ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"Análisis Comparativo de las Pruebas de Presión entre Pozos de Petróleo del Oriente Ecuatoriano y Pozos de Gas del Campo Amistad"

TESINA DE GRADO

Previo a la Obtención del Título de:

INGENIERO DE PETRÓLEO

Presentada por:

Cristhian Javier García Sisalima Héctor Enrique Bravo Cevallos

DIRECTOR:

ING. BOLIVAR MIRANDA

Guayaquil – Ecuador Año: 2011

AGRADECIMIENTO

Al Ingeniero Bolívar Miranda, por haber dirigido acertadamente el presente proyecto de titulación, por el tiempo invertido en nosotros y por su comprensión en la enseñanza haciendo que se vuelva práctica. Por la disponibilidad de la información proporcionada, que fue de suma importancia para la realización de este proyecto.

De igual manera a todos y a cada uno de los ingenieros de la Facultad de Ciencias de la Tierra por compartir e impartir sus valiosos conocimientos. A todos aquellos amigos con los que siempre podre contar, pues su amistad es valiosa.

CRISTHIAN JAVIER GARCIA SISALIMA

AGRADECIMIENTO

Agradezco a Dios por haberme brindado fuerza y salud para salir adelante cada día. A mi mamá que con su apoyo incondicional y ejemplo de perseverancia me enseño a tener fe en los momentos más difíciles y superar cada obstáculo en mi camino. A mis hermanas que me brindaron su compresión y confianza para lograr cada meta que me he propuesto. Al Ing. Bolívar Miranda por su total apoyo, ánimo y acertada forma de enseñar para poder cumplir con este trabajo

HECTOR ENRIQUE BRAVO CEVALLOS

DEDICATORIA

A nuestros padres, Juan Vicente García Zambrano-Bertha Consuelo Sisalima González por ser mi apoyo y mi sustento, por saber llevarme siempre por el camino correcto guiándome hacia el camino del profesionalismo, aprovechando los principios y valores inculcados por ellos.

A la persona que supo brindarme su amor y apoyo, Silvia Miranda, eres quien me ha dado la fortaleza, gracias por estar siempre a mi lado.

Y a todas aquellas personas que a lo largo de mi vida han confiado en mí y me han brindado su apoyo.

CRISTHIAN JAVIER GARCIA SISALIMA

DEDICATORIA

Dedico este trabajo a mi mamá Luisa Francisca Cevallos Arteaga, que me ha acompañado a lo largo de este camino, a mis hermanas Rosa Irina y Patricia Elizabeth, y a cada persona que de una u otra forma me han apoyado para llegar a ser un Profesional.

HECTOR ENRIQUE BRAVO CEVALLOS

TRIBUNAL DE GRADUACIÓN

Inorio

Ing_Gastón Proaño C. SUBDECANO DE LA FICT PRESIDENTE

Blu

Ing. Bolívar Miranda DIRECTOR DE TESIS

DECLARACION EXPRESA

La responsabilidad del contenido de esta tesina de grado nos corresponde exclusivamente.

A través de la presente declaración cedemos nuestros derechos de propiedad intelectual correspondientes a este trabajo, a la Escuela Superior Politécnica Del Litoral, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Constituen Gavin S.

Cristhian García Sisalima

Héctor Bravo Cevallos

SIMBOLOGIA

BFPDE Barriles de Fluidos por dia	µ₀Ξ Viscosidad de Petróleo
APIE American Petroleum Institute	t _P Ξ Tiempo de producción
BSWE Basic Sediments Water	ctΞ Compresibilidad total
Km. Ξ Kilometro	Q₀ Caudal de Petróleo
LGPE Gas Licuado de Petróleo	β₀Ξ Factor Volumétrico del Petróleo
Bls. Ξ Barriles	CE Efecto de llenado
BPPDE Barriles de Petróleo por dia	hrsΞ horas
mdΞ Milidarcy	Pe∃ Presión estática
PsiE Pounds Square Inch	A _{wb} Ξ Area del pozo
cp. Centipoise	AΞ Área de drenaje
ppmΞ Partes por Millón	r _e ∃ Radio en la frontera
StbΞ Stock Tank Barrels	PwsE Presión de restauración
P₅Ξ Presión de Burbuja	BHPE Bottom Hole Pressure
ftΞ Pies	N _p E Producción de Petróleo
MCFE Miles de Pies Cúbicos	t _{DA} Ξ Tiempo adimensional
AcE Acres	ZE Factor de Compresibilidad del gas
PwfΞ Presión de fondo	qsc <mark>∃ Caudal de gas</mark>
KE Permeabilidad	TΞ Temperatura
SE Factor de Daño	PrE Presión de Reservorio
Pi∃ Presión Inicial	Qt∃ Caudal Total
hΞ Espesor de la Formación	ScfΞ Standard Cubic Feet
ØE Porosidad	$\gamma_g \Xi$ Gravedad Especifica del Gas
r _w Ξ Radio del Pozo	rb∃ Barriles de yacimiento

RESUMEN

Este documento presenta el tipo de pruebas de presión que se realizan, tanto en los Pozos de Petróleo de los campos del Oriente Ecuatoriano como en los pozos de Gas del Golfo de Guayaquil, tomando como ejemplos reales los pozos : SSXF – 66 ; SSXF-97 , AMXTD-01 y AMXTD-04. Aplicando el software Pansystem, utilizado por EP-Petroecuador para el análisis e interpretación de pruebas de presiones.

Se muestra una breve descripción e historia de cada uno de los campos que son objeto de nuestro estudio, resaltando las características petrofísicas de cada una de las arenas productoras.

Se da a conocer el procedimiento adecuado para realizar un correcto análisis de presiones, tomando en cuenta las características propias de cada pozo y yacimiento.

Finalmente, se adjuntan mapas, tablas y gráficas que serán de suma ayuda para una adecuada interpretación de las condiciones de flujo de reservorio y frontera del yacimiento.

INDICE GENERAL

CAPITULO 1. GENERALIDADES DE LOS CAMPOS: SSXF

Y AMXTD

1.2

	5 5	
1.1.3	Aspectos Geofísicos y Geológicos generales del campo	.5
1.1.4	Descripción litológica de las arenas productoras	.6
1.1.5	Características de la Formación Napo "U"	. 8
1.1.6	Características de la Formación Napo "T"	8

Características del campo de Gas AMXTD

1.2.1	Historia del campo AMXTD	9
1.2.2	Ubicación geográfica	.10
1.2.3	Aspectos Geofísicos y Geológicos generales del campo	.10
1.2.4	Descripción litológica de las arenas productoras	.12
1.2.5	Geoquímica del campo	.12
1.2.6	Características de la Formación Progreso	.14
1.2.7	Características de la Formación Subibaja	.16
1.2.8	Características de la Formación Dos Bocas/Villingota	17

CAPITULO 2. ESTADO DE LOS POZOS E HISTORIAL DE

PRODUCCION

2.1 Campo SSXF

2.1.1	Estado de los pozos del campo SSXF	e historial de producción18
2.1.2	Pozos en Producción	
2.1.3	Historia de Producción de las arenas N	apo "U" y "T"23

2.2 Campo AMXTD

2.2.1	Reservas del Campo	26
2.2.2	Pozos en Producción	29
2.2.3	Historia de Producción de los Pozos del Campo	29

CAPITULO 3. PROPIEDADES BASICAS DE LAS ROCAS Y

DE LOS FLUIDOS

3.1 Campo SSXF

3.1.1	Porosidad	.34
3.1.2	Permeabilidad	34
3.1.3	Saturación de Fluidos	35
3.1.4	Propiedades de los fluidos	35

3.2 Campo AMXTD

3.2.1	Porosidad	.37
3.2.2	Permeabilidad	.38
3.2.3	Saturación de Fluidos	.38
3.2.4	Propiedades de Pozos en Producción	.38

CAPITULO 4. TIPOS DE PRUEBAS DE PRESION

4.1	Tipos de Pruebas de Presión
4.1.1	Introducción
4.1.2	Pruebas de Declinación de Presión (Drawdown)41
	4.1.2.1 Análisis de las Pruebas de Declinación de Presión para las
	condiciones del Transiente43
	4.1.2.2 Análisis de las Pruebas de Declinación de Presión para las
	condiciones del Transiente Tardío46
	4.1.2.3 Análisis de las Pruebas de Declinación de Presión para las
	condiciones del Estado Semicontinuo48
	4.1.2.4 Análisis de Pruebas de Flujo de dos Tasas51
	4.1.2.5 Análisis de Pruebas de Flujo de n-tasas53
4.1.3	Pruebas de Restauración de Presión (Buildup)54
	4.1.3.1 Análisis de Pruebas de Restauración de Presión con una Tasa
	Constante de Producción antes del cierre

4.1.3.2 Análisis de Pruebas	de Restauración	de Presión	Precedidas
de dos Tasas Diferent	es de Flujo		59
4.1.3.3 Análisis de Pruebas	de Restauración	de Presión	Precedidas

por (n-1) diferentes tasas de flujo......62

4.2 Métodos para evaluación de presiones

4.2.1 Campo SSXF (yacimientos de Petróleo)

4.2.1.1 Método de Horner 6	33
4.2.1.2 Método de MDH, Miller Dyes Hutchinson6	5
4.2.1.4 Método de MBH, Mathews, Brons Hazebrook6	67
4.2.1.4 Método de las curvas tipo6	39
4.2.1.4.1 Curvas tipo de Ramey Jr6	69
4.2.1.4.2 Curvas tipo de McKinley7	0
4.2.1.4.3 Curvas tipo de Gringarten y otros	71
4.2.1.5 Método de la Derivada7	72

4.2.2 Campo AMXTD (yacimientos de Gas)

4.2.2.1 Efecto de Almacenaje	73
4.2.2.2 Flujo Non – Darcy	75

Pruebas de Declinación de Presión de pozos de Gas

.2.2.3 Introducción

4.2.2.4 Análisis de Horner por el Método M (P)	79
4.2.2.5 Análisis de Horner por el Método P ²	81

Pruebas de Restauración de Presión de pozos de Gas

4.2.2.6 Introducción	82
4.2.2.7 Análisis de Horner por el Método M (P)	83
4.2.2.8 Análisis de Horner por el Método P ²	. 85

Pruebas de Deliverability

4.2.2.9 Introducción	.87
4.2.2.10 Pruebas Convencionales (Flow-After-Flow Test)	.90
4.2.2.11 Prueba Isocronal	92
4.2.2.12 Prueba Isocronal Modificada	.95

CAPITULO 5. APLICACIÓN DE PRUEBAS DE PRESION

A POZOS DE PETROLEO Y POZOS DE

GAS

5.1	Aplicación de pruebas de presión a pozos de Petróleo	97
5.2	Aplicación de pruebas de presión a pozos de Gas	112

CAPITULO 6. CONCLUSIONES Y RECOMENDACIONES......124

ÍNDICE DE FIGURAS

- Figura 1.1 Columna Estratigráfica de la Cuenca Oriente
- Figura 1.2 Mapa Geologico de la Isla Puná
- Figura 1.3 Columna Estratigrafica de la Columna Progreso
- Figura 2.1 Grafico de la situación actual del Campo SSXF
- Figura 2.2 Pronóstico de Producción del Campo SSFX
- Figura 4.1 Grafico Esquemático del Análisis de la Prueba de Declinación

para las Condiciones del Transiente

Figura 4.2 Representación de una Prueba Bi-Flujo

Figura 4.3 Representación del Restauración de Presión

- Figura 4.4 Representación de Buildup para una tasa de Producción
- Figura 4.5 Representación de Buildup para una Tasa de Producción
- Figura 4.6 Grafico generalizado de Millar-Dyes-Hutchinson (MDH) para
- un pozo localizado en el centro de un pozo cuadrado
- Figura 4.7 Presión Extrapolada, Método MBH
- Figura 4.8 Sistema de Flujo de Gas
- Figura 4.9 Pruebas Convencionales
- Figura 4.10 Prueba Isocronal
- Figura 4.11 Prueba Isocronal Modificada

ÍNDICE DE TABLAS

- Tabla 1.1 Análisis de Gas del Campo Amistad
- Tabla 2.1 Estado Actual de los Pozos del Campo SSXF
- Tabla 2.2 Reservas Remanentes
- Tabla 2.3 Pronóstico de Producción
- Tabla 2.4 Estación Central del Campo SSXF
- Tabla 2.5 Estación Norte del Campo SSXF
- Tabla 2.6 Estación Sur del Campo SSXF
- Tabla 2.7 Estación Sur-Oeste del Campo SSXF
- Tabla 2.8 Estación Aguarico del Campo SSXF
- Tabla 2.9 Reservas Probadas del Campo AMXTD
- Tabla 2.10 Reservas Probables del Campo AMXTD
- Tabla 2.11 Producción Diaria del Campo AMXTD
- Tabla 2.12 Prueba de Pozos Pozo AMXTD N°1
- Tabla 2.13 Pruebas de Pozos Pozo AMXTD N°3
- Tabla 2.14 Pruebas de Pozos Pozo AMXTD N°4

 Tabla 3.1 Características de la Arena Basal Tena

Tabla 3.2 Características de la Arena U

Tabla 3.3 Características de la Arena T

Tabla 3.4 Características de pozos del Campo AMXTD

ANEXO 1

Figura A. Mapa del Campo AMTDX

ONUT OF OT	% DE ARENA	VISOTALI	E DAD REPORTADA ROR A D A	HDROCARB] [FORMACIÓN	DESCRIPCION DE LOS SEDIMENTOS
800 - 1000 - 1800 - 8000 - 8000 -	60	ARENAS Y ARCILLAS	- PLEISTOCENO			DIFERENCIADO	GRUESOS PAQUETES DE ARENISCAS CONGLO- MERATICAS ALTERNANDO CON LUTITAS. LA PRESENCIA DE MOLISCOS, TRAZAS DE LIG- NITO, GLAUCONITAS INDICAN UN ORIGEN LITORAL
4000 - N.N.	40	ARCILLAS M ARENAS	PLIOCENO			ž	IDEM ANTERIOR PERO DEPOSITADOS EN AGUAS UN POCO MAS PROFUNDAS (INFRALITORALES) ARCILLAS REPORTADAS BENTONITICAS.
5000	85	APENAS	SUPERIOR		GAS POSIBLE	PROGRESO	ESTRATOS POTENTES DE ARENSCAS DE ORIGEN LITONAL MOD GONGLEMERATICAS ON MUCHOS ELIMENTOS DE ORIGEN VOLCAN GO, LUTTA VERCOSA NO CALCAREA, SUAVE ; LICOITO Y FRANVEN TOS DE CONCHAS ; POCOS ESTRATOS DE CALIZAS
7000		-					ARCELAS E INTERCALACIONES DE ARENAS ARCILLO- SAS LUTTRA VERDOSA MICACEA NO CALCAREA, SUA- VE, TRAZAS DE LIGNITO
8000 -	20	MICILLA	C E N O MEDIO			UBIBAJA	CORRESPONDEN A FACIES DE PRODEL"A, SE HA REPORTADO COMPOSICIO BENTONITICAS.
9000	50	ARENAS Y ARCILAS	M I O	E M	GAS (ZONA PRODUCTORA)		ARENAS LIMPIAS GRAND FINO MEDIO CONGLOMERATICAS DE FRENTE DE DELTA Y RELLENOS DE CANAL DISTRIDU- TARIO TAMBIEN SE PRENTAN ARCILLAS DE FACIES DE LAGUNA COSTERA.
	25	ARCALAS	INFERIOR				LUTITA DE COLOR CAFE CHOCOLATE HACIA LA PARTE SUPERIOR NIVELES DE CARBON DURO
11000	50	ARENAS Y ARCILLAS			GAS (ZONA DE INTERES)		IDEM ZONA PRODUCTORA.
13000 -							LUTITA MULTICOLOR, ROJO, ROJIZA, VIOLETA, ANA- RANJADA
14000 -	20	ARCILLAS	GLO C E N O			DOS BOCAS	EN RESUMEN ARCILLAS DE PRODELTA SEGURA- MENTE BENTONITICAS
16000 -			0 1				
17000 -	50	APOLLAS			AGUA SALADA • GAS		ZONA DE ALTA PRESION

Figura B. Columna Estratigráfica Esperada de Pozo de Desarrollo del Campo Amistad

Figura D. Distribucion Areal de las Reservas de Gas

Figura E. Base de datos: Líneas sísmicas y pozos utilizados

Figura F. Ubicación del Campo SSXF

ANEXO 4

Tabla 4.1 Factores de forma para varias áreas de drenaje de pozos sencillos

Yacimientos finitos	CA	Exacto Para t _{DA} >	Menos de 1 % error para tDA >	Use solución de sistema infinito con menos de 1 % error for tDA >
\odot	31.62	0.1	0.06	0.1
\bigcirc	31.6	0.1	0.06	0.1
\wedge	27.6	0.2	0.07	0.09
	27.1	0.2	0.07	0.09
1/3	21.9	0.4	0.12	0.08
I AI	0.098	0.9	0.6	0.015
•	30.882	8 0.1	0.05	0.09
	12.985	1 0.7	0.25	0.03
•	4.513	2 0.6	0.30	0.025
	3.335	1 0.7	0.25	0.01
• 1	21.836	9 0.3	0.15	0.025
	10.837	4 0.4	0.15	0.025
• 1	4.514	1 1.5	0.50	0.06
• 1	2.076	9 1.7	0.5	0.02
1	3.157	3 0.4	0.15	0.005

	Ca	Exacto para tDA >	Menos de 1 % error para tDA >	Use solución de sistema infinito con menos de 1 % error for tDA >
1	0.5813	2.0	0.6	0.02
1 1 1 1	0.1109	3.0	0.6	0.005
2 • 1	5.379	0.8	0.3	0.01
4	2.6896	0.8	0.3	0.01
4 1	0.2318	4.0	2.0	0.03
4	0.1155	5 4.0	2.0	0.01
5 Vertical-Fractured	1 2.3606	1.0 Use (Xe/Xf) ²	0.4 in place of	0.025 £ A/rw ²
reservoirs		for fractur	ed reservoi	rs
1	2.6541	0.175	0.08	Cannot use
1 ×1/xe=0.2	2.0348	0.175	0.09	Cannot use
1	1.9986	0.175	0.09	Cannot use
1	1.662	0.175	0.09	Cannot use
xf/xe=0.7	1.3127	0.175	0.09	Cannot use
xf/xe=1.0	0.7887	0.175	0.09	Cannot use
Watar-Drive	19.1			
$\overline{\bullet}$	25.0			

Tabla 4.1 Factores de forma para varias áreas de drenaje de pozos sencillos - Cont.

Figura 8. Curvas Tipo de Gringarten para un pozo con factor de almacenamiento y factor de daño

	YACIMIE	INTO HOMOGEN	EO	YACIMIENTO CON E	DOBLE POROSIDAD
MODELO	SISTEMAS	SISTEMAS	POZOS	INTERPO	ROSITY FLOW
	INFINITOS	CERRADOS	FRACTURADOS	ESTADO PSEUDOESTABLE	TRANSITORIO
GRAFICO LOG-LOG Pog Po			112	Flujo	Flujo
GRAFICO SEMILOG Po	State III		 Cartesiano	E E	E E
GRAFICO DE LA DERIVADA Iog t _o 'C _o *P _o '	1	0.5		1/2 1/2 FTRANG-1	>1/4 1/2 -TRANS-1
m = Pendiente semilog. Representa flujo radial infinito		Hay un factor de 2 en separaciónentre PD y PD' para fracturas de conduc- tividad infinita. El factor es 4 para fracturas de -con- ductividad finita	Conduct. infinita 	 Se desarrollan 2 lineas paralelas La transición inicia antes que termine los efectos de WBS 	F = FISURA T =SISTEMA TOTAL

Figura 10. Resumen de reacciones de modelos de pozos-yacimientos

BIBLIOGRAFIA

- Freddy Humberto Escobar M., Phd, "Análisis Moderno de Pruebas de Presiones" Editorial Surcolombiana, Segunda Edición Marzo 2009.
- L.P. Dake, "Fundamentals of Reservoir Engineering" Developments in Petroleum Science, 8 SPE.
- Douglas Alvarado, Phd, "Análisis de Pruebas de Presiones" International Training Group, Septiembre del 2004"
- Anónimo, "Historia de la Exploración y Explotación en la Amazonia Ecuatoriana"
- Amanat U. Chaudhry, "Oil Well Testing Handbook" Advanced TWPSOM Petroleum Systems, Inc. Houston, Texas
- DeGolyer and MacNaughton, "Documentos de Trabajo utilizados para elaborar el estudio sobre Reservas de Gas del Yacimiento Amistad.

- Ing. Iván Fajardo D. "Evaluación de Reservas del Campo Amistad" Subgerencia Regional Guayaquil, División de Producción, Noviembre de 1988.
- 8. Estudio Técnico-Económico, Proyecto de Desarrollo del Campo Amistad, Julio de 1981.
- 9. Estudio de Simulación de Reservorio del Campo Shushufindi-Aguarico, Cuenca Oriente, Ecuador.
- 10.Volumen VI: Historia de Producción preparado para Petroproducción, Febrero 2011.
- 11.Geologic Report of the Amistad Field Gulf of Guayaquil, December 1975.

INTRODUCCION

Las pruebas de pozos son una herramienta técnica clave en la industria hidrocarburífera. A menudo se usa una prueba de presión como la tecnología principal para monitorear el comportamiento de los pozos y reservorios. Los resultados del análisis de la data de pruebas de pozos son usados para tomar decisiones de inversiones por ejemplo para proyectos de de mantenimiento de presión ó de recuperación secundaria en un campo. Los procedimientos matemáticos de análisis entre pruebas de presión en pozos de gas y pozos de petróleo son diferentes en ciertos factores particulares como el flujo non - darcy ó las pruebas de deliverability que son más determinantes en pozos de gas; sin embargo los principios básicos que sustentan los cálculos matemáticos son similares en ambos casos. El análisis de pruebas de presión es un procedimiento que se utiliza para realizar pruebas en la formación a través de la tubería de producción ó de perforación, el cual permite registrar la presión y temperatura de fondo, con el objeto de evaluar parámetros fundamentales para la caracterización adecuada de los yacimientos. También se obtienen muestras de los fluidos presentes a condiciones de superficie, fondo y a diferentes profundidades para la determinación de sus propiedades; dicha información se cuantifica y se utiliza en diferentes estudios para minimizar el daño ocasionado por el fluido de perforación a pozos exploratorios o de avanzada, aunque también pueden realizarse en pozos de desarrollo para estimación de reservas.

