1 623.8 HOD

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingeniería Marítima y Ciencias del Mar

DISEÑO PRELIMINAR DE UNA EMBARCACIÓN PLANEADORA PARA SERVICIO DE GUARDACOSTAS EN LAS ISLAS GALÁPAGOS

TESIS DE GRADO

Previa a la obtención del Título de

INGENIERO NAVAL

Presentado por:

Juan Fernando Moreno García

Guayaquil - Ecuador 2000

AGRADECIMIENTO

Al Dr. José R. Marín L., por su paciencia y titánica colaboración, sin cuya ayuda este trabajo no hubiese llegado a su fin; a Marcelo De Tomaso, que en paz descanse, por la filosofía de vida; y a todos en general, que de una u otra forma sintieron, vivieron y comentaron de alguna manera, el desarrollo de esta tesis.

DEDICATORIA

A mi hijo, que aún está en camino, y aunque no sabe, ni entiende, lo que estoy haciendo por él, ya debe sentir que lo quiero.

Ing. Bolívar Vaca Romo Presidente del Tribunal -Dr. José Marín López/ Director de Tesis

Ing. Cristóbal Mariscal Díaz Miembro Principal Ing. Armando Flores Hidalgo Miembro Principal

•

DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, corresponden exclusivamente a su autor, y el patrimonio intelectual de la Tesis de Grado corresponderá a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL".

(Reglamento de Exámenes y Títulos Profesionales de la ESPOL)

Juan Fernando Moreno García

RESUMEN

A partir de información no clasificada del Cuerpo de Guardacostas de la Armada Nacional, se establecieron los requerimientos que debía satisfacer una embarcación con casco tipo planeador, que sería usada en las islas Galápagos, para cumplir el servicio de patrullaje costero y de altura. Se establecieron requerimientos operacionales, como capacidad de remolque, de reabastecimiento en la mar, de maniobra de salvataje y eventualmente maniobras con helicópteros; además, se incluyeron requerimientos de ingeniería como velocidad de hasta 25 nudos y calado máximo de 2.0 metros. Basándose en la información climatológica de la zona de operación, se estableció que el máximo estado de mar esperado es 3.

Se aplicó la espiral de diseño, para embarcaciones militares, en los niveles de diseño conceptual, y dos fases del diseño preliminar. La primera fase empezó con la generación automática de formas, utilizando programas de computación disponibles para satisfacer los parámetros y relaciones principales requeridos. Posteriormente se desarrollaron los cálculos hidrostáticos y de estabilidad, resistencia y propulsión, comportamiento del buque en la mar, estructural, balance eléctrico y estimación de costos. Como parte del análisis en mares irregulares, se calcularon ciertos efectos que se producen durante la navegación, como son el 'slamming', la presencia de agua en cubierta. y, la inestabilidad dinámica longitudinal, 'porpoising'. El diseño

desarrollado satisface razonablemente bien los requerimientos de ingeniería. Respecto de los operacionales, se ha podido identificar las direcciones de las olas que pueden impedir el cumplimiento de tareas durante el tránsito de punto a punto.

INDICE GENERAL

RESUMEN	iv
INDICE GENERAL	vi
INDICE DE FIGURAS	viii
INDICE DE TABLAS	ix
SIMBOLOS Y ABREVIATURAS	xi
INTRODUCCION	xiii
I. CONSIDERACIONES PRELIMINARES	14
1.2 Requerimientos básicos para el diseño	14 16 20
II. DISEÑO CONCEPTUAL	24
2.2 Estimación y distribución de pesos 2.3 Estimación de propulsión 2.4 Distribución general	24 27 30 31 34
III. DISEÑO PRELIMINAR	39
3.2 Cálculo de estabilidad transversal 3.3 Cálculo de resistencia y propulsión 3.4 Cálculo estructural 3.5 Distribución General	39 51 57 66 72 76
IV. SEGUNDA FASE DEL DISEÑO PRELIMINAR	82
4.2 Distribución pesos y capacidad de líquidos	82 85 90

4.4 Análisis del comportamiento del buque en la mar y Estabilidad dinámica longitudinal	96
4.5 Análisis de la estructura de proa	104
4.6 Distribución General	111
4.7 Estimación de Costos	113
CONCLUSIONES Y RECOMENDACIONES	115 .
ANEXO	123
BIBLIOGRAFIA	133

