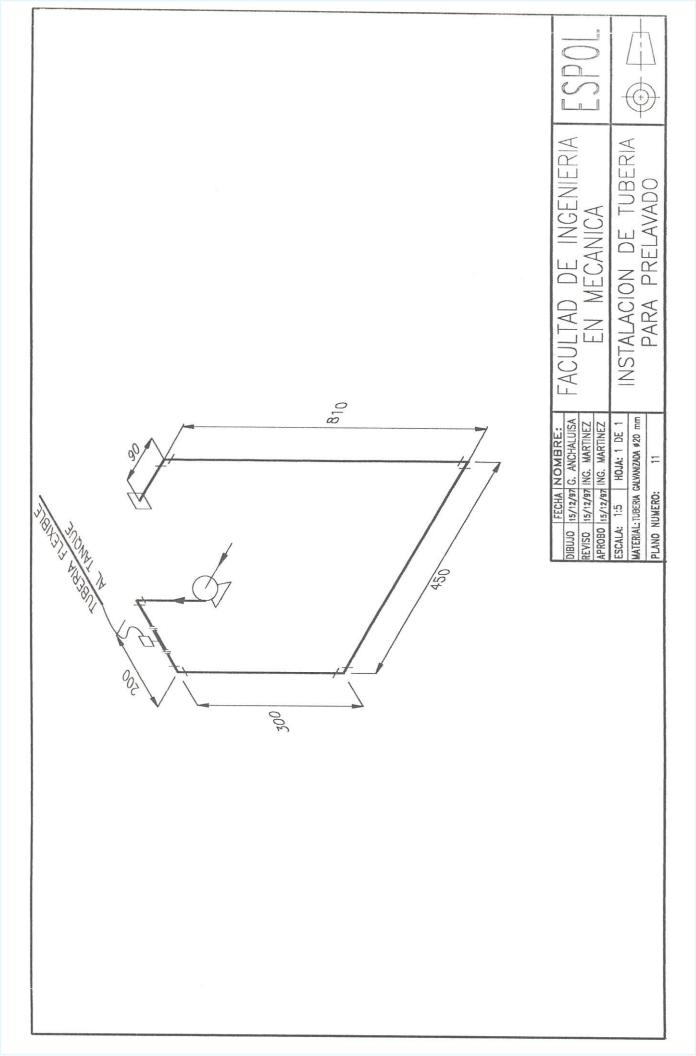


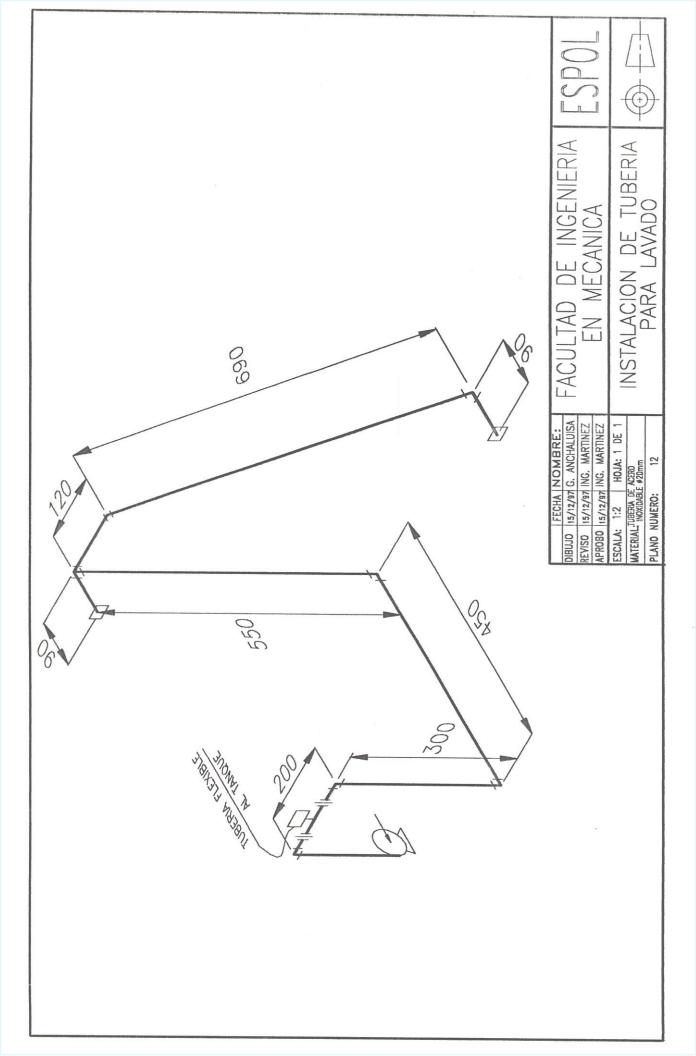



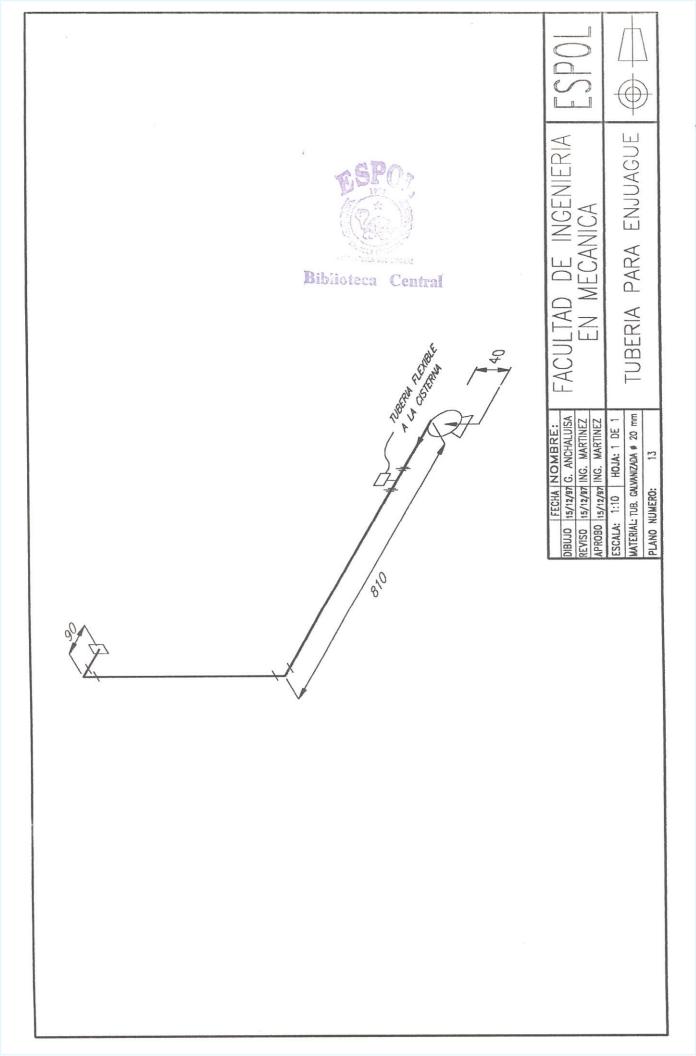



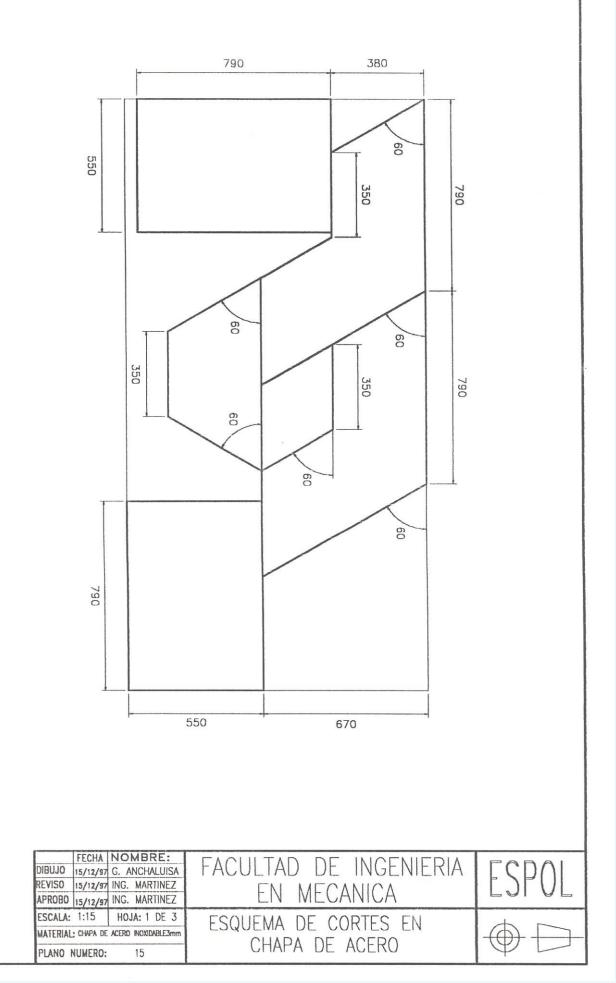


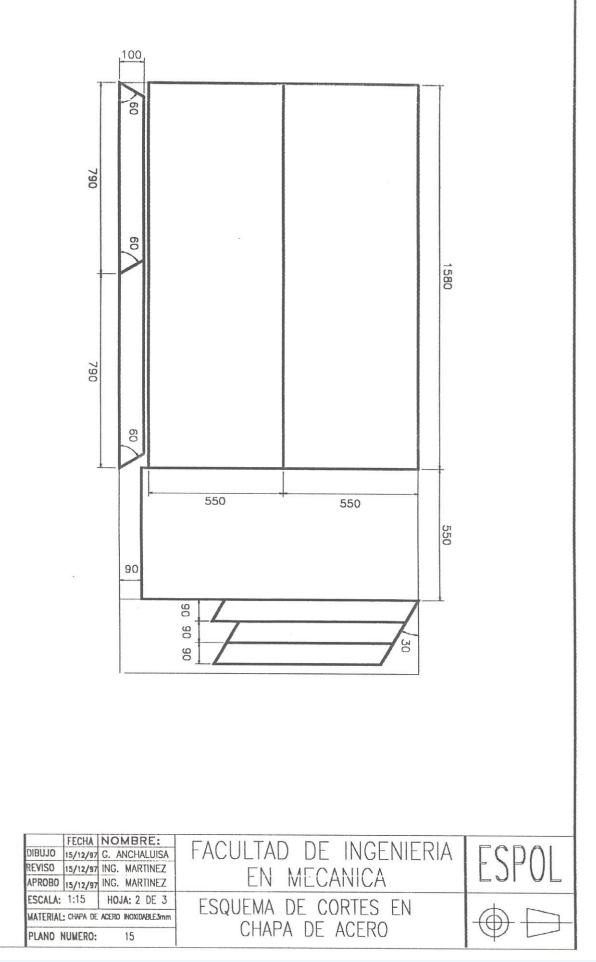



