ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ciencias Naturales y Matemáticas

Diseño básico de un secador de bandejas para el tratamiento de la almendra de cacao CCN-51 y cacao fino de la Provincia del Guayas.

PROYECTO INTEGRADOR

Previo a la obtención del Título de:

Ingeniero Químico

Presentado por:

Jessica Maribel Buñay Buñay Brian Johan Rosales Coveña

GUAYAQUIL-ECUADOR

Año: 2019

DEDICATORIA

El presente proyecto lo dedico a mis padres, quienes me han demostrado que con esfuerzo y dedicación se puede cumplir cualquier meta. Me han apoyado y sus consejos han sido una pieza fundamental.

Jessica Maribel Buñay Buñay

El presente proyecto se lo dedico a Dios y a mi familia, por apoyarme a lo largo de toda mi vida y en especial a mi padre que me sigue guiando desde el cielo

Brian Johan Rosales Coveña

AGRADECIMIENTOS

Agradezco a mis padres Juan Buñay y María Buñay por su paciencia y apoyo incondicional a lo largo de toda mi vida universitaria. A los profesores PhD Emérita Delgado y Dra. Olga González por sus conocimientos impartidos y por su apoyo para la elaboración del presente proyecto.

Jessica Maribel Buñay Buñay

Le agradezco a Dios por permitirme estar donde estoy en este momento, a mi familia por todo el apoyo brindado a lo largo de la carrera, a mi compañera, al Dr. Joel Vielma por su apoyo y al Ing. Anthony Arévalo por su ayuda con la realización de la simulación.

Brian Johan Rosales Coveña

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; Jessica Maribel Buñay Buñay y Brian Johan Rosales Coveña damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Jessica Maribel Buñay

BRIATROS

Brian Johan Rosales

EVALUADORES

Deleaded on S. Emérita Delgado Plaza Ph.D

PROFESOR COTUTOR

DUpmy

Olga María Gonzales Dra.

PROFESOR TUTOR

Joel Eduardo Vielma Dr.

PROFESOR COTUTOR

RESUMEN

Ecuador es uno de los mayores productores de cacao a nivel mundial. La mayor parte de esta producción la generan los pequeños y medianos agricultores quienes se dedican a su cultivo y su comercialización. Sin embargo, la calidad de su producto presenta deficiencias debido a los inadecuados procesos de secado, donde los granos son expuestos a la contaminación del ambiente. Por otro lado, existe un consumo excesivo de combustible y electricidad, lo que trae como consecuencia pérdidas económicas para los pequeños productores. Con el fin de mejorar sus procesos de secado e incrementar sus ganancias se plantea una propuesta de diseño de secador de bandejas, utilizando como combustible al gas licuado de petróleo (GLP). Para llegar al diseño fue necesario un estudio de la cinética de secado del cacao que permitió determinar cuáles serían los parámetros a los que debe trabajar el secador para un proceso óptimo. Los resultados obtenidos establecen que el secador con capacidad de hasta 500 lb de cacao debe funcionar a una temperatura de 50°C y a una velocidad de viento promedio de 1.4 m/s. El diseño propuesto fue puesto a prueba mediante una simulación donde se concluyó que el secador funciona correctamente y puede ser implementado para ayudar a los pequeños productores que requieran vender su producto en las mejores condiciones posibles para aumentar sus ganancias.

Palabras clave: cacao, secado, bandejas, intercambiador, GLP, cinética, ganancias

ABSTRACT

Ecuador is one of the largest cocoa producers worldwide. Most of this production is generated by small and medium farmers who are responsible for their cultivation and sale. However, the quality of their product has deficiencies due to the unsuitable drying processes that are carried out, where the grains are exposed to contamination of the environment or there is excessive consumption of fuel and electricity, which results in economic losses for producers. In order to improve their drying processes and increase their profits, a design for a tray dryer is proposed, using liquefied petroleum gas (LPG) as a fuel. In order to design the tray dryer, a study of the drying kinetics of cocoa was necessary, which allowed us to determine the parameters to which the dryer should work for an optimal process. The results obtained establish that the dryer with a capacity of up to 500 lb of cocoa must operate at a temperature of 50 °C and at a wind speed of 1.4 m/s. The proposed design was tested through a simulation where it was concluded that the dryer works properly and can be implemented to help small producers who need to sell their product in the best possible conditions to increase their profits.

Keywords: cocoa, drying, trays, LPG, kinetics, profits

ÍNDICE GENERAL

RESUME	۷۱
ABSTRAC	CTII
ÍNDICE G	ENERALIII
ABREVIA	TURAS VII
SIMBOLO	GÍA VIII
ÍNDICE DI	E FIGURASX
ÍNDICE DI	E TABLASXI
CAPÍTULO	D 11
1. Intro	oducción1
1.1 De	escripción del problema 1
1.2 Ju	stificación del problema2
1.3 O	bjetivos 2
1.3.1	Objetivo General 2
1.3.2	Objetivos Específicos2
1.4 M	arco teórico
1.4.1	El Cacao
1.4.2	La producción y exportación de cacao 3
1.4.3	Variedades de Cacao en Ecuador 5
1.4.4	Procesamiento de los granos de cacao5
1.4.5	El proceso de secado del cacao 6
1.4.6	Propiedades organolépticas7
1.4.7	Parámetros de secado 8
1.4.8	Modelado matemático del secado 10
1.4.9	Secadores de cacao 10
1.4.9	9.1 Secador de bandejas10

1	.4.9.2 Secadores rectangulares	11
1	.4.9.3 Secadores circulares verticales	11
CAPÍT	JLO 2	13
2. N	/letodología	13
2.1	Estudio de la cinética de secado de la almendra de cacao	14
2.1.	Recolección y preparación de las muestras de cacao	14
2.1.2	2 Secado de los granos de cacao	14
2	1.2.1 Determinación de las propiedades físico-químicas del cacao sec	o15
2.1.3	Las curvas de secado y velocidad de secado	15
2.1.4	Análisis de la cinética de secado	16
2	2.1.4.1 Modelo de las curvas de secado	16
2	2.1.4.2 Difusividad efectiva	17
2.1.	5 Determinación de la temperatura y velocidad de aire óptimos	18
2.2	Diseño de los equipos para el secado	18
2.2.7	Elección de los tipos de equipos	19
2.2.2	2 Diseño del secador	19
2	2.2.2.1 Cálculo del flujo másico de aire requerido para el secado	19
2	2.2.2.2 Cálculo de la superficie de secado	20
2	2.2.3 Dimensionamiento de la cámara de secado	20
2.2.3	B Diseño del intercambiador de calor	20
2	2.2.3.1 Temperaturas de entrada y salida del intercambiador	21
2	2.2.3.2 Calor requerido para calentar el aire para secado	21
2	2.2.3.3 Flujo másico de fluido caliente requerido	22
2	2.2.3.4 Transferencia de calor total en el intercambiador de calor	22
2	2.2.3.5 Coeficiente de convección interno	23
2	2.2.3.6 Coeficiente de convección externo	23
2	2.2.3.7 Caída de presión en el banco de tubos	24
2.2.4	Diseño del quemador	24
2	2.2.4.1 Calor total perdido en el quemador	24
2	2.2.4.2 Calor perdido por las paredes	24
2	2.2.4.3 Coeficiente de convección externo de la cámara	25

2.2.4	.4 Coeficiente de convección en el interior de la cámara	26
2.2.4	.5 Coeficiente de radiación en el interior de la cámara	26
2.2.4	.6 Calor almacenado en las paredes de la cámara	26
2.2.5	Cálculo de la cantidad de combustible requerido para el proceso	27
2.2.5	5.1 Calor requerido para obtener el fluido caliente	27
2.2.5	5.2 La masa de combustible requerido	27
2.2.5	5.3 Cantidad de aire requerido para la combustión del GLP	28
2.2.6	Cálculo de los ventiladores	29
CAPÍTULC	3	27
3. RES	ULTADOS Y ANÁLISIS	27
3.1 Re	sultados del estudio cinético	27
3.1.1	Resultados del secado experimental	27
3.1.2	Las curvas de secado y velocidad de secado experimentales	28
3.1.2	2.1 Las curvas de secado	28
3.1.2	2.2 Las curvas de velocidad de secado	30
3.1.3	Análisis de la cinética de secado	35
3.1.3	8.1 Resultados del modelado de las curvas de secado	35
3.1.3	3.2 Difusividad efectiva calculada	
3.1.4	Parámetros óptimos de secado	39
3.2 Re	sultado del Diseño de los equipos de secado	41
3.2.1	La cámara de secado	41
3.2.2	El intercambiador de calor	43
3.2.3	La cámara de combustión	44
3.2.4	Diseño genera del secador y sus partes	45
3.2.5	La cantidad de combustible requerido	46
3.2.6	La cantidad de aire requerido para la combustión	47
3.3 An	álisis de costos	47
3.3.1	Costos del Secador	47
3.3.2	Costos del Intercambiador y cámara de combustión	48

3.3.3	Costos de Mano de Obra	50
3.3.4	Costo Total del Proyecto	50
CAPÍTULO) 4	51
4 Conc	clusiones Y Recomendaciones	51
4.1 Co	nclusiones	51
4.2 Re	comendaciones	52
BIBLIOGRAFÍA54		
APÉNDICES		

ABREVIATURAS

- ESPOL Escuela Superior Politécnica del Litoral
- CCN-51 Colección Castro-Naranjal 51
- ASTM American Society for Testing and Materials
- RMSE Raíz del Error Cuadrático Medio
- GLP Gas Licuado de Petróleo
- pH Potencial de Hidrógeno
- PCI Poder Calorífico Inferior
- PCS Poder Calorífico Superior
- HR Humedad relativa
- Cp. Calor especifico
- KJ Kilo Joule
- GC Gases de Combustión
- MLDT Temperatura media logarítmica
- PM Peso Molecular

SIMBOLOGÍA

- *Kg* Kilogramo
- Lb Libras
- g Gramos
- h Horas
- min Minutos
- A Área
- h Horas
- *V_a* Velocidad del aire
- *m* Metros
- cm Centímetros
- *m*_{ss} Masa de sólido seco
- m_{ci} Masa inicial de cacao
- m_{cs} Masa de cacao seco
- m_w Masa de agua
- m_e Masa de equilibrio
- \dot{m}_w Flujo másico de agua
- m_t Masa del sólido en el tiempo t
- Ss Sólido seco
- X Humedad libre
- X_s Humedad en base seca
- X_e Humedad de equilibrio
- *X_o* Humedad en base seca inicial
- X_t Humedad en base seca en tiempo t
- X_f Humedad libre final
- X_c Humedad libre crítica
- Hwbi Humedad en base húmeda inicial
- R Velocidad de secado
- *R_c* Velocidad de secado crítica
- Hwbf Humedad en base húmeda final
- Deff Difusividad efectiva del grano
- r Radio del grano

- MR Humedad relativa adimensional
- aw Actividad de agua
- *R*² Coeficiente de determinación
- *a*, *b*, *c* Coeficientes de secado
- k, g, n Constantes de secado
- N Número de observaciones
- *a*, *b*, *c* Coeficientes de secado
- k, g, n Constantes de secado
- θ Tiempo de secado
- p Período
- θ_1 Tiempo de secado en el p constante
- θ_2 Tiempo de secado en p decreciente
- Q_r Calor requerido
- Cpc Calor específico aire frío
- T_{ci} Temperatura entrada aire frío
- T_{co} Temperatura salida aire frío
- T_{hi} Temperatura entrada aire caliente
- *T_{ho}* Temperatura salida aire caliente
- *T_h* Temperatura media aire caliente
- *T_c* Temperatura media aire frío
- $\dot{m_h}$ Flujo másico de aire caliente
- *Cp_h* Calor específico aire caliente
- U Coeficiente global de transferencia
- *L* Longitud del tubo
- *D_i* Diámetro interno de los tubos
- *N_t* Número de tubos
- ΔT_{ml} Temperatura media logarítmica
- *h_i* Coeficiente de convección interno
- *h*_o Coeficiente de convección externo
- *Nu* Número de Nusselt
- k Conductividad térmica

- *Re* Número de Reynolds
- μ_h Viscosidad dinámica aire caliente
- Pr Número de Prandtl
- ρ_c Densidad aire frío
- Vmax Velocidad máxima
- D_o Diámetro externo de los tubos
- μ_c Viscosidad dinámica aire frío
- *S_t* Separación diagonal de tubos
- V Velocidad en banco de tubos
- Δp Caída de presión
- *N_l* Número de líneas
- *x* Factor de correlación
- f Factor de fricción
- Q_c Calor perdido en la cámara de combustión
- U_c Coeficiente de transferencia
- *A_c* Área de cámara de combustión
- T_{cam} Temperatura interna de cámara
- *T_a* Temperatura ambiente
- *h_{ic}* Coeficiente convección interior cámara
- hir Coeficiente radiación interior cámara
- *h_{oc}* Coeficiente convección exterior cámara
- e_{pi} Espesor de la pared interior
- e_{po} Espesor de la pared exterior

- *e*_{ais} Espesor del aislante
- k_{pi} Conductividad de la pared interior
- *k_{po}* Conductividad de la pared exterior
- *kais* Conductividad aislante
- v Viscosidad cinemática
- ε Emisividad
- σ Constante de Boltzmann
- F Factor de forma
- T_p Temperatura de la pared
- Q_p Calor almacenado en las paredes
- e Espesor
- m_p Masa de las paredes
- *mais* Masa del aislante
- Cp_p Calor específico de las paredes
- Cpais Calor específico del aislante
- T_m Temperatura media de las paredes
- *Q_{ais}* Calor almacenado por aislante
- *Vais* Volumen pared aislante
- *V_{aci}* Volumen pared interior
- *V_{aco}* Volumen pared exterior
- $\dot{Q_c}$ Caudal de aire a la cámara
- \dot{Q}_{i} Caudal de aire al intercambiador
- *D_h* Diámetro hidráulico
- ΔP_f Caída de presión chimenea
- ΔP_{ex} Caída de presión de salida

ÍNDICE DE FIGURAS

Figura 1.1 Participación en las exportaciones a nivel mundial de cacao en grano para el
año 20184
Figura 1.2 Exportadores en Latinoamérica de cacao en grano para el año 20184
Figura 1.3 Curva de secado característico9
Figura 1.4 Curva de velocidad de secado en función de la humedad libre9
Figura 1.5 Secador de bandejas típico11
Figura 1.6 Secador Rectangular de cacao11
Figura 1.7. Secador vertical circular12
Figura 2.1 Diagrama de la metodología empleada para el proyecto13
Figura 2.2 Diagrama de bloques de esquematización del proceso de secado18
Figura 3.1 Curvas de secado de CCN-51, secado a velocidad de aire de 0.5-0.7 m/s .28
Figura 3.2 Curva de secado de cacao CCN-51 a velocidad de aire de 1.03-1.7 m/s29
Figura 3.3 Curva de secado de cacao CCN-51 a velocidad de aire de 1.9-2.5 m/s29
Figura 3.4 Curva de secado de cacao Fino a velocidad de aire de 1.9-2.5 m/s
Figura 3.5 Curva de velocidad de secado CCN-51 a velocidad de aire de 0-5-0.7 m/s.31
Figura 3.6 Curva de velocidad de secado CCN-51 velocidad de aire de 1.03-1.77 m/s32
Figura 3.7 Curva de velocidad de secado CCN-51 velocidad de aire de 1.9-2.5 m/s33
Figura 3.8 Curva de velocidad de secado de Fino a velocidad de aire de 1.9-2.5 m/s34
Figura 3.9 Ajuste de las curvas para CCN-51 a velocidad de aire de 0.5-0.7m/s36
Figura 3.10 Ajuste de las curvas para CCN-51 a velocidad de aire de 1.03 -1.77 m/s37
Figura 3.11 Ajuste de las curvas para CCN-51 a velocidad de aire de 1.9 -2.5 m/s37
Figura 3.12 Ajuste de las curvas para cacao fino a velocidad de aire de 1.9 -2.5 m/s38
Figura 3.13 Resultados de la simulación CFD de la cámara de secado. Temperatura .42
Figura 3.14 Resultados de la simulación CFD de la cámara. Velocidad de aire42
Figura 3.15 Distribución escalonada de los tubos44
Figura 3.16 Esquema de la cámara de combustión y difusor, vista superior45
Figura 3.17 Esquema final del equipo en 3D46

ÍNDICE DE TABLAS

Tabla 1.1 Participación de Productores Cacaoteros por tamaño de explotación	5
Tabla 2.1 Modelos de secado de capa delgada probados para secado	17
Tabla 2.2 Propiedades del Gas Licuado de Petróleo	27
Tabla 2.3 Composición y Peso molecular de	28
Tabla 3.1 Resultados obtenidos del proceso de secado	27
Tabla 3.2 Dimensiones del cacao fermentado y seco	28
Tabla 3.3 Resultados principales de las curvas de secado y velocidad de secado	34
Tabla 3.4 Constantes de la ecuación en función de la temperatura.	36
Tabla 3.5 Resultados de cálculo de difusividades para caco fino y CCN-51	38
Tabla 3.6 Tiempo requerido para lograr un humedad del 7%	39
Tabla 3.7 Propiedades organolépticas y pH CCN-51, velocidad de aire 0.5-0.7 m/s	.40
Tabla 3.8 Propiedades organolépticas y pH CCN-51, velocidad de aire 1.3-1.77 m/s	.40
Tabla 3.9 Propiedades organolépticas y pH CCN-51 Seco, velocidad de 1.9-2.5 m/s.	.40
Tabla 3.10 Propiedades organolépticas y pH del Cacao Fino Seco, 1.9-2.5 m/s	.40
Tabla 3.11 Condiciones óptimas de secado para caco CCN-51 y Cacao Fino	41
Tabla 3.12 Resultados de la cámara de secado	41
Tabla 3.13 Resultados del cálculo del intercambiador.	.43
Tabla 3.14 Resultados del dimensionamiento del intercambiador de calor	43
Tabla 3.15 Resultados del cálculo de pérdidas de calor	44
Tabla 3. 16 Resultados de la cantidad de combustible requerido.	46
Tabla 3.17 Resultados del cálculo de masa de aire para la combustión del GLP	47
Tabla 3.18 Costos de materiales del secador	.48
Tabla 3.19 Costos de materiales del intercambiador r y cámara de combustión	49
Tabla 3. 20 Costos de mano de obra	.50
Tabla 3.21 Costo total del proyecto	50

CAPÍTULO 1

1. INTRODUCCIÓN

1.1 Descripción del problema

El Ecuador es el séptimo país con mayor producción de cacao a nivel mundial y es considerado el primer exportador de cacao a nivel de América Latina y el Caribe (Rivera, 2016). Sin embargo la calidad del cacao es inconsistente, por lo que su precio en el mercado es bajo (Beckett, 2009).

