Escuela Superior Politécnica del Litoral

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN

DISEÑO DE PROTOTIPO ANALIZADOR DE ESQUEMAS DE MODULACIÓN Y TÉCNICAS DE ACCESO DEL ESTÁNDAR IEEE 802.11

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE:

MAGÍSTER EN TELECOMUNICACIONES

Autores: Carlos Alberto Bósquez Bósquez Jorge Mario Peralta Verdezoto

TUTOR:

PhD. Francisco Novillo

GUAYAQUIL – ECUADOR

2022

AGRADECIMIENTOS

Agradezco a Dios, a mi familia, profesores, amigos y compañeros de aulas de maestría que compartieron conmigo conocimientos y buenas prácticas profesionales. A mis hijos, esposa, padres y mis hermanos que son pilares principales y motivo de fuerza y dedicación para que se cumplan mis metas y objetivos.

Carlos Alberto Bósquez Bósquez

Agradezco a Dios por proveer los recursos necesarios que hicieron posible finalizar esta meta. Por poner en el camino a personas, que, con paciencia y cariño, me empujaron día a día para llegar hasta el final.

Jorge Mario Peralta Verdezoto

DEDICATORIA

Dedico este trabajo en especial a mi familia que supieron soportar muchos fines de semana de sacrificio y dedicación para que pueda culminar la maestría y la tesis. A mis padres que me apoyaron desde el inicio de mis estudios para ver hoy cristalizado este logro profesional. A mis amigos y compadres de la música que me aguantaron muchos fines de semana sin ensayos. A mis jefes que me apoyaron para que mis horarios laborales no se crucen con las clases. A mi tutor y amigo que me apoyó desde el inicio de la maestría con el desarrollo de la idea de este trabajo. A todas las personas que me colaboraron desde el inicio para que hoy se pueda culminar este trabajo de investigación.

Carlos Alberto Bósquez Bósquez

Este trabajo lo dedico a Dios, el ser que estuvo conmigo durante todo este camino lleno de aprendizajes, esfuerzos y sacrificios; y ha permitido que llegue al final de este, alcanzado así, una meta importante en mi vida.

A mi abuela, Dalinda Calle Chávez, o como la conocemos en la familia, Mamita Dalinda, por ser una mujer extraordinaria y por siempre alegrase de mis logros.

Jorge Mario Peralta Verdezoto

TRIBUNAL DE SUSTENTACIÓN

PhD. María Antonieta Álvarez Villanueva SUBDECANA DE LA FIEC

PhD. Francisco Novillo, MSc. DIRECTOR DEL TRABAJO DE TITULACIÓN

Ms.C. Alfredo Nuñez Unda MIEMBRO PRINCIPAL DEL TRIBUNAL

DECLARATORIA EXPRESA

"La responsabilidad del contenido de este trabajo de tesis, me corresponde exclusivamente y el patrimonio intelectual del mismo, a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

Art: 12 del reglamento de graduación de ESPOL

Ing. Carlos Alberto Bósquez Bósquez

Forgeherby.

Ing. Jorge Mario Peralta Verdezoto

RESUMEN

Las tecnologías inalámbricas de banda ancha han evolucionado en los últimos años dando como resultado nuevas tecnologías como LTE Advanced, 5G y Wifi 6, esto se ha dado por la alta demanda de contenido multimedia que los usuarios solicitan desde sus dispositivos móviles y por la rápida implementación de nuevas redes de banda ancha que han abaratado los costos de servicios y se han desplegado a más ciudades a nivel local.

El desarrollo de estas tecnologías, nuevos protocolos de comunicación inalámbricas, nuevos métodos de acceso inalámbrico, y diversas formas de modulación digital han sido previamente experimentadas en laboratorio y discutidas con la comunidad científica previo al despliegue masivo comercial a nivel mundial.

Las nuevas tecnologías inalámbricas se prueban en laboratorio utilizando herramientas que permitan la fácil configuración de sus algoritmos y que permitan desarrollar pruebas tanto internas como en campo. Una de estas herramientas son las radios definidas por software, los cuales son hardware de radio recepción y transmisión de banda ancha configurable mediante software propietario o software opensource. En el Ecuador existen universidades con posgrados de maestría en telecomunicaciones, los cuales dentro de sus pensum está el estudio de las radios definidas por software y el uso de equipamiento SDR para el análisis de señales inalámbricas de banda ancha. Sin embargo, es importante contar con un banco de pruebas o manual de prácticas que permitan desarrollar lo aprendido en la teoría de las señales inalámbricas.

Bajo este marco, se presenta este trabajo de investigación, el cual consiste en el diseño de un prototipo analizador de esquemas de modulación y técnicas de acceso del estándar IEEE 802.11ac.

El proyecto de investigación consta de un manual de prácticas utilizando radios definidas por software para el estudio de la capa física del protocolo 802.11ac.

ÍNDICE GENERAL

1	CAPÍTULO 11				
1.1 Introd			oducción1		
1.1.1		1.1	Descripción del problema1		
1.1.2		1.2	Justificación1		
	1.2	Obj	etivos2		
	1.2	2.1	Objetivo general2		
	1.2	2.2	Objetivos específicos2		
	1.3	Met	todología2		
	1.4	Alca	ance3		
2	CA	٩ΡÍTU	JLO 24		
	2.1	Ma	rco teórico4		
	2.	1.1	Sistemas de Comunicaciones Inalámbricos4		
	2.	1.2	Redes de Área Local Inalámbrica4		
	2.	1.3	Arquitectura WLAN5		
	2.	1.4	Estándar IEEE 802.11ac6		
	2.	1.5	Beamforming7		
	2.	1.6	Banda de frecuencia de IEEE 802.11ac8		
	2.	1.7	Orthogonal Frequency Division Multiplexing (OFDM)9		
	2.	1.8	Canales de 80 MHz y 160 MHz11		
	2.	1.9	Definición de Radio Definida por Software (SDR)11		
	2.	1.10	Arquitectura de la Radio Definida por Software12		
	2.	1.11	Recursos computacionales necesarios en procesos de SDR15		
	2.	1.12	Software LabVIEW para pruebas WLAN16		
3	CA	٩PÍTU	JLO 318		
	3.1	Dis	eño de prototipo para pruebas IEEE 802.11ac18		
	3.	1.1	Esquemáticos de prototipo con SDR19		
	3.2	Cor	nexiones físicas de elementos del prototipo IEEE 802.11ac21		
	3.3	Dis	eño de algoritmos para prototipo IEEE 802.11ac23		
3.4 Inst		Inst	alación del software NI LabVIEW NXG y el Framework 802.11ac34		
	3.5 Val		idaciones previas a nivel de software previo al uso del prototipo IEEE		
	802.	11ac.			
	3.6	Dis	eño e implementación de algoritmos para la transmisión y recepción de		
	señales inalámbricas IEEE 802.11ac utilizando SDR				

vi

3.	.7 Des	scripción de los controles e indicadores del módulo IEEE 802.11ac	45		
	3.7.1	Pestaña Básica - Configuración de la aplicación	45		
	3.7.2	Configuración estática de tiempo de ejecución	47		
	3.7.3	Configuración dinámica de tiempo de ejecución	49		
	3.7.4	Indicadores	50		
	3.7.5	Pestaña MAC	52		
	3.7.6	Configuración dinámica de tiempo de ejecución (pestaña MAC)	53		
	3.7.7	Gráficos e indicadores (pestaña MAC)	55		
	3.7.8	Pestaña RF & PHY	57		
	3.7.9	Configuración dinámica de tiempo de ejecución (RF y PHY)	58		
	3.7.10	Gráficos e indicadores (RF y PHY Tab)	58		
	3.7.11	Pestaña Avanzado	59		
	3.7.12	Configuración estática del tiempo de ejecución	60		
	3.7.13	Configuración dinámica de tiempo de ejecución	62		
	3.7.14	Pestaña Eventos	63		
	3.7.15	Configuración dinámica de tiempo de ejecución	64		
	3.7.16	Pestaña Estado	66		
	3.7.17	Gráficos e indicadores	67		
4	CAPÍTI	JLO 4	70		
4	.1 Pru	ebas y evaluación de prototipo IEEE 802.11ac	70		
	4.1.1	Pruebas y evaluación del desempeño del código para el envío	de		
	señales	s de transmisión y recepción inalámbricas con SDR	70		
4	.2 Pre	sentación de los resultados de las pruebas del prototipo	83		
4	.3 Des	sarrollo de manual de práctica de la capa física 802.11ac con SDR	92		
	4.3.1	Práctica #1: Transmisión y Recepción de señales inalámbri	icas		
	utilizano	do el protocolo IEEE 802.11ac	92		
	4.3.2	Práctica #2: Generador de datos PN (saturación de enlace de TX).	100		
	4.3.3	Práctica #3: Transmisión y Recepción de video utilizando el estár	ndar		
	IEEE 80	02.11ac	111		
Con	clusione	S	123		
Recomendaciones12					
Bibli	iografía		125		
Apé	Apéndice127				

ABREVIATURAS

ACK	Acknowledgement.
AGC	Control automático de ganancia.
BLER	Block Error Rate.
BPSK	Modulación por desplazamiento diferencial de fase.
CTS	Clear-To-Send.
dBm	Decibelios.
ESPOL	Escuela Superior Politécnica del Litoral.
FIFO	First in, First out.
PGA	Field Programmable Gate Arrays.
GHz	Gigahertzios.
IEEE	Institute of Electrical and Electronics Engineers.
IP	Internet Protocol.
NI	National Instruments.
MAC	Capa de mac address.
Mbps	Megabits por segundo.
MCS	Modulation and Coding Scheme.
MHz	Megahertzios.
MPDU	MAC Service Data Unit.
OFDM	Multiplexación por división de frecuencias ortogonales.
PER	Packet Error Rate.
PHY	Capa física.
PN	Pseudoruido.
PSDU	PLCP Service Data Unit.
QAM	Modulación por amplitud de cuadratura.
QPSK	Modulación por desplazamiento de fase.
RF	Radiofrecuencia.
RTS	Request-To-Send.
SDR	Software Defined Radio.
TX/RX	Transmisión y Recepción.
UDP	Protocolo de datagramas de usuario.
UTP	Unshielded Twisted Pair.
USRP	Universal Software Radio Peripheral.
VI	Virtual Instrument.

ÍNDICE DE FIGURAS

Figura 2.1 Arquitectura WLAN	6
Figura 2.2 MIMO Multiusuario 4 streams, 3 usuarios	7
Figura 2.3 Proceso de beamforming	8
Figura 2.4 Señal OFDM generada con Matlab	10
Figura 2.5 NI USRP 2974	12
Figura 2.6 Esquemático de radio definido por software	13
Figura 2.7 Arquitectura de una radio definida por software ideal	15
Figura 2.8 LabVIEW	17
Figura 3.1 Banco de pruebas IEEE 802.11ac	18
Figura 3.2 Esquemático del banco de pruebas IEEE 802.11ac	20
Figura 3.3 Conexión de antenas en el USRP	22
Figura 3.4 Conexión física del USRP 2974 y el CPU	22
Figura 3.5 Conexión de monitor, teclado y mouse en USRP	23
Figura 3.6 Validación de firmware del NI USRP 2974	24
Figura 3.7 Pendrive insertado en el NI USRP	26
Figura 3.8 Menú de BIOS general del USRP	26
Figura 3.9 Habilitar USB Legacy	27
Figura 3.10 Guardar y salir del menú del USRP	27
Figura 3.11 Seleccionar Boot de inicio	28
Figura 3.12 Boot Style EFI del USRP	28
Figura 3.13 Proceso de instalación	29
Figura 3.14 Logeo al USRP desde consola	30
Figura 3.15 Revisión de firmware	30
Figura 3.16 Interfaces de USRP serial 317930C	31
Figura 3.17 Interfaces de USRP serial 3179304	32
Figura 3.18 Requisitos de CPU	33
Figura 3.19 CPU Dell Optiplex 3070	33
Figura 3.20 Banco de pruebas listo para su uso	34
Figura 3.21 LabVIEW NXG versión 4	35
Figura 3.22 Framework 802.11ac versión 19.5	36
Figura 3.23 Paquetes de LabVIEW instalados	36
Figura 3.24 Ventana principal de LabVIEW NXG	37
Figura 3.25 Licencia de LabVIEW Communications 4.0	

Figura 3.26 Licencia de LabVIEW NXG 4.0	.38
Figura 3.27 Diagrama de flujo de validaciones previas al uso del banco de prueb	bas
IEEE 802.11ac	.39
Figura 3.28 Panel de herramientas	.40
Figura 3.29 Agregar Hardware USRP	.40
Figura 3.30 USRP habilitado serial 317930C	.41
Figura 3.31 USRP habilitado serial 3179304	.41
Figura 3.32 Módulos de Software	.42
Figura 3.33 Módulos de FPGA	.43
Figura 3.34 Pantalla principal del banco de pruebas IEEE 802.11ac	.44
Figura 3.35 Ejecutar programa	.44
Figura 3.36 Seleccionar dispositivo RIO	.45
Figura 3.37 Seteo de parámetros	.47
Figura 3.38 Pestaña MAC	.52
Figura 3.39 Pestaña RF & PHY	.57
Figura 3.40 Ficha Avanzada de Application Framework	.60
Figura 3.41 Ficha Eventos de Application Framework	.64
Figura 3.42 Ficha Estado de Application Framework	.66
Figura 4.1 Seteo de MAC address PC1 – TX	.70
Figura 4.2 Seteo de MAC Address PC2- Rx	.71
Figura 4.3 Setear potencia	.71
Figura 4.4 Seteo de valores en Data Source	.72
Figura 4.5 Seteo en pestaña avanzada	.72
Figura 4.6 Pestaña MAC	.73
Figura 4.7 RF & PHY	.74
Figura 4.8 Pestaña Avanzada	.74
Figura 4.9 Pestaña de eventos	.75
Figura 4.10 Configuración en PC2 – RX	.75
Figura 4.11 Pruebas de TX y Rx	.76
Figura 4.12 RF & PHY PC2	.76
Figura 4.13 Pestaña de avanzado PC2	.77
Figura 4.14 Eventos PC2	.77
Figura 4.15 Router TP-Link	.78
Figura 4.16 Recepción con interferencias	.79
Figura 4.17 Medición con ruido en el canal	.79

Figura 4.18 Ancho de banda máximo	80
Figura 4.19 Resultados en RF & PHY	80
Figura 4.20 Pestaña Advanced PC2	81
Figura 4.21 Pestaña de Eventos PC2	81
Figura 4.22 Cambios en formato del carrier 8 MCS	82
Figura 4.23 Cambios en formato del carrier 4 MCS	82
Figura 4.24 Máxima transferencia de datos	83
Figura 4.25 Resultados PC1	84
Figura 4.26 Resultados PC1 - Diagrama de constelación	84
Figura 4.27 Resultados PC2	85
Figura 4.28 Resultados PC2 - Diagrama de constelación	85
Figura 4.29 Diagrama de barras del Throughput en 2.4 GHz	88
Figura 4.30 Diagrama de barras del Throughput en 5.18 GHz	92
Figura 4.31 Configuración de Estación A	94
Figura 4.32 Parámetros de Subcarrier	94
Figura 4.33 Pestaña RF & PHY	95
Figura 4.34 Pestaña de configuraciones avanzadas	96
Figura 4.35 Pestaña de estatus	96
Figura 4.36 Analizador de espectros banda ancha de 80 MHz	97
Figura 4.37 Receptor PC2	97
Figura 4.38 Pestaña de RF & PHY del Receptor PC2	98
Figura 4.39 Pestaña de avanzados en el Receptor PC2	98
Figura 4.40 Pestaña de avanzados en el Receptor PC2	98
Figura 4.41 Analizador de espectro con 80 MHz de banda ancha	99
Figura 4.42 Seteo de parámetros de MAC Address	103
Figura 4.43 Seteo de parámetros de modulación	103
Figura 4.44 Seteo de parámetros datos	103
Figura 4.45 Seteo de parámetros avanzados	104
Figura 4.46 Aumento de potencia a 10 dBm	104
Figura 4.47 Pestaña RF & PHY	105
Figura 4.48 Pestaña RF & PHY – PC1	105
Figura 4.49 Pestaña de estatus – PC1	105
Figura 4.50 Configuraciones de modulación y esquemas de acceso - PC1	106
Figura 4.51 Configuraciones de modulación y esquemas de acceso 16 QAM	- PC1
	106

Figura 4.52 Resultados en diagrama de constelación PC2	107
Figura 4.53 Resultados en ancho de banda PC2	107
Figura 4.54 Pestaña RF & PHY - PC2	108
Figura 4.55 Pestaña Avanzados - PC2	108
Figura 4.56 Pestaña Eventos - PC2	108
Figura 4.57 Ancho de banda con mayor potencia de TX - PC2	109
Figura 4.58 Pestaña RF & PHY - con mayor potencia de TX - PC2	109
Figura 4.59 Mayor Throughput PC2	110
Figura 4.60 Seteo de parámetros de configuración UDP - PC1	112
Figura 4.61 Emitir desde VLC – PC1	113
Figura 4.62 Añadir video	114
Figura 4.63 Buscar video y abrir	114
Figura 4.64 Emitir video añadido	115
Figura 4.65 Salida de emisión	115
Figura 4.66 Añadir UDP Legacy	116
Figura 4.67 Dirección ip y puerto	116
Figura 4.68 Habilitar transcodificar	117
Figura 4.69 Emitir video	117
Figura 4.70 TX de video en VLC	118
Figura 4.71 Tx de video mediante UDP	118
Figura 4.72 RF & PHY en Tx de video mediante UDP	119
Figura 4.73 Pestaña estatus en Tx de video mediante UDP	119
Figura 4.74 Configuraciones en Rx de video mediante UDP	120
Figura 4.75 Configuraciones en Rx - VLC	121
Figura 4.76 PC2 – RX	121
Figura 4.77 Recepción de video	122

ÍNDICE DE TABLAS

Tabla 2.1 Comparación estándar IEEE 802.11ac con protocolos anteriores	9
Tabla 3.1 Configuración de la aplicación (ficha básica)	46
Tabla 3.2 Configuración estática del tiempo de ejecución	48
Tabla 3.3 Configuración dinámica de tiempo de ejecución	49
Tabla 3.4 Configuración dinámica de tiempo de ejecución	50
Tabla 3.5 Cuadro de indicadores	51
Tabla 3.6 Configuración dinámica (pestaña MAC)	53
Tabla 3.7 Configuración dinámica (pestaña MAC)	54
Tabla 3.8 Gráficos e indicadores (ficha MAC)	55
Tabla 3.9 Gráficos e indicadores (ficha MAC)	56
Tabla 3.10 Configuración dinámica de tiempo de ejecución RF y PHY	58
Tabla 3.11 Gráficos e indicadores (RF y PHY Tab)	58
Tabla 3.12 Gráficos e indicadores (RF y PHY Tab)	59
Tabla 3.13 Configuración estática de tiempo de ejecución (ficha Avanzadas)	61
Tabla 3.14 Configuración estática de tiempo de ejecución (ficha Avanzadas)	62
Tabla 3.15 Configuración dinámica de tiempo de ejecución (ficha Avanzada)	63
Tabla 3.16 Configuración dinámica de tiempo de ejecución (ficha Eventos)	65
Tabla 3.17 Gráficos e indicadores (ficha Estado)	67
Tabla 3.18 Gráficos e indicadores (ficha Estado)	68
Tabla 3.19 Gráficos e indicadores (ficha Estado)	69
Tabla 4.1 Prueba 1 en 2.437 GHz.	83
Tabla 4.2 Prueba 2 en 2.437 GHz	86
Tabla 4.3 Prueba 4 en 2.437 GHz	86
Tabla 4.4 Prueba 4 en 2.437 GHz	87
Tabla 4.5 Prueba 5 en 2.437 GHz	87
Tabla 4.6 Resumen de resultados de pruebas en 2.437 GHz	88
Tabla 4.7 Prueba 1 en 5.18 GHz	89
Tabla 4.8 Prueba 2 en 5.18 GHz	89
Tabla 4.9 Prueba 3 en 5.18 GHz	90
Tabla 4.10 Prueba 4 en 5.18 GHz	90
Tabla 4.11 Prueba 5 en 5.18 GHz	91
Tabla 4.12 Resumen de resultados de pruebas en 5.18 GHz	91
Tabla 4.13 Configuraciones en PC1 – USRP 1	93

Tabla 4.14 Configuraciones en PC1 – USRF	° 195
Tabla 4.15 Configuraciones en PC1 – USRF	? 1101
Tabla 4.16 Configuraciones en PC2 – USRF	⁹ 2102

INTRODUCCIÓN

Este trabajo de investigación busca facilitar, a especialistas en el área de telecomunicaciones, una herramienta con la cual permita el estudio y análisis individual de las capas que conforman el estándar IEEE 802.11ac en la banda de 2.4 GHz y de 5 GHz. En la actualidad existe poco estudio de las capas que conforman el estándar IEEE 802.11ac, debido a que las infraestructuras que están al alcance de los especialistas en el área de telecomunicaciones, sólo permiten acceder de forma parcial a estas capas [1] [2] [3].

La investigación se centra en probar, mediante técnicas de tratamiento de señales digitales, los distintos métodos de acceso bajo esquemas de modulación en la capa física del estándar IEEE 802.11ac, de tal forma que se puede entender el funcionamiento de dicha capa, al transmitir diferentes tipos de datos, utilizando un tipo de modulación en particular, para poder acceder al medio inalámbrico.

Además, se proporcionará una visión general del estándar 802.11ac, sus características propias de la capa física y capa MAC aplicados a un banco de pruebas para prácticas de laboratorio, utilizando dispositivos autónomos de radio definida por software USRP y configurado desde la plataforma LabVIEW [1].

En el capítulo 1 de este trabajo de investigación se describe el problema y la justificación junto con los objetivos generales y específicos, metodología del trabajo y alcance. En el capítulo 2 se revisa el marco teórico del protocolo IEEE 802.11ac específicamente de la capa física y MAC. En el capítulo 3 se realiza el diseño del prototipo para pruebas IEEE 802.11ac, se presenta el esquemático y escenario de trabajo. En el capítulo 4 se enfoca en la realización de las pruebas y evaluación del prototipo, se presenta un resumen del manual de tres prácticas. Finalmente, las conclusiones, recomendaciones y bibliografía acompañan al apéndice donde se detalla el procedimiento de las prácticas del banco de pruebas del prototipo IEEE 802.11ac.

CAPÍTULO 1

1.1 Introducción

1.1.1 Descripción del problema

En la actualidad los sistemas de comunicaciones inalámbricos requieren de modificaciones en sus protocolos, en tiempos más cortos de los que se venían realizando anteriormente, con lo cual se da la necesidad de hacer desarrollos de manera autónoma en estos sistemas. Una de las tecnologías más utilizadas por los usuarios en general, es el estándar IEEE 802.11ac, el cual demanda un estudio más detallado de la capa física y MAC que componen este estándar, pero las opciones disponibles en el mercado actual, si bien nos ofrecen una solución, pueden ser de alto costo en hardware y difícil programación en software.

Además, los protocolos que se encuentran configurados no son de acceso público, ocasionando que cualquier modificación sea muy compleja o en el peor de los casos inaccesibles, dificultando el aprendizaje práctico en estudiantes universitarios especialistas en radiocomunicaciones, al querer analizar en detalle las diferentes técnicas de modulación y de acceso al medio como OFDM de una canal de radio en redes de corto alcance IEEE 802.11ac [4] [5] [6].

1.1.2 Justificación

Se plantea el diseño del prototipo analizador de esquemas de modulación y técnicas de acceso del estándar IEEE 802.11ac, que propone dotar de una herramienta o banco de pruebas que facilite el análisis, comprensión y estudio para poder realizar modificaciones de parámetros como diferentes esquemas de modulación y técnicas de acceso del canal de radio en redes IEEE 802.11ac.

Este tipo de herramientas es indispensable para los especialistas en radiocomunicaciones, facilitando la comprensión del estándar IEEE 802.11ac para futuros desarrollos y aplicaciones basadas en redes de corto alcance IEEE 802.11ac, ya que conociendo en detalle y modificando el comportamiento de la capa física del enlace inalámbrico, específicamente su modulación y técnicas de acceso como por ejemplo OFDM, se pueden desarrollar diferentes soluciones tecnológicas basadas

en algoritmos y aplicadas a redes inalámbricas WLAN IEEE 802.11ac [7] [8].

1.2 Objetivos

1.2.1 Objetivo general

Diseñar prototipo analizador de esquemas de modulación y técnicas de acceso del estándar IEEE 802.11.

1.2.2 Objetivos específicos

- Diseñar el prototipo para pruebas de esquemas de modulación y técnicas de acceso del estándar IEEE 802.11.
- Implementar algoritmo para la transmisión de tramas inalámbricas del estándar IEEE 802.11.
- Evaluar la transmisión y recepción de tramas basadas en diferentes esquemas de modulación y técnicas de acceso.

1.3 Metodología

La propuesta de trabajo presentada dentro de este proyecto, está basada en la metodología de la investigación del tipo correlacional, la misma que busca determinar correlación existente entre las variables antes mencionadas. Este análisis de correlación se realizará usando métodos cuantitativos de análisis de datos en determinados escenarios, por ejemplo, se obtendrán datos de los niveles de potencia, tipos de modulación que se ajustarán cuando se realicen modificación en el canal de radio y esquemas de método de acceso como OFDM.

El prototipo analizador propuesto dentro en este trabajo, tendrá las siguientes fases a cumplir.

• Fase 1:

Determinar el escenario de hardware sobre el cual se realizará el prototipo, el cual cumplirá el objetivo de analizar los diferentes esquemas y procesos de modulación y técnicas de acceso en el marco de la capa física del estándar IEEE 802.11ac.

• Fase 2:

Definir el software que se emplea para el prototipo, sobre qué sistema operativo será ejecutado, y cuáles son los requerimientos de computación para la ejecución de este.

• Fase 3:

Análisis de resultados de los esquemas de modulación y técnicas de acceso que fueron probados en el prototipo.

1.4 Alcance

Se entregará la configuración de un banco de pruebas basado en un transmisor y receptor inalámbrico de radio definida por software, para pruebas de la capa física y MAC del estándar IEEE 802.11ac, cuyo software configurado permite realizar pruebas con distintos esquemas de modulación, técnicas de acceso y tipos de datos basados en la calidad del canal radio.

Se entregará adicionalmente un manual de tres prácticas, en la cual se explicará la configuración y programación de la radio definida por software, el cual actuará como un equipo transmisor y receptor de tramas IEEE 802.11ac, y pueda ser utilizado por investigadores y desarrolladores para pruebas de la capa física del antes estándar mencionado.

CAPÍTULO 2

2.1 Marco teórico

2.1.1 Sistemas de Comunicaciones Inalámbricos

Los sistemas de comunicaciones inalámbricas, son aquellos sistemas que permiten la transferencia de información entre dos dispositivos (transmisor/receptor), utilizando el aire como canal de comunicación. La información es propagada a través de ondas electromagnéticas, lo que permite la movilidad de los dispositivos de transmisión y recepción, dentro del área de cobertura local, permaneciendo conectados a la red en todo momento. Siendo esta movilidad, una de las mayores ventajas sobre otros sistemas de comunicación que requieren un medio físico cableado para la propagación de la información entre transmisor y receptor [9].

