

Escuela Superior Politécnica del Litoral FACULTAD DE INGENIERIA EN MECANICA Y CIENCIAS DE LA PRODUCCION

影影影×影影影

"Diseño de un Sistema de Enfriamiento de Aceite Térmico para Elaboración de Grasas"

TESIS DE GRADO

Previa a la Obtención del Título de:

INGENIERO MECANICO

Presentada por:

ALI YOLANDA CARDENAS MACIAS

系統派×新統派

Guayaquil - Ecuador 1999

AGRADECIMIENTO

A mi familia por el apoyo brindado durante estos años.

Al Ing. Manuel Helguero, Director de Tesis, por su ayuda y paciencia.

A mis amigos incondicionales y a cada una de las personas que de una u otra manera ayudaron a la realización de este proyecto.

DEDICATORIA

CON AMOR A PACO

TRIBUNAL DE GRADUACION

Ing. Eduard Rivadeneira P.

DECANO DE LA FIMCP

Ing. Manuel Helguero G.

heleley Elo

DIRECTOR DE TESIS

Ing. Edmundo Villacis M.

VOCAL

Ing. Marcos Tapia Q.

VOCAL

DECLARACION EXPRESA

"La declaración expresa del contenido de esta Tesis de Grado, me corresponde exclusivamente; y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Ali Y. Cárdenas M.

RESUMEN

Para desarrollar el tema "DISEÑO DE UN SISTEMA DE ENFRIAMIENTO DE ACEITE TERMICO PARA ELABORACION DE GRASAS", se ha dividido este trabajo en seis capitulos.

El primer capitulo, da a conocer un poco sobre lo que es el aceite termico, caracteristicas y propiedades, y sobre que son las grasas minerales asi como su elaboración y una breve descripcion de los elementos que componen este proceso. Tambien indica y explica como se realiza la transferencia de calor y los análisis sobre los que debemos basarnos para desarrollar este tema.

En el Segundo capitulo, se hace hincapie en los elementos basicos que involucran el sistema de enfriamiento, empezando por la factibilidad y justificación de este sistema. Luego se sigue con una descripcion del sistema terminando con el diseño de forma de dicho sistema. En este capitulo se señala todos los datos que han sido dados para diseñar este sistema, como son las temperaturas requeridas en los fluidos.

El tercer y cuarto capitulo ya esta dedicado exclusivamente a los calculos para el diseño de los dos elementos primordiales del sistema de enfriamiento como son el intercambiador y la torre de enfriamiento. Primero analizando los parametros en funcion de la transferencia de calor para el intercambiador y

en el analisis de los requerimientos y condiciones de proceso para la torre de enfriamiento. Siguiendo con el calculo del numero de tubos que requerira el intercambiador para determinada cantidad de calor y área de transferencia. Se realizan los calculos respectivos para seleccionar las bombas a utilizarse en el sistema, asi tambien como una selección de instrumentos y accesorios para este disetio.

En el capitulo cinco se hace el disetio de fabricacion, esto es traduciendo las caracteristicas y dimensiones antes obtenidas (capitulo 3 y 4) para construir una unidad a bajo costo. Aqui se explica paso a paso como lograr eficientemente la fabricacion del sistema especificando el tiempo de fabricacion de cada uno de estos pasos, logrando asi un proceso para el control de calidad.

El ultimo capitulo esta dedicado al analisis de costo requerido para este sistema, tanto los costos de fabricacion como los costos de operación anuales.

Finalmente se dan las conclusiones asi como las respectivas recomendaciones, tambien se indica las figuras, tablas, simbolos y bibliografia que se han utilizado en el desarrollo de este tema.

INDICE GENERAL

	Pág.
RESUMEN	I
INDICE GENERAL	П
ABREVIATURAS	IV
SIMBOLOGIA	V
INDICE DE FIGURAS	IX
INDICE DE TABLAS	X
INTRODUCCION	1
I. GENERALIDADES	2
1.1. Aceites y Grasas Minerales	2
1.2. Descripcion del Proceso de Elaboración de Grasas	9
1.3. Sistema de Transferencia de Calor	1 1
II. ELEMENTOS CONSTITUTIVOS INVOLUCRADOS EN EL	
SISTEMA DE ENFRIAMIENTO	16
2.1. Factibilidady Justificación	16
2.2 Descrincion del Sistema	12

	2.3.	Diseño de Forma del Sistema	40
Ш.	DISE	ENO DEL INTERCAMBIADOR DE CALOR	45
	3.1.	Analisis de Parametros en Funcion de la Transferencia de	
		Calor Necesaria	45
	3.2.	Calculo del Numero de Tubos del Intercambiador para	
		Producir la Transferencia de Calor	53
	3.3.	Cálculo y Seleccion de Bombas	68
	3.4.	Seleccion de Instrumentación	71
	3.5.	Seleccion de Accesorios	72
IV.	DISE	ÑO DE LA TORRE DE ENFRIAMIENTO	74
	4.1.	Analisis de los Requerimientos de la Torre de Enfriamiento	74
	4.2.	Condiciones de Proceso para la Torre de Enfriamiento	84
٧.	CON	ISTRUCCIONY PROGRAMACION DE LA	
	CON	ISTRUCCION	90
	5.1.	Diseño del Proceso de Fabricación	91
	5.2.	Procesos de Control de Calidad	94
	5.3.	Diagrama Pert de Construcción	97
\/I	ΔΝΛ	LISIS DE COSTOS	101

VII.	CONCLUSIONES Y RECOMENDACIONES	108
APEN	NDICE	
BIBLI	OGRAFIA	

ABREVIATURAS

\$ Dolares

Btu Energia calorifica

cp Centipoise

Gpm Galones por minuto

h Hora

Lbs, lb Libras, libra

m Metro

mm Milimetro

°F Grados Fahrenheit

plg Pulgada

s, seg. Segundos

min minutos

kw Kilo vatios

HP Caballos de fuerza

SIMBOLOGIA

SIMB.	DESCRIPCION	UNIDADES
μ	Viscosidad, centipoise x 2.42	lb/pie h
μ_{w}	Viscosidad a la temperatura de la pared del tubo, centipoise x 2.42	lb/pie h
Р	Densidad	lb/pie ³
P S	Densidad estandar del aire	Lb/pie ³
θ	Tiempo	Años (h)
ф	Razon de viscosidad (μ/μ_w) $^{0.14}$, adimensional	
$\begin{array}{l} \Delta P_T, \Delta P_t,\\ \Delta P_r \end{array}$	Caidas de presiones totales, lado de los tubos ${\bf y}$ de retorno	Lb/plg ²
ΔT_{m}	Diferencia de temperatura promedio	°F
Α	Superficie de transferencia de calor	pie², m²
а	Superficie de empaque o relleno	pies ² /pie ³
a"	Superficie externa por pie lineal	pies
a _s	Area de flujo	pie ²
В	Espaciado de los deflectores	plg
С	Calor especifico del fluido caliente	Btu/lb°F
С	Calor especifico del fluido	Btu/lb _m oF
C'	Sección libre entre tubos	plg
CE	Costo de construcción total de la torre	dolares
C_{F}	Cargos fijos anuales	Dólares/pie ²

Ст	Costo total de operacion anual	Dólares/año
C _W	Costo del agua	Dólares/lb
D, D.I.	Diametro interior de los tubos	pies
D.E.	Diametro exterior de los tubos	plg
D _e	Diametro equivalente de los tubos	pies
Ds	Diametrointerno de la coraza	pies
е	Eficiencia, adimensional	
f	Factor de friccion, adimensional	
Fc	Fracción calorifica, adimensional	
F _T	Factor de diferencia de temperatura, adimensional	
G	Masa velocidad	Lb/h pie
g'	Aceleracion de la gravedad	pie/s ²
G ^s	Velocidad masa de aire	Lb/h pie ²
G _{smín}	Velocidad masa de aire mínimo	Lb/h pie ²
h, h _i , h _o	Coeficiente de transferencia de calor en forma general, fluido interior y fluido exterior	Btu/h pie ² °F
H _f	Carga hidraulica por fricción	pies de H₂O
Hs	Carga hidraulica estatica	pies de H20
H _T	Carga hidraulica total	pies de H20
H', H	Entalpia del gas, entalpia de saturación del gas	Btu/lb aire seco
h _{io}	Valor de h_i cuando se refiere al diametro exterior del $tubo$	Btu/h pie °F
ј н	Factor de transferencia de calor, adimensional	
k	Conductividad termica	Btu/h pie² (°F/pie)

....

K	Coeficiente de resistencia en accesorios, adimensional		
Kc	Constante calorica, adimensional		
k _y	Coeficiente total de transferencia de masa	Lb/h pie ² (lb/lb)	
L	Longitud del tubo	pies	
L'	Carga liquida	Lb/h pie ²	
L _T	Longitud total	pies	
М	Agua de compensación		
MLDT	Media logaritmica de la diferencia de temperatura	٥F	
N	Numero de deflectores		
n	Numero de pasos en los tubos		
N_{T}	Numero de tubos		
pcm	Volumen de aire por minuto	Pie3/min	
Pt	Espaciado de tubos	plg	
Q	Flujo de calor	Btu/h	
R	Grupo de temperatura, adimensional		
R_d	Factor de obstrucción combinado	h pie2°F/Btu	
RDA	Relación de densidad, adimensional		
s	Grupo de temperatura, adimensional		
s	Gravedad especifica		
T, T ₁ , T ₂	Temperatura en general, entrada ${\bf y}$ salida del fluido caliente	°F	
t ₁ , t ₂	Temperatura de entrada y salida del fluido frio	٥F	
T _m	Temperatura promedio del fluido caliente	°F	

t _m	Temperatura promedio del fluido frio	°F
t _M	Temperatura del agua de compensacion	°F
t _w , t _{bh}	Temperatura del bulbo humedo	°F
U, U _C . U _D	Coeficiente total de transferencia de calor, coeficiente limpio, coeficiente de diseño	Btu/h pie ² ° F
v	Velocidad del aire	pie3/lb
V	Velocidad	pie/s
V	volumen	pie ³
W_{ac}	Peso del flujo de aceite	lb/hr
W_{ag}	Peso del flujo de agua	lb/hr
Υ', Υ	Humedad del gas, humedad de saturación del gas	b /lb
Z	Altura	pie

...

INDICE DE FIGURAS

		Pag.
Figura 2.1.	Arreglo de Tubos para Intercambiador	22
Figura 2.2.	Deflector Segmentado al 25%	23
Figura 2.3	Deflectores de Disco _Corona y de Orificio	24
Figura 2.4.	Torre de Enfriamiento Atmosferica	29
Figura 2.5	Torre de Enfriamiento de Tiro Natural	30
Figura 2.6	Torre de Enfriamiento de Tiro Forzado	32
Figura 2.7	Torre de Enfriamiento de Tiro Inducido	33
Figura 4.1	Curva de Equilibrio	76
Figura 4.2	Diagrama de flujo	80
Figura 5.1	Diagrama Pert de Construcción y Montaje	99

INDICE DE TABLAS

		Pag.
TABLA I.	Acción y Tipo de Intercambiador	18
TABLA II	Escala de Presion y U para tipos de Intercambiador	47
TABLA III	Tolerancia de entrada del Intercambiador	73
TABLA IV.	Entalpias Y humedades para mezclas de aire _agua a 14.7 Lbs/plg ²	77
TABLA V	Caracteristicas de Humidificación	78
TABLA VI	Porcentaje de Agua a Purgarse	83
TABLA VII	Flujo de Agua a Purgarse	84
TABLA VIII	Valores de Entalpia para Calcular el kya	86
TABLA IX	Red Pert de Construcción y Montaje	99
TABLA X	Costos de Fabricación y Montaje	102

INTRODUCCION

Este tema tiene como objetivo desarrollar el disetio de un Sistema de enfriamiento basandose en las necesidades de transferencia de calor en un proceso de elaboración de grasas.

El sistema de enfriamiento de aceite termico consta de dos elementos principales que son el intercambiador del aceite termico y la torre de enfriamiento. ¿Por que estos elementos? El aceite termico dentro del proceso de elaboracion de grasas es el elemento que sirve para enfriar la mezcla que originan las grasas, la mezcla esta a una temperatura que la mantiene liquida y para ser convertida a solida hay que enfriarla. Como el aceite es demasiado costoso para desecharlo cuando ya ha realizado su funcion necesitamos volverlo a enfriar para usarlo de nuevo, para ello utilizamos un intercambiador de calor que utiliza como enfriador el agua. Como el aceite, el agua en nuestro medio es un elemento demasiado costoso como para desecharlo asi que lo reutilizamos y para ello utilizamos una torre de enfriamiento que enfria el agua para hacer que fluya nuevamente por el sistema.

Capitulo I

1. GENERALIDADES

1.1. Aceites y Grasas Lubricantes

Este capitulo no solo esta dedicado a conocer un poco mas sobre lo que son las grasas lubricantes y sus componentes en general, tambien hace un pequeño resumen de lo que son los aceites termicos y algunas de sus caracteristicas y propiedades.

El aceite termico es la base fundamental para construir este sistema de enfriamiento ya que sera el elemento enfriador en el proceso de elaboración de las grasas, luego pasara a ser el elemento caliente al cual deberá hay que enfriar.

1.1.1. Aceite Termico

Los aceites termicos son lubricantes o aceites minerales de alta calidad usados para transferir calor de un fluido caliente operando en sistemas cerrados de tipo indirecto hasta una temperatura de 320°C. A temperaturas altas la presion de vapor es menor que la presion atmosferica. Altas presiones de trabajo en intercambiadores y

tuberias, usadas con fase de vapor en la transferencia de calor con fluidos, son por lo tanto innecesarias.

El aceite termico es un fluido por debajo de los -18°C, asi no son necesarias precauciones especiales cuando la planta cierra bajo climas frios. Si la temperatura sube por arriba de los -18°C ninguna expansion toma lugar cuando el aceite retorna a su forma liquida.

El aceite termico tiene una viscosidad relativamente baja, con buenas temperaturas las caracteristicas de viscosidad aseguran altos coeficientes de transferencia de calor y propiedades uniformes sobre una gama amplia de temperaturas. Por su baja viscosidad permite un fácil bombeo y una rapida transferencia de calor.

Por su alta estabilidad termica se evita la oxidación prematura del aceite **y** se alarga su vida util, además tiene baja formación de lodos, no es corrosivo, no es toxico: Debido a sus componentes, solventes, bases de aceite de alta viscosidad e indices parafinicos, se elimina el fenomeno de ruptura molecular por efectos de la alta temperatura. Esto presume que un intercambiador de fluido eficiente, con una buena circulación de bomba, la temperatura sobre su superficie no excedera los 320°C.

Por lo tanto los beneficios de usar aceite térmico en un sistema cerrado de transferencia de calor son:

- Bajo costo
- Alta estabilidad termica
- La temperatura de operación oscila entre los –18°C y los 320°C
- Buena estabilidad de oxidación
- Bajo valor de viscosidad para obtener altos coeficientes de transferencia de calor
- Buena viscosidad a amplias gama de temperatura
- Baja presion de vapor
- No corrosivo
- No toxico

El aceite termico es inofensivo para la salud siempre que sea apropiadamente usado en las aplicaciones recomendadas y se mantengan buenas normas de higiene y seguridad industrial.

La vida de servicio del aceite termico en un sistema depende del diseño y del uso de dicho sistema. Si este es un buen diseño y no esta sujeto a anormales excesos de trabajo la vida puede ser de muchos aiios.

1.1.2. Grasas Lubricantes

Los lubricantes son los materiales sólidos o liquidos que se utilizan para reducir la friccion entre dos superficies puestas en contacto y que se mueven una respecto a la otra, ya que la friccion causa perdida de potencia, desgaste y temperatura en el funcionamiento de las maquinas.

Para lubricar, el lubricante tiene que penetrar en los espacios que existen en las partes moviles de las superficies en contacto, estos espacios son llamados claro, lo que significara que la pelicula lubricante no puede ser mayor que el claro entre las superficies. Por eso debemos seleccionar un lubricante con la viscosidad que me permita una pelicula compatible con el claro de las piezas.

La mayoría de los lubricantes son derivados del petroleo y estan ampliamente clasificados de acuerdo a su utilidad. La selección y aplicacion de un lubricante esta determinada por las necesidades en cada caso.

Las principales funciones de los lubricantes son las siguientes:

- 1. Reducir la friccion
- 2. Reducir el desgaste

- 3. Reducir la temperatura
- 4. Evitar la corrosion
- 5. Actuar como aislante eléctrico
- 6. Actuar como elemento hidraulico
- 7. Actuar como elemento amortiguador
- 8. Actuar como elemento sellante
- 9. Eliminar contaminantes

Las grasas lubricantes son lubricantes sólidos o semisólidos que constan de un agente espesante en un lubricante liquido. Se puede incluir otros ingredientes que proporcionen propiedades especiales. En tales proporciones, el fluido es casi siempre mayor componente. Este líquido es casi siempre aceite lubricante que puede variar en viscosidad y en color.

La tendencia actual es emplear aceites de gran índice de viscosidad para mejorar la funcion de las grasas en un intervalo mayor de temperaturas. Para aplicaciones especiales, se usan los fluidos lubricantes sinteticos.

Los espesantes se pueden clasificar como tipo jabón y tipo no-jabon, subdividido este ultimo en orgánico e inorganico. Los jabones

espesantes constan de compuestos Aluminio, Bario, Calcio, Sodio, Plomo, Estroncio y Litio. Se han sugerido jabones de otros metales para este fin, pero algunos de estos, tales como los jabones de cinc, sirven para otros fines, además de para dar cuerpo.

Los componentes menores de las grasas lubricantes pueden ser alguno o todos los siguientes cuerpos; impurezas, introducidas generalmente con las materias primas de fabricación, compuestos que resultan de la reacción de los ingredientes: activos.

Otros aditivos, presentados solos o acompañados con otros, pueden incluir:

Desactivadores metalicos que tienden a precipitar de la disolucion los iones metalicos molestos disueltos o formar complejos solubles inactivos con el metal.

- Pasivadores metalicos que actuan depositando una pelicula sobre la superficie metalica.
- 3. Inhibidores de corrosion o herrumbre
- 4. Aditivos de firmeza de pelicula (mas a menudo llamados compuestos de extrema presion) que contienen como ingredientes activos compuestos de cloro, fosforo o azufre, en tal

forma que reaccionan con el acero para producir un revestimiento que impedira la soldadura de los metales.

- 5. Agentes para prevenir el desgaste.
- 6. Aditivos para provocar comportamiento filamentoso.
- 7. Agentes reductores de ruidos.

Aunque la anterior no es una lista completa de los aditivos indica alguna de las razones para incluir tales ingredientes en las grasas lubricantes.

Una grasa lubricante satisfactoria sera la que se puede poner en el lugar de su aplicacion por simple presion y queda en contacto con las superficies que se mueven y no resbalan por acción de la gravedad o de la fuerza centrifuga.

La eficiencia de los espesantes depende del tamaño y forma de la particula y de las fuerzas de atraccion puestas en juego.

El valor de una grasa lubricante en un amplio intervalo de temperaturas depende de la viscosidad real a bajas temperaturas y de la resistencia a deteriorarse a altas temperaturas. La viscosidad real depende, a su vez del punto de derrame y del índice de viscosidad del fluido empleado.

Las máximas temperaturas a que pueden ser aplicadas las grasas lubricantes estan limitadas por no disponerse de fluidos que resistan temperaturas superiores a 200°C durante periodos prolongados.

La selección y aplicacion de un lubricante esta determinada por la funcion para la cual se la requiere en cada caso.

L2. Descripción del Proceso de Elaboración de Grasas

La elaboración de grasas lubricantes es un proceso que consiste en mezclar uno o mas aceites o bases lubricantes con aditivos en proporciones establecidas basandose en una formulacion dada por el fabricante. Existen diferentes tipos de grasas por eso cada una de ellas tiene una formula que debe ser seguida rigurosamente.

Las bases lubricantes son hidrocarburos del petroleo y son completamente mezclables. La mayoría de los aditivos vienen como soluciones en aceite y pueden incorporarse directamente en la mezcla.

La elaboracion se la realiza en un tanque mezclador de unos 14 m³ de capacidad (ver Apendice C001), mediante la agitacion por impeller y el calentamiento de sus componentes mediante aceite termico hasta una temperatura entre los 300 y 250°C segun el tipo de grasa a elaborarse. Además el mismo aceite se usara como enfriador.

Para elaborar un determinado tipo de aceite la formula es enviada desde el laboratorio a la sección de elaboracion. La formulacion contiene la descripción y cantidad en peso de las bases y aditivos que van a mezclarse, la temperatura hasta la cual debe calentarse, el tiempo que debe permanecer mezclandose una vez alcanzada ya esa temperatura de formula hasta que llegue el momento de hacer circular el aceite termico pero ya frio y enfriar la mezcla.

Se bombean hacia el calentador mezclador (que de aqui se llamara el tanque) (ver Apendice C001) los aceites bases componentes cuya cantidad es medida mediante flujometros calibrados, se agregan los aditivos correspondientes y se empiezan a mezclar los componentes bombeando la mezcla. Al mismo tiempo que empieza la agitacion se abren las valvulas de los serpentines por donde fluye el aceite termico caliente y se espera hasta que la mezcla pueda calentarse

hasta la temperatura de formula, una vez alcanzada se cierran las valvulas del aceite termico y se continua con la agitación. Entonces se comienza a sacar muestras de la mezcla cada 10 minutos hasta que tiene las especificaciones previstas. El aceite termico que ha sido enfriado por la mezcla hasta unos a 65 - 70°C pasa al intercambiador de calor para ser enfriado a una temperatura necesaria de unos 38 a 40°C. Cuando el laboratorio da el visto bueno sobre la mezcla se procede a abrir las valvulas para que el aceite termico enfriado a unos de 39°C fluya hasta el tanque de mezcla y la enfrie, terminado este paso el aceite termico comenzara de nuevo su proceso de ser calentado y desde allí volvera a ser bombeado para la próxima mezcla.

Este cambio brusco de temperatura junto con adicion de aceite a temperatura ambiente hacen que la mezcla se solidifique.

Cuando el laboratorio da el visto bueno, se transporta la grasa hasta los tanques de almacenamiento para el posterior envasado.

1.3. Sistema de Transferencia de Calor

Existen tres formas diferentes de transferencia de calor: conducción, convección y radiación.

La conduccion es la transferencia de calor a traves de un material que hace de pared para separar dos fluidos, uno frio y otro caliente.

La conveccion es la transferencia de calor entre las partes frias y calientes de un fluido por medio de la mezcla.

La radiación es la forma de transferir calor desde un elemento que hace de fuente a otro elemento que hace de recibidor.

Aunque en general las aplicaciones de ingenieria utilizan una combinación de dos o tres de las formas.

Las tres formas de transferencia de calor estiman un intercambio en el sistema, es decir que el calor que pierde un cuerpo sera absorbido por el otro.

En nuestro sistema de transferencia de calor intervienen dos formas de transferencia, conduccion y conveccion.

En un estos proceso de transferencia de calor van involucradas varias partes que son: la cantidad de calor a transferirse, la

13

diferencia de temperatura de los cuerpos, la superficie de transferencia, el material de los elementos.

En general la cantidad de calor transferido para la conduccion y conveccion esta dado por la ecuacion:

$$Q = \kappa A(At)$$

Donde: A = area de trasferencia

At = es la diferencia de calor del cuerpo

K = es una constante de transferencia de calor

A la constante de transferencia de calor, *K*, que en conduccion se le llama conductividad termica, en conveccion se llama coeficiente de transferencia y se la denota por *h*.

La conductividad termica en los solidos tiene un buen rango de valores y esto depende de si el sólido es un buen conductor o no. Los metales son los mejores conductores. Los solidos son mejores conductores que los liquidos o gases. La conductividad termica puede variar con la temperatura.

En la conveccion, la transferencia de calor se produce por el movimiento del fluido, es conveccion natural cuando no actuan sobre

el fluido agitaciones mecanicas de lo contrario la conveccion es forzada.

Una caracteristica importante de los fluidos es la viscosidad, que viene a ser la rapidez de deformación que sufre un fluido en un tiempo determinado.

$$\mu = \frac{M}{Lt}$$

Cuando la viscosidad viene dada en unidades del sistema métrico (poise) se llama viscosidad absoluta, un poise es equivalente a un gramo por centimetro y por segundo, como estos son valores muy grandes es costumbre hablar de centipoise o un centimo de poise. El valor dado en centipoise puede ser convertido al sistema ingles multiplicandose por 2.42.

En el intercambiador la transferencia de calor es netamente por conducción pero en la torres de enfriamiento aparte de existir conveccion coexiste una transferencia de masa con un cambio de estado del agua de líquido a vapor llamado vaporización.

La transferencia de masa ocurre cuando se fomenta un movimiento de material entre dos fases o el material se transfiere de una fase a otra mediante una diferencia de presion de vapor.

El principio fundamental en que se basa el enfriamiento del agua por evaporacion, es en el que, el agua para transformarse en vapor necesita calor (calor latente de vaporización), cuyo valor es alrededor de 1000 Btu/lb agua evaporada, valor que pone de manifiesto que pequeñas cantidades de agua evaporada, producen altos efectos de enfriamiento. Este calor es tomado principalmente del líquido remanente, lo que produce un descenso de su temperatura.

La evaporacion se produce poniendo en contacto directo agua caliente con aire atmosferico ambiente de humedad relativa baja, en dispositivos especiales que varian en complejidad desde piscinas o lagunas abiertas hasta las torres de enfriamiento de tiro mecanico.

Cuando se requiere enfriar rapida y continuamente grandes cantidades de agua, las torres de enfriamiento son las tecnicas mas ventajosas y su funcion principal es la de reducir la temperatura del agua circulante a los valores mas adecuados, segun el tipo de operación que se tenga.

Capitulo 2

2. ELEMENTOS CONSTITUTIVOS INVOLUCRADOS EN EL SISTEMA DE ENFRIAMIENTO

2.1. Factibilidad y Justificación

Antes de hacer el diseño se hizo un análisis de la factibilidad de construir este sistema en nuestro medio. Consultamos en el mercado si todos los materiales requeridos se encontraban con facilidad tomando en cuenta que los precios no fueran costosos, que a la larga no nos resultara difícil el mantenimiento o la reparación de dicho sistema.

Encontramos que se tienen todos los materiales adecuados para la fabricación y montaje de este sistema, además de existir muchos talleres dedicados a la fabricación total o parcial de estos equipos, lo que nos da facilidad de presupuestar partes que en otros talleres nos resulte un poco mas caros. Además de eso se obtiene un diseño que resulta mas barato que importar uno y sin los consabidos problemas de espera o de garantia.

¿Porque diseñar un nuevo sistema de enfriamiento?