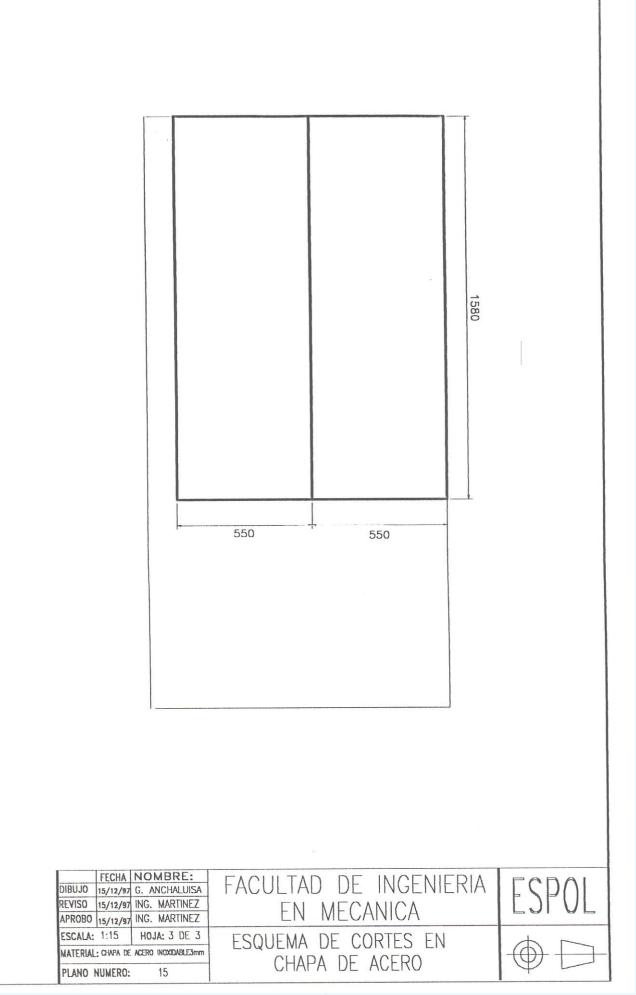



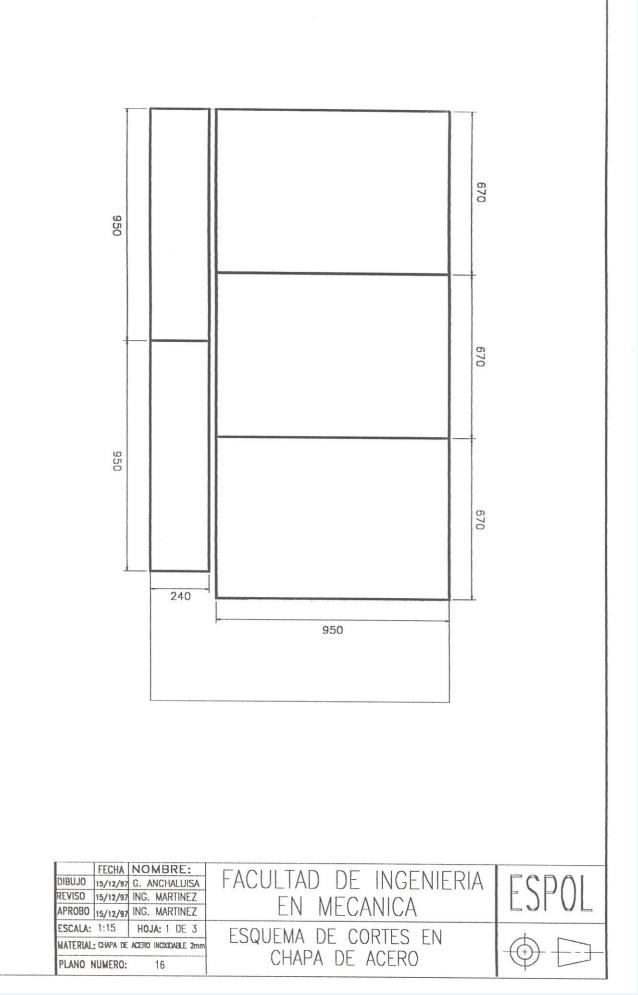



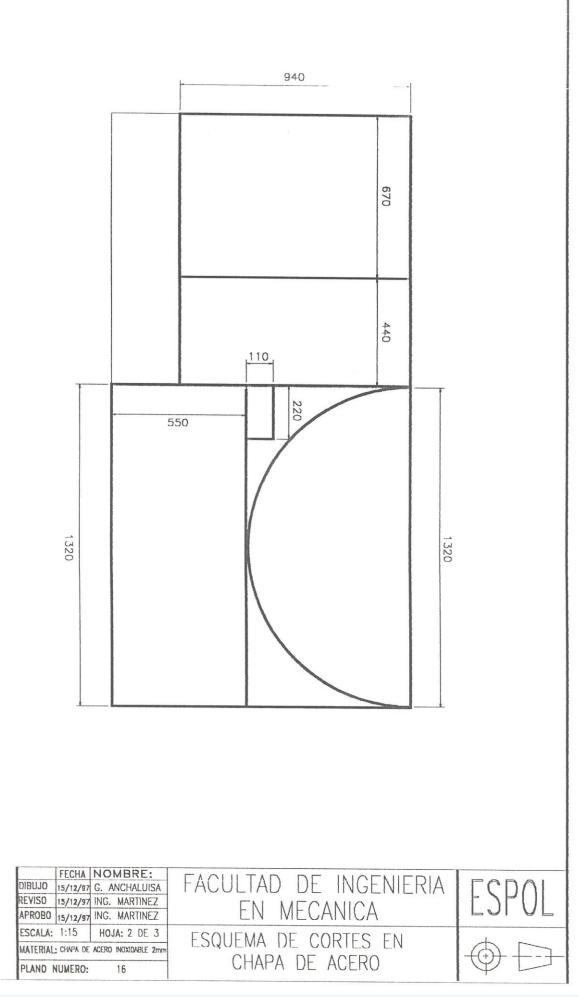



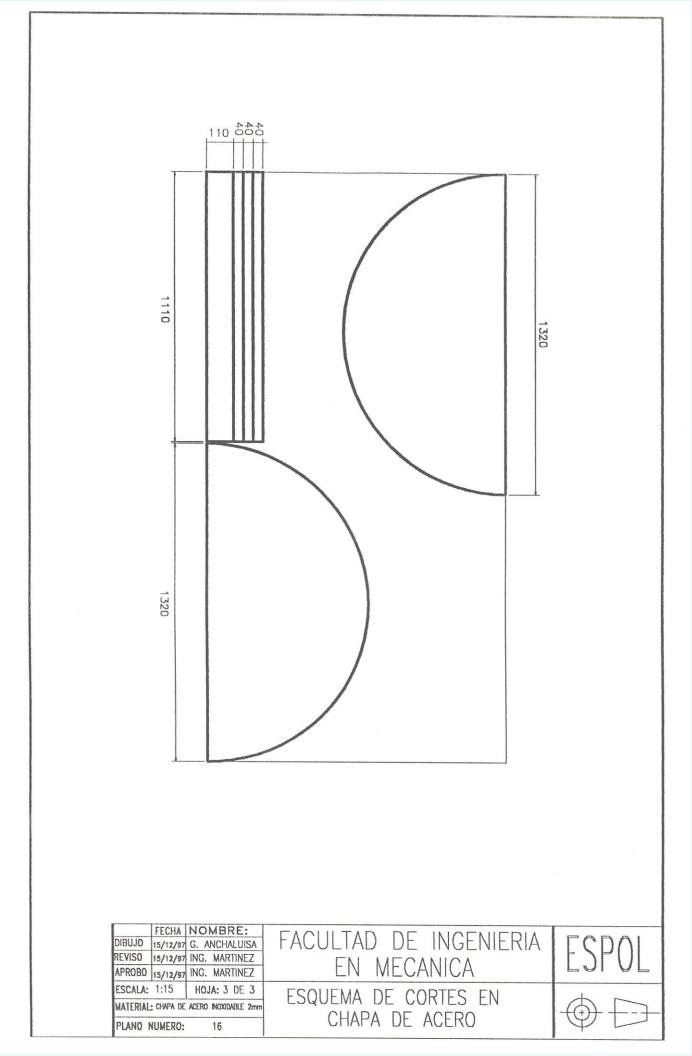


	<b>Biblioteca</b> Central	SALIDA DE AGUA RECUPERADA NEPLO GALVANIZADO #50x40 mm ENTRADA DE AGUA NEPLO GALVANIZADO #25x50 mm SALIDA A LA BOMBA NEPLO GALVANIZADO #25x50 mm	FACULTAD DE INGENIERIA ESCRIPCION ICANT EN MECANICA CISTERNA DE ENJUAGUE
Contraction of the second seco			DIBUJO     FECHA     NOMBRE:     FACULTAD       DIBUJO     15/12/97     NG. MARTINEZ     FACULTAD       REVISO     15/12/97     ING. MARTINEZ     EN       APROBO     15/12/97     ING. MARTINEZ     EN       ESCALA:     1:15     HOJA:     4 DE       MATERIA::     367-12     1:15     HOJA:       PLANO     NUMERO:     10     CISTERNA