CAPITULO 1

GENERALIDADES DE LOS CAMPOS: SSXF Y AMXTD

1.1 Características del campo de Petróleo SSXF

1.1.1 Historia del campo SSXF

El Campo **SSXF** fue descubierto por el Consorcio Texaco-Gulf, con la perforación del pozo exploratorio SSXF #1, que llegó a la profundidad de 9.772 pies y en Enero de 1.969 fue completado, empezando a producir, inicialmente, de la arenisca "U", 2.496 *BFPD* de un crudo de $26,6^{\circ}API$ con 0,1% de *BSW* y de la arenisca "T", 2.210 *BFPD* de un crudo de $32,5^{\circ}API$ con un 0,1% de *BSW*.

El desarrollo del Campo se inicia en Febrero de 1.972, (tiene 39 años de producción) en un area de drenaje de 500 acres, iniciándose su producción en agosto del mismo año y por más de dos décadas su producción promedio fue de 100.000 BPPD de las arenas "U" y "T". Actualmente, el campo mantiene una producción promedio de 50.000 BPPD con grandes expectativas de ampliar el desarrollo de esta área, con el descubrimiento del campo Drago, ubicado al oeste del campo SSXF.

1.1.2 Ubicación geográfica

El campo **SSXF** está localizado a 250 km. al Este de Quito, y 35 km. al Sur de la frontera con Colombia en la Cuenca Amazónica (Figura. 1.1), entre los meridianos 76 y 77 entre la línea Equinoccial y el paralelo Sur 1 (Anexo 1). Teniendo al Norte el Campo Libertador, al sur Limoncocha, al oeste Tarapoa y al Este el Campo Sacha.

SSXF es el campo que contiene la mayor parte de las reservas probadas del país. Está orientado en la dirección norte-sur con aproximadamente 35 km. de largo y 7 km.de ancho, lo que cubre un área de unos 200 km².

Cerca de la Estación Central se encuentra el cantón Shushufindi cuya economía se basa en la producción agrícola y los empleos generados por diferentes empresas petroleras.

En la parte norte de la Estación Central se encuentran las instalaciones de la Refinería, que cuenta con la planta LGP (la mayor cantidad de gas que alimenta la planta de gas licuado de petróleo es suministrada por la producción del campo SSF-AG) y con una refinería que procesa 10.000 *BPPD*, que sirve para abastecer de combustible a la zona.

Figura 1.1 Columna Estratigráfica de la Cuenca Oriente

1.1.3 Aspectos Geofísicos y Geológicos generales del campo

El campo petrolífero **SSXF**, pertenece a la Formación Napo Inferior y produce hidrocarburos de las areniscas cretácicas "U", "T" y "Basal Tena". En orden descendente, las 8 unidades de rocas que constituyen la formación son:

- Caliza "A"
- Arenisca "Basal Tena "
- Arenisca "U" Superior
- Arenisca "U" Inferior
- Lutita
- Caliza "B"
- Arenisca "T" Superior
- Arenisca "T" Inferior

Debido a que la Formación Napo Inferior es de depositación Deltaica, tiene engrosamiento donde ocurre el eje. La tendencia del campo es norte-sur con la siguiente inclinación:

- Flanco Este tiene inclinaciones fuertes (fallado)
- Flanco Oeste tiene inclinación suave (1°)
- Limites Norte y Sur tienen inclinaciones suaves (1/4° a 1/2°)

La estructura del campo **SSXF** es un anticlinal asimétrico con una falla normal localizada en el flanco sur-este, la dirección del movimiento de esa falla es desconocida. Una segunda falla de dirección norte-oeste y con una fuerte inclinación se localiza al norte de la primera falla, puesto que los datos sísmicos disponibles no son apropiados para un mapeo estructural preciso. Las fallas no se extienden más allá del largo del campo y no son completamente sellantes.

En los flancos oeste, norte y sur, la estructura está limitada por acuíferos laterales que se extienden regionalmente. Estos acuíferos son muy activos en los extremos norte y sur del campo, en donde desarrollan presiones que disminuyen la necesidad de aplicar mantenimiento de energía, sin embargo, esto no sucede en el sector central del campo, sector en el que el soporte de presiones proveniente de los acuíferos, no es lo suficientemente significativo para mantener las presiones adecuadas y facilitar la explotación hidrocarburífera.

1.1.4 Descripción litológica de las arenas productoras

Los tres horizontes que son productivos están ubicados aproximadamente a 9.500 pies de profundidad:

- Arenisca "Basal Tena "
- Arenisca "U"
- Arenisca "T"

La **Arenisca Basal tena** es un yacimiento discontinuo que contiene cantidades menores de hidrocarburos en comparación con los otros dos estratos productores.

El **Yacimiento U** se encuentra a una profundidad de 8.210 *pies* bajo el nivel del mar (datum). El área aproximada es de 36.376 *acres* con espesores que varían de 24 *pies* hasta 94 *pies*. Debido a los diferentes ambientes de depositación no existe continuidad en esta arena; esto hace que su perfil sea muy irregular, con depositaciones tipo deltaico sobre un gran canal principal, que atraviesa el yacimiento de norte a sur.

El **Yacimiento T** se encuentra a una profundidad de 8.515 *pies* bajo el nivel del mar (*Datum*) cubriendo un área aproximada de 38.415 *acres*, con espesores que varían desde 7 *pies* hasta 121 *pies*. Los ambientes de depositación transversales que influyen la arenisca, no afectan significativamente el desarrollo del canal principal de la arenisca T, que tiene orientación norte-sur, con espesores y perfiles más uniformes que los de la arenisca U.

1.1.5 Características de la Formación Napo "U"

La localidad de esta formación se encuentra en Puerto Napo, donde aflora en los dos flancos del rio y en la zona del alto Napo que se localiza a 50 km. aguas abajo.

Esta formación está constituida por areniscas de grano fino a mediano con algunas zonas de grano grueso; son regionalmente continuas, pero tienen barreras de permeabilidades tanto longitudinales como transversales.

Con respecto a las calizas estas son por lo general fosilíferas y consideradas como un depósito de poca profundidad costa afuera, es decir, de tipo lagunal o bahía; están infrayacentes o suprayacentes a las lutitas arcillosas, pero usualmente incluyen intervalos menores de arena.

Las arenas U inferior tienen un periodo de depositación en un ambiente estuarino dominado por mareas, mientras que la U superior un ambiente de plataforma marina somera.

1.1.6 Características de la Formación Napo "T"

Las areniscas superiores son conocidas como las areniscas T, su espesor es variable, los espesores hacia el sur van aumentando, las lutitas de esta zona

contienen muchos fósiles así como Ammonoideas, los que han permitido determinar una edad Albianense para esta zona.

Esta formación está constituida por areniscas de grano fino a mediano con algunas zonas de grano grueso; son regionalmente continuas, pero tienen barreras de permeabilidades tanto longitudinales como transversales. Con respecto a las calizas estas son por lo general fosilíferas y consideradas como un depósito de poca profundidad costa afuera, es decir, de tipo lagunal o bahía; están infrayacentes o suprayacentes a las lutitas arcillosas, pero usualmente incluyen intervalos menores de arena.

Las arenas T inferior tienen un periodo de depositación en un ambiente estuarino dominado por mareas, mientras que la T superior un ambiente de plataforma marina somera.

1.2 Características del campo de Gas AMXTD

1.2.1 Historia del campo AMXTD

La exploración moderna en el Golfo de Guayaquil (Cuenca Guayaquil) comenzó a fines de la década de los 60 cuando ADA/Phillips Petroleum adquirió sísmica 2D en costa-afuera.

El campo **AMXTD** fue descubierto por la compañía ADA en el año 1.969 al perforar el pozo amistad 1, luego entre los años 1.970-1.971 se perforaron

tres pozos mas, dando un total de cuatro pozos, de los cuales se obtuvieron resultados positivos en tres de ellos, Amistad 1, Amistad 3 y Amistad 4.

1.2.2 Ubicación geográfica

El campo Amistad está localizado costa afuera, aproximadamente a 75 km. al sur de General Villamil (Playas), con profundidades de agua que oscilan entre 25 y 45 metros (Anexo 1).Su área aproximada es de 17 km² y la zona productora tiene un espesor neto de pago de unos 120 pies.

1.2.3 Aspectos Geofísicos y Geológicos generales del campo

La zona constituye una cuenca sedimentaria con un espesor máximo en el eje de la cuenca de aproximadamente 12.000 metros de sedimento de depósitos marinos continentales, de origen probablemente deltaico y que lito estratigráficamente resulta en una secuencia alternante de arenas y lutitas, con pequeños espesores de calizas de edad que va desde el Oligoceno hasta el Reciente (36 millones de años) (Figura. 1.2).

Estas arenas y arcillas por efecto de la compresión tectónica de levantamiento produjeron condiciones estructurales y estratigráficas necesarias para el entrampamiento de hidrocarburos.

La complejidad geológica que presenta la zona, ha originado que se desarrollen múltiples interpretaciones, con distintas teorías, en las que la estructura se presenta con trampas estructurales y estratigráficas.

Al campo **AMXTD** se lo ha definido como un anticlinal alargado en dirección norte-sur de 11 km. de largo por 3,7 km. aproximadamente de ancho, bastante fallado, con una falla principal al oeste de la estructura, con un salto de alrededor de 1.000 pies.

Figura 1.2 Mapa Geologico de la Isla Puná

1.2.4 Descripción litológica de las arenas productoras

En el campo **AMXTD** las formaciones productivas son Progreso, Subibaja y Dos Bocas/Villingota (Figura.1.3); la formación Subibaja fue subdividida bioestratigráficamente en Uvigerina, Bolivina, Rotalia 1 y Rotalia 2.

En los pozos Amistad 1 y 4 las zonas productoras son una secuencia de capas de areniscas con intercalaciones de arcilla y limolita. Las areniscas van de finas a conglomeráticas variando desde semi-consolidadas hasta friables, con porosidades y saturaciones de agua de 16% y 40% respectivamente.

Los topes de las formaciones Progreso y Subibaja son reflectores fuertes y continuos debido a cambios en litología: 85% de arena en Progreso contra 40% de arena en la secuencia suprayacente y aproximadamente 20% en Subibaja.

1.2.5 Geoquímica del campo

En el golfo de Guayaquil no se ha identificado roca generadora de crudo; los estudios realizados en las diferentes rocas indican lo siguiente:

 La Formación Cayo Facie Calentura presenta excelente potencial pero insuficiente madurez. Las facies Subibaja y Dos Bocas tienen buen potencial pero no madurez (Golfo de Guayaquil). El gas del campo AMXTD está constituido con un 99% de Metano por lo que puede ser considerado de origen biogénico.

Composición	Fracción Molar
H ₂ S	
CO ₂	0,02
N	0,27
CH4	98,60
Etano	0,78
Propano	0,22
Iso-Butano	0,06
N-Butano	0,02
Iso-Pentano	0,02
N-Pentano	0,01
Hexano	Trazas
BTU/SCF	Promedio 1.022

Tabla 1.1 Análisis de Gas del Campo Amistad

Las areniscas de la zona productora, son de grano medio a grueso, microconglomeráticas, limpias, friables, ocasionalmente con cemento arcilloso o calcáreo, se encuentra pirita dispersa.

1.2.6 Características de la Formación Progreso

La Formación Progreso está conformada de areniscas de grano fino, a veces con estratificación cruzada, fosilíferas, cementadas por calcita e interestratificada con lutitas, lutitas limosas y areniscas conglomeráticas con ocasionales capas de bentonita. Muchas veces se presentan delgados flujos de escombros y areniscas con pliegues de deslizamiento ("slump folds") que sugiere una reactivación local de la extensión.

La fauna sugiere una edad Mioceno Medio a tardío y fue depositada por corrientes de tracción que operaban en la plataforma (anteplaya) y su procedencia es de un orógeno reciclado con contribución significativa del arco volcánico. Corresponde a un ambiente de plataforma interna a estuarino-deltaico.

Figura 1.3 Columna Estratigrafica de la Columna Progreso

1.2.7 Características de la Formación Subibaja

Es atravesada parcialmente en el Golfo, reportándose como interestratificaciones de arcillolitas y areniscas cuarzosas. Corresponde a un ambiente estuario transicional a continental palustre.

En la parte continental aflora extensamente sobre la Cuenca Progreso e Isla Puná. Se diferencian dos miembros:

Miembro Saiba.- Formado por limolitas macizas color gris-oscuro, duras, con cemento calcáreo y abundantes foraminíferos, que lateralmente pasan en forma gradual a facies arcillosas y arenosas. Se intercalan con lutitas macizas, con foraminíferos, y capas de calizas concrecionarías en la parte inferíos.

Este miembro tiene una edad de Mioceno Temprano Tardío y corresponde a un ambiente marino de plataforma central a interna.

Miembro Sacachum.- Compuesto principalmente por limolitas de colores gris-verdosos, friables a moderadamente compactas, intercaladas con lutitas grises, usualmente estériles, dispuestas en capas delgadas o lentes y areniscas finas, friables, con megafósiles y estratificación cruzada frecuente. La edad de este miembro corresponde al Mioceno Temprano Tardío a

Mioceno Medio temprano con un ambiente de depositación estuario transicional a continental palustre o lacustre.

En el Golfo de Guayaquil la Formación Subibaja es atravesada parcialmente por los pozos P1, P4 y P5 por lo que se desconoce su espesor total al interior del Golfo.

1.2.8 Características de la Formación Dos Bocas/Villingota

En la Isla Puna subafloran las rocas de las Formaciones Dos Bocas/Villingota no diferenciadas, formando una franja alargada de un ancho de 2 Km aproximadamente en dirección paralela a la falla de La Cruz desde Bajada hasta Campo Alegre. Estos depósitos corresponden a un máximo transgresivo con un ambiente nerítico externo a batial superior.

La Formación Dos Bocas se conforma de arcillolitas semiduras gris oscuras que meteorizan a café chocolate, presentan vetillas de yeso.

Mientras que la Formación Villingota está constituida por arcillolitas de color gris a gris verdosas muy ricas en micro fauna, limolitas gris amarillentas, limolitas arenosas y esporádicos estratos de arenisca fina gris amarillenta a gris oscura. Se supone que estas formaciones existen en el golfo a profundidades que no han sido alcanzadas en las perforaciones.

CAPITULO 2

ESTADO DE LOS POZOS E HISTORIAL DE

PRODUCCION

2.1 Campo SSXF

2.1.1 Estado de los pozos del Campo SSXF e Historial de Producción

ESTADO ACTUAL DE LOS POZOS

PRODU	JCTORES	REINYECTORES	INYECTORES (CI)	CERRADOS + (CR)	ABANDONADOS	CON SOLIC. DE ABANDONADOS	ESPERANDO C/PI	PERFORADO	PERFORANDOSE
SSF 01	SSF 82	SSF RW 1	WIW 1	SSF RW 03	SSF 6A	AGU 07 RW	SSF-RW4	SSF-10BD	SSF-133D
SSF 02	SSF 83	SSF RW 2	WIW 2	SSF 06B	SSF 8	SSF 48	DRG N11D WO		AGU-12D
SSF 03	SSF 84	SSF 05	WIW 3	SSF 15 A	SSF 10				
SSF 07	SSF 85	SSF 13	WIW 4	SSF 15 B	SSF 12A				
SSF 09	SSF 86	SSF 20 A	SSF 32 (WIW-05)	SSF 16	SSF 34				
SSF 11	SSF 87 PPG	SSF 21	SSF 4A (WIW-07)	SSF 18 (WIW-09)	SSF 39				
SSF 12 B	SSF 88	SSF 25	SSF 40 (WIW-08)	SSF 22A	SSF-45A				
SSF 14	SSF 89	SSF 33		SSF 22B	SSF 52				
SSF 17	SSF 90	SSF 38		SSF 29	SSF 55				
SSF 19	SSF 91	SSF 47		SSF 30	SSF 62				
SSF 20B	SSF 92	SSF 50		SSF 31					
SSF 23	SSF 94	SSF 58		SSF 37					
SSF 24	SSF 95 PPG	SSF 93		SSF 41					
SSF 26	SSF 96H	AGU 04		SSF RW 42A					
SSF 27	SSF 97	AGU 06		SSF 44 PPG					
SSF 28	SSF 98D			SSF 51					
SSF 35	SSF 99 PPH			SSF 60					
SSF 36	SSF 101			CDZ SE 1					
SSF 42 B	SSF 102 H			DRG 02					
SSF 43	SSF 104D			DRG 10					
SSF 45B	SSF 105			AGU 02					
SSF 46 PPH	SSF 106 D			AGU 05					
SSF 49 PPH	SSF 107 D								
SSF 52B	SSF-108D PPH								
SSF 53	SSF-109D								
SSF 54	SSF-110D								
SSF 56	SSF-111D								
SSF 57	SSF-116D								
SSF-59	SSF-118D								
SSF 61	SSF-119D								
SSF 62B	SSF-122D								
SSF-63	SSF-127D								

AREA SHUSHUFINDI - AGUARICO

31-oct-10

Tabla 2.1 Estado Actual de los Pozos del Campo SSXF

Figura 2.1 Grafico de la situación actual del Campo SSXF

El campo tiene actualmente 101 pozos activos, con una producción acumulada de **1.157'203.025 Bls. y** unas reservas remanentes de **467'794.161** Bls. al **31 / 12 / 2010**. La tabla siguiente presenta los valores de reservas remanentes incluyendo el campo Drago que forma parte del area SSXF:

RESERVAS REMANENT	TES AL 31/12/2010
САМРО	Bls.
SSFX-AG	433'709.642
DRAGO	2'352.086
DRAGO ESTE	7'830.777
DRAGO OESTE	23'901.656
TOTAL	467'794.161

Tabla 2.2 Reservas Remanentes

En la tabla 2.3 se presenta el pronóstico de producción del campo SSXF que corresponde al plan de desarrollo presentado por PETROPRODUCCION, que incluye la perforación de 47 pozos direccionales, con los que se espera producir 294'396.000 Bls. adicionales de las reservas probadas remanentes, utilizando una declinación anual efectiva del 9%.

Figura 2.2 Pronóstico de Producción del Campo SSXF

				Pronostico	de Produ	icción			
A# -		N° Poz	os a F/A	Pozos	Pro	ducción (BP	PD)	TOTA	L (MBIs)
Ano	Activos	Nuevos	A Rehabilitación	Activos a	Base	Incremental	Total	Por año	Acumulado
1	85	3	-	88	52.689	2.100	54.789	17.078,00	17.078,00
2	-	4	-	92	48.843	4.719	53.562	16.630,10	33.708,10
3	-	4	-	96	45.327	7.013	52.340	16.184,30	49.892,40
4	-	4	-	100	42.115	9.009	51.124	15.740,30	65.632,70
5	-	4	-	104	39.178	10.734	49.912	15.298,00	80.930,70
6	-	4	-	108	36.495	12.210	48.705	14.857,50	95.788,10
7	-	4	-	112	34.042	13.459	47.501	14.418,10	110.206,20
8	-	4	-	116	31.801	14.501	46.302	13.980,20	124.186,40
9	-	4	-	120	29.752	15.343	45.095	13.543,40	137.729,80
10	-	4	-	124	27.880	16.031	43.911	13.107,70	150.837,50
11	-	4	-	128	26.169	16.552	42.721	12.673,10	163.510,60
12	-	4	-	132	24.605	16.927	41.532	12.239,30	175.749,90
13	-	-	-	-	23.176	15.470	38.646	11.185,90	186.935,80
14	-	-	-	-	21.870	14.139	36.009	10.223,10	197.158,90
15	-	-	-	-	20.676	12.922	33.598	9.343,20	206.502,10
16	-	-	-	-	19.585	11.810	31.395	8.539,10	215.041,20
17	-	-	-	-	18.588	10.793	29.381	7.804,10	222.845,30
18	-	-	-	-	17.677	9.864	27.541	7.132,50	229.977,80
19	-	-	-	-	16.844	9.015	25.859	6.518,60	236.496,40
20	-	-	-	-	16.083	8.239	24.322	5.957,50	242.453,90
21	-	-	-	-	15.387	7.530	22.917	5.444,80	247.898,70
22	-	-	-	-	14.751	6.882	21.633	4.976,10	252.874,80
23	-	-	-	-	14.170	6.290	20.460	4.547,80	257.422,60
24	-	-	-	-	13.639	5.748	19.387	4.156,40	261.579,00
25	-	-	-	-	13.154	5.254	18.408	3.798,70	265.377,70
26	-	-	-	-	12.710	4.801	17.511	3.471,70	268.849,40
27	-	-	-	-	12.305	4.388	16.693	3.172,90	272.022,30
28	-	-	-	-	11.934	4.010	15.944	2.899,80	274.922,10
29	-	-	-	-	11.596	3.665	15.261	2.650,20	277.572,30
30	-	-	-	-	11.286	3.350	14.636	2.422,10	279.994,40
31	-	-	-	-	11.003	3.062	14.065	2.213,70	282.208,10
32	-	-	-	-	10.745	2.798	13.543	2.023,10	284.231,20
33	-	-	-	-	10.509	2.199	12.708	1.718,30	285.949,50
34	-	-	-	-	10.293	2.010	12.303	1.570,40	287.519,90
35	-	-	-	-	10.095	1.837	11.932	1.435,20	288.955,10
36	-	-	-	-	9.915	1.679	11.594	1.292,80	290.247,90
37	-	-	-	-	9.750	1.534	11.284	1.181,60	291.429,50
38	-	-	-	-	9.600	1.402	11.002	1.079,90	292.509,40
39	-	-	-	-	9.462	1.281	10.743	986,90	293.496,30
40	-	-	-	-	9.336	1.171	10.507	902,30	294.398,60