La empresa habia tenido muchos problemas y demoras en la produccion de las grasas, el proceso de elaboración duraba aproximadamente 8 horas y por esto la produccion que se obtenia no era suficiente para abastecer el mercado. Se hizo un análisis de cual era el problema y se llego a la conclusion de que el enfriamiento del aceite termico que a su vez enfriaba la mezcla para las grasas no era el adecuado y que se necesitaba un nuevo sistema de enfriamiento pero que siguiera usando aceite termico.

¿Porque un sistema de intercambiador-torre de enfriamiento?

Segun las características del intercambiador de calor, vemos que es facil de construir y que para enfriar ciertos tipos de hidrocarburos de petroleo como lo es el aceite termico lo mas adecuado era un intercambiador tubo coraza (Tabla I), usando agua como enfriador del aceite.

El agua es un elemento que si se usa y luego se desecha resultaria muy cara y peor si el agua utilizada es el agua de la ciudad, por ello debemos construir una equipo que nos permita enfriar este líquido, el mas rapido y barato resulta ser una torre de enfriamiento que nos

permite la reutilizacion de este líquido y compensa a la larga la construcción de la torre de enfriamiento.

TABLA I: Acción, y Tipo de Intercambiador

ACCION	TIPO
a. Vapor condensado; aceite calentado	Casco y tubo
b. Aire calentado; agua enfriada	Tubos en aire abierto
c. Liquido enfriado; agua calentada	Casco y tubo

2.2. Descripción del Sistema

Existen algunos tipos de intercambiadores dentro de los cuales tenemos algunos como: Intercambiador mezclador de contacto directo, Intercambiadores tubos en trayectoria de fluido en movimiento o abiertos al aire circundante, Intercambiador tipo placa degenerativa o tipo Placa simple, Intercambiadores de doble tubo, y los intercambiadores de tipo camara y tubo, y dentro de este tipo tambien existe una variedad. Hablar de todos los tipos de intercambiadores nos llevaría mucho tiempo por eso solo hablaremos del tipo de intercambiador que compete a este diseño, aunque haremos un pequeño resumen de la variedad de intercambiadores de nuestro diseño.

Al igual que en los intercambiadores, en las torres de enfriamiento tambien existe una clasificación de ellos pero mas pequeña, solo que en las torres de enfriamientos existen mas partes componentes de ellas que tendremos que analizar, por eso daremos pequeñas explicaciones de cada una de ellas.

2.2.1. Intercambiador de Calor de Tipo Camara y Tubo

Los cambiadores de calor tipo camara y tubo como su nombre lo indica consisten en una parte exterior llamada camara, dentro de la cual se encuentran los tubos, dentro de cada una de estas parte circulan los fluidos, que en nuestro caso seran aceite y agua.

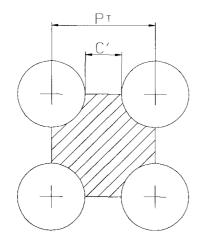
Siempre es necesario conocer las caracteristicas de cada fluido como son: viscosidad, densidad, el factor de incrustaciones, ya que todos los fluidos en una cantidad mayor o menor dejan incrustaciones en el interior de las cañerías por donde circulan. El agua es un fluido de incrustaciones elevadas. Los fluidos que producen mayores incrustaciones casi siempre se los coloca en los tubos del intercambiador, debido a la facilidad para la limpieza del aparato y de los tubos especialmente. En los intercambiadores que usan agua, el agua siempre deberá ir por los tubos.

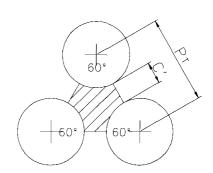
Determinando los coeficientes de película para los fluidos se determina el coeficiente global de transmision de calor, que influye en la misma. El numero de tubos se determina de acuerdo con el area necesaria para la transmision de calor determinada.

Se conocen algunos tipos de intercambiadores de camara y tubo como son: de cabeza fija, de cabeza flotante, de tubos en U y de tubos concentricos.

El intercambiador de calor de cabeza fija es el mas barato y solamente se lo usa cuando las diferencias de temperaturas son pequeñas y no ocasionan dilataciones en los tubos.

El tipo de cabeza flotante se lo usa cuando hay diferencias de temperatura que puedan provocar dilatación en los tubos y se contrarresta por la cabeza flotante, además permite una facil limpieza de los tubos.

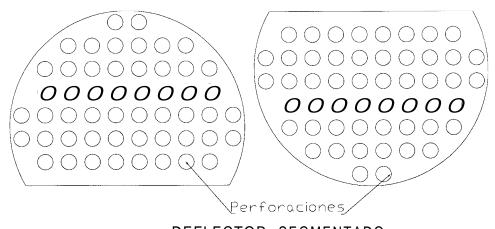

El cambiador de tubos en U reemplaza generalmente al de cabeza flotante y los fluidos tambien circulan en contracorriente.


Respecto a la circulación de los fluidos, los intercambiadores pueden ser de paso simple, cuando el recorrido es en una misma dirección y se llama sistema (1-I), el primer numero indica las veces que el fluido pasa por la camara y el segundo numero indica el numero de veces que el fluido pasa por los tubos. Existen diferentes tipos como son: (1-2), (2-4), (4-2), etc.

El diseño de estos intercambiadores de haz tubular y camara exigen un balance muy cuidadoso de varios factores como son: asegurar la maxima velocidad de circulación con la perdida de presion permitida. En los intercambiadores que utilizen agua ya sea como liquido a enfríar o enfriante se debe mantener una velocidad del flujo entre 3 a 4 pie/s, con eso se evita la acumulación de lodos o incrustaciones

La colocación de los tubos dentro de la camara se lo puede hacer de dos maneras: en forma rectangular y en forma triangular (Fig.2.1). La forma cuadrada permite mayores facilidades en la limpieza externa y mantenimiento, además de que se obtienen perdidas de presion pequeñas.

Los tubos mas comunes para la forma cuadrada son los de ¾" con separacion Pitch de 1" y los de 1" con separacion Pitch de 1¼.



- Arreglo en cuadro b) Arreglo triangular

FIGURA 2.1. ARREGLO DE TUBOS PARA INTERCAMBIADOR

La distancia entre los tubos esta determinada por los tubos Pitch "Pt" y el tubo clearence "C". Tubo Pitch es la distancia centro a centro entre los tubos adyacentes y los tubos Clearence es la distancia entre los diametros externos de los tubos adyacentes.

Los deflectores sirven para sostener los tubos del intercambiador y producir fuertes turbulencias; hay diferentes tipos de deflectores, pero los mas comunes son los deflectores segmentados, donde la altura del deflector es el 75% del diametro interior de la camara, todos los deflectores estan sostenidos por un eje y colocados alternadamente, es decir, una con la parte recta para abajo y la otra para arriba.

DEFLECTOR SEGMENTADO

FIGURA 2.2. DEFLECTOR SEGMENTADO AL 25%

Existen otros tipos de deflectores como los de Disco y corona y el deflector de orificios, pero aunque a veces se usan no tienen mucha importancia.

Para determinar la distancia entre los deflectores hay que tener en cuenta la turbulencia del líquido y procurar que los tubos no se doblen, para esto se conoce una relación bastante exacta: el diametro interior de la camara debe ser mayor que la distancia entre

los deflectores, y esta a su vez mayor que la quinta parte del diametro interior de la camara.

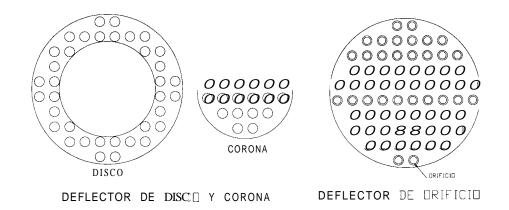


FIGURA 2.3. DEFLECTORES DE DISCO-CORONA Y DE ORIFICIO

En la ecuacion, $Q = UA\Delta T$, este AT es tomado considerando la diferencia de temperatura constante a lo largo del sistema o de las superficies de intercambio, pero cuando no se mantiene constante, se necesita tomar un AT medio, que casi siempre es un ΔT medio logaritmico, aunque para calcular aproximadamente se puede usar una media aritmetica.

$$LMTD = \frac{(T_1 - T_2) - (T_2 - t_1)}{\ln \frac{(T_1 - T_2)}{(T_2 - t_1)}}$$

Esta media logaritmica es siempre inferior a la aritmetica, aunque en los calculos industriales se puede usar esta ultima, cuando la diferencia de temperatura no es superior a dos.

$$\Delta T_m = F_T LMDT$$

El ΔT_m no es muy exacto, por lo que se ha adoptado un factor de corrección F_T . Este factor es representado graficamente en funcion a dos parametros R y S sin dimensiones.

$$R = \frac{T_1 - T_2}{t_2 - t_1}$$

$$S = \frac{t_2 - t_1}{T_4 - t_4}$$

$$F_{\tau} = \frac{\sqrt{R^2 + 1} \ln(1 - S) / (1 - RS)}{(R - 1) \ln \frac{2 - s(R + 1 - \sqrt{R^2 + 1})}{2 - S(R + 1 + \sqrt{R^2 + 1})}}$$

 F_T debe ser mayor que 0.75 para usar intercambiador 1-2. Cuando F_T es menor se puede cambiar la temperatura del agua o del tipo del cambiador.

2.2.2. Torre de Enfriamiento

Una Torre de enfriamiento usual tiene el siguiente funcionamiento: el agua caliente llega por tuberias a un distribuidor situado en la parte superior de la unidad a una temperatura t_{I2}, luego es distribuida en forma de pequeñas gotas a traves de una instalacion compleja de material de relleno de diferentes tipos y calidades, variando desde maderas incorruptibles hasta materiales de fibrocemento, PVC

(polivinil cloruro), cerámica, etc., los cuales son ubicados en forma de mallas o enrejados que dispersan la corriente descendente del liquido y de esta forma obtener una area maxima de transferencia con el aire atmosferico, el cual entra por la parte inferior de la torre con una temperatura t_{G1} de bulbo seco y de una humedad absoluta Y'₁, lb de vapor de agua/lb de aire seco.

El enfriamiento resulta mayormente por la evaporacion de una parte de la corriente de agua caliente (transferencia de masa) y solo en forma secundaria por la termotransferencia del agua al aire que circula. En promedio general podría decirse que alrededor del 75% del calor total es removido por la evaporacion del agua (calor latente) y el 25% por la transferencia de calor (calor sensible); por consiguiente ocurrira una perdida continua de evaporacion. Finalmente, el agua enfriada por el proceso hasta una temperatura t_{L1} es recogida en el fondo del equipo estando asi lista para ser reciclada. Esta caida de temperatura en la corriente de agua que circula se denomina "rango de enfriamiento" y esta dada por la expresion: $t_{L2} - t_{L1}$.

Otro factor, quizás el mas importante de analizar en una torre de enfriamiento, es el alcance de la temperatura de la salida del agua t_{L1} , es decir su "aproximacion" a la temperatura del bulbo humedo t_{W1} del aire entrando, que es la minima temperatura a la cual el agua puede ser enfriada en una instalacion ideal. En cualquier torre dada, esta diferencia de temperatura conocida como "temperatura de aproximacion", varia con la temperatura del bulbo humedo del aire que entra, con el flujo de agua que circula y con la carga de calor.

Las torres de enfriamiento se clasifican de acuerdo con los medios por los que se les suministra el aire. Todas emplean pisos horizontales de material relleno para suministrar gran superficie de contacto entre los flujos de aire y de agua.

En general, la clasificacion de las torres de enfriamiento es la siguiente:

- a.- Torres de circulación natural
 - 1. Torre atmosferica
 - Torre de tiro natural.
- b.- Torres de tiro mecanico.
 - 1. Torres de tiro forzado
 - 2. Torres de tiro inducido:
 - Torres de tiro inducido en contra corriente
 - Torres de tiro inducido cruzado

Torres de Circulación Natural

Torre atmosférica.- La torre atmosferica aprovecha las corrientes atmosfericas del aire. El aire penetra a traves de las lumbreras en una sola dirección, cambiando con la estacion del año y las condiciones atmosfericas. En lugares expuestos que tienen vientos con velocidades del orden de 5 a 6 mph. La torre atmosferica puede ser la mas económica.

Puesto que las corrientes atmosfericas penetran a todo lo ancho de la torre, estas se construyen muy angostas y bastantes largas en comparación con otros tipos de torres de igual capacidad.

Las perdidas por arrastre se manifiestan a todo lo largo y son mayores que en otro tipos de torres. Este tipo usa los potenciales disponibles mas ineficientes, ya que opera en flujo cruzado, y esta demostrado que el uso mas efectivo es a contra-corriente, además, cuando se desea agua a una temperatura cercana a la temperatura del bulbo humedo, este tipo de torre es incapaz de producirla.

Las torres atmosfericas tienen, consecuentemente un costo inicial bastante alto debido a su tamaño y cuando hay viento en calma deben dejar de operar.

Por otra parte, estas torres tienen la ventaja de que eliminan el costo de operación de las torres de tiro mecanico, es decir el costo de energia que se utilizaria para mover los ventiladores.

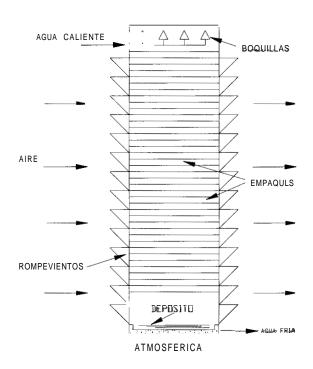


FIGURA 2.4. TORRE DE ENFRIAMIENTO ATMOSFERICA

Torre de tiro natural o hiperbólico.- Las torres de tiro natural, operan de la misma manera que una chimenea de un horno. El aire se calienta en la torre por el agua caliente con el que entra en contacto, de manera que su densidad baja. La diferencia entre la densidad del aire en la torre y en el exterior origina un flujo natural de aire frio en la parte inferior y una expulsion de aire caliente menos denso en la parte superior.

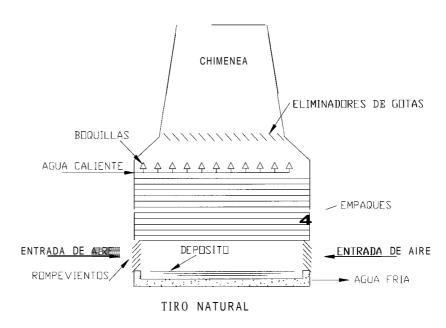


FIGURA 2.5. TORRE DE ENFRIAMIENTO DE TIRO NATURAL

Las torres de tiro natural deben ser altas para promover este efecto y deben tambien tener sección transversal grande debido a la baja velocidad con que el aire circula comparada con las torres de tiro mecánico.

Las torres de tiro natural consumen mas potencia para el bombeo, sin embargo, eliminan el costo de la potencia del extractor y pueden ser mas aconsejables en algunas localidades, que las torres atmosfericas. En estas torres, deben tomarse muy en cuenta la temperatura de bulbo humedo y la humedad relativa del aire.

Cuando altos flujos de agua de enfriamiento son necesitados, los costos iniciales y cargos fijos son algo altos, además de que grandes areas de terrenos son utilizadas, razones por las cuales parece que estan entrando en desuso. La forma de su base es circular y los perfiles del corte vertical de forma hiperbolica. Desde el punto de vista de su construcción la forma de la torre no necesariamente debe ser hiperbolica, pues podría ser cilindrica, pero desde el momento de la entrada del aire, este forma vena contracta cuyas dimensiones varian con relación del diametro de la torre a la altura, en consecuencia el diseño de la carcasa siguiendo la forma de la vena contracta, produce considerable economia en la utilización de materiales. Además, su forma hiperbolica construida de concreto (ferro-cemento), le da mas estabilidad contra las fuerzas producidas por el viento.

Torres de Enfriamiento de Tiro Mecanico

Estas torres usan ventiladores para mover el aire en vez de depender del tiro natural o de la velocidad del viento en el sitio en que esten funcionando. Como se aprecia, el hecho de utilizar ventiladores, permite controlar la demanda de aire requerida para un determinado proceso de enfriamiento.

Las torres de tiro mecanico se subdividen en: torres de tiro forzado y torres de tiro inducido, segun que el aire se force por un ventilador situado en la parte inferior o se succione mediante un extractor situado en la parte situado en la parte superior, respectivamente.

Torre de tiro forzado.- En el tipo de tiro forzado, el ventilador esta ubicado en el sitio de entrada del aire. La vibración y el ruido son minimizados, los equipos mecanicos son montados cerca de la parte inferior de la torre sobre una fundicion maciza. Como el ventilador mueve aire de baja humedad, los problemas de corrosion de la aletas del ventilador y de la condensacion de la humedad en la caja del reductor de velocidad, son practicamente nulas.

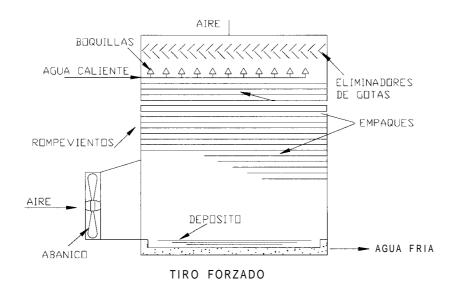


FIGURA 2.6. TORRE DE ENFRIAMIENTO DE TIRO FORZADO

Torres de enfriamiento de tiro inducido.-

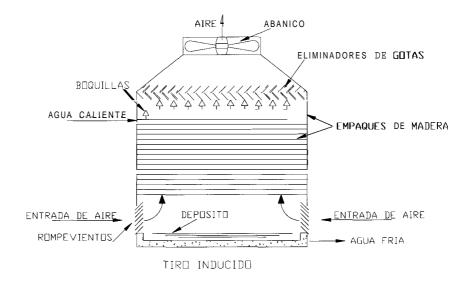


FIGURA 2.7. TORRE DE ENFRIAMIENTO DE TIRO INDUCIDO

Estas torres se clasifican segun el flujo de aire en dos tipo:

Fluio en contracorriente: Este tipo de torre tiene un extractor situado en la parte superior de la unidad, el cual succiona el aire verticalmente a traves de la zona empaquetada y lo expulsa a alta velocidad.

La principal ventaja de estas torres esta en que el agua fria en la parte inferior se pone en contacto con el aire que entra (baja humedad relativa) y el agua caliente que entra se pone en contacto con el aire humedo que sale. Aunque en las torres de este tipo se presentan una caida de presion en la toma del aire del extractor, lo

que producen un aumento de los requerimientos totales de energia y además la alta velocidad de descarga del extractor produce algo de perdida de agua por gotas que son arrastradas por la corriente de aire a traves de la unidad.

Entre las caracteristicas de disetio para las torres de este tipo se tiene:

- La velocidad del aire esta en ele rango de 4 a 7 pps
- $G'_S = 1200 \text{ a } 2100 \text{ lb/h pie}^2$
- El flujo de agua para la mayoría de las torres de este tipo esta limitada hasta 6 GPM
- $(L' = 500 \text{ a } 3000 \text{ lb/hr pie}^2)$
- La caida de presion a traves de la unidad es ordinariamente menor que una pulgada de agua

<u>Flujo cruzado</u>.- En este tipo de torres, el aire fluye horizontalmente mientras que el agua cae a traves de empaquetadoras.

Las unidades mas usadas en la industria son de doble flujo, en este tipo el extractor esta localizado en la parte superior de una camara de succión central que tiene ambos lados, las respectivas celdas de

enfriamiento. Los separadores de gotas se disponen de tal forma para que desvien el flujo de aire accionado por el extractor hacia arriba, puesto que como hay menor resistencia al flujo de aire.

Eficiencia de las Torres de Enfriamiento

La eficiencia de enfriamiento de estas unidades, esta dada en general por la siguiente relacion:

$$\varepsilon = \frac{\text{Enfriamiento-real}}{\text{Enfriamiento-ideal}} \times 100$$

El enfriamiento real, esta dado por el rango de enfriamiento y el enfriamiento ideal esta dado por la suma del rango de enfriamiento y la aproximacion.

El rango de enfriamiento es t_{L2} - t_{L1} (°F) y la aproximacion es t_{L1} - t_{W1} (°F) que reemplazados en la expresion de eficiencia quedara:

$$&=\frac{t_{L2}-t_{L1}}{t_{L2}-t_{w1}} \times 100$$

La eficiencia de enfriamiento puede ser mejorada aumentando el tiempo de contacto del agua con el aire, lo cual se logra aumentando:

- a) La cantidad de empaquetadura
- b) La altura de la torre y
- c) El area de la sección transversal

Se ha determinado experimentalmente que el maximo contacto y rendimiento son obtenidos en una torre por la que circula un flujo especifico de 2 a 3 Gpm/pie²

Componentes Principales de una Torre de Enfriamiento

1). Distribuidor de agua de entrada a la torre

El agua de entrada a la torre puede ser distribuida por dos formas:

- a.- Por flujo gravitatorio.- El agua es bombeada hasta el colector ubicado en la parte superior de la unidad y abierto al ambiente, de donde fluye a traves de boquillas removibles, la salida es en forma de chorros y en su parte inferior se colocan platos de salpicadura para descomponer los chorros en gotas que caeran sobre la empaquetadura.
- b.- Por presión.- El agua se introduce a presion a traves de boquillas que atomizan el agua. En esta forma el líquido ofrece mayor area de contacto efectivo al aire que circula.
- 2). Empaques o Rellenos.- Son elementos que se colocan en el interior de la unidad para aumentar la superficie de contacto disponible distribuyendo el líquido sobre una superficie o retardando la caida de las gotas a traves de la torre.

En los empaques la primordial consideración se basa en que para cada forma geometrica dada, el grupo K_ya (coeficiente de transferencia de masa por la superficie interfacial de transferencia de masa) guarda relación con la altura de la zona empaquetada.

Los principales tipos de empaques utilizados son los empaques de salpicadura y empaques de contacto laminar.

- a.- Empaques de salpicadura.- El relleno se construye comunmente de maderas como Roble, amarillo o colorado, estos se tratan quimicamente para obtener propiedades de resistencia al deterioro y a la agresion de agentes bioquimicos.
- b.- Empaque de contacto laminar.- El contacto laminar aprovecha las propiedades que ofrece al intercambio de calor y de masa, el flujo de agua es dividido por estos empaques en gran cantidad de finas peliculas que fluyen sobre una gran area empaquetada, exponiendo maxima superficie de liquido sin que se formen gotas que impidan el movimiento del aire.
- 3). Separadores de Gotas.- Los separadores de gotas se usan como desviadores que al ser colocados en forma adecuada en la parte superior de la zona empaquetada minimizan las perdidas de pequeñas cantidades de agua no evaporada, arrastradas en forma

de pequefias gotas por el aire que circula a traves del equipo de enfriamiento.

4). Lumbreras de Admision de Aire

Estas son disefiadas para distribuir adecuadamente el aire que entra en la unidad y para prevenir las pérdidas de agua. Cuando el aire circula a baja velocidad con minina caida de presion, este se distribuye adecuadamente sin presentarse el fenomeno de acanalamiento, en virtud de lo cual, se aumenta la eficiencia de enfriamiento y se reduce la recirculación del aire expulsado por el extractor.

5). Equipo Mecanico

El equipo mecanico de una torre de enfriamiento esta compuesto de las siguientes partes:

a) Ventilador.- Los ventiladores usados en torres de enfriamiento de tiro mecanico deben mover grandes volumenes de aire, a velocidad relativamente bajas (menores de 2000 ppm), con una caida de presion menor a una pulgada de aqua. Los ventiladores usados en torres de enfriamiento de tiro inducido son de flujo axial. En estos tipos de ventiladores se puede alcanzar rendimientos de 80% a un 90%.

- b) Soporte del Equipo Mecánico.- La estructura del soporte para el motor y el reductor de velocidad para el ventilador debe ser rigida para controlar la vibración, especialmente cuando la torre es grande. Estas estructuras deben ser muy resistentes y son construidas por uniones soldadas o empernadas para asegurar una alineacion continua de todas las partes rotatorias. Una vez construida la estructura debe ser tratada superficialmente (galvanizada, pintada, etc.) para prevenir la corrosion, ya que esta expuesta al paso de un flujo de aire altamente saturado.
- c) Motor y Transmisión.- Existen dos formas de transmision del movimiento del motor al ventilador y puede ser directa si se monta el ventilador sobre el eje del motor, o indirecta si el movimiento se transmite por medio de bandas en "V" o por un reductor de velocidad de engranajes.

Los mas comunes usados en estas torres, son los reductores de velocidad de engranajes acoplados en angulo recto con el motor montado horizontalmente, en donde el motor esta cerrado y localizado justo a un lado de la corriente de aire que sale. El

montaje del eje de transmision se efectua por medio de acoples flexibles: uno cerca del motor **y** otro cerca del reductor de velocidad, para minimizar los efectos de desalineamiento debido a un posible asentamiento o torsimiento que sufriera la base del equipo mecanico.

2.3. Diseño de Forma del Sistema

2.3.1. Especificaciones del Sistema

DATOS DEL ACEITE:

El aceite es un Aceite termico que tiene **las** siguientes caracteristicas:

Calor especifico a 104°F: 0.46 Btu/Lbs °F

Gravedad especifica a 60°F: 0.868

Viscosidad absoluta a 100°F: 6.5 cp

Viscosidad absoluta a 210°F: 2 cp

Temperatura de operación Maxima: 600°F

Temperatura de aceite caliente: 156°F

Temperatura de aceite frio: 102°C

Flujo de aceite a enfriar: 75,000 Lbs/hr

Factor de obstrucción R_d : 0.3

Perdida de presion permitida: 10 psi

DATOS DEL AGUA:

Densidad: 62.5 Lbs/pie³

Calor especifico: 1 BTU/Lbs °F

Gravedad especifica: 1

Temperatura del agua fria: 84°F

Temperatura del agua caliente: 104°F

Temperatura del agua de reposición 80°F

Factor de obstrucción R_d: 0.2

Perdida de presion permitidas: 10 psi

DATOS DEL AIRE:

Temperatura del bulbo seco: 90°F

Temperatura del bulbo humedo: 79°F

Densidad estandar: 0.075 lb/pie³

2.3.2. Consideraciones del Sistema

- Area de instalacion del sistema Intercambiador –Torre de enfriamiento: 5 m x 7 m (ver Apendice C007)
- El sistema se instalara en un patio al aire libre.
- El intercambiador de calor debe permitir facilidades de limpieza y mantenimiento.

- El U_D (coeficiente de transferencia de calor para diserio) en un intercambiador con cualquier tipo de hidrocarburo de petroleo con agua como enfriador varia entre 20-200, pero para liquidos como el de nuestro caso entre 40-150
- El Intercambiador de calor tiene que proveer una velocidad de agua en un rango de 3 pie/seg. a 4 pie/seg. con una perdida de presion maxima permitida de 10 psi.
- El agua a usarse para la torre sera agua potable.
- La velocidad del viento en Guayaquil es variable, asi que el diserio de la torre no debe depender de la velocidad del viento.