Según el campo de aplicación y el rango de señales inalámbricas a propagar, los sistemas de comunicación inalámbrica se pueden dividir en cuatro grupos específicos: Red inalámbrica de área personal (WPAN), Red inalámbrica de área local (WLAN), Red inalámbrica de área metropolitana (WMAN) y red inalámbrica de área amplia inalámbrica (WWAN) [10].

2.1.2 Redes de Área Local Inalámbrica

La red de área local inalámbrica, WLAN (Wireless Local Area Network), es un sistema de comunicación muy común en áreas con un alcance típico de 100 metros. Esto lo hace una alternativa muy económica de diseñar e implementar en áreas como los aeropuertos, edificios corporativos, campus académicos, o dentro de un hogar para compartir los servicios de acceso a Internet entre varias computadoras o dispositivos inalámbricos. En términos de redes inalámbricas, el estándar que mejor describe a una red WLAN, en la actualidad, se lo conoce como estándar IEEE 802.11 [11].

Las redes WLAN, que se basan en el estándar IEEE 802.11ac, utilizan las ondas electromagnéticas en bandas libres con frecuencia de 2.4 GHz y 5 GHz. Además, incrementan sustancialmente las tasas de transmisión para llegar a velocidades sobre los gigabits por segundo, que para el estándar IEEE 802.11ac, es de 1.3 Gbps [12].

2.1.3 Arquitectura WLAN

La arquitectura de una red WLAN, tiene una semejanza a la arquitectura de una red de telefónico celular. En las arquitecturas desplegadas en telefonía celular, el sistema se subdivide en celdas, la cual es controlada por una estación base, y se denomina, para el caso de las redes WLAN, como punto de acceso, AP (Access Point) [9].

Los elementos principales de la arquitectura de una red WLAN son los siguientes: una estación, STA (Station) el cual podría ser cualquier componente que tenga una placa inalámbrica y pueda interferir en el espectro inalámbrico, un punto de acceso, AP (Access Point) también nombrado estación base, BS (Base Station) el cual permite a los dispositivos inalámbricos la conexión entre una red cableada mediante WiFi o estándares relacionados y un sistema de distribución, DS (Distribution System) el cual está formada por varios access point que se comunican entre sí, sobre la red cableada, de tal forma que puedan seguir el movimiento de una o varias estaciones móviles, permitiendo que el desplazamiento en la red, sea clara para el usuario [9].

Como se puede observar en la figura 2.1, a un grupo de estaciones móviles comunicadas de forma inalámbrica, se las conoce con el nombre de conjunto de servicios básicos, BSS (Basic Service Set), de tal forma, que se constituye lo que se conoce como la unidad elemental que define una red inalámbrica. Por otro lado, si una estación móvil se encuentra en una BSS, esta puede comunicar o compartir información con las demás estaciones móviles que se encuentran en el mismo BSS [9].

Conjunto de Servicio Extendido, ESS

Figura 2.1 Arquitectura WLAN

2.1.4 Estándar IEEE 802.11ac

Como se mencionó en el capítulo anterior, este proyecto estará basado principalmente en el análisis de la capa física del estándar IEEE 802.11ac. Sin embargo, para iniciar el estudio de dicha capa, se debe primero conocer la definición de lo que es un estándar en el área de las telecomunicaciones. Un estándar en telecomunicaciones, se lo puede definir como un conjunto de reglas de acceso y de transmisiones entre dispositivos que forman parte de una topología de red, que también está definida por el estándar en cuestión. Lo que permite regular el acceso, la integración, la interconexión y la convergencia en los sistemas de comunicaciones. En el caso de los sistemas de comunicaciones inalámbricos, los estándares facilitan el uso compartido del espectro electromagnético que están dedicados a la radio AM/FM, a la televisión UHF/VHF, las comunicaciones por microondas, a las satelitales, entre otras [13].

El estándar IEEE 802.11ac permite tasas de transferencias de hasta 1.3 Gbps en la frecuencia libre de 5 GHz con ancho de banda de canal de 160 MHz, utilizando la técnica de transmisión conocida como MIMO multiusuario, MU-MIMO (Multi-User Multiple Input Multiple Output). Esta técnica permite que un conjunto de estaciones móviles, cada una con una o más antenas, pueda transmitir múltiples tramas a diferentes estaciones móviles, al mismo tiempo y en el mismo espectro de frecuencia

[14]. Además, el estándar IEEE 802.11ac aumenta la modulación, el tamaño de la constelación de 64-QAM a 256-QAM [15].

En la figura 2.2 se observa como la tecnología MIMO multiusuario permite, a través de varias antenas, el envío de múltiples streams al mismo tiempo. Las antenas permiten la propagación de la señal con más eficiencia, ya que permite la comunicación con varios dispositivos al mismo tiempo [16]. En este caso se tiene 3 usuarios, donde uno de ellos soporta 2 streams y los otros dos usuarios soporta 1 stream cada uno.

Figura 2.2 MIMO Multiusuario 4 streams, 3 usuarios

2.1.5 Beamforming

Dentro de las ventajas que ofrece el estándar IEEE 802.11 ac, se puede mencionar el procedimiento por el cual, un transmisor puede direccionar la energía de propagación a un dispositivo móvil en particular, de tal forma que la SNR (Signal-to-Noise Ratio) aumente y, por lo tanto, también aumente la velocidad de transmisión [17]. Este procedimiento de focalizar la energía hacia un dispositivo móvil, se la conoce como "beamforming".

A los dispositivos que utilizan la técnica de beamforming, se lo llamará beamformer y el receptor de esta señal focalizada, se lo llamará beamformee. Por lo tanto, cuando un AP usa la técnica de beamforming para comunicarse con un dispositivo móvil, inician dicha comunicación intercambiando tramas, con la cuales se mide el canal de transmisión. El resultado de esta medición, define como dirigir la energía transmitida hacia el dispositivo móvil [17]. En la figura 2.3 se puede observar el proceso del beamforming.

Figura 2.3 Proceso de beamforming

Según se aprecia en la figura 2.3, las primeras tramas de comunicación entre el AP y el dispositivo móvil, son usadas para la calibración del canal, esta calibración depende de un proceso llamado "Sondeo del Canal". Este proceso permite determinar cómo focalizar la energía en una dirección en concreto, de tal forma que los dispositivos móviles tengan el máximo rendimiento de los canales seleccionados, dejando a un lado los canales con bajo o peor rendimiento [17].

2.1.6 Banda de frecuencia de IEEE 802.11ac

El estándar IEEE 802.11ac está diseñado para funcionar en la banda de frecuencia de los 5 GHz, teniendo como ventaja que esta banda de frecuencia no requiere tener una licencia para operar sobre ella. Al transmitir en una banda de 5 GHz, se anula completamente la interferencia producida por los dispositivos que están en redes 802.11n, que manejan comúnmente, en la banda de 2.4 GHz [16]. Esto permitiría,

que las redes 802.11ac, al no tener mayor interferencia, puedan alcanzar mayores velocidades de transmisión utilizando canales con mayor ancho de banda [18]. Sin embargo, no quiere decir que el estándar 802.11ac no soporte la banda de 2.4GHz lo cual es soportado sin ningún problema. En la siguiente tabla 2.1 se comparan las bandas de frecuencias, ancho de canal, tipo de modulación, flujos espaciales y velocidad de transmisión de 802.11ac con sus antecesores.

Protocolo	Banda de Frecuencia	Ancho de Canal	Tipo de Modulación	MIMO Streams	Tasa de Datos más alta
802.11a	5 GHz	20 MHz	BPSK, QPSK, 16- QAM, 64-QAM	1	54 Mbps
802.11b	2.4 GHz	20 MHz	ССК	1	11 Mbps
802.11g	2.4 GHz	20 MHz	BPSK, QPSK, 16- QAM, 64-QAM	1	54 Mbps
802.11n	2.4 y 5 GHz	20, 40 MHz	BPSK, QPSK, 16- QAM, 64-QAM	4	600 Mbps
802.11ac	Solo 5 GHz	20, 40, 80, 160 MHz	BPSK, QPSK, 16- QAM, 64-QAM, 256- QAM	8	1.3 Gbps

Tabla 2.1 Comparación estándar IEEE 802.11ac con protocolos anteriores

Se puede destacar lo más relevante de la tabla 2.1, indicando la gran ventaja que tiene 802.11ac sobre sus antecesores. Desde la banda de frecuencia, que como se vio en secciones anteriores, elimina gran parte de la interferencia emitida por dispositivos que funcionan en la banda de frecuencia 2.4 GHz. Por otro lado, al usar un tipo de modulación de 256-QAM, esto permitirá que se pueda transmitir más información a través de cada canal de comunicación. También se puede destacar, la utilización de la tecnología MIMO multiusuario, lo que permite el envío de varios streams de información al mismo tiempo a cada dispositivo móvil.

2.1.7 Orthogonal Frequency Division Multiplexing (OFDM)

El principio operativo que maneja OFDM, se basa en la división del ancho de banda original, en un número de subportadoras ortogonales, las cuales se superponen entre sí, sin sufrir interferencias de canal o de símbolo, gracias a que eligen diferentes frecuencias que las hacen ortogonales entre sí. Esta técnica de transmisión nos permite tener un ahorro del ancho de banda total, debido a la ortogonalidad de las subportadoras [19].

En la actualidad, OFDM es un método de multiplexación muy popular utilizado para muchos de los últimos estándares inalámbricos y de telecomunicaciones, como por ejemplo WiFi basado en el estándar 802.11ac, tecnología de teléfonos celulares 4G y 5G, WiMAX, WiFi 6, satélites y muchos otros [13].

Para el desarrollo de este proyecto, se hizo la elección de utilizar la técnica de transmisión basada en OFDM, debido a que la misma es más adecuada para entornos de desvanecimiento donde pueden producirse interferencias, ya que puede modular conjuntos de datos en diferentes subportadoras, por lo que solo se verán afectadas determinadas subportadoras, que luego pueden procesarse mediante ciertos métodos de demodulación [20].

En el gráfico 2.4, se muestra una señal OFDM generada con el software Matlab y la APP Wireless Waveform Generation.

Figura 2.4 Señal OFDM generada con Matlab

Como ya se mencionó anteriormente, OFDM es utilizado por estándares de comunicación inalámbrica, como los estándares de la familia IEEE 802.11. Para el 10

estándar IEEE 802.11ac, tiene la capacidad de poder usar intervalos de guarda menores en OFDM, por lo tanto, estos intervalos de guarda sufren una reducción de los 800ns a 400ns, dando una mejora al throughput del sistema en un 10%. Además, IEEE 802.11 ac utiliza 256-QAM con ODFM. Al tener un canal con mayor ancho de banda, se puede codificar más bits por símbolo [16].

2.1.8 Canales de 80 MHz y 160 MHz

Como ya se ha analizado anteriormente, el estándar 802.11ac introduce modulación de nivel superior, hasta de 256-QAM, con unión de canales adicionales hasta 80 MHz o 160 MHz y hasta 8 flujos espaciales o streams. Este estándar adopta un enfoque simple para los canales de 80 MHz y 160 MHz, agrupando los subcanales adyacentes de 40 MHz para formar canales de 80 MHz y los subcanales adyacentes de 80 MHz se agrupan en pares para formar canales opcionales de 160 MHz [16].

Al tener canales con mayor capacidad, dispositivos móviles con estándar 802.11n, que transmiten en canales de 20 0 40 MHz comúnmente, pueden comunicarse con un AP en estándar 802.11ac, ya que la tener agrupados dos subcanales de 40 MHz, se utilizan ambos canales, superior de 40 MHz e inferior de 40 MHz, para la comunicación en paralelo. Esto implica, que más dispositivos móviles puedan transferir sus datos más rápidamente, así como también, completar dichas transmisiones en menor tiempo, bajando el consumo energético en los dispositivos móviles y el tiempo de espera de comunicación de otros dispositivos móviles [16].

2.1.9 Definición de Radio Definida por Software (SDR)

La Radio Definida por Software, SDR (Software-Defined Radio) apareció por primera vez con el trabajo de Mitola en 1955. Y se lo define como a los "radios" que pueden ser configurables de manera dinámica para las comunicaciones entre dispositivos utilizando diferentes protocolos y configuración de sistemas de radioenlaces [21].

Es decir, que las propiedades de la frecuencia de carrier, el ancho de banda de la señal, la modulación y el acceso a la red, son configurables a través de software.

Esto, combinado con transmisores y receptores de radiofrecuencia, nos permite la

implementación de diversos sistemas de comunicación [21].

La ventaja de este enfoque es que el equipo es versátil y rentable, teniendo la utilidad de que su software puede ser actualizado para el uso de nuevas formas de ondas y nuevas aplicaciones.

En la figura 2.5, Se observan la radio definida por software NI USRP 2974 del fabricante National Instruments.

Figura 2.5 NI USRP 2974

2.1.10 Arquitectura de la Radio Definida por Software

La arquitectura de SDR es versátil y flexible, gracias a la utilización de hardware de propósito general, el cual como se vio en la sección anterior, puede ser configurado mediante software. En la gráfica 2.6, se observa el modelo de un SDR en su forma ideal, donde los componentes de hardware del receptor, van desde una antena simple, un amplificador de bajo ruido, LNA (Low Noise Amplifier), un conversor análogo digital, ADC (Analog-to-Digital Converter), un amplificador de potencia, PA (Power Amplifier), un conversor digital análogo, DAC (Digital-to-Analog Converter) y un bloque de procesamiento de señales digitales, DSP (Digital Signal Processing) [22].

Figura 2.6 Esquemático de radio definido por software

Dentro del esquema ideal de un SDR, se puede definir 3 secciones funcionales importantes: sección RF compuesta por los amplificadores LNA y PA, sección de IF compuesta por los convertidores ADC – DAC y la sección Banda Base compuesta por el bloque del procesamiento digital de señales DSP [22].

La descripción del funcionamiento de cada sección, está dividida dependiendo si se trata de la transmisión de datos o la recepción de datos.

Funcionamiento en la transmisión de datos:

- Sección de Banda Base: esta sección será la encargada de procesar la información que se recibe a través del puerto de datos. En este punto, el procesador de señales digitales podrá tratar varias señales generando una señal mixta, permitiendo así la simultaneidad en la transmisión de las señales [22].
- Sección IF: en esta sección se realiza el filtrado a una frecuencia inferior, llamada frecuencia intermedia, IF (Intermediate Frequency) que por lo general será cero Zero-IF, lo que sería filtrar la señal a una banda base. Pasando finalmente al conversor digital análogo, DAC (Digital-to-Analog Converter), de tal forma de poder proporcionar una señal análoga a la

sección RF [22].

 Sección RF: a esta sección también se la conoce como sección RF Front-End, y es la responsable de transmitir la señal RF, no sin antes amplificar y modular la señal IF que recibe, ya que su frecuencia puede ser de 0 Hz [22].

Funcionamiento en la recepción de datos:

- Sección RF: Esta sección recibe la señal y es amplificada por el amplificador de bajo ruido, LNA (Low Noise Amplifier) y mediante un mezclador se convierte su frecuencia a la frecuencia intermedia a la que deseamos procesar dicha señal [22].
- Sección IF: en esta sección la señal proveniente de la RF Front End, pasa por el convertidor de análogo digital, ADC (Analog-to-Digital Converter), donde se digitaliza y posteriormente se la modula a la banda base gracias al convertidor digital descendente, DDC (Digital Down Converter) [22].
- Sección Banda Base: por último, la señal modulada a la banda base, es procesada mediante software, donde se puede implementar filtros, demodulaciones o analizar el espectro de la señal [22].

Una vez que se ha detallado las secciones más importantes de un SDR ideal, se puede profundizar el análisis de los bloques de cada sección. En la figura 2.7 se muestran los bloques de un SDR ideal, en donde se observa los convertidores análogo digital y digital análogo, los mismos que tienen filtros anti-aliasing incorporado y filtro de reconstrucción de la señal, respectivamente [23].

Figura 2.7 Arquitectura de una radio definida por software ideal

Dentro del esquema que se observa en la figura 2.7, el bloque DSP tiene la característica de determinar a través de software, la modulación, la canalización, los protocolos y la ecualización para la transmisión y recepción de la señal.

Se observa, además, el bloque de amplificadores de potencia lineal, los cuales aseguran una transferencia ideal de la modulación de RF desde el convertidor digital análogo hasta una señal de alta potencia preparada sin introducir ruido en otras frecuencias que puedan interferir con otros dispositivos dentro del espectro [22].

Por otro lado, los convertidores análogo digital y digital análogo tienen incorporados filtros anti-aliasing y filtros de reconstrucción.

2.1.11 Recursos computacionales necesarios en procesos de SDR

Para el diseño de un SDR se deben considerar ciertos recursos computacionales necesarios, esto va a depender de la complejidad de la aplicación que se desea implementar. Estos recursos computacionales consisten en procesadores de propósito general, GPP (General Purpose Processors), procesadores de señales digitales, DSP (Digital Signal Processors) y matrices de puerta programables, FPGA (Field Programmable Gate Arrays) [14].

Un GPP básicamente está diseñado para realizar funciones de procesamiento de alta importancia en tiempo real, así como también operaciones matemáticas como evaluaciones lógicas, computación aritmética y técnicas de ramificación [24].

Por otro lado, los procesadores de señales digitales DSP, ocupan una gran importancia en el diseño de un SDR, ya que por estos procesadores pasan la mayor carga computacional que se genera cuando se modula o se demodula una señal.

Tanto el GPP como el DSP se pueden programar en tiempo real desde la memoria, lo que brinda una gran solución de radio completamente flexible. Además la SDR, emplea DSP que usan los mismos núcleos computacionales para los algoritmos de banda base y de control [25].

Otro recurso computacional importante para el diseño de un SDR, son los procesadores FPGA, los cuales utilizan, para el procesamiento de señales, lenguajes de especificación definida por la IEEE como el VHDL [14].

2.1.12 Software LabVIEW para pruebas WLAN

LabVIEW es un entorno de programación mediante gráficos que los ingenieros pueden usar para desarrollar sistemas automatizados de investigación, verificación y prueba de producción [26].

La figura 2.8 muestra el entorno de inicio de LabVIEW Communication System Design Suite el cual es usado en este proyecto de investigación. Adicionalmente el software trabaja con el framework 802.11ac que se debe instalar previamente, en secciones más adelante se detallan los procesos de instalación, pruebas y resultados al usar el framework junto con LabVIEW.

• 802.1	1 Design USRP RIO v19.5 3 - PC1 - LabVIEW NXG 4.0.0)	🗧 💥 🗕 🗸 arch	- 6
File	Edit Run Data View Help			🕜 Carlos Bosque
× ■ <	< LabVIEW S 	mmunications stem Design Suite	PROJECTS LEARNING	F INSTRUME
*	Recent 802.11 Design USRP RIO v19.5 3 - PC1			**
	802.11 Design USRP RIO v19.5 3 - PC1 802.11 Design USRP RIO v19.5 3 - TX 802.11 Design USRP RIO v19.5			Take Additio Certified
	BROWSE		TEMPLATES MEASUREMENT PANELS	Reduce develop faster learning a LabVIEW. The La engineers devel The LabVIEW tra help you progre
	Application Frameworks	NI 579x NI 579x Sample Projects	USRP RIO	applications in t programming e applications in s settings. Discov successfully dev your projects ev
				READ MOR
	VI Project	Hardware	Simple State Machine	

Figura 2.8 LabVIEW

CAPÍTULO 3

3.1 Diseño de prototipo para pruebas IEEE 802.11ac

En este apartado, se explica el proceso del diseño del prototipo para pruebas del estándar IEEE 802.11ac. Se realiza la explicación de los elementos que constituyen el banco de pruebas, las conexiones físicas del prototipo, la implementación y configuración del software, su correcto funcionamiento, y culmina con la descripción de cada uno de los controles e indicadores del software LabVIEW NXG con el framework 802.11ac.

En la figura 3.1, se observa el banco de pruebas del prototipo IEEE 802.11ac utilizando NI USRP 2974, antenas VERT 2540, cables UTP cat6, y CPU Dell Optiplex. Hay que considerar, que el mismo escenario se repite en las dos estaciones del prototipo de prácticas.

Figura 3.1 Banco de pruebas IEEE 802.11ac

3.1.1 Esquemáticos de prototipo con SDR

La topología del banco de pruebas del prototipo IEEE 802.11ac es punto a punto, ya que el USRP 1 y el USRP 2 establecen un radioenlace de conexión punto a punto para las pruebas planteadas en el manual de prácticas.

Es importante indicar que los USRP trabajan en modo full dúplex, debido a que la transmisión y recepción es simultánea.

También se puede identificar como una red Ad-Hoc inalámbrica, debido a que no necesita un router de por medio para establecer la comunicación entre los dos dispositivos, esto quiere decir que no va a depender de una red preexistente para su funcionamiento.

A nivel de infraestructura, se puede definir que los dos equipos están en modo AP ya que los USRP transmiten y reciben datos PN (Pseudoruido) aleatorio para las validaciones del canal inalámbrico. En la transmisión del video se establece que la estación 1 transmite el video y la estación 2 recibe el video, por lo tanto, se puede indicar que en esa práctica la infraestructura es AP y estación.

El diseño del prototipo de pruebas IEEE 802.11ac, consta de los siguientes elementos detallados en la figura 3.2.

Figura 3.2 Esquemático del banco de pruebas IEEE 802.11ac

Se detalla brevemente cada uno de los componentes del prototipo de pruebas IEEE 802.11ac:

- 2 USRP 2974 de National Instruments: Radio definido por software Stand-Alone, con rango de operación en frecuencia de 10 MHz a 6 GHz, potencia de salida máxima de 7 dBm a 20 dBm y potencia de recepción de 10 dBm.
- **4 Antenas VERT 2450:** Antena vertical de doble banda omnidireccional de 3 dBi de ganancia, frecuencia de operación de 2.4 a 2.48 GHz y 4.9 a 5.9 GHz.
- 2 Cables UTP Cat 6: Cable UTP interior categoría 6.
- **2 CPU:** CPU Dell Optiplex, Intel Core i7 10ma generación de 3 GHz, RAM 16Gb, Disco sólido 500 Gb, Windows 10.
- Licencias de LabVIEW NXG 4: LabVIEW NXG versión 4 de National Instruments.
Licencias de Frameworks 802.11 de NI: Framework 802.11ac de National Instruments.

3.2 Conexiones físicas de elementos del prototipo IEEE 802.11ac

Las conexiones físicas del banco de pruebas IEEE 802.11ac se detallan a continuación:

Previo al encendido de los equipos, se debe realizar las conexiones correctas de los elementos del banco de pruebas.

- Colocar los USRP cerca de las CPU correspondientes.
- Conectar los cables de poder en los USRP 2974 y CPU con su respectivo monitor.
- Conectar las antenas VERT 2450 en los USRP, se debe conectar dos antenas en cada USRP 2974, en los puertos RF0 - TX1 y RF1 - RX2, observe figura 3.3. Las antenas son omnidireccionales con conectores tipo SMA macho. Cabe indicar que el conector del USRP es SMA hembra.
- Se debe conectar cada USRP 2974, desde su puerto RJ45 mediante cable UTP cat 6, al puerto de red del CPU, con la finalidad de realizar el control y manipulación del USRP utilizando el software LabVIEW NXG versión 4 y el Framework 802.11ac, ver figura 3.4.

Figura 3.3 Conexión de antenas en el USRP

Figura 3.4 Conexión física del USRP 2974 y el CPU

- Validar que los CPU tengan instalados los software LabVIEW NXG versión 4 (versión de LabVIEW Communication System Suite) y el framework IEEE 802.11ac. Los softwares son licenciados y se debe disponer de la licencia de campus para el correcto funcionamiento.
- Energizar los USRP 2974.

Con este proceso se pone operativo el banco de pruebas IEEE 802.11ac.

3.3 Diseño de algoritmos para prototipo IEEE 802.11ac

Previo al diseño e implementación de algoritmos para el prototipo SDR IEEE 802.11ac y las pruebas iniciales con los NI USRP 2974, se debe validar el firmware y las interfaces de red en los SDR.

• Para la validación del firmware e interfaces de los USRP 2974 se debe conectar al USRP el monitor, teclado y mouse. Ver figura 3.5.

Figura 3.5 Conexión de monitor, teclado y mouse en USRP

• El software instalado en el USRP es el NI Linux Real Time NXG, el cual debe tener actualizado su firmware a la versión 100, ver figura 3.6.

Figura 3.6 Validación de firmware del NI USRP 2974

Si no se encuentra actualizado el firmware se debe realizar proceso para su actualización el cual consiste en los siguientes pasos:

- Disponer de un pendrive vacío mínimo de 16 Gb de espacio.
- Descargar la imagen de LabVIEW Communications Real-Time para la versión de LabVIEW Communications desde la página de descarga de imágenes de destino de LabVIEW Communications Real-Time. NI recomienda usar la última versión de LabVIEW Communications Real-Time Target Image para su versión de LabVIEW Communications.
- Descargar e instalar una utilidad de arranque de terceros en la computadora con Windows. Para este caso se utiliza el software Rufus.
- Insertar el pendrive USB en la computadora con Windows.

Establecer las siguientes opciones:

- Dispositivo: Seleccionar la llave USB que desea hacer de arranque.
- Esquema de partición y tipo de sistema de destino: esquema de partición MBR para BIOS o UEFI.

- Sistema de archivos: FAT32.
- Tamaño del clúster: 4096 bytes.
- Nueva etiqueta de volumen: NIRECOVERY.
- Revisar el dispositivo en busca de bloques defectuosos: Desmarcado.
- Formato rápido: Marcado.
- Crear disco de arranque usando: ISO: el archivo de imagen objetivo en tiempo real para su versión de LabVIEW Communications.
- Crear archivos de etiquetas e íconos extendidos: Desmarcado.
- Hacer click en Inicio. Cuando se le solicite, seleccione escribir en modo de imagen ISO y haga clic en aceptar.
- Esperar a que se complete el formateo y la configuración.
- Hacer clic en cerrar y expulse de forma segura la llave USB de su computadora.

El proceso de instalación se detalla a continuación:

 Insertar el pendrive USB en el NI USRP 2974. En el USB se encuentra el instalador de NI Linux Real Time NXG. Observar conexión del USB en figura 3.7.

Figura 3.7 Pendrive insertado en el NI USRP

- Apagar el NI USRP 2974.
- Encender el NI USRP 2974. A medida que se reinicia el USRP, presionar continuamente la tecla "Delete" en el teclado hasta que el dispositivo inicie en el menú BIOS. Ver figura 3.8.

ational Instruments USRF-2974 Werlal Number DIOS Version 3105 Build Date Hardware Revision Embedded Firmware Version	317930C 1.0.4f0 03/12/2020 04:00:37 A 0003160953	Set the Date. Use Tab to switch between Date elements.
System Information Processor Type	Intel Core 17-6822EQ	
Microcode Kevisión Base / Max Processor Frequency Active Processor Cores Total Memory and Erequency	D6 2000 MHz / 2800 MHz 4 cores / 4 threads 8 GB a 2132 MHz	
Total Henorg and Frequency	0 00 0 2133 MHZ	++: Select Screen
System Date System Time	[Tue /21/2021] [16:05:51]	T∔: Select Item Enter: Select +/-: Change Opt.
Access Level	Administrator	F1: General Help F8: Previous Values F9: Optimized Defaults F10: Save & Exit ESC: Exit

Figura 3.8 Menú de BIOS general del USRP

 Navegue hasta el menú "Avanzado" y habilite la "Legacy USB Support". Ver figura 3.9.