Tabla 2.3 Pronóstico de Producción

2.1.3 Historia de Producción de las arenas Napo "U" y "T"

PRODUCCION A OCTUBRE 2010

AREA SHUSHUFINDI - AGUARICO - DRAGO

ESTACION CENTRAL

POZO	FECHA	ARENA	BFPD	BPPD	BAPD	BSW	API	Q inyeccion Pintk	Pws	Pwf	TIPO DE BOMBA	GPM HZ	TASA	METODO
DRG-1	16	Ui	432	346	86	20,0%	26,0	629	2316	1471	TD 1200	49	900	BES
DRG E-5D	24	Ui	901	631	270	30,0%	27,4	1029	2625	2329	P18X	47		BES
DRG N-6D	21	Ui	918	872	46	5,0%	27,9	845	2301	1893	P 18X	53		BES
DRGN-11D	29	Ui	707	587	120	17,0%	28,0	1123			P8XH6	51		BES
DRG N-15D	22	Ui	1109	1098	11	1,0%	26,4	1042	2253	1840	P 12X	60		BES
DRG-E-8D	21	Ti	1266	1013	253	20,0%	33,4	2225	2665	2211	GN 1600	47		BES
DRG E-1	22	Ui	968	852	116	12,0%	27,3	1496	2838	2642	DN-1100	60		BES
DRG E-12D	21	Ti	1872	1835	37	2,0%		2194	-	-	GN-1600	55		BES
DRG N-1	21	Ui	1548	1542	6	0,4%	28,9	2401	4183	2729	DN1750	48		BES
DRG N-20D	22	UI	/50	420	330	44,0%	26,9	927	2083	1639	DN-1100	55		BES
09	26	IS	1146	458	688	60,0%	34,0	1593	2534	1900	P12X-H6	59	000	BES
11	23	G2+0 T	365	/3	292	80,0%	32,0	1094	2589	1166	D475N	57	300	BES
120	20	т Т	2762	442	2320	84,0%	30,0	1/6/	2333	4754	511-2000	60	700	DES
17		-	1391	278	1113	80,0%	31,0	2076	2233	1701	P12X Ho	00	700	BES
19	22	l	541	1/3	368	68,0%	33,7	982	2348	1589	P8X H6	48	200	BES
CDZ-01	21	Ui	316	133	183	58,0%	28,0	714	2491	1537	TD-450	53		BES
42B	27	Ts	1287	335	952	74,0%	30,0	1184	2199	1911	P 12X	62	2400	BES
43	24	U+T	2229	1293	936	42,0%	25,0	1254	2614	1456	GN-2100	58	2300	BES
65	23	G2	269	264	5	2,0%	29,0	409	2486	1154	D725N	52	500	BES
72	21	Т	578	208	370	64,0%	30,0	1181	2439	1248	D725N	58	550	BES
73	22	U	2133	683	1450	68,0%	27,0	1178	2419	1826	P23X	56	1800	BES
74	25	Т	4164	666	3498	84.0%	26,0	1516	2260	1837	P62X	53	1300	BES
77	26	U+T	1918	690	1228	64.0%	19,2	1576	2081	1412	DN 1750	60	1200	BES
80	22	Ts+i	2270	341	1929	85.0%	29.0	1776	2307	1964	SN-2600	60	1750	BES
81	27	Ts+i	3533	353	3180	90.0%	28.0	1464	2443	2253	GN-4000	55	800	BES
83	26	U	741	274	467	63.0%	26.0	1095	-	1018	D725N	60	1000	BES
84	22	U	511	460	51	10.0%	29.9	966	1788	594	FC 450	59	240	BES
89	24	U	433	316	117	27.0%	29.0	929	2201	1214	P6X	51	1200	BES
90	26	Т	826	190	636	77.0%	30.6	1680	2473	1743	P-8X	49		BES
96H	19	Us	684	602	82	12.0%	26.0	939	2285	2004	D725N	56	700	BES
102H	27	Ui+s	646	523	123	19.0%	25.0	1458	1526	1361	D725N	60	700	BES
105	21	Т	180	149	31	17.0%	32.0	629	1545	864	P4X	48		BES
106D	21	Ti	698	251	447	64.0%	34.2	1582	2427	1741	P8X	50	700	BES
110 D	24		291	76	215	74 0%	23.7	027	1926	1357	D725N	52	380	BES
118 D	24	UI Ti	1216	159	1059	87 00/	20,1	321 N/D	2500	20.91	GC-1700	50	850	BES
110 D	20	Ti	1210	603	1280	68.0%	31.0	1482	2309	2001	P23X	58	2000	BES
1130	20		43482	19188	24294	00,070	01,0	1402	2-31	2210	120/	50	2000	

Tabla 2.4 Estación Central del Campo SSXF

ESTACION NORTE

0070	FECHA		PEDD	PDDD	BADD	DCM		Q inyeccior	Duur	Durf	TIPO DE	GPM	ТАСА	METODO
POZO	FECHA	AKENA	DFPU	DPPD	DAPD	DSVV	API	Pintk	PWS	PWI	BOMBA	HZ.	ТАЗА	METODO
1	27	T+U+G2	3899	585	3314	85,0%	30,0	1902	2416	2057	SN-3600	55	1400	BES
3	26	U	295	133	162	55,0%	28,7	NR	1630	1037	P4X	49	1100	BES
14	26	U	695	688	7	1,0%	27,2	930	1321	1034	P 8X	51		BES
36	24	U	975	936	39	4,0%	24,0	2330	1512	1213	FC-925	62	1000	BES
46	24	U	196	181	11	7,50%	26,0	1600	1645	748	JET-9I		300	PPH
49	24	U	463	139	324	69.90%	27,0	1380	1483	1182	JET-8A		1150	PPH
51		т	0	0	0	0.0%			2980	1775				BES
52 B	22	BT	475	238	237	50.0%	25,0	488	1572	1249	P 11X	60	880	BES
53	23	U	517	300	217	42.0%	24.0	N/R	1672	1218	FC-925	60	1000	BES
54	22	BT	205	154	51	25%	22.0	411	1961	1592	P8X	52	500	BES
56	27	Т	1066	405	661	62.0%	28.0	2040	-	-	DN-1100	60	700	BES
57	21	Т	474	156	318	67.0%	29.0	758	1808	1012	D725N	56	380	BES
59	22	G-2	114	107	7	6.0%	24.0	335	2449	1512	FC 450	50	400	BES
62B	27	U U	1113	979	134	12.0%	28.0	NR	1486	1415	DN-1100	62	1100	BES
63	21	U U	490	181	309	63.0%	23.7	730	1378	1233	D725N	55	420	BES
64	27	Us	1070	1038	32	3.0%	29.6	1035	1025	-	DN-1100	56	1000	BES
66	26		402	322	80	10 00%	26.0	1550	1470	1245	IFT-01		1800	
70	20	U+T	2223	800	1423	64.0%	24.0	NR	2175	1240	DN-3000	62	1500	BES
71	24	Т	3874	1162	2712	70.0%	25.0	1490	2820	2322	GN-4000	57	2700	BES
76	24	т	3944	868	3076	78.0%	28,0	1440	2733	2366	P47X	58	2850	BES
78	22	U	532	436	96	18,0%	28,0	630	1475	1157	P8X	57	750	BES
86	24	U	712	320	392	55,0%	25,6	N/R	-	-	P8X	58	700	BES
87	21	т	1340	590	750	56,0%	31,0	1527	2171	1575	TUBULAR		2000	G. L.
88	24	Т	1146	287	859	75,0%	29,0	1342	2324	1622	P12X	53	800	BES
98-D	22	Ti	1398	336	1062	76,0%	30,0	1769	2045	-	P12X	52	700	BES
99	26	BT	218	158	60	27,5%	26,3	1840	1118	748	JET 9A		900	PPH
107-D	21	BT	319	278	41	13,0%	24,0	418	1297	1041	D475N	56	500	BES
108-D	21	Ui	309	67	242	78,17%	25,3	1760	1389	418	Jet 9A	0	150	PPH
109-D	23	Ui	969	756	213	22,0%	26,8	1180	1336	1145	DC-1100	55	800	BES
111-D	29	т	553	459	94	17,0%	28	1136	2083	2090	P8X	50	1400	BES
116-D	22	Ts	186	175	11	6,0%	28	653	2112	1148	TD-300	52		
			30172	13234	16934									

Tabla 2.5 Estación Norte del Campo SSXF

ESTACION SUR

POZO	FECHA	ARENA	BFPD	BPPD	BAPD	BSW	API	Q inyeccior PWF	PwS	Pwf	TIPO DE BOMBA	HZ GPM	TASA	METODO
2	22	U	234	56	178	76,00%	26,0	763	2590	1032	D725N	50	800	BES
7	23	Ti	1205	241	964	80,00%	28,0	1781	2390	2151	AN-1200	55	1100	BES
20B	26	U	353	279	74	21,0%	31,4	NR	2311	1238	D725N	55	450	BES
95	23	Ts	1159	1020	139	12,0%	23,0	1569	2371	1829	G.L.		1400	G.L.
23	24	Ts+i	3298	462	2836	86,0%	24,0	1820	2239	1925	FC-4300	60	2200	BES
28	20	U+T	1976	632	1344	68,0%	26,0	1770	3322	1722	P-30	59	1700	BES
45B	26	Т	3192	1245	1947	61,0%	30,0	1200	2325	2011	SN-3600	58		BES
67	22	Т	6213	994	5219	84,0%	31,0	1720	2353	2212	GN-5600	56	2300	BES
68	25	Ts	5172	1034	4138	80,0%	26,0	N/R	-	-	P47X	60	1400	BES
75	19	Т	2082	416	1666	80,0%	30,0	1906	2197	2042	FC-2200	65	700	BES
79	27	U	961	231	730	76,0%	24,0	1208	2816	1610	DN-1100	56	1100	BES
82	26	Us+i	2012	1046	966	48,0%	25,0	1405	-	1965	SN-2600	59	2000	BES
91	20	U	1220	439	781	64,0%	31,0	1254	2487	1247	GN-1300	60	1400	BES
92	22	Ts+i	4936	839	4097	83,0%	31,0	1460	2259	1475	P62X	52	1500	BES
97	21	Ti	1718	601	1117	65,0%	29,3	1218	2545	2081	P21X	58	2400	BES
104D	26	Ti	927	195	732	79,0%	31,0	1704	2460	1270	P8X	56	1600	BES
122D	26	Ti	2812	844	1968	70,0%	32,0	-	2565	2414	TE-2700	52	1500	BES
CDZ SE-1						0,0%					DN-1100			
			39470	10574	28896									

Tabla 2.6 Estación Sur del Campo SSXF

ESTACION SUR - OESTE

POZO	FECHA	ARENA	BFPD	BPPD	BAPD	BSW	API	Q inyeccion Pintk	Pws	Pwf	TIPO DE Bomba	HZ	TASA	METODO
24	26	T	2337	421	1916	82,00%	27,0	1794	2738	2415	DN-3000	55	800	BES
26	26	Ts+i	1170	211	959	82,0%	31,0	1966	2536	1702	P12X	57	1250	BES
27	23	U	508	345	163	32,0%	18,0	1491	-	-	DN-725	60	800	BES
35	22	U	1089	218	871	80,0%	18,0	1791	3232	1926	DN-1100	62	500	BES
41		Т	0	0	0	0,0%					P8X			BES
61	18	Т	1379	276	1103	80%	31,0	1450	2422	1592	DN-1750	52	650	BES
69	24	U	783	196	587	75,0%	16,0	N/R	2956	1608	FC-1200	60	1600	BES
85	26	Ts	2915	583	2332	80,0%	28,0	1682	2941	1686	GN-4000	52	1100	BES
94	26	Us+i	3853	578	3275	85,0%	18,0	Pwf 1641	3103	2545	GN-4000	57	1000	BES
95		Ts	0	0	0	12,0%	23,0	1585			G.L.		1400	G.L.
127D	21	Ui	1875	338	1537	82,0%	19,2	1648	3293	2265	GN2100	56	1700	BES
129D	26	Ti	1077	237	840	78,0%	33,6	2085			DN-1750	59		BES
101	23	Т	1373	137	1236	90,0%	23,7	Pwf 1804	2794	2225	DN-1750	53	500	BES
			18359	3540	14819									

ESTACION AGUARICO

POZO	FECHA	ARENA	BFPD	BPPD	BAPD	BSW	API	Q inyeccion PWF	Pws	Pwf	BOMBA (NIV. F.)	HZ.	TASA	METODO
01	26	U	1586	551	1035	65,28%	24,0	2100	3160	2102	JET 11K	-	850	PPH
03	23	U	1626	748	878	54,0%	23,0	1624	-	-	DN-1750	60	1600	BES
10	25	U	1277	77	1200	94,0%	24,6	1362	3284	1864	P18X	56	450	BES
08	24	Us	316	132	184	58,2%	34	1540	2319	647	Jet 8 A	-	120	PPH
9	26	Us	965	232	733	76,00%	27,0	1600	3157	1961	DN-1100	56		BES
12D	30	Ui	1248	1236	12	1,00%	26.3	1560			JET 10 J			PPH
			7018	2976,0	4042									

TOTAL AREA 138501 49512 88985

REALIZADO POR: ING. Zarina Mezza S. / 92393 REVISADO POR: Ing. Enrique Espín / 91913

Tabla 2.8 Estación Aguarico del Campo SSXF

2.2 Campo AMXTD

2.2.1 Reservas del Campo

Las cifras de reservas del Campo AMXTD se determinaron por el método volumétrico en base al cierre estructural y a la correlación de los diferentes lentes arenosos.

Con la información de los pozos AMXTD 1, 2, 3, 4 y el cierre estructural se delimitaron las áreas de reservas probadas y probables de la formación Subibaja, mientras que para los horizontes de la formación Progreso, se asumió como reservas probadas un area de drenaje de 160 acres, ya que estos se presentan con interés hidrocarburífero únicamente en el pozo AMXTD 3.

En la tabla 2.7 y 2.8, se detallan los valores de reservas para cada uno de los horizontes y que totalizan 202.4 $\times 10^9$ pies cúbicos normales de reservas probadas recuperables y 93.7 $\times 10^9$ pies cúbicos normales de reservas probables.

En dichos cálculos asumimos un **factor de recuperación del 70 %,** valor que corresponde a una presión de abandono de 1000 psi, considerando al yacimiento tipo volumétrico.

		CREORACION	ESTATAL PETRO	I FRA ECUATOR	IANA		
		UNIDAD EJE Reservas	CUTORA GOLFO PROBADAS DEL (DE GUAYAQUII AMPO AMXTD			
	VOLUMEN DE		SATURACION		GAS EN SITU	FACTOR DE	GAS
YACIMIENTO	ROCA 1043	POROSIDAD		1/Bg/Vcs/Vcy		RECUPERACIONES	RECUÉRABLE
	ACRES/PIES		DE AGUA		1049 PCNG	%	10 ⁴⁹ PCNG
NIVEL SUPERIOR HORIZONTE Z	8.64	0.24	0.31	190	11.84	70	8.29
NIVEL SUPERIOR HORIZONTE Y	8	0.16	0.57	235	4.32	02	3.03
NIVEL SUPERIOR HORIZONTE X	0.96	0.21	0.25	262	1.73	02	1.21
CUERPO SUPERIOR HORIZONTE S-1	4.43	0.126	0.39	289	4.28	02	2.99
CUERPO SUPERIOR HORIZONTE S-2	42,42	.126	.45	289	37.01	02	25.91
CUERPO MEDIO HORIZONTE M-1	133.55	0.129	0.468	289	115.38	02	80.76
CUERPO MEDIO HORIZONTE M-2	109.60	0.12	0.4	289	99.34	02	69.54
CUERPO INFERIOR HORIZONTE I-1	17.27	0.16	0.65	289	12.18	02	8.53
CUERPO INFERIOR HORIZONTE I-2	4.93	0.12	0.59	289	3.06	02	2.14
TOTAL	329.80				289.14		202.4
PCNG: PIES CUBICOS NORMALES DE GAS							

Tabla 2.9 Reservas Probadas del Campo AMXTD

		CORPORA(UNIDAD RESERV	JON ESTATAL PETROLEKA) ELECUTORA GOLFO DE G AS PROBABLES DEL CAMP	ecuatoriana Uayaquil 0 amxtd			
	VOLUMEN DE				GAS EN SITU	FACTOR DE	GAS
YACIMIENTO	ROCA 10v3	POROSIDAD	SATURACION DE AGUA	1/Bg/Vcs/Vcy		RECUPERACIONES	RECUPERABLE
	ACRES/PIES				10 ⁴⁹ PCNG	%	10^9 PCNG
NIVEL SUPERIOR HORIZONTE Z							
NIVEL SUPERIOR HORIZONTE Y							
NIVEL SUPERIOR HORIZONTE X							
CUERPO SUPERIOR HORIZONTE S-1	13.69	0.126	0.39	289	13.25	02	9.28
CUERPO SUPERIOR HORIZONTE S-2	14,48	0.126	0.45	289	12.63	02	8.84
CUERPO MEDIO HORIZONTE M-1	67.41	0.129	0.468	289	58.24	02	40.47
CUERPO MEDIO HORIZONTE M-2	50.27	0.12	0.4	289	45.57	02	31.9
CUERPO INFERIOR HORIZONTE I-1	4,99	0.16	0.65	289	3.52	02	2.46
CUERPO INFERIOR HORIZONTE I-2	0.99	0.12	0.59	289	0.61	02	0.43
TOTAL	151.83				133.82		93.68
PCNG: PIES CUBICOS NORMALES DE GAS							

Tabla 2.10 Reservas Probables del Campo AMXTD

2.2.2 Pozos en Producción

Los tres pozos productivos fueron probados en distintos intervalos, arrojando los siguientes resultados totales por pozos:

POZO	PRODUCCION DIARIA (MM PCNG)	Total Depth (ft)
Amistad N° 1	14,55	17.058
Amistad N° 3	11,55	8.837
Amistad N° 4	9,10	10.514
Total	35,20	

Tabla 2.11 Producción Diaria del Campo AMXTD

Estas cifras no pueden ser consideradas como la productividad de los pozos, puesto que representa la suma de las producciones de los distintos intervalos probados, situación que no se cumple en la realidad al poner en producción del pozo.

2.2.3 Historia de Producción de los Pozos del Campo

La compañía ADA de Exploración Petrolera, en el periodo 1.969-1.972, perforo cuatro pozos en la estructura Amistad, de los cuales, los pozos AMXTD 1, 3 y 4 fueron productivos, mientras que el pozo AMXTD 2, fue reportado seco, y aparentemente fue perforado fuera del contacto agua/gas.

En las tablas 2.10, 2.11, 2.12 se detallan los resultados de las pruebas de la producción por intervalos de los pozos antes indicados, que fueron reportados por la compañía operadora, así como también los potenciales de flujo abierto (**AOF**) calculados a partir de esa información.

Las primeras pruebas realizadas en los pozos de AMXTD 1, AMXTD 3, AMXTD 4 fueron las pruebas DST. Una prueba DST (Drill Steam Test) es una prueba de presión corta que se efectúa durante la perforación utilizando la tubería de perforación (pozos exploratorios). Está formada por pruebas de restauración y caída de presión consecutivas. Para correr un DST, una herramienta especial se coloca en la sarta de perforación y se baja a la zona a probar. La herramienta aísla la formación de la columna de lodo en el anular y permite que los fluidos de la formación fluyan a la sarta de perforación mientras se registra continuamente la presión.

Además de proporcionar una muestra del tipo de fluido en el yacimiento, un buen DST da una indicación de la rata de flujo, una medida de las presiones estáticas y de flujo y una prueba transitoria corta. Un DST puede en ciertos casos detectar barreras, si éstas son cercanas al pozo: fallas, discontinuidades, frentes de inyección, etc. Y servir para la determinación de la presión inicial o la presión promedia.