2.3.3. Sistema Seleccionado

Para seleccionar el tipo de intercambiador adecuado a este sistema podremos observar la Tabla I y Apendice A1, segun esto el intercambiador mas adecuado es el de Tubo-Coraza, dentro de este tipo el mejor sera el Intercambiador de Cabeza Flotante, con deflectores segmentados al 25%, ya que son los mas comunes, con un arreglo cuadrado que nos permita facilidades en la limpieza

La selección de una torre de enfriamiento, depende de una variedad de factores:

a) Flujo de agua a ser enfriada

- b) Rango de enfriamiento (t_{L2} t_{L1}) °F
- c) Aproximacion $(t_{L1} t_{W1})$ °F, es decir la diferencia de temperatura entre el bulbo humedo y la temperatura a la que se requiere enfriar el agua.
- d) Localización de la torre y limitaciones del cabezal de bombeo

Observando las caracteristicas para las Torres de enfriamiento de Tiro Inducido, nuestros datos y requerimientos estan dentro del rango de caracteristicas de la Torre de Enfriamiento de Tiro Inducido Flujo en Contracorriente, además este tipo de Torre trabaja independientemente de la velocidad del aire, aparte de que se conocen mas análisis y pruebas realizados de estas torres que nos sirven de gran ayuda.

Capitulo 3

3. DISENO DEL INTERCAMBIADOR DE CALOR

3.1. Análisis de Parametros en Funcion de la Transferencia de Calor

Necesaria

Para seleccionar el intercambiador adecuado para un determinado problema, necesitamos conocer los siguientes factores:

El tipo de fluido a enfriar con sus respectivas caracteristicas tales como densidad, calor específico, viscosidad, etc.

Flujo de líquido a ser enfriado

La diferencia de temperaturas (T_1-T_2)

Localización del intercambiador

Limitaciones de espacio.

Para realizar nuestro disetio vamos a elegir como ayuda los metodos de Donald Kern, detallados en su libro de Transmision de Calor. Antes de comenzar nuestro disetio tenemos que constatar cuales son los parametros que conocemos y cuales no. Segun los metodos de Kern debemos conocer los siguientes parametros:

propiedades de los fluidos:

Fluido Caliente: T_1 , T_2 , W_{ac} , C_{ac} , S, U, K, R_d , ΔP .

Fluido frio: t_1 , t_2 , W_{aq} , C_{aq} , S, U, K, R_d , ΔP

La longitud del tubo, el diametro exterior y el espaciado de los deflectores pueden ser determinados por datos de la practica industrial en general o por suposiciones basadas en la teoria sobre intercambiadores Tubo-Coraza.

Los otros parametros necesarios los explicamos y detallamos a continuación:

1. Necesitamos realizar un balance de energia:

$$Q = WC(T_1 - T_2) = wc(t_2 - t_1)$$

2. Tener la verdadera diferencia de temperatura, $\Delta t = MLDT \times F_T$ Calcular el MLDT:

$$MLDT = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln \frac{T_1 - t_2}{T_2 - t_1}}$$

Encontrar F_T de acuerdo a Apendice B1 del o a formula. Donde F_t es un factor de corrección.

$$R = \frac{T_1 - T_2}{t_2 - t_1} \qquad S = \frac{t_2 - t_1}{T_1 - t_1}$$

$$F_{\tau} = \frac{\sqrt{R^2 + 1} \ln(1 - S) / (1 - RS)}{(R - 1) \ln \frac{2 - S(R + 1 - \sqrt{R^2 + 1})}{2 - S(R + 1 + \sqrt{R^2 + 1})}$$

Si el F_t es mayor que 0.75 el intercambiador a diseñarse sera de dos pasos (1-2) pero si el valor es menor tendremos que cambiar a otro tipo de intercambiador.

1. Calcular las temperaturas T_m y t_m , temperaturas medias del fluido caliente y del frio respectivamente.

$$T_m = T_2 + F_C(T_1 - T_2)$$

 $t_m = t_1 + F_C(t_2 - t_1)$

El factor $F_{\mathbb{C}}$ lo encontramos utilizando el Apendice B2.

Para encontrar el intercambiador vamos a seguir los pasos siguientes:

Asumir un valor de U_D con ayuda de la Tabla II y calcular la superficie con la siguiente formula: $A = Q/U_D \Delta t$. Se aconseja asumir un valor de U_D maximo para obtener una menor superficie. Tambien determinamos el correspondiente numero de tubos, N_T , para el area calculada, con la formula: $N_T = A/L \times a^n$, donde L es la longitud de los tubos y a^n es la superficie por pie lineal de los tubos y la obtenemos del Apendice A5.

TABLAII: ESCALA DE PRESION Y U PARA TIPOS DE INTERCAMBIADOR

	ESCALA TÍPICA	
INTERCAMBIADOR	Presion (lb/plg²)	U (Btu/plg ² °F)
a. Tubo-Coraza (vapor - liquido)	0-500	20-60
b. Tubos-aire abierto (aire - liquido)	0-100	2-10
c. Tubo-Coraza (liquido - liquido)	0-500	40-150

- Asumiendo un numero de pasos por tubos, n, para la perdida de presion permitida ΔP , usando el Apendice B6 seleccionar un Intercambiador (arreglo, Pitch, DI de carcaza) que tenga el numero de tubos aproximados a los calculados.
- \circ Corregimos la superficie correspondiente al actual numero de tubos que pueden ser contenidos en la coraza y el valor de U_{D} .
- O Calcularemos los coeficientes de pelicula. Comenzaremos los calculos por el lado del tubo. Si el coeficiente de pelicula del lado del tubo es relativamente grande y U_D y la perdida de presion ΔP son razonables, se puede seguir con los calculos del lado de la camara. Cuando el numero de pasos por los tubos es alterado, la

superficie de la camara tambien es alterada, cambiando los valores de \mathbf{A} \mathbf{y} de \mathbf{U}_{D} .

LADO DEL TUBO, FLUIDO FRIO.-

4. Area del flujo *at.* Obtener *a'*_t del Apendice A5, segun el diametro del tubo elegido, luego:

$$a_t = \frac{N_T a'_t}{144n} \text{ (pie}^2\text{)}$$

5. Velocidad de masa:

$$V = G_t/3600\rho$$
 (pie/s)
 $G_t = W/a_t$ (Lbs/hr pie²)

6. $R_{et} = DxGt/\mu$ (solo para pérdida de presion)

D es el D.I. diametro interior de los tubos obtenido del Apendice A5. Obtener μ del Apendice B3, a la temperatura media del fluido t_m ,

7. j_H , del Apendice **B4**, para el lado del tubo. Si el fluido frio es agua este paso no es necesario

- 8. A la temperatura media t_m obtener de los Apendices A7, B5, B6 y B7, c en Btu/Lbs °F y K en BTU/hr pie² (°F)/(pie) para cualquier liquido, o del Apendice B8 con el valor de la viscosidad en cp, obtener el valor de $k(c/\mu)^{1/3}$ para hidrocarburos. **Si** el fluido es agua este paso no es necesario
- 9. $h_i = j_H \frac{k}{D} (\frac{c\mu}{k})^{1/3} \phi_t$, buscar j_H en Apendice B4 con numero de Reynolds

Pero para agua: $h_i = h_i \times F_t$ desde Apendice B9 entrando con el valor de velocidad

10.
$$h_{io} = h_i \times DI/DE$$
 (Btu/hr.ft2.°F)

11. Obtener μ_w y $\varphi_t = \left(\mu/\mu_w\right)^{0.14}$, con valor de Reynolds ver Apendice B4

Para diferencias de temperaturas medias muy pequeñas $\phi_{t=1}$

12. Corregir coeficiente

$$h_{io} = h_{io}/\phi_t$$

FLUIDO CALIENTE, LADO DE LA CAMARA:

4'. Asuma un valor razonable para el espaciado de los deflectores, B, de acuerdo a la caida de presion necesaria. B siempre esta dentro de este rango: DI/5 < B <DI. Se elige el valor mas pequeño de B cuando se requiere obtener el valor mayor de h_o Cuando tenemos un flujo muy grande se puede suponer cualquier espaciado dentro del rango ya descrito.

Procedemos a calcular el area de flujo:

$$a_i = DIxC'xB/144Pt$$
 (pie²)

5'. Velocidad de masa, $G_S = W/a_S$ (lbs/hr pie²)

$$6' \cdot R_S = DexGs/\mu$$

Obtener μ del Apendice B3, a la temperatura media del fluido T_m , y D_e , diametro equivalente, del Apendice B10

- 7'. j_H , desde el mismo grafico para De, usando el numero de Reynolds, Apendice B10.
- 8'. A la temperatura media T_m obtener del Apendice A7, B5, B6 y B7, c en Btu/Lbs °F; K en Btu/hr pie² (°F)/(pie) para cualquier

liquido; o del Apendice B8 con el valor de la viscosidad en cp, obtener el valor de $k(c/\mu)^{1/3}$ para hidrocarburos liquidos.

9'.
$$h_O = j_H \frac{k}{D_a} (\frac{c\mu}{k})^{1/3} \phi_S$$

10'. Temperatura de la pared del tubo,: t

$$t_{w} = t_{m} + \frac{h_{O}}{h_{iO} + h_{O}} (T_{m} - t_{m})$$

11'.Obtener μ_w y $\phi_S = (\mu/\mu_w)^{0.14}$, con valor de Reynolds ver Apendice 64

Para diferencias de temperaturas medias muy pequeñas $\phi_{S=1}$

12'.Corregir coeficiente

$$h_{io} = h_{io}/\phi_S$$

13. Caida de presion

En los tubos:

(1). f se obtiene de Apendice B11 con R_t

(2).
$$\Delta P_t = \frac{fG_t^2 Ln}{5.22 \times 10^{10} Ds \phi_t}$$

(3).
$$\Delta P_r = \frac{4n}{s} \frac{V^2}{2g'}$$

Donde V²/2g' se lo puede encontrar usando el Apéndice B12

(4).
$$\Delta P_T = \Delta P_t + \Delta P_r$$

En la coraza:

- f se obtiene del Apendice B13 con Re
- (2). Numero de cruces, N + 7 = 72 UB

$$\Delta P_{S} = \frac{fG_{S}^{2}D_{S}(N+1)}{5.22 \times 10^{10}D_{e}s\phi_{S}}$$

Si ambos lados son satisfactorios para los coeficientes y la caida de la presion, el ensayo se puede concluir con los siguientes parametros:

14. Coeficiente total verdadero U_c

$$U_{\rm C} = \frac{h_{ic} \times h_o}{h_{io} + h_o} \text{ (Btu/hr ft}^2 \, ^{\circ}\text{F)}$$

15. Factor de incrustaciones R_d :

$$R_d = U_c - U_D \text{ (hr.ft2.°F/Btu)}$$

Si la perdida de fricción total y el factor de incrustación no cumplen los límites permitidos se tiene que hacer una nueva prueba, variando el U_D o el numero de pasos hasta encontrar el optimo.

3.2. Calculo del Numero de Tubos del Intercambiador para Producir la Transferencia de Calor

1. Haciendo un balance de energia:

$$W_{ac}C_{ac}(T_1 - T_2) = W_{aa}C_{aa}(t_2 - t_1)$$

75,000Lbs/hr×0.47Btu/Lbs °F×(156–102)°F=W_{aq}×1×(104–84)°F

$$W_{ag} = 95,175 \text{ Lb/hr}$$

$$Q = WC(T_2 - T_1)$$

$$Q = 75,000 \text{ Lbs/hr} \times 0.47 \text{ Btu/Lbs}^{\circ}\text{F} \times (156 - 102)^{\circ}\text{F}$$

2. Calculando At

$$At = F_T \times MLDT$$

$$MLDT = \frac{(T_1 - t_2) - (T_2 - t_1)}{\ln \frac{T_1 - t_2}{T_2 - t_1}} = \frac{(156 - 104) - (102 - 84)}{\ln \frac{156 - 104}{102 - 84}}$$

MLDT = 32.1

$$R = \frac{T_1 - T_2}{t_2 - t_1}$$

$$S = \frac{72 - t_1}{T_1 - t_1}$$

$$R = \frac{156 - 102}{104 - 84} \equiv 2.7$$

$$S = \frac{104 - 84}{156 - 84} = 0.28$$

F_T (ver Apendice B1)

$$F_T = 0.83$$

$$At = 32.1 \times 0.83$$

$$At = 26.7 \, ^{\circ}F$$

3. Obteniendo T_m y t_m :

$$T_m = T_2 + F_C(T_1 - T_2)$$

$$t_m = t_1 + F_C(t_2 - t_1)$$

$$K_C = 0.17$$
 (Apendice B2)

Calculamos:

At,
$$\Delta t_2 - \frac{T_2 - t_1}{T_1 - t_2} - \frac{102 - 84}{156 - 104} = 0.346$$

En Apendice B2 con K_C y $\Delta t_1/\Delta t_2$, obtenemos:

$$F_{\rm C} = 0.4$$

$$T_m = 102+0.4(156-102) = 124$$
°F
 $t_m = 84+0.4(104-84) = 92$ °F

Prueba 1

Intercambiador:

a) Asumiendo U_D = 150 (ver Tabla II)

$$A = \frac{Q}{U_D \Lambda t}$$

 $A = 1'903,500 \,\text{BTU/hr} / 150 \,\text{Btu/hr} \,\text{pie}^2 \,^{\circ}\text{F} \,\text{x} \, 26.7^{\circ}\text{F}$

$$A = 465 pie^2$$

 $a'' = 0.1963 \text{ pie}^2/\text{pie}$ (segun Tabla 5 para tubos de OD $\frac{3}{4}$ ")

 $L = 4 \text{ m o } 13^{1}/_{8} \text{ pie (por limitaciones de espacio)}$

$$N_T = \frac{A}{L \times a''}$$

 $N_T = 465 \text{ pie}^2 / 13.125 \text{ pie x } 0.1963 \text{ pie}^2/\text{pie}$

$$N_T = 180$$

b) Asumiendo el numero de pasos n=2 y usando el Apendice A6, el valor mas cercano a $N_T=180$ es para:

Arreglo cuadrado

DE tubos =
$$\frac{3}{4}$$
"

$$N_T = 166$$

c) Corrigiendo el valor asumido de U_D :

$$A=N_T \times L \times a^n$$

$$A = 166 \times 13.125 \times 0.1963$$

$$A = 427.7 \, \text{pie}^2$$

$$U_D = Q/A\Delta t$$

$$U_D = 1'903,500/427.7 \times 26.7$$

$$U_D = 167 \,\mathrm{BTU/hr} \,\mathrm{pie}^2 \,\mathrm{^oF}$$

LADO DE TUBOS:

4. Area de flujo

$$at = N_T x \ a'_t / 144n$$

donde:
$$a'_t = 0.182 \text{ pulg}^2$$
 (Apendice A5 para BWG 10, 3/4" DE)

$$a_t = 166 \times 0.182/144(2)$$

$$a_t = 0.105 \text{ pie}^2$$

5. Velocidad del flujo

$$G_t = W/a_t$$

$$G_t = 95,175 \text{ Lbs/hr} / 0.105 \text{ pie}^2$$

$$G_t = 906,429 \text{ Lbs/hr pie}^2$$

$$V = G_t/3600\rho$$

$$V = 906,429 \text{ (Lbs/hr pie}^2)/ 3600 \text{ (62.1 pulg}^3/\text{Lbs)}$$

$$V = 4.0 \text{ pie/s}$$

6. Numero de Reynolds:

$$Re = DIx G_{\ell}/\mu$$

Donde: DI tubos = 0.482 pulg, (Apendice A5)

$$\mu$$
 = 2.42 x cp = 2.42 x 0.75 (Apendice B3)

$$\mu$$
 = 1.82 Lbs/pie hr

$$Re = 0.482 \times 906,429 \text{ (Lbs/hr pie}^2)/12 \times 1.82 \text{ Lbs/pie hr}$$

$$Re = 20,005$$

- 7. y 8. No se efectuan porque el fluido que pasa por los tubos es agua
- 9. $h_i = h_i x f$ (Apendice B9)

$$h_i = 940 \text{ x } 1.04 = 978$$

$$h_i = 978 \text{ Btu/hr pie}^2 \, ^{\circ}\text{F}$$

$$10. h_{io} = h_i \times DI / DE$$

$$h_{io} = 978 \times 0.48210.75$$

$$h_{io} = 628 \text{ Btu/hr pie}^2 \, ^{\circ}\text{F}$$

11. y 12. No se efectuan por ser la diferencia entre las temperaturas medias un valor muy pequeño. Entonces $\phi_t=1$

LADO DE LA CORAZA

4'. Area de flujo, suponemos un espaciado igual a C' = 3.5"

$$a_S = DIx C'B/144P_T$$

$$a_S = 17.25 \times 0.25 \times 3.5/144 \times 1$$

$$a_S = 0.105 \text{ pie}^2$$

5'. Velocidad del flujo:

$$G_S = W_{aceite}/a_S = 75,00010.105$$

$$G_S = 714,285 \, \text{lbs/hr pie}^2$$

6'. Numero de Reynolds:

$$Re = D_e \times G_s/\mu$$

Donde : $D_e = 0.95/12$ pie (Apendice B10)

$$\mu$$
 = 2.42 x cp = 2.42 x 5 (Apendice 63)

$$\mu = 12.1 \, \text{Lbs/pie hr}$$

 $Re = 0.95 \text{ pie x } 714,285 \text{ (Lbs/hr pie}^2\text{)}/12 \text{ x } 12.1 \text{ Lbs/pie hr}$ Re = 4,673

7'.
$$j_H = 125$$
 (Apendice B10)

8'.
$$k(c\mu/k)^{1/3} = 0.33$$
 (Apendice B8)

9'.
$$h_O = j_H \frac{k}{D_e} (\frac{c\mu}{k})^{1/3} \phi_S$$

 $h_O = 125 \times 0.33 \times 12/0.95$
 $h_O = 521$

10', 11' y 12' no se efectuan por ser la diferencia entre temperaturas medias muy pequeñas.

13. Caida de presion

En tubos:

(1).
$$f = 0.00023 \text{ pie}^2/\text{pulg}^2$$
 (Apendice B11)

(2). A P =
$$\frac{fG_t^2 Ln}{5.22 \times 10^{10} Ds \phi_t}$$

$$\mathbf{AP} = \frac{0.00023(906,429)^2 x 13.125 x 2 x 12}{5.22 x 10^{10} x 0.482 x 1 x 1}$$

$$AP = 2.37 \text{ psi}$$

Por ser un valor muy pequeño podemos omitir los pasos (3) y (4) y pasar directamente a la coraza.

En coraza:

(1).
$$f = 0.0025$$
 (Apendice B13)

(2).
$$\mathbf{AP} = \frac{fG_s^2 D_s (N+1)}{5.22 \times 10^{10} D_e s \phi_s}$$
$$(N+1) = 12L/B = 12 \times 13.125/3.5 = 45$$
$$\mathbf{AP} = \frac{0.0025(714,285)^2 \times 17.25 \times 45}{5.22 \times 10^{10} \times 0.95 \times 0.85 \times 1}$$
$$\mathbf{AP} = \mathbf{23.5 \ psi}$$

14. Coeficiente total limpio:

$$U_C = h_{io}h_o/h_{io} + h_o$$

$$U_C = 628(521)/628 + 521$$

$$U_C = 285$$

15. Factor de obstrucción:

$$R_d = U_C - U_D / U_C U_D$$

 $R_d = 285 - 167 / 285 \times 167$
 $R_d = 0.0025$

Nuestra primera prueba no rinde las condiciones establecidas, ya que la perdida de presion excede los 10 psi de perdida permitida y el Factor de incrustacion combinado ha resultado ser menor al requerido que es de 0.003

Analizando los resultados vemos en primer lugar que la perdida de presion en la coraza es muy grande, y para disminuirla se aumentara la distancia entre los deflectores.

En segundo lugar el valor del Factor de incrustación R_d nos indica que el U_D resulta muy grande y que para disminuirlo tendremos que aumentar el tamatio del Intercambiador, no podemos aumentar el numero de pasos del intercambiador porque esto lo que haría es aumentar en ocho veces la perdida de presion, por lo tanto lo mas conveniente es aumentar el tamatio de la coraza, para ellos procederemos con la siguiente prueba.

Prueba 2

Intercambiador:

a) Asumiendo U_D= 120

$$A = \frac{Q}{U_D \Delta t}$$

 $A = 1'903,500BTU/hr/130BTU/hr pie^2 °F x 26.7°F$

$$A = 548 \, pie^2$$

 $a'' = 0.1963 \text{ pie}^2/\text{pie}$ (segun Tabla 5 para tubos de OD $\frac{3}{4}$ ")

 $L = 4 \text{ m o } 13^{1}/_{8} \text{ pie (por limitaciones de espacio)}$

$$N_{\tau} = \frac{A}{L \times a^{"}}$$

 $N_T = 548 \text{ pie}^2 / 13.125 \text{ pie x } 0.1963 \text{ pie}^2/\text{pie}$

$$N_T = 213$$

b) Asumiendo el numero de pasos n=2 y usando el Apendice B6, el valor mas cercano a $N_T=213$ es para:

Arreglo cuadrado

DE tubos = $\frac{3}{4}$ "

Pitch = 1"

DI coraza = 19% pulg

$$N_T = 220$$

c) Corrigiendo el valor asumido de U_D :

$$A=N_T \times L \times a^n$$

$$A = 220 \times 13.125 \times 0.1963$$

$$A = 567 \, \text{pie}^2$$

$$U_D = Q/A \Delta t$$

$$U_D = 1'903,500/567 \times 26.7$$

$U_D = 126 \,\mathrm{Btu/hr}\,\mathrm{pie}^2\,\mathrm{^oF}$

LADO DE TUBOS:

4. Area de flujo

$$a_t = N_T x \ a'_t / 144n$$

donde:
$$a'_t$$
 = 0.182 pulg² (Apendice A5 para BWG 10, 3/4" DE)

$$a_t = 220 \times 0.182/144(2)$$

$$a_t = 0.139 \text{ pie}^2$$

5. Velocidad del flujo

$$G_t = W/a_t$$

$$G_t = 95,175 \text{ Lbs/hr} / 0.139 \text{ pie}^2$$

$$G_t = 684,712 \text{Lbs/hr pie}^2$$

$$V = G_t/3600\rho$$

$$V = 684,712 \text{ (Lbs/hr pie}^2\text{)/ }3600 \text{ (62.1 pulg}^3\text{/Lbs)}$$

$$V = 3.1 \text{ pie/s}$$

6. Numero de Reynolds:

$$Re = DIx Gt/\mu$$

Donde : DI tubos = 0.482 pulg, (Apendice A5)
$$\mu = 2.42 \text{ x cp} = 2.42 \text{ x } 0.75 \text{ (Apendice B3)}$$

$$\mu = 1.82 \text{ Lbs/pie hr}$$

$$Re = 0.482 \text{ x } 684,712 \text{ (Lbs/hr pie}^2)/12 \text{ x } 1.82 \text{ Lbs/pie hr}$$

- 7. **y** 8 No se efectuan porque el fluido que pasa por los tubos es agua
- 9. Para agua:

Re = 15,111

$$h_i = h_i x f$$
 (Apendice B9)

$$h_i$$
 = 820 x 1.04 = 853

$$h_i = 853 \,\mathrm{BTU/hr} \,\mathrm{pie}^2 \,\mathrm{^oF}$$

10.
$$h_{io} = h_i \times DI / DE$$

 $h_{io} = 853 \times 0.482 / 0.75$
 $h_{io} = 548 \text{ BTU/hr pie}^2 \text{ °F}$

11. y 12. No se efectuan por ser la diferencia entre las temperaturas medias un valor muy pequeño. Entonces $\phi_t=1$

LADO DE LA CORAZA

4'. Area de flujo, suponemos un espaciado igual a B = 7.5"

$$a_S = DI \times C'B/144P_T = 19.25 \times 0.25 \times 7.5/144 \times 1$$

$$a_S = 0.251 \text{ pie}^2$$

5'. Velocidad del flujo:

$$G_S = W_{aceite}/a_S = 75,000/0.251$$

$$G_S = 298,805 \text{ lbs/hr pie}^2$$

6'. Numero de Reynolds:

$$Re = D_e \times G_s/\mu$$

Donde :
$$D_e = 0.95/12$$
 pie (Apendice B10)

$$\mu = 2.42 \text{ x cp} = 2.42 \text{ x 5 (Apendice B3)}$$

$$\mu$$
 = 12.1 Lbs/pie hr

 $Re = 0.95 \text{ pie x } 298,805 \text{ (Lbs/hr pie}^2)/12 \text{ x } 12.1 \text{ Lbs/pie hr}$

$$Re = 1,955$$

7'.
$$j_H = 80$$
 (Apendice B10)

8'.
$$k(c\mu/k)^{1/3} = 0.33$$
 (Apendice B8)

9'.
$$h_{O} = j_{H} \frac{k}{D_{e}} (\frac{c\mu}{k})^{1/3} \phi_{S}$$

 $h_{O} = 80 \times 0.33 \times 12/0.95$
 $h_{O} = 334$

10', 11' y 12' no se efectuan por ser la diferencia entre temperaturas medias muy pequeñas.

13. Caida de presion

En tubos:

(1).
$$f = 0.00025 \text{ pie}^2/\text{pulg}^2$$
 (Apendice B11)

(2).
$$\Delta P_t = \frac{fG_t^2 Ln}{5.22 \times 10^{10} Ds\phi_t}$$

$$\Delta P_t = 0.00025(684,712)^2 \times 13.125 \times 2 \times 12/5.22 \times 10^{10} \times 0.482$$

$$\Delta P_t = 1.5 \text{ psi}$$

(3).
$$\Delta P_r = \frac{4n}{s} \frac{V^2}{2g'}$$

Donde: $(V^2/2g') = 0.066 \text{ lbs/plg}^2 \text{ (Apendice B12)}$
 $\Delta P_r = 4x2x0.066/1$
 $\Delta P_r = 0.53 \text{ psi}$

(4).
$$\Delta P_T = \Delta P_t + \Delta P_r$$

$$\Delta P_T = 1.5 + 0.53$$

$$\Delta P_T = 2.03 \text{ psi}$$

En coraza:

(1). Factor de fricción:

$$f = 0.0029$$
 (Apéndice B13)

(2).
$$\Delta P_{\rm S} = \frac{fG_{\rm S}^2D_{\rm S}(N+1)}{5.22 \times 10^{10}D_{\rm e} s\phi_{\rm S}}$$

$$(N+1) = 12L/B = 12 \times 13.125/7.5 = 21$$

$$\Delta P_{\rm S} = 0.0029(298,805)^2 19.25 \times 21/5.22 \times 10^{10} \times 0.95 \times 0.85$$

$$\Delta P_{S} = 2.5 \text{ psi}$$

14. Coeficiente total limpio:

$$U_C = h_{io}h_o/h_{io} + h_o$$

$$U_C = 548 \times 334/(548+334)$$

$$U_{C} = 208$$

15. Factor de obstrucción:

$$R_d = U_C - U_D / U_C U_D$$

$$R_d = 208-126/208 \times 126$$

$$R_d = 0.0032$$

68

3.3. Calculo y Selección de Bomba

 Para seleccionar una bomba se deber realizar un esquema de la distribución de tuberias, conexiones, equipos y accesorios en el sistema (Apendice C007), marcando sus longitudes.