•

•

ţ

INDICE DE FIGURAS

FIG	TÍTULO	PÁG
1	Espiral de diseño	15
2	Potenciales áreas de operación de la embarcación	18
3	Estimación del peso de la estructura del casco y apéndices	28
4	Peso de la maquinaria	28
5	Esquema de distribución de pesos	29
6	Diagrama esquemático de la distribución general	32
7	Posición del Centro de gravedad vertical en la distribución general	34
8	Perfil y cubierta principal	41
9	Sección media	43
10	Plano de líneas de formas de la embarcación	44
13	Curva de desplazamientos	46
14	Coeficientes de forma	46
15	Variación del KMT y KML	47
16	Variación del LCB y LCF	47
17	Superficie mojada	47
18	Curva de eslora inundable	49
19	Curvas cruzadas de estabilidad	51
20	Curvas de estabilidad intacta, 1ª. Condición	52
21	Curvas de estabilidad intacta, 2ª. Condición	53
22	Resistencia al avance versus velocidad	59
23	Potencia versus velocidad	60
24	Aspecto de la maquinaria seleccionada	61
25	Diagrama de cavitación posterior	63
26	Torque versus RPM	65
27	Arreglo estructural de la sección media	69
28	Panel estructural	71
29	Plano de distribución general 01	74
30	Plano de distribución general 02	75 96
31	Curva de rendimiento de la maquinaria principal	86
32	Autonomía versus velocidad	87
33	Arreglo de la sala de máquinas	92
34	Diagrama polar de velocidades	98
35	Régimen de inestabilidad dinámica longitudinal versus ángulo de asiento	103
36	Peso/área versus separación entre longitudinales	108
37	Integración de los programas para el diseño	112
38	A péndice usado en cascos no prismáticos.	122
39		89

INDICE DE TABLAS

TABLA	TÍTULO	PÁG
l	Condiciones climatológicas de las posibles áreas de operación	17
2	Equipos de comunicaciones	20
3	Area de fondeo en las islas principales	21
4	Area de fondeo en otras islas	21
5	Requerimientos de diseño	22
6	Requerimientos de equipamiento	23
7	Estimación de la eslora	25
8	Dimensiones principales	26
8 9	Otras dimensiones	26
10	Resumen de dimensiones principales	27
11	Coeficientes de forma	27
12	Propiedades de materiales de construcción naval	35
13	Consumo de combustible	37
13	Parámetros iniciales empleados por el programa Gformas	40
15	Parámetros iniciales para definir las ordenadas que representan la	40
13	cubierta principal y las chinas	
16	Cálculos hidrostáticos básicos	45
17	Cálculos hidrostáticos 1 parte	45
18	Cálculos hidrostáticos 2 parte	45
19	Resumen de dimensiones principales	48
20	Eslora inundable	49
21	Resultados de los cálculos de estabilidad intacta	53
22	Análisis de estabilidad intacta, 1 condición	55
23	Análisis de estabilidad intacta, 2 condición	56
23 24	Datos de entrada del programa Disprop	57
24 25	Comparación de parámetros modelo prototipo	58
25 26	Resistencia al avance y potencia al eje	58.
20 27	Especificaciones de la máquina seleccionada	60
28	Datos iniciales de los propulsores seleccionados	61
28 29	Valores de operación de los propulsores	62
30	Degumen de cálculo de resistencia y propulsión	64
31	Torque y velocidad de operación para varias condiciones de carga	64
32	Fórmulas y valores de variables	67
33	Escantillones de los estructurales en sección media	68
34	Cálculo de inercia y módulo seccional	69
35	Cálculo del peso por unidad de área de un panel estructural	70
3 <i>5</i> 36	Peso por unidad de área	71
30 37	Distribución general bajo cubierta	73
- 1	<i>₽ *****</i>	

	ESPO	
38	Cálculo de centro de gravedad	76
39	Balance eléctrico	78
40	Opciones de generadores para instalar abordo	. 79
41	Comparación con unidades existentes	81
42	Desplazamiento versus calado	83
43	Revoluciones versus velocidad	85
44	Consumos de combustible	86
45	Autonomía versus velocidad	87
46	Cálculos previos a la obtención del LCG y VCG	88
47	Cálculo de calado y asiento	89
48	Equipos del departamento de ingeniería y su ubicación	90
49	Resumen de requerimientos del sistema propulsor y de gobierno	96
50	Parámetros de entrada del programa SCORES	97
51	Parámetros de criterios de comportamiento del buque en la mar	100
52	Parámetros de comparación de Comstock	101
53	Cálculo de coeficientes de sustentación	103
54	Cálculo de presión estática equivalente	106
55	Variación de la relación peso/área con la separación de longitudinales	108
56	Cálculo del módulo seccional de la sección maestra	109
57	Distribución conoral bajo subjerta	113
58	Resumen de estimación de costos	114
59	Información entregada por SCORES	129
60	Espectros de respuesta	130
61	Determinación de los RAOs	131
62	Determinación del espectro de respuesta de aceleración y Slam/hora	131
63	Determinación de espectros de respuesta del número de veces que se moja la cubierta	132