	PRUEBAS DE POZOS POZO AMXTD Nº 1																
	INTERVALO	ESTRANG.	PROD. GAS	PROD. DE	PROD. DE	PRESION	PRESION	PRESION DE	PRESION DE	PRESION DE	PRESION DE	PRESION	PROD.	TIEMPO	TIEMPO	POTENCIAL	GRADIENTE
					AGUA	FLUYENTE	DE CIERRE	FORMACION	FORMACION	FORMACION	FORMACION		DE			DE FLUJO	DE PRESION
PRUEBA #				CONDENSAD	BSW (PMPD)	EN SUPER.	EN SUPER.	FLUY. INIC.	FLUY. FINAL	CIERRE INIC.	CIERRE FIN.	HIDROSTATICA	ARENA	FLU.	DE CIERRE	ABIERTO	DE
	Pies	SUPERIOR	MMPCND	O BOPD	(PPM)	FTP psi	SITP psi	IFP psi	FFP psi	ISIP psi	FSIP psi	psi	cc.	мім	MIN	AOF	Psi/pie
	10331				40												
		16/64	-	-	(18500)	-	-	3708	3708	3767	-	-	-				
DST-1			FLUJO														
	10333		MODERADO	-	-	-	-	2524	2524	-	2631	6860	-	240	240		0,341
	10252	16/64	4.25	-	-	2850	3800	4633	4633	4799			-	130	-		
		12./64	3.0	-	-	3350	3800	4488	4688	4799		6733	-	-	-	29	0.465
		9./64	2.1	-	-	3590	3800	4744	4744	4799			-	-	-		
DST-2			1	-	-	3750	3800	4799	4799	4799			-	-	-		
0312			4.25	-	-	2850	3800	4522	4522	4680			-	-	-		
			3	-	-	3350	3800	4522	4522	4680		-	-	-	-		0.457
			2.1	-	-	3590	3800	4594	4594	4688			-	-	-		
	10256		1	-	-	3750	3800	4688	4688	4688			-	-	-		
	10015	24/64	10	-	-	2950	3800	4388	4485	4681	4717		-	I. 130	165		
														F. 360	270		
DST-3		14/64	4.4	-	-	3580	3800	4628		4714			-	2.4	180	100	0.474
		11./64	2.9	-	-	3700	3800	4003		4/11		6557	-	240	180	102	0.4/1
	10020	8./04 5./64	1.9	-	-	3740	3800	40/0		4/11				240	260		
	10020	5./04	1	-	-	3700 675	3800	4/11		4/11			-	240	300		
DST-4	9922 9928	24/04	2.2	-	-	075							ARENA				
551 1		24/64	2.85	-	-	1000							GRUESA				
DOT 44	9902 9928	16/64	4.30	-	-	3100	3800	4124	4102	4792	4706	6611	PRODUC.	90	240		0.483
DS1-4A		6./64	1	-	-	3740	3800		4644				ARENA				
	9720 9731	24/64	10	-	-	2975	3825	4411	4447	4681	4658		-				
		15/64	4	-	-	3625	3825		4602		4658		-				
		12./64	3	-	-	3772	3825		4633		4658	6469	-			11	
		9./64	1.9	-	-	3791	3825		4647		4658		-				
		6./64	1	-	-	3811	3825		4655		4658		-				
		24/64	10	-	-	2975	3825	4355	4485	4601	4684		-				
		15/64	4	-	-	3625	3825		4625		4684		-				
DST-5		12./64	3.1	-	-	3772	3825		4653		4684	6561	-			10.2	
		9./64	1.9	-	-	3791	3825		4671		4684		-				
		6./64	1	-	-	3811	3825		4699		4684		-				
		24/64	10	-	-	2975	3825	4277	4494	4674	4677		-				
		15/64	4	-	-	3625	3825		4437		4677		-				
		12./64	3.1	-	-	3772	3825		4667		4677	6496	-				
		9./64	1.9	-	-	3791	3825		4672		4677		-				
		6./64	1	-	-	3811	3825		4675		4677		-				
HI-1	9684		367		7000		3500		4300	4/00		6501					0.485
FIT-2	9561		15		9751		1300		4250	4500		6451	201				0.475
FIT-3	9492		-									6451					
FIT-4	9494		-									6451					
FIT-5	9250		-														
FIT-6	9251		-									6101	5000				

Tabla 2.12 Prueba de Pozos – Pozo AMXTD N°1

	PRUEBAS DE POZOS POZO AMXTD Nº 3																
ESTRANG.	PROD. GAS	PROD. DE	PROD. DE	PRESION	PRESION	PRESION DE	PRESION DE	PRESION DE	PRESION DE	PRESION	PROD. DE	TIEMPO	TIEMPO DE	POTENCIA	GRADIENTE		
					AGUA BSW	FLUYENTE	DE CIERRE	FORMACIO	FORMACIO	FORMACIO	FORMACIO					L DE FLUJO	DE PRESION
		CONDENSAD	(BMPD)				N FLUY.	N CIERRE	N CIERRE	HIDROSTATICA			CIERRE	ABIERTO	DE		
			(DIVIPD)	LN JUPLN.	LN JUFLN.	NPLOT.	FINAL FFP	N CIENNE	N CIENNE					ADILITO	FORMACION		
SUPERIOR	MMPCND	O BOPD	(PPM)	FTP psi	SITP psi	INIC. IFP psi	psi	INIC. ISIP psi	FIN. FSIP psi	psi	ARENA cc.	FLU. MIM	MIN	AOF	Psi/pie		
16/64	- 26			- 1800	- 3000	3090	2093		4542	0//3			- 290		-		
13/64	2.8			2450	3650	3221	2957		4303				270	5.1	0.536		
10./64	1.92		Trozos (2400)	3040	3650	3802	3643		4383	6569			240				
6./64	1.2		Trozos	3375	3725	4066	4013		4439				-		-		
19/64	6.2		120 (9000)	2500	4250	4013	3590		5018				240		-		
13/64	3.75	8	48	3100	4225	4177	3907		4859	6495			300	11	0.61		
10./64	2.65		65	3250	4000	4224	4013		4770				360		-		
8./64	1.7		24 (2100)	3500	-	4277	4224		4648				-		-		
-	-	2.5				2509	2535		4806	6548	Arena fina				-		
-	-					-					en herramienta				-		
-	Prod.		4.8			2430	2440		4965	4637	Arena	480	540		0.6		
-	Gas					-					gruesa				-		
10./64	3.65		73	3000	3900	-									-		
16/64	4.4		82	2600		-									-		
13/64	1.85	-		2400				5499							-		
13/64	2.25	-	-	1000													
13/64	1.025	-	-	500		2196	2196		4577						0.66		
32/64	2.1	-	-	445													
32/64	1.45	-	-	445		2306	547		2765	5466			240				
	No hubo																
-	fluio																
				0		700	700					28	20				
	Gas en		Produccion	_													
	pequeñas		de Agua														
16/64	cantidades		Salada														
19/64	4.1			1300	2000							360	240				
16/64	29			1650	2000							180	150				
12/64	21			1750	2000							120	190				
10 /64	1			1000	2000							120	100				
10./04	1			1600	2000	2022	0140					120	30				
20/64	4	-	-	1000	1820	2032	2140					210					
24/64	5.1			1450	1850	1975	2140					150					
16/64	2.9			1750	1875	2025	2140					150	120		0.491		
dic-64	1.65			1825		2026	2140					210	240				

Tabla 2.13 Pruebas de Pozos – Pozo AMXTD N°3

PRUEBAS DE POZOS POZO AMXTD Nº 4																		
	INTERVALO	ESTRAN	IGUI ADOR	PROD. GAS	PROD, DF	PROD, DF	PRESION	PRESION	PRESION DE	PRESION DE	PRESION DE	PRESION DE	PRESION	PROD.	TIEMPO	TIEMPO	POTENCIAL	GRADIENTE
		201104		1100.010	1100.02	AGUA	FLUYENTE	DE CIERRE	FORMACION	FORMACION	FORMACION	FORMACION		DF		DF	DE ELUIO	DE PRESION
PRUEBA #					CONDENS	BSW	EN SUPER	EN SUPER	FLUX, INIC.	FLUY, FINAL	CIERRE INIC.	CIERRE FIN	HIDROSTATICA	ARFNA	FLU.	CIERRE	ABIERTO	DE
	Pies	Sup.	Fondo	MMPCND	ADO BOPD	(BMPD)	FTP nsi	SITP nsi	IFP nsi	FFP nsi	ISIP nsi	ESIP nsi	nsi		мім	MIN	AOF	FORMACION
	10231			Fluio		(PPIVI)		5.11 p.5			ion por	i on por	par					PSI/ple
DST-1		16/64	40/64				0	2200	4472	3836	5466	5461	6867			130		0.534
	10241	24/64	10/61	Pequeno	-	-	1200	4200	4555		EAGG		6967			490		
	10022	15/6/	40/04	4.5	-	-	2200	4200	4333	3816	3400	5/161	0607			400		0.545
DST-2		13/04	40/04	3.5	-		2200	4200	4472	3010		3401						0.545
	10032	11./64	40/64	2.5	-	-	2650						6778					
	9912			Flujo														
DST-3	9922	33/64	40/64	Pequeño					4330		4806		6865					0.506
DET 2A	9912								4255	4255	5020							
D31-3A	9922								4555	4555	5020							
	9903													3 Pies de arena				
DST-3B			40/64						3966	4355		5522	6915	gruesa en la				0.567
	9922													herramie				
	9912													1/2 Galon				
DST-3C									3274	3613			6915	de arena gruesa y				
	9922	12/64	10/61	5 20			2025	4200	4022	4910	5466	5414		fina				
	5005	15/04	40/04	3.50	-	-	56ZJ	4200	4000	4017	5400	3414						
		10./64		4.2			4050	4500	5071	5010		5207	CCEA				15	
		c lea		4.2	-	-	4050	4500	5071	5018		5387	0054				15	
		0./04		3.10	-	-	4300	4500	51/6	51/8		5387						
		4./64		2	-	-	4375		5282	5262		5387						
		13/64	40/64	5.30	-	-	3825	4200	4894	4894	5487	5460						
		10./64																
DSI-4		- /		4.20	-	-	4050	4500	5110	5058		5379	6719				21	
		6./64		3.1	-	-	4300	4500	5218	5190		5379						
		4./64		2	-	-	4375		5272	5272		5379						
		13/64	40/64	5.30	-	-	3825	4200	4855	4855	5494	5410						
		10./64																
				4.20	-	-	4050	4500	5105	5077		5410	6893				15.5	0.572
		6./64		3.10	-	-	4300	4500	5188	5188		5410						
	9613	4./64		2	-	-	4375		5244	5244		-						
	9436	10./64	40/64															
				5.50	-	-	1200	4500	4277	4436	5545	5361				360		
		14/64		4.2	-	-	3600		4568	4489			6574					0.587
		10./64																
		201/04		3	-	-	3750	4350	4568	4621		5176				240		
		6./64		2	-	-	3900		4859	4808		5150						
		16/64		5.5	-	-	1200	4500	4059	4193	5541	5379						
007.5		14/64		4.2	-	-	3600		4571	4571		-	6559					
DST-5		10 10																
		10./64		3	-	-	3750	4350	4572	4825		5218						
		6./64		2	-		3900		4840	4788		5184						
		16/64		5.5	-		1200	4500	4022	4188	3606	5355						
		14/64		4.2	-		3600	-000	4577	4521	5500	5555	658					
		14/04		714			3000			-7/21			0.00					
		10./64		2			3750	4250	4577	4625								
		<u></u>		5	-	-	3/50	4350	4577	4035								
	9446	6./64		2	-	-	3900											

Tabla 2.14 Pruebas de Pozos – Pozo AMXTD N°4
CAPITULO 3

PROPIEDADES BASICAS DE LAS ROCAS Y DE LOS FLUIDOS

3.1 Campo SSXF

3.1.1 Porosidad

Las areniscas de la Formación Napo en el campo **SSXF** tienen una alta porosidad y permeabilidad en el área central. El campo está rodeado por un acuífero activo; sin embargo, el influjo del acuífero está parcialmente restringido por una pobre calidad y adelgazamiento de las areniscas al este y oeste; y por la falla sellante del flanco oriental.

La porosidad en la arenisca "U" es de 18% del Volumen poroso, mientras que para la arenisca "T" es de 17% del Volumen poroso.

3.1.2 Permeabilidad

La distribución de permeabilidades en el yacimiento **SSXF** no está completamente definida, pero pruebas realizadas indican que la

permeabilidad para la arena "U" esta en un rango de 40-1.100md. Y para la arena "T" esta en un rango de 10-900md.

Los yacimientos "U" y "T" están constituidos por estratos de diferentes permeabilidades, lo que hace que la intrusión de agua debido a la presencia de los acuíferos no sea homogénea, ya que en los estratos de alta permeabilidad la intrusión avanza más rápido que en los estratos de baja permeabilidad.

3.1.3 Saturación de Fluidos

La saturación residual de petróleo esta en el rango del 20% al 30% del volumen de petróleo en sitio.

Análisis de pruebas realizadas muestran que la saturación de agua en los pozos de **SSXF** va desde el 3% hasta el 65% y la saturación de petróleo va desde el 0% a más del 50%.

3.1.4 Propiedades de los fluidos

CARACTERISTICAS DE LA ARENA G-2	VALORES
Presión inicial (Psi)	3.860
Presión de Burbuja (P _b , Psi)	1.264
Viscosidad del Petróleo (cp.)	2,8
Viscosidad del Agua (cp.)	0,25-0,5
Gravedad °API	19-30

Resistividad @ temperatura de formación, R _w	0,03
Temperatura (°F)	195
GOR (stb/bls.)	320
Salinidad del agua (NaCl) ppm	107.000
Salinidad del agua (Cl ⁻¹) ppm	65.000
Saturación inicial del agua (%)	24,8
Gravedad especifica del gas	0,65
Compresibilidad del Petróleo (Psi ⁻¹)	7,756*10 ⁻⁶
Factor Volumétrico del Petróleo (β _{oi})	1,23
Factor de Recobro %	15

Tabla 3.1 Características de la Arena G-2

CARACTERISTICAS DE LA ARENA U	VALORES	
Presión inicial (Psi)	3.867	
Presión de Burbuja (P _b , Psi)	1.264	
Area (acres)	36.376	
Espesor (ft)	42,6	
Temperatura (°F)	198	
Gravedad °API	29-30,5	
GOR (stb/bls.)	233	
Resistividad @ temperatura de formación, R _w	0,03	
Compresibilidad del Petróleo (Psi ⁻¹)	7,756*10 ⁻⁶	
Salinidad del agua (NaCl) ppm	99.000	
Salinidad del agua (Cl ⁻¹) ppm	60.000	
Gravedad especifica del gas	0,65	
Movilidad Promedio (M _{avg})	2,124	
Coeficiente de Variación de Permeabilidades Promedio (V _{avg})	0,55	
Viscosidad del Petróleo (cp.)	2,82	
Viscosidad del Agua (cp.)	0,25-0,5	
Saturación inicial del agua (%)	15	
Factor Volumétrico del Petróleo (β _{oi})	1,1688	
Factor de Recobro %	51,12	

Tabla 3.2 Características de la Arena U

CARACTERISTICAS DE LA ARENA T	VALORES	
Presión inicial (Psi)	4.050	
Presión de Burbuja (P _b , Psi)	1.058	
Area (acres)	38.415	
Espesor (ft)	44,2	
Temperatura (°F)	200	
Gravedad ^o API	30-32	
GOR (stb/bls.)	383	
Resistividad @ temperatura de formación, R _w	0,03	
Compresibilidad del Petróleo (Psi ⁻¹)	7,756*10 ⁻⁶	
Salinidad del agua (NaCl) ppm	23.000	
Salinidad del agua (Cl ⁻¹) ppm	14.000	
Gravedad especifica del gas	0,65	
Movilidad Promedio (M _{avg})	1,102	
Coeficiente de Variación de Permeabilidades Promedio (V _{avg})	0,568	
Viscosidad del Petróleo (cp.)	1,08	
Viscosidad del Agua (cp.)	0,25-0,5	
Saturación inicial del agua (%)	15	
Factor Volumétrico del Petróleo (β _{oi})	1,22	
Factor de Recobro %	53	

Tabla 3.3 Características de la Arena T

3.2 Campo AMXTD

3.2.1 Porosidad

En base a registros eléctricos se han determinado parámetros petrofísicos,

en los cuales la porosidad tiene un valor de 13%.

3.2.2 Permeabilidad

Es difícil cuantificar la permeabilidad con la poca información disponible, aunque se estima que es baja por el alto contenido de arcilla.

3.2.3 Saturación de Fluidos

En base a registros eléctricos se han determinado parámetros petrofísicos,

en los cuales la saturación tiene un valor de 45%.

CARACTERISTICAS	AMISTAD # 1	AMISTAD # 3	AMISTAD # 4
Tope de la Arena	9.355	8.170	9.430
Base de la Arena	10.314	8.615	10.226
Espesor neto de la Arena (ft.)	411	247	193
Presión del Reservorio (Psi)	4.614	4.952	5.681
Temperatura del Reservorio (ºF)	161	138	161
Factor de Supercompresibilidad	0,971	0,971	1,048
Agua de Formación (%)	30	30	30
Gas Original estimado en sitio (MCF/Ac. ft)	1.963	1.956	1.965
Factor de Recuperación (%)	75	75	75
Reservas de Gas Recuperable Estimadas			
(MCF/Ac.ft)	1.104	1.100	1.105

3.2.4 Propiedades de Pozos en Producción

Tabla 3.4 Características de pozos del Campo AMXTD

CAPITULO 4

TIPOS DE PRUEBAS DE PRESION

4.1 Tipos de Pruebas de Presión

4.1.1 Introducción

Es una herramienta utilizada para caracterizar al sistema pozo-yacimiento, ya que los cambios presentes en la producción generan disturbios de presión en el pozo y en su área de drenaje y esta respuesta de presión depende de las características del yacimiento.

Las propiedades del yacimiento son determinadas a través de pruebas de pozos, utilizando mediciones de dos variables, tasa de producción y presión.

Para ello se introduce un disturbio o perturbación en el yacimiento, cambiando una de las dos variables en la mayoría de los casos es la tasa de flujo, y se registran sus consecuencias sobre la otra variable que es la presión.

La característica del comportamiento de la presión en función del tiempo obtenida como resultado, muestra las propiedades del yacimiento.

Los tipos de pruebas de presión son 5:

- Pruebas de caída de presión
- Pruebas de restauración de presión
- Pruebas DST
- Pruebas multitasas
- Pruebas interferencia

Pueden ser usadas para determinar:

- 1. La presión promedio del yacimiento del área de drenaje.
- 2. Permeabilidad de la formación.
- Determinar el grado de daño a la formación durante la perforación y Completación del pozo.
- 4. Cuan efectivo o eficiente ha sido una estimulación o tratamiento del pozo.
- 5. El grado de conectividad entre pozos.
- 6. Estructura geológicas.
- 7. Limite del yacimiento.
- 8. Volumen Poroso del yacimiento
- 9. Heterogeneidades del yacimiento.
- 10. Las condiciones de entrada de agua.

Los datos de presión, cuando se combinan con datos de producción de petróleo y agua con datos de laboratorio, de propiedades de las rocas y de los fluidos, constituyen un medio para estimar el petróleo original in situ y el petróleo que puede ser esperado del yacimiento bajo diversas formas de producción.

Este trabajo esta básicamente orientado a las pruebas de caída y restauración de presiones que son las pruebas que se realizan en pozos desarrollados como los del Oriente Ecuatoriano.

4.1.2 Pruebas de Declinación de Presión (Drawdown)

Estas pruebas se efectúan con el fin de obtener:

- 1. Permeabilidad promedia en el área de drene del pozo.
- 2. Volumen poroso del yacimiento.
- 3. Determinar heterogeneidades (en el área de drenaje).
- 4. Área de drenaje del yacimiento

En realidad, lo que se tiene es (*i*) transmisibilidad y (*ii*) volumen poroso por compresibilidad total. Para correr una prueba de declinación de presión, en general, se siguen los siguientes pasos:

- Se cierra el pozo por un periodo de tiempo suficiente para alcanzar la estabilización en todo el yacimiento (si no hay estabilización probablemente se requiera una prueba multitasa).
- Se baja la herramienta a un nivel inmediatamente encima de las perforaciones (mínimo la herramienta debe tener dos sensores para efectos de control de calidad de los datos).
- Abrir el pozo para producir a rata constante y registrar continuamente la *P_{wf}*.

La duración de una prueba de declinación puede ser unas pocas horas o varios días, dependiendo de los objetivos de la prueba y las características de la formación.

Pruebas de declinación extensas o pruebas límite (Reservoir Limit Tests, RLT) se corren para delimitar el yacimiento o estimar el volumen de drene del pozo. Otros objetivos son: Hallar k, s, el efecto de llenado (wellbore storage, WBS), ø, forma del yacimiento y tamaño del yacimiento.

Idealmente, el pozo se cierra hasta que alcance la presión estática del yacimiento antes de la prueba. Este requisito se consigue en yacimientos nuevos, pero a menudo es difícil o impráctico de lograr en yacimientos.

4.1.2.1 Análisis de las Pruebas de Declinación de Presión para las Condiciones del Transiente

Durante el flujo a una tasa constante, el comportamiento de la presión de un pozo en un reservorio infinito esta dado por:

$$P_{wf} = P_i - \frac{70,6q\mu\beta_o}{kh} \left[-Ei\left(-\frac{\emptyset\mu cr_w^2}{0,00105kt}\right) + 2S \right]$$
(4.1)

Esta expresión es también válida para describir el comportamiento de un pozo en los límites del yacimiento durante el periodo de flujo Transiente inicial antes de que ocurran los efectos del límite.

La ecuación (4.1) puede ser simplificada por aproximaciones a:

$$P_{wf} = P_i - \left(\frac{162,6q\beta_o\mu}{kh}\right) \times \left[\log(t) + \log\left(\frac{k}{\phi_{\mu}c_t r_w^2}\right) - 3,23 + (0,869)S\right]$$
(4.2)

Esta ecuación indica que durante el periodo de flujo Transiente de una prueba de Declinación de presión la grafica de Pwf VS. Log(t) debe ser lineal (Fig. 4.1). El valor del producto kh puede ser obtenido de:

$$kh = \left(\frac{162, 6q\beta_o\mu}{m}\right)$$

Donde m es la pendiente en psi/ciclos de la curva Presión - Tiempo cuando son graficadas en papel semilog.

El factor de daño puede ser obtenido, una vez que la pendiente en la curva Drawdown ha sido obtenida, determinamos el valor de presión de la línea recta en la grafica a un tiempo de flujo de una hora. La fórmula para el factor de daño es:

$$s = 1,151 \left\{ \left[\binom{(P_i - P_{wf})}{m} - \left[\log \binom{kt}{\emptyset \mu c_t r_w^2} + 3,23 \right] \right\}$$
(4.3)

En la Figura 4.1 existe un periodo de tiempo no lineal inmediatamente después de que la prueba ha comenzado. Ese periodo es usualmente de una duración corta.

Figura 4.1 Grafico Esquemático del Análisis de la Prueba de Declinación para las Condiciones del Transiente

Este es el resultado de las condiciones de un flujo inestable en el tubing dentro del pozo durante ese periodo, este resultado es llamado efecto de llenado del pozo. Este es el periodo durante el cual el petróleo almacenado en el anular puede ser descargado. Este efecto de llenado puede ser calculado con la siguiente ecuación:

$$C = \frac{q_o \beta_o}{24} \cdot \frac{\Delta t}{\Delta p} \tag{4.4}$$

Donde Δt y Δp son valores leídos en un punto en la línea recta. El efecto de llenado (*C*) también puede ser calculado con la siguiente ecuación.

$$C = \frac{V_u}{\left(\frac{\rho}{144g}\right)g_c} \tag{4.5}$$

Donde V_u donde es el volumen del pozo por unidad de longitud en barriles por pies, la duración de la descarga del pozo puede ser estimada por:

$$t_{wbs} = \frac{(200.000 + 120.005)C_s}{kh/\mu_o} \quad (hrs) \tag{4.6}$$

Donde C_s es:

$$C_s = \frac{25,65 A_{wb}}{\rho_o}$$
(4.7)

El aparente radio del pozo r_{wa} puede ser estimado por:

$$r_{wa} = r_w e^{-S} \qquad (4.8)$$

El fin del flujo del periodo Transiente da comienzo al periodo del Transiente tardío, esto es cuando el efecto de la frontera comienza la; cual puede ser observada en la grafica. A este tiempo, el flujo Transiente no prevalece. Físicamente, esto significa que la caída de presión debido a la producción ha sido sentida en los límites de drenaje del pozo y, como un resultado de depleción, el régimen esta en el periodo transicional antes de alcanzar el estado semicontinuo. Este intervalo de tiempo es referido al periodo del Transiente tardío, donde el comportamiento de la presión no es ni estado semicontinuo ni Transiente.