El proceso de secado influye en la calidad del cacao. Los pequeños y medianos productores ecuatorianos, quienes cultivan entre 10 a 50 hectáreas de cacao optan por secarlo al sol. Esto presenta diversos inconvenientes, como períodos de secado extensos de 4 a 8 días (tiempo en el que el cacao puede adquirir olores desagradables) y la contaminación del producto a causa del polvo o emisiones como material particulado generado por vehículos. Así como también la contaminación directa por contacto con animales domésticos, ya que los tendales generalmente son colocados directamente en el piso.

Existen pocos agricultores que reducen las pérdidas económicas durante la época de invierno mediante el uso de cámaras de secado artesanales. En las cámaras, el secado se efectúa a velocidades de aire variantes y a temperaturas altas de hasta 80°C, siendo lo recomendable una temperatura de secado menor a 60°C (Alean, Chejne, & Rojano, 2016).Por otro lado estos secadores artesanales, emplean aire caliente obtenido por el contacto directo con la llama de GLP. Esto ocasiona la contaminación del grano por los gases de combustión que arrastra el aire caliente. Además se ha evidenciado el consumo excesivo de combustible y energía ya que la pérdida de calor es alta, dado que el aire caliente pasa de 300°C, después del contacto con la llama, a 80°C que es la temperatura con la que llega a la cámara de secado.

1.2 Justificación del problema

El presente proyecto se enfoca en analizar y mejorar las técnicas de secado de cacao de los pequeños productores del país, con la finalidad de que los parámetros del cacao seco se encuentren dentro de los límites establecidos en las normas nacionales para su comercialización y consumo.

Un grano seco que cumpla con los estándares incrementará las ganancias de aquellos pequeños productores que no tienen la posibilidad de comercializar un producto de calidad durante todo el año debido al inadecuado proceso de secado.

Un secador diseñado con capacidad para secar la cantidad producida y que opere durante todo el año permitirá que los pequeños productores no vean sus ganancias reducidas durante la época invernal. De igual manera tendrá un uso eficiente de energía, evitándose el uso de combustibles que se prohíben en diversas normas internacionales y reduciendo gastos innecesarios.

Por otra parte, al determinar parámetros importantes como la temperatura óptima, la velocidad del aire y el tiempo de secado requerido, permitirá que el proceso de secado artificial se efectué de una forma más eficiente sin que el cacao pierda sus propiedades organolépticas (aroma, sabor, color, textura).

1.3 Objetivos

1.3.1 Objetivo General

Diseñar un secador de bandejas para granos de cacao fino y CCN-51 mediante la determinación de los parámetros cinéticos y termodinámicos necesarios que garanticen la calidad organoléptica del producto seco.

1.3.2 Objetivos Específicos

 Construir las curvas de secado tras someter a las almendras de cacao a una corriente de aire caliente a 40, 50, 60°C para la comparación entre las especies CCN-51 y Fino.

- Describir la cinética de secado de la almendra de cacao mediante un modelo semiteórico para la determinación de los parámetros que influyen en el proceso de secado.
- Establecer las condiciones óptimas de secado a partir de las cuales se diseñará el secador por medio de la identificación de las variaciones que se producen en las propiedades fisicoquímicas de los granos secos.

1.4 Marco teórico

1.4.1 El Cacao

El *Theobroma cacao* L., conocido a nivel mundial como árbol de cacao, es una planta silvestre, que por lo general crece en las selvas del Amazonas del Ecuador. Un grano de cacao es una semilla que consta de dos cotiledones y de la cual se extrae la manteca que se utiliza en diversos productos alimenticios (Zipperer & Zipperer, 1902).

El cacao es utilizado mundialmente como precursor del chocolate, y el consumo elevado de este alimento ha incrementado su popularidad a lo largo de los años. Otras aplicaciones del cacao incluyen bebidas, cosméticos, fármacos y productos sanitarios (Hii, Law, Cloke, & Suzannah, 2009).

1.4.2 La producción y exportación de cacao

La producción de cacao a nivel mundial supera los 4 millones de toneladas y dicha producción la concentran países como Costa de Marfil, Ghana, Indonesia, Nigeria, Brasil y Ecuador (Rivera, 2016). En cuanto a América los mayores productores son Brasil, Ecuador, Republica Dominicana, Colombia y México. Siendo así el Ecuador el segundo mayor productor de América (Rivera, 2016).

El 85% de las exportaciones de cacao a nivel mundial son liberadas por 5 países entre ellos el Ecuador. En relación a América los mayores exportadores son Ecuador, República Dominicana y Perú, concentrando el 90% del total (Map-ITC, 2019).

Figura 1.1 Participación en las exportaciones a nivel mundial de cacao en grano para el año 2018. [TradeMap-ITC]

Figura 1.2 Exportadores a nivel de Latinoamérica de cacao en grano para el año 2018. [TradeMap-ITC]

En el Ecuador se estima que la mayor producción de cacao se encuentra en la Región de la Costa, con un aporte del 77% de la producción total. Los pequeños y medianos agricultores de acuerdo al último Censo Nacional Agropecuario son quienes destacan con una amplia participación en la producción como se observa en la tabla 1.1 (Plaza Acebedo, Rodríguez, & Quijano, 2016).

Tipo de Productor	Superficie Sembrada	%Total Producido	%Total de área sembrada
Pequeño	Menos de 10 Ha	49	24
Mediano	Entre 10 y 50 Ha	38	17
Grande	Más de 50 Ha	13	29

Tabla 1.1 Participación de Productores Cacaoteros por tamaño deexplotación. [Censo Nacional Agropecuario, 2000]

1.4.3 Variedades de Cacao en Ecuador

En Ecuador existen dos variedades de cacao: en primer lugar, tenemos el Cacao Nacional de Aroma, también conocido como cacao fino, que como su nombre indica, presenta un buen olor, sabor y cortos tiempos de fertilización. Su organoléptica es muy reconocida por la industria confitera, ya que presenta sabores y aromas especiales para la elaboración del chocolate.

Por otra parte, se encuentra el cacao CCN51 (Colección Castro-Naranjal 51), un cacao clonado por el señor Homero Castro Zurita con buena calidad y resistencia a las enfermedades, se caracteriza también por su cultivo precoz y alta productividad, además de una buena adaptabilidad a todas las zonas tropicales (Guzmán, 2005).

En función de sus características, la producción de la variedad Fino está entre 300 y 500 kg/hectárea al año, mientras que el CCN-51 tiene una producción entre 2000 y 3000 kg/hectárea al año (Plaza Acebedo et al., 2016).

1.4.4 Procesamiento de los granos de cacao

El procesamiento de los granos de cacao consiste en desgranar, fermentar, secar y seleccionar los granos adecuados, asegurándose de que sean de la mejor calidad disponible (Guda, Gadhe, & Jakkula, 2017).

Posterior a la extracción de los granos de su mazorca, inicia el proceso de fermentación (Mejía Córdoba, 2018). La fermentación tiene el objetivo de impedir la germinación del embrión, eliminar los restos de pulpa y lo más importante, originar los precursores del sabor, color y aroma característico del cacao (Alean et al., 2016).

Inmediatamente después de la fermentación, el cacao se somete a un proceso de secado para reducir la actividad de agua y el contenido de humedad de aproximadamente del 60% a un 6.5 a 7.5% de humedad (Poscosecha cacao, s.f.). En el Ecuador las normas establecen que el cacao seco debe tener una humedad del 7% (Ecuatoriano de Normalización, 2006.).

Durante el proceso de secado se completan las reacciones de oxidación iniciadas en la fermentación, las mismas que son responsables del aroma y sabor. Además el secado es indispensable para facilitar el almacenamiento, manejo, transporte y comercialización del producto (Poscosecha cacao, s.f.).

1.4.5 El proceso de secado del cacao

El proceso de secado puede ser definido como una transferencia simultánea de calor y masa entre el aire del ambiente y el sólido a secar. Para que un secado suceda tiene que ocurrir dos procesos: transferencia de calor del ambiente para evaporar la humedad superficial, y una transferencia de humedad interna sobre la superficie del sólido (García, 2013).

El secado del cacao puede llevarse a cabo de dos formas: al sol y de manera artificial (secadores a gas, leña, carbón, diésel). En el secado al sol, los granos de cacao fermentados se extienden sobre bandejas, esteras o pisos de concreto al sol. El secado al sol puede durar aproximadamente una semana, pero si el clima es lluvioso, el proceso tomará más tiempo (Organization, 2000). El secado artificial puede ser de mala calidad, por ello para disminuir el contenido de humedad en secadores artificiales, se debe considerar el tamaño del secador necesario, las diferentes condiciones de operación, humedad y la temperatura del aire empleado, así como el tiempo necesario para lograr el grado de secado deseado (Geankoplis, 1998).

El proceso de secado interfiere en las reacciones bioquímicas iniciadas durante la fermentación, lo que lleva a una reducción del amargor, la astringencia y la acidez de los granos de cacao. Adicionalmente, los cotiledones se oscurecen a partir del desarrollo de compuestos fenólicos,

6

azúcares reductores y proteínas que ocurren solo en esta etapa (Beckett, 2009).

Para favorecer a las reacciones que son responsables del aroma y sabor, el proceso de secado artificial debe llevarse a cabo de manera lenta y a una temperatura controlada. Al secarse los granos a temperaturas bajas (menor a 60°C) se obtienen mejores resultados, ya que la degradación de los fenoles, así como la acumulación de ácidos aumenta con la temperatura (Alean et al., 2016).

1.4.6 Propiedades organolépticas

Las propiedades organolépticas hacen referencia a las características físicas del grano. La principal propiedad es el sabor que posee el cacao, ya que es un criterio clave para los productores. Se desea evitar a toda costa los sabores no deseados generados por ineficientes procesos de secado o contaminación. (CAOBISCO, 2015).

El cacao presenta un alto contenido de grasa que actúa como un absorbente eficaz, por ello el cacao puede adquirir sabores no deseados por contacto con diferentes productos como caucho, gases de combustión, sustancias químicas, cemento, pinturas etc. (CAOBISCO, 2015).

El sabor ácido de los granos, se debe a cantidades excesivas de determinados ácidos que se forman durante la fermentación. Los dos tipos de ácidos son: el ácido láctico, no volátil, y el ácido acético, volátil. El secado reduce la acidez, pero en el caso de un secado demasiado rápido, esta acidez persistirá (CAOBISCO, 2015).

Un elevado nivel de acidez suele ir asociado a un pH de 5 o menos (CAOBISCO, 2015). Valores bajos de pH pueden ser un indicador de que hubo una sobre fermentación del grano o un secado demasiado rápido (Cros y Jeanjean, 1995).

1.4.7 Parámetros de secado

Humedad de equilibrio: Cualquier material que sea higroscópico puede tener su propio equilibrio entre la humedad que contiene y el vapor de agua del aire con el que entra en contacto (Noroña, 2018).

Humedad libre: El contenido de humedad libre de una muestra es la humedad que esté por encima de la humedad de equilibrio. Es posible eliminar esta humedad por secado con condiciones de porcentajes de humedad relativa (Geankoplis, 1998).

Humedad crítica: Es el contenido de humedad que está en el punto de transición del periodo constante al decreciente. El tiempo al que la curva se aleja de un comportamiento lineal es denominado tiempo crítico (Noroña, 2018).

Las curvas de secado y velocidad de secado:

Debido al conocimiento incompleto de los mecanismos básicos de secado y a que no es posible predecir el contenido de humedad de equilibrio de todos los materiales, se hace necesario determinarlos por vías experimentales. Los datos experimentales obtenidos pueden emplearse para graficar las curvas secado (Figura 1.1) y velocidad de secado (Figura 1.2).

Las curvas de secado describen la pérdida de humedad libre en función del tiempo. La humedad libre se determina mediante la siguiente ecuación (Geankoplis, 1998):

$$X = X_S - X_e \tag{1.1}$$

Donde *X*, es la humedad libre, X_s es la humedad en base seca y X_e , es la humedad de equilibrio. Todas en unidades de ($kgH_2O/kgss$).

Figura 1.3 Curva de secado característico. [Geankopolis, 1998]

Por otro lado las curvas de velocidad de secado, describe la velocidad de secado en función de la humedad libre. Para obtener la velocidad de secado, se emplea la siguiente fórmula (Geankoplis, 1998):

$$R = -\frac{M_{SS} * dX}{A * d\theta} \tag{1.2}$$

Donde *A* es el área que se utiliza en el secado (m^2) y *R* representa la velocidad de secado $(kg H_2 O/m^2.h)$, M_{SS} es la masa de sólido seco (kg).

Humedad libre X (kg H2O/kg sólido seco)

Figura 1.4 Curva de velocidad de secado en función de la humedad libre [Geankopolis, 1998]

En la figura 1.1 y 1.2, el punto A representa el tiempo y el contenido de humedad inicial. En el punto B la temperatura de la superficie alcanza su valor de equilibrio. Los puntos BC, representan la velocidad constante. El punto C, representa el contenido de humedad crítico (X_c) y velocidad crítica (R_c). A partir del punto C la velocidad empieza a disminuir y llega al punto D, denominándose período de velocidad decreciente. A partir del punto D la

velocidad disminuye hasta alcanzar el contenido de humedad final (X_f) (Geankoplis, 1998).

1.4.8 Modelado matemático del secado

El modelado del proceso de secado puede ser llevado a cabo con el uso de la segunda ley de Fick para difusión en esferas. Esta ley está representada por la siguiente fórmula, junto a sus condiciones de frontera (Hii et al., 2009):

$$\frac{\partial m_i}{\partial t} = D_{eff} \left[\frac{\partial^2 m_i}{\partial r} + \frac{2\partial m_i}{r\partial R} \right]$$
(1.3)

$$m_i = m_0 \qquad t = 0 \qquad 0 < r < R \tag{1.4}$$

$$m_i = m_e \qquad t > 0 \qquad r = R \tag{1.5}$$

$$\frac{\partial m}{\partial r} = 0 \qquad t > 0 \qquad r = 0 \tag{1.6}$$

La solución general para una difusión unidimensional en estado no estacionario puede ser descrita como (Crank, 1983):

$$MR = \frac{6}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} exp^{-D_{eff}n^2\pi^2 t/r^2}$$
(1.7)

Donde De_{ff} es la difusividad efectiva del grano $[m^2/s]$, *n* el número de términos de la sumatoria, r es el radio del grano [m], t el tiempo [h] y MR es una humedad relativa adimensional, que viene dada por (Hii et al., 2009):

$$MR = \frac{X_t - X_e}{X_0 - X_e} \tag{1.8}$$

Siendo X_t es la humedad en base seca en el tiempo t, X_e la humedad en equilibrio y X_o la humedad en base seca inicial de la muestra. Todas las humedades tienen las siguientes unidades $\left[\frac{kgH_2O}{kg\,ss}\right]$.

1.4.9 Secadores de cacao

1.4.9.1 Secador de bandejas

También se le conoce como secador de anaqueles o de compartimientos. En este tipo de secadores el material es esparcido de manera uniforme sobre una bandeja de metal. Estos secadores poseen una cámara donde se colocan las bandejas y un ventilador que será el responsable de que se produzca el secado. Para materiales granulares, por lo general se coloca la muestra sobre bandejas que tienen de fondo un tamiz, lo que produce una circulación cruzada y que se obtengan tiempos de secado más cortos debido a una mayor área expuesta (Geankoplis, 1998).

Figura 1.5 Secador de bandejas típico. [Geankopolis, 1998]

1.4.9.2 Secadores rectangulares

Es un tipo de secador bastante empleado por los productores, debido al tiempo corto de secado y ahorro de energía. La remoción del grano en este tipo de secadores se lo realiza de forma manual y el tipo de combustible que emplea es GLP o Diésel. En este tipo de secadores los granos se secan con aire caliente que entró en contacto directo con la llama de GLP (Cueva, 2017).

Figura 1.6 Secador Rectangular de cacao. [Cueva, 2017]

1.4.9.3 Secadores circulares verticales

Este tipo de secadores permite secar el cacao en el menor tiempo posible, pero estos al igual que los secadores rectangulares requieren de una remoción manual, lo que genera una parada del proceso de secado, o por el contrario puede ser completamente mecanizados pero su costo es elevado (Cueva, 2017).

Figura 1.7. Secador vertical circular. [Cueva, 2017]

CAPÍTULO 2

2. METODOLOGÍA

La metodología que se llevó a cabo se dividió en dos fases, las mismas que consistieron en el estudio de la cinética de secado de la almendra de cacao y el diseño de los equipos para secar 5 quintales (equivalentes a 500 Libras) de cacao fermentado. El intercambiador de calor y cámara de combustión se diseñaron en función de emplear al GLP como combustible para obtener el aire caliente para el proceso de secado.

Figura 2.1 Diagrama de la metodología empleada para el proyecto. [Autores]

2.1 Estudio de la cinética de secado de la almendra de cacao

2.1.1 Recolección y preparación de las muestras de cacao.

La recolección de la materia prima se enfocó en la producción de cacao de los pequeños productores de los cantones de la Provincia del Guayas. Las almendras de cacao CCN-51 fueron recolectadas de las comunidades de San Francisco de Soledad y Rio Chico 4 pertenecientes al Cantón Naranjito, mientras que las almendras de cacao Fino fueron recolectadas en las zonas aledañas a Milagro. Estos cantones fueron previamente estudiados en el marco del proyecto "Tecnología de secado sostenible que permita optimizar el consumo energético en el proceso de secado del cacao" dirigido por la PhD Emérita Delgado Plaza en donde se identificaron deficiencias en el proceso de secado.

Dada la dificultad de obtención de las almendras de cacao fermentadas, se procedió a la obtención de almendras de cacao en baba, las mismas que fueron sometidas a un proceso de fermentación durante 5 días.

2.1.2 Secado de los granos de cacao

El secado artificial se realizó en secadores de bandejas metálico con capacidad de 1 kg. El aire se calentó a través de una resistencia eléctrica hasta alcanzar las temperaturas de análisis de la muestra de 40°C, 50°C y 60°C. Inicialmente, las almendras de cacao (200 gramos) se expandieron en una sola capa sobre una bandeja metálica de 40 cm x 32 cm. Seguidamente, para evaluar si existe algún efecto de la velocidad del aire sobre el proceso de secado, se procedió a variar las velocidades de aire entre 0.5-0.7 m/s; 1.3-1.7 m/s y 1.9-2.7 m/s (dichas pruebas se realizaron para el cacao CCN51 como muestras patrón).