Figura 3.9 Habilitar USB Legacy

• Presione F10 para guardar y salir. Ver figura 3.10.

Figura 3.10 Guardar y salir del menú del USRP

 A medida que el dispositivo se reinicia, presione continuamente la tecla F10 en el teclado hasta que el USRP inicie en el menú de opciones de inicio. Ver figura 3.11.

Figura 3.11 Seleccionar Boot de inicio

- Seleccionar la lista UEFI. Presionar Enter para iniciar desde el pendrive.
- Esperar a que se cargue NI Linux Real-Time. El estilo de arranque ahora debería mostrar EFI. Ver figura 3.12.

Figura 3.12 Boot Style EFI del USRP

 Se pedirá que se aprovisione el destino. Presionar "y" en el teclado y seguir las instrucciones en pantalla. En la figura 3.13 se puede observar el proceso de instalación del nuevo firmware. El cual debe realizarse para los 2 USRP

de ser necesario.

Figura 3.13 Proceso de instalación

- Cuando se solicite, extraer la unidad USB y luego reiniciar el controlador siguiendo las indicaciones en pantalla.
- El sistema se reiniciará en modo de ejecución NI Linux RT.
- LabVIEW Communications System Designer ahora puede detectar el Sistema del NI USRP.

Luego de la correcta actualización del firmware se debe validar que se ha actualizado sin ninguna novedad.

Ingresar a la sección de consola del USRP con el usuario root y sin password (dar Enter). Ver figura 3.14.

Figura 3.14 Logeo al USRP desde consola

Visualizar la versión del firmware, para esto se ejecuta el comando *cat /etc/os-release.* Revisar figura 3.15.

NI Linux Real-Time (run mode on NI-USRP-2974-317930C)
Log in with your NI-Auth credentials.
Interface eth0 - MAC addr: 00:80:2f:24:08:6b - down (primary - auto) Interface eth1 - MAC addr: 00:80:2f:24:08:6c - Disabled Interface eth2 - MAC addr: 00:80:2f:24:08:6d - Disabled
NI-USRP-2974-317930C login: root Password:
Login incorrect NI-USRP-2974-317930C login: admin Password:
Login incorrect MI-USRP-2974-317930C login: admin Password: admin#NI-USRP-2974-317930c:~re
admin@NI-USRP-2974-317930C:"# cat /etc/os-release ID="nilrt" NAME="NI Linux Real-Time"
UERSION="8.0" UERSION_ID="8.0" PRETTY_NAME="NI Linux Real-Time 8.0" BUILD_ID="cg=8.0.0fl-x64-139" admineWI-USRP-2974-3179306:"#

Figura 3.15 Revisión de firmware

Para el funcionamiento a nivel de comunicación de red con el CPU se debe validar que solo la interfaz a utilizar esté habilitada, el resto de las interfaces de red observadas en el NI USRP se debe bajar.

Para revisar las interfaces de red se debe teclear *ifconfig,* con este comando se listarán todas las interfaces activadas del USRP. Hay que considerar que siempre que el equipo USRP se reinicie se debe realizar el proceso de bajar las interfaces.

Para bajar la interfaz se debe teclear el comando *sudo ifconfig enp1s0f1 down.* En el caso del otro USRP se debe teclear el comando *sudo ifconfig eth1 down.*

Solo dejar habilitado las interfaces eno0 y eth0 respectivamente para cada uno de los USRP. Ver figuras 3.16 y 3.17.

Figura 3.16 Interfaces de USRP serial 317930C

Figura 3.17 Interfaces de USRP serial 3179304

Se debe validar adicional que el CPU en el cual se instalará los software adecuados para el banco de pruebas tenga las siguientes características:

- Licencia de Windows 10.
- Intel Core i7 9na o 10ma generación, 3 GHz.
- RAM de 16 Gb.
- Disco sólido 500 Gb.

Observe la figura 3.18 en la cual se valida que se cumple los requisitos de hardware.

Figura 3.18 Requisitos de CPU

El laboratorio de Radiocomunicaciones situado en la FIEC de ESPOL cuenta en la actualidad con CPU marca DELL modelo Optiplex 3070 que cumple con las condiciones mínimas requeridas por el software LabVIEW y su framework, ver figura 3.19.

Figura 3.19 CPU Dell Optiplex 3070

De preferencia se debe tener el CPU formateado y de uso exclusivo para el prototipo banco de pruebas IEEE 802.11ac ya que la ejecución del software LabVIEW y su framework consumen recursos de CPU y memoria, por lo tanto, se recomienda que el CPU solo tenga instalado el LabVIEW NXG versión 4 y el framework IEEE 802.11ac con su respectiva licencia.

Luego de validar todo el proceso previo al funcionamiento del banco de pruebas IEEE 802.11ac se procede a dar inicio al software, en la figura 3.20 se observa el prototipo listo para su utilización.

Figura 3.20 Banco de pruebas listo para su uso

3.4 Instalación del software NI LabVIEW NXG y el Framework 802.11ac

Para la ejecución del manual de prácticas se debe previamente validar que los CPU que controlarán los USRP tengan las versiones correctas instaladas del software para su correcto funcionamiento.

Instalar el software NI Package Manager con el cual se buscará el software de NI

necesario para la ejecución del framework.

En el NI Package Manager se debe buscar el software LabVIEW NXG versión 4 y los drivers respectivos e instalarlos. Ver figura 3.21.

📭 NI Package Manager			l	<u>₩-</u>
A new version of Package Manager is	available. Update now			
BROWSE PRODUCTS	INSTALLED 75	UPDA	TES 5	🔇 ni.com/downloads 🔅
Programming Environments	∢ ►			Search products
Application Software		LabVIEW NXG	and Drivers	
Add-Ons		Version Bitness	Language	
Drivers	+	4.0 ▼ 64-bit	English; French	; German; Japanese; Korean; Simplified Chine
Utilities		INSTALL		
Software Suites				
Tools Network	Overview	Details	Support	
DataPlugins	LabVIEW NXG and Drivers LabVIEW NXG Run-Time E included software varies b	s is a software bundle that ingine, and driver software y version.	includes the LabVIEW N that supports both NI a	XG programming environment, and third-party hardware. The

Figura 3.21 LabVIEW NXG versión 4

Buscar e instalar el software LabVIEW Communications 802.11ac, Application Framework, versión 19.5 el cual se ejecuta sin problemas junto con LabVIEW Communication System Design Suite 4.0, revisar figura 3.22.

🕐 NI Package Manager					×
A new version of Package Manager is a	vailable. Update now				
BROWSE PRODUCTS	INSTALLED 75	UPDAT	ES 5	🔇 ni.com/downloads 🚦	ġ.
Programming Environments	< ►			 802.11	٦
Application Software		LabVIEW Com	munications 80)2 11 Application	
Add-Ons		Framework			
Drivers		Version Bitness	Language		
Utilities	•	19.5 ▼ 64-bit	English		
Software Suites		REMOVE			
Tools Network	Overview	Details	Support		
DataPlugins	ordinen	Details	Support		
	Included:				
	19.5.0 Refer to the NI website bug fixes, compatibility This version supports I	at <u>http://www.ni.com/r/80</u> information, and other im .abVIEW Communications	211appfwreadme195 forjortant notices about tl System Design Suite 4.0	r installation instructions, known issues, is product.	

Figura 3.22 Framework 802.11ac versión 19.5

Luego de la instalación se puede validar revisando en el NI Package Manager todos los paquetes y sus respectivas versiones instaladas, revisar figura 3.23.

₽ NH	Package Manager			- 8
A ne	w version of Package Manager is available. Update now			
I	BROWSE PRODUCTS INSTALLED 75	UPDATES	5	🔇 ni.com/downloads 🔾
C	ategory 🔻 Maintainer 🔻 Clear Filte	ers Products on	ly \mathcal{O} Sear	ch installed
	REMOVE REPAIR			
	Name	Maintainer	Category	Version
	FlexRIO with Modular I/O	National Instruments	Drivers	19.5.0
	LabVIEW Communications 802.11 Application Framework	National Instruments	Add-Ons	19.5.0
	LabVIEW Communications System Design Suite	National Instruments	Programming Environments	4.0.0
	LabVIEW NXG	National Instruments	Programming Environments	4.0.0
	LabVIEW NXG FPGA Module	National Instruments	Add-Ons	4.0.0
	LabVIEW NXG Run-Time Engine	National Instruments	Programming Environments	4.0.0
	LabVIEW Runtime (32-bit)	National Instruments	Programming Environments	2018 SP1 f4
	LabVIEW Runtime (32-bit)	National Instruments	Programming Environments	2019
	LabVIEW Runtime (64-bit)	National Instruments	Programming Environments	2019
	LabWindows/CVI Shared Runtime	National Instruments	Runtime	2019
	NI Certificates Installer	National Instruments	Utilities	21.0.0
	NI Device Monitor	National Instruments	Utilities	19.0.0
	NI Hardware Configuration Importer	National Instruments	Utilities	4.0.0
	NI I/O Trace	National Instruments	Utilities	19.0.0
	NI License Manager	National Instruments	Utilities	4.5.0
	NI Measurement & Automation Explorer	National Instruments	Utilities	19.5.0
	NI Package Manager	National Instruments	Utilities	21.0.0
	NI Update Service	National Instruments	Utilities	19.0.0
	NI Web Server	National Instruments	Utilities	19.6.0
	NI-Sync	National Instruments	Drivers	19.5.0

Figura 3.23 Paquetes de LabVIEW instalados

Se recomienda reiniciar y dar permisos a nivel de firewall y antivirus la ejecución de todas las aplicaciones de National Instruments recientemente instaladas.

802.11 Design USRP RIO v19.5 3 - PC1 - LabVIEW NXG 4.0.0 🖬 💥 🗕 🗸 ar -5 Edit Data View Help Carlos Bosquez LabVIEW[®] Communications System Design Suite PROJECTS **MINATIONAL** Ľ 9 * Recent 802.11 Design USRP RIO v19.5 3 - PC1 802.11 Design USRP RIO v19.5 3 - PC1 802.11 Design USRP RIO v19.5 3 - TX 802.11 Design USRP RIO v19.5 Reduce developr BROWSE faster learning an LabVIEW. The Lab engineers develor The LabVIEW trair TEMPLATES MEASUREMENT PANELS help you progre: programming e Application NI 579x USRP RIO Frameworks ettings. Discover sfully deve your projects evo READ MORE VI Project Simple State Machine Hardware

Al ejecutar LabVIEW NXG se abre la siguiente ventana mostrada en la figura 3.24.

Figura 3.24 Ventana principal de LabVIEW NXG

Es importante contar con las licencias de campus tanto para el software LabVIEW NXG como para el framework. Para validar el correcto funcionamiento de las licencias cargadas se abren las herramientas NI License Manager 3.5, ver figura 3.25 y 3.26.

Ŷ							NI License Manager 4.5
•							
Product Summary	Local Licenses Views	Network Licenses	Activate Software	Computer Information General	Refre	esh	
Lab	VIEW Co	ommunio	cations 4	0			LabVIEW Communications 4.0
📩 🕘 1	licensed					- A - A	Application
Lab		XG 4 0					LabVIEW Communications
	Second 1	10 4.0				⊿ A	Add-ons
	Licensed						802.11 Application Framework 19.5

Figura 3.25 Licencia de LabVIEW Communications 4.0

Ŷ			NI License Manager 4.5
-			
	🔇 🖓 🖵	2	
Product Local Network Summary Licenses Licenses	Activate Computer Software Information	Refresh	
Views	General		
LabVIEW Communi	cations 4.0		LabVIEW NXG 4.0
Licensed	cations 4.0	-	LabVIEW NXG 4.0 Application
	cations 4.0	4	LabVIEW NXG 4.0 Application Development System
LabVIEW Community Licensed	cations 4.0		LabVIEW NXG 4.0 Application Development System Add-ons
LabVIEW Communic Licensed	cations 4.0		LabVIEW NXG 4.0 Application Development System Add-ons Application Builder
LabVIEW Commune Licensed LabVIEW NXG 4.0	cations 4.0		LabVIEW NXG 4.0 Application Development System Add-ons Application Builder FPGA Module
LabVIEW Commune Licensed	cations 4.0		LabVIEW NXG 4.0 Application Development System Add-ons Application Builder FPGA Module
LabVIEW Commune Licensed	cations 4.0		LabVIEW NXG 4.0 Application Development System Add-ons Application Builder FPGA Module

Figura 3.26 Licencia de LabVIEW NXG 4.0

3.5 Validaciones previas a nivel de software previo al uso del prototipo IEEE 802.11ac

Previo al uso del banco de pruebas se debe validar el correcto funcionamiento a nivel de software junto con los equipos previamente conectados. En el diagrama de flujo detallado en la figura 3.27 se observa el proceso para agregar los USRP 2974 al software LabVIEW:

Figura 3.27 Diagrama de flujo de validaciones previas al uso del banco de pruebas IEEE 802.11ac

3.6 Diseño e implementación de algoritmos para la transmisión y recepción de señales inalámbricas IEEE 802.11ac utilizando SDR

El algoritmo que se implementa para la transmitir y recibir las señales inalámbricas IEEE 802.11ac con los USRP NI 2974, se implementa en conjunto con el software NI LabVIEW NXG 4.0 y el framework IEEE 802.11ac. Se crea un nuevo proyecto en cada uno de los CPU, el cual se llamará 802.11 Design USRP RIO v19.5.3. – PC1 y 802.11 Design USRP RIO v19.5.3. – PC2.

Se cargará el panel principal con las siguientes herramientas detalladas en la figura 3.28.

Figura 3.28 Panel de herramientas

Dar click en SystemDesigner y agregar el hardware USRP que se utilizará con el PC1. Ver figura 3.29.

e cait view	Help			
∎ ≡ *	• × •० ग •	* ► Host.gvi *	₩ SystemDesigner * + . Live	Design
er 902 11 Decian	Add Hardware			×
SystemDes	Discovered hardware	Add hardware by address		0
Readme.ht	Connection requi	ired	Comment	Action
Builds Builds Builds STA USR Common FPGA				
 Host Shared USRP RIO 				
Host Host Shared USRP RIO	Non-Discoverable	2 Devices		Action
 Host Shared USRP RIO 	Non-Discoverable Simulated DAQ, e	e Devices tc.		Action Launch NI MAX

Figura 3.29 Agregar Hardware USRP

Luego de agregar el hardware del USRP en el software de LabVIEW NXG se observará el módulo USRP habilitado (indicador color verde) como se muestran en las figuras 3.30 y 3.31.

Figura 3.30 USRP habilitado serial 317930C

Figura 3.31 USRP habilitado serial 3179304

El siguiente proceso es cargar los módulos que se utilizarán con el software y el hardware respectivamente.

En la pestaña de Real-Time Controller se debe cargar los siguientes módulos, ver figura 3.32:

- STA.gcomp
- 802.11 Host.gcomp
- 802.11 Shared.gcomp
- Host SubVIs.gcomp
- Base (Host).gcomp
- Base (Windows).gcomp
- Logging.gcomp
- Shared.gcomp
- 802.11 USRP (Hots).gcomp

Figura 3.32 Módulos de Software

En la pestaña FPGA Target se debe cargar los siguientes módulos, ver figura 3.33:

- STA USRP.gcomp
- 802.11 FPGA.gcomp
- 802.11 USRP (FPGA).gcomp
- FPGA SubVis.gcomp
- AFW Modulation.gcomp
- DTP (FPGA).gcomp
- Bit Processing.gcomp

Figura 3.33 Módulos de FPGA

Una vez realizado el proceso de carga de código se debe dar click en Host.gvi con el cual se cargará la pantalla principal del banco de pruebas IEEE 802.11ac, como se observa en la figura 3.34.

En la figura 3.34, se observa el panel principal donde se realiza las configuraciones básicas para el seteo de la frecuencia, selector de canal primario, nivel de potencia, selector de puerto RF de TX y Rx, formato del subcarrier, selector de esquemas de modulación MCS, control de ganancia automática AGC, habilitación de estación, selector de dispositivo RIO, pestañas de MAC, RF&PHY, Avanzada, eventos y estatus.

Ξ	PC2_Esp	ool × +		Licencia gratuita (solo uso no comercial) — 🛛 🗙
> 802	2.11 Desig	n USRP RIO v19.5 3 - PC2 - LabVIEW NXG	5 4.0.0	
File	Edit	Run Data View Help		🚱 Carlos Bosquez 🔻
		SystemDesigner × 🕨 Host.gvi	× + + + + + + + + + + + + + + + + + + +	U00% _
10 %		espol A	NALIZADOR DE ESQUEMAS DE Autores: Carlos Bósquez	MODULACIÓN Y TÉCNICAS DE ACCESO
	*	Overview Demostración IEEE 802.11 Rx y Tx	Instrucciones 1. "Cable device" depende del modo de operacio 2. Asegúrese de que el "Dispositivo RIO" tenga e	ón seleccionado. Disposiivo RIO Re el el alias del dispositivo RIO utilizado. RIOO In
		Estación	3. Inicie el VI y habilite la estación.	Habilitar estación Estación activa
	0.1	Precuencia central del canal primario	MAC RF & PHY Advanced Events Status	Off On Estacion activa
	F	Selector del canal primario	Data Source Opciones de Data Source	Opciones de Data Sink
	≡ł	0,0 dBm	Data Sink Tamaño de paquete PN	Data Dirección IP de Tx Puerto de Tx 1
	N	Puertos RF aplicables solo para USRP: Puerto TX RF Puerto RX RF	PN Paquetes por segun	do FIFO Full Transferencia de datos gr 0
	"8	TX1/RF 0 RX2/RF 1		
	-	Formato del Subcarrier		-1
	0	MCS	Tasa de Error TX PER (MAC) 0,000	-1,5 Retransmisiones promedio por paquete 0,000
	Ē	AGC Ganancia Manual RX		6,1
	•	Habilitar 37,5 dB 💌	Ř –	su 4

Figura 3.34 Pantalla principal del banco de pruebas IEEE 802.11ac

Seleccionar Real-Time Controllers y ejecutar con RUN, esto puede demorar unos minutos. Ver figura 3.35.

Figura 3.35 Ejecutar programa

3.7 Descripción de los controles e indicadores del módulo IEEE 802.11ac

En este apartado se describe las características importantes de cada uno de los elementos de software del banco de pruebas IEEE 802.11ac.

3.7.1 Pestaña Básica - Configuración de la aplicación

La configuración de la aplicación se aplica cuando se inicia el VI y no se puede cambiar una vez que el VI está en funcionamiento.

Para cambiar esta configuración, detenga el VI, aplique cambios y reinicie el VI. Ver figura 3.36.

IODULACIÓN Y TÉCNICA je Peralta - Tutor. PhD Francisco Novillo - M	S DE ACCES aestría en Telecomun	O DEL ESTÀNE icaciones - ESPOL	DAR IEEE 802	2.11	
seleccionado. alias del dispositivo RIO utilizado.	Disposiivo RIO RIOO	Reloj de referencia Internal	Numero de estación	Dispositivo listo	Stop
Habilitar estación Off On	Estación activa	Target FIFO Overflow	N		

Figura 3.36 Seleccionar dispositivo RIO

La Tabla 3.1. muestra los parámetros que se encuentran en el panel principal del software del prototipo, tal como dispositivo RIO, reloj de referencia y el modo de operación.

Parámetro	Descripción
Dispositivo RIO	La dirección RIO del dispositivo de hardware RF
Reloj de referencia	Configurar la referencia para los relojes del dispositivo.
	La frecuencia de referencia debe ser de 10 MHz. Se
	puede elegir entre las siguientes fuentes:
	Interno: Utiliza el reloj de referencia interno.
	REF IN / CIkIn —La referencia se toma del puerto REF IN (dispositivos USRP).
	GPS: La referencia se toma del módulo GPS. Sólo aplicable para el USRP-2950/2952/2953/2954/2974.
Modo de operación	Se ha establecido como una constante en el diagrama
	de bloques. El marco de aplicación 802.11 proporciona
	los siguientes modos:
	RF Loopback: conecta la ruta TX de un dispositivo
	con la ruta RX del mismo dispositivo mediante
	cableado RF o antenas.
	RF MultiStation: transmisión regular de datos con dos
	o más estaciones independientes que se ejecutan en
	dispositivos individuales conectados con antenas o por
	conexiones por cable. RF Multi Station es el modo de
	operación predeterminado.
	Bucle invertido de banda base: similar al bucle
	invertido de RF, pero el bucle invertido de cable
	externo se reemplaza por la ruta de bucle invertido de
	banda base digital interna [17].

Tabla 3.1 Configuración de la aplicación (ficha básica)

3.7.2 Configuración estática de tiempo de ejecución

La configuración estática del tiempo de ejecución solo se puede cambiar mientras la estación está apagada. Los parámetros se aplican cuando se enciende la estación, observar figura 3.37.

1.000	000 GHz	1
Calasta		I an aine an ain
Selecto	r dei cana	
	1	*
Nivel d	e Potencia	a
	0,0 dBm	▲ ▼
Duartor	PE aplica	blar colo para LISPD
Puertos	TV DE	
Puerto	TX RF	Puerto KX KF
▼ TX1	/RF 0	RX2/RF 1
Format	o del Sub	carrier
	0 461 500	carrier
201	MHz (IEEE	802.11 a)
MCS		
MCS		0414/1/21
MCS	16	-QAM (1/2)
MCS 4	16 G	-QAM (1/2) anancia Manual RX
MCS 4 AGC Mal	G bilitar	-QAM (1/2) anancia Manual RX 37,5 dB
MCS 4 AGC Mal	G bilitar G	-QAM (1/2) anancia Manual RX 37,5 dB
MCS 4 AGC Mal	bilitar G	-QAM (1/2) anancia Manual RX 37,5 dB
MCS 4 AGC Mal	bilitar G	-QAM (1/2) anancia Manual RX 37,5 dB 😴 anancia RX Aplicada 0 dB
MCS 4 AGC Malid	bilitar G G MAC Ac	-QAM (1/2) anancia Manual RX 37,5 dB anancia RX Aplicada 0 dB ddress Local
MCS 4 AGC W Hal	bilitar G MAC Ac 00:80:2	-QAM (1/2) anancia Manual RX 37,5 dB 😴 anancia RX Aplicada 0 dB ddress Local F:24:08:53
MCS 4 AGC 2 Hal valid valid	MAC Ac	-QAM (1/2) anancia Manual RX 37,5 dB anancia RX Aplicada 0 dB ddress Local F:24:08:53 ddress Destino
MCS 4 AGC Valid Valid	MAC Ac 00:80:2 MAC Ac	-QAM (1/2) anancia Manual RX 37,5 dB - anancia RX Aplicada 0 dB ddress Local F:24:08:53 ddress Destino F:24:08:68

Figura 3.37 Seteo de parámetros

En la tabla 3.2 se observa la configuración estática del tiempo de ejecución donde se detalla la descripción del número de estación, frecuencia central del canal primario, selector del canal primario, nivel de potencia, puerto RF de TX y RX, y dirección MAC del dispositivo.

Parámetro	Descripción
Número de estación	Control numérico para establecer el número de
	estación. Cada estación en funcionamiento debe tener
	un número diferente. Puede ser hasta 10. Si el usuario
	desea aumentar el número de estaciones en ejecución,
	la caché de la asignación de números de secuencia
	MSDU y la detección de duplicados.
Frecuencia central del	Es la frecuencia central del canal primario del
canal primario [Hz]	transmisor en Hz. Los valores válidos dependen del
	dispositivo en el que se ejecuta la estación.
Selector de Channel	Control numérico para determinar qué sub-banda se
primario	utiliza como canal principal. El PHY cubre un ancho de
	banda de 80 MHz, que se puede dividir en cuatro sub-
	banda {0,,3} de ancho de banda de 20 MHz para la
	señal de no alto rendimiento (HT). Para anchos de
	banda más amplios, las sub-bandas se combinan.
Nivel de potencia [dBm]	Nivel de potencia de salida considerando la
	transmisión de una señal de onda continua (CW) que
	tiene un rango completo de convertidor digital a
	analógico (DAC). La alta relación de potencia pico a
	promedio de OFDM significa que la potencia de salida
	de los cuadros 802.11 transmitidos suele ser de 9 dB
	a 12 dB por debajo del nivel de potencia fijado.
Puerto RF TX	El puerto RF utilizado para TX (aplicable solo para
	dispositivos USRP).
Puerto RF RX	El puerto RF utilizado para RX (aplicable solo para
	dispositivos USRP).
Dirección MAC del	Dirección MAC asociada a la estación. El indicador
dispositivo	booleano muestra si la dirección MAC dada es válida o
	no. La validación de la dirección MAC se realiza en el
	modo dinámico [17].

3.7.3 Configuración dinámica de tiempo de ejecución

La configuración dinámica de tiempo de ejecución se puede cambiar en cualquier momento y se aplica inmediatamente, incluso cuando la estación está activa, ver tablas 3.3 y 3.4.

Parámetro	Descripción
Formato de	Permite cambiar entre los formatos estándar IEEE
subportadora	802.11. Los formatos admitidos son los siguientes:
	• 802.11a con 20 MHz
	• 802.11ac con 20 MHz
	• 802.11ac con 40 MHz
	802.11ac con 80 MHz (MCS compatible hasta
	4).
MCS	Índice de esquema de modulación y codificación
	utilizado para codificar tramas de datos. Las tramas
	ACK siempre se envían con MCS 0. Tenga en cuenta
	que no todos los valores de MCS son aplicables a
	todos los formatos de subportadora y el significado de
	MCS cambia con el formato de subportadora. El
	campo de texto junto al campo MCS muestra la
	velocidad de codificación y el esquema de modulación
	para el formato MCS y subportadora actual.
AGC	Si está habilitado, se elige el ajuste de ganancia
	óptimo en función de la intensidad de potencia de la
	señal recibida. El valor de ganancia de RX se toma de
	la ganancia manual de RX si el AGC se ha
	deshabilitado.

Tabla 3.3 Configuración dinámica de tiempo de ejecución

Parámetro	Descripción
Dirección MAC de	Dirección MAC del destino al que se deben enviar los
destino	paquetes. El indicador booleano muestra si la
	dirección MAC dada es válida o no. Si se ejecuta en
	modo de bucle invertido de RF, la dirección MAC de
	destino y la dirección MAC del dispositivo deben
	ser similares.
Ganancia manual de RX	Valor de ganancia RX manual. Se aplica si AGC está
[dB]	deshabilitado.

3.7.4 Indicadores

La tabla 3.5 presenta los indicadores configurados en el panel frontal principal, de detallan los parámetros dispositivo listo, desbordamiento de destino FIFO, estación activa y ganancia de recepción aplicada.