4.1.2.2 Análisis de las Pruebas de Declinación de Presión para las condiciones del Transiente Tardío

El comportamiento de la presión a tasa constante en la frontera del reservorio puede ser presentado por:

$$\log(P_{wf} - \hat{P}) = \log(b1) - (\beta 1)t$$
(4.9)

Si representamos esta ecuación en una grafica de $\log(P_{wf} - \hat{P})$ VS. t, su pendiente seria:

$$\beta_1 = \frac{0,00618k}{\emptyset \mu_0 c r_g}$$
(4.10)

Y su intercepto seria:

$$b_1 = 118, 6\frac{q_0\mu_0\beta_0}{kh} \tag{4.11}$$

Esta grafica será lineal proporcionando un valor de \hat{P} conocido, pero esto no siempre es así. Esto significa que una grafica de ensayo y error deberá ser hecha usando valores de \hat{P} asumidos. El valor cuyo rendimiento de la mejor línea recta en la grafica $\log(P_{wf} - \hat{P})$ *VS*. *t* es elegida como el correcto valor de \hat{P} .

Después de determinar el correcto valor de \hat{P} , kh puede ser estimado del intercepto, *b* por:

$$kh = \frac{118,6q_{o}\mu_{0}\beta_{o}}{b}$$
(4.12)

El volumen de poros de un pozo, V_p puede ser determinada de la pendiente de la grafica. Este valor esta dado por la siguiente ecuación, en barriles:

$$V_p = 0.1115 \frac{q_o \beta_o}{\beta_l b_l c_t} \tag{4.13}$$

El radio de drenaje , r_{e} , esta dado por:

$$r_e = \left[\frac{A \times 43.560}{\pi}\right]^{0.5}$$
 (4.14)

El factor de daño podría ser encontrado:

$$S = 0.84 \left[\frac{\bar{p} - \hat{p}}{b_1} \right] - \ln \left(\frac{r_e}{r_w} \right) + 0.75$$

$$(4.15)$$

Donde \overline{P} es la presión promedio del yacimiento. La caída de presión a través de la zona de daño está dada por:

$$(\Delta_p)_{Skin} = \frac{b_1 S}{0,84}$$
(4.16)

4.1.2.3 Análisis de las Pruebas de Declinación de Presión para las condiciones del Estado Semicontinuo

Si una prueba de caída de presión es realizada por un periodo de tiempo suficiente ($t_{DA} = 0.3$), el estado semicontinuo es alcanzado y el comportamiento de la presión en el pozo está dada por:

$$P_{i} - P_{wf} = \frac{q\mu}{2\pi kh} \left[\frac{2kt}{\emptyset \mu c r_{e}^{2}} + \ln \frac{r_{e}}{r_{w}} - \frac{3}{4} + S \right]$$
(4.17)

Esta ecuación también puede ser escrita:

$$P_i - P_{wf} = \frac{qt}{\pi \emptyset chr_e^2} + \frac{q\mu}{2\pi kh} \left[\ln \frac{r_e}{r_w} - \frac{3}{4} + S \right]$$
(4.18)

El valor de ($t_{DA} = 0,3$), es para yacimientos cilíndricos. Para otras formas de reservorios, especialmente aquellos que tienen una simetría menor, el tiempo a la cual el flujo de estado semicontinuo empieza varia. Las curvas de Matthews, Brons y Hazebroek, pueden ser consultadas para determinar el valor del tiempo para varias formas de yacimientos. (Anexo 4). Después de que el flujo del estado semicontinuo es alcanzado, el efecto de la forma del yacimiento altera el valor del término ($^{3}/_{4}$) en la ecuación (4.18). El comportamiento de la presión en áreas de drenaje no simétricas esta dado por la siguiente ecuación:

$$P_{i} - P_{wf} = \frac{q\mu}{4\pi kh} \left[\ln \frac{kt}{\phi \mu cA} + 4\pi \frac{kt}{\phi \mu cA} - F(\frac{kt}{\phi \mu cA}) + \ln \frac{A}{r_{w}^{2}} + 0,809 + 2S \right]$$
(4.19)

Donde *A* es el área de drenaje y $F(\frac{kt}{\phi_{\mu cA}})$ esta dado por:

$$F\left(\frac{kt}{\phi\mu cA}\right) = \frac{P^*}{\frac{q\mu}{4\pi kh}}$$
(4.20)

La cual es una función de corrección de Matthews et al. Presentadas en las Anexo 4.

Brons, Miller y Dietz han mostrado que las condiciones para el estado semicontinuo está dada por:

$$F\left(\frac{kt}{\phi\mu cA}\right) = \ln\frac{C_A kt}{\phi\mu cA} \tag{4.21}$$

Donde C_A es una constante que depende de los limites de yacimiento y cuyos valores han sido tabulados en la tabla 4.1 (Anexo 4).

Combinando las ecuaciones (4.19)y (4.20) obtenemos la siguiente expresión para el caso de estado semicontinuo:

$$P_{i} - P_{wf} = \frac{q\mu}{4\pi kh} \left[4\pi \frac{kt}{\emptyset \mu cA} - \ln \frac{C_{A}kt}{\emptyset \mu cA} + \ln C_{A} + \ln \frac{A}{r_{w}^{2}} + 0,809 + 2S \right]$$
(4.22)

Si sabemos que:

$$P_i - \bar{P} = \frac{qt}{\emptyset chA}$$

La ecuación (4.22) llega a ser:

$$\bar{P} - P_{wf} = \frac{q\mu}{4\pi kh} \left[\ln \frac{A}{C_A r_w^2} + 0,809 + 2S \right] \quad (4.23)$$

Donde \overline{P} la calculamos de una prueba de Restauración de presión. La diferencia entre la presión promedio (\overline{P}) y la presión fluyente (P_{wf}) depende directamente de la forma del límite de drenaje, evidenciado por el factor C_A .

Si graficamos P_{wf} VS. t obtendremos una relación lineal con pendiente:

$$m = \frac{q}{\pi \emptyset chr_{\theta}^2}$$
(4.24)

Una vez obtenida la pendiente podemos calcular el volumen de drenaje:

$$V_p = 0.0418 \frac{q\beta_o}{mc} \tag{4.25}$$

Las pruebas de declinación de presión hechas para la determinación del volumen de drenaje a partir de los datos de presión del estado semicontinuo son conocidas como "Pruebas de Limite de Yacimiento". Estas pruebas han llegado a ser herramientas populares para la obtención de información del tamaño de las nuevas reservas de hidrocarburos descubiertas.

En adecuadas circunstancias y bajo condiciones controladas, este tipo de pruebas representan una ayuda en la evaluación económica para la explotación.

4.1.2.4 Análisis de Pruebas de Flujo de dos Tasas

Para la historia de producción que se muestra en la Figura 4.2 una prueba de dos tasas puede modelarse por:

$$P_{i} - P_{wf} = \frac{162,6q_{2}\beta_{o}\mu}{kh} \left[\frac{q_{1}}{q_{2}} \log(t) + \left(\frac{q_{2} - q_{1}}{q_{2}} \right) \log(t - t_{2}) + \log\left(\frac{k}{\omega_{\mu}c_{t}r_{w}^{2}} \right) - 3,23 + 0,869S \right]$$
(4.26)

Si arreglamos e introducimos una nomenclatura especial, $t_1 = t_{p2}$ y $t - t_{p1} = \Delta t'$, entonces la ecuación (4.26) se reescribirá así:

$$P_{wf} = P_{i} - \frac{162,6q_{2}\beta_{o}\mu}{kh} \left[\log\left(\frac{k}{\emptyset\mu c_{t}r_{w}^{2}}\right) - 3,23 + 0,869S \right] - \frac{162,6q_{1}\beta_{o}\mu}{kh} \left[\log\left(\frac{t_{p1} + \Delta t'}{\Delta t'}\right) + \frac{q_{2}}{q_{1}}\log(\Delta t') \right]$$
(4.27)

La prueba de dos tasas puede ser utilizada cuando se necesitan estimaciones de permeabilidad, factor de piel o presión del yacimiento, y además consideraciones económicas excluyen que el pozo sea cerrado. Para que la prueba de dos tasas sea válida, la segunda tasa debe mantenerse estrictamente constante, de lo contrario la interpretación de la prueba puede ser errónea. La ecuación (4.27) es válida solo cuando el yacimiento actúa como infinito por el tiempo transcurrido de $t_{p1} + \Delta t^{r}$.

Figura 4.2 Representación de una Prueba Bi-Flujo

4.1.2.5 Análisis de Pruebas de Flujo de n-tasas

El método presentado para analizar las pruebas de Declinación de presión de dos tasas puede ser extendido para incluir n tasas diferentes. Una prueba de flujo de n tasas es modelado por:

$$\frac{(P_i - P_{wf})}{q_n} = m' \sum_{j=1}^n \left\{ \left[\frac{(q_j - q_{j-1})}{q_n} \right] \log(t_n - t_{j-1}) \right\}$$

+ $m' \left[\log(\frac{k}{\phi_{\mu}c_t r_w^2}) - 3,23 + 0,869S \right]$ (4.28)

La forma de la ecuación (4.28) nos sugiere que preparemos un grafico sobre papel de coordenadas Cartesianas de:

$$\frac{P_i - P_{wf}}{q_n} \quad VS. \ \sum_{j=1}^n \frac{(q_j - q_{j-1})}{q_n} \log(t_n - t_{j-1}) \tag{4.29}$$

Donde la permeabilidad, k, está relacionada con la pendiente, m', de la línea recta obtenida de la graficación de los datos de la prueba.

$$k = \frac{162,6q_1\beta_o\mu}{m'h}$$

Si permitimos que *b*' sea igual al valor de $\frac{P_i - P_{wf}}{q_n}$ cuando la función de graficación de tiempo es cero, entonces el factor de piel es determinado de:

$$S = 1,151 \left[(b'/m') - \log \left(\frac{k}{\phi \mu c_t r_w^2} \right) + 3,23 \right] \quad (4.30)$$

Al utilizarse la ecuación (4.30) se requiere un estimado de P_i obteniendo de mediciones independientes. Odeh y Jones examinaron esta técnica de análisis e indicaron que puede ser aplicable al análisis de pruebas de flujo de Multitasas que comúnmente se corren en pozos de petróleo y gas, pero solo cuando el yacimiento actúa como infinito por el periodo total de tiempo transcurrido. Consecuentemente, el método no es aplicable en las fronteras del yacimiento o interferencias de otros pozos en producción ya que afectan a los datos durante la prueba.

4.1.3 Pruebas de Restauración de Presión (Buildup)

La prueba de restauración de presión ha sido una técnica muy popular usada en la industria petrolera. Varias razones la han convertido en una prueba muy popular, algunas de estas son:

a) No requiere una supervisión muy detallada.

 b) Se pueden estimar la permeabilidad y el factor de daño a partir de pruebas de restauración o declinación de presión.

Sin embargo, la declinación de presión no permite estimar la presión promedio de yacimiento o la presión inicial de yacimiento mientras que la prueba de restauración de presión si lo hace.

La Figura 4.3 muestra un gráfico de una prueba de restauración de presión ideal. En términos generales, una prueba de restauración de presión requiere cerrar un pozo productor después de que se ha producido durante algún tiempo en el que la estabilización del caudal se ha alcanzado. Una prueba de restauración se corre de la siguiente manera:

1. Determinar la ubicación de los packers, tamaño de la tubería de producción y la tubería de revestimiento, profundidad del pozo.

2. Estabilizar el pozo a un caudal de producción constante, q.

3. Cerrar el pozo y registrar el valor P_{wf} (justo antes del cierre).

4. Leer la presión de cierre, P_{ws} a intervalos cortos de 15 segundos para los primeros minutos (10-15 min), luego cada 10 min para la primera hora.

Figura 4.3 Representación del Restauración de Presión

Durante las siguientes 10 horas, se deben tomar lecturas de presión cada hora.

Cuando la prueba progresa, los intervalos de tiempo se pueden expandir a 5 horas.

Para correr una prueba de restauración de presión, el pozo produce a un caudal constante por un período de tiempo t_p . Se baja un registrador de presión al pozo inmediatamente antes de cerrarlo. t_p No debe ser muy pequeño para no tener problemas con el radio de investigación.

4.1.3.1 Análisis de Pruebas de Restauración de Presión con una Tasa Constante de Producción antes del cierre

El modelo de la prueba de restauración de presión esta desarrollado en la Figura 4.4 la cual muestra la apropiada historia de tasa. A t = 0, el pozo comienza a producir a una tasa constante q. Algunas veces al tiempo t_p , el pozo es cerrado. Esto puede ser modelado con dos tasas constantes, la tasa q al tiempo t = 0, y la segunda tasa (-q) al tiempo t_p . La contribución al cambio de presión al tiempo $t_p + \Delta t$ a la tasa q al tiempo t = 0 está dada por:

$$\Delta_{p1} = \frac{162,2q\beta_o\mu}{kh} \left\{ \log \left[k \frac{(t_p + \Delta_t)}{\emptyset \mu c_t r_w^2} \right] - 3,23 + 0,869 S \right\}$$
(4.31)

La contribución al cambio de presión al tiempo $t_p + \Delta t$ a la tasa -q al tiempo $t = t_p$ está dada por:

$$\Delta_{p2} = \frac{162, 2(-q)\beta_o \mu}{kh} \left\{ \log \left[\frac{k\Delta_t}{\emptyset \mu c_t r_w^2} \right] - 3,23 + 0,869 S \right\}$$
(4.32)

La BHP para la historia de tasa mostrada en la Figura 4.4

$$P_{i} - P_{ws} = \frac{162,2q\beta_{o}\mu}{kh} \left\{ \log \left[k \frac{(t_{p} + \Delta_{t})}{\emptyset \mu c_{t} r_{w}^{2}} \right] - 3,23 + 0,869 S \right\} + \frac{162,2(-q)\beta_{o}\mu}{kh} \left\{ \log \left[\frac{k\Delta_{t}}{\emptyset \mu c_{t} r_{w}^{2}} \right] - 3,23 + 0,869 S \right\}$$
(4.33)

Donde P_{ws} es la presión en el fondo del pozo al momento del cierre, t_p es la duración de la producción del pozo a una tasa constante antes del cierre, y Δ_t es la duración del cierre en un periodo de tiempo. Si combinamos la ecuación (4.33) podemos reescribirla como:

$$P_{ws} = P_i - \left(\frac{162,6q\beta_o\mu}{kh}\right) \left\{ \log \left[\left(\frac{t_p + \Delta_t}{\Delta_t}\right) \right] \right\}$$
(4.34)

La permeabilidad la podemos encontrar con la siguiente expresión.

$$k = 162,6q\beta_o\mu/mh \tag{4.35}$$

Donde *m* es la pendiente de una línea recta. La pendiente es la diferencia entre dos valores de presión P_{ws1} y P_{ws2} , obtenidos en ciclos diferentes.

El valor de la presión original del yacimiento, P_i , es estimada mediante la extrapolación de la línea recta hasta el valor de $(t + \Delta_t)/\Delta_t = 1 y \log(t_p + \Delta_t)/\Delta_t = 0.$

El factor de daño, S, se puede obtener de la siguiente expresión:

$$S = 1,151\{[P_{1hr} - P_{ws}/m] - \log(k/\emptyset\mu c_t r_w^2) + 3,23\}$$
(4.36)

4.1.3.2 Análisis de Pruebas de Restauración de Presión Precedidas de dos Tasas Diferentes de Flujo

El comportamiento de las pruebas de restauración de presión precedidas por dos tasas está dada por:

$$\frac{P_i - P_{wf}}{q_n} = m' \sum_{j=1}^n \left[\frac{(q_j - q_{j-1})}{q_n} \log(t - t_{j-1}) \right] + m' [\log(k/\emptyset\mu c_t r_w^2) - 3,23 + 0,869 S]$$
(4.37)

Para el caso especial $q_n = 0$, la ecuación (4.37) puede ser reescrita como:

$$P_{i} - P_{ws} = m' \sum_{j=1}^{n} \left[\left(q_{j} - q_{j-1} \right) \log(t - t_{j-1}) \right]$$
(4.38)

Donde $m' = 162,6\mu\beta_o/kh$

Figura 4.5 Representación de Buildup para una Tasa de Producción

En términos de la historia de tasa mostrada en la Figura 4.5 la ecuación (4.38) se convierte en:

$$P_i - P_{ws} = m'[q_1\log(t) + (q_2 - q_1)\log(t - t_1) - q_2\log(t - t_2)]$$
(4.39)

Ó,

$$P_{i} - P_{ws} = \frac{162,6q_{2}\beta_{o}\mu}{kh} \left[\frac{q_{1}}{q_{2}} \log\left(\frac{t}{t-t_{1}}\right) + \log\left(\frac{t-t_{1}}{t-t_{2}}\right) \right]$$
(4.40)

Si $t - t_2 = \Delta_t$, $t_1 = t_{p1}$, $t_2 = t_{p1} + t_{p2}$, $y t - t_1 = t_{p2} + \Delta_t$, entonces tenemos:

$$P_{i} - P_{ws} = \frac{162, 6q_{2}\beta_{o}\mu}{kh} \left\{ \left(\frac{q_{1}}{q_{2}}\right) \log\left(\frac{t_{p1} + t_{p2} + \Delta_{t}}{t_{p2} + \Delta_{t}}\right) + \log\left[\left(t_{p2} + \Delta_{t}\right)/\Delta_{t}\right] \right\}$$
(4.41)

La ecuación (4.41) es válida cuando la tasa de producción es cambiada en un corto tiempo antes de que comience la prueba de restauración de presión, lo cual permite un insuficiente tiempo para que la aproximación de Horner sea válida. Bajo estas condiciones, nosotros podemos considerar toda la producción antes del tiempo t_1 que se ha dado en el caudal q_1 para el tiempo t_{p1} y la producción justo antes de que la prueba del caudal q_2 para el tiempo t_{p2} .

Para analizar la prueba de restauración de presión para dos tasas de caudales diferentes, graficamos:

$$P_{ws} VS. \left[\left(\frac{q_1}{q_2}\right) \log \left(\frac{t_{p1} + t_{p2} + \Delta_t}{t_{p2} + \Delta_t}\right) + \log[\left(t_{p2} + \Delta_t\right)/\Delta_t] \right]$$

En papel cartesiano. La pendiente, m, de la línea recta del grafico es utilizada para obtener la permeabilidad efectiva por la ecuación:

$$k = 162, 6q_2\beta_o\mu/mh$$
 (4.42)

La extrapolación del grafico para $\Delta_t = \infty$ nos da $P_{ws} = P_i$ porque la graficación de la función es cero a $\Delta_t = \infty$.

Para calcular el factor de daño, S, al final del periodo de flujo justo antes del cierre, modificamos la ecuación (4.41) para obtener:

$$P_{i} - P_{ws} = m \left\{ \frac{q_{1}}{q_{2}} \log \left[\frac{(t_{p1} + t_{p2})(t_{p2} + \Delta_{t})}{(t_{p1} + t_{p2} + \Delta_{t})(t_{p2})} \right] + \log \left[\frac{(t_{p2})(\Delta_{t})}{t_{p2} + \Delta_{t}} \right] + \bar{S} \right\}$$
(4.43)

Donde $\bar{S} = \log(k/\emptyset\mu c_t r_w^2) - 3,23 + 0,869 S$

:

Asumiendo $t_{p1} + t_{p2} + \Delta_t \approx t_{p1} + t_{p2}$ y $t_{p2} + \Delta_t \approx t_{p2}$ para Δ_t pequeños (por ejemplo $\Delta_t = 1$ *hora*) la ecuación (4.43) se convierte a

 $P_{ws} - P_{wf} = m[\log(\Delta_t) + \bar{S}]$ (4.44)

Si escogemos $\Delta_t = 1$ hora, $P_{ws} = P_{1hr}$ (extrapolando) tenemos:

$$\bar{S} = \frac{P_{1hr} - P_{wf}}{m} = \log\left(\frac{k}{\emptyset\mu c_t r_w^2}\right) - 3,23 + 0,869 S$$
(4.45)

Ó,

$$S = 1,151 \left[\left(\frac{P_{1hr} - P_{ws}}{m} \right) - \log \left(\frac{k}{\emptyset \mu c_t r_w^2} \right) + 3,23 \right]$$
(4.46)

Para $t_{p2} > 1$.

4.1.3.3 Análisis de Pruebas de Restauración de Presión Precedidas por (n-1) diferentes tasas de flujo

Método de superposición.

$$P_{i} - P_{ws} = \frac{162,6q_{n-1}\mu\beta_{o}}{kh} \left[\left(\frac{q_{1}}{q_{n-1}} \right) \log\left(\frac{t}{t-t_{1}} \right) + \left(\frac{q_{2}}{q_{n-1}} \right) \\ \times \log\left(\frac{t-t_{1}}{t-t_{2}} \right) + \left(\frac{q_{n-2}}{q_{n-1}} \right) \log\left(\frac{t-t_{n-1}}{t-t_{n-2}} \right) + \log\left(\frac{t-t_{n-2}}{t-t_{n-1}} \right) \right]$$
(4.47)

Donde $t - t_{n-1} = \Delta t$, tiempo después del cierre y q_{n-1} es la tasa de producción justo antes del cierre. La ecuación (4.47) está basada en los factores $t=t_{p1}+t_{p2}+...+t_{pn-1}+(t-t_{n-1})$ para yacimientos infinitos. El siguiente procedimiento es aplicable:

 Graficamos p_{ws} vs X en un plano cartesiano y donde la función de graficación X es:

$$X = \left[\left(\frac{q_1}{q_{n-1}} \right) \log \left(\frac{t}{t - t_1} \right) + \dots + \log \left(\frac{t - t_{n-2}}{t - t_{n-1}} \right) \right]$$
(4.48)

 Determinamos el valor absoluto de la pendiente, *m*, de la línea recta de la grafica

$$m = \left| \frac{P_{ws2} - P_{ws1}}{X_2 - X_1} \right|$$

3. Calculamos la permeabilidad efectiva con la pendiente.

$$k = 162, 6q_{n-1}\beta_o \mu/mh$$
 (4.49)

4. Calculamos el factor de daño, S.

$$S = 1,151 \left[\frac{P_{1hr} - P_{wf}}{m} - \log\left(\frac{k}{\emptyset \mu c_t r_w^2}\right) + 3,23 \right]$$
(4.50)

4.2 Métodos para evaluación de presiones

4.2.1 Campo SSXF (yacimientos de Petróleo)

4.2.1.1 Método de Horner

Horner hizo una aproximación que se puede usar en muchos casos para evitar el uso del método de superposición. El definió un tiempo de pseudoproducción, t_{PH} , dada por:

$$t_{pH} = 24 * \frac{N_p}{q_{last}} \tag{4.51}$$

Obteniendo la siguiente expresión para determinar BHP:

$$P_{wf} = P_i - \left(\frac{162,6q\beta_o\mu}{kh}\right) * \left[\log\left(\frac{kt_{PH}}{\phi_{\mu}c_t r_w^2}\right) - 3,23 + 0,869 * S\right]$$
(4.52)

Si tenemos el caso de una producción de multitasas antes del cierre, podemos tomar la última tasa de producción como q_{last} al tiempo t_{PH} y obtener una expresión para la presión de restauración como la siguiente, donde Δt denota el tiempo que ha pasado desde el cierre:

$$P_{ws} = P_i - \left(\frac{162,6q\beta_o\mu}{kh}\right) * \left[\log\left(\frac{t_{PH} + \Delta t}{\Delta t}\right)\right]$$
(4.53)

Si graficamos en una hoja semilog $P_{ws} vs \left(\frac{t_{pH} + \Delta t}{\Delta t} \right)$ obtendremos una línea recta de pendiente m, lo cual nos va a permitir obtener la permeabilidad utilizando la siguiente formula:

$$k = 162,6q_{last}\beta_o \mu/mh \quad (4.54)$$

De esta misma grafica, realizando una interpolación a $\begin{pmatrix} t_{PH} + \Delta t \\ \Delta t \end{pmatrix} = 1 \ y \ log \begin{pmatrix} t_{PH} + \Delta t \\ \Delta t \end{pmatrix} = 0 \quad \text{podemos obtener la presión}$

original del yacimiento, P_i.