Durante las pruebas experimentales se registró la pérdida de masa durante cada hora hasta obtener una masa constante (humedad en equilibrio), utilizando una balanza KERN (±0.01 g). Como el proceso de secado artificial de la almendra de cacao es largo, los granos se dejaron templar a temperatura ambiente durante la noche.

Durante el proceso de secado se midieron parámetros tales como; tiempo total de secado (horas), la velocidad del viento (m/s), la humedad relativa, temperatura de bulbo seco del aire caliente y del aire ambiente (°C). A la almendra de cacao se le midió la humedad en base húmeda ($kgH_2O/kg \ solido$) y la actividad de agua (aw) antes y después del proceso de secado a tres granos aleatorios para obtener un promedio y datos más representativos. Entre los equipos instrumentales que se utilizaron para medir los parámetros antes mencionados fueron; un anemómetro (marca Testo A.G, Germany), termohigrómetro, termopares tipo k, termobalanza (marca DKN KERN) y medidor de actividad de agua (marca AQUALAB).

2.1.2.1 Determinación de las propiedades físico-químicas del cacao seco.

Para determinar la influencia del proceso de secado sobre las propiedades, se efectuaron medidas de características de los granos secos tales como humedad, olor, sabor, aroma, textura, tamaño del grano y pH del licor del cacao. Las propiedades organolépticas se midieron cualitativamente y con el uso de sentidos.

Para la medición de pH se tomó dos granos de cada muestra, equivalente a 2.5 gramos en peso y se retiró la cascarilla para obtener solo los cotiledones. Los cotiledones se molieron con el uso de un mortero, luego la muestra molida se la colocó en un vaso de precipitación donde se le añadió 20 ml de agua destilada. Se agitó la muestra y dejo reposar por 5 min. Transcurrido por 5 min se filtró y realizo la medición con el pH metro (Pérez & Contreras, 2017).

2.1.3 Las curvas de secado y velocidad de secado.

Para obtener las curvas de secado y velocidad de secado se realizó una conversión de los datos obtenidos del proceso de secado experimental.

Masa de sólido seco (M_{ss})

El peso de sólido seco se determinó empleando la ecuación 2.1 (Noroña, 2018) tomando en cuenta los valores de humedad en base húmeda (H_{wb}) obtenidos con la termobalanza después del proceso de secado.

$$M_{ss} = \frac{(100 - \%H_{wbf}) * M_{cf}}{100}$$
(2.1)

Donde M_{cf} es la masa de cacao al final [kg], H_{wbf} humedad en base húmeda final [%].

Humedad en base seca (X_s) y humedad de equilibrio (X_e)

La humedad en base seca y la humedad de equilibrio fueron determinadas empleando la masa de sólido seco establecido anteriormente. Las ecuaciones empleadas fueron (Geankoplis, 1998):

$$X_{S}\left(\frac{kgH_{2}O}{kg\,ss}\right) = \frac{m_{t} - m_{ss}}{m_{ss}} \tag{2.2}$$

$$X_e\left(\frac{kgH_2O}{kg\,ss}\right) = \frac{m_e - m_{ss}}{m_{ss}} \tag{2.3}$$

Donde; m_t es la masa medida en el tiempo t [kg] y m_e es la última medida obtenida en el proceso de secado [kg] cuando la masa se mantuvo constante.

Una vez obtenido estos valores se emplearon las ecuaciones (1.1 y 1.2) para obtener la humedad libre y velocidades de secado por cada hora. Para la velocidad de secado se consideró un área de 0.0528 m^2 (área que ocupa 200 g de cacao fermentado).

2.1.4 Análisis de la cinética de secado

2.1.4.1 Modelo de las curvas de secado

Para determinar el modelo matemático o la ecuación semi-teórica más apropiada para describir la cinética de secado de los granos de cacao, ajustamos las curvas experimentales de secado a los modelos de secado de capa fina establecidos en la literatura. Los modelos de ajusten empleados se presentan en la tabla 2.1. Dado que se modeló MR (humedad adicional) en función del tiempo, los datos experimentales fueron convertidos usando la ecuación 1.8.

Tabla 2.1 Modelos de secado de capa delgada probados para secado. [Ali, Abdelkader, El Houssayne, Mohamed, & El Khadir, 2016; 2008; Yogendrasasidhar & Sotty 20101

Setty, 2019]		
del modelo	Mode	

Ecuación No.	Nombre del modelo	Modelo de ecuación
1	Newton	$MR = exp^{(-kt)}$
2	Henderson and Pabis	$MR = a \exp^{(-kt)}$
3	Page	$MR = exp^{(-kt^n)}$
4	Logarítmico	$MR = a \exp^{(-kt)} + c$
5	Modelo de dos términos	$MR = a \exp^{(-kt)} + c \exp^{(-gt)}$
6	Verma et al.	$MR = a \exp^{(-kt)} + (1-a) \exp^{(-gt)}$
7	Enfoque de difusión	$MR = a \exp^{(-kt)} + (1-a) \exp^{(-kgt)}$
8	Midili-kucuk	$MR = exp^{(-kt^n)} + bt$
9	Wang and Smith	$MR = 1 + at + bt^2$
Jana al aliva	ماسيس مع معنسين مما مات من	and manufactures and all all and

Para el ajuste de las curvas se emplearon programas estadísticos. Los criterios de aceptación para el establecimiento del mejor modelo de ajuste se basaron en los siguientes criterios:

- El coeficiente de determinación (R^2)
- Error cuadrático medio (RMSE), que representa la desviación estándar de la distancia entre los valores de datos y los valores ajustados. Este valor representa una medida importante de la bondad de ajuste para el modelo no lineal.

$$R^{2} = \frac{\sum_{i=1}^{N} (MR_{prei} - \overline{MR}_{exp,i})^{2}}{\sum_{i=1}^{N} (MR_{exp,i} - \overline{MR}_{exp,i})^{2}}$$
(2.4)

$$RMSE = \sqrt{\frac{1}{N-p} \sum_{i=1}^{N} (MR_{pre,i} - MR_{exp,i})^2}$$
(2.5)

Donde, N es el número de observaciones, p es el número de parámetros, $MR_{exp,i}$ datos experimentales, $MR_{pre,i}$ datos predichos. El mejor modelo se ajustó con el R^2 más grande y el *RMSE* más pequeño.

2.1.4.2 Difusividad efectiva

Ecuación

Se determinó las difusividades para cada temperatura y velocidad de aire empleado, utilizando 1 término de la solución general, N=1 de la ecuación 1.7. De esta manera la ecuación simplificada empleada fue:

$$MR = \frac{6}{\pi^2} * exp^{-D_{eff} \frac{\pi^2 t}{r^2}}$$
(2.6)

La ecuación linealizada es:

$$\ln(MR) = \ln\left(\frac{6}{\pi^2}\right) - D_{eff} \frac{\pi^2 t}{r^2}$$
(2.7)

Para el cálculo, se consideró a los granos de cacao como partículas esféricas cuyo coeficiente de difusividad efectiva es constante y se estableció un radio de grano. De esta manera la difusividad efectiva fue despejada de la ecuación 2.8.

$$D_{eff}\frac{\pi^2}{r^2} = constante \tag{2.8}$$

La constante se obtiene de la linealización de la gráfica de ln(MR) vs tiempo.

2.1.5 Determinación de la temperatura y velocidad de aire óptimos

La temperatura y velocidad de aire óptimos se establecieron en función de lograr:

- El menor tiempo de secado hasta alcanzar el 7% de humedad.
- La mayor conservación de las propiedades organolépticas: mejor sabor, aroma, color y textura.
- Un pH del licor no menor a 5, para evitar la acidez y amargor del grano seco.

2.2 Diseño de los equipos para el secado

El proceso de secado se esquematiza en el siguiente diagrama de bloques:

2.2.1 Elección de los tipos de equipos

Considerando los tipos de secadores expuestos en el capítulo 1, se optó por el diseño de un secador de bandejas, siendo este tipo de secadores los que más se emplean para secado por lotes o tandas y cuando se requieren períodos largos de secado como el caso de los granos de cacao.

Para el caso del intercambiador también se analizó 3 tipos: el intercambiador de tubos concéntricos fue descartado dada la gran longitud de la tubería y alta perdida de presión, por otro lado, también se consideró el empleo directo de aire calentado con la llama de GLP, pero esto ocasionaría la contaminación del grano con los gases de combustión. La mejor opción consideró el diseño de un intercambiador de tubo y carcaza, debido a su bajo costo y dimensionamiento.

2.2.2 Diseño del secador

2.2.2.1 Cálculo del flujo másico de aire requerido para el secado

El flujo másico de aire requerido para el secado de 500 lb de cacao se determinó mediante las siguientes fórmulas (Santana, 2016):

$$\dot{m}_a = \frac{m_w/t}{H_{af} - H_{ai}} \tag{2.9}$$

$$m_w = m_{ci} - m_{cs}$$
 (2.10)

$$m_{cs} = \frac{m_{ci}(100 - H_{wbi})}{(100 - H_{wbf})}$$
(2.11)

Donde, \dot{m}_a es el flujo másico de aire requerido para el secado [kg/h], m_w es la masa de agua evaporada [kg/h], t es tiempo [h], H_{af} humedad absoluta final (del aire a la salida del secador) $\left[\frac{kgH_2O}{kg \ aire \ seco}\right]$, H_{ai} humedad absoluta inicial (del aire a la entrada del secador) $\left[\frac{kgH_2O}{kg \ aire \ seco}\right]$, m_{cs} masa de cacao seco [kg], H_{wbi} humedad en base húmeda inicial y H_{wbf} humedad en base húmeda final [%].

2.2.2.2 Cálculo de la superficie de secado

Se tomaron los datos de la curva de velocidad de secado, a la temperatura y velocidad de aire óptimos, se graficó la curva 1/R vs X. Se obtuvo la ecuación de tendencia de la curva y en base a esto de determinó la integral que corresponde al área bajo la curva.

Una vez resuelta la integral se determinó el tiempo de secado con la siguiente ecuación (Geankoplis, 1998):

$$\theta = \frac{M_{SS}}{A} \int_{x2}^{x1} \frac{dx}{R}$$
(2.12)

Donde, θ es el tiempo [h], *A* es el área [m^2], X_1 y X_2 son las humedades libres en el punto 1 y 2 de la curva $\left[\frac{kgH_2O}{kg\,ss}\right]$, *R* es la velocidad de secado [$kg\,H_2O/m^2.h$].

A gran escala la masa de sólido seco es mayor, la nueva incógnita considerando la misma área bajo la curva y el mismo tiempo de secado, es el área de secado para las 500 lb de cacao.

$$A = \frac{M_{ss}}{\theta} * \int_{x2}^{x1} \frac{dX}{R}$$
(2.13)

2.2.2.3 Dimensionamiento de la cámara de secado

Una vez conocido el área que ocuparán 500 lb de cacao fermentado, se estableció el número de bandejas. Con el número de bandejas se realizó el dimensionamiento del equipo. Se propuso dividir las bandejas en dos secciones, tomando una separación entre bandejas de 10 cm.

2.2.3 Diseño del intercambiador de calor

Todas las formulas y consideraciones empleadas para los cálculos del diseño del intercambiador fueron tomados del Libro de fundamentos de Transferencia de calor (Incropera & DeWitt, 1999). Adicionalmente se consideró que la distribución de los tubos sea escalonado para reducir la caída de presión.
2.2.3.1 Temperaturas de entrada y salida del intercambiador

Se procedió a establecer como primer paso las temperaturas a las que funcionará el intercambiador, partiendo de valores registrados experimentalmente alcanzados en la flama, temperatura ambiente y temperatura de secado adecuado para deshidratar el producto. A continuación, se muestran las temperaturas establecidas:

$$T_{hi} = 350^{\circ}\text{C} = 623^{\circ}K$$

 $T_{ho} = 120^{\circ}\text{C} = 393^{\circ}K$
 $T_{ci} = 29^{\circ}\text{C} = 302^{\circ}K$
 $T_{co} = 60^{\circ}\text{C} = 333^{\circ}K$

Donde T_{hi} es la temperatura de entrada del fluido caliente [K] y T_{ho} es su temperatura de salida [K]. T_{ci} , es la temperatura de entrada del fluido a calentar [K] y T_{co} es su temperatura de salida. Se estableció que el fluido para secado se calentara hasta 60°C debido a pérdidas de calor de la salida del intercambiador hasta la entrada al secador.

Para determinar las propiedades de los fluidos a partir de las tablas establecidas en (Incropera & DeWitt, 1999), se consideraron las temperaturas medias entre la entrada y salida del fluido, tal como se puede observar en la ecuación 2.14 y 2.15.

$$T_h[K] = \frac{T_{hi} + T_{ho}}{2}$$
(2.14)

$$T_c[K] = \frac{T_{ci} + T_{co}}{2}$$
(2.15)

Por otra parte, es importante en el diseño establecer un diámetro nominal del tubo para el intercambiador de calor, es así, que se seleccionó un diámetro de 1.5 pulgadas de tubo cedula 40 (tubos utilizado para intercambiadores de calor y calderas).

2.2.3.2 Calor requerido para calentar el aire para secado

El calor requerido (Q_T) para obtener el aire caliente a la 60°C, se lo determinó a partir de la siguiente fórmula:

$$Q_T = \dot{m_a} \, C p_c \, (T_{co} - T_{ci}) \tag{2.16}$$

Donde, $\dot{m_a}$ flujo másico aire seco [kg/s] para secado, Cp calor específico del aire a temperatura media [J/kg K].

2.2.3.3 Flujo másico de fluido caliente requerido

Realizando un balance de energía entre el flujo de aire interno y externo que pasan por los tubos, se determinó el flujo másico del fluido caloportador que se requiere para alcanzar la temperatura de operación en el secador. La ecuación empleada fue:

$$\dot{m_h} = \frac{\dot{m_a} c_{p_c} (T_{co} - T_{ci})}{c_{p_h} (T_{hi} - T_{ho})}$$
(2.17)

Donde, $\dot{m_h}$ es el flujo másico del fluido caliente [kg/s] y Cp_h el calor específico del aire caliente a la temperatura media [J/kg K].

2.2.3.4 Transferencia de calor total en el intercambiador de calor

La siguiente ecuación presenta la transferencia de calor total, necesario para proceder a calcular el número y longitud de los tubos:

$$Q_T = U * \pi * D_i * L * N_t * \Delta T_{ml}$$
(2.18)

Donde, *U* es el coeficiente global de transferencia de calor $\left[\frac{W}{m^2 K}\right]$, *D_i* es el diámetro interno de los tubos [*m*], *L* es la longitud del tubo [*m*], *N_t* es el número de tubos y ΔT_{ml} es la temperatura media logarítmica [K].

Para poder determinar la temperatura media logarítmica se usó la ecuación:

$$\Delta T_{ml} = \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{\ln\left(\frac{T_{hi} - T_{co}}{T_{ho} - T_{ci}}\right)}$$
(2.19)

Se calculó el coeficiente global mediante la ecuación:

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}}$$
(2.20)

Donde h_i es el coeficiente de convección interno $\left[\frac{W}{m^2 K}\right]$, y h_o el coeficiente de convección externo $\left[\frac{W}{m^2 K}\right]$.

El coeficiente de convección tanto interno como externo se obtuvo a partir de la siguiente fórmula:

$$h = \frac{Nu*k}{D} \tag{2.21}$$

Donde *Nu* es el número de Nusselt, *k* es la conductividad térmica $\left[\frac{W}{mK}\right]$, y *D* el diámetro según corresponda (interno-externo).

2.2.3.5 Coeficiente de convección interno

A partir de la configuración de fluido caliente por los tubos, con la ecuación 2.22 se pudo calcular el número de Reynolds del interior de los tubos.

$$Re = \frac{4m_h}{\pi * D_i * \mu_h * N_t} \tag{2.22}$$

Donde, μ_h es la viscosidad dinámica del fluido caliente $\left[\frac{N.s}{m^2}\right]$

Con el número de Reynolds se eligió la mejor correlación para el número de Nusselt, ecuación 2.23. En general el número de Nusselt para el flujo interno depende del número de Reynolds, del número de Prandtl, y de constantes C_1 , m y n que fueron escogidas de acuerdo al rango de valores en donde se encontraron los parámetros mencionados anteriormente. Ver Apéndice D:

$$Nu = C_1 * Re^m * Pr^n \tag{2.23}$$

Conociendo el número de Nusselt empleo la ecuación 2.21 para determinar el coeficiente de convección interno.

2.2.3.6 Coeficiente de convección externo

Se estableció que aire frio fluya por la carcasa. De esta manera, antes de poder determinar el número de Nusselt de la convección externa, se calcula el número de Reynolds mediante la siguiente ecuación 2.24:

$$Re_{Dmax} = \frac{\rho_c * V_{max} * D_o}{\mu_c} \tag{2.24}$$

Donde, ρ_c es la densidad del aire frío [kg/m³], V_{max} es la velocidad máxima en el banco de tubos [m/s], D_o es el diámetro externo de los tubos y μ_c la viscosidad dinámica del aire frío $\left[\frac{N.s}{m^2}\right]$.

Por su parte, para calcular la velocidad máxima con configuración de tubos escalonado, se usó la ecuación 2.25 donde S_t es la separación entre los tubos y *V* es la velocidad en el banco de tubos:

$$V_{max} = \frac{S_t}{2*(S_t - D_o)} \times V$$
 (2.25)

Para este caso, el número de Nusselt se determinó con la siguiente ecuación:

$$Nu_D = 1.13 * C_1 * Re_{Dmax}^m Pr^{\frac{2}{3}}$$
(2.26)

En la ecuación C_1 y *m*, dependen del tipo de configuración de los tubos, ver tabla Apéndice D. El cálculo del coeficiente de convección externo se realizó igual que para el coeficiente de convección interno.

2.2.3.7 Caída de presión en el banco de tubos

La ecuación 2.27 permitió calcular cual sería la caída de presión del banco de tubos:

$$\Delta p = N_l * x * \left(\frac{\rho_c * V_{max}^2}{2}\right) * f$$
(2.27)

Donde, N_l es el número de líneas que tendrá el intercambiador, x es el factor de correlación y f el factor de fricción.

2.2.4 Diseño del quemador

El dimensionamiento del quemador-calentador se realizó en función de obtener la menor cantidad de pérdidas de calor. Las formulas empleadas para el cálculo fueron obtenidas de (Incropera & DeWitt, 1999).