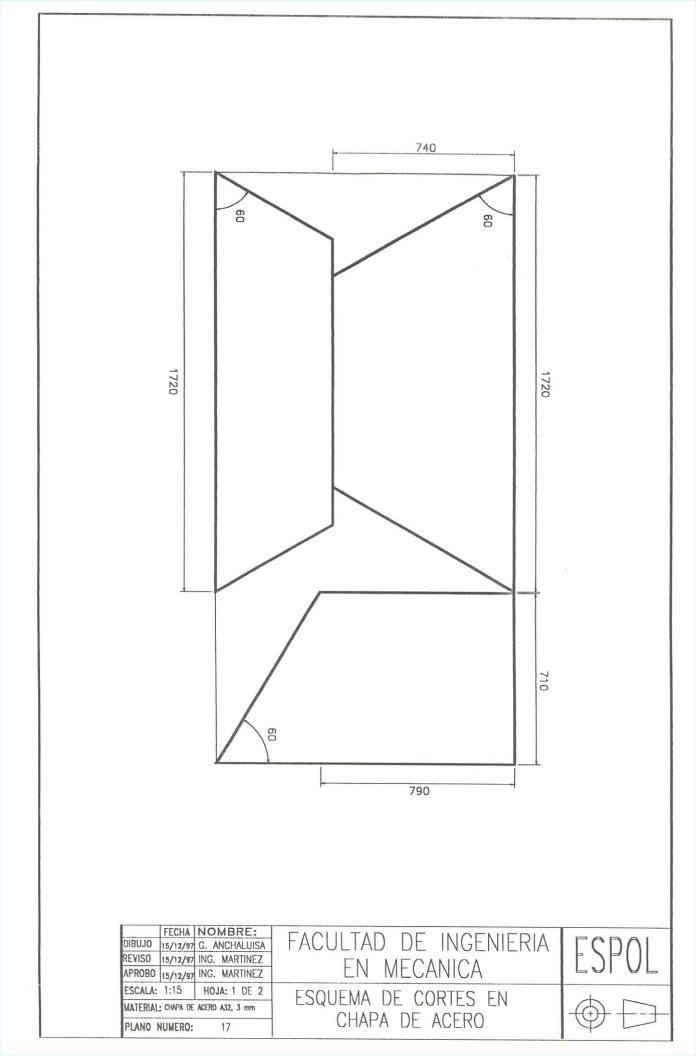


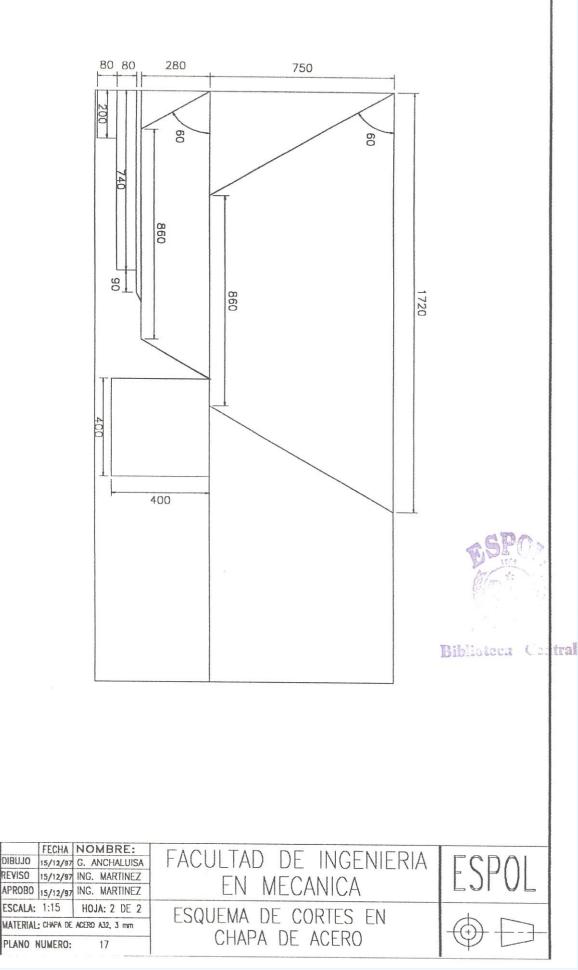














#### **BIBLIOGRAFIA**

- ALVEAR, L., Programa de mantenimiento y control de servicio; Informe Técnico, FIM, ESPOL, 1992.
- 2. RESNICK, R., Física; Compañia Editorial Continental S. A., México, 1972.
- 3. SHIGLEY, J., Diseño en Ingeniería Mecánica; McGraw Hill, México, 1992.
- 4. BOHMAN, I., Aceros especiales; Catálogo comercial, Guayaquil, 1994.
- 5. CIMPAC, Perfiles de acero; Catálogo comercial, Guayaquil, 1996.
- 6. SINGER, F., Resistencia de materiales; Harla, México, 1982.
- 7. NTN, Rodamientos de bolas y de palillos; NTN Corporation, Japón, 1990,
   B-222 p.
- BAUMEISTER, AVALLONE, Marks-Manual del Ingeniero Mecánico; McGraw -Hill Latinoamericana, Bogotá, 1982, 8-127 p.
- 9. SENNINGER, Senninger Irrigation Inc; Catálogo comercial, Florida-U.S.A.,

1995, 23 p.

10. GOULDS, Goulds Pumps, Inc; Catálogo comercial, New York, 1994, 20 p.

- KIRK-OTHNER, Encyclopedia of Chemical Technology; John Wiley and Sons, Inc., New York, 1991, 1004 p., Vol. No.1.
- KERN, D., Procesos de transferencia de calor; John Wiley and Sons, New York, 1960, 137 p.
- INCROPERA, F., Fundamentals of heat and mass transfer; John Wiley and Sons, Inc., Canada, 1990.
- 14. VARGAS, A., Calderas industriales y marinas; Series VZ, 1984, 260 p.

ARMSTRONG, Trampas de vapor; Catálogo comercial, U.S.A., 1996, 25p.
 SEW, Motorreductores; Catálogo comercial, Brasil, 1995, 70p.