Del esquema obtenemos que:

Longitud equivalente = 100 pies (todo el sistema)

Codos de $90^{\circ} = 8$

Valvula compuerta = 2

Valvula check = 1

2. Se determinara la capacidad de la bomba ya sea en gal/min (Gpm), pie3/min, lit/seg, o alguna otra medida similar. Esta capacidad de bomba será el gasto de agua necesario para el enfriamiento del aceite termico al cual se aplica un factor de seguridad. Los factores de seguridad tipicos estan en un margen del 10%, tambien es practica comun redondear el gasto calculado a la siguiente capacidad mas alta en numero redondo.

El gasto de agua calculado es igual a 95,175 lbs/h (191 Gpm)

Gasto de agua = 191 x 1.1 = 210 Gpm

69

3. Luego calcularemos la carga hidraulica total en la bomba, H_{T} ,

expresado ya sea en pies o en metros de agua:

$$H_T = H_s + H_f$$

Hs es la carga hidraulica estatica debido a la altura de succión y

descarga y H_f es la carga hidraulica total por friccion en todo el

sistema (tuberia, codos, valvulas, intercambiador, etc).

La carga hidraulica por friccion, H_f en cada uno de los elementos

del sistema se lo calcula usando la siguiente fórmula:

$$h = Kv^2/2q$$
.

K es el coeficiente de resistencia en accesorios, lo obtenemos

del Apendice B16. Para tuberia el K = fL/d, f es el factor de

friccion y lo obtenemos de Apendice B17. La velocidad en los

tubos lo obtenemos de Apendice B18.

En codos de 90: K = 0.3

En valvula compuerta: K = 1

En valvula check: K = 2

Para tuberia f = 0.02

Velocidad: v = 5 pie/seg

En el intercambiador AP = 2.03 psi

$$h = 144\Delta P/\rho = 144(2.03)/62.2$$

h = 4.7 pies de H20

Entonces:

$$H_f = (0.3x8 + 1x2 + 2 + 0.02x100x12/4) 5^2/2 x32.2 + 4.7$$

 $H_f = 10$ pies de H_2O

 $H_s = 20$ pies (como valor maximo)

$$H_T = 10 + 20$$

 $H_T = 30$ pies de H_2O

4. Se selecciona la clase de bomba En la actualidad existen tres clases de bombas; centrifuga, giratoria y reciprocante, Apendice A8 sobre "Caracteristicas de Bombas Modernas".

La mas usada para flujo de agua es la bomba centrifuga.

 Usando la formula siguiente calcularemos la potencia en HP de la bomba a utilizarse.

$$HP = Gpm x H_T x s /3960e$$

71

Donde: s es la gravedad especifica del líquido y e la eficiencia de

la bomba, para las bombas centrifugas la eficiencia (e) varia del

60 al 80%

 $HP = 210 \times 30/3960(0.6)$

HP = 2.7

Se acostumbra seleccionar el siguiente tamaño mayor de bomba

que exista en el mercado. Entonces la bomba a utilizarse es una

de 3 HP.

3.4. Selección de Instrumentación

Para seleccionar los instrumentos deberemos preguntarnos que es

lo que queremos obtener con esos instrumentos y como ayudaria al

diseño.

Uno de los datos mas importantes es la temperatura, es decir que

deberemos estar siempre al tanto de los cambios que se produzcan

en la temperatura de los flujos de agua y aceite. Para el flujo de

aceite ya se tienen sensores para medir dicha temperatura

(instalaciones propias de la planta).

72

Entonces nos queda controlar la temperatura del agua, una forma de

verificar esto es utilizando termometros a la entrada y salida del

intercambiador.

Por su uso general en la industria, y alta sensibilidad, bajo costo, se

usara un Termometro bimetal, con los siguientes rangos de

temperatura:

Limite inferior de temperatura:

32°F(0°C)

Limite superior de temperatura:

212°F(100°C)

Como la presion en el sistema es muy pequeña podremos usar un

manometro de hasta 3 bar o uno de 60 psi que sera mas que

suficiente.

3.5. Selección de Accesorios

Los accesorios a seleccionar seran los usados en la instalación de la

tuberia desde el intercambiador a la Torre, analizando el Apendice

C007 se seleccionara el tipo de accesorios y su cantidad

aproximada.

Las boquillas de salida y entrada de agua del intercambiador son de

4" (segun Tabla 111) pulgadas por eso se usara tuberia de 4".

TABLA III: TOLERANCIA DE ENTRADA EN INTERCAMBIADOR

Coraza, D.I.	Boquilla	
plg	plg	
Menos de 12 plg	2	
12 - 171⁄4	3	
19% - 21%	4	
23% - 29	6	
31 - 37	8	
Mas de 39	10	

TOTAL DE ACCESORIOS:

Tubería de 4" cedula 40 = 65 pies

Codos de $90^{\circ} = 8$

Bridas = 10

Valvula de compuerta = 2

Valvula check = 1

Capitulo 4

4. DISENO DE LA TORRE DE ENFRIAMIENTO

4.1. Análisis de los Requerimientos de la Torre de enfriamiento.

Para realizar el disetio de la torre de enfriamiento debemos seguir ciertos pasos, que al igual que en el intercambiador de calor nos dara la pauta para disetiar una torre de enfriamiento para cualquier necesidad o requerimiento.

Ya hemos establecido en el disetio de forma que el mejor disetio para la torre enfriamiento con nuestros parametros requeridos es una Torre de Enfriamiento de Tiro Inducido Flujo en Contracorriente.

4.1.1. Determinación de unidades características de la torre

Los pasos a seguir para la determinar todas las condiciones adecuadas a nuestra torre de enfriamiento necesaria seran:

1. Calcular el area de la sección transversal de la torre:

A = L/L'

L es el flujo de agua y L' es el flujo especifico de agua que se encuentra (Apendice **B20)** en funcion del rango de enfriamiento del agua (t_2-t_1) y la temperatura del bulbo humedo t_{bh}

Para valores de aproximacion (t₁-t_{bh}) menores a 5°F esta tabla no se la puede utilizar y se usaran valores experimentales que nos proporcionen la minima altura.

- 2. Calculo de la humedad absoluta Y'_1 y entalpia del aire entrando H'_1 para la temperatura de agua t_1 . Usando la Tabla IV y la temperatura t_{bh}
- 3. Calculo del flujo de aire Gs

Para obtener el G_S debemos realizar un diagrama de operacion para la torre de enfriamiento usando los valores de entalpia de la mezcla aire-agua como ordenada y los valores de temperatura del agua entre t₁ y t₂ como abscisas, aqui se representara la curva de equilibrio de entalpia para aire saturado usando los valores de la Tabla IV a intervalos de 5°F.

La linea de operacion en este diagrama se lo obtendra ubicando el primer punto 1' que representara las condiciones en la torre a la temperatura t_1 . La linea de operacion pasara por el punto 1' y terminara en algun punto sobre la ordenada trazada por el punto t_2 , para el minimo valor de G_S la linea de operacion tendra la

mayor pendiente y tocara tangencialmente a la curva de equilibrio, por lo tanto pasara a traves del punto **2** a t₂.

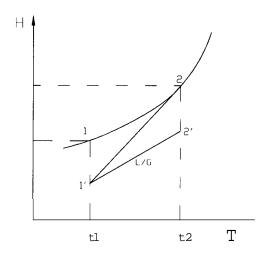


Fig. 4.1. CURVA DE EQUILIBRIO

Segun lo anterior:

 $LC/G_{Smin} = H_2-H'_1/t_2-t_1$

Obteniendo el G_{Smin} podemos obtener el G_{S} multiplicandolo por una razon limite establecida.

Usando la ecuacion: $L/G_S=H'_2-H'_1/t_2-t_1$ podremos calcular la entalpia del aire que sale H'_2 y finalmente obtener la linea de operación de la torre.

TABLA IV. ENTALPIAS Y HUMEDADES PARA MEZCLAS DE AIRE-AGUA A 14.7 Lbs/plg²

Temp. °F	Humedad (Y) Ib H ₂ O/Ib aire	Entalpia (H) Btu/Lb	v aire pie3/lb	v aire+H2O pie³/Lb
40	0.005	15.15	12.59	12.70
45	0.0063	17.8	12.72	12.85
50	0.0076	20.5	12.84	13.00
55	0.0098	23.8	12.97	13.16
60	0.0110	26.7	13.10	13.33
65	0.0130	30.4	13.23	13.51
70	0.0160	34.5	13.35	13.69
75	0.0189	39.1	13.48	13.88
80	0.0222	44.1	13.60	14.09
85	0.0262	50.0	13.73	14.31
90	0.0310	56.7	13.86	14.55
95	0.0365	64.2	13.99	14.81
100	0.0430	72.7	14.11	15.08
105	0.0503	82.5	14.24	15.39
110	0.0590	93.8	14.36	15.73
115	0.0691	106.7	14.49	16.10
120	0.0810	121.5	14.62	16.52
125	0.0948	138.8	14.75	16.99
130	0.1108	158.5	14.88	17.53
135	0.1300	181.9	15.00	18.13
140	0.1520	208.6	15.13	18.84
145	0.1810	243.8	15.26	19.64
150	0.2160	286.0	15.39	20.60

4. Calculo de la altura de la zona empaquetada Z

Para calcular la altura de la zona empaquetada, se usara la ecuacion:

$$k_y a \frac{V}{L} = \int_1^2 \frac{dt}{H - H'}$$

Donde V = 7Z y $k_y a$ a utilizarse es obtenido de experimentos segun el tipo arreglo de empaquetadura (ver Tabla V)

TABLA V: CARACTERISTICAS DE HUMIDIFICACION

Empaque plg	Altura plg	L	G	k _a y
1Raschig	24	500 1000 1500	250 250 250	226 468 635
1½ Raschig	20.6	500 1000 1500	250 250 250	226 468 635
2 Raschig	19.1	500 1000 1500	250 250 250	226 468 635
½ Berl	15.5	500 1000 1500	250 250 250	226 468 635
1 Berl	20.3	500 1000 1500	250 250 250	226 468 635
1% Berl	22	500 1000 1500	250 250 250	226 468 635

79

La integral puede ser calculada por tres formas:

a.- Analiticamente si se conoce la relacion f(t) = H-H'

b.- Integracion grafica

c.- Integracion numerica

Generalmente como no se conoce la relacion f(t) se usa la integracion fisica o la numerica a intervalos de 5°F, aqui usaremos la integracion numerica

4.1.2. Requerimientos para el Agua de Compensacion

El agua de compensacion es el agua que se evapora en el sistema al pasar por la torre de enfriamiento, y los pasos para calcularla estan a continuación:

Usando el diagrama de flujo de la Fig. **4.2.** Se hace un balance de calor Q **y** un balance de flujo, esto seria igual a:

$$Q+MC(t_M-t_0) = G_S(H'_2-H'_1)$$

$$M = G_S(Y'_2-Y'_1)$$

Donde: M es el flujo de agua de reposicion o compensacion.

Y'₂ no se conoce, se calcula asumiendo que el aire que sale de la torre esta saturado y por lo tanto su humedad Y'₂ deberá ser del aire saturado para H'₂, (Tabla IV)

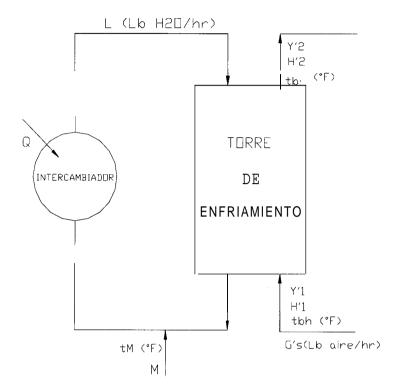


Fig. 4.2. DIAGRAMA DE FLUJO

 $G_{\mathbb{S}}$ tampoco es conocida ya que anteriormente se lo calculo con el supuesto de que L_1 = L_2 es decir que no hubo evaporación.

4.1.3. Selección del Ventilador para la torre.

Para seleccionar el ventilador es necesario conocer el flujo de aire G_S que circulará por la torre y la presion estatica o de resistencia contra la que debe operar el ventilador. Para seleccionar el ventilador debemos conocer el valor de densidad y con ello la temperatura con que sale el aire de la torre, para esto nos valemos de la Tabla IV para un Y'₂ asumiendo que el aire se encuentra cercanamente saturado.

Con este valor de temperatura vamos al Apendice B21 y obtenemos la relación de densidad RDA

RDA =
$$\rho_s/\rho$$

Donde ρ_s = densidad estandar = 0.075lb/pie³

2. Para determinar los pcm (pie 3 /min) de aire que salen del extractor, se divide el flujo de aire G_S para su densidad ρ a la temperatura de operación, es decir:

$$PCM = G_s/\rho$$

3. Para torres de este tipo se sabe que la presion estatica es menor a 1 plg de agua, podemos asumir que es de ½ plg. Con estos valores de PCM y presion estatica vamos al Apendice A I I y obtenemos los valores característicos para el correspondiente ventilador.

4.1.4. Deterrninacion de las Dirnensiones de la Piscina

Para determinar las dimensiones de la piscina para la torre de enfriamiento, se debe conocer el tiempo que demora el agua en circular a traves del sistema.

Se asume que el ciclo demora un minuto y se parte del dato que la piscina deberá tener una capacidad mayor a la cantidad de agua que debe fluir por el sistema en un minuto y asi evitar que esta se quede sin liquido, además la misma piscina debe soportar el peso de la torre con sus accesorios.

Entonces el problema consiste en seleccionar dimensiones para la piscina que provean mayor economia y aseguren un buen funcionamiento. Por lo general se establece el area transversal de la piscina un poco mas grande que el area transversal de la torre de enfriamiento que nos permita el montaje de la tubería de succión o algun otro accesorio necesario.

4.1.5. Determinacion de la Cantidad de Agua a Purgarse.

La mayor parte del calor disipado en una torre de enfriamiento se produce por la evaporación de una parte del agua que circula, la concentración de sales contenidas en el agua aumentara si no se elimina parte del agua en el sistema. La perdida de esta pequeña cantidad de agua que se la descarga al desague se la denomina purga. Para determinar la cantidad de agua que se debe purgar en % y que permita mantener la concentración de sales en el agua que circula, se usara la Tabla VI.

TABLA VI: PORCENTAJE DE AGUA A PURGARSE

Rango de Enfriamiento	Porcentaje de purga		
°F	%		
6	0.15		
7.5	0.22		
10	0.33		
15	0.54		
20	0.75		

La purga puede ser efectuada en cualquier parte del sistema, pero es mas adecuado hacerla en la misma piscina de agua fria, mediante una tubería de cobre, conectada a algun sistema de drenaje. El tubo deberá estar colocado a una pulgada mas abajo de la superficie del agua para a la vez actuar como tubo de descarga o reboso en un momento dado.

Podremos obtener mediante la Tabla VII el flujo de agua a purgarse segun el diametro de tubería.

TABLA VII: FLUJO DE AGUA A PURGARSE

Diametro Interior plg	1/4"	1/2"	5/8"	3/4"	7/8"	1"
Purga Gpm	0.21	0.86	1.35	1.94	2.65	3.46

4.2. Condiciones de Proceso para la Torre de Enfriamiento.

Habiendo analizado todas nuestras condiciones y analizado la forma detallada de como seguir paso a paso los calculos necesarios para obtener nuestra Torre de enfriamiento adecuada a nuestro sistema, comenzaremos los respectivos calculos.

4.2.1. Calculo de las Unidades Características de la Torre

1. Calcular el area de la sección transversal de la torre:

Usando Apendice B20

Para que la altura de la torre no sea muy grande usaremos

L' = **2** Gpm

A = UL'

A = 95

A = 10 pie x 9.5 pie

2. Usando la Tabla IV y la temperatura t_{bh} = 79°F

$$Y'_1 = 0.02154 \text{ lbs } H_20/\text{Lbs}$$
 aire

$$H'_1 = 43.1 \text{ Btu/Lbs}$$

3. De Apendice B19 obtenemos que:

$$H_2 = 80.6 \, \text{Btu/Lbs}$$

$$\frac{LC}{G_{\rm Smin}} = \frac{H_2 - H_1'}{t_2 - t_1}$$

$$G_{Smin} = 95,175 \times 1(104-84)/(80.6 - 43.1)$$

$$G_{Smin} = 50,760 Lbs/hr$$

Para que la altura de la torre no sea muy grande el flujo de aire lo consideraremos 3 veces mayor que el flujo minimo.

$$G_S = 3 G_{Smin} = 3 (50,760)$$

$$G_S = 152,280 \, Lbs/hr$$

$$L/G_S = 95,175/152,280$$

$$L/G_S = 0.625$$

$$H'_2 = H'_1 + L/G_S(t_2 - t_1)$$

$$H'_2 = 43.1 + 0.625(104-84)$$

$$H'_2 = 55.6 \text{ Btu/Lb}$$

4. Calculo de la altura de la zona empaquetada Z por integración numérica:

Usando la formula $H' = H'_1 + L/G_S(T - t_1)$ se encuentran los valores de H' para un rango de 5°F.

Interpolando Tabla V:

$$K_{y}a = 347 \text{ Lb/h pie}^{3}$$

TABLA VIII: VALORES DE ENTALPIA PARA CALCULAR EL

k_Ya

Т	Н	H'	H-H'	(H-H') _m	At
					(H-H') _m
84	48.8	43.1	5.7		
90	56.7	46.8	9.9	7.8	0.64
95	64.2	49.9	14.3	12.1	0.41
100	72.7	53. ■	19.6	17.0	0.29
104	80.6	55.6	25	22.3	0.22
$k_y a \frac{Z}{L} = \int_{}^{2} \frac{dt}{H - H} =$					1.56

$$K_y a Z/L' = 1.56$$

$$Z = 1.56 \times L'/k_y a$$

$$Z = 1.56 \times 1002/347$$

$$Z = 4.5$$
 pie

4.2.2. Calculo del Agua de Compensacion

Usando Fig. 4.2. obtenemos que:

$$Q+MC(t_M-t_0) = G'_S(H'_2-H'_1)$$

$$1'903,500 + M(1)(80-32) = G'_{S}(55.6-43.1)$$

$$M = (12.5G'_S - 1'903,500)/48$$

$$M = G'_{S}(Y'_{2}-Y'_{1})$$

 $Y'_2 = 0.0395$ Lbs H2O/Lbs aire (Tabla IV para H'_2)

$$M = G'_{S}(0.0395-0.02154)$$

$$M = 0.018 \,G'_{S}$$

$$48 \times 0.018 \text{ G}'_{\text{S}} = 12.5 \text{ G}'_{\text{S}} - 1'903,500$$

$$G'_{S} = 163,587$$

 $M = 0.018 \times 163,587$

M = 2,945 Lbs/hr

4.2.3. Calculos para la Selección del Ventilador

1. $T = 98^{\circ}F$ (segun Tabla IV con Y'₂):

$$\rho = \rho s/RDA$$

Donde ps= densidad estandar = 0.075lb/pie³

$$\rho = 0.075/1.04$$

$$\rho = 0.07212 \, \text{Lbs/pie}^3$$

2.
$$pcm = G_S/\rho$$

 $pcm = 152,280/0.07212 \times 60.$

 $pcm = 35,191 pie^{3}/min$

3. Segun Apendice A11, se obtiene un ventilador con las siguientes caracteristicas:

Diametro del ventilador: 72 pulgadas

Pcm: 37,000 pie³/min

Numero de aletas: 6

Revoluciones por minuto: 546

Potencia del motor en HP: 5.40

4.2.4. Dimensiones de la Piscina

Las dimensiones de la piscina seran las siguientes:

Largo: 10.5 pie

Ancho: 10 pie

Profundidad: 1.5 pie

Volumen de la piscina: 1.50 pie³

Flujo de agua circulante: 191 GPM (25.5 pie³/min)

El nivel de agua se mantendra a 0.5 pies del borde de la piscina Volumen de agua disponible: 785 Gal (105 pie³)

4.2.5. Cantidad de Agua a Purgarse.

Para un rango de enfriamiento de 20°F el porcentaje de purga sera igual a 0.75% (según Tabla VI)

Cantidad de agua a purgarse = 191 x 0.0075= 1.43 GPM

Segun la Tabla VII sera suficiente usar para esta cantidad de purga una tubería de D.I. = 5/8"

Capitulo 5

5. CONSTRUCCION Y PROGRAMACION DE LA CONSTRUCCION

Para desarrollar plenamente un proyecto se necesita detallar que actividades se necesitan realizar, el orden en el que han de ser acabadas, quien hara cada una de esas actividades y cuando deben terminarse

Lograr todos los objetivos impuestos en este proyecto necesita la base de una programacion de las actividades necesarias para construir el sistema con una duración estimada en dias.

Tambien se necesita seguir un control de calidad para ir evaluando el proceso de construcción del sistema y asi nos permita diseñar y construir un buen sistema de enfriamiento con las mayores eficiencias posibles.

Una herramienta util en la programacion de las actividades son los Diagramas de Gantt, Carga y Pert pero el mas utilizado para proyectos que necesitan varias actividades relacionadas unas con otras es el Diagrama de Pert.

5.1. Diseño del Proceso de Fabricación

El disetio del proceso de fabricacion se dividira en tres partes, una para el intercambiador, otra para la torre de enfriamiento y una ultima parte en la que señalaremos los pasos para el montaje del sistema en la planta.

5.1.1 Programacion para la Construccion del Intercambiador

Para facilidades de fabricacion el intercambiador sera construido en un taller, en donde se constara con todos los equipos adecuados para el caso.

- Corte de los tubos a la medida requerida, los tubos adquiridos vienen en longitudes de 6 m así que se necesita cortarlos para obtener los de 4 m, el sobrante se lo suelda y así obtenemos el resto de los tubos.
- Construccion de las placas deflectoras y espejos, estos se cortan segun las medidas indicadas en los planos, en cada uno de ellos se marcan las posiciones centrales de los tubos de acuerdo al paso y al diametro del tubo.

- 3. Construccion de la carcaza, en el tubo de la carcaza se perfora unos agujeros para las boquillas de 4" de diametro mediante oxicorte, guardando de no alterar las tolerancias admisibles. Se sueldan los anillos en los extremos de la coraza y finalmente se sueldan las boquillas de tal manera que el eje de la boquilla sea perpendicular al eje de la coraza.
- 4. Construccion del cabezal flotante de tubos, se fijan los tubos en uno de los espejos, luego se coloca el segundo espejo de las misma forma que el primero, y finalmente se fijan los deflectores entre los espejos ajustando el espacio establecido.
- Construccion de Domos exterior e interior, los domos fueron construidos en otro taller donde se contaban con los equipos adecuados.
- 6. Ensamble de todas las piezas, mediante una prensa se introduce completamente el haz de tubos en la coraza hasta la posición adecuada y tratando de no flexionar los tubos. Finalmente se colocan los domos que van empernados a los anillos.

5.1.2. Programacion para la Fabricación de la Torre

Por facilidades de espacio, la torre sera ensamblada en la planta.

- 1. Construccion de la piscina.
- 2. Soporteria y escaleras para construcción del cuerpo de la torre
- 3. Construccion del cuerpo de la torre
- 4. Montaje del area de empaquetadura
- 5. Instalacion del sistema de distribución de agua
- 6. Instalacion de eliminadores de gotas
- 7. Instalacion de Lumbreras de admision de aire
- 8. Instalacion del equipo mecanico

5.1.3. Montaje en Planta del Sistema

- 1. Marcar en sitio la ubicacion del equipo a montarse
- 2. Construir bases para los equipos
- 3. Ubicar equipos en las bases.
- 4. Anclaje de Intercambiador de Calor
- 5. Anclaje de bomba
- 6. Definir rutas de tuberia
- 7. Definir y construir soporteria para tuberia (si es necesario)
- Establecer puntos estrategicos de bridas para futuro mantenimiento.
- 9. Montaje e instalacion de tuberias

- 10. Instalacion de instrumentación
- 11. Pintura de tubería.

5.2. Procesos de Control de Calidad

Un proceso de control de calidad se puede definir como el proceso de vigilar las actividades que aseguren que se estan cumpliendo como fueron planificadas y corrigiendo cualquier desviacion significativa.

No se puede saber en realidad si las unidades funcionan correctamente hasta haber evaluado que actividades se han realizado y haber comparado el desempeño real con la norma deseada.

El control es la unica forma de saber que las metas se estan cumpliendo o no y porque si o porque no

El proceso de control consiste de tres pasos separados: medir el desempeilo real, comparar el desempeilo actual contra una norma o estandar y tomar acciones para corregir las desviaciones o normas inadecuadas.

Existen cuatro formas comunes de informacion que se emplea frecuentemente para medir el desempeño real: la observacion personal, los informes estadisticos, informes escritos e informes verbales. La combinación de estas formas incrementa la probabilidad de informacion confiable.

La observacion personal proporciona un conocimiento profundo y de primera mano de la actividad real. Permite una cobertura intensa ya que tanto las actividades de desempeño pequeñas como las importantes pueden observarse y proporciona oportunidades para detectar fallas u omisiones, pero esta sujeta a prejuicios personales.

Los informes estadisticos no solo se limitan a los resultados presentados pro computadora sino que tambien comprenden graficas, cuadro de barras y presentaciones numericas. Pero proporcionan una informacion limitada y con frecuencia subjetiva.

Los informes escritos como los informes estadisticos son mas lentos pero mas formales que los reportes de primera o segunda mano. Además los informes escritos normalmente son mas faciles de archivar y poder consultar.

Los informes orales tienen las mismas ventajas y desventajas que los informes de observación personal, aunque la informacion se filtre es rapida. Una de las desventajas históricas era el problema de documentar la informacion para referencias posteriores, pero actualmente con la nueva tecnologia se pueden registrar con eficiencia y convertirse en un elemento tan permanente como si estuvieran escritos.

La combinación de estas cuatro formas permiten una mayor eficiencia en el proceso del control de calidad en el control de calidad de una fabricación, construccion o montaje.

En nuestro proceso de construccion tiene mucha importancia la soldadura de las partes del intercambiador, esta debe ser apropiada y seguir todas las normas de diseño y de construccion.