2.2.4.1 Calor total perdido en el quemador

Se determinó que el calor se almacena Q_a y se pierde Q_c en las paredes de la cámara del quemador de manera que el calor total perdido es:

$$Q_{pT} = Q_c + Q_a \tag{2.28}$$

2.2.4.2 Calor perdido por las paredes

Las pérdidas por conducción y convección en las paredes pueden ser calculadas con la siguiente ecuación:

$$Q_c = U_c A_c (T_{cam} - T_a) \tag{2.29}$$

Donde, U_c es el coeficiente global de transferencia de calor en la cámara de combustión $\left[\frac{W}{m^2 K}\right]$, A_c el área de las paredes de la cámara $[m^2]$, T_{cam} la temperatura al interior de la cámara [K] y T_a la temperatura ambiente [K]

Para obtener el coeficiente global de transferencia de calor fue utilizada la siguiente ecuación:

$$U_c = \frac{1}{\frac{1}{h_{ic} + h_{ir}} + \frac{e_{po}}{k_{po}} + \frac{e_{ais}}{k_{ais}} + \frac{1}{h_{oc}}}$$
(2.30)

Donde, h_{ic} es el coeficiente de convección al interior de la cámara $\left[\frac{W}{m^{2}K}\right]$, h_{ir} el coeficiente de radiación al interior de la cámara $\left[\frac{W}{m^{2}K}\right]$, e_{ais} el espesor del aislante [m], k_{ais} la conductividad del aislante $\left[\frac{W}{mK}\right]$, k_{po} la conductividad de la pared exterior $\left[\frac{W}{mK}\right]$ y h_{oc} es el coeficiente de convección en el exterior de la cámara.

2.2.4.3 Coeficiente de convección externo de la cámara

Se hace necesario indicar, que todas las propiedades que se utilizan para la resolución teórica en el exterior de la cámara, se establecieron en función de la temperatura de película:

$$T_f = \frac{T_a + T_{po}}{2}$$
(2.31)

Donde, T_a es la temperatura ambiente y T_{po} , temperatura de la pared exterior.

Para la convección externa se determinó el número de Rayleigh:

$$Ra_{L} = \frac{g * \beta (T_{po} - T_{a})L^{3}}{v a}$$
(2.32)

Donde, *g* es la gravedad (9.8 m/s), β es el coeficiente de expansión [1/*K*], *L* es la longitud [*m*], *v* la viscosidad cinemática $\left[\frac{m^2}{s}\right]$, *a* difusividad térmica $\left[\frac{m^2}{s}\right]$. Para el caso, el número de Nusselt se definió como:

$$Nu = 0.15 Ra_L^{\frac{1}{3}}$$
 (2.33)

Finalmente el coeficiente de convección se determinó usando la ecuación 2.21.

2.2.4.4 Coeficiente de convección en el interior de la cámara

Se pudo conocer el número de Reynolds para determinar el tipo de flujo usando la siguiente ecuación:

$$Re_x = \frac{V_i * L}{v} \tag{2.34}$$

Donde V_i es la velocidad del aire caliente [m/s], L es la longitud de la pared de la cámara [m] y v la viscosidad cinemática.

Para este caso, por el tipo de flujo se empleó la siguiente ecuación de Nusselt:

$$Nu = 0.664 Re_x^{\frac{1}{2}} Pr^{\frac{1}{3}}$$
(2.35)

El coeficiente de convección se determinó usando la ecuación 2.21.

2.2.4.5 Coeficiente de radiación en el interior de la cámara

Se calculó el coeficiente de radiación mediante la ecuación descrita a continuación:

$$h_{ir} = \varepsilon * \sigma * F * \frac{(T_h^4 - T_p^4)}{(T_h - T_p)}$$
(2.36)

Donde, ε es la emisividad, σ es la constante de Boltzmann, F es el factor de forma y T_p es la temperatura de la pared.

2.2.4.6 Calor almacenado en las paredes de la cámara

Se consideró el calor que almacena el acero Qa_c y el calor que almacena el aislante Q_{ais} , de manera que el calor almacenado total es:

$$Q_a = Qa_c + Q_{ais} \tag{2.37}$$

La ecuación que se muestra a continuación nos permitió determinar el calor almacenado en las paredes de forma general:

$$Q_p = m_p C p_p (T - T_m) \tag{2.38}$$

Donde, m_p es la masa de la pared [kg], sea acero o aislante, Cp_p el calor específico del acero o aislante, T es la temperatura de la pared interior, exterior de la cámara y T_m la temperatura media de las paredes. Las masas de las paredes se determinaron mediante la siguiente ecuación

$$m_p = \rho * V \tag{2.39}$$

Donde, ρ es la densidad del acero o aislante $[kg/m^3]$ y V es el volumen de la pared.

2.2.5 Cálculo de la cantidad de combustible requerido para el proceso

2.2.5.1 Calor requerido para obtener el fluido caliente

Conociendo la masa de fluido caliente requerido por el intercambiador y las pérdidas en la cámara calculadas anteriormente, se determinó el calor necesario para obtener un fluido caliente de 350°C:

$$Q_r = Q_a + Q_{pT} \tag{2.40}$$

Donde, Q_a el calor requerido para obtener el fluido caliente a 360 °C. La fórmula empleada para su determinación fue:

$$Q_a = \dot{m_h} * C p_a (T_1 - T_2) \tag{2.41}$$

Donde, Cp_a es el poder calorífico del fluido a la temperatura promedio entre la temperatura ambiente de $T_2 = 29^{\circ}$ C y la del fluido caliente de $T_1 = 350^{\circ}$ C

2.2.5.2 La masa de combustible requerido

Se eligió al GLP como combustible para la obtención del fluido caliente para el intercambiador en función de que es un combustible barato y porque es empleado actualmente por los pequeños productores. Las propiedades del GLP se muestran a continuación:

Propiedades del GLP				
PCI (KJ/kg) GLP líquido	46168.7			
PCS (KJ/KG) Líquido	61416.4			
Densidad del GLP liquido (kg/L)	0.533			
Relación 1L GLP gas/1L GLP Líquido	242			
Densidad del GLP gaseoso (kg/L)	0.0022			
PM del GLP	48.6			

Tabla 2.2 Propiedades del Gas Licuado de Petróleo. [Suárez, 2013]

El flujo másico combustible $\dot{m_c}$ [kg/h] requerido se determinó mediante la siguiente ecuación:

$$\dot{m_c} = \frac{Q_r}{PCI} \tag{2.42}$$

La masa de combustible para todo el proceso de secado se calculó mediante:

$$m_c = \dot{m_c} * t \tag{2.43}$$

Donde t es el tiempo total de secado [h].

2.2.5.3 Cantidad de aire requerido para la combustión del GLP

El GLP de uso doméstico que se comercializa presenta la composición que se detalla en la siguiente tabla:

Composición del GLP				
Componentes %Volumen PM				
PROPANO	67%	44		
N-BUTANO 33% 58				

Tabla 2.3 Composición y Peso molecular delos componentes del GLP. [Samaniego-Ojeda, Hernández ,2017]

La reacción de combustión general que se produce, asumiendo una combustión completa es:

$$C_x H_x + x(O_2 + 3.76N_2) \rightarrow xCO_2 + xH_2O + xO_2 + xN_2$$
 (2.44)

Se recomienda para el caso del GLP, que el exceso de aire para una combustión completa sea del 15% (Suárez, 2013).La cantidad de oxígeno requerido para la combustión se determinó mediante la siguiente ecuación (Himmelblau, 1997):

$$n_{Oreq} = \% exceso (n_{ot}) + n_{ot}$$
(2.45)

Donde, n_{ot} son las moles de oxígeno teóricas que se obtuvieron mediante un balance de masa, empleando las moles de combustible y la ecuación 2.45, y n_{0req} son las moles de oxigeno requeridos.

Tomando en cuenta que la composición del aire es de 21% oxígeno y 79% nitrógeno, el flujo másico de aire requerido es (Himmelblau, 1997):

$$\dot{m_a} = \frac{n_{Oreq} + n_N}{PM_a} \tag{2.47}$$

Donde, n_N son las moles de nitrógeno y PM_a el peso molecular del aire igual a 28.84 kg/kmol.

2.2.6 Cálculo de los ventiladores

Se analizó el caudal para la selección del blower de la cámara de combustión, usando la ecuación siguiente:

$$\dot{Q_C} = \frac{m_h}{\rho_h} \tag{2.48}$$

Por otra parte, para el aire que ingresa por la carcasa se siguió la misma metodología:

$$\dot{Q}_{\iota} = \frac{m_a}{\rho_c} \tag{2.49}$$

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Resultados del estudio cinético

3.1.1 Resultados del secado experimental

La tabla 3.1, muestra los resultados experimentales obtenidos durante el proceso de secado artificial de las almendras de cacao fermentadas.

Tipo de Cacao	Temperatura de secado (°C)	Velocidad de secado (m/s)	Humedad inicial	Humedad final	Tiempo total de secado (h)	Actividad de agua final
CCN51	40	0.5-0.7	52%	8.20%	36	0.77
CCN51	50	0.5-0.7	49%	7.6%	20	0.72
CCN51	60	0.5-0.7	50%	4.02%	18	0.75
CCN51	40	1.03-1.77	44%	8.57%	23	0.76
CCN51	50	1.03-1.77	57%	6.78%	19	0.84
CCN51	60	1.03-1.77	50%	3.77%	16	0.77
CCN51	40	1.9-2.5	57%	7.69%	20	0.86
CCN51	50	1.9-2.5	44%	7.27%	18	0.74
CCN51	60	1.9-2.5	44%	5.02%	18	0.77
Fino	40	1.9-2.5	49%	7.94%	19	0.61
Fino	50	1.9-2.5	49%	10.8%	16	0.63
Fino	60	1.9-2.5	49%	9.04%	14	0.63

 Tabla 3.1
 Resultados obtenidos del proceso de secado. [Autores]

A partir de la tabla 3.1 se puede apreciar que las almendras de cacao fermentadas presentan humedades iniciales variantes, en un rango entre 49% y 57%. Los valores altos se deben a la presencia de un gran contenido de humedad superficial.

En cuanto a las distintas temperaturas de secado, en general mientras más alta es la temperatura, menor es el tiempo de secado y la humedad final del grano seco. Secar el cacao a 60°C trae consigo, sin el debido control de tiempo, humedades finales menores al 7%. Los tiempos de secado entre el

cacao CCN-51 y cacao fino difieren, y esto se debe básicamente a las diferencias de contenido de humedad inicial.

Comparando con la bibliografía, (CLOKE, 2008; Hii et al., 2009) obtuvieron que a 60°C se requiere de 52 horas de secado. Las 52 horas corresponden a un secado realizado por 4 días y tomando en cuenta las horas de templado por la noche. Por ello, estos valores difieren de los obtenidos por la experimentación.

En la tabla 3.2, se muestran las medidas del grano antes y después del proceso de secado, donde se observa que hay una reducción de largo del 8.7% y de ancho del 12.4%.

Dimensiones	Cacao Fermentado	Cacao Seco
Largo (mm)	26.3	24.0
Ancho (mm)	14.5	12.7

Tabla 3.2 Dimensiones del cacao fermentado y seco [Autores]

3.1.2 Las curvas de secado y velocidad de secado experimentales

3.1.2.1 Las curvas de secado

Figura 3.2 Curva de secado de cacao CCN-51 a velocidad de aire de 1.03-1.7 m/s. [Autores]

Figura 3.3 Curva de secado de cacao CCN-51 a velocidad de aire de 1.9-2.5 m/s. [Autores]

Figura 3.4 Curva de secado de cacao Fino a velocidad de aire de 1.9-2.5 m/s. [Autores]

3.1.2.2 Las curvas de velocidad de secado

Figura 3.5 Curva de velocidad de secado CCN-51 a velocidad de aire de 0-5-0.7 m/s. [Autores]

Figura 3.6 Curva de velocidad de secado CCN-51 a velocidad de aire de 1.03-1.77 m/s. [Autores]

Figura 3.7 Curva de velocidad de secado CCN-51 a velocidad de aire de 1.9-2.5 m/s. [Autores]

Figura 3.8 Curva de velocidad de secado de C. Fino a velocidad de aire de 1.9-2.5 m/s. [Autores]

	CACAO CCN-51					
Va (<i>m</i> / <i>s</i>)	T (°C)	X _e (kg H ₂ O/kg ss)	$\begin{array}{c} R_c \\ (Kg \ H_2 O/m^2 \times h) \end{array}$	X _c (kg H ₂ O/kg ss)		
	40	0.089	0.269	0.957		
0.5-0.7	50	0.082	0.451	1.017		
	60	0.042	0.540	1.237		
	40	0.094	0.439	0.994		
1.03-1.77	50	0.071	0.614	1.505		
	60	0.045	0.765	1.596		
	40	0.053	0.373	0.882		
1.9-2.5	50	0.078	0.602	1.080		
	60	0.041	0.523	1.048		
CACAO FINO						
1005	40	0.086	0.502	0.850		
1.9-2.5	50	0.121	0.619	0.827		
	60	0.099	0.853	1.240		

Tabla 3.3 Resultados principales de las curvas de secado y velocidad de secado. [Autores]

En las figuras 3.1, 3.2. 3.3 y 3.4 se puede observar que las curvas de secado muestran una tendencia decreciente a medida que avanza el proceso de secado. Al inicio del proceso, la humedad disminuye rápidamente y luego el proceso se ralentiza hasta alcanzar el equilibrio. Las humedades de equilibrio son diferentes para cada temperatura, velocidad de aire y muestra de cacao, como se muestra en la tabla 3.3. Sin embargo, de manera general se puede definir que mientras mayor es la temperatura de secado y velocidad de aire, se necesita menos tiempo para llegar al equilibrio.

En las figuras 3.5, 3.6, 3.7, y 3.8 se observan las curvas de velocidad de secado experimentales. Se busca que las curvas presenten una zona constante y una zona decreciente, como se detalla en la Figura 1.4. Sin embargo, las curvas experimentales a excepción de las curvas de velocidad de la figura 3.5 a 50°C y la figura 3.8 a 40°C y 50°C, solo muestran una zona decreciente. En ocasiones el período de velocidad constante es tan pequeño que puede ser desestimado y no se puede apreciar, por el contrario, el período decreciente es más marcado debido a que mientras transcurre el proceso de secado solo se dispone de una pequeña cantidad de agua libre y la difusión es el mecanismo principal que controla el transporte de agua desde el interior del grano a la superficie. En cuanto a las velocidades criticas detalladas en la Tabla 3.3, se tiene que a mayor temperatura mayor es el R_c .

Cabe mencionar que ciertos puntos dentro de las curvas generan variaciones y no permiten que se observe una curva perfecta de secado y velocidad de secado. Esto se debe a que, durante la toma de mediciones, se es necesario sacar la muestra, pesar y volver a colocar la muestra en el secador, lo que genera que el proceso en cierta medida no sea isotérmico.

3.1.3 Análisis de la cinética de secado

3.1.3.1 Resultados del modelado de las curvas de secado

En general tanto para el cacao fino como para el cacao CCN-51 se obtuvo que el mejor modelo que describe la cinética de secado es el modelo de dos términos:

$$MR = a \exp^{(-kt)} + c \exp^{(-gt)}$$
(3.1)

Obteniendo con este modelo los *MRSE* más cercanos a 0 y R^2 más cercanos a 1 para las tres temperaturas. Ver apéndice A.

Dado que, para cada temperatura se tienen constantes diferentes, se definieron estas constantes, a, c, k y g en función del tiempo, como se muestran en la tabla 3.4

Tipo de cacao	Velocidad de aire (m/s)	Constantes en función de la T para modelo de dos términos
	0.5-0.7	$a = 0.00455T^{2} - 0.43886T + 10.73181$ $k = -0.00529T^{2} + 0.54321T - 13.19394$ $c = -0.00483T^{2} + 0.46933T - 10.52956$ $g = -0.00054T^{2} + 0.05857T - 1.40485$
CCN-51	1.03-1.77	$a = 0.00197T^{2} - 0.19298T + 4.78165$ $k = -0.00016T^{2} + 0.01449T + 0.53331$ $c = -0.00195T^{2} + 0.19147T - 3.74601$ $g = 0.00028T^{2} - 0.02155T + 0.59221$
	1.9-2.5	$a = -0.00116T^{2} + 0.11678T - 2.57772$ $k = 0.00400T^{2} - 0.45337T + 18.67525$ $c = 0.00114T^{2} - 0.11444T + 3.52015$ $g = 0.00031T^{2} - 0.03170T + 1.01007$
CACAO FINO	1.9-2.5	$a = -0.00245T^{2} + 0.22988T - 4.75850$ $k = 0.00339T^{2} - 0.29512T + 7.02950$ $c = 0.00239T^{2} - 0.22467T + 5.65116$ $g = -0.00033T^{2} - 0.02934T + 0.85981$

Tabla 3.4 Constantes de la ecuación en función de la temperatura. [Autores]

A continuación, la siguientes graficas muestran los ajustes a los valores experimentales, empleando la ecuación de dos términos (ecuación 3.1).

Figura 3.9 Ajuste de las curvas para CCN-51 a velocidad de aire de 0.5-0.7m/s. [Autores]

Figura 3.10 Ajuste de las curvas para CCN-51 a velocidad de aire de 1.03 -

1.77 m/s. [Autores]

Figura 3.11 Ajuste de las curvas para CCN-51 a velocidad de aire de 1.9 -2.5 m/s. [Autores]

Figura 3.12 Ajuste de las curvas para cacao fino a velocidad de aire de 1.9 -2.5 m/s. [Autores]

3.1.3.2 Difusividad efectiva calculada

A partir de las gráficas de ln(MR) vs tiempo, y tras la linealización de las curvas, se obtuvieron las contantes a partir de las cuales obtuvimos los siguientes valores de difusividades que se presentan en la tabla 3.5.

Tabla 3.5 Resultados de cálculo de difusividades para caco fino y CCN-51. [Autores]

Tipo de cacao	<i>V_a</i> (m/s)	T(°C)	Constante	R ²	$D_{eff} (m^2/s)$
		40	0.0805	0.950	3.52E-10
	0.5-0.7	50	0.2019	0.967	8.84E-10
		60	0.2626	0.969	1.15E-09
	1.03-1.77	40	0.1907	0.961	8.35E-10
CCN-51		50	0.2639	0.994	1.15E-09
		60	0.3545	0.994	1.55E-09
	1.9-2.5	40	0.2425	0.970	1.06E-09
		50	0.2498	0.969	1.09E-09
		60	0.2643	0.962	1.16E-09
CACAO FINO		40	0.2734	0.994	1.20E-09
	1.9-2.5	50	0.3016	0.988	1.32E-09
		60	0.3351	0.978	1.47E-09

En la 3.5 se observa que la difusividad efectiva se incrementa con el aumento de la temperatura y velocidad de aire. La difusividad efectiva del cacao Fino para todas las temperaturas es mayor que el CCN-51, bajo las mismas condiciones de velocidad de aire, lo que refleja cierta diferencia en la estructura del cacao fino que permite que haya mayor difusión de agua desde el interior del grano hasta su superficie.