Tabla 3.5 C	uadro de	indicadores
-------------	----------	-------------

Parámetro	Descripción
Dispositivo listo	El indicador booleano muestra si el dispositivo está
	listo. Si se recibe un error, prueba una de las
	siguientes opciones:
	Asegurarse de que el dispositivo RIO esté conectado
	correctamente.
	Comprobar la configuración del dispositivo RIO.
	Comprobar el número de estación. Debería ser
	diferente si más de una estación se ejecuta en el
	mismo host.
Desbordamiento de	Indicador booleano que se enciende si hay un
destino FIFO	desbordamiento en los búferes de memoria (FIFO) de
	destino a hospedar (T2H) de primera entrada, primera
	salida. Si uno de los FIFO T2H se desborda, su
	información ya no es confiable. Dichos FIFO son los
	siguientes:
	 Desbordamiento de datos T2H RX.
	 Desbordamiento de la constelación T2H.
	Desbordamiento del espectro de potencia T2H
	RX.
	Desbordamiento de estimación de canal T2H.
	Desbordamiento de TX a RF FIFO.
Estación activa	El indicador booleano muestra si la RF de la estación
	está activa después de habilitar la estación
	estableciendo el control Habilitar estación control
	Activado.
Ganancia RX aplicada	Un indicador numérico muestra el valor de ganancia
[dB]	RX aplicado actualmente. Este valor es la ganancia
	manual de RX cuando el AGC está deshabilitado o la
	ganancia RX calculada cuando el AGC está habilitado.
	En ambos casos, el valor de ganancia es coaccionado
	por las capacidades del dispositivo.

3.7.5 Pestaña MAC

En las tablas siguientes se enumeran los controles e indicadores que se colocan en la pestaña MAC, observar la figura 3.38.

En la pestaña MAC se realiza las configuraciones de tipo de datos Source y Sink, se selecciona además el tamaño de paquetes PN (pseudoruido), la dirección ip de Tx y el puerto de TX, además se observan las gráficas de tasa de error de Tx, retransmisiones promedio por paquete, el diagrama de constelación de Rx, y la tasa de transferencia en Mbps.

Figura 3.38 Pestaña MAC

3.7.6 Configuración dinámica de tiempo de ejecución (pestaña MAC)

En las tablas 3.6 y 3.7 se detalla la configuración dinámica de la pestaña MAC.

Parámetro		Descripción
Origen datos	de	Determina el origen de las tramas MAC que se envían desde el host al destino.
		Desactivado: este método es útil para deshabilitar la transmisión de datos TX mientras la cadena TX está activa para activar paquetes ACK.
		UDP: este método es útil para mostrar demostraciones, como cuando se usa una aplicación de transmisión de video externa, o para usar una herramienta de prueba de red externa, como lperf. En este método, los datos de entrada llegan o se generan desde la estación 802.11 utilizando el protocolo de datagramas de usuario (UDP).
		Datos PN: este método envía bits aleatorios y es útil para pruebas funcionales. El tamaño y la velocidad del paquete se pueden adaptar fácilmente.
		Manual: este método es útil para activar paquetes individuales con fines de depuración.
		Externo: permite que una posible realización externa de MAC superior u otras aplicaciones externas utilicen las funcionalidades MAC y PHY proporcionadas por el marco de aplicaciones 802.11.

Tabla 3.6 Configuración dinámica (pestaña MAC)

Parámetro	Descripción
Opciones de	Cada pestaña muestra las opciones para los orígenes de datos
origen de	correspondientes. UDP Tab: un puerto UDP libre para recuperar
datos	datos para el transmisor se deriva inherentemente en función del
	número de estación. PN Tab - PN Data Packet Size — Tamaño
	del paquete en bytes (el rango está limitado a 4061, que es un solo
	A-MPDU reducido por sobrecarga MAC). PN Tab - PN Paquetes
	por segundo — Número medio de paquetes a transmitir por
	segundo (limitado a 10.000. El rendimiento alcanzable puede ser
	menor dependiendo de la configuración de la estación). Manual
	Tab - Trigger TX-Un control booleano para activar un solo
	paquete TX.
Receptor de	Tiene las siguientes opciones: Desactivado: los datos se
datos	descartan. UDP: si está habilitado, las tramas recibidas se
	reenvían a la dirección y el puerto UDP configurados
Opción de	Tiene las siguientes configuraciones necesarias para la opción de
receptor de	receptor de datos UDP: Dirección IP de transmisión: dirección
datos	IP de destino para el flujo de salida UDP. Puerto de transmisión:
	puerto UDP de destino para el flujo de salida UDP, generalmente
	entre 1.025 y 65.535.
Restablecer	Un control booleano para restablecer todos los contadores del
estadística	clúster de estadísticas de MAC TX.
de TX	
Restablecer	Un control booleano para restablecer todos los contadores del
estadísticas	clúster de estadísticas MAC RX.
de RX	
Valores por	Un control booleano para mostrar las estadísticas MAC TX y MAC
segundo	RX como los valores acumulados desde el último restablecimiento
	o los valores por segundo.

3.7.7 Gráficos e indicadores (pestaña MAC)

Las tablas 3.8 y 3.9 se presentan los indicadores y gráficos observados en la pestaña MAC.

Parámetro	Descripción
Opciones de origen de	Puerto de recepción: puerto UDP de origen del flujo
datos - UDP	de entrada UDP. FIFO Full: indica que el búfer de
	socket del lector UDP es pequeño para leer los datos
	dados, por lo que los paquetes se eliminan. Aumente
	el tamaño del buffer del socket. Transferencia de
	datos: indica que los paquetes se leen correctamente
	desde el puerto dado.
Opción de receptor de	FIFO Full: indica que el búfer de socket del remitente
datos - UDP	UDP es pequeño para recibir la carga útil del FIFO de
	acceso directo a memoria (DMA) de RX Data, por lo
	que los paquetes se eliminan. Aumente el tamaño del
	buffer del socket. Transferencia de datos: indica que
	los paquetes se leen correctamente desde el FIFO
	DMA y se reenvían al puerto UDP dado.
Constelación RX	La indicación gráfica muestra la constelación de
	muestras RX en fase/cuadratura (I/Q) del campo de
	datos recibido.
Rendimiento RX [bits/s]	La indicación numérica muestra la velocidad de datos
	de las tramas recibidas y decodificadas correctamente
	que coinciden con la dirección MAC del dispositivo.
Velocidad de datos	La indicación gráfica muestra la velocidad de datos de
[Mbps]	las tramas recibidas y decodificadas correctamente
	que coinciden con la dirección MAC del dispositivo.

Tabla 3.8 Gráficos e indicadores (ficha MAC)

Parámetro	Descripción
Estadísticas mac TX	La indicación numérica muestra los valores de los
	siguientes contadores relacionados con MAC TX. Los
	valores presentados podrían ser los valores
	acumulados desde el último restablecimiento o los
	valores por segundo en función del estado de los
	valores de control booleano por segundo. 1) RTS
	activado, 2) CTS activado, 3) Datos activados, 4) ACK
Estadísticas de MAC RX	La indicación numérica muestra los valores de los
	siguientes contadores relacionados con MAC RX. Los
	valores presentados podrían ser los valores
	acumulados desde el último restablecimiento o los
	valores por segundo en función del estado de los
	valores de control booleano por segundo.
	Preámbulo detectado (por la sincronización), Unidades
	de datos de servicio PHY (PSDUs) recibidas (tramas
	con encabezado de procedimiento de convergencia de
	capa física (PLCP) válido, tramas sin infracciones de
	formato), MPDU CRC OK (la secuencia de
	comprobación de fotogramas (FCS) pasa), RTS
	detectado, CTS detectado, Datos detectados, ACK
	detectado.
Tasas de error de TX	La indicación gráfica muestra la tasa de error del
	paquete TX y la tasa de error del bloque TX. La tasa
	de error de paquete TX se calcula como una relación
	entre mpDU exitosa transmitida al número de intentos
	de transmisión. La tasa de error del bloque TX se
	calcula como una relación entre la MPDU exitosa
	transmitida al número total de transmisión. Los valores
	mas recientes se muestran en la parte superior
	derecha del gráfico.

Tabla 3.9 Gráficos e indicadores (ficha MAC)
3.7.8 Pestaña RF & PHY

Las siguientes tablas se enumeran los controles e indicadores que se colocan en la pestaña RF & PHY.

En la figura 3.39. se puede observar las gráficas de canalización y frecuencia, analizador de espectros a nivel de TX y Rx, la estimación de canal, gráficas de potencia de RF de entrada y gráfica de banda base de Rx.

Figura 3.39 Pestaña RF & PHY

3.7.9 Configuración dinámica de tiempo de ejecución (RF y PHY)

En la tabla 3.10 se observan los parámetros y descripción de la pestaña RF y PHY.

Tahla	3 10	Configur	ación di	námica	de tiemi	no de e	iecución	REV	рнv
i avia	3.10	Conngun	acion ui	nannca	ue lienn	JU UE E	Jecucion	nr y i	ги

Parámetro		Descripción
Umbral	de	Si la energía de la señal recibida está por encima del umbral, la
detección	de	estación califica el medio como ocupado e interrumpe su
energía	CCA	procedimiento de retroceso, si lo hubiera. Establecer el control
[dBm]		CCA Energy Detection Threshold [dBm] en un valor que sea
		superior al valor mínimo de la curva de corriente en el gráfico
		de potencia de entrada de RF.

3.7.10 Gráficos e indicadores (RF y PHY Tab)

En las tablas 3.11 y 3.12 se observan los parámetros y descripción de los gráficos de la pestaña RF y PHY.

	Tabla 3.11	Gráficos	e indicadores	(RF y PHY	Tab)
--	------------	----------	---------------	-----------	------

Parámetro	Descripción
Frecuencia LO	Frecuencia TX real utilizada en el objetivo.
forzada TX [Hz]	
Frecuencia d	La frecuencia del centro de RF después del ajuste basado en
RF [Hz]	el Control del selector de canal primario y el ancho de banda
	operativo.
Frecuencia LO	Frecuencia RX real utilizada en el objetivo.
forzada RX [Hz]	
Nivel d	Nivel de potencia de una onda continua de 0 dBFS que
potencia	proporciona la configuración actual del dispositivo. La potencia
coaccionado	de salida promedio de 802.11 señales es aproximadamente 10
[dBm]	dB por debajo de este nivel.

CFO	Desplazamiento de frecuencia portadora (CFO) detectado por
compensado	unidad de estimación de frecuencia gruesa. Para el módulo
[Hz]	adaptador FlexRIO/FlexRIO, configure el reloj de referencia en
	PXI_CLK o REF IN/ClkIn.
Canalización	La indicación gráfica muestra qué la sub-banda se utiliza como
	canal principal en función del selector de canal principal. El PHY
	cubre un ancho de banda de 80 MHz, que se puede dividir en
	cuatro subsanadas {0,,3} de ancho de banda de 20 MHz para
	la señal que no es HT. Para anchos de banda más amplios
	(40 MHz u 80 MHz), las sub-bandas se combinan.
Estimación de	La indicación gráfica muestra la amplitud y la fase del canal
canales	estimado (basado en L-LTF y VHT-LTF).
Alimentación RX	La indicación gráfica muestra la potencia de la señal de banda
de banda base	base al inicio del paquete. El indicador numérico muestra el
	potencia de banda base. Cuando el AGC está habilitado, el
	marco de aplicación 802.11 intenta mantener este valor en la
	potencia de señal de destino AGC dada en la pestaña
	Avanzado cambiando la ganancia RX en consecuencia.
Espectro de	Una instantánea del espectro de banda base actual del TX.
potencia TX	
Espectro de	Una instantánea del espectro de banda base actual del RX.
potencia RX	
Potencia de	Muestra la potencia de entrada de RF actual en dBm
entrada de RF	independientemente del tipo de señal entrante si se ha
	detectado un paquete 802.11.

3.7.11 Pestaña Avanzado

En las tablas siguientes, se enumeran los controles que se colocan en la ficha Opciones avanzadas, tal como se puede observar en la figura 3.40. En esta pestaña se observan los parámetros de configuración de Backoff, AGC target, RF Loop back demo mode, control de frame de Tx, dot11RTSThreshold, dot11ShortRetryLimit y dot11LongRetryLimit.

MAC RF & PHY Advanced Events Status	Habilitar estaciónOff On
Backoff -1 ▲ Note: -1 means random backoff	AGC target signal power -20 dBFS ▼
control frame TX vector configuration RTS MCS CTS MCS ACK MCS 0	RF loop back demo mode
dot11RTSThreshold 2000 dot11ShortRetryLimit 7 dot11LongRetryLimit 4	

Figura 3.40 Ficha Avanzada de Application Framework

3.7.12 Configuración estática del tiempo de ejecución

En las tablas 3.13 y 3.14 se observan los parámetros y descripción de las opciones encontradas en la pestaña avanzada.

Parámetro	Descripción
configuración vectorial	Aplica los valores MCS configurados en vectores TX
TX del marco de control	para tramas RTS, CTS o ACK. La configuración predeterminada de la trama de control de esas tramas es Non-HT-OFDM y ancho de banda de 20 MHz, mientras que el MCS se puede configurar desde el host.
dot11RTSThreshold	Parámetro semiestático utilizado por la selección de secuencias de fotogramas para decidir si RTS CTS está permitido o no.
	• Si la longitud de PSDU, es decir, el tamaño del
	 paquete de datos PN, es mayor quedot11RTSThreshold, el {RTS CTS DE DATOS Se utiliza la secuencia de fotogramas ACK}. Si la longitud de PSDU, es decir, el tamaño del paquete de datos PN, es menor o igual que elpunto11RTSThreshold, el {DATA Se utiliza la secuencia de fotogramas ACK}. Este mecanismo permite configurar las estaciones para iniciar RTS/CTS siempre, nunca o solo en tramas de más de una longitud especificada.
dot11ShortRetryLimit	Parámetro semiestático: número máximo de reintentos aplicados para el tipo MPDU corto (secuencias sin RTS CTS). Si se alcanza el número de límites de reintento, descarta las MPDU y la configuración de MPDU asociada y el vector TX.
dot11LongRetryLimit	Parámetro semiestático: número máximo de reintentos aplicados para el tipo MPDU largo (secuencias que incluyen RTS CTS). Si se alcanza el número de límites de reintento, descarta las MPDU y la configuración de MPDU asociada y el vector TX.

Tabla 3.13 Configuración estática de tiempo de ejecución (ficha Avanzadas)

Parámetro	Descripción
Modo de demostración	Control booleano para cambiar entre los modos de
de RF Loopback	operación:
	Rf Multi-Station (Boolean es false): Se requieren al
	menos dos estaciones en la configuración, donde cada
	estación actúa como un solo dispositivo 802.11.
	RF Loopback (Boolean es true): Se requiere un solo
	dispositivo. Esta configuración es útil para pequeñas
	demostraciones que utilizan una sola estación. Sin
	embargo, las características MAC implementadas
	tienen algunas limitaciones en el modo RF Loopback.
	Los paquetes ACK se pierden mientras el MAC TX los
	está esperando; la máquina de estado DCF en FPGA
	de MAC impide este modo. Por lo tanto, el MAC TX
	siempre informa de un error de transmisión. Por lo
	tanto, la tasa de error del paquete TX informada y la
	tasa de error del bloque TX en la indicación gráfica de
	las tasas de error TX son algunas.

Tabla 3.14 Configuración estática de tiempo de ejecución (ficha Avanzadas)

3.7.13 Configuración dinámica de tiempo de ejecución

En la tabla 3.15 se observan los parámetros y descripciones de la configuración dinámica de tiempo de ejecución de la pestaña avanzada.

Tabla 3.15 Configuración dinámica de	e tiempo de ejecución (ficha Avanzada)
--------------------------------------	--

Parámetro	Descripción			
Backoff	Valor de retroceso que se aplica antes de que se transmita una			
	trama. El retroceso se cuenta en número de ranuras de 9 μs de			
	duración. Según el valor de retroceso, el recuento de retroceso			
	para el procedimiento de retroceso podría ser fijo o aleatorio:			
	• Si el valor de retroceso es mayor o igual que cero, se			
	utiliza un retroceso fijo.			
	• Si el valor de retroceso es negativo, se utiliza un recuento			
	aleatorio de retroceso.			
Potencia de la	Potencia RX de destino en banda base digital utilizada si el AGC			
señal objetivo	está habilitado.			
AGC	El valor óptimo depende de la relación de potencia pico/media			
	(PAPR) de la señal recibida. Establezca la potencia de la seña			
	de destino AGC en un valor mayor que el presentado en el			
	gráfico de potencia RX de banda base.			

3.7.14 Pestaña Eventos

En las tablas siguientes se enumeran los controles e indicadores que se colocan en la ficha Eventos.

En la gráfica 3.41. se observa la pestaña eventos desplegada, en la cual se apreciará los logs y eventos suscitados durante la Tx y Rx. Los datos que se quiere obtener a nivel de logs deben ser previamente habilitados en las casillas del lado derecho de la ventana.

Events [] 4:27,495.4132 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,495.4123 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,495.7844 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,502.1874 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,505.2367 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,505.2367 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,512.3440 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,512.3440 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,521.2621 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,521.2641 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,530.8646 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,530.8646 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,530.8646 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,540.4942 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,541.5970 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.6349 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.1023 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.1023 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0923 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.634 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,562.0285 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_O	MA	C RE &	рну да	vanced	Events	Status			Habilitar estación 🗾 📰 📘 Estación activa 📘 Target I	FII
Events()4:27,495.1382 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,495.4123 [INF]FPGA-PHY TX start request PhyTxEnt.req format: NON_HT_OFDM, k4:27,495.7844 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,502.5596 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,505.2367 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,511.9759 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,521.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,521.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,531.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,531.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,541.7201 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.2634 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0,	1110	0 14 Q		rancea	L. C.	otatas			on on	-
Events()4:27,495.1382 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,495.4123 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,502.1874 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,502.1874 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,505.2367 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,505.6308 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,511.9759 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,512.3480 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,512.3480 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.2204 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,541.2204 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode:										
<pre>() 4:27,495.1382 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,495.4123 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,495.7844 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,502.1874 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,502.3876 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,505.6088 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,505.6086 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,512.621 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,521.621 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,521.621 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,530.4942 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,530.8664 [INF] FFGA-PHY TX start request PhyTxEnd.ind unsupported mode: 0, sc 4:27,534.2249 [INF] FFGA-PHY TX start request PhyTxEnd.ind unsupported mode: 0, sc 4:27,542.0922 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,545.1023 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0922 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0923 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,545.1023 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0924 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,542.0925 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,542.0925 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,567.0285 [INF] FFGA</pre>	Eve	nts								
 H.17, 495.1382 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 495.4123 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 502.1874 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 502.2596 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 505.2367 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 505.2367 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 512.3480 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 521.2621 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 521.2621 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 530.4942 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 530.3864 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 541.7201 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 542.0922 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h 4:27, 542.0922 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.0922 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.0922 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.0922 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.023 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.0243 [INF] FP	1	1								_
1:17,153.1102[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,495.7844[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,502.1874[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,502.5596[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,505.6088[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,512.3480[INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc1:27,521.6342[INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc1:27,530.4942[INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc1:27,530.4942[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,530.4942[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,531.24249[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,541.201[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,541.202[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,545.023[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,545.0242[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,545.023[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,545.024[INF]FFGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, H1:27,545.2634[INF]FFGA-PHY	4.	27 495	1382	TNF	1	FDG	-DHV	тγ	end indication DhuTyEnd ind ungunnerted mode. 0 a	
4:27,495.7844 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,502.1874 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,502.5596 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,505.6088 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,505.6088 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,511.9759 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,521.2621 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,521.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, k4:27,530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,534.249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, k4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, k4:27,561.8913 [INF]FPGA-PHY TX start request PhyTxEnd.ind un	4	27,495	4123	ITNE	1	FPG	A-PHY	TX	start request PhyTxStart, reg format: NON HT OFDM.	r
 4:27, 502.1874 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27, 502.5596 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 505.2367 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 505.6088 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 512.3480 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27, 521.6342 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 521.6342 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 530.4942 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 530.4942 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 530.4942 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 541.7201 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.0922 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 545.1023 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 542.0922 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 546.8555 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 567.0285 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 567.4006 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 567.4006 [INF] FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27, 570.4827 [INF] F	4 :	27,495	.7844	IINF	1	FPG	A-PHY	TX	end indication PhyTxEnd.ind unsupported mode: 0. s	30
4:27, 502.5596 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 505.2367 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, h4:27, 505.6088 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 512.3480 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 521.6342 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 530.4864 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 530.8664 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 534.5970 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27, 541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27, 545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27, 546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27, 561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27, 570.4827 [INF]FPGA-PHY TX end indic	4 :	27,502	.1874	INF	1	FPG	A-PHY	TX	start request PhyTxStart.reg format: NON HT OFDM.	k
4:27,505.2367 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,505.6088 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,511.9759 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,512.3480 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,521.621 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,521.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req	4:	27,502	.5596	INF	1	FPG	A-PHY	TX	end indication PhyTxEnd.ind unsupported mode: 0, s	30
4:27,505.6088 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,511.9759 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,512.3480 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,521.6342 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,534.2249 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,542.0922 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,541.7201 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,542.0922 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,542.634744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT OFDM, h4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxEnd.ind	4:	27,505	.2367	INF	1	FPG	A-PHY	ТX	start request PhyTxStart.reg format: NON HT OFDM,	k
4:27,511.9759 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,512.3480 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,521.6342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,530.8664 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.0922 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,545.0922 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.0923 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,545.47.2276 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, t4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.i	4:	27,505	.6088	[INF	i	FPG	A-PHY	ΤX	and indication PhyTxEnd.ind unsupported mode: 0, s	зс
4:27,512.3480 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,521.66342 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, k4:27,530.4942 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,530.8664 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.5970 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.4006 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,511	.9759	[INF]	FPG	A-PHY	ΤX	start request PhyTxStart.req format: NON HT OFDM,	k
4:27,521.2621 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,521.6342 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,530.8664 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,534.2249 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.0922 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,562.2634 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,512	.3480	[INF]	FPG	A-PHY	ΤX	end indication PhyTxEnd.ind unsupported mode: 0, s	зс
4:27,521.6342 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,530.8664 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.5970 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.0922 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,547.2276 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.4006 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,521	.2621	[INF	1	FPG	A-PHY	ΤX	start request PhyTxStart.req format: NON_HT_OFDM,	k
4:27,530.4942 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,530.8664 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,534.5970 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,542.0922 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,547.2276 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.0285 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.4006 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, h4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,521	.6342	[INF]	FPG	A-PHY	ΤX	I end indication PhyTxEnd.ind unsupported mode: 0, s	зc
4:27,530.8664 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.5970 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,542.0922 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,547.2276 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.0285 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.4006 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,530	.4942	[INF]	FPG	A-PHY	ΤX	<pre>start request PhyTxStart.req format: NON_HT_OFDM,</pre>	k
4:27,534.2249 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,534.5970 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.0922 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,547.2276 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.4006 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,530	.8664	[INF]	FPG	A-PHY	ΤX	I end indication PhyTxEnd.ind unsupported mode: 0, s	зc
4:27,534.5970 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,541.7201 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,542.0922 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,547.2276 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.4006 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,534	.2249	[INF]	FPG	A-PHY	ΤX	<pre>start request PhyTxStart.req format: NON_HT_OFDM,</pre>	k
4:27,541.7201 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,542.0922 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,545.4744 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,547.2276 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,562.2634 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,567.4006 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4028 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.40208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,534	.5970	[INF]	FPG	A-PHY	ΤX	I end indication PhyTxEnd.ind unsupported mode: 0, s	зc
4:27,542.0922 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,545.1023 [INF]FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,546.8555 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,546.8555 [INF]FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,561.8913 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,562.2634 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,567.0285 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,567.4006 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,570.4827 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,570.4827 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,570.4827 [INF]FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,570.4828 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,570.4208 [INF]FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k4:27,576.4208 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,576.4208 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,576.4208 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,576.4208 [INF]FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, so4:27,576.4208 [INF]FFGA-PHY TX end indication PhyTxEnd.ind	4:	27,541	.7201	[INF]	FPG	A-PHY	ΤX	start request PhyTxStart.req format: NON_HT_OFDM,	k
4:27,545.1023 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, k4:27,545.4744 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,562.2634 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.0285 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.4006 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, k4:27,570.4828 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY TX start request PhyTxStart.req format: NON HT_OFDM, k4:27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc6.27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc6.27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc6.27,576.4208 [INF]FPGA-PHY TX end indication PhyTxEnd.ind	4:	27,542	.0922	[INF]	FPG	A-PHY	ΤX	end indication PhyTxEnd.ind unsupported mode: 0, s	зc
4:27,545.4744 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,546.8555 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,546.8555 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,562.2634 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,567.4006 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,570.8548 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,570.4208 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,576.4208 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, k4:27,576.4208 [INF]FPGA-PHY IX start request PhylxEnd.ind unsupported mode: 0, scFPGA-PHY IXFPGA-PHY IX start request PhylxEnd.ind unsupported mode: 0, sc6.27,576.4208 [INF]FPGA-PHY IX start request PhylxEnd.ind unsupported mode: 0, sc6.27,576.4208 [INF]FPGA-PHY IX start request PhylXEnd.ind unsupported	4:	27,545	.1023	[INF	1	FPG.	A-PHY	TX	start request PhyTxStart.req format: NON_HT_OFDM,	k
4:27,546.8555 [INF]FPGA-PHY IX start request PhylxStart.req format: NON_HT_OFDM, F4:27,547.2276 [INF]FPGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, K4:27,562.2634 [INF]FPGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.0285 [INF]FPGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, K4:27,567.4006 [INF]FPGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4827 [INF]FPGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, K4:27,570.8548 [INF]FPGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX end indication PhyTxStart.req format: NON_HT_OFDM, K4:27,576.4208 [INF]FPGA-PHY IX end indication PhyTxStart.req format: NON_HT_OFDM, K4:27,576.4208 [INF]FPGA-PHY IX end indication PhyTxStart.req format: NON_HT_OFDM, K4:27,576.4208 [INF]FPGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, K4:27,576.4208 [INF]FPGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, K4:27,576.4208 [INF]FPGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, K	4:	27,545	4744	LINE	1	FPG	A-PHY	TX	end indication PhylxEnd.ind unsupported mode: 0, s	3 C
4:27,547.2276 [INF]FPGA-PHY IX end indication PhylxEnd.ind unsupported mode: 0, sc4:27,561.8913 [INF]FPGA-PHY IX start request PhyIxStart.req format: NON_HT_OFDM, k4:27,567.0285 [INF]FPGA-PHY IX end indication PhyIxEnd.ind unsupported mode: 0, sc4:27,567.4006 [INF]FPGA-PHY IX end indication PhyIxStart.req format: NON_HT_OFDM, k4:27,570.4827 [INF]FPGA-PHY IX end indication PhyIxStart.req format: NON_HT_OFDM, k4:27,570.8548 [INF]FPGA-PHY IX start request PhyIxStart.req format: NON_HT_OFDM, k4:27,570.8548 [INF]FPGA-PHY IX end indication PhyIxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FPGA-PHY IX end indication PhyIxStart.req format: NON_HT_OFDM, k4:27,576.7930 [INF]FPGA-PHY IX start request PhyIxStart.req format: NON_HT_OFDM, k4:27,576.7930 [INF]FPGA-PHY IX start request PhyIxStart.req format: NON_HT_OFDM, k	4:	27,546	.8555	LINE	1	FPG	A-PHY	TX	start request PhyTxStart.req format: NON_HT_OFDM,	r
4:27,561.6913 [INF]FFGA-PHY IX start request PhyLkStart.req format: NON_HI_OFDM, t4:27,567.0285 [INF]FFGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,567.4006 [INF]FFGA-PHY IX start request PhyTxStart.req format: NON_HI_OFDM, t4:27,570.4827 [INF]FFGA-PHY IX start request PhyTxStart.req format: NON_HI_OFDM, t4:27,570.4827 [INF]FFGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,570.4828 [INF]FFGA-PHY IX start request PhyTxStart.req format: NON_HI_OFDM, t4:27,576.4208 [INF]FFGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FFGA-PHY IX start request PhyTxStart.req format: NON_HI_OFDM, t4:27,576.4208 [INF]FFGA-PHY IX end indication PhyTxEnd.ind unsupported mode: 0, sc4:27,576.4208 [INF]FFGA-PHY IX start request PhyTxStart.req format: NON_HI_OFDM, t6:27,576.4208 [INF]FFGA-PHY IX start request PhyTxStart.req format: NON_HI_OFDM, t	4:	27,547	.22/6	LINE	1	E PG.	A-PHI DUV	IX	, end indication PhylkEnd.ind unsupported mode: 0, s	3C 12
4:27,567.0285 [INF] FFGA-FHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,567.4006 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,570.4827 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,570.4827 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,570.4828 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,576.4208 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,576.76.79.0 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k	4:	27,501	2634	LINE	1	FPG	A-PHI	TV	and indication PhyTyEnd ind ungupported mode: 0 a	1
4:27,567.4006 [INF] FFGA-FHY IX start request FhyIRstarting Holmat. Non_HI_OFDM, K 4:27,567.4006 [INF] FFGA-FHY IX end indication PhyIxEnd.ind unsupported mode: 0, sc 4:27,570.4827 [INF] FFGA-PHY IX start request PhyIxStart.req format: NON_HI_OFDM, K 4:27,576.4208 [INF] FFGA-PHY IX end indication PhyIxEnd.ind unsupported mode: 0, sc 4:27,576.4208 [INF] FFGA-PHY IX start request PhyIxStart.req format: NON_HI_OFDM, K 4:27,576.7930 [INF] FFGA-PHY IX start request PhyIxStart.req format: NON_HI_OFDM, K	4.	27,302	0.2031	LINE	1	FDC	A-FIII	TV	start request DeuTyStart reg format: NON HT OFDM	эс Ъ
4:27,570.4827 [INF] FFGA-FHT IX and indication PhyTxEnd.ind unsupported mode. 0, sc 4:27,570.4827 [INF] FFGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,576.4208 [INF] FFGA-PHY IX and indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,576.4208 [INF] FFGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,576.7930 [INF] FFGA-PHY IX start request PhyTxStart.req format: NON_HT_OFDM, k	4.	27,507	4006	LINE	1	FPG	- DHV	TV	and indication DeuTyEnd ind unsupported mode: 0 a	
4:27,570.8548 [INF] FFGA-PHY TX end indication PhyTxEnd.ind unsupported mode: 0, sc 4:27,576.4208 [INF] FFGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,576.7930 [INF] FFGA-PHY TX start request PhyTxEnd ind unsupported mode: 0, sc	4.	27,507	4827	TNE	1	FPG	A-PHY	TX	start request PhyTyStart reg format: NON HT OFDM	r
4:27,576.4208 [INF] FPGA-PHY TX start request PhyTxStart.req format: NON_HT_OFDM, k 4:27,576.7930 [INF] FPGA-PHY TX end indication PhyTxEnd ind unsupported mode: 0, sc	4 .	27.570	.8548	ITNE	1	FPG	A-PHY	TX	end indication PhyTxEnd.ind unsupported mode: 0. s	30
4.27 576 7930 [INF] FDG1_DHY TX and indication DhyTyEnd ind unsupported model 0 ac	4	27.576	.4208	INF	1	FPG	A-PHY	TX	start request PhyTxStart.reg format: NON HT OFDM.	k
1.2//0/0//200 INT IN THE INCLOSED INVINDIGATING UNDEDDIDED INGE, 0, DE	4 :	27,576	.7930	INF	i	FPG	A-PHY	TX	end indication PhyTxEnd.ind unsupported mode: 0. s	30