Al soldar cada uno de los anillos del intercambiador debe tener un control sobre los esfuerzos termicosproducidos por el calentamiento del material y que estos no deformen la forma de los anillos.

Tambien se debe verificar en taller de que no existan fugas de agua de los tubos a la carcaza o en sentido contrario de aceite al agua.

5.3. Diagrama Pert de Construcción

Existen proyectos que requieren la coordinación de varias actividades, algunas de las cuales deben desarrollarse simultaneamente y otras no pueden empezar hasta que ciertas actividades anteriores hayan terminado, Para tales proyectos un tanto complejos existen el Diagrama de Pert.

Un Diagrama Pert es similar a un diagrama de flujo que ilustra la secuencia de actividades necesarias para terminar un proyecto y el tiempo o costos asociados a cada actividad. Con un Diagrama Pert se debe pensar en lo que se tiene hacer y determinar que acontecimientos dependen uno del otro.

Para construir un diagrama Pert es necesario conocer tres terminos importantes: eventos, actividades y ruta critica.

Los eventos son puntos finales que representan la terminación de actividades importantes. Las actividades representan el tiempo o recursos necesarios para avanzar de un evento al otro. LA ruta critica es la secuencia mas prolongada o que requiere mas tiempo de eventos y actividades de un Diagrama Pert.

98

Desarrollar un Diagrama Pert requiere que se identifiquen todas las actividades claves necesarias para completar el proyecto, se las clasifique en orden de dependencia y se estime la fecha de terminación de cada actividad.

En la Tabla IX y Fig. 5.1. podemos ver cada una de estas definiciones puestas en practica.

Las rutas critica obtenidas segun el diagrama son:

A-B-C-F-0-P-Q-T-U-W-X-Z = 24

A-B-C-F-O-P-Q-T-U-W-Y-Z = 24

A-B-C-F-O-P-Q-T-V-W-X-Z = 24

A-B-C-F-0-P-Q-T-V-W-Y-Z = 24

A-B-E-F-O-P-Q-T-U-W-X-Z = 24

A-B-E-F-0-P-Q-T-U-W-Y-Z= 24

A-B-E-F-O-P-Q-T-V-W-X-Z = 24

A-B-E-F-0-P-Q-T-V-W-Y-Z = 24

Es decir que el tiempo de duración del montaje y construcción sera de 24 dias laborables, las demoras pueden producirse en el montaje de la Torre de enfriamiento pero no mas de 3 dias sin que altere el tiempo de nuestra ruta critica.

TABLA IX: RED PERT DE CONSTRUCCION Y MONTAJE

EVENTO	DESCRIPCION	TIEMPO ESPERADO (dias)	EVENTO PRECED.
	INTERCAMBIADOR		
Α	Corte de tubos	1	-
В	Construccion de placas deflectoras y	3	Α
C	espejos Construccion de carcaza	2	В
C D	Construccion de cabezal flotante	3 1	В
E	Construccion de domos	3	В
F	Ensamble de todas las piezas	3	C,D,E
	TORRE DE ENFRIAMIENTO		
G	Construccion de la piscina	1	F
Н	Soporteria para el cuerpo de la torre	2	G
ļ.	Construccion del cuerpo de la torre	2	H
J	Montaje de zona empaquetada	1	l .
K	Instalacion del sistema de distribución de agua	1	J
L	Instalacion de eliminadores de gotas	1	J
M	Instalacion de lumbreras de admision de aire	1	I
N	Instalacion de equipo mecanico	2	1
N	Chequeo de equipos instalados	1	K,L,M,N
	MONTAJE EN PLANTA		
0	Marcar en sitio la ubicacion del equipo a montarse	1	F
Р	Construir bases para los equipos	2	Ο
Q	Ubicar equipos en las bases	1	Р
R	Anclaje de Intercambiador de calor	1	Q
S	Anclaje de bomba	1	Q
Т	Definir rutas de tuberias	1	Q
U	Definir y construir soporteria de tuberia	1	Т
V	Establecer puntos de bridas para futuro mantenimiento o reparación.	1	Т
W	Montaje e instalacion de tuberia	4	U,V,R,S
X	Instalacion de instrumentación	1	W
Υ	Pintura de tuberia	1	W
Z	Chequeo y comprobacion final	3	Ñ,X,Y

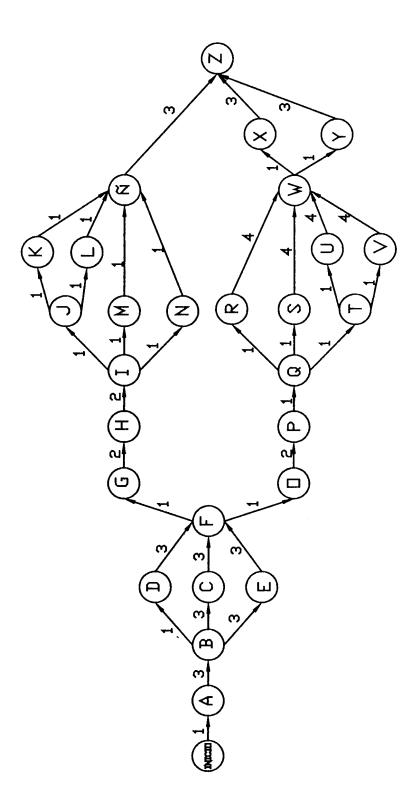


Fig. 5.1. DIAGRAMA PERT DE CONSTRUCCION Y MONTAJE

Capitulo 6

6. ANÁLISIS DE COSTOS

El análisis de costo del Sistema de Enfriamiento consistira de dos partes: la primera sera un resumen de todos los costos de fabricación generados, estos costos estan basados en valores dados por algunos talleres y de los cuales se han escogido lo de menos valor; la segunda parte consistira en el costo de operacion del sistema, en el cual se dara un detalle del costo de operacion del equipo primordial de este sistema (Intercambiador y Torre).

6.1. Costo de Fabricación del Sistema de enfriamiento.

En la Tabla X vemos un desglose de cada uno de estos elementos con sus respectivas especificaciones.

6.2. Costo de Operación Anual

Intercambiador:

Usar agua como medio de enfriamiento tiene gran importancia en el diseño de un intercambiador, ya que segun la cantidad de agua que se utilice el intercambiador puede ser mas grande o mas pequeño y por lo tanto los costos de inversion inicial, costos fijos, depreciación, mantenimiento, y operacion tambien variaran.

TABLA X: COSTOS DE FABRICACION E INSTALACION

Elementos	Especificaciones	Cantidad	Costo (\$)	
INTERCAMBIADOR				
Tubos para intercambiador de ¾" D.E. y 13 1/8 pies,	Espesor 3.4 mm	220	5,560	
Deflectores (ver Apendice C005)	Acero, espesor 8 mm	20	195	
Coraza de 191/4 D.I.	Acero, espesor 8 mm	1	256	
Domo Cabezal Flotante (ver Apendice C003)	Acero, espesor 8 mm	1	192	
Domo Interior (ver Apendice C004)	Acero, espesor 8 mm	1	170	
Domo Exterior (ver Apendice C005)	Acero, espesor 8 mm	1	192	
Espejos (ver Apendice C002)	Acero, espesor 25 mm	2	80	
Anillos (ver Apendice C002)	Acero, espesor 25 mm	2	80	
Pernos 3/4" para domos exteriores	Acero, 3/4" x 31/2	Acero, 3/4" x 31/2 48		
Pernos ⁵ / ₈ " para domo interior	Acero, ⁵ / ₈ " x 4½	24	24	
CONSTRUCCION (30%)			2,040	
MONTAJE E INSTALACION (10%)			680	
SUBTOTAL	<u>-</u>		9,519	
TORRE DE ENFRIAMIENTO				
Zona Empaquetada			300	
Estructura (más cubiertas laterales y superior, con barandas, escalera)	Estructuras de acero, planchas galvanizadas	1,733		

Sistema distribución de agua y eliminadores de gotas (tubería, neplos, conectores, etc)	Tubería galvanizada y accesorios galvanizados		600
Lumbreras de admisión de aire		2	100
Equipo Mecánico			1,930
Piscina	Hormigon, espesor 6"	1	600
Bomba de Agua de 210Gpm, 3HP, cabezal 30 pies	taka ta Ali Markan sang mang kangatanan sana mangaka tan Sanama manggala manahang sa sanaha	1	700
MONTAJE E INSTALACION (35%)			2,087
SUBTOTAL			8,050
OTROS			
Tubería de 4" ced. 40	Acero negro	65 pies	2,400
Codos de 90°	Acero negro	8	80
Valvula de compuerta	Acero	2	950
Valvula check	Acero	1	130
Bridas	Acero	10	150
Termómetros	Bimetal	2	200
Manómetro 60 psi,		1	15
INSTALACION (5%)			199
SUBTOTAL			4,174
TOTAL			21,743

104

El Costo total anual esta dado por la suma del costo de agua anual

más los cargos fijos anuales. Dentro de los cargos fijos anuales se

considera el 20% de reparación y mantenimiento y el 10% por

depreciación sobre la base del costo de fabricacion del

intercambiador.

Para calcular el costo de operacion anual podemos considerar la

siguiente formula:

$$C_{\tau} = \frac{Q\theta C_W}{c(t_2 - t_1)} \frac{C_F Q}{U(LMTD)}$$

Donde:

 θ = horas de operacion anual

C_W = Costos del agua/lb

C_F = cargos fijos anuales

Dividiendo el costo total de fabricacion del intercambiador para la superficie de transferencia obtendremos que:

Costo unitario ($$/pie^2$) = 8,8401567

Costo unitario ($\$/pie^2$) = 15.6 $\$/pie^2$

$$C_F = 15.-6 \times 0.3$$

$$C_F = 4.7 \text{ } \text{/pie}^2$$

 θ = 360 dias x 24 horas

 θ = 8,640 h/año

$$C_W = (0.2 \$/m^3)$$

 $C_W = 0.15 \$/132,074 lb$

$$C_{\tau} = \frac{1903,500x8,640x0.15}{1x(104-84)132,074} + \frac{4.7x1903,500}{126x32.1}$$

 $C_T = 3,146 \, \text{$/\text{año}}$

Torre de Enfriamiento:

Al igual que en el intercambiador la torre de enfriamiento tambien considera el costo por mantenimiento, depreciación del equipo, consumo de energia de la bomba y el ventilador al atio y costos por equipo construido.

Costo de operación anual es igual a :

$$C_T = M + P + C_E/\theta$$

Donde:

M = Mantenimiento, dentro de este valor se considera el consumo del agua al año, el agua total consumida sera suma del agua de compensacion mas agua de purga.

P = Consumo de energia de la bomba y el ventilador

C_E = Costo del equipo instalado

 θ = tiempo de depreciación del equipo

Consumo de agua = 2,945 lb/h/500 +1.43 Gpm = 7.32 Gpm

Consumo de agua = $7.32 \times 60 \times 8,640 = 3'794,688 \text{ Gls/año}$

Consumo de agua = $(3'794,688 \text{ Gls/año}) \times (0.15 \$/264 \text{ Gls})$

Consumo de agua = 2,156 \$/año

El mantenimiento parcial es un 3% del valor del Costo del equipo.

Mantenimiento = Consumo de agua +0.03 x C_E

Mantenimiento = 2,156\$/año + 0.03x 8,050

Mantenimiento = 2,397 \$/año

El tiempo estimado en que se devaluara el equipo se considera de 15 aiios.

El costo de energia se considera igual a 0.06 dolares 1 Kw/h, al aiio serian 518 dolares.

Costo de consumo de energia total es igual a:

 $Kw = HP \times 0.746/(eficiencia del motor)$

 $Kw = (HPbomba + HPventilador) \times 7.46/0.88$

$$Kw = (3+5.4) \times 0.746/0.88 = 6.3 Kw$$

$$P = 6.3x 518$$

P = 3,263 dólares/año

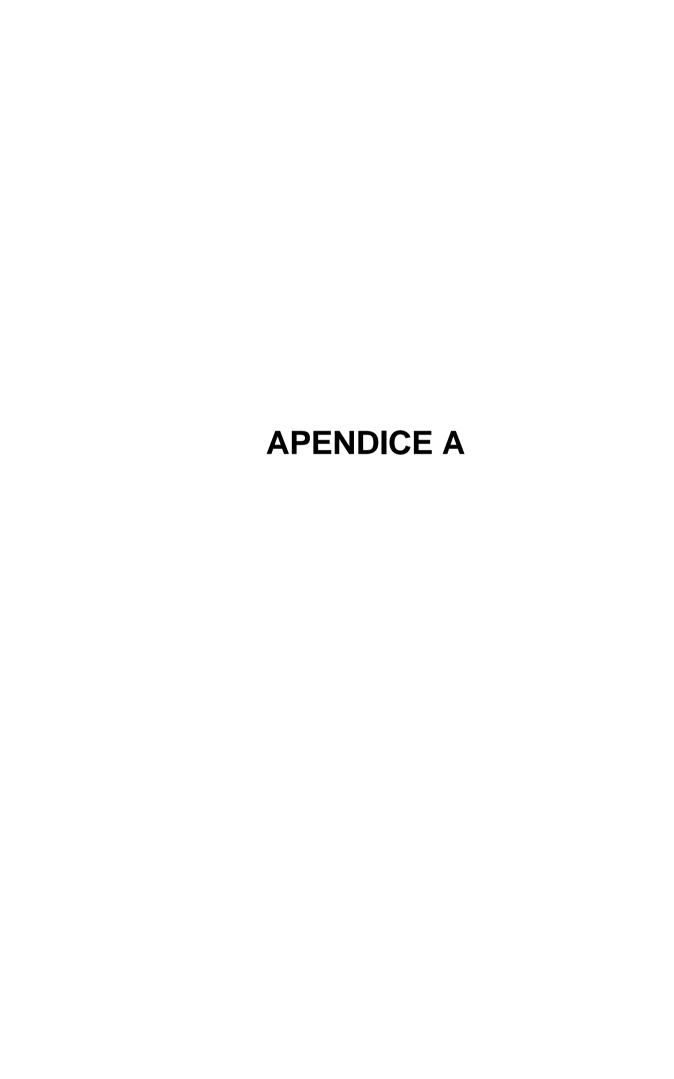
$$C_T = M + P + C_E/\theta$$

$$C_T = 2,397+3,263+8,050/15$$

$$C_T = 6,197 \$/año$$

CONCLUSIONES Y RECOMENDACIONES

- El aceite termico usado ya sea en el calentamiento o enfriamiento permite una rapida transferencia de calor a bajo costo y sin el uso de fases de vapor que a veces nos obliga a equiparnos de instrumentos y accesorios mas costosos, además no se oxida y le permite mantener una vida util larga, y al tener una relativarnente baja viscosidad permite un facil bombeo
- Es seguro para plantas de producción donde se maneja mucho personal porque no es toxico, asi no se necesitan precauciones especiales de seguridad, mientras sea utilizado en las aplicaciones recornendadas (sistemas cerrados) y se mantenga buenas normas de higiene y limpieza.
- Los intercambiadores de calor deben de procurar obtener la maxima velocidad en sus flujos, Cuando se usa agua esta debe mantener una velocidad no menor a 3 pies/s para evitar inscrustaciones de lama o lodo en la tubería.
- Para obtener una perdida de presion minima ya sea en los tubos o en la coraza del intercambiador, debe obtenerse un numero de Re bastante alto, en la coraza esto se logra usando la mayor cantidad de deflectores


posibles pero teniendo el cuidado de usar una distancia adecuada que no entorpezca la ubicacion de las boquillas en la coraza.

- Es recomendable que al ensamblar el intercambiador se usen anillos de caucho entre los anillos y las bridas de los domos y asi evitar las fugas en cualquier sentido.
- La eficiencia en el intercambiador del sistema es:
- $e = \frac{T_1 T_2}{T_1 t_1}$ x100 = (156-102)x100/(156-84) = 75%, que es un valor bastante alto y que nos proporciona datos sobre la ventaja de este sistema.
- En las torres de enfriamiento es importante mantener un límite en el cabezal de la bomba para que las torres no sean muy altas y su estructura sea mas solida, esto se logra ya sea aumentando el area transversal o aumentando el flujo de aire.
- Es importante anotar que podemos disminuir la altura de la torre eligiendo un tipo de empaquetadura que tenga un alto k_ya, la variación del k_ya depende de la forma y el tipo de empaquetadura.

- También podemos disminuir la altura de la torre aumentando la capacidad del ventilador pero esto nos lleva a una elevación de costos muy grande. Por lo tanto se debe elegir entre la conveniencia de una torre mas pequeña o un ventilador mas potente.
- Se recomienda usar agua tratada en la Torre ya que esto ayuda a disminuir el factor de obstrucción permitido.
- La eficiencia de una torre de enfriamiento esta dada por la formula:

$$\varepsilon = \frac{t_{L2} - t_{L1}}{t_{L2} - t_{w1}} \times 100 = (104-84) \times 100/(104-79) = 80\%$$

- Es decir que tenemos muy buena eficiencia en el enfriamiento del agua.
- La construcción en nuestro medio de equipos como estos llega a ser "fácil" por la gran cantidad de talleres dedicados a esto y por la ventaja de no tener problemas en el suministro de materiales, lo que nos aporta otra ventaja a la hora de dar mantenimiento o hacer alguna reparación.

Guia para Selección de Intercambiadores de Calor

	Pintips pre ipaus(avareis da egibi	E Demisor	Avolan -	Tijpas	(05(63 <u>12)</u> (1651) (053(00)	प्रिक्तीश	upica de Uz
	Liquido a Liquido	Intercarnbiador de soplado de agua de caldera	Soplado enfriado, agua de alimentación calentada	S	М,Н	50-300	(0.28-1.7)
		Recuperación descalor de agua de la lavandería en la lavandería en lavan	Agua residual enfriado, alimentación calentada	₃S	$\mathbb{L}_{\mathbb{R}^{n}}$	30-200	(0.17-1.1)
		Calentador de agua de servicio	Liquido de desecho enfriado, agua calentada	S	L,H	50-300	(0.28–1.7)
	Vapor a Liquido	Calentador de purga	Vapor condensado, agua de alimentación calentada	S	L,H	200-800	(1.1-4/5)
Calefacción		Calentador de alimentación de desaeración	Vapor condensado, agua de alimentación calentada	i M	L,M	DC	
		Calentador de chorro	Vapor condensado, agua calentada	M	L	DC	
		Ollaide proceso and the second	Vapor condensado. Ifquido calentado:	_مياكيد	L.M.	.100-500	(0.57-2.8)
		Calentador de petróleo	Vapor condensado, petróleo calentado	S	L,M	2G-60	(0 11-0.34)
		Calentador de agua de servicio	Vapor condensado agua calentada	LEISE .	LLM	200-800	(1.1.4.5)
		Calentador de flujo abierta	Vapor condensado, agua calentada	M	L	DC	
		Recalentadon de wapon de sodio a Iliquido	Sodio enfriado, vapor recalentado	∜S÷ Market	M,H	50-200	(0.28-1.1)

	©as a Loquido	Catanial of sampling and the side	Gas de desecho enfinado, agua calentada			2-10	(0.01.1.0.0)	
		Economizador de caldera	Gas de combustión enfriado, agua de alimentación calentada.	T	м,н	2-10	(0.011-0.057)	. _
			Anti-mental and wilesteds			0)5)	-(0.400)87/20),05-7	
	Gw ∋ Gas	Calentador de aire de caldera	Gas de combustión enfriado, aire de combustión calentado	T, R	Ţ	2-10	(0.011-0.057)	ı
		स्ट्रांस कार्यकार के स्थानकार के क्रांड	Sex is comparation in the order of the sex sex sex sex sex sex sex sex sex se				(ROHPOSE)	
		Recalentador de caldera	Gas de combustión enfriado, vapor	T	М, Н	2-20	(0.011-0.11)	ı
	Vapor a Gas	Serpentines de tubo de vapor	Vapor condensado, aire calentado	T	L, M	2-10 2-10	(0.011-0.057)	
	Líquido - Liquido	Emithdon day seed by	्रभूताहर स्वीत्राहरका निमालीक समझिताक		, W	20=200	O NEUDI	
		Enfriador de gas	Refrigerante hervido, agua enfriada Refrigeranto destrato camagos cantenta	T S	Σχ	30-151	(0.17-0.86)	st#4
		Enfriador de aceite de transformador	Agua calentada, aceite enfriado	S	L, M	20-50	(0.11-0.88)	*
	Vapor - Liqwido	Dessobrecalentador de caldera	Agua de caldera calentada, vapor dessobrecalentado	S, M M	M, H	150-800	(0.85-4.5)	ı
								. 12 13 2
Enfriamiento	Enfriamiento Gas - Líquido	Interenfriadores y posenfriadores de compresor	Agua calentada, aire comprimido enfriado	S	L, H	10-20	(0.057-0.11)	Ħ

Rediado de motor de combustión. Aire calentado, agua entriada	Enfriadores de aire, de hidrógeno Agua calentada, hidrógeno o aire enfriado S L 2-10 (0.011-0.057) generador	Street who also designated for the street of	Intercambiador de calor de Salmuera calentada, aire enfriado T L, M 2-10 (0.011-0.057) refrigeración	and a simple companies. A same and the street with a street we see that the street we will be seen that the same and the s), ssolv o za lentador de calideral est de combustión calcriado. Vapor T. M.H. 2.8. (0.011-0.045). desconcatados	Transported Contract at the Edution of Section of Section 1980, Section	Generador de vapor de sodio Sodio enfriado, agua hervida S M, H 500- (2.8-5.7) Isquido	Evaporador (de vacío) Vapor condensado, agua hervida S L 400-600 (2.3-3.4) Saporador (alampirestión) Vapor condensado agua hervida.	rio de Mercurio condensado, agua hervida S M, H 500-700	Caldera de vapor de calor de Gas de combustión enfriado, agua hervida T L, H 2-10 (0.011-0.057)	oglade i le zpor de lleme i frisker. Casile combustion entrado ngualistrada e a a casile e 2 10 - Olomo osm
					Vapor - Gas	Líquido - Líquido		Vapor - Coquido		Gas - Equipo	
								Ebu li ción			

	Vapor - Líquido	Contlant to developeración	Agua calentada refrigerante condensado :	eSD#	iLM.	<u>80-250</u>	0.45-140-2
		Condensador de superficie de	Agua calentada, vapor condensado	S	L	300-800	(1.7-4.5)
Condensación		vapor Condensadormezoladordovapora	A gua calentada Wanor condensado (a	M	i i i i i i i i i i i i i i i i i i i	DC.	
		Intercondensador y	Condensado calentado, vapor condensado	S	L	15-300	(0.085-1.7)
		poscondensador			T. Marin		
	Vapor • Gas	Condensador de superficie enfriado por aire	Aire calentado, vapor condensado	T	L	2-16	(0.01 1-0.091)

† S: Intercambiador de casco y tubo;

M: intercambiador mezclador de contacto directo;

T: tubos en trayectoria de fluido en movimiento, o intercambiador abierto al aire circulante;

R: intercambiador tipo placa regenerativa o tipo placa simple;

D: intercambiador de doble tubo.

L: escalas de presión más altas de 0 a 100 lb/in² (abs)(0 a 689.4 Ha);
 M: presión más alta de 100 a 500 lb/in² (abs)(689.4 a 3447 Ha);
 H: más de 500 lb/in² (abs)(3447kPa).

§ Los valores de U representan la escala de coeficientes totales de transferencia de calor que pudieran esperarse en varios intercambiadores. Los coeficientes están expresados en BTU/(h.ºF.ft²)[W/(m².ºC)] de superficie de calentamiento. El total de calor transferido en el intercambiador, en BTU/h, se obtiene al multiplicar un valor especifico de U para ese tipo de intercambiador por la superficie y diferencia logaritmica de temperatura media. DC indica intercambiodirecto de calor.