De acuerdo a (Hii et al., 2009), la difusividad efectiva a 60°C se encuentra entre $[1.61^{-10} - 3.23^{-10}] (m^2/s)$ y aumenta con la temperatura. Estos valores de difusividad son menores a los obtenidos experimentalmente. La causa principal es la velocidad del aire de secado, ya que las difisividades bibliográficas se obtuvieron por datos obtenidos por secado en una estufa, donde la velocidad de aire es menor a 0.5 m/s (valor medido con un anemómetro en una estufa de laboratorio).

3.1.4 Parámetros óptimos de secado

Como experimentalmente no en todos los casos se llegó hasta una humedad del 7%, se establecieron los tiempos requeridos hasta llegar a esta humedad, los mismos se presentan en la tabla 3.6.

Tipo de cacao	<i>V_a</i> (m/s)	T(°C)	Tiempo (horas)
		40	37
CCN-51	0.5-0.7	50	20.5
		60	16
	1.03-1.77	40	26
		50	19
		60	12
		40	21
	1.9-2.5	50	18
		60	15
CACAO FINO		40	24
	1.9-2.5	50	21
		60	15

Tabla 3.6 Tiempo requerido para lograr un humedad del 7%. [Autores]

Las propiedades organolépticas, así como las medidas de pH, se presentan en las siguientes tablas:

Tabla 3.7 Propiedades organolépticas y pH del CCN-51 Seco, velocidad de aire 0.5-0.7

Característica	Almendra secado a 40°C	Almendra secado a 50°C	Almendra secado a 60°C
Característica	Poco aplanada/ redonda	Poco aplanada /	Poco aplanada /
general	r eee aplanada, redenad	redonda	redonda
Aroma	Agradable, Fuerte	Agradable, olor fuerte	Agradable
Sabor	Medianamente amargo	Medianamente amargo	Amargo
Textura	Quebradiza	Quebradiza	Quebradiza
Color interno	Café violáceo	Marrón claro	Café claro
Color externo	Café claro	Café claro	Café claro
рН	5.13	5.10	5.29

m/s. [Autores]

Tabla 3.8 Propiedades organolépticas y pH del CCN-51 Seco, velocidad de aire 1.3-1.77

Característica	Almendra secado a 40 °C	Almendra secado a 50 °C	Almendra secado a 60°C
Característica general	Aplanada	Aplanada	Aplanada
Aroma	Agradable	Agradable	Agradable, débil
Sabor	Medianamente amargo	Medianamente Amargo	Amargo
Textura	Dura	Dura	Dura
Color interno	Marrón Violáceo	Marrón claro	Marrón oscuro
Color externo	Marrón oscuro	Marrón oscuro	Marrón oscuro
рН	5.23	5.23	5.79

m/s. [Autores]

Tabla 3.9 Propiedades organolépticas y pH del CCN-51 Seco, velocidad de 1.9-2.5 m/s.

[Autores]

Característica	Almendra secado a 40 °C	Almendra secado a 50 °C	Almendra secado a 60°C
Característica general	Aplanada	Aplanada	Aplanada
Aroma	Fuerte	Fuerte	Agradable
Sabor	Amargo	Amargo	Amargo
Textura	Dura	Dura	Dura
Color interno	Marrón oscuro	Marrón Violáceo	Marrón Claro
Color externo	Marrón oscuro	Marrón oscuro	Marrón claro
pH	5.83	5.09	5.87

Tabla 3.10 Propiedades organolépticas y pH del Cacao Fino Seco, 1.9-2.5 m/s. [Autores]

Característica	Almendra secado a 40 °C	Almendra secado a 50 °C	Almendra secado a 60°C
Característica general	Aplanada	Aplanada	Aplanada
Aroma	Agradable, dulce	Fuerte	Dulce, olor suave
Sabor	Suave	Medianamente Amargo	Fuerte
Textura	Dura	Dura	Dura
Color interno	Marrón claro	Marrón Claro	Marrón Oscuro
Color externo	Café claro	Café oscuro	Marrón Oscuro
рН	5.43	5.26	5.37

Como se puede observar en la tabla 6.6, el menor tiempo de secado se logra a una temperatura de 60°C a una velocidad media entre 1.03-1.77 m/s. Sin embargo, se observa que a 50°C no hay mucha variación en el tiempo. De acuerdo a las propiedades organolépticas, se busca que el color interno sea marrón o café (el sabor y el aroma son óptimos para elaborar chocolate), que la textura no sea quebradiza y que presente un aroma agradable (Pangoa, 2016). El pH debe ser cercano a 5.5 y no menor a 5 (Samaniego-Ojeda et al., 2017). En función de lo expuesto y considerando que de acuerdo a la literatura (Alean, Chejne, & Rojano, 2016) el cacao debe secarse a temperaturas por debajo de 60°C, las condiciones de secado para el cacao Fino y CCN-51se presentan en la tabla 3.11

Tabla 3.11 Condiciones óptimas de secado para caco CCN-51 y Cacao Fino.[Autores]

Parámetros	Valores	Unidades
Temperatura de secado	50	°C
Velocidad del aire constante	1.4	m/s
Velocidad del aire (dentro del rango)	1.03-1.77	m/s
Tiempo secado CCN-51	19	h
Tiempo secado FINO	24	h

3.2 Resultado del Diseño de los equipos de secado

3.2.1 La cámara de secado

La tabla 3.12 muestra los resultados de los cálculos teóricos de la cámara de secado, las mismas que fueron obtenidas empleando las fórmulas detalladas en la metodología.

Parámetros	Valores	Unidades
Área de superficie de secado	66	m^2
Área por bandeja	2.8	m^2
Largo de la bandeja	2	m
Ancho de la bandeja	1.4	m
Profundidad de la bandeja	1	cm
Flujo másico de aire para secado	1069.61	kg/h
Caudal de aire entrada	0.28	m^3/s
Área entrada del aire	0.016	m^2
Área de salida del aire	0.032	m^2

Tabla 3.12 Resultados de la cámara de secado. [Autores]

Con la superficie de secado requerido, se propuso que la cámara conste de 24 bandejas, distribuidas en dos hileras. Considerando un espaciamiento entre bandejas de 10 cm, las dimensiones de la cámara de secado con un capacidad de 500 lb de cacao fermentado son de 1.4 m x 3 m x 2.3 m.

Con las dimensiones establecidas, para comprobar si hay una buena distribución del aire y la temperatura dentro de la cámara de secado, se realizó una simulación empleando un programa de simulación de fluidos computacionales CFD. Las simulaciones se observan en la graficas 3.13 y 3.14. A partir de las simulaciones se obtuvo que hay una buena distribución de la temperatura y la velocidad del aire.

Figura 3.13 Resultados de la simulación CFD de la cámara de secado.

1.400 1.244 1.089 0.933 0.778 0.622 0.467 0.311 0.156 0 Velocity [m/s]

Temperatura. [Autores]

Figura 3.14 Resultados de la simulación CFD de la cámara. Velocidad de aire. [Autores]

Cabe mencionar que las bandejas con las que debe ser construida la cámara de secado, deben ser bandejas perforadas de acero inoxidable 316 (material empleado para contacto con alimentos).

3.2.2 El intercambiador de calor

En base a las ecuaciones establecidas en el capítulo 2, los resultados teóricos del diseño del intercambiador de calor se presentan en la tabla 3.13. En base a los resultados se dimensionó el equipo, los resultados se muestran en la tabla 3.14

Nomenclatura	Símbolo	Unidad	Resultado
Temperatura media del fluido caliente	T_h	К	508
Temperatura media del aire	T _c	К	317.50
Flujo másico del fluido caliente	$\dot{m_h}$	kg/s	0.039
Transferencia de calor total en el intercambiador de calor	Q	W	9281.45
Coeficiente global de transferencia de calor	U	$W/_{m^2K}$	4.48
coeficiente de convección interno	h _i	$W/_{m^2K}$	4.72
Número de Reynolds flujo interno	Re		759.63
Número de Nusselt flujo interno	Nu		4.36
coeficiente de convección externo	h _o	$W/_{m^2K}$	87.88
Número de Reynolds flujo externo	Re		30124.88
Número de Nusselt flujo externo	Nu		153.82
Velocidad máxima en el banco de tubos	V _{max}	$m_{/_S}$	10.90
Diferencia de temperaturas medias logarítmicas	ΔT_{ml}	К	171.6957
Caída de presión en el banco de tubos	Δp	Pa	327.90

Tabla 3.13 Resultados del cálculo del intercambiador. [Autores]

Tabla 3.14 Resultados del dimensionamiento del intercambiador	de	calor.
[Autoros]		

Parámetros	Valores	Unidades
Alto del intercambiador	70	cm
Profundidad del intercambiador	1.55	m
Ancho del intercambiador	80	cm
Diámetro nominal de los tubos	1.5	in
Largo de los tubos	1.55	m
St (separación longitudinal)	7.24	cm
SI (separación diagonal)	6.04	cm
Área entrada aire frío	0.0370	m^2
Área salida aire frío	0.0158	m^2

Se decidió que el intercambiador sea de tubo y carcasa, donde el aire caliente calentado por contacto directo con el GLP pase por los tubos y el aire frío del ambiente por la carcasa, con 3 pasos y 65 tubos.

Los tubos son de cédula 40, con un diámetro interno de 3.81 cm y un largo de 1.55 m. El largo de los tubos es alto debido al bajo valor del coeficiente global de transferencia de calor (ver tabla 3.14), esto es a causa del flujo laminar presente en el fluido caliente que converge en un número de Nusselt bajo. Por otra parte, se optó por un diseño escalonado (ver figura 3.15), debido a que presenta condiciones de diseño más económicas que el alineado (longitud de tubos menor), además de ser más eficiente por una reducida caída de presión.

Figura 3.15 Distribución escalonada de los tubos. [Autores]

En función de lo establecido las dimensiones del intercambiador son de 70 cm x 1.55 cm x 80 cm. Además para el funcionamiento del intercambiador se requiere de un blower de 570 CFM.

3.2.3 La cámara de combustión

Los resultados de las pérdidas de calor en la cámara de combustión se muestran en la tabla 3.15

Nomenclatura	Simbología	Unidad	Resultado
Calor perdido paredes	Q_c	W	52.18
Calor almacenado	Q_p	W	76.34
Total			128.52 W

Tabla 3.15 Resultados del cálculo de pérdidas de calor. [Autores]

En función de los resultados se estableció que la cámara tenga unas dimensiones 0.15 m x 0.30 m x 0.15 m. Cabe mencionar que la cámara de combustión hace referencia a la zona en donde entrara en contacto la llama de GLP y el aire frio. Como aislante se empleará lana de vidrio con espesor de 10 cm. El Blower requerido para la cámara de combustión es de 120.77 CFM.

Por otro lado para una distribución de aire más eficiente hacia el interior de los tubos, se propuso que la cámara de combustión se una al banco de tubos con un difusor, cuya área de llegada corresponde al área que ocupan los tubos (60 cm x 48 cm) y una longitud de la cámara al banco de tubos de 59 cm. Un esquema de lo propuesto se muestra en la gráfica 3.16.

3.2.4 Diseño genera del secador y sus partes

Con todas las dimensiones establecidas, tanto de la cámara de secado, el intercambiador de calor y la cámara de combustión, el esquema del equipo en conjunto se observa en la figura 3.17.

Figura 3.17 Esquema final del equipo en 3D. [Autores]

3.2.5 La cantidad de combustible requerido

Conociendo el flujo másico de fluido caliente requerido y el calor por pérdidas, se determinó la cantidad de combustible requerido para obtener dicha masa de aire caliente para todo el proceso de secado. Los resultados del cálculo se muestran en la Tabla 3.16

Parámetros	Valor	Unidades
Flujo de aire caliente requerido	140.85	(Kg/h)
T del aire ambiente	29	°C
%HR aire ambiente	60%	%
Temperatura del aire caliente	350	°C
Calor total requerido	46038.4	KJ/h
Flujo másico de combustible	0.9972	kg/h
Masa de GLP	18.9	Kg
Cantidad de combustible por tanque utilizable	13.64	kg
TANQUES REQUERIDOS	1.4	tanques

Tabla 3. 16 Resultados de la cantidad de combustible requerido. [Autores]

3.2.6 La cantidad de aire requerido para la combustión

Considerando la reacción química completa del aire, y la ecuación de combustión 2.44, se obtuvieron los siguientes resultados:

Parámetros	Valor
Kmol de oxígeno teórico/h	0.1
Exceso de aire para combustión completa	15%
kmol de oxígeno requerido/h	0.13
K mol de nitrógeno/h	0.487
K mol de aire requerido/h	0.62
Masa de aire (kg/h)	17.78

Tabla 3.17 Resultados del cálculo de masa de aire requerido para la combustión del GLP. [Autores]

3.3 Análisis de costos

Los costos unitarios empleado para los cálculos de costo de todos los equipos, fueron establecidos de proformas de diversas empresas, las mismas que se detallan en el Apéndice D.

3.3.1 Costos del Secador

Los materiales necesarios para la construcción del secador se presentan en la tabla 3.18, donde se detalla la cantidad necesaria, su precio unitario y total.

Se puede apreciar que en donde se requiere invertir más dinero son en las planchas perforadas de acero inoxidable, debido a que este tipo de material es el requerido para trabajar con alimentos. Se requiere de un material resistente a la corrosión.

Descripción	Unidad	Cantidad	Precio Unitario (\$)	Precio total (\$)
Plancha perforada de acero inoxidable 316, diámetro de agujero 5 mm	Unidad	24	214.29	5142.96
Plancha de acero inoxidable, lisa de espesor 0.7 mm	Unidad	6	72.00	432.00
Plancha metálica galvanizada, lisa de espesor 0.7 mm	Unidad	6	20.50	123.00
Ángulos metálicos de 1 pulgada x 1/8, 6 m	Unidad	6	7.70	46.20
Platina de 2 pulgadas x1/8, 6m	Unidad	3	11.40	34.20
Electrodos 6011	Kilogramos	10	4.00	40.00
Electrodos 308 L	Kilogramos	20	15.50	310.00
Caja de remaches de 1/8 de pulgada	Unidad	1	12.00	12.00
Remachadora	Unidad	1	8.83	8.83
Varillas de acero inoxidable, 5 mm de diámetro	Unidad	6	11.00	66.00
Vidrio para máscara de soldar DIN 12	Unidad	2	3.00	6.00
Garruchas de 6 pulgadas 400 Ki	Unidad	24	22.80	547.20
Cable concéntrico	Metros	50	1.99	99.50
Cable flexible rojo #6	Metros	20	1.84	36.80
Cable flexible negro #6	Metros	20	1.84	36.80
Breaker de dos polos de 70 A, para cajetín	Unidad	1	21.99	21.99
Breaker de un polo de 15 A, para cajetín	Unidad	5	4.10	20.50
Cajetín de breaker para 6 breakers	Unidad	1	42.00	42.00
Cinta aislante negra	Unidad	5	1.25	6.25
Interruptor sobre puesto 15 A	Unidad	8	18.00	144.00
Breaker de dos polos 15 A sobre puesto	Unidad	1	12.50	12.50
Subtotal				7188.73
IVA 12%				862.65
Total				8051.38

Tabla 3.18 Costos de materiales del secador. [Autores]

3.3.2 Costos del Intercambiador y cámara de combustión

Por otra parte, los costos del intercambiador de calor representan la inversión necesaria para construir este equipo, y se detallan en la tabla 3.19. En este caso el blower de 570 CFM es el equipo más costoso, debido al alto flujo del aire que es necesario para secar el cacao

Descripción	Unidad	Cantidad	Precio Unitario (\$)	Precio total (\$)
Plancha metálica ASTM 36 de 7 mm de espesor	Unidad	6	20.00	120.00
Plancha metálica galvanizada, lisa de espesor 0.7 mm	Unidad	6	20.50	123.00
Tubos cédula 40, 1.5 de diámetro	Unidad	65	4.80	312.00
Rollo de aislante de fibra de vidrio	Unidad	1	60.00	60.00
Electrodos 6011	Kilogramos	10	4.00	40.00
Electrodos 308 L	Kilogramos	20	15.5	310.00
Caja de remaches de 1/8 de pulgada	Unidad	1	12.00	12.00
Remachadora	Unidad	1	8.83	8.83
Manguera de gas, 250 psi y abrazadera	Metros	4	2.00	8.00
Válvula directa para tanque de gas	Unidad	2	15.00	30.00
Garruchas de 6 pulgadas 400 Ki	Unidad	24	22.80	547.20
Cable concéntrico	Metros	50	1.99	99.50
Cable flexible rojo #6	Metros	20	1.84	36.80
Cable flexible negro #6	Metros	20	1.84	36.80
Breaker de dos polos de 70 A, para cajetín	Unidad	1	21.99	21.99
Breaker de un polo de 15 A, para cajetín	Unidad	5	4.10	20.50
Cajetín de breaker para 6 breakers	Unidad	1	42.00	42.00
Blower 120 CFM	Unidad	1	90.00	90.00
Blower 570 CFM	Unidad	1	550.00	550.00
Subtotal				2468.62
IVA 12%			296.23	
	Total			2764.85

Tabla 3.19 Costos de materiales del intercambiador de calor y cámara decombustión. [Autores]

3.3.3 Costos de Mano de Obra

Los costos de mano de obra representan la cantidad de dinero a remunerar a los trabajadores que van a construir todas las partes del equipo. Sus costos se detallan en la tabla 3.20.

Número de trabajadores	2
Duración del proyecto (días)	20
Horas de trabajo por día	10
Total horas/hombre	400
Costo hora/hombre (\$)	4.00
Costo total mano de obra (\$)	1600.00

Tabla 3. 20 Costos de mano de obra. [Autores]

3.3.4 Costo Total del Proyecto

El costo total del proyecto es la suma de todos los costos anteriores, y se presenta en la siguiente tabla:

Costos	Precio Unitario (\$)
Costos de materiales para secador	8051.38
Costos de materiales para intercambiador	2764.85
Costos de mano de obra	1600.00
Total	12416.23

Tabla 3.21 Costo total del proyecto. [Autores]

Donde se tiene que para el proyecto tiene un costo de \$12416.23 para un secador con capacidad de 500 lb de cacao.