Figura 3.41 Ficha Eventos de Application Framework

3.7.15 Configuración dinámica de tiempo de ejecución

En la Tabla 3.16 se observa la configuración dinámica de tiempo de ejecución (de la pestaña de eventos.

Tabla 3.16 Configuración dinámica de tiempo de ejecución (ficha Eventos)

Parámetros	Descripción
Eventos de	Tiene un conjunto de controles booleanos; cada control se utiliza
FPGA para	para habilitar o deshabilitar el seguimiento del evento FPGA
rastrear	correspondiente. Estos eventos son los siguientes: Solicitud de
	inicio de PHY TX. Indicación final de PHY TX. Indicación de inicio
	PHY RX. Indicación final PHY RX. Indicación de timPHY CCA.
	Indicación de cambio de ganancia PHY RX. Indicación de
	estado DCF. Indicación MAC MPDU RX. Solicitud MAC MPDU
	TX.
Todo	Control booleano para permitir el seguimiento de eventos de los
	eventos FPGA anteriores.
Ninguno	Control booleano para deshabilitar el seguimiento de eventos de
	los eventos FPGA anteriores.
Prefijo del	Asigne un nombre a un archivo de texto para escribir los datos de
archivo de	eventos FPGA que se han leído desde el FIFO de DMA de
registro	eventos. Se presentaron anteriormente en los eventos de FPGA
	para rastrear. Cada evento consta de una marca de tiempo y los
	datos del evento. El archivo de texto se crea localmente en la
	carpeta del proyecto.
Parámetro	Descripción los eventos seleccionados en los eventos de FPGA
	para realizar un seguimiento anterior se escribirán en el archivo
	de texto.
Escribir en	Control booleano para habilitar o deshabilitar el proceso de
archivo	escritura de los eventos FPGA seleccionados en el archivo de
	texto.
Borrar	Control booleano para borrar el historial de eventos desde el
eventos	panel frontal. El tamaño de registro predeterminado del historial
	de eventos es 10.000.

3.7.16 Pestaña Estado

En las tablas siguientes se enumeran los indicadores que se colocan en la pestaña "Estado".

Tal como se observa en la figura 3.42. la pestaña estatus muestra los paquetes transmitidos y recibidos en un diagrama de bloques, con esto se puede validar que la información está siendo correctamente transmitida y recibida por los USRP.

AC RF & PHY Adva	nced Events Status Habilitar estación Off	On Estación activa	Target FIFO Overflow
	тх		RX
Data source / data sink	num packets source transfer source		num packets sink transfer sink
	+		^
High MAC	TX Request High MAC Config 260478 Payload 260478		RX Indications High MAC
	12102 12202	12302	12402 UDP por
Middle MAC	TX Request Middle MAC TX Confirmation Middle MAC Config 260477 Payload 260477	TX Indications Middle MAC	RX Indications Middle MAC
	TX Requests to PHY Packets dropped 260477 137405	TX Indications from PHY 119400	RX Indications from PHY 105720
	¥		<u> </u>
РНҮ		TX Indication Overflow	RX Indication Overflow

Figura 3.42 Ficha Estado de Application Framework

3.7.17 Gráficos e indicadores

En las tablas 3.17, 3.18 y 3.19 se observan en detalle los parámetros y descripciones de la pestaña estatus.

Parámetro	Descripción		
ТХ	Presenta una serie de indicadores que muestran el número de		
	mensajes transferidos entre diferentes capas, comenzando desde		
	el origen de datos hasta el PHY. Además, muestra los puertos UDP		
	correspondientes.		
Origen de	Origen de paquetes num: el indicador numérico muestra el		
datos	número de paquetes que se han recibido del origen de datos (UDP,		
	datos PN o manual). fuente de transferencia: el indicador		
	booleano muestra que se está recibiendo un dato del origen de		
	datos (el número de paquetes recibidos no es cero).		
MAC alto	TX Request High MAC: Los indicadores numéricos muestran el		
	número de mensajes de solicitud de configuración y carga útil de		
	MAC TX generados por la capa de alta abstracción mac y escritos		
	en el puerto UDP correspondiente que se encuentra debajo de ellos.		

Tabla 3.17 Gráficos e indicadores (ficha Estado)

Tabla 3.18 Gráficos e indicadores (ficha Estado)

Parámetro	Descripción		
MAC medio	TX Request Middle MAC: Los indicadores numéricos muestran el		
	número de mensajes de solicitud de configuración y carga útil de		
	MAC TX recibidos de la capa de alta abstracción mac y leídos desd		
	el puerto UDP correspondiente que se encuentra encima de ellos.		
	Antes de transferir ambos mensajes a las capas inferiores, se		
	comprueban las configuraciones dadas si son compatibles o no,		
	además, se comprueba si son coherentes la solicitud de		
	configuración MAC TX y la solicitud MAC TX Payload.		
	Solicitudes TX a PHY: El indicador numérico muestra el número de		
	solicitudes MAC MSDU TX escritas en el DMA FIFO.		
	MAC medio de confirmación TX: Los indicadores numéricos		
	muestran el número de mensajes de confirmación que han sido		
	generados por el centro MAC para los mensajes MAC TX		
	Configuration y MAC TX Payload y escritos en el puerto UDP		
	asignado ubicado encima de ellos.		
	Indicaciones TX de PHY: El indicador numérico muestra el		
	número de indicaciones finales MAC MSDU TX leídas del DMA		
	FIFO. Tx Indicaciones MAC medio: El indicador numérico		
	muestra el número de indicaciones de estado MAC TX reportadas		
	desde MAC medio a MAC alto utilizando el puerto UDP asignado		
	ubicado sobre él.		
PHY	Desbordamiento de indicaciones TX: El indicador numérico		
	muestra el número de desbordamientos que ocurrieron durante la		
	escritura FIFO por las indicaciones de TX End.		
RX	Presenta una serie de indicadores que muestran el número de		
	mensajes transferidos entre diferentes capas, desde el PHY hasta el		
	receptor de datos. Además, muestra los puertos UDP		
	correspondientes.		

Parámetro	Descripción		
PHY	Desbordamiento de indicación RX: El indicador numérico muestra		
	el número de desbordamientos que ocurrieron durante la escritura		
	FIFO por las indicaciones MAC MSDU RX.		
MAC medio	Indicaciones RX de PHY: El indicador numérico muestra el		
	número de indicaciones MAC MSDU RX leídas del DMA FIFO.		
	Indicaciones RX MAC medio: El indicador numérico muestra el		
	número de indicaciones MAC MSDU RX que se han decodificado		
	orrectamente y se han informado al MAC alto utilizando el puerto		
	UDP asignado ubicado sobre él.		
MAC alto	Indicaciones RX MAC alto: El indicador numérico muestra el		
	número de indicaciones MAC MSDU RX con datos MSDU válidos		
	recibidos en MAC alto.		
Receptor	ptor num packets sink: Número de paquetes recibidos en el receptor de		
de datos	datos desde MAC alto.		
	receptor de transferencia: El indicador booleano muestra que se		
	está recibiendo un dato desde el MAC alto.		

CAPÍTULO 4

4.1 Pruebas y evaluación de prototipo IEEE 802.11ac

4.1.1 Pruebas y evaluación del desempeño del código para el envío de señales de transmisión y recepción inalámbricas con SDR

En esta sección se realizan pruebas y evaluación del desempeño del algoritmo para el envío de señales inalámbricas del estándar IEEE 802.11ac utilizando el banco de pruebas con los NI USRP 2974 y el software NI LabVIEW NXG.

Se realiza la generación de datos con Pseudoruido PN para la saturación del enlace de TX inalámbrico, con la finalidad de comprobar la tasa efectiva en Mbps del enlace, también se realiza diferentes cambios en los parámetros de modulación, frecuencia, formato del subcarrier y variación del MCS.

Se realiza el seteo de las Mac Address de los USRP, en la figura 4.1 se observa el seteo de la MAC address de la PC1 – TX. La finalidad es la configuración de las MAC Address de los USRP en cada estación de trabajo con lo cual se establece que USRP va a estar asociada como USRP local o destino. La frecuencia seteada es de 2.437 GHz.

Figura 4.1 Seteo de MAC address PC1 – TX

La PC2 – RX se setea con los parámetros mostrados en la figura 4.2. Nótese que la mac address local es la mac del USRP que se conecta directamente a la PC, y la mac address destino es el USRP que está conectado en la PC1-TX.

Formato del Subcarrier			
20 MHz (IEEE 802.11 a)			
MCS			
4 ▼ 16-QAM (1/2)			
AGC Ganancia Manual RX			
☑ Habilitar 37,5 dB 🛓			
Ganancia RX Aplicada			
37,5 dB			
valid MAC Address Local			
00:80:2F:24:08:53			
valid MAC Address Destino			
00:80:2F:24:08:6B			

Figura 4.2 Seteo de MAC Address PC2- Rx

Se recomienda setear un valor de nivel de potencia RF de 4 dBm debido a que en el lugar donde se realizan las pruebas "Laboratorio de Radiocomunicaciones de ESPOL" hay interferencias WIFI en las bandas de 2.4 GHz y 5 GHz. Ver figura 4.3.

Figura 4.3 Setear potencia

En la figura 4.4. se observa que en la pestaña MAC se setea el Data Source en PN Data y el Data Sink debe permanecer en OFF. En las opciones de Data Source Options se selecciona PN Data con valores de 4061 para el PC1-TX y paquetes PN por segundo en 10000.

Figura 4.4 Seteo de valores en Data Source

En la pestaña Advanced se debe setear el dot11RTSThreshold en 5000 y el dot11ShortRetryLimit en 1. Ver figura 4.5.

*	Primary Channel Center Frequency	MAC RF & PHY Advanced Events Status	Enable Station Off On Station Active Target FIFO Overflow
	2,437000 GHz 💌		
	Primary Channel Selector	Backoff -1 💌 Note: -1 means random backoff	AGC target signal power -20 dBFS
0.1	Power Level	control frame TX vector configuration	RF loop back demo mode
F	RF ports are applicable for USRP only:	RTS MCS	Off On
≡I	TX RF Port RX RF Port TX1/RF 0 RX2/RF 1		
N	Subcarrier Format	ACK MCS	
В	40 MHz (IEEE 802.11 ac)	dot11RTSThreshold	
Ŧ	8 🛋 256-QAM (3/4)	5000	
0	AGC Manual RX gain Enable 37,5 dB	dot11ShortRetryLimit	
	Applied RX Gain 37,5 dB	dot11LongRetryLimit	
	valid Device MAC Address 00:80:2F:24:08:6B		

Figura 4.5 Seteo en pestaña avanzada

Luego de realizar las configuraciones de parámetros en cada una de las estaciones del banco de pruebas, se habilitan las estaciones 1 y 2 y empieza la transmisión de datos aleatorios PN hacia el receptor. En las figuras 4.6, 4.7, 4.8 y 4.9 se visualiza los resultados observados en las pestañas MAC, RF & PHY, Advanced y Status respectivamente.

En la figura 4.6, se observa los resultados indicados en la pestaña MAC, en el USRP 1 estación 1 no se observan datos de recepción debido a que este equipo está trabajando como transmisor.

Figura 4.6 Pestaña MAC

En la figura 4.7 se observan las gráficas de la pestaña RF & MAC, se resaltan las gráficas de los analizadores de espectros de Tx y Rx del USRP 1.

Figura 4.7 RF & PHY

En la figura 4.8 se muestra la configuración de la pestaña Avanzado.

▶ 80	602.11 Design USRP RIO v19.5.3 - PC1 - LabVIEW NXG 4.0.0 🦻 🗸 🔑 sector						
File	Edit	Run Data View Help		🕜 Carlos Bosq			
**		SystemDesigner * Þ Host.gvi - runr	ning * + -				
	> 1	🙁 🧕 🖽 🛄 Real-Time Co	ontro V Panel Diagram Icon	, 🗌 🗸 100% 🔻			
≡ %	ρ	Primary Channel Center Frequency	MAC RF & PHY Advanced Events Status Enable Station Off On Station Active Target FIFO Overflow	4			
	.0	2,437000 GHz 💌					
		Primary Channel Selector	Backoff AGC target signal power				
	*	1	-1 w Note: -1 means random backoff -20 dBFS				
		Power Level	control frame TX vector configuration RF loop back demo mode				
			RTS MCS				
	0.1	RF ports are applicable for USRP only:					
		TX RF Port RX RF Port	CTS MCS				
	7.	TX1/RF 0 RX2/RF 1	0 🖤				
	/ r		ACK MCS				
	≣Ĭ	Subcarrier Format	0 0				
		40 MHz (IEEE 802.11 ac)					
	N	MCS					
	-	7 💌 64-QAM (5/6)	poor •				
	E	AGC Manual RX gain	dot11ShortRetryLimit				
		Enable 37,5 dB					
		Applied RX Gain	dot11LongRetryLimit				
	0	26,5 dB					
		valid Device MAC Address					
	P**	00:80:2F:24:08:6B					
		valid Destination MAC Address					
		00:80:2F:24:08:53		I			
			I				

Figura 4.8 Pestaña Avanzada

En la figura 4.9 se muestra la configuración de la pestaña estatus.

N 00								
File	acent perigin care not provide the second seco							
>>		StatemBeigner X De Hott mi- ganning X +						
		I Systembergner Prostegn		Papel Diagram	lcon		100%	
				Enable Station				
*	P	nary Channel Center Frequency	MAC RF & PHY Adv	nced Events Status	ff On Station Active	Target FIFO Overflow	⊳	
	1	,437000 GHz 👻						
	*	nary Channel Selector		TX		RX		
		ver level	Data source /	num packets source transfer source		num packets sink transfer sink		
		10,0 dBm	data sink	23009530		4904339		
		ports are applicable for USRP only:		*				
	0.1	RF Port RX RF Port		TX Request High MAC		RX Indications High MAC		
		TX1/RF 0 RX2/RF 1	High MAC	Config 46439334		4904339		
	F			Payload 46439334				
	≡Ī	xarrier Format		12101 12201	12201	A 12401 UDP norts		
		40 MHz (IEEE 802.11 ac)		TX Request Middle MAC TX Confirmation Middle M	C TV Indications Middle MAC	12401 001 001		
	N	S			9860218	RX Indications Middle MAC		
	10	7 V 04-QAWI (5/6)	Martin MAC	Config 332/3850 Config 332/3850 Pavload 33152818 Pavload 33152818		4904477		
		C Manual RX gain	Middle MAC	TV Requests to DHV. Daskets drapped	TV Indications from DHV	PV Indications from DHV		
	Ŧ	Applied BX Gain		32966661 23105473	9860218	4928779		
	0	37,5 dB						
		id Device MAC Address		¥	<u> </u>	^		
	[¹²⁵]	00:80:2F:24:08:6B	РНУ		TX Indication Overflow	RX Indication Overflow		
		id Destination MAC Address			0	0		
		00:80:2F:24:08:53						
	_	4					►	
\$	Errors ar	id Warnings						
	Q	Escribe aquí para buscar		# 🗧 💻 🖻 🛃 🛷		^ ∉ ☑	ESP 16/12/2021	

Figura 4.9 Pestaña de eventos

Se realiza la configuración de la PC2 – RX con los valores indicados en la figura 4.10.

Figura 4.10 Configuración en PC2 – RX

Se valida que en el diagrama de constelación la recepción de la señal QAM del Tx. El throughput alcanzado en esta prueba es de 52.4 Mbps considerando las interferencias del medio inalámbrico. Ver figura 4.11.

Figura 4.11 Pruebas de TX y Rx

En las figuras 4.12, 4.13, 4.14, se observan los resultados obtenidos del lado del PC2 – Rx.

En la figura 4.12, se observan las gráficas del analizador de espectros y la canalización del USRP 2, se resalta que se trabaja con ancho de canal de 20 MHz para esta prueba.

Figura 4.12 RF & PHY PC2

En la figura 4.13 se observa la configuración de la pestaña avanzado para el USRP 2.

Figura 4.13 Pestaña de avanzado PC2

En la figura 4.14 se observa la configuración de la pestaña "events" para el USRP 2.

.11 Desi	ign USRP RIO v1	.5 3 - PC2 - LabVIEW NXG 4.0.0 🖻 🗸	P Search - É	Þ X
Edit	Run Data	View Help	Carlos Bo:	squez 🔻
	SystemDesig	ner 🎽 🕨 Host.gvi - <i>running</i> 🎽 🕂 🕌		4
>	I 🔕 🌻	Diagram Icon	d ^{ar} 🗸 🔲 🗸 100%	▼ ³
P	requency	MAC RF & PHY Advanced Events Status Off On Station Active Torget FIFO Overflow		
1		Funte	EDGA quants to track	
*		tvens 5:08,455.0968 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:F:▲ 5:08,455.1038 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi","AFW::802_11::T	PHY TX start request	
6		5:08,455.2448 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 5:08,455.2468 [ERR] Host-Call Chain - ["AFW::802_11::Transport:Decode MSDU TX Parameters.gvi ","AFW::802_11::T 5:25,651.2632 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF:	PHY TX end indication	
0.1	r USRP only: Port	5:25,551.2672 [ERR] Host-Call Chain -["AFW::802 11::Transport::Decode MSDU TX Farameters.gvi","AFW::802 11::T 4:11,697.6086 [ERR] Host-Description-Basic basic service set identifier (BSSTD) is a group address: FF:FF:FF: 4:11.697.616 [ERR] Host-Call Chain -["AFW::802 11::Transport:Decode MSDU TX Farameters.ovi","AFW:1802 11::T	PHY RX start indication	
F	(2/RF 1	4:11,871.6026 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:F 4:11,871.6056 [ERR] Host-Call Chain = ["ATW::802 11::Transport::Decode MSDU TX Parameters.gv1", "ATW::802 11::T 4:11.893.5316 [ERB] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF:	PHY CCA timing indication	
≡Į		4:11,893.5346 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.yvi","AFW::802_11::T 4:12,346.8336 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF:	PHY RX gain change indication	
N	sc)	112, 367.5236 [ERR] HOST-Call CHAIN -[HAW::002_11::Inspire:Decode BSD0 14 Falametels.VI , AFM::002_11::I 4:12,367.5236 [ERR] HOST-CBescription-Basic basic service set identifier (BSSID) is a group address FF:FF:FF: 4:12,367.5236 [ERR] HOST-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802_11::T	DCF state indication	
	(4)	4:13,063.7536 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13,063.7576 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802_11::T 4:13,344.5416 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF:	MAC MPDU RX indication	
	Gain B	4:13,344.5456 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi","AFW::802_11::T 4:13,364.5186 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13_364.506 [FBB] Host-Call Chain = ("AFW::802_11::Transport::Decode MSDU TX Parameters cui" "AFW::802_11::T		
*	K Gain	4:13,522.5996 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13,522.6036 [ERR] Host-Call Chain -["AFW::802 11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802 11::T	All None	
01	iress	4:13,543.5206 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13,543.5236 [ERR] Host-Call Chain - ["#AFW:802 11::Transport:Decode MSDU TX Parameters.gvi", "AFW:802 11::T	events.txt	
<u> </u>	3	TITY, UUS.GLOS [LAKE] RUST-UESCITPTION-BASIC DASIC SETVICE SET IGENTITIE (SSLI)] is a group address: FFIFFIFF 4:14,005.6296 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802_11::T 4:14,498.5326 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FFIFFIFF.	write to file	
	B	4:14,498.5356 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi","AFW::802_11::T 4:15.025.6516 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: T	Clear Events	

Figura 4.14 Eventos PC2

Como pruebas adicionales se conecta un router doble banda cerca de los dos USRP y se valida el comportamiento del canal inalámbrico, la finalidad es generar interferencia o ruido y de esta manera observar el rendimiento a nivel de ancho del canal de TX y RX.

Se setea la PC1 en 40 MHz – MCS7 con modulación de 64 QAM 5/6, con interferencia WIFI del router TP Link AX1800 Dual Band, utilizando las dos frecuencias de operación del router de 2.4 GHz y 5 GHz. Ver figuras 4.15, 4.16 y 4.17 donde se observa que el ancho de banda cae alrededor de 45 Mbps.

Con esta prueba se valida que el canal inalámbrico que soporta mejor la interferencia es el canal de 5 Ghz debido a que la configuración de salto de frecuencia se encuentra activada en el router y hay más canales en la banda de 5 GHz que se encuentran libres de interferencias. Para la banda de 2.4 GHz se observa un deterioro de la señal debido a que solo hay 11 canales disponibles en esta banda y hay saturación por uso de canal con otros dispositivos inalámbricos cercanos.

En la figura 4.15 se observa el router TP-Link de doble banda conectado en medio de los dos dispositivos USRP.

Figura 4.15 Router TP-Link

En las gráficas 4.16 y 4.17, se observa que el canal inalámbrico se ha deteriorado al encender el router WIFI Tp-Link se obtiene un throughput de aproximadamente 50 Mbps.

Figura 4.16 Recepción con interferencias

Figura 4.17 Medición con ruido en el canal

Se apaga el WIFI del router Tp-link y se tiene los siguientes resultados mostrados en la figura 4.18, se sube la potencia a 10 dBm en el TX debido a que en el laboratorio de ESPOL hay routers WIFI cercanos que también perturban el espectro radioeléctrico generando ruido y atenuación.

Figura 4.18 Ancho de banda máximo

En las figuras 4.19, 4.20 y 4.21, se observa los resultados en cada una de las pestañas luego de las pruebas de saturación del enlace.

En la figura 4.19 se observa los resultados mostrados en la pestaña de RF & PHY.

Figura 4.19 Resultados en RF & PHY

En la figura 4.20 se observa los resultados mostrados en la pestaña de avanzados.

Figura 4.20 Pestaña Advanced PC2

En la figura 4.21 se observa los resultados mostrados en la pestaña de eventos.