TOMADO DE TYLER G. HICK, MANUAL DE CALCULOS PARA LAS INGENIERIAS, McGRAW HILL, TOMO II, TERCERA EDICION, 1998

EQUIVALENCIA ENTRE GRADOS API, PESO ESPECIFICO, DENSIDAD Y

LIBRAS POR GALON A 60°F/60°F DE ACEITES

Grados API	Peso Especifico	Densidad Ib/pie3 ρ	Lb/galón		
0					
2		********			
4					
6			*********		
8			,		
10	1.0000	62.36	8.337		
12	0.9861	61.50	8.221		
14	0.9725	60.65	8.108		
16	0.9593	59.83	7.998		
18	0.9465	59.03	7.891		
20	0.9340	58.25	7.787		
22	0.9218	57.87	7.736		
24	0.9100	56.75	7.587		
26	0.8984	56.03	7.490		
28	0.8871	55.32	7.396		
30	0.8762	54.64	7.305		
32	0.8654	53.97	7.215		
34	0.8550	53.32	7.128		
36	0.8448	52.69	7.043		
38	0.8348	52.06	6.960		
40	0.8251	51.46	6.879		
42	0.8155	50.86	6.799		
44	0.8063	50.28	6.722		
46	0.7972	49.72	6.646		
48	0.7883	49.16	6.572		
50	0.7796	48.62	6.499		
52	0.7711	48.09	6.429		
54	0.7628	47.57	6.359		
56	0.7547	47.07	6.292		
58	0.7467	46.57	6.225		
60	0.7389	46.08	6.160		
62	0.7313	45.61	6.097		
64	0.7238	45.15	6.034		
66	0.7165	44.68	5.973		
68	0.7093	44.23	5.913		

TOMADO DE CRANE, FLUJO DE **FLUIDOS**, McGRAW HILL, TERCERA EDICION, 1998

FACTORES DE INCRUSTACIÓN EN INTERCAMBIADORES

FLUIDO CALENTADO O ENFRIADO	Factor de incrustación
Petroleo	0.0055
Aceite delgado	0.0020
Aceite limpio recirculado	0.0010
Aceites para templar	0.0042
Refrigerantes (liquidos)	0.0011
Gasolina	0.0006
Limpiado a vapor y sin aceite	0.0001
Vapores de refrigerante	0.0023
Escape diesel	0.013
Aire comprimido	0.0022
Aire limpio	0.0011
Agua de mar a menos de 130°F (54°C)	0.0006
Agua de mar a más de 130°F (54°)	0.001 ■
	0.0011
	0.0021
	0.0008
	0.0009

TOMADO DE TYLER G. HICK, MANUAL DE CALCULOS PARA LAS INGENIERIAS, McGRAW HILL, TOMO II, TERCERA EDICION, 1998

PROPIEDADES FISICAS DEL AGUA

Temperatura de agua	Presión de saturación	Volumen específico	Densidad	Peso
ı	P'		ρ	
grados Fahrenheit	lb/pulg² abr.	pie³/lb	lb/pie³	libras/galón
32	0.08859	0.016022	62.414	8.3436
40	0.12163	0.016019	62.426	8.3451
50	0.177%	0.016023	62.410	8.3430
60	0.25611	0.016033	62.371	8.3378
70	0.36292	0.016050	62.305	8.3290
80	0.50683	0.016072	62.220	8.3176
90	0.69813	0.016099	62.116	8.3037
100	0.94924	0.016130	61.996	8.2877
110	I.2750	0.016165	61.862	8.2698
120	1.6927	0.016204	61.7132	8.2498
130	2.2230	0.016247	61.550	8.2280
140	2.8892	0.016293	61.376	8.2048
150	3.7184	0.016343	61.188	8.1797
160	4.7414	0.016395	60.994	8.1537
170	5.9926	0.016451	60.787	8.1260
180	7.5110	0.016510	60.569	8.0969
190	9.340	0.016572	60.343	8.0667
200	11. 526	0.016637	60.107	8.0351
210	14.123	0.016705	59.862	8.0024
212	14.6%	0.016719	59.812	7.9957
220	17.186	0.016775	59.613	7.9690
240	24.968	0.016926	59.081	7.8979
260	35.427	0.017089	58.517	7.8226
280	49.200	0.017264	57.924	7.7433
300	67.005	0.01745	57.307	7.6608
350	134.604	0.01799	55.586	7.4308
400	247.259	0.01864	53.648	7.1717
450	422.55	0.01943	51.467	6.8801
500	680.86	0.02043	48.948	6.5433
550	1045.43	0.02176	45.956	6.1434
600	1543.2	0.02364	42.301	5.6548
650	2208.4	0.02674	37.397	4.9993
700	3094.3	0.03662	27.307	3.6505

TOMADO DE CRANE, FLUJO DE FLUIDOS, McGRAW HILL, TERCERA EDICION, 1998

APENDICE A-5 DATOS DE TUBOS PARA INTERCAMBIADORES DE CALOR

Tubo DE, pig	B W :	Espeso de la	DI, plg	Area de flujo		ie por pie pies²	Peso por pie lineal.
DE, pig	, ,	pared,		por tubo plg²	Exterior	Interio	lb, de acem
16	i2 i4 i6 Id 20	0.109 0.083 0.065 0.049 0.035	0 282 0.334 0.370 0.402 0.430	0.0623 0.0876 0.1076 0.127 0.145	0 1309	0 0748 0 0874 0.0969 0.1052 0.1125	0.493 0.403 0.329 0 258 0.190
34	10 11 12 13 14 15 16 17	0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049	0.482 0.510 0.532 0.560 0.584 0.606 0.620 0.634 0.652	0.182 0.204 0.223 0.247 0.268 0.289 0.302 0.314 0.334	0.1963	0.1263 0.1335 0.1393 0.1466 0.1529 0.1587 0.1623 0.1660 0.1707	0.965 0.884 0.817 0.727 0.047 0.571 0.520 0.469 0.401
1	8 9 10 11 12 13 14 15 16 17	0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049	0.670 0.704 0.732 0.760 0.782 0.810 0.834 0.856 0.870 0.884 0.902	0.355 0.389 0.421 0.455 0.479 0.515 0.546 0.576 0.594 0.613 0.639	0.2618	0.1754 0.1843 0.1916 0.1990 0.2048 0.2121 0.2183 0.2241 0.2277 0.2314 0.2361	1.61 1.47 1.36 1.23 1.14 1.00 0.890 0.781 0.710 0.639 0.545
11/4	8 9 10 11 12 13 14 15 16 17	0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049	0.920 0.954 0.982 1.01 1.03 1.06 1.11 1.12 1.13 1.15	0.665 0.711 0.757 0.800 0.836 0.884 0.923 0.960 0.985 1.01	0.3271	0 2409 0 2498 0 2572 0 2644 0 2701 0 2775 0 2839 0 2896 0 2932 0 2969 0 3015	2.09 1.91 1.75 1.58 1.45 1.28 1.13 0.991 0.900 0.808 0.688
134	8 9 10 11 12 13 14 15 16 17 18	0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049	1.17 1.20 1.23 1.26 1.28 1.31 1.33 1.36 1.37 1.38 1.40	I 075 1.14 1.19 1.25 1.29 1.35 1.40 1.44 1.47 1.50	0.3925	0.3063 0.3152 0.3225 0.3299 0.3356 0.3430 0.3492 0.3555 0.3587 0.3623 0.3670	2.57 2.34 2.14 1.98 1.77 1.56 1.37 1.20 1.09 0.978 0.831

DISPOSICION DE LOS ESPEJOS DE TUBOS (CUENTA DE TUBOS) ARREGLOENCUADRO

Tubos d	le ¾"	DE,	rregl	o en c	cuadro	Tubos de	<u> 1″ I</u>	E, ar	reglo	en cu	adro
	•	de 1						11/4			
Coraza DI, plg	1-P	2-P	4-P	6-P	8-P	Coraza DI, plg	1-P	2-P	4-P	6-P	8-P
8	32	26	20	20		8	21	16	14		1.000
10	52	1	40			10	3			24	14
12	81	76	68			12	48		40	38	36
13%	97						61		5a	48	14
15%	137		116				81		68		
171/4	177	166	158	150	142	1734	112	112	96	90	82
1914	224	220	204	192	188		138	132	128	, 122	116
211/4	277	270	240	240	234	211/4	177		158	152	148
23%	341	324	308		292	23%	213		192	184	184
25	413	394	370		346	25	260		238	226	222
27	481	460	432			27	300		278	268	260
29	553	526	480			29	341	326	300	294	286
31	657	640	600	580		31	406	398	380	368	358
33	749	718	688	676	648	33	465	460	432	420	414
35	845	824	780		748	35	522		488	484	472
37 30	934	914	880		838	37	596		562	544	532 .
39	1049	024	982	808	948	39	665	644	624	613	Joseph,
Tubos de	11//"	DE,	arregi	o en	cuadro	Tubos de	11/6"	DE, a	- urreglo	en c	uadre
	ď	e 1%16	plg					e 17/8			.
10	16	12	10	1			1	<u> </u>		1	
13	30	24	22	16	16	12	16	16	12	12	j
131/4	32	30	30	22	22	131/4	2 2		16	16	
151/4	44	40	37	35	31	15%	2 9	2 9	25	24	22
17%	56	53	51	48	44	17%	39	39	34	32	29
19%	78	73	71	64	56	1914	50	48	45	43	39
21 M	96	90	86	82	78	211/4	62	60	57	54	50
231/4	127	112	106	102	96	231/4	78	74	70	66	62
35	140	135	127	123	115	25	94	90	86	84	78
27	166	160	151	146	140	27	112	108	102	98	94
29	193	188	178	174	166	29	131	127	120	116	115
3 1	226	220	209	202	193	31	151	146	141	138	131
83 35	258	252	244	1238	226	33	178	170	164	160	151
35 37	293 334	287 322	275 311	:268 304	258	35	202	196	188	182	176 202
39		862	348		293	37	224	220	217	210	224
J¥	370	002	340	1342	336	39	.252	246	237	230	447

TOMADO DE DONALD Q. KERN, PROCESOS DE TRANSFERENCIA ${\sf DE}$ CALOR, CECSA, VIGESIMOSEXTA REIMPRESION, 1995

CONDUCTIVIDADES TERMICAS DE LIQUIDOS

Liquido	·F	k	Líquido	٠F	:
ceites	1	-i	Bromobenceno		7
Ricino	.; 68	0.104	Bromobenceno	212	1
	212	0.100	Bióxido de azufre		Ţ
Oliva	68	. 0.097		AA.	
	212	0.095	Bisulfuro de carbono	86	
cetato de etilo	. 68	0.101		167	
Alcohol 100%	- 68	1 0.109	l etracioruro	32	:
80%	68	0.137			
60%	- 68	0.176	Cloruro de calcio, salmuera 30%	86	
40%		0.224	15%	86	
20%	68	0.281	Cloruro de sodio, salmuera 25.0%	86	
Benceno		0.087		86	
Benceno	140	0.080	Clorobenceno Cloroformo Cymene (para)	50	:
Bromuro	. 68	0.082	Ciorotormo	86	
Eter	. 86	0.070	Cymene (para)	.86	
Eter	127	0.000	Decano (n-)	140	:
Voduro	104		Decamo (n.)	140	÷
Yoduro	167	0.063	Diclorodifluorometano	140	
cetato de amilo	50	0.083		60	١
Acetato de amilo	- 86	0.094		100	
- • •	212	0.089		140	٠
	86	0.088	!	100	•
Acetato butílico (n-)	167	0.087	Dicloroetano	122	١
cetato butilico (n-)	· 77–86	0.085	Dictorometano	- 5	i
Alcohol (n-)	. 86	0.097	L ;	86	J
(4-0.)	167	0.095	Eter de petróleo	86	:
(iso-)	. 30	0.091	ha	167	
	167	0.102	Etilen glicol	32	•
aldo anático 100%	107	0.095	Charles 1000	86 68	ï
cido acético 100% 50%	.) 60	0.099	Glicerina 100%	68	
cido esteárico	919	0.20	80 %	80	•
cido láurico	212	0.102		68 68	•
cido oleico	212	0.0925	20%	68	٠
cido palmítico	212	0.0835	100%		•
cido sulfúrico 90%	86	0 91	Heptano (n.)	28	•
60%	86	0.25	Hexano (n-)	140	÷
		0.30	Hexano (n-)	86	
gua		0.330	Kerosena	140	ŧ
	86	0.356	Kerosena	68	
	140	0.381		167	:
1	176	0.398	Mercurio Nitrobenceno	82	ţ
lcohol alflico	77-88	0.104	Milliopencend	66	:
Iconor neptifico (n-)	100	0.094	Nitrometano	XIX	
lcohol hexflico (n-)	10/	0.091		140	
ICOHOT REWITTO (P.)	187	0.093	Nonano (n-)	170	•
Icohol metilico 100%	RA		t .	440	
Icohol metilico 100% 80%	68	0.154	Octano (n-)	88	i
60%	68	0.190	1	140	
40%	68	0.234	Paraldehido	86	:
20%	68			010	1
100%	122		Pentano (n-)	86	l
Cloruro	. 51	A 111		107	i
		0.089	Percloroetileno	122	1
cohol propílico (n-)	167	0.099	Sodio	212	4
	10,	0.095 0.091	<u>.</u>	410	Ä
Alcohol (iso-)	140	0.091	Tolueno	86	,
moniaco	140	0.090	A 4-4-9	167	ı
moniaco	2-00	0.29	M-tricloroetano	122	
moniaco, acuoso, 26%	140	0.261 0.29	Turnentine (agreement)	122	! !
nilina	39_69	0.20	A-tricloroetiano Tricloroetileno Turpentina (aguarrás) Vaselina	29	. 1
enceno	- 66	0.100	Xileno (orto-) Xileno (meta-)	28	i

CARACTERISTICAS DE BOMBAS MODERNAS

	Voluta v		Giratorias	Reciprocantes				
	difusor Voluta v difusor Constante	Flujo axial Flujo axial Constante	Tornillo y engrane	Vapor acción directa	Eléctrica doble acción	Triplex		
Flujo de descarga Máxima altura de succión usual, ft (m)	15 (4.6) Constante 15 (4.6)	15 (4.6) Constante 15 (4.6)	Constante 15 (4.6)	Pulsante 22 (6.7)	Pulsante 22 (6.7)	Pulsante 22 (6.7)		
Líquidos manejados	Limpios, cla sucios, abi líquidos es contenido	resivos,	Viscosos; no abrasivos	is				
Rango de presión de descarga	Baja a alta		Media	Baja a la más alta producida				
Rango de capacidad usual	Pequeña a la más grande		Pequeña a media	Relativamente pequeña				
Cómo la mayor carga hidráulica afecta: Capacidad Entrada de potencia	Decrece Depende de velocidad es		Ninguna Aumenta	Decrece Aumenta	Ninguna Aumenta Aumenta	Ninguna Aviligata Aumenta		
Cómo la menor carga hidráulica afecta: Capacidad	Aumenta		Ninguna	Pequeña aumenta	Ninguna Ninguna Decrece	Ninguna Ninguna Decrece		
Entrada de potencia	Depende de gravedad e		Decrece	Decrece	Decrece	Decrece		

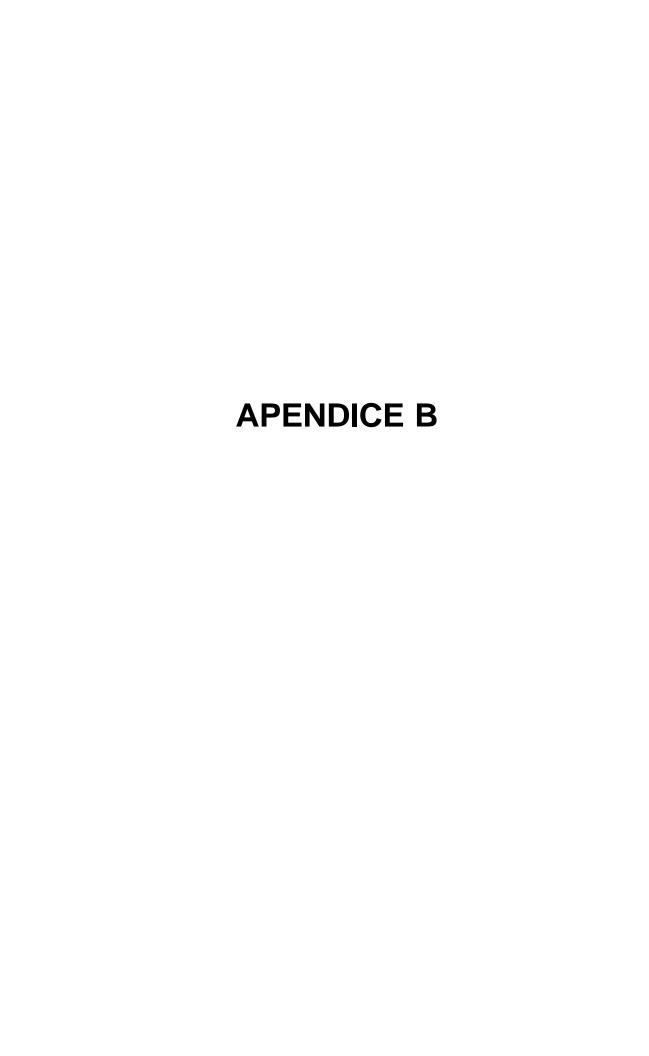
TOMADO DE TYLER G. HICK, MANUAL DE CALCULOS PARA LAS INGENIERIAS, McGRAW HILL, TOMO II, TERCERA EDICION, 1998

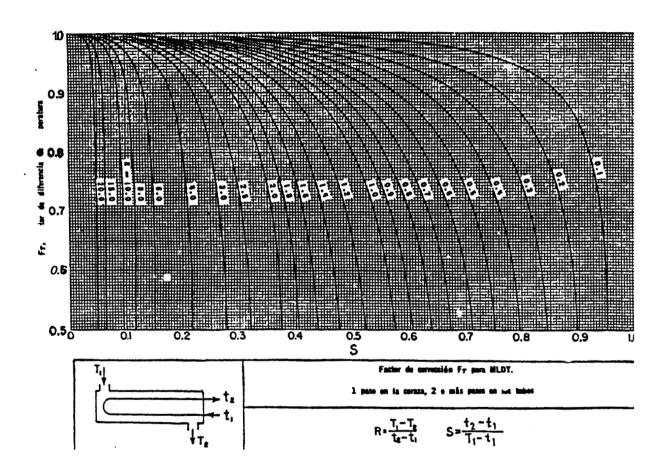
DIMENSIONES DE TUBERIA DE ACERO

Tamaño nominal del tubo IPS plg	DE, plg	Cédula No.	DI, plg	Area de fluj por tub plg²	Superfic lineal, j Exterior	por pic	Peso por ple lineal, lb de acero	
16	0.405	40° 80†	0.269 0.215	0.058	0.106	0.070 0.056	0.25 0.32	
34	0.640	40' 80†	0.364 0.302	0.104 0.072	0.141	0.095 0.079	0.43 0.54	
36	0.675	40*	0.493 0.423	0.192 0.141	0.177	0.129 0.111	0.57 0.74	
14	0.840	40* 80†	0.622 0.546	0.304 0.235	0.220	0.163 0.143	0.85 1.09	
3 4	1.05	80†	0.742	0.634 0.432	0.276	0.216 0.194	1.13 1.48	
1	1.32	40' 80†	1.049 0.957	0.864 0.718	0.344	0.274 0.250	1.68 2.17	
11/4	1.66		ı	1.50 1.28	0.135	0,	9 96	
134	1.90	40' 80†	1.810 1.500	2.04 1.76	0.498	0.422 0.393	2.71 3.04	
2	2.38	40' 80†	2.067 1.939	3.35 2.95	0.a22	0.542 0.508	3.60 5.03	
214	2.88	40' 80†	2.469 2.323	4.70 4.23	0.753	0.647 0.609	5.80 7.67	
а	3.50	40* sot	3.068 2.900	7.38 6.61	0.917	0.804 0.760	7.58 10.3	
4	4.50	40* 80†	4.026 3.826	12.7 11.5	1.178	1.055 1.002	10 8 15.0	
6	6.625	40* 80†	6.065 5.761	28.0 26.1	1.734	1.590 1.510	19.0 28.6	
8	8.625	40* 80†	7.981 7.625	50.0 45.7	2.258	2.090 2.000	28.6 43.4	
10	10.76	40' 60	10.02 0.76	78.8 74.6	2.814	2.62 2.55	40 5 64.8	
12 14 16 18 20 22 24	12.75 14.0 18.0 18.0 20.0 22.0 24.0	30 30 30 20‡ 20 20‡ 20‡	12.09 13.25 45.25 17.25 19.25 21.25 23.25	115 138 183 234 291 355 425	3.338 3.665 4.189 4.712 5.236 6.747 6.283	3.47 4.00 4.52 5.05 5.56 6.09	43.8 54.6 62.6 72.7 78.6 84.0 94.7	

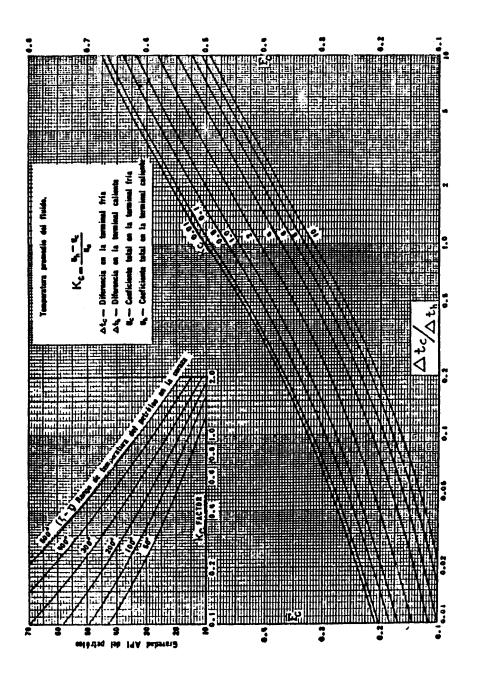
GRAVEDADES ESPECIFICAS DE LIQUIDOS

COMPUESTO	S'	COMPUESTO	s *
Acetaldehido	0.78	Cloruro de estilo	0.9
Acetato de amilo	0.88	Cloruro de metilo	0.92
Acetato de etilo	0.90	Cloruro de n-propilo	0.89
Acetato de metilo	0.93	Cloruro sulfurico	1.67
Acetona	0.79	Dibrometano	2.09
Acetato de butilo	0.88	Dicloroetano	1.17
Acetato de vinilo	0.93	Diclorometano	1.34
Agua	1.00	Difenilo	0.99
Acido acético 100%	1.05	Eter etilico	0.71
Acido acético 70%	1.07	Etilbenceno	0.87
Acido n-butlrico	0.96	Etilglicol	1.04
Acido i-butlrico	0.96	Fenol	1.07
Acido clorosulfónico	1.77	Formiato de etilo	0.92
Acido fórmico	1.22	Glicerina al 100%	1.26
Acido nítrico 95%	1.50	Glicerina al 50%	1.13
Acido nítrico 60%	1.38	n-heptano	0.68
Acido propibnico	0.99	n-hexano	0.66
Acido sulfúrico 100%	I.83	Hidroxido de sodio 50%	1.53
Acido sulfúrico 98%	1.84	Yoduro de etilo	1.93
Acido sulfúrico 60%	1.05	Yoduro de n-propilo	1.75
Alcohol alílico	0.86	Mercurio	13.55
Alcohol amílico	0.81	Metacresot	1.03
Alcohol n-butllico	0.81	Metanol 100%	0.79
Alcohol i-butilico	0.82	Metanol 90%	
Alcohol etilico 100%	0.82	Metanol 40%	0.82
Alchohol etilico 100%			0.94
Alcohol etilico 40%	0.81	Metiletilcetona	0.81
	0.94	Naftaleno Nitrakananan	1.14
Alcohol Isopropílico	0.79	Nitrobenceno	1.2
Alcohol octílico	0.82	Nitrotolueno, orto	1.16
Alcohol n-propílico	0.80	Nitrotolueno, meta	1.16
Amoniaco al 100%	0.61	Nitrotolueno, para	1.29
Amoniaco al 26%	0.91	n-octano	0.7
Anhidrido acético	1.08	Oxalato de dietilo	1.08
Anilina	1.02	Oxalato de diemetilo	1.42
Anisol	0.99	Oxalato de dipropilo	1.02
Benceno	0.88	Pentacloroetano	1.67
Bióxido de azufre	1.38	n-pentano	0.63
Bióxido de carbono	1.29	Propano	0.59
Bisulfurode carbono	1.26	Salmuera, Ca Cl, 25%	1.23
Bromotolueno, orto	I.42	Salmuera, Na CI, 25%	1.19
Bromotolueno, meta	1.41	Sodio	0.97
Bromotolueno, para	1.39	Tetracloroetano	1.6
Bromuro de etilo	1.43	Tetracloroetileno	1.63
Bromuro de n-propilo	1.35	Tetracloruro de carbono	1.6
n-butano	0.6	Tetracloruro de titanio	1.73
i-butano	0.6	Tribromuro de fbsforo	2.85
Ciclohexanol	0.96	Tricloruro de arsénico	2.16
Clorobenceno	1.11	Tricloruro de fbsforo	1.57
Cloroformo	I.49	Tricloroetileno	1.46
Clorotolueno, orto	1.08	Tolueno	0.87
Clorotolueno, meta	1.07	Xileno. orto	0.87
Clorotolueno, para	1.07	Xileno, meta	0.86
Cloruro estánico	2.23	Xileno, para	0.86

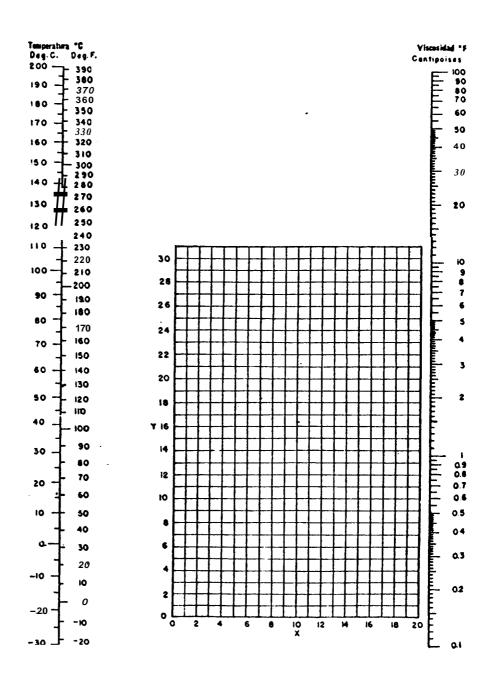

CARACTERÍSTICAS DE VENTILADORES SEGUN DIAMETRO Y ALETAS


			<u> </u>				PR	ESION	ESTAT	ICA (plg	De H2	0)				
Diámetro y Nº de paleta			1).3	(0.4).5	T	.6		0.7		0.8	().9
1 uc paieta			RPM	HP	RPM	HP	RPM	HP	RPM	HP	RPM	HP	RPM	HP	RPM	HP
	37500	1800	400	4.14	500	5.14	511	5.94								
	40000	1980	500	4.32	520	5.76	549	6.59							644	10 62
	42500	2106	520	5.56	540	6.45	570	7.35	582	8.23	614	9 22	636	t0.25	658	11.36
	45000	2293	544	6.27	567	7.19	590	8.15	611	9.00	632	10 05	654	1111	674	12.20
60' D	47500	2420	567	7.06	589	8.01	610	9.00	632	10.02	65 I	10 08	672	12.04	692	13.16
6 BLADE!	50000	2548	589	7.92	611	8.90	632	9.93	652	10.90	673	I2 06	690	13.07		
	52500	2675	613	8.86	613	9.88	653	10.94	673	12.04	692	13 16				
	55000	2803	636	9.89	656	10.94	675	12.03	694	13.16						
	57500 60000	2930 3056	660 684	11.01 12.22	679 702	12.08 13.32	691	13.21								
	28000	989	419	2.44	459	3.17	498	4.05	524	4.73						-
	31000	1095	437	2.75	474	3.50	512	4.39	547	5.37	569	6 06				
	34000	1201	455	3.09	494	3.99	526	4.19	561	5.78						
72'B	37000	1307	475	3.48	511	4.4 I	546	5.40	575	6.26						
6 BLADE!	40000	1413	505	4.22	530	4.86	564	5.92								
	43000	1519	527	4.76	55 I	5.42	582	6.47								
	46000	1625	550	5.35	572	6.02	<u> </u>									
	46000	1500	422	5.15	467	7.60	504	9.46	543	I I.76						
12' C	48000	1696	428	6.16	477	8.17	513	10.04	549	12.19						1
6 BLADE!	51000	1800	434	6.58	485	8.68	525	10.78	557	12.81]	
	54000	1906	440	7.02	491	9.20	535	11.49	569	13.68					L	
	57000	2014	277	5.58												
	60000	2120	282	5.91	311	7.86										
	63000	2226	290	6.48	315	8.22	241	10.00								
	66000	2332	295	6.84	320	8.61 9.06	341 350	10.86 11.28								
12' D	69000 72000	2438 2544	300 305	7.20	325 334	9.06	355	11.26	319	14.25						
6 BLADE!	75000	2650	311	8.00	339	10.33	359	12.25	383	14.73	409	17 76				
	78000	2756	316	8.44	344	10.33	369	13.29	387	15.26	410	17 98				
	61000	2862	322	8.92	349	11.31	374	13.89	392	15.66	414	18 56	431	21.75		
	64000	2968	328	9.43	354	II.63	379	14.47	397	16.52	416	1918	439	22.07		
	67000	3074	336	10.46	359	12.39	384	15.07	407	17.84	422	19 67	443	23.76	464	35.70
	36000	920	357	2.88	391	3.85	418	4.73	448	5.86						
	39000	997	370	3.16	402	4.15	432	5.24	456	6.17	484	7 40	511	8.70		
84' A	42000	1074	387	3.63	414	4.48	443	5.60	471	6.78	493	7 76	518	9.08	ļ	i i
6 BLADE	45000	1150	402	4.00	427	4.87	455	5.98	482	7.21	503	8 20	521	9.50		l '
	48000	1227	417	4.41	445	5.50	461	6.42	493	7.66	518	8 99 9 50	1	1	i	1
	51000	1304	432	4.86	459	6.00	480	6.92	505	8.15	529		ļ			
	51000	1304	318	4.49	343	5.61	368	6.88 7.34	392 398	8.33 8.75	414 42 I	9 85 10 33	442	II.96		
				4.91 5.36	352 361	6.05	375 383	7.34	398 406	9.27	421	10 80	442	12.50	468	14 27
				5.36 5.85	361 37I	6.58 7.11	392	8.39	413	9.81	434	11 33	455	13.02	415	14.83
				6.38	381	7.11	402	9.05	422	10.42	442	11 98	46	13.60	481	15.40
				0.56	39	8.30	40Z	9.70	430	11.09	450	12 64	469	14.31	488	16 04
84' C		•			40	8.95	421	10.36	440	11.89	458	1331	471	15.04	495	167t
6 BLADE:					412	9.64	431	11.14	450	12.67	461	14 17	485	15 83	502	17.61
					423	10.41	44 I	11.92	459	13.48	477	15 12	493	16.10	510	18.46
			-	1		l	452	12.74	469	14.35	486	1603	503	17.75	519	19.42
				1		l	462	13.62	479	15.30	496	16 10	512	18.76	528	20.44
			-		•	l			490	16.27	506	18 00	522	19.81		
	<u>.</u>		نــــــ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	500	17.29	516	19 10	531	20.91	L	