El factor de daño puede ser estimado de la ecuación (4.50), donde P_{1hr} es igual a P_{ws} a $\Delta t = 1hr$ y P_{wf} es igual a BHP al instante del cierre.

4.2.1.2 Método de MDH, Miller Dyes Hutchinson

Esta técnica fue elaborada para estimar la presión promedia en yacimientos de forma circular o cuadrada. Se aplica solamente en pozos que operan bajo estado pseudoestable.

La ecuación (4.55) es la base para el análisis del método:

$$\frac{kh(\bar{P} - P_{ws})}{141,2q\mu\beta_{o}} = p_{D}(t + \Delta t) - p_{D}(\Delta t) - 2\pi t_{DA}$$
(4.55)

El método establece que un gráfico de la presión de cierre, contra el logaritmo del tiempo de cierre debe producir una línea recta cuya pendiente es proporcional al producto (kh).

La presentación original de este método supone que el pozo ha producido hasta el período semicontinuo. Sin embargo la ecuación (4.55) puede usarse para generalizar el método.

La Figura 4.6 presenta el gráfico de restauración de presión para diversos tiempos de producción. Todas las curvas mostraron la misma pendiente igual a, 1,151, a tiempos cortos y de cierre.

La pendiente de 1,151 es la razón 2,032/2. Así que todas las curvas deberían dar el valor apropiado de (kh) si se selecciona la línea recta correctamente. Sin embargo, note la línea horizontal en la Figura. 4.6; esta línea indica el tiempo máximo de cierre en el tope de la línea recta. La duración de la línea recta, depende del tiempo de cierre si se incrementa al aumentar el tiempo de producción. La transición entre la línea recta apropiada y las condiciones de presión estática parecen aumentar al disminuir el tiempo de producción. Note que a pequeños tiempos de producción la duración de la línea recta apropiada es muy corta y cualquier fenómeno que obscurezca la línea recta (efecto de llene y/o daño), podría resultar en un bajo valor de la pendiente y en consecuencia, en un alto valor para (kh).

Figura 4.6 Grafico generalizado de Millar-Dyes-Hutchinson (MDH) para un pozo localizado en el centro de un pozo cuadrado

66

El valor de la permeabilidad se determina de la ecuación (4.35). Luego, es posible determinar t_{DA} con la siguiente expresión:

$$t_{DA} = \frac{0.0002637kt_p}{\emptyset \mu c_t A}$$
(4.56)

Con este valor entramos a la Figura. 4.6 y obtenemos Δt_{DA} . Una vez obtenido dicho valor entramos a la Figura 1 (Anexo 4) y leemos P_{DMDH} . La presión promedio puede ser calculada con la siguiente expresión:

$$\bar{P} = P_{ws} + \left(\frac{m}{1,1513}\right) P_{D M D H}$$
(4.57)

4.2.1.3 Método de MBH, Matthews, Brons Hazebrook

Este método está basado en correlaciones entre la presión extrapolada, P^{*}, y la presión promedio del área de drenaje, \bar{p} , para diferentes configuraciones de áreas de drenaje. La Figura 4.7 muestra la presión extrapolada, P^{*}. Cabe mencionar que la P^{*} no es una presión promedio verdadera del area de drenaje.

En el Anexo 4 se muestran numerosas correlaciones que son disponibles para este método.

El procedimiento es el siguiente:

- 1. Extrapolar la línea recta de la región de tiempo medio a $\begin{pmatrix} t_p + \Delta t \\ \Delta t \end{pmatrix} = 1$, obteniendo p^{*}.
- Estimar la forma del área de drenaje, si no la proporcionan asumir que es área de drenaje circular.
- 3. Seleccionar la apropiada carta MBH, para el area de drenaje.
- 4. Calcular t_{AD} con la ecuación (4.57)
- 5. De la carta MBH apropiada y con el valor de t_{AD} leemos el valor de $P_{MBH,D}$.
- 6. Calculamos \bar{p} de la ecuación:

$$\bar{P} = P^* - \left(\frac{mP_{MBH,D}}{2,303}\right)$$
(4.58)

La ventaja de este método es que no requiere datos más allá de la región de tiempo medio y es aplicable para cualquier forma de área de drenaje. La desventaja es que la forma del área de drenaje debe ser conocido y la porosidad y la compresibilidad total también.

Figura 4.7 Presión Extrapolada, Método MBH

4.2.1.4 Método de las curvas tipo

4.2.1.4.1 Curvas tipo Ramey Jr.

Estas curvas se muestran en la Figura. 6 (Anexo 4). Fueron generadas para pruebas de declinación de presión, tasa de flujo constante con las características siguientes:

- Fluido ligeramente comprensible.
- Flujo de líquido de una sola fase.
- Homogeneidad suficiente de modo que la ecuación de difusividad radial modela adecuadamente al flujo en el yacimiento.
- Presión uniforme en el área de drenaje del pozo antes de la producción.
- Yacimiento infinito.
- Tasa de producción constante a la superficie.
- Factor de daño, S, y con almacenamiento del pozo.

Esta lista de asunciones es tediosa pero importante, cuando una o mas de estas asunciones no es válida en un caso específico, no hay seguridad de que el uso de las curvas tipo pueda llevarnos a una interpretación valida de pruebas de pozos. Estas curvas también pueden usarse para pruebas de restauración de presión y para pruebas de pozos de gas.

El éxito de la aplicación de las curvas tipo de Ramey Jr. en análisis cuantitativo depende de manera importante de nuestra habilidad para establecer el valor correcto de C_D que será usado para el ajuste de coincidencias de curvas tipo para un valor dado de S.

4.2.1.4.2 Curvas tipo de McKinley

Este tipo de curvas fueron desarrolladas con el objetivo de caracterizar el daño o la estimulación en una prueba de declinación y restauración de presión en la cual el almacenamiento del pozo distorsiona la mayoría de los datos. Un conjunto de curvas hachas por McKinley se muestran en la Figura.

7 (Anexo 4). Estas curvas fueron computarizadas por simulación numérica, mediante un balance dinámico entre las capacidades del pozo para almacenar el fluido y la resistencia del pozo para el flujo de fluido desde el yacimiento.

El factor de daño, S, no aparece como un parámetro en este tipo de curvas ya que estas fueron computarizadas asumiendo que no existe algún tipo de daño en la formación.

4.2.1.4.3 Curvas tipo de Gringarten y otros

Estas curvas tienen base en las soluciones de la ecuación de difusividad que modela el flujo de un fluido ligeramente comprensible en una formación que actúa como si fuera homogénea. La condición inicial es presión uniforme en toda el area de drenaje del pozo. La condición de frontera exterior corresponde a un yacimiento que actúa como si fuera infinito o sin fronteras, mientras que la condición de frontera interna es de tasa de flujo constante con almacenamiento de pozo y factor de daño. Estas condiciones, inicial y de fronteras, son las mismas condiciones asumidas en las soluciones graficadas de las curvas tipo de Ramey Jr.

Gringarten y otros re-graficaron las soluciones de Ramey Jr. para facilitar la aplicación de las curvas tipo. Las graficas de Gringarten se muestran en la

Figura 8 (Anexo 4). Las curvas de Gringarten están fundamentadas en soluciones de ecuaciones que modelan tasa de flujo constante y pueden utilizarse para pruebas de declinación y restauración de presión.

Unos de los problemas que se presentan con el análisis de las curvas tipo es la dificultad de encontrar una coincidencia única con los datos. Debido a la forma similar de las curvas tipo en un amplio rango del parámetro de correlación, los datos de campo con frecuencia pueden coincidir con más de una curva tipo. Para eliminar este problema, podemos iterar entre curva tipo y análisis semi-log hasta obtener resultados consistentes. Esta técnica es viable, sin embargo, solo si el análisis semi-log es posible; esto es, los efectos de almacenamiento de pozo y de frontera del yacimiento pueden distorsionar la región de tiempo medio, al punto de volver así imposible el análisis semi-log.

4.2.1.5 Método de la Derivada

Tiab y Kumar introdujeron en 1980 el uso de derivadas de presión para el análisis de prueba de pozos en la industria del petróleo, utilizando las derivadas de presión para identificar de manera única fallas sellantes en pruebas de interferencia. Similarmente, Bourdet y otros desarrollaron en 1983 una curva tipo, la cual incluye una función de derivada de presión, con base en la solución analítica desarrollada por Ramey Jr. y su graficación sobre las curvas tipo de Gringarten.

La función adimensional de derivada de presión P_D' (t_D/C_D) es graficada como una función de t_D/C_D para varios valores del parámetro de correlación $C_D e^{2S}$. Para estos tipos de curvas, la derivada es definida por:

$$P_D' = \frac{dp_D}{d \left({^{t_D}} / {_{C_D}} \right)} \tag{4.59}$$

4.2.2 Campo AMXTD (yacimientos de Gas)

4.2.2.1 Efecto de Almacenaje

El efecto de Almacenaje influye de manera similar a los datos de presión en pozos de gas como en los pozos de petróleo. La presencia del efecto de almacenamiento es determinado por la pendiente unitaria y por la "joroba" que aparece en la función de derivada de presión. La grafica log-log debería ser hecha en términos de $log\Delta M(P)$, $log (\Delta P^2) o log (\Delta P) versus log (t)$.

Para pozos de gas, el efecto de almacenamiento surge de la compresibilidad del gas únicamente. Además, el coeficiente de almacenamiento del gas esta dado por:

$$C = c_a V_w \tag{4.60}$$

Cuando los datos de presión son completamente dominados por el efecto de almacenaje, el coeficiente de almacenamiento puede ser determinado con la siguiente ecuación:

$$C = \frac{2,36q_{SC}T}{\mu} \left[\frac{t}{\Delta M(P)}\right]$$
(4.61)

Donde μ es evaluada a P_i para una prueba de declinación de presión y P^* para pruebas de restauración de presión.

Si μZ es constante, obtenemos la siguiente ecuación en términos de P^2 como:

$$C = 2,36Zq_{SC}T\left[\frac{t}{\Delta P^2}\right]$$
(4.62)

Si $\mu Z/P$ es constante, obtenemos la siguiente ecuación en términos de *P* como:

$$C = 1,18 \left(\frac{Zq_{SC}T}{P}\right) \left[\frac{t}{\Delta P}\right]$$
(4.63)

Donde z y P son evaluados a $(P_i + P_{wf})/2$ en una prueba de declinación de presión y $(P^* + P_{wf})/2$ en una prueba de restauración de presión.

4.2.2.2 Flujo Non – Darcy

La Ley de Darcy es inadecuada para representar flujos de altas velocidades en medios porosos tales como flujo de gas de alta velocidad cerca de pozo en un yacimiento de gas natural. Para flujo de altas velocidades, Forchheimer ha propuesto una ecuación de flujo:

$$-\frac{dp}{dx} = \frac{\mu v}{k} + \beta \rho v^2 \qquad (4.64)$$

Este efecto aparece del hecho de que el flujo de fluidos cerca del pozo tiene un componente turbulento debido a la convergencia de flujo al pozo debido a las altas velocidades. Este fenómeno es particularmente prominente en pozos de gas debido a la baja viscosidad y a la alta expandibilidad del gas.

Considerando un flujo radial de estado continuo de un gas real en el yacimiento dentro del pozo. La ecuación (4.64) puede ser escrita como:

$$\frac{dp}{dr} = \frac{\mu v}{k} + \beta \rho v^2 \qquad (4.65)$$

Resolviendo esta ecuación diferencial obtenemos la presión adimensional:

$$P_D = \frac{m(p_e) - m(p_{wf})}{\left(\frac{Tq_{SC}P_{SC}}{\pi khT_{SC}}\right)} = ln\left(\frac{r_e}{r_w}\right) + Dq_{SC} \quad (4.66)$$

Y el coeficiente de flujo non-Darcy, definido como:

$$D = \frac{\beta \rho_{SC} k}{2\pi r_w \mu h} \tag{4.67}$$

La ecuación (4.66) puede ser corregida incluyendo el factor de daño:

$$P_D = \frac{m(p_s) - m(p_{wf})}{\left(\frac{Tq_{SC}P_{SC}}{\pi khT_{SC}}\right)} = ln\left(\frac{r_s}{r_w}\right) + Dq_{SC} + S^* \qquad (4.68)$$

La cual puede ser reescrita en unidades Darcy como:

$$q_{SC} = \frac{\pi k h T_{SC} \left[m(p_e) - m(p_{wf}) \right]}{T P_{SC} \left[ln \left(\frac{r_e}{r_w} \right) + D q_{SC} + S^* \right]}$$
(4.69)

Y en unidades de campo, la ecuación (4.69) queda de la siguiente manera:

$$q_{SC} = \frac{kh[m(p_{e}) - m(p_{wf})]}{1.422T \left[ln\left(\frac{r_{e}}{r_{w}}\right) + Dq_{SC} + S^{*} \right]}$$
(4.70)

En términos de P^2 , las ecuaciones quedan de la siguiente manera:

$$P_{D} = \frac{P_{e}^{2} - P_{wf}^{2}}{\left(\frac{Tq_{SC}\mu ZP_{SC}}{\pi khT_{SC}}\right)} = \ln\left(\frac{r_{e}}{r_{w}}\right) + Dq_{SC} + S^{*}$$
(4.71)

En unidades Darcy:

$$q_{SC} = \frac{\pi k h T_{SC} \left[P_e^2 - P_{wf}^2 \right]}{T \mu Z P_{SC} \left[ln \left(\frac{r_e}{r_w} \right) + D q_{SC} + S^* \right]}$$
(4.72)

En unidades de campo:

$$q_{SC} = \frac{kh[P_e^2 - P_{wf}^2]}{1.422\mu ZT \left[ln\left(\frac{r_e}{r_w}\right) + Dq_{SC} + S^* \right]}$$

El daño total esta dado por la siguiente expresión:

$$S = S^* + Dq_{SC} \tag{(*)}$$

El componente non-Darcy del factor de daño total, usualmente no puede ser eliminado por estimulación. El componente non-Darcy del factor de daño total puede ser obtenido de una prueba de declinación de presión de dos tasas de flujo diferente.

La caída adicional de potencial para un radio r cerca del pozo puede ser obtenida de:

$$\Delta m(r) = \left(\frac{Tq_{SC}P_{SC}}{\pi khT_{SC}}\right) \left(\frac{\beta\rho_{SC}kq_{SC}}{2\pi\mu h}\right) \left(\frac{1}{r_w} - \frac{1}{r}\right)$$
(4.72)

Para $r = \infty$

$$\Delta m(\infty) = \left(\frac{Tq_{SC}P_{SC}}{\pi khT_{SC}}\right) \left(\frac{\beta\rho_{SC}kq_{SC}}{2\pi\mu h}\right) \left(\frac{1}{r_w}\right)$$
(4.73)

Pruebas de Declinación de Presión de pozos de Gas

4.2.2.3 Introducción

En particular las pruebas de declinación de presión son muy importantes y practicas ya que sin necesidad de largas suspensiones de la producción, con los datos obtenidos se pueden conocer la permeabilidad, efectos de daño de la arena y otras características de flujo del yacimiento. Tales pruebas son a menudo empleadas para la determinación del límite exterior del yacimiento y también de las capacidades estabilizadas de flujo de los pozos.

Sin embargo, los pozos de gas tiene baja densidad y altas tasas de flujo, el factor de daño debido a la turbulencia es un componente mas significante del factor de daño total en pozos de gas que en pozos de petróleo. El factor de daño total se dividirá en dos componentes, el primero es el componente de dependencia de la tasa debido a la turbulencia o al flujo non-Darcy y el segundo es un componente constante debido al daño, fractura, perforaciones y penetración parcial. Esta expresión esta representada en la ecuación (*).

El factor de daño debido a la turbulencia no puede ser remediado por una estimulación, pero es importante estimar esta contribución al factor de daño total antes de realizar alguna estimulación. Si el componente principal del factor de daño total es debido a la turbulencia, una estimulación no puede ser recomendada.

El factor de daño debido a la turbulencia puede ser estimada por una prueba de declinación de presión a dos tasas diferentes de flujo.

$$S_1 = S^* + Dq_{SC1}$$
$$S_2 = S^* + Dq_{SC2}$$

De donde S^* y D pueden ser determinadas.

4.2.2.4 Análisis de Horner por el Método M (P)

La siguiente ecuación de declinación de presión puede ser usada para el rendimiento de un análisis semilogarítmico convencional de los datos del Transiente inicial por el método M (P).

$$M(P_{wf}) = M(P_i) - \frac{1.637T q_{SC}}{kh} \left[\log(t) + \log\left(\frac{k}{\phi_{\mu_i c r_W}^2}\right) - 3.23 + 0.87S^* + 0.87Dq_{SC} \right]$$
(4.74)

Esta ecuación sugiere que en una grafica de $M(P_{wf}) vs \log(t)$ la curva será lineal con pendiente negativa, m, dada por:

$$m = -\frac{1.637Tq_{SC}}{kh}$$
(4.75)

Con lo cual la permeabilidad de la formación puede ser determinada. El factor de daño total esta dado por:

$$S = 1,1513 \left[\frac{M(P_{wf})_{1hr} - M(P_i)}{m} - \log\left(\frac{k}{\emptyset\mu_i cr_w^2}\right) + 3,23 \right]$$
(4.76)

Donde $M(P_{wf})_{1hr}$ es obtenida de una línea recta hecha en papel semilog. La caída de potencial a consecuencia del daño esta dado por:

$$\Delta M(P)_{skin} = -0.87mS \tag{4.77}$$

La eficiencia de flujo esta dada por:

$$FE = \frac{M(P_i) - M(P_{wf}) - \Delta M(P)_{skin}}{M(P_i) - M(P_{wf})}$$
(4.78)

4.2.2.5 Análisis de Horner por el Método P²

La siguiente ecuación de declinación de presión puede ser usada para el rendimiento de un análisis semilogarítmico convencional de los datos del Transiente inicial por el método P².

$$P_{wf}^{2} = P_{i}^{2} - \frac{1.637T\tilde{\mu}\tilde{Z}q_{SC}}{kh} \left[\log(t) + \log\left(\frac{k}{\delta\tilde{\mu}\tilde{c}r_{W}^{2}}\right) - 3,23 + 0,87S^{*} + 0,87Dq_{SC} \right]$$
(4.79)

Donde $\tilde{\mu}, \tilde{Z} \neq \tilde{c}$ son determinados a \tilde{P} dado por:

$$\tilde{P} = \left[\frac{P_i^2 + P_{wf}^2}{2}\right]^{1/2}$$
(4.80)

Esta ecuación sugiere que en una grafica de $P_{wf}^2 vs \log(t)$ la curva será lineal con pendiente negativa, m, dada por:

$$m = -\frac{1.637T\tilde{\mu}\tilde{Z}q_{SC}}{kh}$$
(4.81)

Con lo cual la permeabilidad de la formación puede ser determinada. El factor de daño total esta dado por:

$$S = 1,1513 \left[\frac{P_{wf}^{2}(1hr) - P_{i}^{2}}{m} - log\left(\frac{k}{\emptyset \tilde{\mu} \tilde{c} r_{w}^{2}}\right) + 3,23 \right]$$
(4.82)

Donde $P_{wf}^{2}(1hr)$ es obtenida de una línea recta hecha en papel semilog. La caída de potencial a consecuencia del daño esta dado por:

$$\Delta P^2_{skin} = -0.87mS \qquad (4.83)$$

La eficiencia de flujo esta dada por:

$$FE = \frac{P_i^2 - P_{wf}^2 - \Delta P_{skin}^2}{P_i^2 - P_{wf}^2}$$
(4.84)

Pruebas de Restauración de Presión de pozos de Gas

4.2.2.6 Introducción

Las pruebas de restauración de presión para pozos de gas pueden ser usadas para determinar los mismos parámetros del pozo y del yacimiento que calculamos para los pozos de petróleo. De igual manera estas ecuaciones son determinadas mediante el principio de superposición en el tiempo. Los datos pueden ser analizados por el método de Horner, el método MDH y el método de Muskat. Y al igual que en las pruebas de declinación de presión los pozos de gas pueden ser analizados por el método de M (P) y P² dependiendo de las asunciones hechas acerca de la variación de las propiedades del gas con respecto a ala presión.