▶ 80	2.11 Desi	ign USRP RIO v1	9.5 3 - PC2 - LabVIEW NXG 4.0.0 👂	P Search	- 5	×
File	Edit	Run Data	View Help		🕜 Carlos Bosques	z w
**		SystemDesi	aner * De Hostavi - running * + _			44
					-	2
=			Image: Seal-Time Control Value	d‴ + L	- 100% ▼	M
0	ρ	requency	MAC RF & PHY Advanced Events Status Enable Station Corr On Station Active Target FIFO Overflow		^	
*			Events	FPGA events to track		
	×		5:08,455.0968 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:F: * 5:08,455.1038 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi","AFW::802_11::T	PHY TX start reque	est	
			5:08,455.2448 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address; FF:FF:FF: 5:08,455.2468 [ERR] Host-Call Chain - ["AFW::802_11::Tansport::Decode MSDU TX Parameters.gvi", "AFW::802_11::T 5:25.651.2632 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address; FF:FF:FF:	PHY TX end indica	tion	
	0.1	r USRP only: Port	5:25,651.2672 [ERR] Host-Call Chain - ["AFW::802 11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802 11::T 4:11,697.6086 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:F: 1:11,697.6086 [CRR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF:	PHY RX start indica	ation	
	7.	(2/RF 1	<pre>stit_sy.tate [LKK] Host-Lail Chain =["ALW:ISUIII:Iransport:Decode HSDU is Varameters.gvr", "AWU:SUIII:I 4:11,871.6026 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:11,871.6056 [ERR] Host-Call Chain =["ALW::802 11::Iransport::Decode MSDU TX Parameters.gvr", "ALW::802 11::I</pre>	PHY RX end indica	ition	
	=ĭ		4:11,893.5316 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF: 4:11,893.5346 [ERR] Host-Call Chain -["AFW:802 11::Transport:Decode MSDD TX Parameters.gvi", "AFW:802 11::T	PHY RX gain chan	ge indication	
	=-I	sc)	4:12,346.6376 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group duress, FFFFFFF 4:12,346.6376 [ERR] Host-Call Chain - ["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802_11::T	DCF state indicatio	on	
	N	(4)	4:12,367.5236 [ERR] Host-Call Chain -["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi","AFW::802_11::T 4:13,063.7536 [ERR] Host-Description-Basic basic service set identifier (SSSID) is a group address: FF:FF: 4:10.000 [ERR] Host-Description-Basic basic service set identifier (SSSID) is a group address: FF:FF: 4:10.000 [ERR] Host-Description-Basic basic service set identifier (SSSID) is a group address: FF:FF: 4:10.000 [ERR] Host-Description-Basic basic service set identifier (SSSID) is a group address: FF:FF: 4:10.000 [ERR] [ERR] Host-Description-Basic basic service set identifier (SSSID) is a group address: FF:FF: 4:10.000 [ERR]	MAC MPDU RX inc	dication	
	Έ	(gain	*113,043.7376 [ERR] HOST-LaIL Chain -["ARW:SOZ_II::Iransport::Decode HSDU TA Farameters.gvi", "ARW:SOZ_II::I 4:13,344.5416 [ERR] HOST-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13,344.5456 [ERR] HOST-Call Chain -["ARW:SOZ 11::Iransport::Decode MSDU TX Farameters.gvi", "ARW:SOZ 11::I	MAC MPDU TX rec	quest	
	Ŧ	B 💌 K Gain	4:13,364.5186 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF: 4:13,364.5206 [ERR] Host-Call Chain - ["AFM::802 11::Transport::Decode MSDU TX Parameters.gv", "AFM::802 11::T 4:13,522 (Dec [FDR] Host-Description-Basic basic service art identifier (BSSID) is a group address: FF:FF:FF: 4:13,523 (Dec [FDR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13,523 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF:FF: 4:13,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:13,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:14,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group address: FF:FF: 4:15,524 (Dec [FDR] Host-Description-Basic service set identifier (BSSID) is a group ad	All	None	
	0	5 dB	1:3,522.6056 [ERR] Host-Call Chain - ["ARW:s02 11::Transport::Decide MSDU TX Parameters.gvi", "ARW:S02 11::T 4:13,523.5206 [ERR] Host-Call Chain - ["ARW:s02 11::Transport::Decide MSDU TX Parameters.gvi", "ARW:S02 11::T	log file prefix		
		dress	4:13,543.5236 [ERR] Host-Call Chain - "AFW::802 11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802 11::T	events.txt		
	Ľ	3	11.1. JUS. 6200 [LANS] NOST-DESCLIPLION-DASIC DASIC SERVICE SET IGENEINER (ISSIL) IS & group address: FriFr:Fr 4:14,005.6296 [ERR] Host-Call Chain - ["AFW::802_11::Transport::Decode MSDU TX Parameters.gvi", "AFW::802_11::T 4:14.698.5266 [ERR] Host-Description-Dasic basic service set identifier (BSSIL) is a group address; FF:FF:Fr	write to file		
		B Address	4:14,498.5356 [ERR] Host-Call Chain - ["AFW::502 11::Transport:Decode MSDU TX Parameters.yu", "AFW:502 11::T 4:15.025.6516 [ERR] Host-Description-Basic basic service set identifier (BSSID) is a group address: FF:FF:FF: V	Clear Events		

Figura 4.21 Pestaña de Eventos PC2

Se realiza cambio en el formato del subcarrier de 40 MHz IEEE 802.11ac y el MCS a 8 que corresponde a una modulación de 256 QAM (3/4). Ver figura 4.22.

Figura 4.22 Cambios en formato del carrier 8 MCS

Al incrementar el ancho de canal a 80 MHz solo se podría probar hasta 4 MCS que corresponde a una modulación de 16 QAM (3/4). Ver figura 4.23.

Figura 4.23 Cambios en formato del carrier 4 MCS

Se incrementa el ancho de banda y la modulación y se obtienen los resultados demostrados en la figura 4.24. Los cuales indican un throughput aproximado de 73 Mbps.

Figura 4.24 Máxima transferencia de datos

4.2 Presentación de los resultados de las pruebas del prototipo

En esta sección se realizan varios escenarios de pruebas, los cuales mostrarán los resultados gráficamente según lo que se vaya validando.

Para esta prueba inicial se realiza el seteo de las siguientes configuraciones, mostradas en la tabla 4.1. Se inician las pruebas en la banda de 2.4 GHz específicamente en el canal 6 frecuencia de 2.437 GHz.

	Prueba 1		
	PC 1	PC 2	
Frecuencia central			
(GHz)	2,437	2,437	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	4	4	
	16 QAM	16 QAM	
Modulación	(3/4)	(3/4)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5	37.5	
Ruido en canal	SI	SI	
Throughput (Mbps)	8.4	4 9	

En las gráficas 4.25 y 4.26 se observan las configuraciones en PC1 – TX y los resultados del ancho de banda de Rx con las configuraciones realizadas previamente se obtiene un throughput de 8.4 Mbps.

Figura 4.25 Resultados PC1

Figura 4.26 Resultados PC1 - Diagrama de constelación

En las gráficas 4.27 y 4.28 se observan las configuraciones y resultados en la PC2 – RX.

Figura 4.27 Resultados PC2

Figura 4.28 Resultados PC2 - Diagrama de constelación

En esta sección se muestran los resultados de las pruebas realizadas en la frecuencia de 2.437 GHz. Previamente se debe configurar los datos de las tablas 4.2, 4.3, 4.4 y 4.5 y anotar los resultados de throughput obtenido en el receptor.

	Prueba 2	
	PC 1	PC 2
Frecuencia central (GHz)	2,437	2,437
Canal	1	1
Subcarrier	80 MHz	80 MHz
Protocolo	802.11ac	802.11ac
MCS	3	3
	16 QAM	16 QAM
Modulación	(1/2)	(1/2)
Potencia TX (dBm)	0	0
Ganancia RX (dBm)	37.5	37.5
Ruido en canal	SI	SI
Throughput (Mbps)	8	37,8

Tabla 4.2 Prueba 2 e	n 2.437 GHz
----------------------	-------------

Tabla 4.3 Prueba 4 en 2.437 GHz

	Prueba 3	
	PC 1	PC 2
Frecuencia central (GHz)	2,437	2,437
Canal	1	1
Subcarrier	80 MHz	80 MHz
Protocolo	802.11ac	802.11ac
MCS	2	2
Modulación	QPSK (3/4)	QPSK (3/4)
Potencia TX (dBm)	0	0
Ganancia RX (dBm)	37.5	37.5
Ruido en canal	SI	SI
Throughput (Mbps)	6,2	32,5

Tabla 4.4 Prueba 4 en 2.437 GHz	z
---------------------------------	---

	Prueba 4	
	PC 1	PC 2
Frecuencia central (GHz)	2,437	2,437
Canal	1	1
Subcarrier	80 MHz	80 MHz
Protocolo	802.11ac	802.11ac
MCS	1	1
Modulación	QPSK (1/2)	QPSK (1/2)
Potencia TX (dBm)	0	0
Ganancia RX (dBm)	37.5	37.5
Ruido en canal	SI	SI
Throughput (Mbps)	3,5	27

Tabla 4.5 Prueba 5 en 2.437 GHz

	Prueba 5		
	PC 1	PC 2	
Frecuencia central (GHz)	2,437	2,437	
Canal	1	1	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	0	0	
Modulación	BPSK (1/2)	BPSK (1/2)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5	37.5	
Ruido en canal	SI	SI	
Throughput (Mbps)	2,8	16	

En la tabla 4.6 se observan los resultados de las pruebas realizadas en la banda de 2.437 GHz.

Throughput (Mbps)	Protocolo	Modulación	Frecuencia
		16 QAM	
49	802.11ac	(3/4)	2,437
		16 QAM	
37,8	802.11ac	(1/2)	2,437
32,5	802.11ac	QPSK (3/4)	2,437
27	802.11ac	QPSK (1/2)	2,437
16	802.11ac	BPSK (1/2)	2,437

Tabla 4.6 Resumen de resultados de pruebas en 2.437 GHz

La gráfica 4.29 muestra los valores obtenidos de throughput en las 5 pruebas realizadas con diferentes parámetros de modulación en la frecuencia de 2.4 GHz.

Figura 4.29 Diagrama de barras del Throughput en 2.4 GHz

Se realizan más pruebas en la banda de 5 GHz, específicamente en el canal 36 que corresponde a la frecuencia de 5.180000 GHz. Se detallan en las tablas 4.7, 4.8, 4.9, 4.10 y 4.11 los resultados de las pruebas. Se anotan los valores obtenidos de throughput.

Tabla 4.7 Prueba 1 en 5.18 GHz

Banda 5 GHz			
	Prue	ba 1	
	PC 1	PC 2	
Frecuencia central (GHz)	5,180000	5,180000	
Canal	1	1	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	4	4	
	16 QAM	16 QAM	
Modulación	(3/4)	(3/4)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5 37.5		
Ruido en canal	SI	SI	
Throughput (Mbps)	8.3 53		

Tabla 4.8 Prueba 2 en 5.18 GHz

	Prueba 2	
	PC 1	PC 2
Frecuencia central (GHz)	5,180000	5,180000
Canal	1	1
Subcarrier	80 MHz	80 MHz
Protocolo	802.11ac	802.11ac
MCS	3	3
	16 QAM	16 QAM
Modulación	(1/2)	(1/2)
Potencia TX (dBm)	0	0
Ganancia RX (dBm)	37.5	37.5
Ruido en canal	SI	SI
Throughput (Mbps)	8,2	40

Tabla 4.9	Prueba 3	3 en 5.°	18 GHz
-----------	----------	----------	--------

	Prueba 3	
	PC 1	PC 2
Frecuencia central (GHz)	5,180000	5,180000
Canal	1	1
Subcarrier	80 MHz	80 MHz
Protocolo	802.11ac	802.11ac
MCS	2	2
Modulación	QPSK (3/4)	QPSK (3/4)
Potencia TX (dBm)	0	0
Ganancia RX (dBm)	37.5	37.5
Ruido en canal	SI	SI
Throughput (Mbps)	8,8	34

Tabla 4.10 Prueba 4 en 5.18 GHz

	Prueba 4		
	PC 1	PC 2	
Frecuencia central (GHz)	5,180000	5,180000	
Canal	1	1	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	1	1	
Modulación	QPSK (1/2)	QPSK (1/2)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5	37.5	
Ruido en canal	SI	SI	
Throughput (Mbps)	7	25	

|--|

	Prueba 5		
	PC 1	PC 2	
Frecuencia central (GHz)	5,180000	5,180000	
Canal	1	1	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	0	0	
Modulación	BPSK (1/2)	BPSK (1/2)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5	37.5	
Ruido en canal	SI	SI	
Throughput (Mbps)	4	15	

En la tabla 4.12, se muestra el resumen de los resultados de pruebas en la banda de 5.180 GHz.

Throughput (Mbps)	Protocolo	Modulación	Frecuencia
53	802.11ac	16 QAM (3/4)	5,180000
40	802.11ac	16 QAM (1/2)	5,180000
34	802.11ac	QPSK (3/4)	5,180000
25	802.11ac	QPSK (1/2)	5,180000
15	802.11ac	BPSK (1/2)	5,180000

Tabla 4.12 Resumen de resultados de pruebas en 5.18 G	Hz
---	----

La gráfica 4.30, muestra los valores obtenidos de throughput en las 5 pruebas realizadas con diferentes parámetros de modulación en la frecuencia de 5 GHz.

Figura 4.30 Diagrama de barras del Throughput en 5.18 GHz

4.3 Desarrollo de manual de práctica de la capa física 802.11ac con SDR

El manual para estudiante de las prácticas propuestas se encuentra en el apéndice, a continuación, se muestra el procedimiento, desarrollo y solución de las prácticas que pueden ser utilizadas como guía para el docente:

4.3.1 Práctica #1: Transmisión y Recepción de señales inalámbricas utilizando el protocolo IEEE 802.11ac

Objetivo general:

• Realizar transmisión y recepción de señales inalámbricas utilizando el protocolo IEEE 802.11ac.

Objetivos específicos:

- Conocer el funcionamiento de los USRP 2974.
- Aprender la configuración básica para la Tx y Rx de señales 92
inalámbricas utilizando el framework 802.11ac de LabVIEW NXG.

• Realizar cambios en la modulación y esquemas de canal para la visualización de señales transmitidas y recibidas con el estándar IEEE 802.11ac.

Procedimiento y desarrollo de la práctica #1:

En esta práctica se realizarán las configuraciones para la transmisión y recepción de datos PN (pseudoruido) con diferentes esquemas de modulación, ancho de canal y frecuencias.

Se realiza las primeras configuraciones en la PC1 conectada al USRP 1. Se configuran los parámetros indicados en la tabla 4.13.

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	10 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	20 MHZ (IEEE 802.11ac)
MCS	4 (16-QAM 1/2)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:6B
Destination Mac Address	00:80:2F:24:08:53
Data Source	PN Data
Data Sink	Off
PN Data Packet Size	1024
PN Packet Per second	1000
RioDevice	RIO0
Reference Clock	Internal
Número de estación	1

Tabla 4.13 Configuraciones en PC1 – USRP 1

Las figuras 4.31 y 4.32 muestran las configuraciones seteadas en la PC1 – USRP 1.

Figura 4.31 Configuración de Estación A

Figura 4.32 Parámetros de Subcarrier

En la PC2 – USRP se realizan las configuraciones indicadas en la tabla 4.14.

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	10 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	20 MHZ (IEEE 802.11ac)
MCS	4 (16-QAM 1/2)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:53
Destination Mac Address	00:80:2F:24:08:6B
Data Source	PN Data
Data Sink	Off
PN Data Packet Size	1024
PN Packet Per second	1000
RioDevice	RIO0
Reference Clock	Internal
Número de estación	2

Los resultados de la transmisión y recepción de las señales inalámbricas se muestran en las figuras 4.33, 4.34 y 4.35.

Figura 4.33 Pestaña RF & PHY

Þ 8)2.11 Desi	ign USRP RIO v	19.5 3 - PC1 - LabVIEW NXG 4.0.0					₽.	P Search		- 6	3	×
Fil	e Edit	Run Data	View Help							0	Carlos Bos	quez	Ŧ
**	渝	SystemDesi	igner * 🕨 Host.gvi - running * + 🗸										44
	>	I 🔕 🌻	💮 [II] Real-Time Contro 🔻	Panel	Diagram Ico	n				đ - 🗆 -	100%	•	4
■火	2	requency	MAC RF & PHY Advanced Events Status	Enable Station Off	On Statio	n Active 🔳 T	farget FIFO Overflow					*	
	1 *		Backoff Note: -1 means random backoff	AGC target signal power -20 dBFS									
	□ 0.1 ▼ ₹ ₹ 	r USRP only: Port 2/RF 1) (gain 8 © (Gain 5 dB gress 8 2 Address 3	control frame TX vector configuration RTS MCS O CTS MCS O ACK MCS O dot11RTSThreahold 2000 dot11RtSThreahold 2000 dot11RtSThreahold dot11RtSthreahold dot11LoogRetyLimit dig	RF loop back demo mode									

► 80i	2.11 Des	ign USRP RIO v1	9.5 3 - PC1 - LabVIEW N>	<g 4.0.0<="" th=""><th></th><th></th><th></th><th></th><th>👂 🚬 🔎 Search</th><th></th><th>- 8</th><th>×</th></g>					👂 🚬 🔎 Search		- 8	×
File	Edit	Run Data	View Help	~	Carlos Bosquez							
SystemDesigner Host.gvi - running +											*	
	> II O									đ - 🗆 -	100% 🔻	
*	ρ	P requency MAC RF & PHY Advanced Events Status Off On Station Active						Target FIFO Overflow			^	
	1			TV		DV.						
	*			1.4				KA	-			
			Data source / data sink	num packets source transfer source			num packets sink transfer sink 5132168					
		r USRP only:		*				.▲				
	0.1	Port		TX Request High MAC				RX Indications High MAC				
	F	(2/RF 1	High MAC	Config 75954620 Payload 75954620				5132172				
	≡Į	3)		12101	12201	12301		12401 UDP port	s			
	Ň			TX Request Middle MAC TX Confin	mation Middle MAC TX	Indications Middle MAC		RX Indications Middle MAC				
	80	(2)		Config 54498468 Config	54498468	16071563		5132316				
	Έ.	(gain	Middle MAC	Payload 54289440 Payload	54289440							
		B		TX Requests to PHY Packets dropped	TX	Indications from PHY		RX Indications from PHY				
	Ŧ	(Gain		54103275 38031702		16071563		5156745				
	0	5 dB		4		A		A				
		iress		•		<u> </u>		<u>т</u>				
	P**	B	РНУ		CT	(Indication Overflow		RX Indication Overflow				
		Address				0						
	•	3									, j.,	1

Figura 4.35 Pestaña de estatus

Como prueba adicional en esta práctica se realizan configuraciones del transmisor con ancho de banda de 80 MHz. Se puede observar en la gráfica 4.36 en el analizador de espectro que el ancho de banda se duplica.

Figura 4.36 Analizador de espectros banda ancha de 80 MHz

Los resultados observados en la PC2 se muestran en las figuras 4.37, 4.38, 4.39 y 4.40. Cada una de las imágenes indicadas corresponden a las pestañas correspondientes del panel frontal del proyecto.

Figura 4.37 Receptor PC2

Figura 4.38 Pestaña de RF & PHY del Receptor PC2

Figura 4.39 Pestaña de avanzados en el Receptor PC2

Figura 4.40 Pestaña de avanzados en el Receptor PC2

En la figura 4.41 se observan las gráficas del espectro de frecuencia con 80 MHz de canal correspondientes al PC2 – USRP2. Como se puede apreciar el canal es compartido en 40 Mhz para Tx y 40 MHz para Rx.

Figura 4.41 Analizador de espectro con 80 MHz de banda ancha

En esta práctica se solicita al estudiante realizar las mismas pruebas con diferentes anchos de canal, y esquemas de modulación. Anotar los valores obtenidos en el throughput y comparar las gráficas del espectro en la Tx y Rx.

Como conclusión de la práctica 1, se determina que al trabajar con anchos de canal más grande, modulación alta y niveles de potencia en 10 dBm se logra mayor throughput a nivel de Rx.

Las pruebas se las realiza en la banda del canal 6 de 2.4 GHz. En el manual del estudiante se solicita trabajar también en la frecuencia de 5 GHz.

4.3.2 Práctica #2: Generador de datos PN (saturación de enlace de TX)

Objetivo general:

• Aprender sobre la generación de datos con Pseudoruido para la saturación del enlace de transmisión de los USRP.

Objetivos específicos:

- Conocer el funcionamiento de los USRP 2974 con transmisión y recepción de datos PN.
- Aprender la configuración básica para la generación de datos con Pseudoruido utilizando el framework 802.11ac de LabVIEW NXG.
- Realizar cambios en la modulación y esquemas de canal para la visualización de señales transmitidas y recibidas con el estándar IEEE 802.11ac, utilizando datos PN.

Procedimiento y desarrollo de la práctica:

En esta práctica se realizarán las configuraciones para la transmisión y recepción de datos PN (pseudoruido) con diferentes esquemas de modulación, ancho de canal y frecuencias. La configuración realizada en esta práctica satura el enlace de Tx y permite observar el máximo throughput del radioenlace en el lado del Rx.

Se realiza las primeras configuraciones en la PC1 conectada al USRP 1. Se configuran los parámetros indicados en la tabla 4.15.

Tabla 4.15 Configuraciones en	PC1 – U	JSRP 1
-------------------------------	---------	--------

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	4 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	40 MHZ (IEEE 802.11ac)
MCS	8 (256-QAM 3/4)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:6B
Destination Mac Address	00:80:2F:24:08:53
Data Source	PN Data
Data Sink	Off
PN Data Packet Size	4061
PN Packet Per second	10000
Dot11RTSThreshold	5000
Dot11ShortRetryLimit	1
RioDevice	RIO0
Reference Clock	Internal
Número de estación	1

En la tabla 4.16 se observan los parámetros que deben ser configurados en la PC2 que controla el USRP 2.

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	0 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	40 MHZ (IEEE 802.11ac)
MCS	8 (256-QAM 3/4)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:53
Destination Mac Address	00:80:2F:24:08:6B
Data Source	Manual
Data Sink	Off
PN Data Packet Size	1024
PN Packet Per second	1000
Dot11RTSThreshold	2000
Dot11ShortRetryLimit	10
RioDevice	RIO0
Reference Clock	Internal
Número de estación	2

Tabla 4.16 Configuraciones en PC2 – USRP 2

En las figuras 4.42, 4.43, 4.44 y 4.45, se observan los parámetros seteados en la PC1 que controla el USRP 1, este equipo va a realizar la función de transmisión de datos PN (pseudoruido) hacia el USRP 2.

Figura 4.42 Seteo de parámetros de MAC Address

Overview Demonstrates 802.11 Rx and Tx Station	Instructions RIO Device Reference Clock Station Num 1. Cable device depending on operation mode selected. RIO Device* names the RIO alias of the device. RIO Internal 1 3. Start the VI and enable the station. Enable Station RIO REFERENCE Clock Station Num	iber E Device Ready
Primary Channel Center Frequency 2,437000 GHz	MAC RF & PHV Advanced Events Status Off On Station Active larget FIPO Overriow	
1 Power Level 4,0 dBm w porce we opplease for USRP only: TX RF Port TX I/R F Ont RX RF Port RX2/RF 1	Data Source Data Source Options Data Sink Option RX Constellation RX TI Data Sink UDP PN Data Manual UDP Data Sink PN Data Packet Size UDP PN Packets per Second FIFO Full Data Transfer PO 10000 P	roughput [bits/s] MAC RJ 0,0 Pream S PSDU: 5 MPDL MAC TX statistics 5
Subcarrier Format ADMHz (IEEE 802.11 ac) MCS 8 256-QAM (3/4) AGC Manual RX gain 27,5 dB Fnable	TX Error Rates DER (MAC) 0.266 Averaged Retransmissions per Packet 0.000 1,1 5 6,1 5 1 <td< td=""><td>RTS triggered RTS di</td></td<>	RTS triggered RTS di

Figura 4.43 Seteo de parámetros de modulación

Figura 4.44 Seteo de parámetros datos

*	Primary Channel Center Frequency	MAC RF & PHY Advanced Events Status	Enable Station Gff On Station Active Target FIFO Overflow
	2,437000 GHz 💌		
	Primary Channel Selector	Backoff 1 ➡ Note: -1 means random backoff	AGC target signal power -20 dBFS 🗮
0.1	Power Level	control frame TX vector configuration	RF loop back demo mode
F	RF ports are applicable for USRP only:		Off On
≡I	TX RF Port RX RF Port TX1/RF 0 RX2/RF 1	CTS MCS	
N	Subcarrier Format		
Ъ	▼ 40 MHz (IEEE 802.11 ac)	dot11RTSThreshold	
T	8 256-QAM (3/4)	5000	
0	AGC Manual RX gain ✓ Enable 37,5 dB ▲	dot11ShortRetryLimit	
111	Applied RX Gain 37,5 dB	dot11LongRetryLimit	
	valid Device MAC Address 00:80:2F:24:08:6B		

Figura 4.45 Seteo de parámetros avanzados

En la figura 4.46, se observa el incremento de la potencia a 10 dBm debido a las interferencias por routers WIFI encontradas en el laboratorio de radiocomunicaciones de ESPOL.

Figura 4.46 Aumento de potencia a 10 dBm

Los resultados de las pruebas se observan en las gráficas 4.47, 4.48 y 4.49. Donde se observan las gráficas del espectro con un ancho de canal de 40 MHz.

Figura 4.47 Pestaña RF & PHY

Figura 4.48 Pestaña RF & PHY – PC1

Figura 4.49 Pestaña de estatus - PC1

En la figura 4.50, se observa el cambio de formato de subcarrier en 40 MHz (IEEE 802.11ac), modulación en 8 MCS que corresponde a 256 QAM (3/4), se observan los siguientes resultados en el PC1 – USRP1.

Figura 4.50 Configuraciones de modulación y esquemas de acceso - PC1

En la figura 4.51, se observa el cambio de formato de subcarrier a 80 MHz (IEEE 802.11ac) modulación en 4 MCS que corresponde a 16 QAM (3/4), se observan los siguientes resultados en el PC1 – USRP1.

Figura 4.51 Configuraciones de modulación y esquemas de acceso 16 QAM – PC1

En la gráfica 4.52, se observa el seteo de las configuraciones para la PC2 – USRP 2. El throughput obtenido es de 48.9 Mbps.

Figura 4.52 Resultados en diagrama de constelación PC2

En la figura 4.53 se observa el throughput de 52.4 Mbps luego de los cambios de subcarrier y modulación en PC1.

Figura 4.53 Resultados en ancho de banda PC2

En las figuras 4.54, 4.55 y 4.56 se observan los resultados de las pestañas RF&PHY, avanzado y eventos.