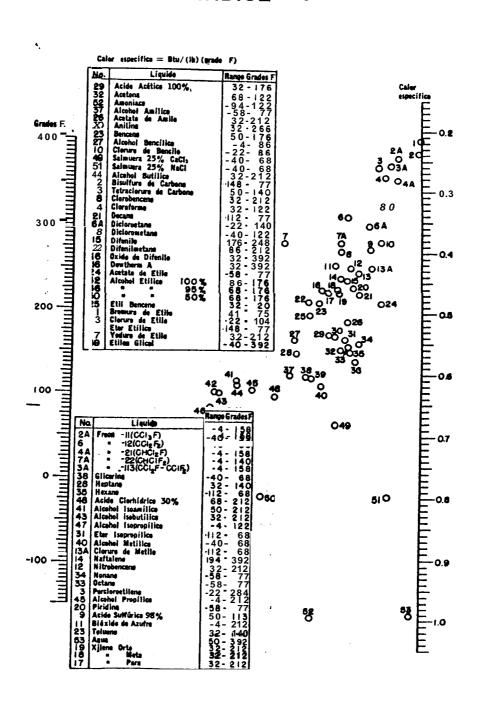
VISCOSIDAD DE LIQUIDOS

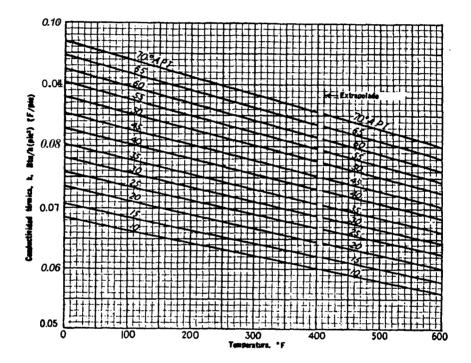

Para usarse como coordenadas de Apendice B-3

15.2 4.8 11.8 12.5 12.8 12.3 11.0 13.7 12.8 12.3 11.0 13.7 12.8 14.2 8.2 14.0 8.8 14.2 8.2 14.0 8.8 14.5 7.2 14.0 8.8 14.5 7.2 14.0 8.4 14.5 14	-		,	·
15.2 4.8 11.8 12.5 12.0 13.5 12.3 11.0 13.7 9.1 14.2 8.2 14.0 8.8 14.5 7.2 14.0 8.8 14.5 7.2 14.0 13.0 13.0 14.5 13.0 14.5 13.0 14.5		X	Y	$\textbf{Liquido} \qquad : \ X Y$
12.3 11.0 Dibromoetano 12.7 15.8 13.7 9.1 Dicloroetano 13.2 12.2 14.2 8.2 Diclorometano 14.6 8.9 14.0 8.8 14.5 7.2 Eter Etilico 14.5 5.3 5.2 5.3		15 2	48	
12.3 11.0 Dibromoetano 12.7 15.8 13.7 9.1 Dicloroetano 13.2 12.2 14.2 8.2 Diclorometano 14.6 8.9 14.0 8.8 14.5 7.2 Eter Etilico 14.5 5.3 5.2 5.3				Cresol, meta 2.5 20.8
14.2 8.2 14.0 8.8 14.5 7.2 14.0 8.8 14.5 7.2 15.0 14.5 7.2 15.0 14.5 5.3 14.5 7.2 15.0 14.5 1				Dibromoetano 12.7 15.8
14.0			,	
14.5 7.2 Eter Etilico 14.5 5.3 Agua 10.2 13.0 Etilbenceno 13.2 11.5 Etilbenceno 13.2 1				
Acetona 35% 7.9 15.0 Etilbenceno 13.2 11.5 Agua 10.2 13.0 Etillenglicol 6.0 23.6 Acido Acetico 100% 12.1 14.2 Fenol 6.9 20.8 Acido Acetico 70% 9.5 17.0 Formiato de Etilo 14.2 8.4 Acido Budrico 12.1 15.3 Freoniato de Etilo 14.2 8.4 Acido Fórmico 10.7 15.8 Freoniato de Etilo 14.2 8.4 Freonico 10.7 15.8 Freonico 15.7 7.5 Acido Isobutírico 12.2 14.4 Freonico 15.7 7.5 Acido Nítrico 95% 12.8 13.8 Freonico 13.2 11.4 Freonico 14.2 8.4 Freonico 14.2 8.4 Freonico 15.7 7.5 7.5 7.5				Eter Etilico
Acido Acético 70% 9.5 17.0 Fenol 6.9 20.8	Acetona 35%	7.9	15.0	Etilbenceno 13.2!11.5
Acido Acético 70% 9.5 17.0 Fenol 6.9 20.8	A	10 3	120	Etilenglicol 6.0 23.6
Acido Propiónico 12.8 13.8 Glicerina 100% 2.0 30.0 Acido Sulfúrico 110% 7.2 27.4 Glicerina 50% 6.9 19.6 Acido Sulfúrico 60% 10.2 21.3 Heptano 14.1 8.4 Acido Sulfúrico 60% 10.2 14.3 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Anfilico 7.5 18.4 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Butilico 8.6 17.2 Yoduro de Propilo 14.1 11.6 Alcohol Etilico 100% 10.5 13.8 Alcohol Etilico 95% 9.8 14.3 Mercurio 14.5 3.7 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Propilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Metiletilectona 13.9 8.6 Alcohol Propilico 9.1 16.5 Amoníaco 100% 12.6 2.0 Naftaleno 7.9 18.1 Nitrobenceno 10.6 16.2 Anlidrido Acético 12.7 12.8 Oxalato de Diemeilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilio 10.3 17.7	Acido Acético 100%	12.1	14.2	Fenol 6.9 20.8
Acido Propiónico 12.8 13.8 Glicerina 100% 2.0 30.0 Acido Sulfúrico 110% 7.2 27.4 Glicerina 50% 6.9 19.6 Acido Sulfúrico 60% 10.2 21.3 Heptano 14.1 8.4 Acido Sulfúrico 60% 10.2 14.3 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Anfilico 7.5 18.4 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Butilico 8.6 17.2 Yoduro de Propilo 14.1 11.6 Alcohol Etilico 100% 10.5 13.8 Alcohol Etilico 95% 9.8 14.3 Mercurio 14.5 3.7 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Propilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Metiletilectona 13.9 8.6 Alcohol Propilico 9.1 16.5 Amoníaco 100% 12.6 2.0 Naftaleno 7.9 18.1 Nitrobenceno 10.6 16.2 Anlidrido Acético 12.7 12.8 Oxalato de Diemeilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilio 10.3 17.7	Acido Acetico 70%	9.5	17.0	From 11 14.2 8.4
Acido Propiónico 12.8 13.8 Glicerina 100% 2.0 30.0 Acido Sulfúrico 110% 7.2 27.4 Glicerina 50% 6.9 19.6 Acido Sulfúrico 60% 10.2 21.3 Heptano 14.1 8.4 Acido Sulfúrico 60% 10.2 14.3 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Anfilico 7.5 18.4 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Butilico 8.6 17.2 Yoduro de Propilo 14.1 11.6 Alcohol Etilico 100% 10.5 13.8 Alcohol Etilico 95% 9.8 14.3 Mercurio 14.5 3.7 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Propilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Metiletilectona 13.9 8.6 Alcohol Propilico 9.1 16.5 Amoníaco 100% 12.6 2.0 Naftaleno 7.9 18.1 Nitrobenceno 10.6 16.2 Anlidrido Acético 12.7 12.8 Oxalato de Diemeilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilio 10.3 17.7	Acido Clorosulfónico	11.1	18.1	
Acido Propiónico 12.8 13.8 Glicerina 100% 2.0 30.0 Acido Sulfúrico 110% 7.2 27.4 Glicerina 50% 6.9 19.6 Acido Sulfúrico 60% 10.2 21.3 Heptano 14.1 8.4 Acido Sulfúrico 60% 10.2 14.3 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Anfilico 7.5 18.4 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Butilico 8.6 17.2 Yoduro de Propilo 14.1 11.6 Alcohol Etilico 100% 10.5 13.8 Alcohol Etilico 95% 9.8 14.3 Mercurio 14.5 3.7 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Propilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Metiletilectona 13.9 8.6 Alcohol Propilico 9.1 16.5 Amoníaco 100% 12.6 2.0 Naftaleno 7.9 18.1 Nitrobenceno 10.6 16.2 Anlidrido Acético 12.7 12.8 Oxalato de Diemeilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilio 10.3 17.7	Acido Formico	10.7	15.8	
Acido Propiónico 12.8 13.8 Glicerina 100% 2.0 30.0 Acido Sulfúrico 110% 7.2 27.4 Glicerina 50% 6.9 19.6 Acido Sulfúrico 60% 10.2 21.3 Heptano 14.1 8.4 Acido Sulfúrico 60% 10.2 14.3 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Anfilico 7.5 18.4 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Butilico 8.6 17.2 Yoduro de Propilo 14.1 11.6 Alcohol Etilico 100% 10.5 13.8 Alcohol Etilico 95% 9.8 14.3 Mercurio 14.5 3.7 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Propilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Metiletilectona 13.9 8.6 Alcohol Propilico 9.1 16.5 Amoníaco 100% 12.6 2.0 Naftaleno 7.9 18.1 Nitrobenceno 10.6 16.2 Anlidrido Acético 12.7 12.8 Oxalato de Diemeilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilio 10.3 17.7	Acido Isobutírico	12.2	14.4	Freon22
Acido Propiónico 12.8 13.8 Glicerina 100% 2.0 30.0 Acido Sulfúrico 110% 7.2 27.4 Glicerina 50% 6.9 19.6 Acido Sulfúrico 60% 10.2 21.3 Heptano 14.1 8.4 Acido Sulfúrico 60% 10.2 14.3 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Anfilico 7.5 18.4 Hidróxido de Sodio 50% 3.2 25.8 Alcohol Butilico 8.6 17.2 Yoduro de Propilo 14.1 11.6 Alcohol Etilico 100% 10.5 13.8 Alcohol Etilico 95% 9.8 14.3 Mercurio 14.5 3.7 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Propilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Metiletilectona 13.9 8.6 Alcohol Propilico 9.1 16.5 Amoníaco 100% 12.6 2.0 Naftaleno 7.9 18.1 Nitrobenceno 10.6 16.2 Anlidrido Acético 12.7 12.8 Oxalato de Diemeilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilio 10.3 17.7	Acido Nftrico 95%	12.8	13.8	Freon 113 12.5 11.4
Acido Sulfunco 60% 10.2 14.3 Hexano 14.7 7.0	Acido Nítrico 60%	10.8	17.0	Freon 114 14.6 8.3
Acido Sulfunco 60% 10.2 14.3 Hexano 14.7 7.0	Acido Propionico	12.8	13.8	Glicerina 100% 2.0 30.0
Acido Sulfunco 60% 10.2 14.3 Hexano 14.7 7.0	Acido Sulfúrico 110%	7.2	2/.4	Hentano 14.1 8.4
Alcohol Etilico 100% 10.5 13.8 Isobutano 14.5 3.7 Alcohol Etilico 95% 9.8 14.3 Mercurio 18.4 16.4 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Isopropilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Octilico 6.2 21.1 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Naftaleno 7.9 18.1 Alcohol Propilico 11.6 Nitrobenceno 10.6 16.2 Amoniaco 100% 12.6 2.0 Nitrotolueno 11.0 17.0 Amidrido Acético 12.7 12.8 Oxalato de Dietilo 11.0 16.4 Anilina 8.1 18.7 Oxalato de Dimetilo 12.3 15.8 Anteol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Acido Sulfúrico 60%	10.2	21.3	
Alcohol Etilico 100% 10.5 13.8 Isobutano 14.5 3.7 Alcohol Etilico 95% 9.8 14.3 Mercurio 18.4 16.4 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Isopropilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Octilico 6.2 21.1 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Naftaleno 7.9 18.1 Alcohol Propilico 11.6 Nitrobenceno 10.6 16.2 Amoniaco 100% 12.6 2.0 Nitrotolueno 11.0 17.0 Amidrido Acético 12.7 12.8 Oxalato de Dietilo 11.0 16.4 Anilina 8.1 18.7 Oxalato de Dimetilo 12.3 15.8 Anteol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Alcohol Alílico	10.2	14.3	Hidróxido de Sodio 50% 3.2 25.8
Alcohol Etilico 100% 10.5 13.8 Isobutano 14.5 3.7 Alcohol Etilico 95% 9.8 14.3 Mercurio 18.4 16.4 Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Alcohol Isobutilico 7.1 18.0 Metanol 90% 12.3 11.8 Alcohol Isopropilico 8.9 16.0 Metanol 40% 7.8 15.5 Alcohol Octilico 6.2 21.1 Metanol 40% 7.8 15.5 Alcohol Propilico 9.1 16.5 Naftaleno 7.9 18.1 Alcohol Propilico 11.6 Nitrobenceno 10.6 16.2 Amoniaco 100% 12.6 2.0 Nitrotolueno 11.0 17.0 Amidrido Acético 12.7 12.8 Oxalato de Dietilo 11.0 16.4 Anilina 8.1 18.7 Oxalato de Dimetilo 12.3 15.8 Anteol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Alcohol Amílico	7.5	18.4	Yoduro de Etilo 14.7 10.3
Alcohol Etilico 95% 9.8 14.3 Mercurio 18.4 16.4 16.5 16.6 Metanol 100% 12.4 10.5 16.6 Metanol 100% 12.3 11.8 Metanol 100% 12.3 11.8 Metanol 10.5 Metanol 10.6 Metanol 10.6 10.5 Metanol 10.6 Metanol 10.6 10.5 Metanol 10.6 Met	Alcohol Butilico	8.6	17.2	Yoduro de Propilo 14.1 11.6
Alcohol Etilico 40% 6.5 16.6 Metanol 100% 12.4 10.5 Acido Clothídrico 31.5% 13.0 16.6 Metanol 90% 12.3 11.8 Alcohol Isobutilico 7.1 18.0 Metanol 40% 7.8 15.5 Alcohol Propilico 8.9 16.0 Metiletiletona 13.9 8.6 Alcohol Propilico 9.1 16.5 Nártaleno 7.9 18.1 Amoníaco 100% 12.6 2.0 Nitrobenceno 10.6 16.2 Amoniaco 28% 10.1 13.9 Octano 13.7 10.0 Anlidrido Acético 12.7 12.8 Oxalato de Dietilo 11.0 16.4 Anlina 8.1 18.7 Oxalato de Dimetilo 12.3 15.8 Antsol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Alcohol Etilico 100%	10.5	13.8	Isobutano
Alcohol Isopropilico	Alcohol Etilico 40%	9.0	16.6	Metanol 100% 12.4 10.5
Alcohol Isopropilico	Acido Clarhídrica 31.5%	13.0	16.6	Metanol 90% 12.3 11.8
Alcohol Octílico 6.2 21.1 Naftaleno 7.9 18.1 Alcohol Propílico 9.1 16.5 Nitrobenceno 10.6 16.2 Amoniaco 100% 12.6 2.0 Nitrotolueno 11.0 17.0 Amoniaco 28% 10.1 13.9 Octano 13.7 10.0 Anhidrido Acético 12.7 12.8 Oxalato de Dimetilo 11.0 16.4 Anlina 12.3 13.5 Oxalato de Dimetilo 12.3 15.8 Anleol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Alcohol Isobutilico	7.1	18.0	Metanol 40% 7.8 15.5
Alcohol Propilico 9.1 16.5 Nitrobenceno 10.6 16.2 Amoniaco 100% 12.6 2.0 Nitrotolueno 11.0 17.0 Amoniaco 28% 10.1 13.9 Octano 13.7 10.0 Anhidrido Acético 12.7 12.8 Oxalato de Dietilo 11.0 16.4 Anlina 8.1 18.7 Oxalato de Dimetilo 12.3 15.8 Anlsol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Alcohol Isopropilico			Metiletilcetona, 13.9 8.6
Amoniaco 100% 12.6 2.0 Nitrotolueno 11.0 17.0 Amoniaco 28% 10.1 13.9 Octano 13.7 10.0 Anhidrido Acético 12.7 12.8 Oxalato de Dietilo 11.0 16.4 Anilina , 8.1 18.7 Oxalato de Dimetilo 12.3 15.8 Anisol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7				
Anhidrido Acético	Alcohol Propilico	12.6		
Anhidrido Acético	Amoniaco 28%	10.1		
Anisol 12.3 13.5 Oxalato de Dipropilo 10.3 17.7	Anhidrido Acético	12.7		Oxalato de Dietllo 11.0 16.4
Anisol	Anilina,,	8.1		Oxalato de Dimetilo 12.3 15.8
D	Anisol	12.3	13.5	Oxalato de Dipropuo 10.3 17.7
Plásido de Aguero $15.2 \cdot 7.1$ Pentano $14.9 \cdot 5.2$	Biórido de Aguera	12.5	71	Pentano
Bióxido de Carbono 116 0.3 Propano 15.3 1.6	Bióvido de Carbono	11 6	6.3	Propano 15.3 1.0
Bióxido de Carbono 11.6 0.3 Propano 15.3 1.6 Bisulfuro de Carbono 16.1 7.5 Salmuera CaCl, 25% 6.6 15.9 Bromo 14.2 13.2 Salmuera NaCl 25% 10.2 16.6	Bisulfuro de Carbono	16.1		Salmuera CaCl, 25% 6.6 15.9
Bromo 14.2 13.2 Salmuera NaCl 25% 10.2 16.6	Bromo	14.2	13.2	Salmuera NaCl 25% 10.2 16.6
20.0 15.9 Sodio 16.4 13.9				
14.5 8.1 Tetracloroetano	Bromuro de Propilo 1	14.5		
n-Rutano 15 3 2 3 n 1 1 1 1 1 1 1 1 1	n-Butano	15.3	2 2	Tetracionoettieno
Ciclohexanol	Ciclohexanol	2.9	24.3	Tetracloruro de Titanio 14.4 12.3
Clorobenceno	Clorobenceno	12.3	12.4	Iribromuro de Fósforo 13.8 16.7
Cloroformo	Cloroformo	14.4	10.2	
Ciclohexanol 2.9 24.3 Tetracloruro de Titanio 14.4 12.3 12.4 Tribromuro de Fósforo 13.8 16.7	Clorotolueno meta	13.0	13.5	Fricioruro de Fostoro 16.2 10.9
Clorotolueno, ineta 133 12.5 Incidroenieno 14.8 10.5 Clorotolueno para 13.3 12.5 Folueno 13.7 10.4	Clorotolueno, para	13.3	12.5	Inclorediene
Citator do Ethe	Cloruro de Etile	14.5		Furnentina
Cloruro de Metilo	Cioruro de Metilo	15.0	3.8	Xilano orto 13.5 12.1
Cloruro de Propilo 14.4 7.5 Kileno, meta 13.9 12.1 Cloruro de Sulfurilo 15.2 12.4 Kileno, para 13.9 10.9	Cloruro de Propilo	14.4	7.5	Kileno, meta
Cioruro de Sulfumio; 15.2112.4 Xileno, para	Cioruro de Sulfurilo	15.41	12.4	Kileno, para, 13.9 10.9

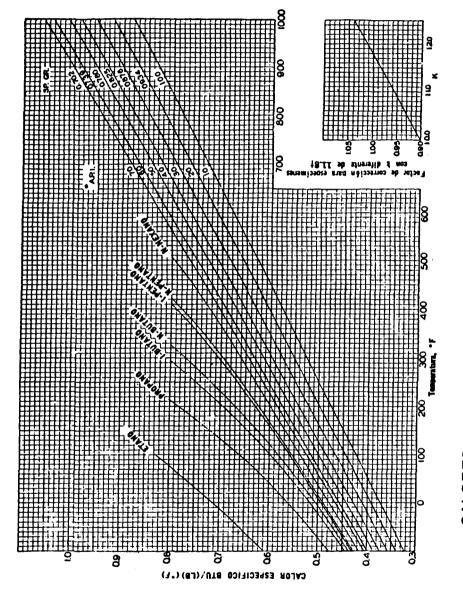


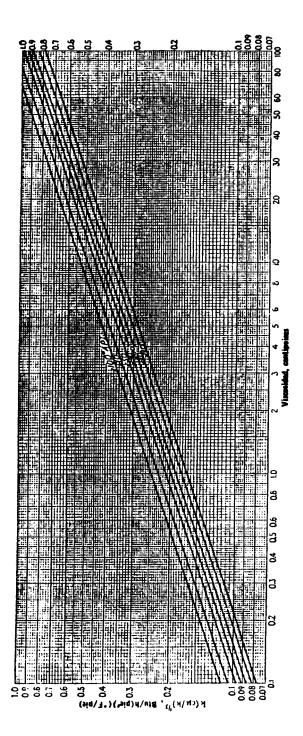
FACTORES DE CORRECCION MLDT PARA INTERCAMBIADORES DE CALOR 1-2

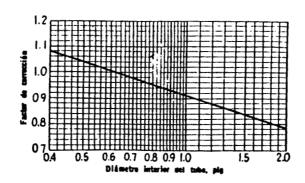

FACTOR F_C D≤ HEMPERATURA C⇔ORIC®

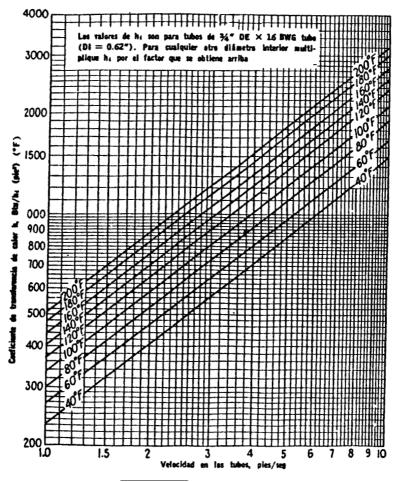

VISCOSIDADES DE LIQUIDOS

APENDICE B-4 Re=

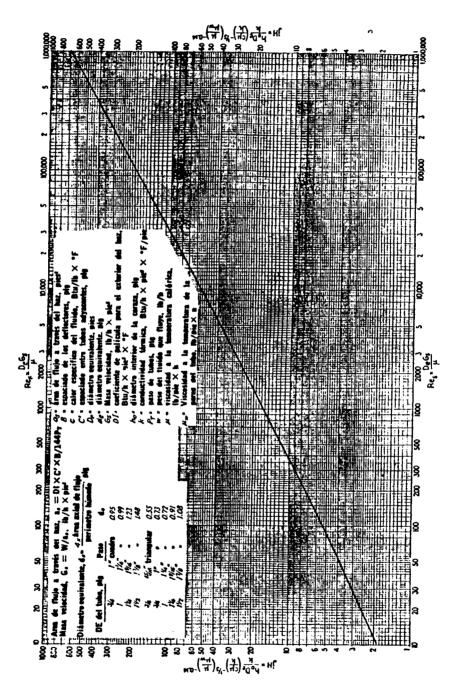

CURVA DE TRANSFERENCIA DE CALOR LADO DE TUBOS


CALORES ESPECIFICOS DE LIQUIDOS

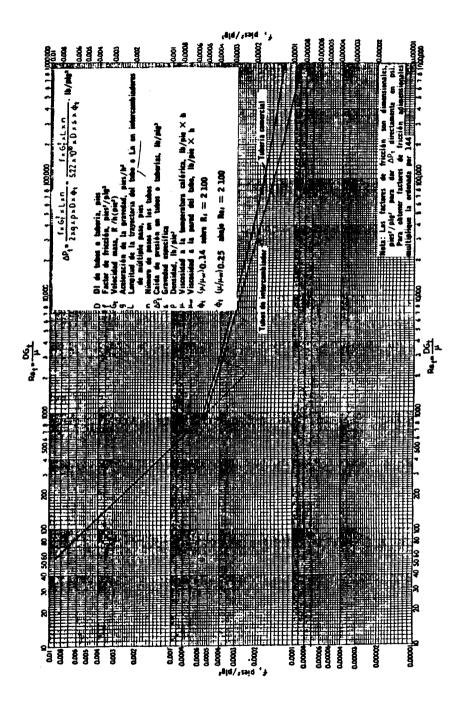

CONDUCTIVIDADES TERMICAS DE HIDROCARBUROS

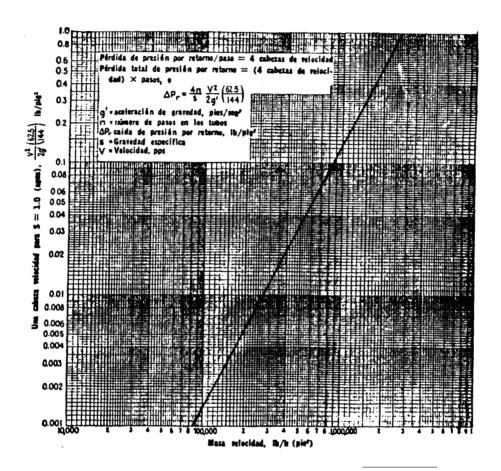


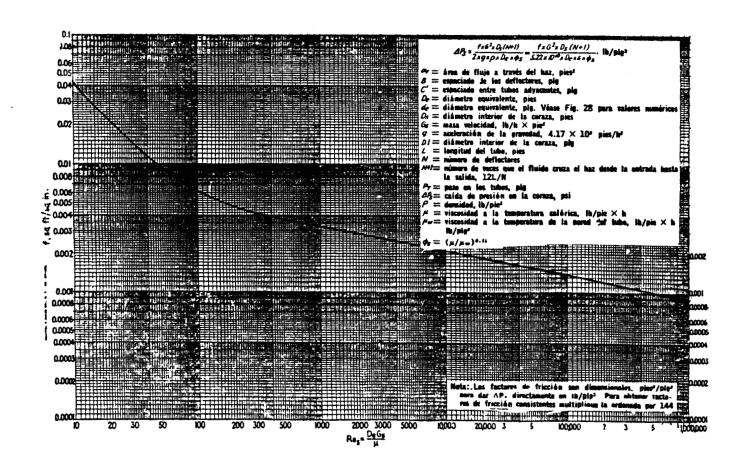
CALORES ES⊯ECIFICOS D≷ HIDROCARBUROS LIQUIDOS

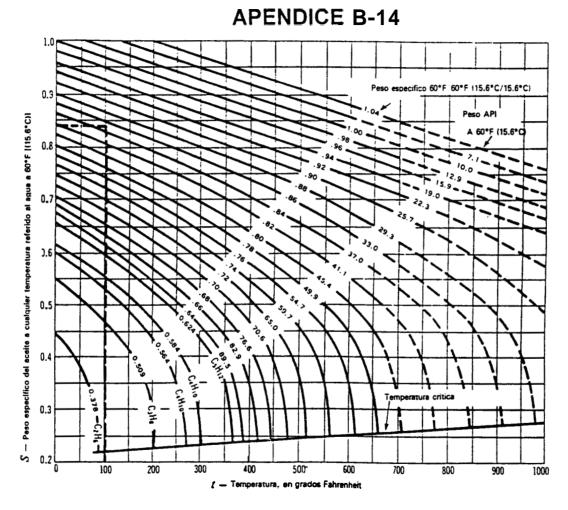


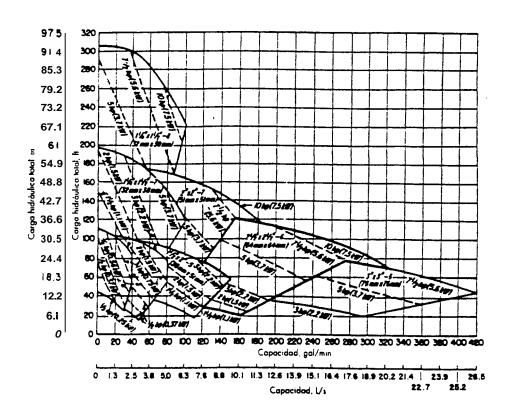
V☎OR≦S DE k(c/μ)^{1/3} PΦRΦ HIDROCAR∃UXOS