CAPÍTULO 4

4 CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- A partir del estudio cinético se concluye que el secado artificial permite secar el grano de cacao en menos tiempo que el secado al sol. El mayor tiempo de secado obtenido fue de 24 horas en comparación al secado en tendales que suele durar entre 4 días a 1 semana. Sin embargo, se tiene que mientras más elevada es la temperatura de secado y mayor sea la velocidad del viento, más rápido se efectúa el proceso de secado, pero con una reducción excesiva de la humedad del grano, por debajo del 7%.
- El cacao CCN-51 tiene diferencias en cuanto al tiempo de secado requerido en relación al cacao Fino, estas se deben a las humedades iniciales que presenta cada grano. A pesar de esto se obtuvo que ambos tipos de cacao presentan la misma ecuación semiteórica de dos términos para describir la cinética de secado.
- Se concluye en base a la experimentación que el secado del cacao debe realizarse lentamente. El secado rápido hace que la pérdida de agua de las cáscaras sea más veloz que el índice de migración de los ácidos. Como consecuencia el agua se evapora, las cáscaras se endurecerse y bloquean o atrapa los ácidos orgánicos volátiles, los mismos que se concentran en los cotiledones, dando como resultado granos secos con un sabor excesivamente ácido o amargo. Por otro lado, algunas de las reacciones químicas iniciadas en la fermentación como la degradación de los polifenoles no pueden completarse correctamente lo que inhibe las reacciones de formación del sabor y aroma a cacao tanto en el proceso de secado como el tostado, Por otro lado, si el secado es demasiado lento, se puede desarrollar sabores desagradables y moho.
- En base a lo que se establece en la bibliografía y de acuerdo a los resultados que se obtuvieron de la experimentación se llegó a determinar que la temperatura de secado óptimo es de 50°C y la velocidad de aire media de 1.4 m/s. La decisión se realizó tomando en consideración que a 50°C no hay una variabilidad tan alta en cuanto a tiempos hasta alcanzar el 7% de humedad, por otro lado, las propiedades organolépticas no muestran mucha variación, pero se consideró la mejor aquella

que presentaba un color interno de cacao seco de color marrón, una estructura no quebradiza y un pH cercano a 5.5 y no menor a 5.

- Los materiales seleccionados para el diseño del equipo deben ser elegidos de acuerdo a las condiciones del proceso que se vaya a utilizar, es decir se requiere que soporten temperaturas medianas y altas, que sean resistentes a la corrosión y no terminen afectando la calidad del producto final. Se seleccionaron materiales que resistan temperaturas de hasta 350°C para las paredes del quemador, placas galvanizadas para las paredes del secador y planchas de acero inoxidable para las bandejas donde se colocará el cacao que asegure su calidad después del secado, por lo que podemos concluir que la selección de los materiales ha sido adecuada.
- Las simulaciones del diseño de secador de bandejas dan como resultado que la velocidad del aire y la temperatura se mantienen relativamente constante alrededor de toda el área de secado, por lo que se concluye que el diseño fue realizado correctamente. Es importante reconocer que las simulaciones ayudan a reducir de gran manera los tiempos y costos relacionados al proyecto, debido a que se evitan construcciones fallidas y permite corregir errores de cálculo o de estimación.
- Se decidió que el método empleado para calentar el aire requerido para el secador sea mediante el uso de un intercambiador de tubo y carcasa anexo al secador, con la finalidad de reducir costos de energía eléctrica por la implementación de resistencias para calentar el aire, y para evitar que se produzca un calentamiento directo del aire con la llama del combustible que pueda perjudicar significativamente a la calidad del grano de cacao.
- Un diseño escalonado del banco de tubos contribuye a una mejor eficiencia, debido a que produce turbulencia en el fluido circundante que facilita la transferencia de calor. De igual manera el diseño de 3 pasos permite que el aire de salida se encuentre a la temperatura y velocidad adecuada para llevar a cabo el proceso de secado.

4.2 Recomendaciones

 Se recomienda que cuando se realice el proceso de secado, se trate de minimizar las pérdidas de calor durante el proceso de pesaje, para lo cual se podría emplear secadores a pequeña escala que midan la pérdida de masa automáticamente.

- Para el caso del secado a gran escala, se recomienda que los granos sean templados durante la noche a temperatura ambiente, así como se lo realizó en la experimentación con el fin de reducir la acidez, haciendo que la humedad en los granos se equilibre.
- Se recomienda que en el diseño escalonado del banco de tubos se compruebe que exista una buena separación entre los tubos (de alrededor de 20 mm mínimo) para permitir la soldadura y el mantenimiento. De igual manera asegurarse que la distancia entre las paredes del intercambiador y los tubos sea de entre 10 a 20 cm para asegurar el paso del aire por la carcasa.
- En caso de no poder utilizar el GLP como combustible se sugieren otras alternativas, como por ejemplo la propia cáscara del cacao que presenta un buen poder calorífico que le permitiría utilizarse como una alternativa, siempre y cuando se cambie el diseño del intercambiador para poder trabajar de acorde a sus capacidades.
- Dentro de las diversas mejoras que se le podrían realizar al diseño, la principal de estas sería la implementación de un sistema de control automático para la temperatura del secador, ya que puede darse el caso de que en cierto tiempo el secador no esté funcionando en las condiciones óptimas y se debe de tener una medida de contingencia en caso de que esto ocurra. Esta mejora traería consigo más costos asociados al proyecto, pero se lo cubriría con una mayor comodidad al usuario y una mejor calidad del proceso y del producto.
BIBLIOGRAFÍA

- Alean, J., Chejne, F., & Rojano, B. (2016). Degradation of polyphenols during the cocoa drying process. Journal of Food Engineering. Recuperado de: https://doi.org/10.1016/j.jfoodeng.2016.05.026
- Ali, I., Abdelkader, L., El Houssayne, B., Mohamed, K., & El Khadir, L. (2016). Solar convective drying in thin layers and modeling of municipal waste at three temperatures. Applied Thermal Engineering, 108, 41–47. Recuperado de: https://doi.org/10.1016/j.applthermaleng.2016.07.098
- Betancourt, R. X. C., Avellán, S. C. C., García, E. L., & Mora, F. J. C. (2019). Estudio socio-económico del cultivo de cacao (theobroma cacao I.) en la parroquia Febres Cordero, Cantón Babahoyo Los Ríos-Ecuador. Revista Observatorio de La Economía Latinoamericana (on-Line). Recuperado de: https://www.eumed.net/rev/oel/2019/02/cultivo-cacao-ecuador.html
- Beckett, S. T. (2009). Industrial Chocolate Manufacture and Uses. In International Journal of Food Science & Technology. https://doi.org/10.1111/j.1365-2621.2009.02041.x
- BRAY, J. (2012). Process Drying. Recuperado de: https://onthecocoatrail.com/2012/06/24/from-tree-to-bean-the-drying-process/
- CAOBISCO/AEC/FCC, C. biscuits & confectionery of E. E. C. A. ;Federation of C. C. (2015). Cacao en grano: Requisitos de calidad de la industria del chocolate y del cacao. In Revista Brasileira de Medicina (Vol. 69).
- Crank, J. (1983). The mathematics of diffusion , 1979. Theology Today, 39(4), 418–420. Recuperado de: https://doi.org/10.1177/004057368303900411
- Cros, E. and N. Jeanjean. 1995. Cocoa quality: effect of fermentation and drying. Plantations, recherche, développment 24: 25-27.
- DEUS, V. L., CERQUEIRA E SILVA, M. B. de, MACIEL, L. F., MIRANDA, L. C. R., HIROOKA, E. Y., SOARES, S. E., ... BISPO, E. da S. (2018). Influence of drying methods on cocoa (Theobroma cacao L.): antioxidant activity and presence of ochratoxin A. Food Science and Technology, 38(suppl 1), 278–285. Recuperado de: https://doi.org/10.1590/fst.09917

Ecuatoriano de Normalización, I. (n.d.). NTE INEN 0176: Cacao en grano. Requisitos.

- Arévalo, A. (2018). Diseño de un horno intercambiador de biomasa y gas para la generación de calor utilizada en el proceso de secado del arroz. Tesis de Grado.
- FAO. (2019). Organización de las Naciones Unidas para la alimentación y la agricultura. Recuperado de: http://www.fao.org/faostat/es/#data

- FICHA SECTORIAL: Cacao y Chocolate GDGE-SUBG. DE ANÁLISIS E INFORMACIÓN. (n.d.).
- García, A. (2016). Propuesta de diseño de un deshidratador tipo bandeja para la producción de frutas orgánicas tipo snacks: Tesis de Grado. Universidad de Bogotá.
- Geankopolis, C. J. (1998). Procesos de Transporte y Operaciones Unitarias. 3ra Ed. Mexico. Compañía Editorial Continental.
- Girón, C., Nacional, I., Agrícolas, D. I., El, I. C., & Hospital, H. R. (2010). 2010. Álvarez et al. Evaluación de la calidad comercial del grano cacao usando dos tipos de fermentadores. 10(1), 76–87.

Guzmán, J. (19 de Julio de 2005). Cacao CCN51 se reconoce como de alta productividad. El Universo. Recuperado de: https://www.eluniverso.com/2005/07/19/0001/9/2D498EAC6A2C48F5B794AFA40F 1F83E0.html

Guda, P., Gadhe, S., & Jakkula, S. (2017). Drying of Cocoa Beans by Using Different Techniques. International Journal of Agriculture Innovations and Research, 5(5), 2319–1473. Recuperado de :https://ijair.org/administrator/components/com_jresearch/files/publications/IJAIR_2 330_FINAL.pdf

- Hii, C. L., Law, C. L., Cloke, M., & Suzannah, S. (2009). Thin layer drying kinetics of cocoa and dried product quality. Biosystems Engineering, 102(2), 153–161. Recuperado de: https://doi.org/10.1016/j.biosystemseng.2008.10.007
- Himmelblau, D. M. (1997). Principios Básicos y cálculos en ingeniería química. Recuperado de: http://blog.utp.edu.co/docenciaedwin/files/2015/06/Principios-Básicos-y-Cálculos-en-Ingeniería-Química-6º-edición-David-M.-Himmelblau-Prentice-Hall.pdf
- Incropera, F. P., & DeWitt, D. P. (1999). INCROPERA_Transferencia_de_calor.pdf. Fundamentos de Transferencia de Calor, pp. 2–8.
- Map-ITC, T. (2019). Estadística del comercio para el desarrollo internacional de las empresas. Recuperado de: https://www.trademap.org/Index.aspx
- Mejía Córdoba, C. A. (2018). Validación de un modelo matemático para predicción de la fermentación y secado del grano de cacao. Revista de Investigación Agraria y Ambiental. Recuperado de:https://doi.org/10.22490/21456453.2088
- Noroña, L. (2018). Cinética de secado de cereales provenientes de la Región Centro del Ecuador (tesis de pregrado). Universidad Técnica de Ambato

Cueva Moreno (2017) (tesis de pregrado). Universidad Técnica de Ambato. Diseño y

construcción de un secador automático para cacao a base de aire caliente Universidad de Bogotá. Tesis de Grado

- Organization, I. C. (2000). DRYING COCOA BEANS. Recuperado de: https://www.icco.org/faq/59-fermentation-a-drying/110-drying-cocoa-beans.html
- Pangoa, C. A. C. de. (2016). Manual de proceso de calidad de cacao fino de aroma. Manual de proceso de calidad de cacao fino de aroma. Recuperado de: https://issuu.com/vecoandino/docs/m1
- Pérez, M., & Contreras, J. (2017). Instructivo para el control de calidad de granos de cacao. Swisscontact Colombia, 28.
- Plaza Acebedo, M., Rodríguez, J., & Quijano, J. (2016). Estudios Industriales-Industria de Cacao. 42. Recuperado de: http://www.espae.espol.edu.ec/publicaciones-deespae/
- Poscosecha cacao. (n.d.). Retrieved from Métodos de secado del cacao. website: http://poscosechacacao.blogspot.com/2017/08/metodos-de-secado-de-cacao.html
- Rivera, J. (2016). Estado Actual Sobre La Producción y el comercio del cacao en América Latina. Recuperado de https://www.iica.int/sites/default/files/publications/files/2017/BVE17048806e.pdf
- Samaniego-Ojeda, C., Hernández, O. H. Á., & Correa, J. M. (2017). Emisiones provocadas por combustión de GLP a partir de calefones en la ciudad de Loja y su posible relación con enfermedades respiratorias agudas (ERA's). Cedamaz, 6(1), 60–67. Recuperado de: http://revistas.unl.edu.ec/index.php/cedamaz/article/view/62
- Santana, L. (2016). Propuesta de Diseño de un Deshidratador tipo Bandeja para la produccióon de frutas orgánicas. (May), 31–48.
- Suárez, L. (2013). Ahorro Energético en Hornos Tipo Túnel, Que Operan con GLP. 145. Recuperado de: https://doi.org/10.1103/PhysRevX.7.041008
- Treybal, R. E. (2013). Operações de Transferência de Massa. Journal of Chemical Information and Modeling, 53(9), 1689–1699. Recuperado de: https://doi.org/10.1017/CBO9781107415324.004
- Yogendrasasidhar, D., & Setty, Y. P. (2019). Experimental studies and thin layer modeling of pearl millet using continuous multistage fluidized bed dryer staged externally. Engineering Science and Technology, an International Journal, 22(2), 428–438. Recuperado de: https://doi.org/10.1016/j.jestch.2018.10.010
- Zipperer, P., & Zipperer, P. (1902). The manufacture of chocolate and other cacao preparations (2nd ed.). Berlín: Verlag von M. Krayn.

APÉNDICES

Apéndice A: Tablas de verificación de la mejor ecuación de ajuste

SECADO ARTIFICIAL CCN-51 (Velocidad aire 0.5-0.7 m/s)				
MODELO	PARÁMETROS	40 °C	50°C	60°C
	k	0.07699	0.20423	0.29319
Newton	RMSE	0.04104	0.03468	0.01737
	R2	0.97890	0.99126	0.99687
	а	0.96386	0.93869	0.98758
Handaraan y Dahia	k	0.07393	0.18928	0.28950
Henderson y Pabis	RSME	0.03933	0.02790	0.01751
	R2	0.98212	0.99168	0.99666
	k	0.09476	0.26606	0.32207
Paga	n	0.92415	0.85131	0.93500
Faye	RMSE	0.03986	0.02191	0.01585
	R2	0.98222	0.99540	0.99714
	С	-0.08279	0.00298	0.01465
	а	1.02421	0.93712	0.98100
Logaritmic	k	0.06034	0.19123	0.30506
	RSME	0.03672	0.02857	0.01568
	R2	0.98455	0.99169	0.99716
Modelo de dos términos	а	0.45039	0.15280	0.76432
	k	0.07390	0.74690	0.36232
	С	0.51369	0.85890	0.23787
	g	0.07390	0.17360	0.16531
	RSME	0.04043	0.02109	0.01496
	R2	0.98214	0.99561	0.99758

SECADO ARTIFICIAL CCN-51 (Velocidad aire 1.03-1.77 m/s)				
MODELO	PARÁMETROS	40°C	50°C	60°C
	k	0.21741	0.27664	0.37800
Newton	RMSE	0.02589	0.01351	0.01599
	R2	0.99444	0.99799	0.99739
	а	0.94870	0.98127	0.98122
Henderson y	k	0.20562	0.27150	0.37084
Pabis	RSME	0.02235	0.01279	0.01559
	R2	0.99357	0.99798	0.99741
	k	0.28372	0.30048	0.42735
Paga	n	0.84987	0.94608	0.89942
Page	RMSE	0.01267	0.01191	0.00948
	R2	0.99787	0.99837	0.99900
	С	0.01994	0.00274	0.00992
Logaritmic	а	0.94213	0.98001	0.97642
	k	0.22214	0.27412	0.38455
	RMSE	0.02018	0.01306	0.01470
	R2	0.99452	0.99800	0.99754
	а	0.20978	0.05039	0.28444
	k	0.85624	0.85678	0.82525
Modelo de dos	С	0.79091	0.94961	0.71809
términos	g	0.17599	0.21122	0.30217
	RSME	0.01267	0.02345	0.00867
	R2	0.99795	0.99125	0.99924

SECADO ARTIFICIAL CCN-51 (Velocidad aire 1.9-2.5 m/s)				
MODELO	PARÁMETROS	40°C	50°C	60°C
	k	0.30334	0.28702	0.26974
Newton	RMSE	0.03400	0.04202	0.02675
	R2	0.98262	0.98390	0.99323
	а	0.93307	0.92685	0.95712
Llandaraan y Dahia	k	0.28164	0.26374	0.25761
Henderson y Pabis	RSME	0.02985	0.03782	0.02445
	R2	0.98783	0.98471	0.99325
	k	0.41340	0.41147	0.33886
Paga	n	0.79082	0.76259	0.85423
Faye	RMSE	0.01611	0.01836	0.01496
	R2	0.99661	0.99577	0.99743
Logaritmic	С	0.01688	0.03216	0.01605
	а	0.92736	0.91736	0.95083
	k	0.30183	0.30216	0.27369
	RMSE	0.02878	0.03473	0.02369
	R2	0.98863	0.98759	0.99326
	а	0.23433	0.35641	0.24611
	k	1.94537	1.01438	0.88398
Modelo de dos	С	0.76602	0.64732	0.75655
términos	g	0.23303	0.19225	0.21286
	RSME	0.01232	0.01519	0.01372
	R2	0.99806	0.99735	0.99800

SECADO ARTIFICIAL CACAO FINO (Velocidad de aire 1.9-2.5 m/s)				
MODELO	PARAMETROS	40 °C	50°C	60°C
	k	0.34397	0.41357	0.37922
Newton	RMSE	0.02683	0.03499	0.03579
	R2	0.99235	0.98763	0.98757
	а	0.97246	0.97257	0.94894
Handarson y Pabia	k	0.33387	0.40127	0.41001
Henderson y Pabis	RSME	0.02657	0.03532	0.03600
	R2	0.99168	0.98660	0.98679
	k	0.42020	0.51235	0.48230
Baga	n	0.84544	0.80659	0.80899
Page	RMSE	0.01825	0.02572	0.02375
	R2	0.99572	0.99203	0.99401
	С	0.02003	0.02885	0.01631
	а	0.96509	0.96063	0.94125
Logaritmic	k	0.36162	0.45085	0.38208
	RMSE	0.02360	0.03025	0.03358
	R2	0.99279	0.98890	0.98758
	а	0.51541	0.60845	0.21132
	k	0.64735	0.74638	1.52323
Modelo de dos	С	0.49441	0.40216	0.78868
términos	g	0.21400	0.21754	0.28708
	RSME	0.01491	0.02158	0.02091
	R2	0.99736	0.99481	0.99440