4.2.2.7 Análisis de Horner por el Método M (P)

La ecuación del análisis de Horner por el Método M (P) esta dada por:

$$M(P_{ws}) = M(P^*) - \frac{1.637Tq_{SC}}{kh} \log\left(\frac{t_p + \Delta t}{\Delta t}\right)$$
(4.85)

Esta ecuación sugiere que en una grafica de $M(P_{ws})$ vs $log\left(\frac{t_p+\Delta t}{\Delta t}\right)$ la curva será lineal con pendiente negativa, m, dada por:

$$m = -\frac{1.637Tq_{SC}}{kh}$$

Con lo cual la permeabilidad de la formación puede ser determinada. El factor de daño total esta dado por:

$$S = 1,1513 \left[\frac{M(P_{wf}) - M(P_{ws})_{1hr}}{m} - \log\left(\frac{k}{\emptyset \mu^* c^* r_w^2}\right) + 3,23 \right]$$
(4.86)

Donde $M(P_{wf})_{1hr}$ es obtenida de una línea recta hecha en papel semilog y μ^* y c^* son obtenidas al intercepto de P^* . La presión promedio para el yacimiento puede ser obtenida de:

$$M(\bar{P}) = M(P^*) - \left(\frac{mP_{MBH,D}}{2,303}\right)$$
(4.87)

Para pequeños tiempos de producción:

$$M(\bar{P}) \approx M(P^*) \approx M(P_i)$$
 (4.88)

De la cual P_i puede ser determinada. La caída de potencial a consecuencia del daño esta dado por:

$$\Delta M(P)_{skin} = -0.87mS$$

La eficiencia de flujo esta dada por:

$$FE = \frac{M(\bar{P}) - M(P_{wf}) - \Delta M(P)_{skin}}{M(\bar{P}) - M(P_{wf})}$$
(4.89)

0

$$FE = \frac{M(P^*) - M(P_{wf}) - \Delta M(P)_{skin}}{M(P^*) - M(P_{wf})}$$
(4.90)

4.2.2.8 Análisis de Horner por el Método P²

La ecuación del análisis de Horner por el Método P² esta dada por:

$$P_{ws}^{2} = P^{*2} - \frac{1.637T\tilde{\mu}\tilde{Z}q_{SC}}{kh}\log\left(\frac{t_{p}+\Delta t}{\Delta t}\right)$$
(4.91)

Donde $\tilde{\mu}, \tilde{Z} \neq \tilde{c}$ son determinados a \tilde{P} dado por:

$$\tilde{P} = \left[\frac{{P^{*2} + P_{wf}}^2}{2}\right]^{1/2} \tag{4.92}$$

Esta ecuación sugiere que en una grafica de $P_{ws}^2 vs log\left(\frac{t_p + \Delta t}{\Delta t}\right)$ la curva será lineal con pendiente negativa, m, dada por:

$$m = -\frac{1.637T\tilde{\mu}\tilde{Z}q_{SC}}{kh} \tag{4.93}$$

Con lo cual la permeabilidad de la formación puede ser determinada. El factor de daño total esta dado por:

$$S = 1,1513 \left[\frac{P_{wf}^{2} - P_{ws}^{2}(1hr)}{m} - \log\left(\frac{k}{\emptyset\tilde{\mu}\tilde{c}r_{w}^{2}}\right) + 3,23 \right]$$
(4.94)

Donde $P_{ws}^{2}(1hr)$ es obtenida de una línea recta hecha en papel semilog y μ^{*} y c^{*} son obtenidas al intercepto de P^{*} . La presión promedio para el yacimiento puede ser obtenida de:

$$\overline{P^2} = P^{*2} - \left(\frac{mP_{MBH,D}}{2,303}\right)$$
(4.95)

Para pequeños tiempos de producción:

$$\overline{P^2} \approx P^{*2} \approx P_i^2 \qquad (4.96)$$

De la cual P_i puede ser determinada. La caída de potencial a consecuencia del daño esta dado por:

$$\Delta P^2_{skin} = -0.87mS$$

La eficiencia de flujo esta dada por:

$$FE = \frac{P_i^2 - P_{wf}^2 - \Delta P_{skin}^2}{P_i^2 - P_{wf}^2}$$
(4.97)

0

$$FE = \frac{P^{*2} - P_{wf}^{2} - \Delta P_{skin}^{2}}{P^{*2} - P_{wf}^{2}}$$
(4.98)

Pruebas de Deliverability

4.2.2.9 Introducción

Las pruebas de gas son hechas para determinar la habilidad que tiene un pozo para producir gas bajo varias condiciones en la cara de la arena y en superficie, tomando en cuenta la presión del yacimiento. El control de la presión de superficie dependerá de:

- La presión de operación de la tubería a la cual el gas es descargado.
- Las características de los mecanismos de comprensión instalados.
- Las pérdidas de presión que ocurren en el tubing y en las líneas de circulación.
- El tamaño del estrangulador seleccionado para controlar la tasa de producción.

La presión del yacimiento depende de la extensión de la depleción del mismo y de algún aumento de la presión que podría ser provista por la intrusión del agua. Un típico sistema de flujo es mostrado en la figura 4.8.

Figura 4.8 Sistema de Flujo de Gas

1. La máxima entrega de gas ocurrirá cuando la presión en el yacimiento,

Pr, es la máxima y la presión en la cara de arena, Pwf, es la mínima.

- 2. Una presión alta en las tuberías, sin componentes de compresión instalados, reducirá la entrega del pozo.
- Las perdidas de presión en el sistema de circulación y en el pozo reducirá la entrega.
- 4. Los elementos de comprensión incrementaran la entrega del pozo.

- Para una P_{wf} dada, la entrega decrecerá como la presión en el yacimiento es reducida a través de la depleción.
- Las características de formación de un pozo son diferentes; además, cada uno debe ser analizado para determinar su capacidad única para producir.

El desarrollo de los procedimientos para las pruebas de campo permite a los ingenieros predecir la manera en la cual un pozo producirá sobre las reservas estimadas bajo varias condiciones de operación que pueden ser impuestas. Los resultados de estas pruebas son usadas por los ingenieros para:

- Determinar si un pozo será comercial.
- Satisfacer las regulaciones de las agencias estatales.
- Determinar las tasas de producción de gas permisibles.
- Diseñar plantas de procesamientos.
- Servir de base para los contratos de venta de gas.
- Estudios de comprensión y capacidad de entrega.
- Determinar el espaciamiento entre pozos y programas de desarrollo del campo.
- Determinar la necesidad de una estimulación.
- Ayudar en la identificación de los límites del yacimiento tales como fallas.

4.2.2.10 Pruebas Convencionales (Flow-After-Flow Test)

En una prueba convencional, la presión estática del yacimiento, $\overline{P}_{r,n}$, es determinado cuando el pozo es cerrado por un periodo de tiempo hasta que la presión de cierre estabilizada sea conocida. El pozo se pone a fluir hasta que alcance una presión fluyente estabilizada para una tasa de flujo constante. En muchas áreas, la estabilización es definida en términos de cambios de porcentaje por unidad de tiempo. Este procedimiento se repite 4 veces de tal manera que la tasa de flujo incremente hasta obtener una presión fluyente estabilizada en cada periodo. Las tasas de flujo y la historia de presión para una prueba convencional son mostradas en la figura 4.9.

Figura 4.9 Pruebas Convencionales

El AOF (Absolute Open Flow) o el caudal total de gas puede ser determinado con la pendiente de la gráfica hecha en escala logarítmica y las siguientes expresiones:

$$q_{SC} = C \left(\bar{P_r}^2 - {P_{wf}}^2 \right)^n$$
 (4.99)

$$C = \frac{0.703 \times 10^{-6} kh}{\bar{\mu} T \bar{Z} \left(ln \left(\frac{r_e}{r_w} \right) - 0.75 \right)}$$
(4.100)

La tasa de flujo teórica ocurriría si la presión en la cara de la arena fuera cero.

Aunque la prueba convencional requiera de 4 tasas de flujo constante, lo cual es muy poco probable debido a los efectos de almacenamiento y a los cambios de presión que ocurre en la cara de la arena, la tasa de flujo durante cada periodo decrecerá con el tiempo.

Las pruebas convencionales para pozos de gas y la interpretación de los datos son relativamente simples. Aunque esta prueba ha sido considerada estándar por varios años, esta tiene ciertos inconvenientes. La dificultad surge cuando la permeabilidad en el yacimiento es baja, lo cual impide que en estos tipos de yacimientos pueda llevarse acabo la prueba convencional en un periodo de tiempo razonable. En otras palabras, el tiempo requerido para obtener las condiciones del flujo estabilizado puede ser muy largo.

4.2.2.11 Prueba Isocronal

Cullender propuso la prueba Isocronal para pozos de gas, una prueba en la cual un pozo se cierra durante un tiempo suficiente antes de cada periodo de flujo, de manera que cada periodo inicie con la misma distribución de presión en el yacimiento. El principio básico detrás de las pruebas Isocronales es que la efectividad del radio de drenaje, una función de duración de flujo, es la misma para cada punto de los datos medidos. Por lo tanto, las pruebas de flujo separadas, durante un mismo periodo de tiempo afectaran al mismo radio de drenaje.

Además cada curva de rendimiento será obtenida para un radio de drenaje fijo. Consecuentemente, cada curva isocronal para un pozo tendrá la misma pendiente pero el valor de la constante de rendimiento, C, dependerá de la duración de flujo o del radio de drenaje. Un valor exacto para C será obtenido con una prueba de flujo que refleje el comportamiento de un gran radio de drenaje.

El procedimiento para esta prueba es el siguiente y se ve reflejado en la figura 4.10.

Figura 4.10 Prueba Isocronal

- 1. El pozo es inicialmente cerrado hasta que la presión promedio del yacimiento, $\overline{P_r}$, se estabilice.
- El pozo es abierto a producción a la primera tasa q_{sc} en un periodo de tiempo fijo, y la presión de fondo es medida.
- 3. El paso 1 y 2 son repetidos dos o tres veces a diferentes tasas de flujo. La duración de cada periodo de flujo deberá ser igual y la presión después de cada periodo de flujo deberá restaurarse a la presión estática original. La duración de la restauración, normalmente no será igual a los demás periodos.
- 4. Finalmente, después del último periodo de flujo, una prueba de flujo es llevada acabo por un periodo de tiempo lo suficientemente largo hasta alcanzar las condiciones de flujo estabilizadas. Este periodo es usualmente llamado periodo de flujo estabilizado. La tasa de flujo durante esta ultima prueba necesita no ser igual a la cuarta tasa isocronal, y de hecho, es a menudo menos. El tiempo requerido para alcanzar la presión estabilizada dependerá de las propiedades de la formación y del fluido.

4.2.2.12 Prueba Isocronal Modificada

En 1959, Katz y otros realizaron una modificación a la prueba isocronal. Ellos sugirieron que el periodo de cierre y el periodo de flujo para cada prueba deberán tener igual duración, siempre que la presión de cierre no

estabilizada, P_{wr}, al final de cada prueba sea usada en vez de la presión estática del yacimiento, $\overline{P_r}$, como se muestra en la figura 4.11.

Figura 4.11 Prueba Isocronal Modificada

El análisis de los datos en las pruebas isocronal modificado es similar que en las pruebas lsocronales y graficados en papel logarítmico. La mejor línea es dibujada a través de los cuatro puntos y a la cual se le determina la pendiente y la segunda línea paralela a la primera es dibujada a través de los puntos estabilizados. Los valores de n, C y AOF son encontrados de la misma manera como lo encontramos en las pruebas convencionales e Isocronales.

CAPITULO 5

APLICACIÓN DE PRUEBAS DE PRESION A POZOS DE PETROLEO Y POZOS DE GAS

5.1 Aplicación de pruebas de presión a pozos de Petróleo

POZO SSXF-66

El presente *Análisis de Restauración de Presión* corresponde a la **arena** U del pozo SSXF 66 que tiene dos intervalos disparados: de 9.016' – 9.039' (23 pies) y de 9.049' – 9.059' (10 pies).

El pozo produjo un $Q_t = 850$ BIs./día, con un BSW de 4,0 % de un crudo de 26,0 grados API. A continuación se presentan los diferentes eventos que se desarrollaron durante la prueba de producción y luego la restauración:

TIEMPOS (HRS)					
t1 =	0.72				
t2 =	11.05				
t3 =	31.00				

TIEMPO DE PRODUCO	CION =	10,33 HRS
TIEMPO DE CIERRE	=	19,95 HRS

En el registro de presión se utilizo un registrador electrónico **Zi – 1080** que fue colgado a **9.000 pies.** Los valores de presión del yacimiento **U** serán reportados a la mitad de las perforaciones (**mp**) estimada a **9.037 Pies**.

2.- DATOS BASICOS DE LA EVALUACION

Prueba de producción		Pará	Parámetros del estrato			Parámetros del fluido		
Q。 =	816	BPPD	Ht	= ND	Ft	Bo	= 1,1434	rb/stb
Q _w =	34	BAPD	hn	= 33	Ft	Bw	= 1,0427	rb/stb
Qt =	850	BFPD	Φ	= 16,0	%	Rs	= 222	Scf/Bls
BSW=	4,0	%	rw	= 0,29	Ft	U。	= 1,3	Cps
API =	26,0		т	= 217	o	Ct	= 2,116	e-5Psi -1
			ľ	- 211	F	GO	R= 233	Scf/Bls

= 1,182

γgas

Presiones

 Pwf @ Sensor (9.000') =
 730 Psi

 Pwf @ mp (9.037') =
 744 Psi

 Pws @ Sensor (9.000') =
 1.365 Psi

 Pws @ mp (9.037') =
 1.379 Psi

 P Burbuja =
 1.010 Psi

Transient and Welltest Deliverability	Results				X		
Injection Well	Injection Well Using - Interpretatio						
Layer Parameters							
Layer Pressure: 1379 psia		Dietz Shape Factor:	Use default 🔽	31.62			
Bubble Point (Pb): 1014.405 psia		Drainage Area:	Use default 🔽	640 acres	s		
- Transient Test Data							
Permeability (K): Use default 🔽	79 md	Skin (S):	Use default 🔽	2.6			
Productivity Index (J): 1.11909	STB/day/psi AOF:	1036.76	STB/day				
Production Test Data	Task Tas						
Point 1	Point 2 Point	α nt3					
Flowing Pressure: 744	0 0	psia					
Flow Rate 850	0 0	STB/day					
Estimated Shut-in Pressure: 1379	psia						
Productivity Index (J): 1.4097 S1	FB/day/psi AOF:	1305.99 STB/	day				
				PAG	E A A		
OK Cancel	Calculate	Model Parameters		PLOT : 🗹 O	🥌 🖶		

Transient and Welltest Deliverability F	Results				×		
Injection Well		Using - Interpretatio					
Layer Parameters							
Layer Pressure: 1379 psia		Dietz Shape Factor:	Use default 🔽	31.62			
Bubble Point (Pb): 1014.405 psia		Drainage Area:	Use default 🔽	640 acres	\$		
Transient Test Data							
Permeability (K): Use default 🔽 📔	79 md	Skin (S):	Use default 🔽	2.6			
Productivity Index (J): 1.11909	STB/day/psi AOF:	1036.76	STB/day				
Production Test Data	.						
Point 1	Point 2 Point	t at 3					
Flowing Pressure: 744	0 0	psia					
Flow Rate 816	0 0	STB/day					
Estimated Shut-in Pressure: 1379	psia						
Productivity Index (J): 1.35331 STI	B/day/psi AOF:	1253.75 STB/d	ay				
				PAGI	Ē		
OK Cancel	Calculate	Model Parameters		PLOT : 🗹 1			

Transient and Welltest Deliverability	Results			×
Injection Well		Using - Inl	terpretatio	
Layer Parameters				
Layer Pressure: 1379 psia		Dietz Shape Factor:	Use default 🔽	31.62
Bubble Point (Pb): 50 psia		Drainage Area:	Use default 🔽	640 acres
Transient Test Data				
Permeability (K): Use default 🔽	79 md	Skin (S):	Use default 🔽	2.6
Productivity Index (J): 1.11909	STB/day/psi AOF:	1514.4	STB/day	
Production Test Data	T T-	-1		
Point 1	Point 2 Po	st int3		
Flowing Pressure: 744	0 0	psia		
Flow Rate 34	0 0	STB/day		
Estimated Shut-in Pressure: 1379	psia			
Productivity Index (J): 0.0535433 S	FB/day/psi AOF:	72.4571 STB.	/day	
				PAGE
OK Cancel	Calculate	Model Parameters		PLOT: 🗹 2 👎 🖵
		instant diamotora		

3.- RESULTADOS DE LA INTERPRETACIÓN

METODO DE HORNER

Pendiente	=	- 26,0	Psi-ciclo
Drawdown	=	635	Psi
K(h=33´)	=	81	Md
s	=	2,6	
P*	=	1.368	Psi
P @(lh)	=	1.341	Psi

METODO DE LA DERIVADA

= 81	md
= 2,6	
= + 58	Psi
= 11,063	hrs
= 730	Psi
= 0,0779	bbl /Psi
= 1.368	Psi
= 1.341	Psi
	 81 2,6 + 58 11,063 730 0,0779 1.368 1.341

4.- RESULTADOS DE PRODUCTIVIDAD

INDICE DE PRODUCTIVIDAD		VALOR
J actual	= 1,42	Bls./día/Psi
J ideal	= 1,58	Bls./día/Psi
EF	= 0,90	
Q _{max}	= 1.294	Bls./día

POZO SSXF-97

El presente *Análisis de Restauración de Presión* corresponde a la **arena T** Inferior del pozo SSXF 97 que tiene un intervalo disparado de 9.340' – 9.370' (30 pies).

El pozo produjo un $Q_t = 1.704$ Bls./día, con un BSW de 13,0 % de un crudo de 32,7 grados API. A continuación se presentan los <u>diferentes</u> <u>eventos</u> que se desarrollaron durante la prueba de producción y luego la restauración:

TIEMPOS (HRS)					
t1 =	3,83				
t2 =	48,43				
t3 =	65,30				

TIEMPO DE PRODUCO	CION =	44,60 HRS
TIEMPO DE CIERRE	=	16,87 HRS

En el registro de presión se utilizo un registrador electrónico Zi - 1.184 que fue asentado en el No-Go ubicado a 8.986 pies. Los valores de presión del yacimiento T_i serán reportados a la mitad de las perforaciones (mp) ubicada a 9.355 Pies.

Prueba de producción Parámetros del estrato Parámetros del fluido

2.- DATOS BÁSICOS DE LA EVALUACIÓN

Q _o = 1.483	BPPD	Ht	= 34	Ft
Q _w = 221	BAPD	hn	= 30	Ft
Q t = 1.704	BFPD	Φ	= 14,0	%
BSW= 13,0	%	rw	= 0,51	Ft
API = 32,7		Ту	= 214	° F

Bo	=	1,1618	rb/stb
Bw	=	1,0398	rb/stb
Rs	=	289	Scf/Bls.
U。	=	0,9	Cps
Ct	=	1,4887	e-5Psi -1
GOR	< =	283	Scf/Bls.
γgas	=	1,311	
Presiones

Radial Flow Plot 2420 2320 Quick Match Results Radial homogeneous Parallel faults 2120 Constant compressibility Cs = 0.0019 bb/p = 0.0019 bbl/psi Cs = 186.3304 bbl (k/u)o = 419.3798 md/cp = 392.407 md 2020_{kh} = 13341.838 md.ft = 15 S L1 NF = 205.718 ft L3 NF = 992.338 ft = 2449.47 psia 1920 10 100 1000 10000 100000 1e+006 Horner Time Function - Tp=44.5998

Transient and Welltest Deliverability	Results			×			
Injection Well Using - Interpretatio							
Layer Parameters							
Layer Pressure: 2545 psia		Dietz Shape Fac	tor: Use default 🔽	31.62			
Bubble Point (Pb): 1050.749 psia		Drainage Area:	Use default 🔽	640 acres			
Transient Test Data							
Permeability (K): Use default 🔽	392.407 md	Skin (S):	Use default 🔽	15			
Productivity Index (J): 3.79719	STB/day/psi AO)F: 7884.04	STB/day				
Production Test Data		- .					
Point 1	Test Point 2	Test Point 3					
Flowing Pressure: 2081	0	0 psia					
Flow Rate 1483	0	0 STB/	day				
Estimated Shut-in Pressure: 2545	psia						
Productivity Index (J): 3.19612 S	TB/day/psi AO)F: 6636.05	STB/day				
		_	-1	PAGE			
OK Cancel	Calculate	Model Parameter	8	PLUI: M I 🖓 🖓			
L							

Transient and Welltest Deliverability	Results				×
Injection Well		Using - Interp	pretatio		
– Layer Parameters					
Layer Pressure: 2545 psia	Die	etz Shape Factor:	Use default 🔽	31.62	
Bubble Point (Pb): 1050.749 psia	Dra	ainage Area:	Use default 🔽	640 acres	
- Transient Test Data					
Permeability (K): Use default 🔽	392.407 md Sk	in (S):	Use default 🔽	15	
Productivity Index (J): 3.79719	STB/day/psi AOF:	7884.04	STB/day		
- Production Test Data					
Point 1	Test Test Point 2 Point 3				
Flowing Pressure: 2081	0	psia			
Flow Rate 1704	0	STB/day			
Estimated Shut-in Pressure: 2545	psia				
Productivity Index (J): 3.67241 S1	[B/day/psi AOF:	7624.97 STB/da	iy		
				PAGE	<u> </u>
OK Cancel	Calculate	del Parameters		PLUI : IV U	~ ~

Transient and Welltest Deliverability	Results				×
Injection Well		Using - Inter	pretatio		
Layer Parameters					
Layer Pressure: 2545 psia	D	ietz Shape Factor:	Use default 🔽	31.62	
Bubble Point (Pb): 50 psia	D	rainage Area:	Use default 🔽	640 acres	:
Transient Test Data					
Permeability (K): Use default 🔽	392.407 md SI	kin (S):	Use default 🔽	15	
Productivity Index (J): 3.79719	STB/day/psi AOF:	9566.04	STB/day		
Production Test Data					
Test Point 1	Test Test Point2 Point3	3			
Flowing Pressure: 2081	0 0	psia			
Flow Rate 221	0 0	STB/day			
Estimated Shut-in Pressure: 2545	psia				
Productivity Index (J): 0.476293 ST	B/day/psi AOF:	1199.9 STB/da	ау		
		,		PAGI	
OK Cancel	Calculate	odel Parameters		PLOT: 🗹 2	

3.- RESULTADOS DE LA INTERPRETACIÓN

METODO DE HORNER

Pendiente	=	- 28,7	Psi-ciclo
Drawdown	=	464	Psi
K(h=34´)	=	345	md
s	=	13	
P*	=	2.406	Psi
P @(lh)	=	2.359	Psi

K(h=34´)	= 345	md
S	= 13	
Delta Skin	= + 324	Psi
t match	= 48,4317	hrs
P match	= 1.934	Psi
Cs	= 0,0014	bbl /Psi
Pi @ sensor	= 2.437	Psi
P _i @ mp (9355')	= 2.585	Psi

MODELOS

MODELO DE ALMACENAJE	Constante
FLUJO EN EL RESERVORIO	Flujo Radial
MODELO DEL LIMITE	Parallel fault – (barrera cercana)

METODO DE LA DERIVADA

4.- RESULTADOS DE PRODUCTIVIDAD

INDICE DE PRODUCTIVIDAD		VALOR
J actual	= 3,38	Bls./día/Psi
J ideal	= 11,27	Bls./día/Psi
EF	= 0,30	
Q _{max}	= 7.081	Bls./día

5.2 Aplicación de pruebas de presión a pozos de Gas

POZO AMXTD 1

El siguiente pozo tuvo una producción acumulada de gas de 900MMscf y una tasa de producción de 5.000Mscf/D antes de realizarse una prueba de restauración (Buildup), de análisis de laboratorio se obtuvo valores de viscosidad y factores de compresibilidad del gas, la cual se muestra en la tabla a continuación:

				μZ/P
P (psia)	Z	μ (cp)	μΖ (cp)	(cp/psia)
400	0,937	0,01286	0,01204982	0,00003012
800	0,882	0,01390	0,01225980	0,00001532
1.200	0,832	0,01530	0,01272960	0,00001061
1.600	0,794	0,01680	0,01333920	0,0000834
2.000	0,770	0,01840	0,01416800	0,00000708
2.400	0,763	0,02010	0,01533630	0,0000639
2.800	0,775	0,02170	0,01681750	0,00000601
3.200	0,797	0,02340	0,01864980	0,00000583
3.600	0,827	0,02500	0,02067500	0,0000574
4.000	0,860	0,02660	0,02287600	0,00000572
4.400	0,896	0,02831	0,02536576	0,00000576

Y los siguientes datos:

T= 161°F

h= 411ft

r_w= 0,5 ft

Ø= 13%

Cti= 410x10⁻⁶ psi⁻¹

Se requiere obtener la permeabilidad del yacimiento, su factor de daño. Además predecir que tipo de yacimiento es.