Figura 4.54 Pestaña RF & PHY - PC2

Figura 4.55 Pestaña Avanzados - PC2

			1010 1010					D,
Edit	Run Data	View Help					🕜 Carlo:	s Bosc
渝	SystemDesi	gner 🎽 Þ Host.gvi	- running * + 🗸					
» I	I 🔕 🌻	🔞 [ii] Real-Tir	me Contro 🔻	Panel	Diagram Icon		5 ⁷⁷ - 🗌 - 100	. %
ρ	requency	MAC RF & PHY Ac	dvanced Events Status	Enable Station	On Station Active	Target FIFO Overflow		
0								
4		Events					FPGA events to track	_
^		5:08,455.0968	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)	is a group address: FF:FF:FF:	PHY TX start request	
		5:08,455.2448	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:		
		5:08,455.2468	[ERR] Host-Call Chain	-["AFW::802_11::Trans	port::Decode MSDU TX	Parameters.gvi","AFW::802_11::T	PHY TX end indication	
	r LISRP only	5:25,651.2632	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)	J is a group address: FF:FF:FF: " Parameters gwi" "&FW: 902 11:T	PLIV PV start indication	
0.1	r oarte only.	4:11,697.6086	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:	PHY KA start indication	
	Port	4:11,697.6126	[ERR] Host-Call Chain	-["AFW::802_11::Trans	port::Decode MSDU TX	Parameters.gvi", "AFW::802_11::T	PHY RX end indication	
	(2/RF 1	4:11,871.6026	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF: Parameters gwill "2FR::002 11:.T		
F		4:11,893.5316	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:	PHY CCA timing indication	
—ĭ		4:11,893.5346	[ERR] Host-Call Chain	-["AFW::802_11::Trans	sport::Decode MSDU TX	Parameters.gvi", "AFW::802_11::T	PHY BX gain change indication	.
≡t	()	4:12,346.8336	[ERR] Host-Description	-Basic Dasic service	set identifier (BSSID)) is a group address: FF:FF:FF: Parameters.gy1"."&FW::802 11::T		
		4:12,367.5206	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:	DCF state indication	
N		4:12,367.5236	[ERR] Host-Call Chain	-["AFW::802_11::Trans	port::Decode MSDU TX	Parameters.gvi", "AFW::802_11::T		
	(4)	4:13,063.7536	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF: Darameters gui! "2FW802 11T	MAC MPDU RX indication	
"=		4:13,344.5416	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:	MAC MPDU TX request	
	(gain	4:13,344.5456	[ERR] Host-Call Chain	-["AFW::802_11::Trans	sport::Decode MSDU TX	Parameters.gvi", "AFW::802_11::T		
	B	4:13,364.5186	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF: Parameters gui! "1FW::802 11:.T		.
	< Gain	4:13,522.5996	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:	All None	
_	5 dB	4:13,522.6036	[ERR] Host-Call Chain	-["AFW::802_11::Trans	port::Decode MSDU TX	Parameters.gvi", "AFW::802_11::T	log file prefix	
	trace	4:13,543.5206	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF: Decembers guil "2 FW: 1902 11T	iog me prenk	
	2	4:14,005.6256	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF:	events.txt	
P**	9	4:14,005.6296	[ERR] Host-Call Chain	-["AFW::802_11::Trans	port::Decode MSDU TX	Parameters.gvi", "AFW::802_11::T	write to file	
	Address	4:14,498.5326	[ERR] Host-Description	-Basic basic service	set identifier (BSSID)) is a group address: FF:FF:FF: Parameters gui! "AFM: 802 11T		
		4:15,025,6516	[ERR] HOSt-Call Chain	-[-Arwitouz_IIIIIIrans	set identifier (BSSID)	is a group address; FF:FF:FF:	Clear Events	

Figura 4.56 Pestaña Eventos - PC2

En la tercera prueba realizada se aumenta la potencia a 10 dBm en el TX debido a que en el laboratorio de radiocomunicaciones de ESPOL hay WIFI cercanos que perturban el espectro radioeléctrico. Como se observa en la figura 4.57 el ancho de banda aumenta a 68 Mbps.

Figura 4.57 Ancho de banda con mayor potencia de TX - PC2

En la figura 4.58, se observa las gráficas del analizador de espectros de TX y RX.

Figura 4.58 Pestaña RF & PHY - con mayor potencia de TX - PC2

Se cambia el esquema de modulación y codificación a 8 MCS y se obtiene el mayor throughput de 72 Mbps.

Figura 4.59 Mayor Throughput PC2

Como conclusiones de la práctica realizada se ha validado que al incrementar el ancho de canal y aumentar el esquema de modulación a 256 QAM, se obtiene en el receptor un throughput máximo de 75 Mbps. Se valida también que el aumento de potencia en el transmisor ayuda a que las interferencias en el espectro radioeléctrico en la banda de 2.4 GHz no sean considerables.

En el manual del estudiante se solicita realizar las pruebas con diferentes frecuencias y esquemas de modulación. Así como también se pide generar perturbaciones en medio del canal para validar la teoría de la atenuación en sistemas de radiocomunicaciones.

4.3.3 Práctica #3: Transmisión y Recepción de video utilizando el estándar IEEE 802.11ac

Objetivo general:

• Realizar transmisión y recepción de video utilizando el estándar IEEE 802.11ac.

Objetivos específicos:

- Conocer el funcionamiento de los USRP 2974.
- Aprender la configuración básica para la RX y Tx de señales de video mediante UDP utilizando el framework 802.11ac de LabVIEW NXG.
- Realizar cambios en la modulación y esquemas de canal para la visualización del comportamiento de las señales de video transmitidas y recibidas con el estándar IEEE 802.11ac.

Procedimiento y desarrollo de la práctica:

En esta sección se presenta las configuraciones y pruebas realizadas para la transmisión y recepción de video utilizando el prototipo IEEE 802.11ac.

Parámetros de configuración en PC1 – TX

En las opciones de Data Source seleccionar Data Source y Data Sink en modo UDP. En la opción de Data Sink colocar la IP del USRP 2 del PC2 – RX. Hay que considerar que si se realiza las pruebas en una red LAN se debe colocar la ip otorgada por el router, en caso de no disponer de router el PC2 entregará una ip de enlace local al USRP del rango de 169.254.x.x. Ver figura 4.60.

Figura 4.60 Seteo de parámetros de configuración UDP – PC1

Configuración de emisor de video con VLC

Para la emisión de video se utiliza el software VLC el cual puede ser descargado e instalado desde la página web oficial de VLC.

Buscar medio y seleccionar emitir. Ver figura 4.61.

	A	Reproductor multime	edia VLC						_		\times
1	Med	lio Reproducción	Audio	Vídeo	Subtitulo	Herramientas	Ver	Ayuda			
	Þ	Abrir archivo			Ctrl+O						
4	Þ	Abrir múltiples arch	ivos		Ctrl+Shit	ft+O					
	•	Abrir carpeta			Ctrl+F						
	€	Abrir disco			Ctrl+D						
	÷	Abrir ubicación de r	ed		Ctrl+N						
1	•	Abrir dispositivo de	captura		Ctrl+C						
		Abrir desde portapa	peles		Ctrl+V	-					
		Abrir medios recient	tes			- -					
		Guardar lista de repr	roducciór	ı	Ctrl+Y						
		Convertir			Ctrl+R						
	((+1)	Emitir			Ctrl+S						
1		Salir al final de la list	ta de repr	oducciór	n						
	÷	Salir			Ctrl+Q						
	-										and an
			F 7 474		→ 1.3					10005	
			i i Tit	=>	2 2				40	100%5	

Figura 4.61 Emitir desde VLC – PC1

Seleccionar añadir y elegir el video o la película que se va a transmitir, de preferencia una película de 1 hora para que se pueda enviar el video sin necesidad de volver a enviar en caso de que termine el video. Ver figuras 4.62, 4.63 y 4.64.

0			_				
Archivo	😏 Disco	🚏 Red	Dispositivo de captura	а			
Selección de	archivos						
Seleccione a	rchivos locales o	on la siguier	te lista y botones.				
					+	Añadir.	
Usar un a	archivo de subtit	ulo			Exp	lorar	
Usar un a	archivo de subtit	ulo			Exp	lorar	
Usar un a	archivo de subtit	ulo			Exp	lorar	

Figura 4.62 Añadir video

$\leftarrow \rightarrow - \uparrow \square \ll LabV.$		Buscar en 802.11 Design	USR
Organizar 🔻 Nueva carp	oeta	····	?
	Nombre	Fecha de modificación	Tip
Acceso lapido	.cache	21/12/2021 21:55	Ca
Escritorio 📌	802.11	28/9/2021 13:49	Ca
👆 Descargas 🖈	Application.gcomp	28/9/2021 13:49	Ca
🔮 Documentos 🖈	Builds	28/9/2021 13:49	Ca
📰 Imágenes 🛛 🖈	Common	28/9/2021 13:49	Ca
802.11 Design US	documentation	28/9/2021 13:49	Ca
802.11 Design US	ProjectMedia	30/8/2021 15:13	Ca
LabVIEW Project	STA.gcomp	28/9/2021 13:49	Ca
Prácticas	USRP RIO	28/9/2021 13:49	Ca
	Video	12/11/2021 16:44	Ca
OneDrive	Clifford.the.big.red.dog.2021.1080p-dual	27/11/2021 13:41	Ar
📃 Este equipo 🛛 🗸 🤇	Tipo de elemento: Archivo MP4		
Nombre	ne-calidad.com ón: 01:36:26 V Arc	hivos multimedia (*.3g2 *.	3 ~
		Abrir Cancela	

Figura 4.63 Buscar video y abrir

Abrir medio			
🖻 Archivo 🛛 🗞 Disco	₽ Red Dispositivo	de captura	
Selección de archivos			
Seleccione archivos locales o	on la siguiente lista y botones	i.	
C:\Users\Laboratorio\Do	cuments\LabVIEW Projects	\802.11 Design U	+ Añadir
Usar un archivo de subtit	ulo		Explorar
Mostrar más opciones			
		Emit	ir 🔻 Cancel

Figura 4.64 Emitir video añadido

Luego de pulsar en emitir se abrirá ventana de salida de emisión, dar en siguiente. Ver figura 4.65.

Jente								
Configure	las fuentes de medio	os a transmisitir						
Este asis Debería e	tente le permitirá tra empezar comprobanc	nsmitir o convertir su lo que la fuente conc	us archivos para usar cuerda con lo que des	locálmente, en su red p ea que sea la entrada	privada o en int y entonces pre	ternet. sionar el botón «	Siguiente»	
para con	tinuar.							
Fuente:	vents/LabVIEW Pro	jects\802.11 Design	USRP RIO v 19.5 3\C	ifford. the .big. red. dog.	2021. 1080p-di	ual-lat-cine-calida	d.com.mp4	1
Fuente: Tipo:	vents\LabVIEW Pro	jects\802.11 Design	USRP RIO v 19.5 3\C	ifford.the.big.red.dog.	2021. 1080p-di	ual-lat-cine-calida	d.com.mp4	1
Fuente: Tipo:	nents\LabVIEW Pro	jects\802.11 Design	USRP RIO v 19.5 3\C	ifford.the.big.red.dog.	2021. 1080p-d	ual-lat-cine-calida	d.com.mp4	¥.
Fuente: Tipo:	vents\LabVIEW Pro	jects\802.11 Design i	USRP RIO v 19.5 3\C	ifford.the.big.red.dog.	2021. 1080p-di	ual-lat-cine-calida	d.com.mp4	•

Figura 4.65 Salida de emisión

Seleccionar UDP Legacy. Ver figura 4.66.

Seleccione destinos a los que transmitir		
+		
Añada destinos siguiendo los métodos	: de emisión que necesite. Asegúrese de comprobar con transcodificación que el formato	es
Añada destinos siguiendo los métodos compatible con el método usado.	: de emisión que necesite. Asegúrese de comprobar con transcodificación que el formato	es
Añada destinos siguiendo los métodos compatible con el método usado.	e de emisión que necesite. Asegúrese de comprobar con transcodificación que el formato	es
Añada destinos siguiendo los métodos compatible con el método usado.	: de emisión que necesite. Asegúrese de comprobar con transcodificación que el formato	es
Añada destinos siguiendo los métodos compatible con el método usado. Nuevo destino	a de emisión que necesite. Asegúrese de comprobar con transcodificación que el formato	nes ñadir
Añada destinos siguiendo los métodos compatible con el método usado. Nuevo destino Mostrar en local	e de emisión que necesite. Asegúrese de comprobar con transcodificación que el formato	nes ñadir

Figura 4.66 Añadir UDP Legacy

Colocar la dirección ip del USRP 1 del PC1-TX. Hay que considerar que si no hay un router de por medio se debe colocar la ip de enlace local otorgada por Windows al USRP. El número de puerto es el 12001. Ver figura 4.67.

		_	-
🛓 Salida de	emisión	?	×
Configuraci Seleccione	ón de destino destinos a los que transmitir		
			- 1
+			
Este mó	dulo envía la emisión transcodificada a una red a través de UDP.		
			T
Direcció	n 192.168.0.149		-
Puerto	12001 🗣		
			_
	Atrás Siguiente	Cancelar	

Figura 4.67 Dirección ip y puerto

Habilitar transcodificar – Siguiente – Seleccionar emitir todas las emisiones elementales. Ver figura 4.68 y 4.69.

Perfil		• 4	×	

Figura 4.68 Habilitar transcodificar

e el ri y naonite la cotaci	2111					_
Salida de emisión					?	>
onfiguración de preferenci Configure cualquier otra opcie	as in adicionales para transmitir					
Opciones varias						
Emitir todas las emisione	s elementales					
Cadena de salida de emisiór	generada					
:sout=#transcode{vcode 001} :sout-all :sout-keep	=h264,acodec=mpga,ab=1	28,channels=2,samplera	ite=44100,scodec=none}:udp	√{dst=192.168.0	0.149:12	
			Atrás	Emitir	Cance	lar
			Auds	Cinta	Cance	iai
	u.	-		0 -		

Figura 4.69 Emitir video

Luego de realizar la configuración en el VLC TX, se observa que el VLC empieza con la transmisión, no se observará el video que se envía mediante UDP a la red. Ver

figura 4.70.

Figura 4.70 TX de video en VLC

En el framework se puede observar que mientras la estación esté habilitada y el VLC transmitiendo, se encenderá el indicador de Data Transfer. Ver figura 4.71.

Figura 4.71 Tx de video mediante UDP

En las pestañas RF&PHY y estatus se observa el envío de tráfico UDP. Ver figuras 4.72 y 4.73.

Figura 4.72 RF & PHY en Tx de video mediante UDP

Figura 4.73 Pestaña estatus en Tx de video mediante UDP

Configuración de RX – PC2:

En la figura 4.74 se observan las configuraciones que hay que setear para la recepción del video mediante UDP.

Figura 4.74 Configuraciones en Rx de video mediante UDP

Abrir VLC, seleccionar abrir medio - Colocar la URL udp://@:13001. Dar click en reproducir. Ver figura 4.75.

🕞 Archiva - 🔗 Dieco - 🖳 Pad	Dispositivo de cantura		
Archivo Usco Keu	Ser Dispositivo de captura		
Protocolo de red			
Introducir una URL:			
udp://@:13001			~
ntp://www.example.com/stream.avi rtp://si234 mms://mms.examples.com/stream.asx rtsp://server.example.org:8080/test.sdp http://www.yourtube.com/watch?v=gg	64x		
Mostrar más opciones			
	R	eproducir 👻	Cancelar

Figura 4.75 Configuraciones en Rx - VLC

Se observará en el PC2-RX que se recibe datos y el diagrama de constelación se visualizará con información recibida. Ver figura 4.76.

En VLC empieza la reproducción del video emitido inalámbricamente por el USRP 1. Realizar prueba parando y activando el video TX desde el VLC y desde el framework probar habilitando y deshabilitando la estación 1 y 2. Ver figura 4.77.

Figura 4.77 Recepción de video

Como conclusión de la práctica se puede indicar que la transmisión y recepción de video mediante el enlace inalámbrico se realiza sin inconvenientes.

Se recomienda realizar transmisión de video en otra calidad de imagen menos pesada para que el video no se paralice.

Durante las pruebas se valida que la máxima transferencia de datos UDP es de 4 Mbps, que para videos HD no es suficiente, por tal motivo se recomienda la transmisión de video en SD y de menor duración.

Conclusiones

Finalizado las pruebas y validaciones del prototipo de pruebas del protocolo IEEE 802.11ac se concluye lo siguiente:

- Se cumple con el diseño de un prototipo analizador de esquemas de modulación y técnicas de acceso del estándar IEEE 802.11ac utilizando los equipos NI USRP 2974 del laboratorio de Radiocomunicaciones de FIEC ESPOL.
- Se realiza el diseño del prototipo para pruebas de esquemas de modulación y técnicas de acceso del estándar IEEE 802.11ac, con lo cual se hacen diferentes pruebas de transmisión y recepción con modificaciones en su modulación y manipulación del espectro para la correcta visualización del funcionamiento al envía datos PN y datos UDP para el caso de la transmisión y recepción de video.
- Se implementa algoritmo para la transmisión de tramas inalámbricas del estándar IEEE 802.11ac, mediante software LabVIEW NXG versión 4 y framework 802.11ac, los software son licencias de National Instruments.
- Se realiza la evaluación, transmisión y recepción de tramas basadas en diferentes esquemas de modulación y técnicas de acceso. Mediante las pruebas de laboratorio se logra validar el comportamiento de los paquetes transmitidos y recibidos inalámbricamente.
- Se valida durante las pruebas que al modificar la modulación el ancho de banda se ve afectado, cumpliendo con la teoría de las señales inalámbricas WIFI.
- Se cumple con la realización del manual de prácticas de laboratorio para uso de estudiantes, investigadores y profesionales de radiocomunicaciones en el cual se explica en detalle cómo manipular y probar el banco de pruebas IEEE 802.11ac.

Recomendaciones

A continuación, se presentan las siguientes recomendaciones:

- ESPOL cuenta con diferentes tipos de antenas y USRP que se pueden integrarse en futuras pruebas en conjunto con el banco de pruebas IEEE 802.11ac para el análisis del comportamiento del espectro radioeléctrico WIFI en conjunto con otras tecnologías como Bluetooth o ISM, por ejemplo.
- Para trabajar con el banco de pruebas es importante contar con CPU de última generación para poder ejecutar el software sin problemas ya ejecutar los programas del prototipo consumen muchos recursos computarizados.
- Realizar pruebas de campo con los equipos y validar el comportamiento de la transmisión o recepción en el mundo real fuera de los laboratorios.
- Validar el comportamiento con diferentes canales de la banda de 2.4 GHz y 5 GHz y observar la tasa efectiva del enlace con la finalidad de realizar futuras investigaciones que ayuden a entender el comportamiento de los canales WIFI.

Bibliografía

- T. Kaewkiriya, "Performance comparison of Wi-Fi IEEE 802.11ac and Wi-Fi IEEE 802.11n," 2017 2nd Int. Conf. Commun. Syst. Comput. IT Appl. CSCITA 2017 Proc., pp. 235–240, Oct. 2017.
- [2] A. Gaber, S. Prcanovic, and A. Omar, "High-resolution indoor positioning system using SDR modules," in *IEEE Radio and Wireless Symposium, RWS*, 2015, vol. 2015-June, no. June, pp. 209–211.
- [3] S. Narayan, C. Jayawardena, J. Wang, W. Ma, and G. Geetu, "Performance test of IEEE 802.11ac wireless devices," 2015 Int. Conf. Comput. Commun. Informatics, ICCCI 2015, Aug. 2015.
- [4] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, "Openwifi: A free and open-source IEEE802.11 SDR implementation on SoC," in *IEEE Vehicular Technology Conference*, 2020, vol. 2020-May, pp. 1–2.
- [5] H. M. Hizan *et al.*, "Multiservice wireless network testbed design using SDR and RoF platforms," in 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics, APACE 2016, 2016, pp. 369–372.
- [6] M. H. Firooz, Z. Chen, S. Roy, and H. Liu, "Wireless network coding via modified 802.11 MAC/PHY: Design and implementation on SDR," *IEEE J. Sel. Areas Commun.*, vol. 31, no. 8, pp. 1618–1628, 2013.
- [7] W. Alliance, "Wi-Fi CERTIFIED 6 | Wi-Fi Alliance," 2020. [Online]. Available: https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6. [Accessed: 25-Jun-2020].
- [8] J. Wamicha and S. Winberg, "IEEE 802.11 OFDM software defined radio beacon frame transmission," in *IEEE AFRICON Conference*, 2011.
- [9] C. Liberatori, *Redes de Datos y sus protocolos*, 1era Edici. Mar del Plata: EUDEM, 2018.
- [10] B. Ciubotaru and G.-M. Muntean, *Advanced Network Programming Principles andTechniques*. Ireland: Springer-Verlag, 2013.
- [11] W. Stallings, *Wireless Communications and Networks*, Second Edi. New Jersey: Pearson Prentice Hall, 2005.
- [12] J. A. Carballar, "WiFi: Cómo construir una red inalámbrica," *Alfaomega Ra-Ma*, 2014.
- S. D. N. I. Testbed *et al.*, "Wi-Fi: Overview of the 802.11 Physical Layer and Transmitter Measurements," *Big Data Cogn. Comput.*, vol. 2, no. 4, pp. 1–11, 2018.

- [14] R. B. M. Abdelrahman, A. B. A. Mustafa, and A. A. Osman, "A Comparison between IEEE 802.11a, b, g, n and ac Standards," *IOSR J. Comput. Eng.*, vol. 17, no. 5, pp. 26–29, 2015.
- [15] E. Perahia and M. Gong, "Gigabit wireless LANs: an overview of IEEE 802.11ac and 802.11ad," ACM SIGMOBILE Mob. Comput. Commun. Rev., vol. 15, no. 3, pp. 23–33, 2011.
- [16] Cisco, "802.11ac: The Fifth Generation of Wi-Fi," *Cisco.Com*, no. 1, pp. 1–20, 2018.
- [17] M. Gast, 802.11ac a Survival Guide, vol. 53, no. 9. 2013.
- [18] C. P. Huang, P. Antognetti, L. Lam, T. Quaglietta, and M. Doherty, "A Highly Integrated Dual-band SiGe Power Amplifier that Enables 256 QAM 802.11ac WLAN Radio Front-End Designs."
- [19] Albentia.wordpress.com, "Modulación OFDM Albentia Systems," 2021. .
- [20] L. Hanzo, M. Münster, B. J. Choi, and T. Keller, "OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting," OFDM MC-CDMA Broadband Multi-User Commun. WLANs Broadcast., no. May 2014, 2003.
- [21] J. Mitola, "The software radio architecture," no. Revista de comunicaciones, IEEE, vol. 33, pp. 26–38, 1995.
- [22] B. Fette, *Cognitive Radio Technology*, 1era Edici. Elsevier Inc., 2006.
- [23] A. G. Rivera, "Implementación de Software Definida por Radio en sistemas de comunicaciones actuales," Universidad de Sevilla, 2021.
- [24] K. Zheng, R. Xu, H. Liu, X. Wei, and Z. Geng, "Performance analysis and comparison of GPP-based SDR systems," pp. 3–8, 2017.
- [25] G. L. Kovacich, "RF-and-Digital-Signal-Processing-for-SDR," pp. 1–6.
- [26] Labview, "¿Qué es LabVIEW? NI," 2021. [Online]. Available: https://www.ni.com/es-cr/shop/labview.html. [Accessed: 16-Apr-2021].
- [27] National Instruments, "LabVIEW Communications 802.11 Application Framework 19.5 Getting Started Guide - National Instruments," 2022.

Apéndice

RELITICAL CALIFICATION OF THE POLITICAL CALIFICAL CALIFI		GUÍA DE PRÁCTICA DE LABORATORIO
MAESTRÍA	EN	ASIGNATURA:
TELECOMUNICACION	NES	
NRO. PRÁCTICA:	1	TÍTULO PRÁCTICA: Transmisión y Recepción de
		señales inalámbricas utilizando el protocolo IEEE
		802.11ac.
OBJETIVO GENERAL	.:	I
IEEE 802.11ac. OBJETIVOS ESPECÍF • Conocer el func • Aprender la con	FICOS: cionam	iento de los USRP 2974. ción básica para la RX y Tx de señales inalámbricas
utilizando el fra	mewor	k 802.11ac de LabVIEW NXG.
 Realizar camb visualización d 802.11ac. 	ios er e seña	n la modulación y esquemas de canal para la ales transmitidas y recibidas con el estándar IEEE
INSTRUCCIONES		 Previo al uso de los equipos los estudiantes deben leer el manual de prácticas. Al finalizar la práctica los estudiantes deben guardar los equipos y dejar los materiales en orden.

MARCO TEÓRICO:

Para utilizar el marco de aplicación 802.11ac para la transmisión bidireccional de datos, se necesitan dos dispositivos NI RF, ya sea dispositivos USRP con ancho de banda de 40 MHz, 120 MHz o 160 MHz. Los dispositivos deben estar conectados a diferentes computadoras host, que pueden ser computadoras portátiles, PC o PXI chasis. La figura 1 muestra la configuración de dos estaciones, ya sea mediante cables de RF (izquierda) o antenas (derecha). La Tabla 1 presenta el hardware requerido dependiendo de la configuración elegida [27].

Configuración		Ambas	;			Configuración
		configu	uraciones			de USRP
	Host	SMA	Atenuador	Antena	Dispositivo	Adaptador
	PC	Cable			USRP	MXI
Dos dispositivos, cableados	2	2	2	0	2	2
Dos dispositivos, por aire	2	0	0	4	2	2

- Cable SMA: Cable hembra/hembra.
- Antena.
- Dispositivo USRP: USRP-2940/2942/2943/2944/2950/2952/2953/2954
 Dispositivos reconfigurables por radio definidos por software con ancho de banda de 40 MHz, 120 MHz o 160 MHz, o el dispositivo NI USRP-2974 con ancho de banda de 160 MHz.
 - Atenuador con atenuación de 30 dB y conectores SMA macho/hembra.

Asegúrese de que su host tenga al menos 20 GB de espacio libre en disco y 16 GB de RAM [27].

Descripción de los componentes:

El proyecto se compone de código de host LabVIEW y código LabVIEW FPGA para los destinos de hardware USRP RIO compatibles. La estructura de carpetas relacionadas y los componentes del proyecto se describen a continuación:

Estructura de carpetas

Para crear una nueva instancia de 802.11ac Application Framework, inicie LabVIEW Communications System Design Suite seleccionando NI LabVIEW NXG 4.0 en el menú Inicio [27].

En plantillas de proyecto de la ficha proyecto iniciado, seleccione marcos de aplicación. Para iniciar el proyecto, seleccione:

- 802.11 Diseño USRP RIO v19.5 cuando se utilizan dispositivos USRP.
- 802.11 Simulación v19.5 para ejecutar el código FPGA del procesamiento de señales de transmisor físico (TX) y receptor (RX) en modo de simulación [27].

802.11 El proyecto de diseño contiene los siguientes componentes:

- STA.gcomp Este componente contiene el host VI de nivel superior que implementa una estación 802.11.
- 802.11 Esta carpeta comprende la funcionalidad 802.11 que separa un componente FPGA, un componente Host y un componente para código compartido entre FPGA y Host [27].

Compilaciones: esta carpeta contiene los archivos de bits precompilados para el dispositivo de destino seleccionado.

- **Común:** La carpeta común contiene VIs genéricos que se utilizan en 802.11 Application Framework. Este código incluye funciones matemáticas y conversiones de tipos. Se divide en FPGA, Host y compartido también.
- USRP RIO: Estas carpetas contienen implementaciones específicas de destino de subVIs de host y FPGA, que incluyen código para establecer la ganancia y la frecuencia. En la mayoría de los casos, este código se adapta a partir de los proyectos de ejemplo de streaming específicos del destino. También contienen el componente FPGA específico del objetivo [27].