Apéndice B: Cálculos

Cálculo del flujo másico de aire para secado

Humedad final cacao seco 7%, la masa de cacao después del secado:

$$m_{cs} (kg) = \frac{m_{ci}(1 - H_{wbi})}{(1 - h_{wbf})}$$
$$m_{cs} (kg) = \frac{226.8 \, kg \, (1 - 0.57)}{(1 - 0.07)} = 104.86 \, kg$$

Flujo másico de agua perdida por secado

$$m_w = m_{ci} - m_{cs} = (226.8 - 104.86)kg = 121.94 kg$$
$$\dot{m}_w = \frac{121.94 kg}{19 h} = 6.42 \frac{kg}{h}$$

De las condiciones del aire se tiene:

Datos del aire del proceso		
T del aire de secado	50	
%HR de humedad relativa	20%	
Humedad absoluta (kg H2O/kg aire seco)	0.015	
T de salida aire húmedo (°C)	48	
%HR del aire de salida	30%	
Humedad absoluta (kg H2O/kg aire seco)	0.021	

$$\dot{m}_a = \frac{\dot{m}_w}{H_{af} - H_{ai}} = \frac{6.42}{0.021 - 0.015} = 1069.61 \frac{kg}{h}$$

Cálculo del área de secado a nivel industrial

Se tomaron los datos experimentales de las curvas de velocidad de secado a 50°C y velocidad de aire de 1.04-1.77 m/s.

$$\int_{x2}^{x1} \frac{dX}{R} = \int_{0.005128}^{1.505128} 3.6725x - 0.809 \, dx = 13.7677 \frac{m^2 h}{Kg \, ss}$$

Para 200 g de cacao se obtuvo:

$$\frac{M_{ss}}{A} = \frac{0.078 \ kg}{0.0528 \ m^2} = 1.4772 \frac{Kg_{ss}}{m^2}$$
$$\theta = 1.4772 \frac{Kg_{ss}}{m^2} * 13.7677 \frac{m^2h}{Kg \ ss} = 20.3 \ h$$

Escalando a nivel de los pequeños productores:

$$500lb \times \frac{0.453592 \ kg}{1 \ lb} = 226.8 \ kg$$
$$M_{ss} = m_i * (1 - H_{wbi})$$

 H_{wbi} = Humedad inicial del cacao

 m_{ci} = Masa inicial de cacao

$$M_{ss} = 226.8 \ kg * (1 - 0.57) = 97.5 \ kg$$
$$A = \frac{M_{ss}}{\theta} * \int_{x2}^{x1} \frac{dX}{R} = \frac{97.5 \ kg}{20.3 \ h} * 13.7677 \ \frac{m^2 h}{Kg \ ss} = 66 \ m^2$$

Cálculo del tiempo de secado del cacao fino

El cacao fino tiene una humedad de 49%, entonces:

$$M_{ss} = 226.8 \, kg * (1 - 0.49) = 115.7 \, kg$$

Empleando la misma área bajo de la curva 1/R vs X del cacao CCN-51:

$$\theta = \frac{115.7 \, Kg_{ss}}{66 \, m^2} * 13.7677 \frac{m^2 h}{Kg \, ss} = 24 \, h$$

Diseño Intercambiador Calor:

Temperatura media del aire caliente

$$T_h = \frac{T_{hi} + T_{ho}}{2}$$
$$T_h = \frac{623 + 393}{2} = 508 K$$

Tabla B.1 Propiedades del aire caliente

Propiedades aire caliente a temperatura media:	
Cph: Calor especifico aire caliente [J/Kg.°K]	1031.44
uh: viscosidad [N.s/m²]	2.73E-05
kh: conductividad térmica [W/m.°K]	4.12E-02
Pr: número de Prandtl	0.68368
ρh: Densidad aire caliente [kg/m³]	0.683984

Temperatura media del aire frío

$$T_c = \frac{T_{ci} + T_{co}}{2}$$
$$T_c = \frac{302 + 333}{2} = 317.5 K$$

Tabla B. 2. Propiedades del aire frío

Propiedades aire a temperatura media:		
Cpc: Calor especifico gas [J/Kg.°K]	1007.7	
uc: viscosidad [N.s/m²]	1.93E-05	
kc: conductividad térmica [W/m.°K]	2.76E-02	
Pr: número de Prandtl	0.70455	
ρc: Densidad aire [kg/m³]	1.10316	

Dimensiones de los tubos		
Di: diámetro interno de los tubos	0.0381	
Do: diámetro externo de los tubos	0.0483	
St/d	1.5	
SI/d	1.25	
Nt: número de tubos	65	

Flujo másico de los gases

$$\dot{m_h} = \frac{\dot{m_a} C p_c (T_{co} - T_{ci})}{C p_h (T_{hi} - T_{ho})}$$
$$\dot{m_h} = \frac{0.297 * 1007.7 * (333 - 302)}{1031.44(623 - 393)}$$
$$\dot{m_h} = 0.039 \frac{kg}{s}$$

Coeficiente de convección interno

Número de Reynolds

$$Re = \frac{4m_h}{\pi * D_i * \mu_h * N_t}$$

$$Re = \frac{4 * 0.039}{\pi * 0.0381 * 2.73E - 05 * 65}$$

$$Re = 736.25$$

$$Re_{cr} = 2300$$

Según Incropera y Dewitt (1999) si el flujo interno en un cilindro es laminar (Reynolds <2300) entonces el número de Nusselt es igual a 4.36

$$h_i = \frac{Nu * k}{D}$$

$$h_i = \frac{4.36 * 4.12E - 02}{0.0381}$$
$$h_i = 4.72 \ W/_{m^2K}$$

Coeficiente de convección externo

Velocidad máxima en el banco de tubos

$$V = \frac{\dot{m_a}}{A * p_c}$$
$$V = \frac{0.2971}{0.03705 * 1.1032}$$
$$V = 7.27 \ \frac{m_c}{s}$$

$$V_{max} = \frac{S_t}{2 * (S_t - D_o)} * V$$
$$V_{max} = \frac{0.072}{2 * (0.072 - 0.0483)} * 7.27$$
$$V_{max} = 10.90 \ m/s$$

Número de Reynolds Flujo externo

$$Re = \frac{\rho_c * V_{max} * D_o}{\mu_c}$$
$$Re = \frac{1.1032 * 10.90 * 0.483}{1.93E - 05}$$
$$Re = 30124.88$$

De acuerdo al número de Reynolds y a las dimensiones del St/D y Sl/D se obtiene la siguiente ecuación, basándonos en las tablas B.2 y B.4:

$$Nu = 1.13 * C1 * Re^{m} * Pr^{0.33}$$
$$Nu = 1.13 * 0.505 * 30124.88^{0.554} * 0.705^{0.33}$$
$$Nu = 153.81$$

$$h_{o} = \frac{Nu * k}{D}$$

$$h_{o} = \frac{153.81 * 2.76E - 02}{0.0483}$$

$$h_{o} = 87.88 \frac{W}{m^{2}K}$$

Coeficiente global de transferencia de calor

$$U = \frac{1}{\frac{1}{h_i} + \frac{1}{h_o}}$$
$$U = \frac{1}{\frac{1}{\frac{1}{4.72} + \frac{1}{87.88}}}$$

$$U = 4.48 \ ^{W}/_{m^{2}K}$$

Temperatura media logarítmica

$$\Delta T_{ml} = \frac{(T_{hi} - T_{co}) - (T_{ho} - T_{ci})}{\ln\left(\frac{T_{hi} - T_{co}}{T_{ho} - T_{ci}}\right)}$$
$$\Delta T_{ml} = \frac{(623 - 333) - (393 - 302)}{\ln\left(\frac{623 - 333}{393 - 302}\right)}$$

$$\Delta T_{ml} = 171.7 \ K$$

Longitud de tubos

$$Q = U * \pi * D_i * L * N_t * \Delta T_{ml}$$
$$L = \frac{Q}{U * \pi * D_i * N_t * \Delta T_{ml}}$$

$$L = \frac{9281.3}{4.48 * \pi * 0.0381 * 65 * 171.7}$$

L = 1.55 m

Caída de presión en el banco de tubos

$$\Delta p = N_l * x * \left(\frac{\rho_c * V_{max}^2}{2}\right) * f$$
$$\Delta p = 10 * 1 * \left(\frac{1.1032 * 10.90^2}{2}\right) * 0.5$$
$$\Delta p = 327.90 \ Pa$$

Diseño de la cámara de combustión

Pérdidas de calor

Calor perdido en la cámara de combustión

$$Q_c = U_c A_c (T_{cam} - T_a)$$

Coeficiente de convección interno

Temperatura de película

$$T_h = \frac{T_c + T_{pl}}{2}$$
$$T_h = \frac{623 + 523}{2} = 573 \ K$$

Tabla B.4 Propiedades a la temperatura de película

Propiedades a la temperatura de película		
Viscosidad cinemática	4.81E-05	
Conductividad térmica	4.57E-02	
Numero de Prandtl	0.68108	

Número de Reynolds

$$V = \frac{\dot{m}_h}{A * p_h}$$
$$V = \frac{0.039}{0.0225 * 0.6839}$$
$$V = 2.54 \ \frac{m}{s}$$

$$Re_{x} = \frac{V * L}{v}$$

$$Re_{x} = \frac{2.54 * 0.3}{4.81E - 05}$$

$$Re_{x} = 15841.99$$

$$Re_{cr} = 200000$$

Número de Nusselt

Dado que el Reynolds es menor al crítico, se usó la siguiente correlación para calcular el número de Nusselt

$$Nu = 0.664 Re_x^{0.5} Pr^{0.33}$$
$$Nu = 0.664 * 15841.99^{0.5} * 0.68108^{0.33}$$
$$Nu = 73.5377$$

$$h_{ic} = \frac{Nu * k}{L}$$

$$h_{ic} = \frac{73.5377 * 4.57E - 02}{0.3}$$

$$h_{ic} = 11.19 \ W/m^2K$$

Coeficiente de convección externo

Temperatura de película

$$T_h = \frac{T_a + T_{po}}{2}$$
$$T_h = \frac{302 + 323}{2} = 312.5 \ K$$

Tabla B.5. Pro	piedades a la	temperatura de	película
----------------	---------------	----------------	----------

Propiedades a la temperatura de película		
Viscosidad cinemática	1.71E-05	
Conductividad térmica	2.72E-02	
Difusividad térmica	2.44E-05	
Numero de Prandtl	0.70525	

Número de Rayleigh

$$Ra_{l} = \frac{g\beta(T_{po} - T_{a})L^{3}}{\nu\alpha}$$
$$Ra_{l} = \frac{9.8 * 3.20E - 03 * (323 - 302)0.3^{3}}{1.71E - 05 * 2.44E - 05}$$
$$Ra_{l} = 42616048.32$$

Número de Nusselt

$$Nu = 0.15Ra_l^{0.33}$$
$$Nu = 0.15 * 42616048.32^{0.33}$$
$$Nu = 52.38$$

$$h_{oc} = \frac{Nu * k}{L}$$

$$h_{oc} = \frac{52.38 * 2.72E - 02}{0.3}$$

$$h_{oc} = 4.75 \ W/m^2 K$$

Cálculo coeficiente de radiación

$$h_{ir} = \varepsilon * \sigma * F * \frac{(T_h^4 - T_p^4)}{(T_h - T_p)}$$

$$h_{ir} = 0.8 * 5.67E - 08 * 1 * \frac{(623^4 - 523^4)}{(623 - 523)}$$

$$h_{ir} = 34.39 \ W/_{m^2K}$$

Coeficiente global de transferencia de calor

Datos para cálculo de coefi	ciente
Espesor pared interior	0.007
Conductividad pared interior	46.5
Espesor del aislante	0.05
Conductividad del aislante	0.035
Espesor pared exterior	0.007
Conductividad pared exterior	46.5

Tabla B.6. Datos para cálculo de coeficiente global

$$U_{c} = \frac{1}{\frac{1}{h_{ic} + h_{ir}} + \frac{e_{ais}}{k_{ais}} + \frac{e_{po}}{k_{po}} + \frac{1}{h_{oc}}}$$
$$U_{c} = \frac{1}{\frac{1}{\frac{1}{11.19 + 34.39} + \frac{0.05}{0.035} + \frac{0.0007}{46.5} + \frac{1}{4.75}}}{U_{c} = 0.60 \ W/m^{2}K}$$

$$Q_c = 6 * U_c A_c (T_{cam} - T_a)$$
$$Q_c = 6 * 0.60 * 0.045 * (623 - 302)$$
$$Q_c = 52.18 W$$

Calor almacenado en las paredes de la cámara

$$Q_p = m_p C p_p (T_{pi} - T_m)$$

Temperatura media en las paredes

$$T_h = \frac{T_{pi} + T_{po}}{2}$$
$$T_h = \frac{523 + 323}{2} = 423 K$$

_

Pared exterior

Volumen de la pared exterior

$$V_{aco} = Lhe$$

 $V_{aco} = 0.3 * 0.15 * 0.0007$
 $V_{aco} = 0.0000315 m^3$

Masa de la pared exterior

$$m_{aco} = V_{aco} * \rho_c$$
$$m_{aco} = 0.0000315 * 7850$$
$$m_{aco} = 0.247 \ kg$$

$$Q_{po} = m_p C p_p (T_m - T_{po})$$
$$Q_{po} = 0.247 * 434 * (423 - 323)$$
$$Q_{po} = 107317.35 J$$

Pared de aislamiento Pared del aislante

Volumen de la pared del aislante

$$V_{ais} = Lhe$$

 $V_{ais} = 0.3 * 0.7 * 0.05$
 $V_{ais} = 0.0105 m^3$

Masa de la pared aislante

$$m_{ais} = V_{ais} * \rho_{ais}$$

 $m_{ais} = 0.0105 * 40$
 $m_{ais} = 0.42 \ kg$

$$Q_{ais} = m_{ais}Cp_{ais}(T_m - T_{po})$$

 $Q_{ais} = 0.42 * 835 * (423 - 323)$
 $Q_{ais} = 35070 J$

Calor total almacenado

$$Q_p = Q_{po} + Q_{ais}$$

$$Q_p = 107317.35 + 204287.5$$

$$Q_p = 45801.74 J * \frac{6}{1000}$$

$$Q_p = 76.34 W$$

Calculo de la cantidad de combustible requerido para el proceso

Calor requerido para obtener el aire caliente

$$Q_r = Q_a + Q_{pT} = Q_a + 462.636 \frac{KJ}{h}$$
$$Q_a = m_h * Cp (T_1 - T_2) = 140.85 \frac{kg}{h} * 1.008 \frac{KJ}{kg * K} * (350 - 29)$$
$$Q_a = 45575.7 \frac{KJ}{h}$$

$$Q_r = 45575.7 \frac{KJ}{h} + 462.636 \frac{KJ}{h} = 46038.4 \frac{KJ}{h}$$
$$\dot{m_c} = \frac{Q_r}{PCI} = \frac{46038.4 \frac{KJ}{h}}{46168.7 \frac{KJ}{KJ}} = 0.997 \frac{kg}{h}$$

Considerando 19 horas de secado

$$m_c = m_c * t = 0.997 \frac{k\dot{g}}{h} x 19 h = 18.9 kg$$

Un tanque de uso doméstico tiene 15 kg, pero lo usable son 13.64 kg, de manera que, la cantidad de tanques domésticos a emplear es 1.4 tanques.

Calculo del aire requerido para la combustión del GLP

$$C_x H_x + x(O_2 + 3.76N_2) \rightarrow xCO_2 + xH_2O + xO_2 + xN_2$$

Realizando los respectivos balances se obtienen los siguientes resultados:

PROPANO	
Propano	1
Oxigeno	5
Dióxido de carbono	3
Agua	4
BUTANO	
Butano	1
Oxigeno	6.5
Dióxido de carbono	4
Agua	5

Tabla B.7. Coeficientes de reacción de combustión balanceada

Propano:

$$C_3H_8 + 10(O_2 + 3.76N_2) \rightarrow 3CO_2 + 4H_2O + 5O_2 + 37.6N_2$$

Butano:

$$C_4H_{10} + 13(O_2 + 3.76N_2) \rightarrow 4CO_2 + 5H_2O + 6.5O_2 + 48.88N_2$$

Para el flujo másico de combustible establecido, los kilos moles iniciales son:

kmoles de	e combustible
C3H8	0.01373
C4H10	0.00676

Del balance de materia empleando las reacciones químicas, se tiene: que las kilo moles de oxigeno teórico son: 0.1 kmol/h

$$n_{Oreq} = \% exceso \ (n_{ot}) + n_{ot} = 15\% \left(0.1 \frac{kmol}{h} \right) + \left(0.1 \frac{kmol}{h} \right)$$

$$n_{Oreq} = 0.13 \frac{kmol}{h}$$

$$n_N = 0.13 \frac{kmol}{h} x \frac{79}{21} = 0.487 \ kmol \ de \ Nitrógeno$$

$$n_{aire} = 0.62 \frac{kmol}{h}$$

$$m_{aire} = n_{aire} * PM = 0.62 \ X28.84 \frac{Kg}{kmol} = 17.78 \frac{kg}{h} \ de \ aire$$

Cálculo de los blowers

$$\dot{Q_c} = \frac{m_h}{\rho_h}$$

 $\dot{Q_c} = \frac{0.039}{0.683984}$
 $\dot{Q_c} = 0.057 \ m^3/_s = 3.42 \ m^3/_{min}$
 $\dot{Q_c} = 120.77 \ CFM$

$$\dot{Q}_{l} = \frac{\dot{m}_{a}}{\rho_{c}}$$
$$\dot{Q}_{c} = \frac{0.2971}{1.10316}$$
$$\dot{Q}_{c} = 0.269 \ m^{3}/_{s} = 16.15 \ m^{3}/_{min}$$

$$\dot{Q_C} = 570 \ CFM$$

Análisis de tiro de la chimenea

Diferencia de presión por elevación

$$\frac{\Delta P}{\rho} = g * h * (1 - \frac{\rho_h}{\rho_c})$$
$$\frac{\Delta P}{\rho} = 9.8 * 3 * (1 - \frac{0.6840}{1.1032})$$
$$\frac{\Delta P}{\rho} = 11.17 \ Pa$$

Pérdidas a lo largo de la chimenea

$$V = \frac{\dot{m_h}}{A * p_h}$$
$$V = \frac{0.39}{0.09 * 0.684}$$

$$Re = \frac{\rho_h * V * D_h}{\mu_h}$$
$$Re = \frac{0.684 * 0.6335 * 0.30}{2.73E - 05}$$
$$Re = 4761.90$$