1.- Graficamos µ vs P

2.- Graficamos Z vs P

3.- Luego encuentro el tiempo de producción de Horner

$$t_p = \frac{24N_p}{Q_t}$$

$$t_p = \frac{24(900'000.000)}{5000.000} = 4320 \ horas$$

Δt	(tp+Δt)/Δt	P _{ws} (Psia)	P _{ws} ² (Psia ²)
0		1.700	2'890.000
1	4.321	1.930	3'724.900
5	865	2.170	4'708.900
14	310	2.221	4'932.841
22	197	2.270	5'152.900
35	124	2.291	5'248.681
35	124	2.308	5'326.864
45	97	2.316	5'363.856
60	73	3.228	10'419.984

4.- De la prueba de Buildup se obtuvo la siguiente tabla:

5.- Todo este estudio se basara en el análisis de Horner por el método de P², para esto necesitamos graficar P_{ws}^2 vs (tp+ Δ t)/ Δ t en escala semilogaritmica.

Donde la pendiente de la recta es:

Y el intercepto con el eje Y es igual:

Y por lo tanto P^* es igual:

6.- Para encontrar la permeabilidad necesitamos encontrar los valores de $\tilde{\mu}$ y \tilde{Z} a la presión \tilde{P} , para eso, primero tenemos que encontrar la \tilde{P} .

$$\tilde{P} = \left[\frac{P^{*2} + P_{wf}^2}{2}\right]^{1/2}$$

$$\tilde{P} = \left[\frac{2.510^2 + 1.700^2}{2}\right]^{1/2} = 2.144 Psia$$

7.- Con este valor de presión encontramos los valores de $\tilde{\mu}$ y \widetilde{Z} de la grafica de μ y Z.

$$\tilde{\mu} = 0,01901 \ cp$$

 $\tilde{Z} = 0,767$

8.- Con estos valores podemos hallar la permeabilidad del yacimiento.

$$k = -\frac{1.637 Q_t \tilde{\mu} \tilde{Z} T}{mh}$$

$$k = -\frac{1.637(5000.000)(0,01901)(0,767)(621)}{(-0,01x10^6)(411)} = 1.803md$$

9.- Ahora procedemos a encontrar el factor de daño:

$$S = 1,1513 \left[\frac{{P_{wf}}^2 - {P_{ws}}^2 (1hr)}{m} - log \left(\frac{k}{\emptyset \tilde{\mu} \tilde{c} {r_w}^2} \right) + 3,23 \right]$$

Donde:

$$P_{ws}^{2}(1hr) = 3,5x10^{6} Psia^{2}$$

$$\tilde{c} = \frac{1}{P} - \frac{1}{Z} \frac{\partial Z}{\partial P}$$

$$\tilde{c} = \frac{1}{2.144} - \frac{1}{0.767} \frac{0.763 - 0.794}{2.400 - 1.600} = 517x10^{-6} Psi^{-1}$$

$$S = 1,1513 \left[\frac{2'890.000 - 3'500.000}{-10.000} - log \left(\frac{1.803}{0,13 * 0,01901 * 0,000517 * 0,5^2} \right) + 3,23 \right]$$

10.- Para predecir el tipo de flujo en el yacimiento nos basaremos en el método de la derivada.

Δt	(tp+∆t)/∆t	P _{ws} (Psia)	P _{ws²} (Psia ²)	µ (cp)	z	ΔP _{ws} (Psia)	ΔΡ' _{ws} (Psia)	DP _{ws} (Psia)
0	4320	1700	2890000			0	0,144	0
1	4321	1930	3724900	0,018	0,785	230	0,144	20256407,6
5	865	2170	4708900	0,019	0,775	470	0,144	39757691
14	310	2221	4932841	0,0195	0,77	521	0,144	43310558,2
22	197	2270	5152900	0,0198	0,767	570	0,144	46934976,9
35	124	2291	5248681	0,0199	0,769	591	0,144	48438279,8
35	124	2308	5326864	0,0202	0,773	608	0,144	48837493,1
45	97	2316	5363856	0,0204	0,776	616	0,144	48917647,1
60	73	3228	10419984	0,023	0,8	1528	0,144	104754365

Luego procedemos a graficar:

Esta grafica de derivada nos permite determinar que el flujo en el yacimiento es radial y que se trata de un reservorio de gas infinito.

POZO AMXTD 4

A este pozo se le realizo una prueba Isocronal Modificada, el cual tiene un área de drenaje de 640 acre ($r_e=2,979ft$) y una tasa de 4.000 Mscf/D antes del cierre. Los datos de presión-tiempo se muestran en la tabla. Este estudio tiene como objetivo saber cual es la permeabilidad del yacimiento, el factor de daño y el AOF.

h= 193 ft

P_i= 5681 Psia

 γ_g = 0,876 (no contiene N₂, CO₂, H₂S)

M (Pi) = 638,739x10⁶ Psia²/cp

Depth= 10.000ft

T= 161°F

Ct= 3,2x10⁻⁴ Psi⁻¹

Ø= 13%

rw=0,5ft

µi=0,02052cp

Zi=0,91912

Tubing I.D. = 2,441 in

q (MMscf/D)	Duration (hrs)	End Pressure (Psia)
4	12	3.041
Shut-in	12	3.193
5	12	2.997
Shut-in	12	3.188
6	12	2.954
Shut-in	12	3.183
7	12	2.911
7	96	2.878
Shut-in	60	3.183

t (hrs)	Δt (hrs)	Pressure (Psia)	m(p) (Psia²7cp)	(tp+∆t)/∆t
12		3041	586.349.000	
12,5	0,5	3166	627.399.000	25
13	1	3173	629.699.000	13
13,5	1,5	3177	630.999.000	9
14	2	3179	631.879.000	7
15	3	3183	633.069.000	5
16	4	3185	633.849.000	4
17	5	3187	634.429.000	3,4
18	6	3188	634.869.000	3
19	7	3189	635.229.000	2,71
20	8	3190	635.519.000	2,5
21	9	3191	635.749.000	2,33
22	10	3192	635.959.000	2,2
23	11	3192	636.139.000	2,09
24	12	3193	636.299.000	2

La línea recta en la gráfica tiene una pendiente de -0,8x10^{6.}

M (Pi)= 638,74x10⁶

M (P1hr)= 629,7x10⁶

Una vez encontrados estos valores de la grafica, procedemos a encontrar la permeabilidad del yacimiento:

$$k = -\frac{1.637 Q_t \tilde{\mu} \tilde{Z}T}{mh}$$

$$k = -\frac{1.637(4000.000)(0,02052)(0,91912)(621)}{(-0,8x10^6)(193)} = 497md$$

Luego para encontrar el factor de daño, procedemos de la siguiente manera:

$$S = 1,1513 \left[\frac{m(P1hr) - m(Pwf@\Delta t = 0)}{m} - \log\left(\frac{k}{\emptyset\tilde{\mu}\tilde{c}r_w^2}\right) + 3,23 \right]$$

$$S = 1,1513 \left[\frac{629,7x10^6 - 586,4x10^6}{0.8x10^6} - log \left(\frac{497}{0,13 * 0,02052 * 0,00032 * 0,5^2} \right) + 3,23 \right] = 48$$

Luego calculamos el AOF con la siguiente expresión:

$$q_{SC} = C \left(\overline{P_r}^2 - P_{wf}^2 \right)^n$$

Donde q_{SC} es la última tasa antes del cierre definitivo, es decir 7MMSCF/D, y el valor de n es igual a 1.

$$7 = C(5.681^2 - 2.878^2)$$

Despejando C tenemos que es igual a 2,91x10⁻⁷MMSCF/D/psia².

Reemplazando en la ecuación inicial tenemos que el AOF es igual a:

 $AOF = 2,91 \times 10^{-7} (5.681^2 - 14,7^2) = 9,39 MMSCF / D$

CAPITULO 6

CONCLUSIONES Y RECOMENDACIONES

• Conclusiones

- En cuanto se refiere a los pozos de Gas analizados, observamos que sus caudales ó producción diaria son relativamente mayores que la de los pozos de petróleo estudiados, debido a que su viscosidad es mucho menor y su factor de recobro muy superior, en el orden del 75% y esto es debido fundamentalmente a que existe una mayor transmisibilidad en el medio poroso.
- 2. En contraposición, en pozos de gas la operación es más riesgosa ya que se trata de un hidrocarburo más inflamable.
- Como producto de los resultados de las presiones estáticas (Pe) de los yacimientos de los dos pozos de petróleo analizados, relacionados comparativamente con la presión de saturación (Pb) de estos yacimientos, se puede concluir que los mismos se encuentran en una sola fase con su gas en solución.
- 4. El efecto del factor de daño es más preponderante en pozos de Gas que en pozos de petróleo, debido a que en estos pozos el daño debido a la turbulencia es más significativo lo que hace que se eleve el daño total.
- 5. En el análisis de presiones realizado al pozo SSXF-66, basado en la data, se puede apreciar en la curva de la derivada que existe un gran efecto de almacenamiento de 0,0864 Bls./psi , esto quiere decir que después de cerrar el pozo en superficie , el flujo desde la formación continua hacia el pozo.
- 6. Esto se debe a que la redistribución de los fluidos en la tubería fue prolongada porque existió gas libre en la vecindad del pozo (P_{wf} < P_b) y no existió una válvula de cierre en el fondo; que redujera ese efecto; además de que el yacimiento tiene una baja transmisibilidad, (permeabilidad de 80 md) y un daño despreciable de S= 2,6.

- 8. La eficiencia de flujo del pozo es del 90%, y tiene una producción de 816 BPPD con un BSW del 4 % y una Q máxima que se podría obtener de 1.253 BPPD.
- 9. Como resultado del análisis de presión realizado en el pozo de petróleo SSXF-97, se ha determinado que se trata de un yacimiento subsaturado (P_y > P_b); además se puede apreciar que existe poco efecto de almacenamiento, (0,0017 Bls./psi) y la curva de la derivada permite determinar que el pozo tiene un flujo radial en el yacimiento y que en los límites de frontera presenta barreras cercanas.
- 10.Este pozo presenta una excelente permeabilidad de 345 md. pero un daño considerable de S = 13. A pesar de este daño el pozo tiene una buena producción de 1.483 barriles de petróleo por día, lo cual se ve reflejado en un alto Índice de Productividad de 3,38 Bls./día/psi. Esta producción debería ser mejor si se limpia el daño de formación y podría llegar hasta un Q₀ máximo de 6.636 BPPD, según lo indica la curva del IPR.
- 11.El análisis de presión realizado al pozo de gas AMXTD 01 por medio del método de M(P²) y por el método de la derivada nos permitió determinar que se trata de un yacimiento con modelo de flujo radial e infinito, además de los parámetros básicos del yacimiento que se presentan a continuación :

Resultados obtenidos:

P_e = 2.144 psi K = 1.803 md S = 55

12.El análisis de presión realizado al pozo de gas **AMXTD 04** por medio del método Isocronal Modificado no nos permitió determinar el tipo de flujo del reservorio , pero si su potencial de flujo abierto ó caudal máximo AOF , además de los parámetros básicos del mismo:

Resultados obtenidos:

K = 497 md S = 48

AOF = 9,39MMSCF/D

Recomendaciones

- 1. Es indispensable que una prueba de restauración de presión (Buildup) tenga una duración equivalente a la prueba de producción previa realizada , para darle tiempo al reservorio de que se estabilice luego de que fue alterado por efecto de la producción, porque de lo contrario la data podría verse afectada por el efecto de almacenamiento.
- Es más recomendable obtener información de un análisis de presión durante una prueba de restauración (Buildup) que durante una prueba de declinación de presión (Drawdown), porque los resultados serán más confiables con el pozo cerrado.
- Para pozos de gas es mejor realizar un análisis de presión por medio del método de M(P²) ya que con este método se obtiene mayor y mejor información para el estudio del pozo.

ANEXO 1

Figura A. Mapa del Campo AMTDX

PROFUND	OTOBNIS	% DE ARENA	N TOLDGIA	F DAD REPORTADA ROB ROB A D A	HDROCARB] [FORMACION	DESCRIPCION DE LOS SEDIMENTOS
800 - 1000 - 1800 - 2000 - 3000 -		60	ARENAS Y ARCILLAS	- PLEISTOCENO			DIFERENCIADO	GRUESOS PAQUETES DE APENISCAS CONGLO- MERATICAS ALTERNANDO CON LUTITAS. LA PRESENCIA DE MOLLISCOS, TRAZAS DE LIG- NITO, GLAUCONITAS INDICAN UN ORIGEN LITORAL
40.00	N N N	40	ARCILLAS N ARENAS	PLIOCENO			Z	IDEM ANTERIOR PERO DEPOSITADOS EN AGUAS UN POCO MAS PROFUNDAS (INFRALITORALES) ARCILLAS REPORTADAS BENTONITICAS.
5000		85	APENAS CO	apreparts		GAS POSIBLE	PROGRESO	ESTRATOS POTENTES DE ARENISCAS DE ORIGEN LITOVAL MOS CONCEMERATICAS CON MUCHOS ELEMENTOS DE ORIGEN VOLCAN CO, LUTTA VERCOSA NO CALCAREA, SUAVE, LIKNITO Y FRACAMEN TOS DE CONCHAS, POCOS ESTRATOS DE CALLZAS
7000								ARCELAS E INTERCALACIONES DE ARENAS ARCILLO SAS LUTITA VERDOSA MICACEA NO CALCAREA, SUA-
8000 -		20	ARCILLA	C E N O MEDIO MEDIO			UBIBAJA	CORRESPONDEN A FACIES DE PRODEL"A, SE HA REPORTADO COMPOSICIO BENTONITICAS
9000		50	ARENAS Y ARCALAS	M I O		GAS (20NA PRODUCTORA)		ARENAS LIMPIAS GRANO FINO MEDIO CONGLOMERATICAS DE FRENTE DE DELTA Y RELLENOS DE CANAL DISTRIBU- TARIO TAMBIEN SE PRENTAN ARCILLAS DE FACIES DE LAGUNA COSTERA.
10.000		25	ARCELLAS	NFERIOR				LUTITA DE COLOR CAFE CHOCOLATE HACIA LA PARTE SUPERIOR NIVELES DE CARBON DURO
11.000 -		50	RENAS Y	and Ske		GAS (ZONA DE		IDEM ZONA PRODUCTORA.
12000								LUTITA MULTICOLOR, ROJO, ROJIZA, VIOLETA, ANA- RANJADA
13000 -			-				DCAS	
14000 -		20	RICILLA	OCEN			005 80	EN RESUMEN ARCILLAS DE PRODELTA SEGURA- MENTE BENTONITICAS
15000 -				0 1 1 6				
16000 -			AS		-	4.0114		
17000 -		50	ARCILL			SALADA • GAS		ZONA DE ALTA PRESION

Figura B. Columna Estratigráfica Esperada de Pozo de Desarrollo del Campo Amistad

Figura C. Mapa Isopaco de la Formacion Dos Bocas

Figura D. Distribucion Areal de las Reservas de Gas

Figura E. Base de datos: Líneas sísmicas y pozos utilizados

Figura F. Ubicación del Campo SSXF

ANEXO 4

Figura 2 Pb MBH para un pozo en el centro de áreas de drene equiláteras

Tabla 4.1 Factores de forma para varias áreas de drenaje de pozos sencillos

Yacimientos finitos	CA	Exacto Para t _{DA} >	Menos de 1 % error para tDA >	Use solución de sistema infinito con menos de 1 % error for tDA >
\odot	31.62	0.1	0.06	0.1
\overline{ullet}	31.6	0.1	0.06	0.1
\wedge	27.6	0.2	0.07	0.09
60.	27.1	0.2	0.07	0.09
1/3	21.9	0.4	0.12	0.08
I AI	0.098	0.9	0.6	0.015
•	30.882	8 0.1	0.05	0.09
	12.985	1 0.7	0.25	0.03
•	4.513	2 0.6	0.30	0.025
	3.335	1 0.7	0.25	0.01
• 1	21.836	9 0.3	0.15	0.025
1	10.837	4 0.4	0.15	0.025
• 1	4.514	1 1.5	0.50	0.06
• 1	2.076	9 1.7	0.5	0.02
1	3.157	3 0.4	0.15	0.005

	Ca	Exacto para tDA >	Menos de 1 % error para tDA >	Use solución de sistema infinito con menos de 1 % error for tDA >
1	0.5813	2.0	0.6	0.02
	0.1109	3.0	0.6	0.005
2 • 1	5.379	0.8	0.3	0.01
	2.6896	0.8	0.3	0.01
1	0.2318	4.0	2.0	0.03
4	0.1155	5 4.0	2.0	0.01
5 Vertical-Fractured reservoirs	1 2.3606	1.0 Use (Xe/Xf) ² for fracture	0.4 in place of ed reservoi	0.025 £ A/rw ² rs
1 1 1	2.6541	0.175	0.08	Cannot use
1 .2	2.0348	0.175	0.09	Cannot use
1	1.9986	0.175	0.09	Cannot use
<f xe="0.5</th"><th>1.662</th><th>0.175</th><th>0.09</th><th>Cannot use</th></f>	1.662	0.175	0.09	Cannot use
1 xf/xe=0.7 1	1.3127	0.175	0.09	Cannot use
xf/xe-1.0	0.7887	0.175	0.09	Cannot use
Watar-Drive reserverse Unknown Drive	19.1			
	25.0			

Tabla 4.1 Factores de forma para varias áreas de drenaje de pozos sencillos - Cont.

Figura 8. Curvas Tipo de Gringarten para un pozo con factor de almacenamiento y factor de daño

Figura 9. Cartas de Identificacion de Yacimientos

	YACIMIE	ENTO HOMOGEN	EO	YACIMIENTO CON D	JOBLE POROSIDAD
MODELO	SISTEMAS	SISTEMAS	POZOS	INTERPOF	ROSITY FLOW
	INFINITOS	CERRADOS	FRACTURADOS	ESTADO PSEUDOESTABLE	TRANSITORIO
GRAFICO LOG-LOG PD 00 00			1/2	Flujo	Flujo
GRAFICO SEMILOG P	St W		Cartesiano Cartesiano	E L	E E
GRAFICO DE LA DERIVADA Iog to/Co*Po'	00	0.5	1/2	112 112 FTRAME H	>1/4 1/2 -темиз
m = Pendiente semilog. Representa flujo radial infinito		Hay un factor de 2 en separaciónentre PD y PD' para fracturas de conduo- tividad infinita. El factor es 4 para fracturas de -con- ductividad finita	Conduct. infinita Flujo uniform Conduc. finita (flujo bilineal)	 Se desarrollan 2 lineas paralelas La transición inicia antes que termine los efectos de WBS 	F = FISURA T =SISTEMA TOTAL

Figura 10. Resumen de reacciones de modelos de pozos-yacimientos

BIBLIOGRAFIA

- Freddy Humberto Escobar M., Phd, "Análisis Moderno de Pruebas de Presiones" Editorial Surcolombiana, Segunda Edición Marzo 2009.
- L.P. Dake, "Fundamentals of Reservoir Engineering" Developments in Petroleum Science, 8 SPE.
- Douglas Alvarado, Phd, "Análisis de Pruebas de Presiones" International Training Group, Septiembre del 2004"
- Anónimo, "Historia de la Exploración y Explotación en la Amazonia Ecuatoriana"
- Amanat U. Chaudhry, "Oil Well Testing Handbook" Advanced TWPSOM Petroleum Systems, Inc. Houston, Texas
- 6. DeGolyer and MacNaughton, "Documentos de Trabajo utilizados para elaborar el estudio sobre Reservas de Gas del Yacimiento Amistad.

- Ing. Iván Fajardo D. "Evaluación de Reservas del Campo Amistad" Subgerencia Regional Guayaquil, División de Producción, Noviembre de 1988.
- 8. Estudio Técnico-Económico, Proyecto de Desarrollo del Campo Amistad, Julio de 1981.
- Estudio de Simulación de Reservorio del Campo Shushufindi-Aguarico, Cuenca Oriente, Ecuador.
- 10.Volumen VI: Historia de Producción preparado para Petroproducción, Febrero 2011.
- 11.Geologic Report of the Amistad Field Gulf of Guayaquil, December 1975.