Componentes:

El marco de aplicación 802.11ac proporciona una implementación de capa física (PHY) de multiplexación por división de frecuencia ortogonal (OFDM) y control de acceso a medios (MAC) en tiempo real para un sistema basado en IEEE 802.11ac. El proyecto LabVIEW de Application Framework 802.11ac implementa la funcionalidad de una estación, incluida la funcionalidad RX y TX [27].

Declaración de cumplimiento y desviaciones:

El marco de aplicación 802.11ac está diseñado para cumplir con las especificaciones IEEE 802.11ac. Para mantener el diseño fácilmente modificable, el marco de aplicación 802.11ac se centra en la funcionalidad principal del estándar IEEE 802.11ac. 802.11a- (modo heredado) y 802.11ac- (modo de rendimiento muy alto) compatible con PHY [27].

Clear Channel Assessment (CCA) basado en la detección de energía y señal:

El operador detecta el acceso múltiple con el procedimiento de prevención de colisiones (CSMA / CA), incluida la retransmisión.

Procedimiento de retroceso aleatorio:

Componentes MAC compatibles con 802.11a y 802.11ac para admitir request-tosend/clear-to-send (RTS/CTS), trama de datos y transmisión de trama de reconocimiento (ACK). Generación ACK con sincronización de espaciado corto entre fotogramas (SIFS) compatible con IEEE 802.11 (16 µs). Compatibilidad con vectores de asignación de red (NAV) [27].

Generación de unidades de datos de protocolo MAC (MPDU) y direccionamiento multimodo. API L1/L2 que permite a las aplicaciones externas implementar funcionalidades MAC superiores como el procedimiento de unión, acceder a funcionalidades de MAC medio e inferior.

El marco de aplicación 802.11ac admite las siguientes características:

- Solo intervalo de guarda largo.
- Arquitectura de entrada única y salida única (SISO), lista para configuraciones de entrada múltiple y salida múltiple (MIMO).
- VHT20, VHT40 y VHT80 para el estándar 802.11ac. Para el ancho de banda 802.11ac de 80 MHz, el soporte está limitado hasta el esquema de modulación y codificación (MCS) número 4.

MPDU agregada (A-MPDU) con una sola MPDU para el estándar 802.11ac. Control automático de ganancia (AGC) paquete por paquete que permite la transmisión y recepción por aire [27].

ACTIVIDADES POR DESARROLLAR:

Configuración de los NI USRP

Configuración del hardware (transmisión por aire):

La transmisión por aire es similar a la configuración por cable. Los cables se sustituyen por antenas adecuadas para la frecuencia central del canal seleccionado y el ancho de banda del sistema [27].

Configuración del sistema USRP (transmisión por aire):

- 1. Asegurarse de que los dispositivos USRP estén conectados correctamente a los sistemas host que ejecutan LabVIEW. Ver figura 2.
- 2. Crear las siguientes conexiones de RF:
 - RF0/TX1 en la estación A, a la antena 1.
 - RF1/RX2 en la estación A, a la antena 2.
 - RF0/TX1 en la estación B a la antena 3.
 - RF1/RX2 en la estación B a la antena 4.
- 3. Encender los dispositivos USRP.
- 4. Encender los sistemas host [27].

Figura 2. Conexión de antenas en USRP 2974

Ejecución del código de host de LabVIEW:

Asegúrese de que LabVIEW Communications System Design Suite y 802.11ac Application Framework estén instalados en sus sistemas [27].

Los pasos necesarios para ejecutar el código host de LabVIEW en dos estaciones se resumen en lo siguiente:

Para la estación A en el primer host:

- Iniciar LabVIEW Communications System Design Suite seleccionando NI LabVIEW NXG 4.0 en el menú Inicio.
- En la pestaña Projects, seleccionar 802.11 Design USRP RIO v19.5 para iniciar el proyecto.
- Abrir SystemDesigner en la vista Diseño.
- Seleccionar el dispositivo USRP.
- En el panel Configuración, comprobar que Hostname names el USRP y el estado correctos coinciden.
- Si el estado no coincide, seleccionar el botón.
- Seleccionar su dispositivo en el menú desplegable.
- Usar un controlador diferente o seleccionar. Agregar hardware Agregar hardware por dirección, para agregar su dispositivo utilizando la dirección IP de su dispositivo. Ahora está asignado al dispositivo correcto.
- Dentro de ese proyecto, aparece el host de nivel superior VI 802.11 Host.gvi.
- Configurar el identificador RIO en el RIO.
- Control de dispositivos. Puede usar NI Measurement & Automation Explorer (MAX) para obtener el identificador RIO de su dispositivo. El ancho de banda del dispositivo USRP RIO (si es 40 MHz, 80 MHz y 160 MHz) se identifica inherentemente.

Repetir el paso 1 para la estación B en el segundo host.

Establecer el número de estaciones de la estación A en 1 y el de la estación B en 2.

Ajustar correctamente la configuración de la dirección MAC del dispositivo y la dirección MAC de destino en ambas estaciones.

- a. Estación A: Establecer la dirección MAC del dispositivo y la dirección MAC de destino en 00:80:2F:24:08:6B y 00:80:2F:24:08:53
- b. Estación B: Establecer la dirección MAC del dispositivo y la dirección MAC de destino en 00:80:2F:24:08:53 y 00:80:2F:24:08:6B [27].

Para cada estación, ejecutar el host VI de LabVIEW haciendo clic en el botón ejecutar (). ►

- a. Si se tiene éxito, se enciende el indicador **Device Ready.**
- b. Si se recibe un error, probar una de las siguientes opciones:
 - Asegurarse de que su dispositivo esté conectado correctamente.
 - Comprobar la configuración del dispositivo RIO.
- Habilitar la estación A estableciendo el control Habilitar estación en Activado. El indicador de estación activa debe estar encendido.
- Habilitar la estación B estableciendo el control Habilitar estación en Activado. El indicador de estación activa debe estar encendido.
- Seleccione la pestaña MAC y verifique que el RX Constellation que se muestra coincide con el esquema de modulación y codificación configurado utilizando los parámetros MCS y Subcarrier Format en la otra estación. Por ejemplo, deje el formato subportador y MCS por defecto en la estación A y establezca el formato de la subportadora en 40 MHz (IEEE 802.11 ac) y MCS

en 5 en la estación B. La modulación de amplitud de 16 cuadraturas (QAM) se utiliza para MCS 4 y se produce en la interfaz de usuario de la estación B. El 64 QAM se utiliza para MCS 5 y se produce en la interfaz de usuario de la estación A [27].

 Seleccione la pestaña RF & PHY y verifique que el espectro de potencia RX mostrado sea similar al formato de subportadora seleccionado en la otra estación. La estación A muestra el espectro de potencia RX de 40 MHz, mientras que la estación B muestra el espectro de potencia RX de 20 MHz.

Nota: Los dispositivos USRP con ancho de banda de 40 MHz no pueden transmitir ni recibir paquetes codificados con ancho de banda de 80 MHz.

Para monitorear el estado de cada estación, el marco de aplicación 802.11ac proporciona una variedad de indicadores y gráficos. Todas las configuraciones de la aplicación, así como los gráficos e indicadores se describen en las siguientes subsecciones. Los controles en el panel frontal se clasifican en los siguientes tres conjuntos:

- Configuración de la aplicación: Estos controles deben establecerse antes de encender la estación.
- Configuración estática de tiempo de ejecución: estos controles deben apagarse y luego encenderse en la estación. El control Habilitar estación se utiliza para eso.
- Configuración dinámica de tiempo de ejecución: estos controles se pueden establecer donde se ejecuta la estación [27].

Configuraciones en PC1 – USRP 1:

Se realiza las primeras configuraciones en la PC1 conectada al USRP 1. Se configuran los parámetros indicados en la tabla 1.

Tabla 1 Configuraciones en PC1 – USRP 1

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	10 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	20 MHz (IEEE 802.11ac)
MCS	4 (16-QAM 1/2)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:6B
Destination Mac Address	00:80:2F:24:08:53
Data Source	PN Data
Data Sink	Off
PN Data Packet Size	1024
PN Packet Per second	1000
RioDevice	RIO0
Reference Clock	Internal
Número de estación	1

Configuraciones en PC2 – USRP 2

Se realiza las primeras configuraciones en la PC2 conectada al USRP 2. Se configuran los parámetros indicados en la tabla 2.

Tabla 2. Configuraciones en PC1 – USRP 1

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	10 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	20 MHz (IEEE 802.11ac)
MCS	4 (16-QAM 1/2)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:53
Destination Mac Address	00:80:2F:24:08:6B
Data Source	PN Data
Data Sink	Off
PN Data Packet Size	1024
PN Packet Per second	1000
RioDevice	RIO0
Reference Clock	Internal
Número de estación	2

RESULTADOS OBTENIDOS:

El estudiante debe adjuntar los prints de los resultados observados en PC1 – USRP 1, y en PC2 – USRP 2. El print debe ser como el indicado en la figura 3. Cada Print debe tener comentarios de los resultados obtenido.

Figura 3. Pestaña RF & PHY

Repetir el proceso con diferentes esquemas de modulación, frecuencia (2.4 GHz y 5 GHz), potencia (0 a 10 dBm) y anotar los resultados en la siguiente tabla

	Prueba 3		
	PC 1	PC 2	
Frecuencia central (GHz)	2,437	2,437	
Canal	1	1	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	2	2	
Modulación	QPSK (3/4)	QPSK (3/4)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5	37.5	
Ruido en canal	SI	SI	
Throughput (Mbps)	6,2	32,5	

Tabla 3. Pruebas con diferentes esquemas de modulación

CONCLUSIONES:

GUÍA DE PRÁCTICA DE LABORATORIO

MAESTRÍA	EN	ASIGNATURA:
TELECOMUNICACION	ES	
NRO. PRÁCTICA:	2	TÍTULO PRÁCTICA: Generador de datos PN
		(saturación de enlace de TX)

OBJETIVO GENERAL:

Aprender sobre la generación de datos con Pseudoruido para la saturación del enlace de transmisión y recepción de los NI USRP 2974.

OBJETIVOS ESPECÍFICOS:

- Conocer el funcionamiento de los NI USRP 2974 con transmisión y recepción de datos PN.
- Aprender la configuración básica para la generación de datos con Pseudoruido utilizando el framework 802.11ac de LabVIEW NXG.
- Realizar cambios en la modulación y esquemas de canal para la visualización de señales transmitidas y recibidas con el estándar IEEE 802.11ac, utilizando datos PN.

	 Previo al uso de los equipos los estudiantes deben leer el manual de prácticas.
INSTRUCCIONES	2. Al finalizar la práctica los estudiantes deben guardar los equipos y dejar los materiales en orden.

ACTIVIDADES POR DESARROLLAR:

Generador de datos PN

Puede utilizar el generador de datos pseudonoise (PN) integrado para crear tráfico de datos TX, lo que es útil para medir el rendimiento del prototipo [27].

El generador de datos PN está configurado por los parámetros PN Data Packet Size y PN Packets per Second.

El generador es igual al producto de ambos parámetros. Observe que el rendimiento real del sistema visto en el lado RX depende de los parámetros de transmisión, incluido el formato subportadora y el valor MCS, y puede ser inferior a la velocidad generada por el generador de datos PN.

Los pasos siguientes proporcionan un ejemplo de cómo el generador de datos PN puede mostrar el impacto de la configuración del protocolo de transmisión en el rendimiento alcanzable. Tenga en cuenta que los valores de rendimiento dados pueden ser ligeramente diferentes dependiendo de la plataforma de hardware y el canal utilizado [27].

- Configure y ejecute dos estaciones (estación A y estación B) como en la práctica 1.
- Ajuste correctamente la configuración de la dirección MAC del dispositivo y la dirección MAC de destino de modo que la dirección del dispositivo de la estación A sea el destino de la estación B y viceversa como se describió anteriormente.
- 3. En la estación B, establezca **Origen de datos en Manual** para deshabilitar los datos TX de la estación B.
- 4. Habilite ambas estaciones.
- 5. Con la configuración predeterminada, debería ver un rendimiento de aproximadamente 8.2 Mbits/s en la estación B.
- 6. Cambie a la pestaña **MAC** de la estación A.

- 7. Establezca el tamaño del paquete de datos PN en 4061.
- 8. Establezca el número de **paquetes PN por segundo en** 10.000. Esta configuración satura el búfer TX para todas las configuraciones posibles.
- 9. Cambie a la pestaña Avanzado de la estación A.
- 10. Establezca **dot11RTSThreshold** en un valor mayor que el tamaño del paquete de datos PN (5.000) para deshabilitar el procedimiento RTS/CTS.
- 11. Establezca el número máximo de reintentos representado por **dot11ShortRetryLimit** en 1 para deshabilitar las retransmisiones.
- 12. Deshabilite y, a continuación, habilite la estación A ya que **dot11RTSThreshold** es un parámetro estático.
- Pruebe diferentes combinaciones de formato de subportadora y MCS en la estación A. Observe los cambios en la constelación RX y el rendimiento RX en la estación B.
- Establezca el formato de la subportadora en 40 MHz (IEEE 802.11ac) y MCS en 7 en la estación A. Observe que el rendimiento en la estación B es de aproximadamente 72 Mbits/s [27].

A continuación, se presentan en las tablas 1 y 2 un resumen de las configuraciones que se deben realizar en la PC1 – USRP 1 y PC2 – USRP 2.

Tabla 1 Configuraciones en PC1 – USRP 1

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	4 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	40 MHz (IEEE 802.11ac)
MCS	8 (256-QAM 3/4)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:6B
Destination Mac Address	00:80:2F:24:08:53
Data Source	PN Data
Data Sink	Off
PN Data Packet Size	4061
PN Packet Per second	10000
Dot11RTSThreshold	5000
Dot11ShortRetryLimit	1
RioDevice	RIO0
Reference Clock	Internal
Número de estación	1

En la tabla 2 se observan los parámetros que deben ser configurados en la PC2 que controla el USRP 2.

Tabla 2 Configuraciones en PC2 – USRP 2

Frecuencia	2,437 GHz
Canal primario	1
Nivel de potencia	0 dBm
TX Rf Port	TX1/RF 0
RX RF Port	RX2/RF 1
Formato de Subcarrier	40 MHz (IEEE 802.11ac)
MCS	8 (256-QAM 3/4)
Manual RX gain	37,5 dB
Device Mac Address	00:80:2F:24:08:53
Destination Mac Address	00:80:2F:24:08:6B
Data Source	Manual
Data Sink	Off
PN Data Packet Size	1024
PN Packet Per second	1000
Dot11RTSThreshold	2000
Dot11ShortRetryLimit	10
RioDevice	RIO0
Reference Clock	Internal
Número de estación	2

RESULTADOS OBTENIDOS:

El estudiante debe adjuntar los prints de los resultados observados en PC1 – USRP 1, y en PC2 – USRP 2. El print debe ser como el indicado en la figura 1. Cada Print debe tener comentarios de los resultados obtenido.

Figura 1. Pestaña RF & PHY

Repetir el proceso con diferentes esquemas de modulación, frecuencia (2.4 GHz y 5 GHz), potencia (0 a 10 dBm) y anotar los resultados en la siguiente tabla 3.

Adicional repetir el proceso colocando interferencia entre el radioenlace, se puede utilizar un router doble banda Tp-Link para generar las perturbaciones.

	Prueba 3		
	PC 1	PC 2	
Frecuencia central (GHz)	2,437	2,437	
Canal	1	1	
Subcarrier	80 MHz	80 MHz	
Protocolo	802.11ac	802.11ac	
MCS	2	2	
Modulación	QPSK (3/4)	QPSK (3/4)	
Potencia TX (dBm)	0	0	
Ganancia RX (dBm)	37.5	37.5	
Ruido en canal	SI	SI	
Throughput (Mbps)	6,2	32,5	

CONCLUSIONES:

GUÍA DE PRÁCTICA DE LABORATORIO

,	,	
MAESTRÍA	EN	ASIGNATURA:
TELECOMUNICACION	ES	
NRO. PRÁCTICA:	3	TÍTULO PRÁCTICA: Transmisión y Recepción de
		video utilizando el estándar IEEE 802.11ac.
OBJETIVO GENERAL Realizar transmisión y i	ecepc	ión de video utilizando el estándar IEEE 802.11ac.
OBJETIVOS ESPECÍF	ICOS:	
Conocer el func	ionami	ento de los USRP 2974.
Aprender la col madiante LIDD -	nfigura	ción básica para la RX y Tx de señales de video
	ullizari	
Realizar campi	os en	la modulacion y esquemas de canal para la
VISUAIIZACION de		bortamiento de las senales de video transmitidas y
recibidas con el	estanc	dar IEEE 802.11ac.
		4 Province all size a
		1. Previo al uso de los equipos los
		estudiantes deben leer el manual de
INSTRUCCIONES		prácticas.
		2. Al finalizar la práctica los estudiantes
		deben guardar los equipos y dejar los
		materiales en orden.

ACTIVIDADES POR DESARROLLAR:

La transmisión de videos destaca las capacidades de 802.11ac Application Framework. Para realizar una transmisión de vídeo con dos dispositivos, configure una configuración como en las prácticas anteriores. El marco de aplicación 802.11ac proporciona una interfaz UDP, que es muy adecuada para la transmisión de video. El transmisor y el receptor necesitan una aplicación de transmisión de video (por ejemplo, VLC, que se puede descargar desde http://videolan.org). Cualquier programa capaz de transmitir datos UDP se puede utilizar como fuente de datos. Del mismo modo, cualquier programa capaz de recibir datos UDP se puede utilizar como receptor de datos [27].

Configuración del receptor RX

El host que actúa como receptor utiliza el marco de aplicación 802.11ac para pasar los fotogramas de datos 802.11ac recibidos y pasarlos a través de UDP al reproductor de transmisión de vídeo.

1. Cree y configure un nuevo proyecto como se describe en "Ejecución del código host de LabVIEW".

2. Establezca el número de estación en 1.

3. Deje que el **Modo de operación** ubicado en el diagrama de bloques tenga el valor predeterminado, **RF Multi Station,** como se describió anteriormente.

4. Deje que la dirección MAC del dispositivo y la dirección MAC de destino tengan los valores predeterminados.

- 5. Cambie a la pestaña MAC y establezca Data Sink en UDP.
- 6. Habilite la estación.
- 7. Inicie cmd.exe y cambie al directorio de instalación de VLC.
- 8. Inicie la aplicación VLC como cliente de streaming con el siguiente comando:

vlc udp://@:13000, donde el valor 13000 es igual al puerto de **transmisión** de la **opción Receptor** de datos [27].

Configuración del transmisor

El host que actúa como transmisor recibe paquetes UDP del servidor de transmisión de video y utiliza el marco de aplicación 802.11ac para transmitirlos como marcos de datos 802.11ac.

1. Cree y configure un nuevo proyecto como se describe en "Ejecución del código host de LabVIEW".

- 2. Establezca el número de estación en 2.
- Deje que el Modo de operación ubicado en el diagrama de bloques tenga el valor predeterminado, RF Multi Station, como se describió anteriormente.
- Establezca la dirección MAC del dispositivo para que sea similar a la dirección MAC de destino de la estación 1 (valor predeterminado: 46:6F:4B:75:6D:62)
- Establezca la dirección MAC de destino para que sea similar a la dirección MAC del dispositivo de la estación 1 (valor predeterminado: 46:6F:4B:75:6D:61)
- 6. Cambie a la pestaña **MAC** y establezca el origen de datos en **UDP**.
- 7. Habilite la estación.
- 8. Inicie cmd.exe y cambie al directorio de instalación de VLC.
- 9. Identifique la ruta a un archivo de video que se utilizará para la transmisión.
- 10. Inicie la aplicación VLC como servidor de streaming con el siguiente comando vlc "PATH_TO_VIDEO_FILE"

:sout=#std{access=udp{ttl=1},mux=ts,dst=127.0.0.1:

UDP_Port_Value}, donde *PATH_TO_VIDEO_FILE* debe reemplazarse con la ubicación del video que se debe usar, y el parámetro UDP_Port_Value es igual a 12000 + Número de estación, es decir, 12002 [27].

PROCEDIMIENTO DE CONFIGURACIÓN:

En esta sección se presenta las configuraciones y pruebas realizadas para la transmisión y recepción de video utilizando el prototipo IEEE 802.11ac.

Parámetros de configuración en PC1 – TX

En las opciones de Data Source seleccionar Data Source y Data Sink en modo UDP. En la opción de Data Sink colocar la IP del USRP 2 del PC2 – RX. Hay que considerar que si se realiza las pruebas en una red LAN se debe colocar la ip otorgada por el router, en caso de no disponer de router el PC2 entregará una ip de enlace local al USRP del rango de 169.254.x.x.

Configuración de emisor de video con VLC

Para la emisión de video se utiliza el software VLC el cual puede ser descargado e instalado desde la página web oficial de VLC.

📥 Reproductor multimedia VLC Medio Reproducción Audio Vídeo Subtítulo Herramientas Ver Ayuda Abrir archivo... Ctrl+O Abrir múltiples archivos... Ctrl+Shift+O Ctrl+F Abrir carpeta... Abrir disco... Ctrl+D Abrir ubicación de red... Ctrl+N Abrir dispositivo de captura... Ctrl+C Abrir desde portapapeles Ctrl+V Abrir medios recientes ۲ Guardar lista de reproducción... Ctrl+Y Ctrl+R Convertir... (+) Emitir... Ctrl+S Salir al final de la lista de reproducción 🛃 Salir Ctrl+Q --:-

Buscar medio y seleccionar emitir. Ver figura 1.

Figura 1 Emitir desde VLC – PC1

₩ ■ ₩

►

Seleccionar Añadir y elegir el video o la película que se va a transmitir, de preferencia una película de 1 hora para que se pueda enviar el video sin necesidad de volver a enviar en caso de que termine el video. Ver figuras 2, 3 y 4.

 \times

()

A R	0				- 0	×	×
Archivo	📀 Disco	🐈 Red	🖽 Dispositivo de cap	otura			
Selección d	e archivos					_	
Seleccione	archivos locales	con la siguier	nte lista y botones.				
C:\Users\	Laboratorio\D	ocuments\L	abVIEW Projects\802.1	11 Design U	+ Añadir	r	
Usar un	archivo de subt	îtulo					
					Explorar		
🗌 Mostrar más	opciones						
				Emitir	▼ Cano	elar	-:
	/	÷ 2			2 V = V =		
		Figura	0 Emitir video aŕ	ñadido			
Luego de pulsa Ver figura 5.	r en emitir	se abrir	á ventana de sa	ılida de en	nisión, da	r en sig	uiente.
A Salida de em	sión			_		?	×
M Fuente Configure las fi	uentes de medios a tr	ansmisitir				·	
Este asistente Debería empe para continua	le permitirá transmiti rar comprobando que r.	r o convertir sus i la fuente concue	archivos para usar locálmente, e erda con lo que desea que sea la	en su red privada o ei entrada y entonces	n internet. presionar el botón	«Siguiente»	
Fuentes Per	s J abVTEW Projector	802, 11 Decima - 14	RP RIO v 19 5 3/Clifford the his	red.dog 2021_1090	n-dual-lat-cine-colid	ad.com.mod	
Tipo: file	a papriery Projects \	ooz. 11 Design US	20 KTO A 12/2 2 JOHNOLD ME DB	ea.uug. 2021. 1080	p-Juanat-Che-Callo	au.con.mp4	
			2	Atrás	Siguiente	Cancela	-
		Figura	a 5. Salida de em	nisión	- 1		

5	ialida de emisión		?
Con Si	figuración de destino eleccione destinos a los que transmitir		
	+		
	Añada destinos siguiendo los método compatible con el método usado.	de emisión que necesite. Asegúrese de comprobar con transcodificació	in que el formato es
	Nuevo destino	Archivo	▼ Añadir

Figura 6 Añadir UDP Legacy

Colocar la dirección ip del USRP 1 del PC1-TX. Hay que considerar que si no hay un router de por medio se debe colocar la ip de enlace local otorgada por Windows al USRP. El número de puerto es el 12001. Ver figura 7.

Sounda de l	emisión ?	×
Configuració Seleccione o	n de destino lestinos a los que transmitir	
+		
Este mód	ilo envía la emisión transcodificada a una red a través de UDP.	
		_
Dirección	192.168.0.149	_
Dirección Puerto	192.168.0.149 12001 🗢	
Dirección Puerto	192.168.0.149 12001 🗘	rocelar
Dirección Puerto	192.168.0.149 12001 C Atrás Siguiente Ca	ancelar

Op	Salida de emisión ciones de transcodificación Seleccione y elija opciones de transcodifi VI Habilitar transcodificar	icación				?	×
Op	ciones de transcodificación Seleccione y elija opciones de transcodifi I Habilitar transcodificar	icación					
	A Habilitar transcodificar						
	Perfi				•	× 📧	
							-
							ľ
				Atrás	Siguiente	Cancela	ar
	10-00-000	2			LD		
Conf	ialida de emisión figuración de preferencias onfigure cualquier otra opción adicional	es para transmitir				?	×
	Opciones varias						
	Emitir todas las emisiones elementa	les					
	Cadena de salida de emisión generada						
	:sout=#transcode{vcodec=h264,aco 001} :sout-all :sout-keep	dec=mpga,ab=128,	channels=2,samplerate	=44100,scodec=nor	e}:udp{dst=192	168.0.149:12	
				Atrás	Emitir	Cance	łar
		2	1	Auds	ă J	Cance	
		Figur	a 9 Emitir vid	eo			
		rigui					

Luego de realizar la configuración en el VLC TX, se observa que el VLC empieza con la transmisión, no se observará el video que se envía mediante UDP a la red. Ver figura 10.

Figura 10 TX de video en VLC

Configuración de RX – PC2:

En la figura 11 se observan las configuraciones que hay que setear para la recepción del video mediante UDP.

Figura 11 Configuraciones en Rx de video mediante UDP

Abrir VLC , seleccionar abrir medio - Colocar la URL udp://@:130000, click en reproducir. Ver figura 12.

Archivo	😔 Disco	🚏 Red	Dispositivo de captura			
Protocolo d	le red					
Tetraducir						
Indoddor						
udp://@:	13001				~	
http://w	ww.example.com/	stream.avi				
mms://n	ms.examples.com	/stream.asx				
http://w	ww.yourtube.com	/watch?v=gg64	x			
🗌 Mostrar má	s opciones					
·				Reproducir 👻	Cancelar	;
				(cproduct)	Carrectar	- 1.
val		1		9 - 1		

Se observará en el PC2-RX que se recibe datos y el diagrama de constelación se visualizará con información recibida. Ver figura 13.

En VLC empieza la reproducción del video emitido inalámbricamente por el USRP 1. Realizar prueba parando y activando el video TX desde el VLC y desde el framework probar habilitando y deshabilitando la estación 1 y 2. Ver figura 14.

RESULTADOS OBTENIDOS:

El estudiante debe adjuntar los prints de los resultados observados en PC1 – USRP 1, y en PC2 – USRP 2. El print debe ser como el indicado en la figura 15. Cada Print debe tener comentarios de los resultados obtenido.

Figura 15. Pestaña RF & PHY

Repetir el proceso con diferentes esquemas de modulación, frecuencia (2.4 GHz y 5 GHz), potencia (0 a 10 dBm) y anotar los resultados.