 $V = 0.6335 \ m/s$

Del diagrama de Moody se obtiene:

Tabla B.8. Datos del acero

Datos del Acer	0
Rugosidad (mm)	0.0045
Diámetro hidráulico (m)	0.3
ε/D	0.015
Número de Reynolds	4761.90
Factor de fricción	0.054

$$\Delta P_f = f * \frac{h}{D_h} * \left(\frac{V^2}{2 * g * \rho_h}\right)$$
$$\Delta P_f = 0.054 * \frac{3}{0.3} * \left(\frac{0.6335^2}{2 * 9.8 * 0.684}\right)$$
$$\Delta P_f = 0.016 \ Pa$$

Pérdidas a la salida de la chimenea

$$\Delta P_{ex} = \frac{\rho_h * V^2}{2 * g}$$
$$\Delta P_{ex} = \frac{0.684 * 0.6335^2}{2 * 9.8}$$
$$\Delta P_{ex} = 0.014 \ Pa$$

Como la presión a la salida de la chimenea es menor que la presión a lo largo de la misma, se considera que la altura de diseño es apta para tener una chimenea de tiro natural

Apéndice C: Simulaciones

Figura C.1. Gráficas CFD, vista 3D del secador

Apéndice D: TABLAS

Т (К)	ρ (kg/m³)	c_p (kJ/kg · K)	$\frac{\mu \cdot 10^7}{(N \cdot s/m^2)}$	<i>v</i> · 10 ⁶ (m ² /s)	$\frac{k \cdot 10^3}{(W/m \cdot K)}$	α · 10 ⁶ (m ² /s)	Pr
Aire				-			
100	3.5562	1.032	71.1	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4,426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.590	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.9950	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.7740	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	6.709
850	0.4097	1.110	384.3	93.80	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
1000	0.3482	1.141	424.4	121.9	66.7	168	0.726
1100	0.3166	1.159	449.0	141.8	71.5	195	0.728
1200	0.2902	1.175	473.0	162.9	76.3	224	0.728
1300	0.2679	1.189	496.0	185.1	82	238	0.719
1400	0.2488	1.207	530	213	91	303	0.703
1500	0.2322	1.230	557	240	100	350	0.685
1600	0.2177	1.248	584	268	106	390	0.688

Tabla D.1. Correlaciones de transferencia de calor por convección para flujoexterno (Incropera y Dewitt, 1999)

Tabla D.2. Correlaciones de transferencia de calor por convección para flujointerno (Incropera, 2011)

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform $q_s^{\prime\prime}$
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s
$\overline{Nu}_D = 3.66 + \frac{0.0668 \ Gz_D}{1 + 0.04 \ Gz_D^{2/3}}$	(8 .57)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform $T_s, Gz_D = (D/x) Re_D Pr$
$\overline{Nu_D} = \frac{\frac{3.66}{\tanh[2.264 \ Gz_D^{-1/3} + 1.7 \ Gz_D^{-2/3}]} + 0.0499 \ Gz_D \tanh(Gz_D^{-1})}{\tanh(2.432 \ Pr^{1/6} \ Gz_D^{-1/6})}$	(8.58)	Laminar, combined entry, $Pr \approx 0.1,$ uniform $T_{s},$ $Gz_D = (D/x) Re_D Pr$
$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$	(8.20) ^c	Turbulent, fully developed
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, smooth walls, $3000 \approx Re_D \approx 5 \times 10^6$
$Nu_D = 0.023 Re_D^{4/5} Pr^n$	(8.60) ^d	Turbulent, fully developed, $0.6 \leq Pr \leq 160$, $Re_D \gtrsim 10,000$, $(L/D) \gtrsim 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$
$Nu_D = 0.027 R \sigma_D^{4/5} P r^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.61) ^d	Turbulent, fully developed, 0.7 $\lesssim Pr \lesssim 16,700,$ $Re_D \gtrsim 10,000,$ $L/D \gtrsim 10$
$Nu_D = \frac{(f/8)(Re_D - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	(8.62) ^d	Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$
$Nu_D = 4.82 + 0.0185 (Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform $q_x'', 3.6 \times 10^3 \lesssim Re_D \lesssim 9.05 \times 10^5, 3 \times 10^{-3} \lesssim Pr \lesssim 5 \times 10^{-2}, 10^2 \lesssim Re_D Pr \lesssim 10^4$
$Nu_D = 5.0 + 0.025 (Re_D Pr)^{0.8}$	(8.65)	Liquid metals, turbulent, fully developed, uniform $T_s, Re_D Pr \approx 100$

	a a strate the
TABLE 8.4	Summary of convection correlations for flow in a circular tube ^{a,o,e}

Tabla D.3 Constantes C1 y m para el flujo de aire sobre un banco de tubos (Incropera y Dewitt, 1999)

				S_T/D				
	1.3	1.25		1.5		2.0		.0
S_L/D	<i>C</i> ₁	m	<i>C</i> 1	m	<i>C</i> ₁	m	C ₁	m
Alineado			15- 11 M					
1.25	0.348	0.592	0.275	0.608	0.100	0.704	0.0633	0.752
1.50	0.367	0.586	0.250	0.620	0.101	0.702	0.0678	0.744
2.00	0.418	0.570	0.299	0.602	0.229	0.632	0.198	0.648
3.00	0.290	0.601	0.357	0.584	0.374	0.581	0.286	0.608
Escalonado	2							
0.600	-	-	-	-	-	-	0.213	0.636
0.900	_	_	_	-	0.446	0.571	0.401	0.581
1.000	-	-	0.497	0.558		-	-	-
1.125	-		-		0.478	0.565	0.518	0.560
1.250	0.518	0.556	0.505	0.554	0.519	0.556	0.522	0.562
1.500	0.451	0.568	0.460	0.562	0.452	0.568	0.488	0.568
2.000	0.404	0.572	0.416	0.568	0.482	0.556	0.449	0.570
3.000	0.310	0.592	0.356	0.580	0.440	0.562	0.428	0.574

TABLA 7.5 Constantes de las ecuaciones 7.61 y 7.63 para el flujo de aire sobre un banco de

Figura D.1. Factor de fricción f y factor de correlación x para un banco de tubos escalonados (Incropera y Dewitt, 1999)

Tabla D.4. Proforma (Tuvaferr Cia. Ltda., 2019)

SAMA DE 5 VIA PER : go: :: ITIDAD	LAS NACIONES UNIDAS PARA EL DESARROLLO (IMETRAL CAMPUS GUSTAVO GALINDO INMEDIÀTA TLF. 2269190	R.U.O	C.:099132698700	01
5 VIA PER : go: I: ITIDAD	IMETRAL CAMPUS GUSTAVO GALINDO INMEDIATA TLF. 2269190	PROFORM	۵.	
: go: :: ITIDAD	INMEDIATA TLF. 2269190		-	70819
go: :: ITIDAD	100 W CONTRACNITRECA	DIA	MES	AÑO
ITIDAD	100 % CONTRAENTREGA	7	8	2019
ITIDAD	15 DIAS			
	DESCRIPCION	_	V.UNITARIO	TOTAL
5	Plancha perforada de acero inoxidable, 316	6 de 1,5 mm	320,00	1.600,00
	diametro de agujero 5 mm			0,00
8	Plancha de acero inoxidable, lisa de 0.7 mm de	espesor	72,00	576,00
4 .	plancha metalica galvanizada, lisa de espesor 0	0.7 mm	20,50	82,00
6	Angulos metalicos de 1 pulgada x 1/8, 6 m	7,70	46,20	
3	Platina de 2 pulgadas x 1/8, 6m	11,40	34,20	
5	Angulo de 3/4 de pulgada x 1/8, acero inoxidabl	27,50	137,50	
3	Tubo cuadrado inoxidable de 1 pulgada , 6 m		36,70	110,10
10	Kilos electrodos 6011		4,00	40,00
20	kilos de electrodos 308L		15,50	310,00
1	caja de remaches de 1/8 de pulgada		12,00	12,00
1	remachadora		29,00	29,00
20	metros caucho para refrigeradora estándar		15,00	300,00
6	varillas de acero inoxidable, 5 mm de diametro,	, 6 m	11,00	66,00
2	vidrio para mascara de soldar DIN 12		3,00	6,00
24	garruchas de 6 pulgadas (12 fijas-12 girat.) 400) ki	22,80	547,20
6	saco de cemento, Holcim		9,50	57,00
50	metros de cable concentrico #10		3,30	165,00
20	metros de cable # 6, color rojo		2,40	48,00
20	metros de cable # 6, color negro		2,40	48,00
1	breaker de dos polos de 70 A, para cajetin	20	58,00	58,00
5	Breaker de un polo de 15 A, para cajetin		5,80	29,00
1	Cajetin de breaker para 6 breaker		42,00	42,00
5	cinta aislante negra		1,25	6,25
8	interruptor sobre puesto 15 A		18,00	144,00
1	Breaker de dos polos 15 A sobre puesto		18,00	18,00
2	tanqe plastico de 55 galones		37,50	75,00
200	pernos autoperforantes con capuchon de ca	aucho	0,06	12,00
	8 4 6 3 5 3 10 20 1 1 20 1 1 20 6 2 24 6 50 20 20 1 5 1 5 8 1 2 200	8Plancha de acero inoxidable, lisa de 0.7 mm de4plancha metalica galvanizada, lisa de espesor 06Angulos metalicos de 1 pulgada x 1/8, 6 m3Platina de 2 pulgadas x 1/8, 6m5Angulo de 3/4 de pulgada x 1/8, acero inoxidab3Tubo cuadrado inoxidable de 1 pulgada , 6 m10Kilos electrodos 601120kilos de electrodos 308L1caja de remaches de 1/8 de pulgada1remachadora20metros caucho para refrigeradora estándar2varillas de acero inoxidable, 5 mm de diametro2vidrio para mascara de soldar DIN 1224garruchas de 6 pulgadas (12 fijas-12 girat.) 4006saco de cemento, Holcim50metros de cable concentrico #1020metros de cable % 6, color nojo20metros de cable # 6, color nojo20metros de cable # 6, color negro1breaker de dos polos de 70 A, para cajetin5ginta aislante negra8interruptor sobre puesto 15 A1Breaker de dos polos 15 A sobre puesto2tanqe plastico de 55 galones200pernos autoperforantes con capuchon de comparisonal de comparison de capuchon de comparisonal de comparison de capuchon de comparisonal de comparison de capuchon de comparisonal de c	8Plancha de acero inoxidable, lisa de 0.7 mm de espesor4plancha metalica galvanizada, lisa de espesor 0.7 mm6Angulos metalicos de 1 pulgada x 1/8, 6 m3Platina de 2 pulgadas x 1/8, 6m3Angulo de 3/4 de pulgada x 1/8, acero inoxidable, 6 m3Tubo cuadrado inoxidable de 1 pulgada , 6 m10Kilos electrodos 601120kilos de electrodos 308L1caja de remaches de 1/8 de pulgada1remachadora20metros caucho para refrigeradora estándar6varillas de acero inoxidable, 5 mm de diametro, 6 m2vidrio para mascara de soldar DIN 1224garruchas de 6 pulgadas (12 fijas-12 girat.) 400 ki5saco de cemento, Holcim50metros de cable 4 6, color rojo71breaker de dos polos de 70 A, para cajetin73Breaker de un polo de 15 A, para cajetin74Gajetin de breaker para 6 breaker75cinta aislante negra8interruptor sobre puesto 15 A9Breaker de dos polos 15 A sobre puesto2tanqe plastico de 55 galones200pernos autoperforantes con capuchon de caucho	8Plancha de acero inoxidable, lisa de 0.7 mm de espesor72,004plancha metalica galvanizada, lisa de espesor 0.7 mm20,506Angulos metalicos de 1 pulgada x 1/8, 6 m7,703Platina de 2 pulgadas x 1/8, 6m11,405Angulo de 3/4 de pulgada x 1/8, acero inoxidable, 6 m27,503Tubo cuadrado inoxidable de 1 pulgada , 6 m36,7010Kilos electrodos 60114,0020kilos de electrodos 308L15,501caja de remaches de 1/8 de pulgada12,001remachadora29,0020metros caucho para refrigeradora estándar15,006varillas de acero inoxidable, 5 mm de diametro, 6 m11,002vidrio para mascara de soldar DIN 123,0024garruchas de 6 pulgadas (12 fijas-12 girat.) 400 ki22,8050metros de cable e concentrico #103,3020metros de cable # 6, color rojo2,4020metros de cable # 6, color rojo2,4020metros de cable # 6, color rojo2,4021breaker de un polo de 15 A, para cajetin5,805Breaker de un polo de 15 A, para cajetin5,806cajetin de breaker para 6 breaker42,005cinta aislante negra1,258interruptor sobre puesto 15 A18,001Breaker de dos polos 15 A sobre puesto18,002tanqe plastico de 55 galones37,50200pernos autoperforantes con capuchon de caucho0,06

Tabla D.5. Proforma (Kitton S.A., 2019)

about:blar

KITTON S.A. Distribuidor

07-ago-2019 11:24:08

Ruc. 0992125691001 Somos Contribuyente Especial según resolución No. 176 del 16/03/07

PROFORMA

No. Proforma : Cliente : Cedula/Ruc : Dirección : 'Tipo de Venta:	504522 CONSUMIDOR FII 999999999999999 GUAYAQUIL GUA Venta Retail	VAL YAQUIL . GUAY	YAQUIL GUAY . GUAYAQUIL 1	Fecha Contabilización : Fecha Vencimiento : Condición Pago : Vendedor : Fecha de Entrega :	07-ago-2019 14-ago-2019 CONTADO Andrea Espinoza 07/08/2019	
Codigo	CANTIDAD	Unidad	DES	CRIPCION	PRECIO	Precio T.
СС310-М	50,00	METRO	Cable CONCENTRICO 3X10 THHN		1,9900	99,50
CFX6-25RO	1,00	ROLLO (25)	Cable FLEXIBLE # 6 ROJO (25ME	TROS)	46,0000	46,00
CFX6-25NE	1,00	ROLLO(25M)	Cable FLEXIBLE # 6 NEGRO (25N	IETROS)	46,0000	46,00
GEBKG2700	1,00	UNIDAD	BREAKER (2 ×70A-GRUESO) ORI	G GE (THQL2170)	21,9900	21,99
GEBKG115	. 5,00	UNIDAD	BREAKER 1×15A EMP (GRUESO)	GE (THQL1115)	4,1000	20,50
GE3PN12	1,00	UNIDAD	PANEL-TRIFASICO (12-ESP) USA	GE (TL12412C)	84,0000	84,00
3M1700NE	5,00	UNIDAD	CINTA 1700 NEGRO (UL) 3M		1,2500	6,25
BT2VOV	8,00	UNIDAD	IN TERRUP SOBREP 15ERV BT OV	AL (P52)	0,9300	7,44
GEBK52150	1,00	UNIDAD	BREAKER (2X 15A-SOBREPUESTO) ORIG GE (THQC2115WL)	12,5000	12,50
вв	2,00	UNIDAD	BASE-BREAKER TIPO GE		0,1700	0,34
PG-TANQ210C	2,00	UNIDAD	TANQUE CILINDRO (ECONO-55-G	ALONES) 210 LTS PLASTG	34,5000	69,00
GEPN48	1,00	UNIDAD	PANEL-MONOFASICO (4-8 ESP) U	ISA GE (TL412C)	21,5000	21,50
GEBK115	5,00	UNIDAD	BREAKER 1X15A EMP FINO GE (T	HQP115)	3,5500	17,75
GEBK250	1,00	UNIDAD	BREAKER 2X50A EMP FINO GE		10,9900	10,99
	in X					
Son Cuatroc Validez Profer	ientos noventa y o ma 7 Días	ocho y 64 / 11	00	Suma 4%Descue SubTota Vta.con Iva 12% Valor To	nto JI Tarifa 0% Tarifa 12% otal	463,76 18,55 445,21 - 445,21 53,43 498,64

Matriz: Av. Carlos Julio Arosemena km. 2.5. PBX: 3727430 e-mail: ventas@kitton.com.ec Home-page: www.kitton.com.ec Gaussanil - Ecuador

I de 1

07/08/2019 11:30

Tabla D.6. Cotización (Multimetales S.A., 2019)

		https	s://outlook.of	fice.com/ma	il/inbox	/id/AAQ	QkADRkZGM	401
DIOLA. INM Telf: T Ruc: C Almacén :	INTETALES S.A. IACONSA 2DA. ETAPA S/N MZ.39 SOLAR 4 6#.04 3704300 Ext.1404/1405 1992160454001 10 CALLEORNIA Sector op.0000		Cotizaci	ión No. :		58	35859	
Cliente :	99999999999 CONSUMIDOR FINAL	19 Vor	ndedor:MU I	MULTIMETAL	ES			
Producto	Descripción	Cantidad	Precio	Subtotal	Dscto 1	Dscto 2	Total	
9 05	PLANCHA AC/INOX. MATE 0.70MM (4x	8.00	68.1900	545,5200	25.00	00	409 1400	11
P545	PLANCHA GALV. 1/32 0.70 (4X8)	4.00	20.1300	80.5200	25.00	00	60.3900	1
155	ANGULO 1 X 1/8 (25X3MM)	6.00	8.7113	52.2678	25.00	.00	39,2000	V
295	PLATINA 2 X 1/8 (50X3MM)	3.00	11.5729	34.7187	25.00	.00	26.0400	V
A01	ANG A/INOX 304 3/4 X 1/8 (20X3)	5.00	27.2250	136.1250	25.00	.00	102 1000	~
X125	FUJINOX CUADR. 1" 25 x 25 x 1.5	3.00	39.0495	117,1485	25.00	.00	87,8600	V
(900	FUNDA AGA 6011 (1/8) 5 KLS.	2.00	20.9300	41.8600	25.00	5.00	29,8200	
916	PALILLO AGA A/INOX 308L-16 3/32	100.00	.6377	63.7700	25.00	.00	47.8300	1
TL32101	REMACHADORA TOTAL 10" (THT32	1.00	8.8333	8.8333	25.00	.00	6.6200	1
RM10	REMACHES POP 1/8X1/2 (CIENTO)	5.00	1.6016	8.0080	25.00	.00	6.0100	1
	TO 1-1-1- \$ 070 77		Subtotal	:			815.01	
Su aho i	110 total es \$ 2/3.//						the second s	
Su aho i Presénte	nos una mejor oferta y se la mejoramos.		Exento :				.00	
Su aho i Presénte El descue	nos una mejor oferta y se la mejoramos. nto (Dscto 1) es un beneficio que sólo aplica is de contado (destino a bitrario)		Exento : I.V.A : 12	2.00 %			.00 97.80	