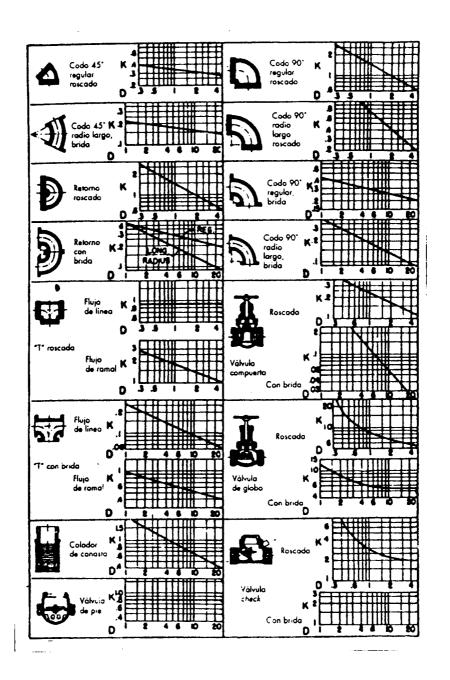


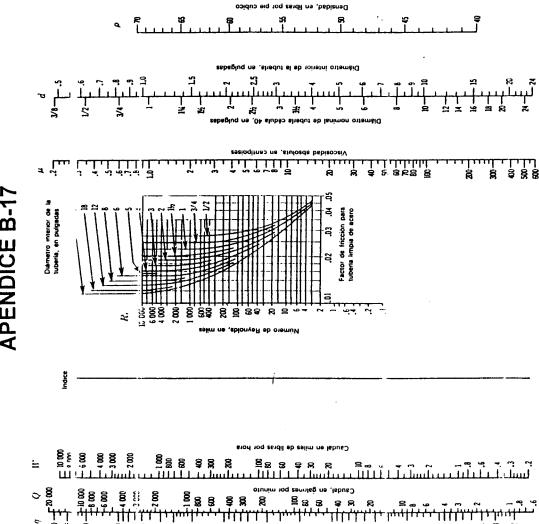

CURVA DE TRANSFERENCIA DE CALOR, AGUA EN LOS TUBOS

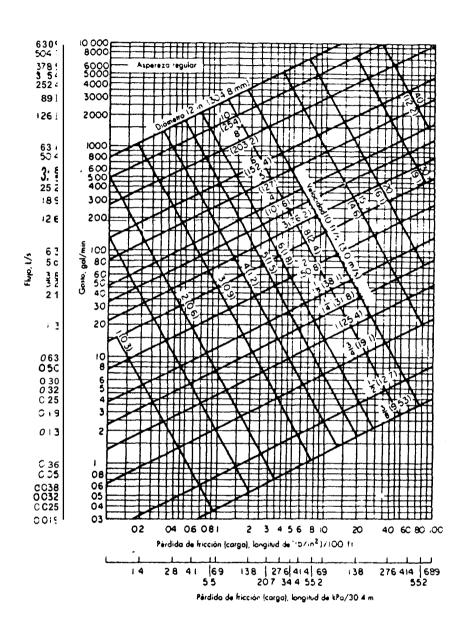

CURVA DE TRANSFERENCIA DE CALOR, LADO D≶ 00 🖎 00N DEFLEOTORES SEGMENª DOS 25%


FACTORES D≤ FRICCION, №RP LADO D≤ TUBO


PERDIDA DE PRESION POR RETORNO, LADO DE TUBOS


FACTOR DE FRICCION, LADO DE LA CORAZA CON DEFLECTORES SEGMENTANDOS 25%


PESO ESPECIFICO DEL ACEITE A CUALQUIER TEMPERATURA REFERIDO AL AGUA A 60°F



CLASIFICACION COMPUESTA PARA UNA BOMBA CENTRIFUGA TIPICA

COEFICIENTES DE RESISTENCIAS K DE CONEXIONES DE TUBERIA

PERDIDA DE FRICCION Y VELOCIDAD EN TUBERIA DE AGUA

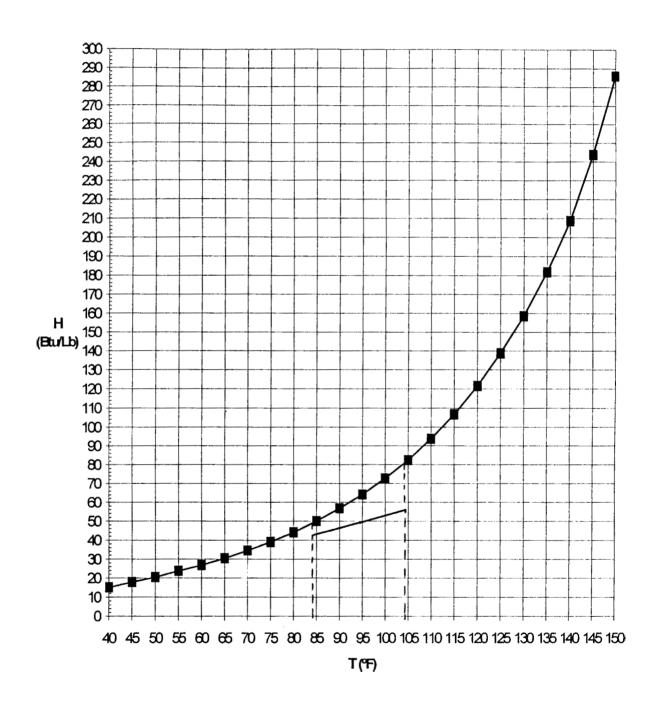
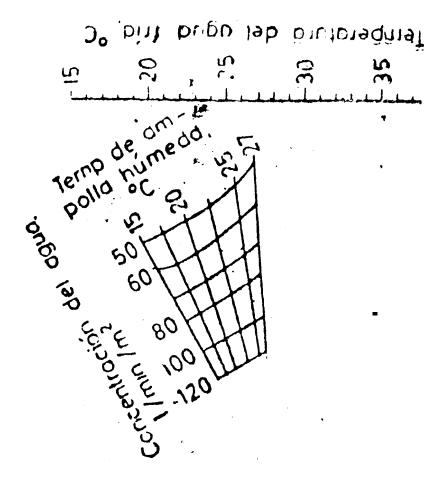
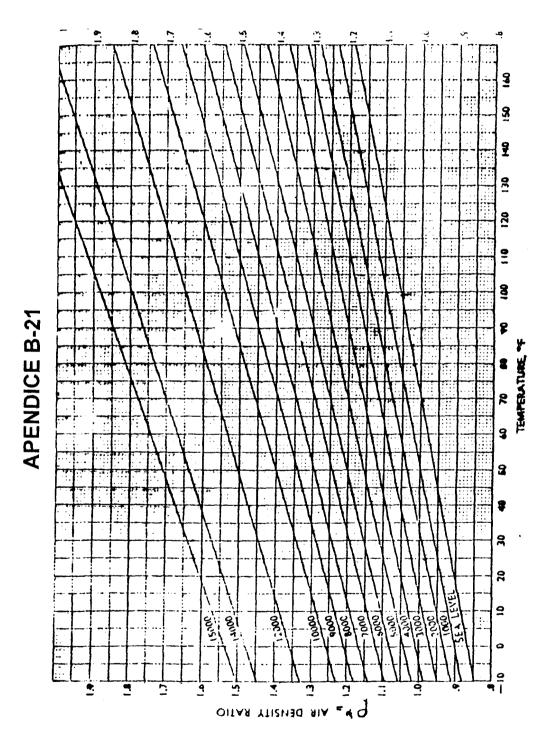
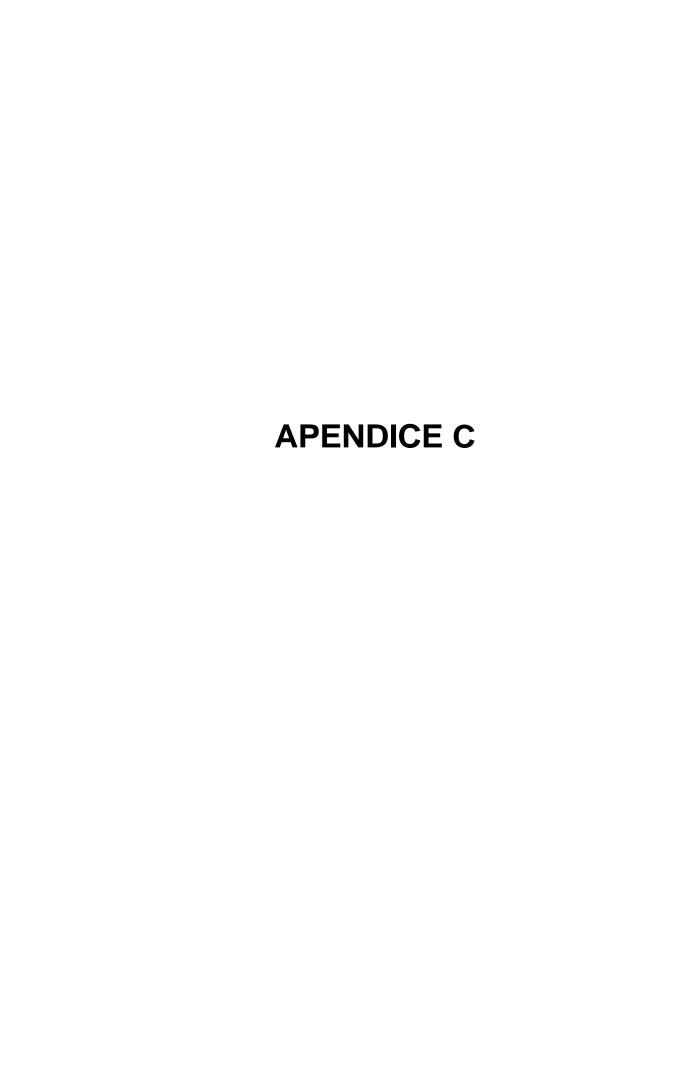
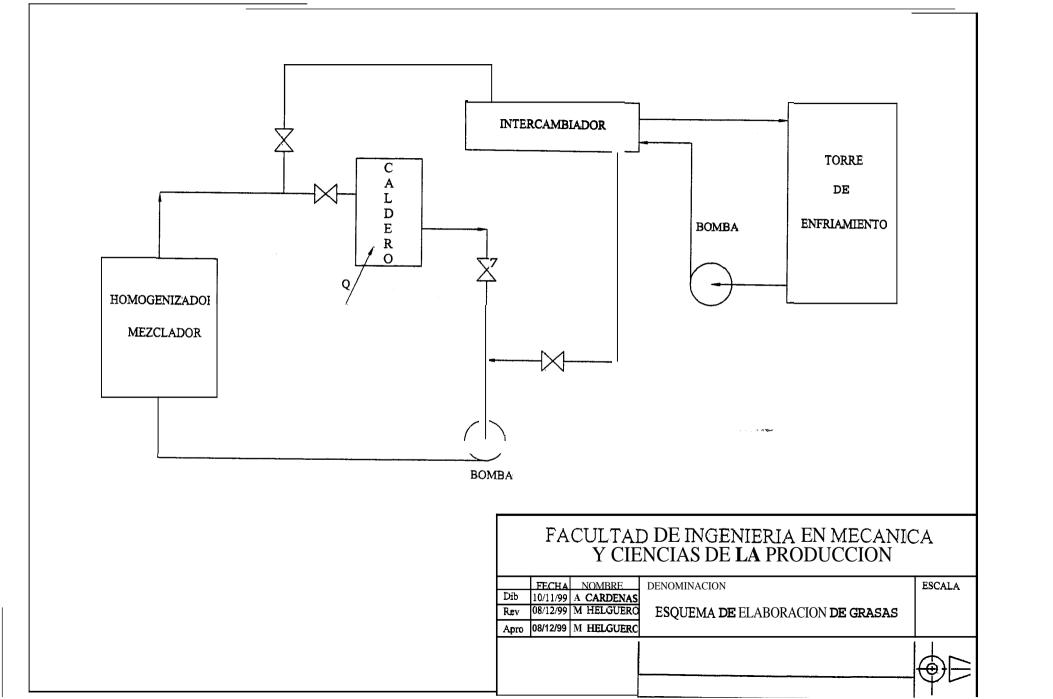
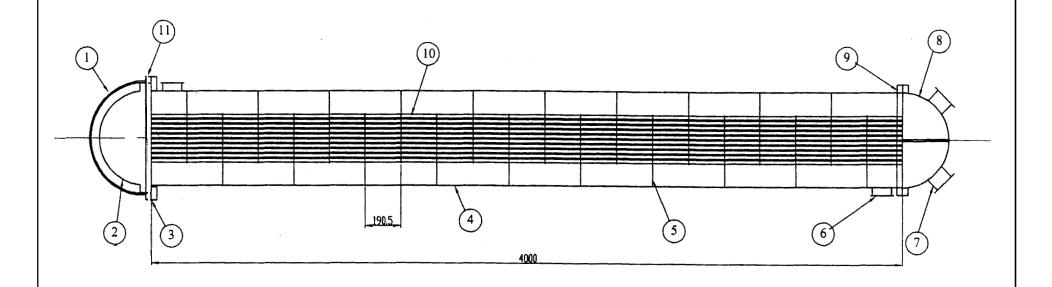




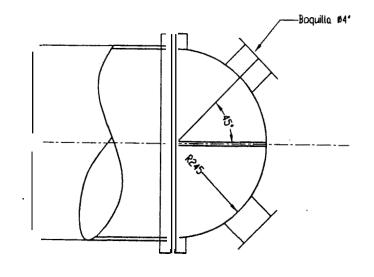
DIAGRAMA DE EQUILIBRIO H vs T

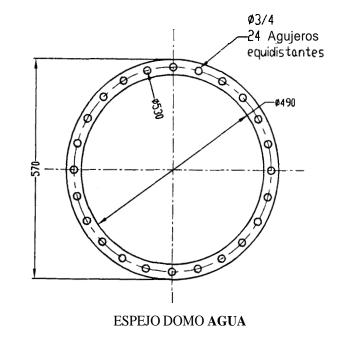


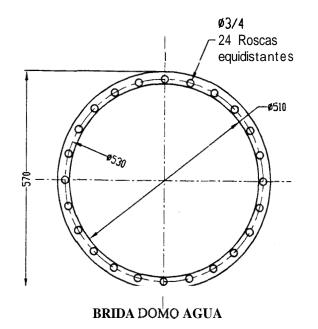




RELACION DE DENSIDAD (RDA) Y T≶MPE≅ATURA






ш		1 1
#	NOMBRE	CANT.
1	DOMO EXTERNO	1
2	DOMO INTERNO	1
3	ANILLOS	2
4	CORAZA	1
5	DEFLECTORES	
6	BOQUILLA PARA ACEITE	2
7	BOQUILLA PARA AGUA	2
8	DOMQ DE AGUA	
9	ESPEJO	2
10	TUBOS	
11	BRIDAS	3

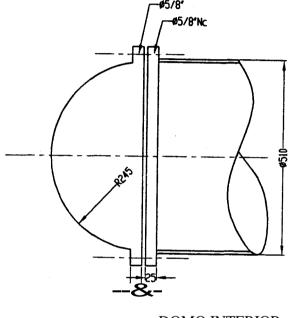
FACULTAD DE INGENIERIA EN MECANICA Y CIENCIAS DE LA PRODUCCION

	FECHA	NOMBRE	DENOMINACION	ESCALA:
Dib.	05/11/99	A. CARDENAS		1:20
Rev.	08/12/99	M.HELGUERO	PARTES DEL INTERCAMBIADOR DE CALOR	1.20
Apro.	08/12/99	M.HELGUERO		
E	SF	OL	PLANO Nº: C002	
		—		1 -

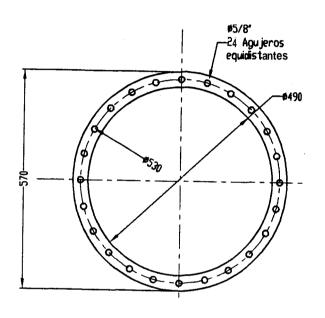
FACULTAD DE INGENIERIA EN MECANICA Y CIENCIAS DE LA PRODUCCION

	FECHA	NOMBRE
Dib.	10/11/99	A. CARDENAS
Rev.	08/12/99	M. HELGUERO
Apro.	08/12/99	M. HELGUERO

DENOMINACION:

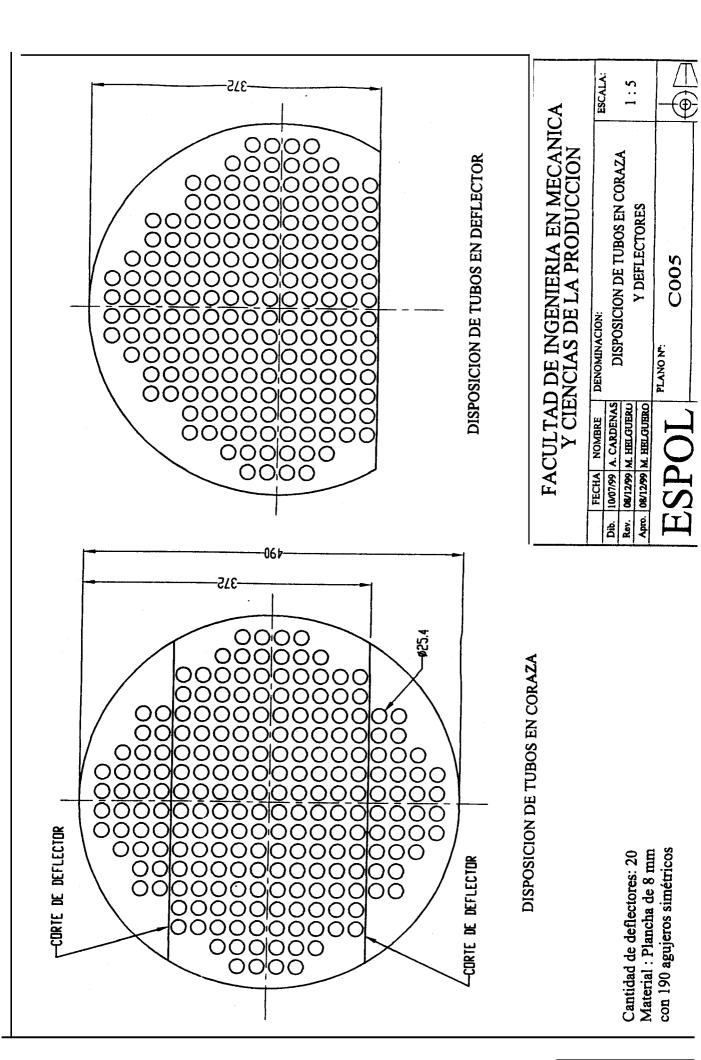

DOMO, ANILLO Y BRIDA DE AGUA

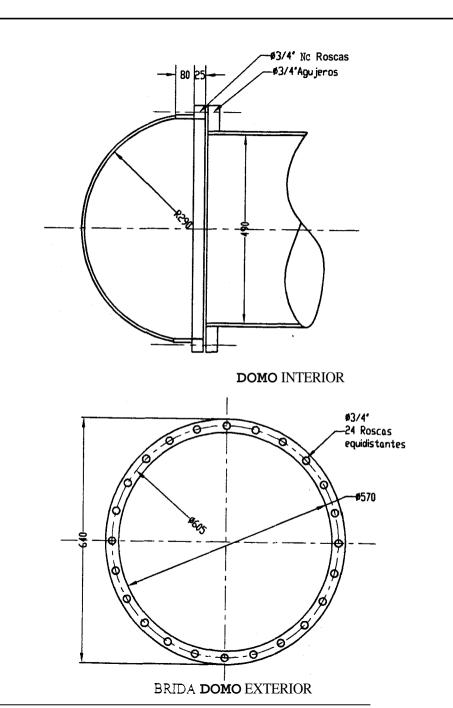
ESCALA:

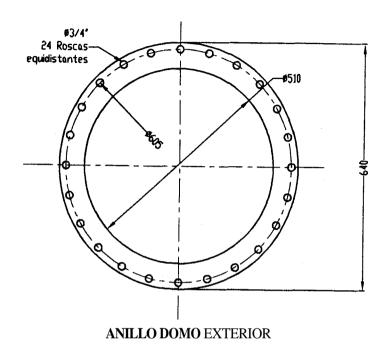

1:10

ESPOL

PLANO N C003

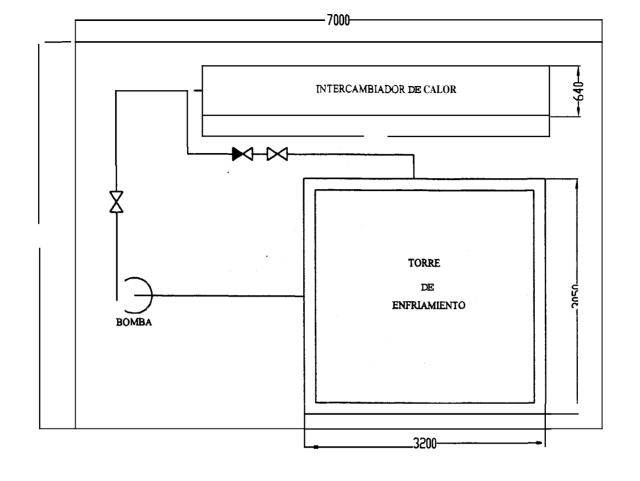



DOMO INTERIOR



ANILLO DOMO INTERIOR

ESCALA:
1:10
-



FACULTAD DE INGENIERIA EN MECANICA Y CIENCIAS DE LA PRODUCCION

	FECHA	NOMBRE	DENOMINACION:	ESCALA:
Dib.	10/11/99	A. CARDENAS		
Rev.	08/12/99	M.HELGUERO	DOMO, BNDA Y ANILLO INTERIOR	1:10
Apro.	08/12/99	M.HELGUERO		
E	SF	POL	PLANO Nº: C006	

FACULTAD DE INGENIERIA EN MECANICA Y CIENCIAS DE LA PRODUCCION

	1 CIENCIAS DE LA I RODUCCION			
	FECHA	NOMBRE	DENOMINACION:	ESCALA:
Dib.	10/11/99	A. CARDENAS		
Rev.	08/12/99	M. HELGUERO	ESQUEMAS DE DISTRIBUCIÓN	1 : 50
Apro.	08/12/99	M. HELGUERO		
ESPOL		OL	PLANO Nº: C007	\$
		Į	i	!

BIBLIOGRAFIA

- HICKS TYLER, Manual de Cálculos para las Ingenierias, Tercera Edicibn,
 Tomo II, Editorial McGraw Hill, 1998.
- KERN DONALD, Procesos de Transferencia de Calor, Editorial CECSA,
 1995.
- GRANET IRVING, Termodinámica, Tercera Edicibn, Editorial Prentice Hall, 1998.
- 4. CRANE, Flujo de Fluidos, Editorial McGraw Hill, 1992.
- McNAUGHTON KENNETH, Bombas, Selección, Uso y Mantenimiento,
 Editorial McGraw Hill, 1992
- COULTER ROBBINS, Administración, Quinta Edicibn, Editorial Prentice Hall, 1996
- URIBE AUGUSTO, Curso Basico de Administración de Empresas, Tomo
 II, Grupo Editorial Norma, 1997

- RIGAIL NELSON, "Obtención de Lubricantes a partir de Asfalto Nacional" (Tesis, Facultad de Ingenieria Quimica, Universidad Estatal de Guayaquil, 1982)
- GONZALEZ JORGE, "Aplicación de la Investigación de Operaciones al Diseño Optimo de un intercambiador de Calor" (Tesis, Facultad de Ingenieria Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, 1970).
- 10. TORRES ALBERTO, "Diseño de una Torre de Enfriamiento de Agua para Uso Industrial" (Tesis, Facultad de Ingenieria Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, 1973)

11.SHELL OILS, Shell Thermia Oil B, Folleto Informativo