ABREVIATURAS Y SIMBOLOS

Presión máxima efectiva
Espectro del parámetro buscado a la frecuencia de encuentro
Espectro de mar a la frecuencia de encuentro
RAO al cuadrado
Densidad
Angulo de astilla muerta, ángulo de desfase de cabeceo
Volumen de carena
Desplazamiento en toneladas
Esfuerzo
Función posición, velocidad o aceleración del buque en un instante
Angulo de desfase del levantamiento
Amplitud de la ola
Angulo de incidencia de la ola hacia el buque
Función de la respuesta en levantamiento, η ₃ amplitud de la respuesta
Función de la respuesta en cabeceo, η ₅ amplitud de la respuesta
Esfuerzo crítico
Frecuencia de encuentro
Frecuencia natural
Vector posición de una partícula de agua en la superficie de la ola
Area desarrollada de las palas de la hélice
Area de sección media
Area del disco de la hélice
Area proyectada de la pala
Area del plano de agua
Manga de la superficie del fondo
Manga Potencia al freno
Distancia entre el metacentro y centro de boyantez longitudinal
Distancia entre el metacentro y centro de boyantez transversal
Ancho promedio del fondo
Manga proyectada de la china en la sección media
Coeficiente de bloque
Centro de gravedad
Coeficiente de inercia
Coeficiente de sustentación con astilla muerta
Coeficiente de sustentación sin astilla muerta
Coeficiente prismático

Coeficiente de sección media C_{x} D Puntal Calado de lastre dь Desplazamiento DESP Factor dinámico de carga (Dynamic Load Factor) DLF Francobordo F Factor de impacto Fτ Número de Froude Fn Factor de distribución de carga transversal F_{T} Pies (feet) ft Aceleración de la gravedad g Galones gal Altura metacéntrica GM h Hora Η Calado Humedad Hum Inercia respecto el centro de gravedad propio Ιœ Pulgadas (inches) in Instituto Oceanográfico de la Armada IOA Inercia total I_T k Número de la ola, $(2\pi/\lambda)$ Posición vertical del centro de boyantez KB KG Posición vertical del centro de gravedad Altura del metacentro longitudinal KML Altura del metacentro transversal **KMT** Nudos (knots) kn Ksi Kilo libras por pulgada cuadrada Coeficiente de utilización K_n Kilovatios kW L Eslora Línea de agua de diseño LAD lb Libras LCB Posición del centro de boyantez longitudinal Posición longitudinal del centro de boyantez LCB Posición longitudinal del centro de flotación LCF LCG Posición del centro de gravedad longitudinal Longitud proyectada de la china L_{n} Eslora entre perpendiculares L_{pp} Eslora de la superestructura L_s Metros m Metros sobre segundo m/s Milímetros mm Millas naúticas Mn Módulo seccional (SM) MS

Coeficiente de plano de agua

 C_w

Momento para variar el asiento una pulgada MT1 Revoluciones por minuto (RPM) Ν Número de veces por hora, que ocurre un evento N_{T} Número de Nusseld N_{u} Organización Marítima Internacional OMI Presión estática equivalente P P_{F1} Probabilidad de que ocurra F Presión hidrostática p_h Pluviosidad Pluv Fuerza máxima por unidad de longitud p_0 Presión de slam p_{sl} Torque Q Operador amplitud de respuesta (Response Amplitute Operator) RAO rel Raíz media cuadrática (Root Mean Square) RMS Espaciamiento entre longitudinales SHP Potencia al eje Superficie mojada SMΤ Calado Espesor del estructural t Posición transversal del centro de boyantez TCB Ton Toneladas Peso para variar el asiento una pulgada TP1 Período medio T_{x} Dólar norteamericano USD V Velocidad Posición vertical del centro de boyantez VCB VOL Volumen W Desplazamiento en libras Distancia desde sección media hasta el punto donde se quiere realizar el análisis Χ Octavos de nubes x/8Aceleración vertical del centro de gravedad longitudinal Ÿсс

Módulo seccional

Posición del centro de gravedad vertical

Z

 Z_{x}

La Armada del Ecuador tiene como tarea el precautelar las zonas de reserva ecológica del país, y entre ellas, la más importante, localizada en las islas Galápagos. Para cumplir con este cometido requiere de una embarcación que sea capaz de alcanzar velocidades suficientemente altas para dar alcance a embarcaciones que operan ilegalmente. Este control debe realizarse alrededor de todas las islas que conforman el Parque Nacional Galápagos. Además, esta embarcación debe ser un medio de transporte de carga a las poblaciones no atendidas por los buques de servicio mercante.

El objetivo de este trabajo es diseñar en ma preliminar una embarcación para proveer servicio de guardacostas en las Islas Galápagos. Lo que significa considerar la espiral de diseño, hasta dos niveles: conceptual y preliminar. Además se busca romper con la dependencia tecnológica en el diseño de embarcaciones planeadoras, en el que normalmente se parte de un diseño ya establecido en astilleros avanzados, en lugar de empezar por los requerimientos del armador.

I. CONSIDERACIONES PRELIMINARES

1.1 ALCANCE

El proceso de diseño para buques militares, no se aparta de los conceptos clásicos, empleados en el diseño de buques de servicio mercante, por lo que en este trabajo se toma como base la espiral de diseño convencional, tal y como se describe en 'Concept Exploration-an Approach to Small Warship Design', [13]. Se partirá de los requerimientos iniciales del Cuerpo de Guardacostas de la Armada del Ecuador, de los cuales se define una dimensión básica, la eslora, que será el punto de inicio del resto de estimaciones dentro de la etapa del diseño conceptual de la embarcación. Conseguido éste, la fase del diseño preliminar es una constante mejora de las fórmas y características del buque, logradas en la primera parte.

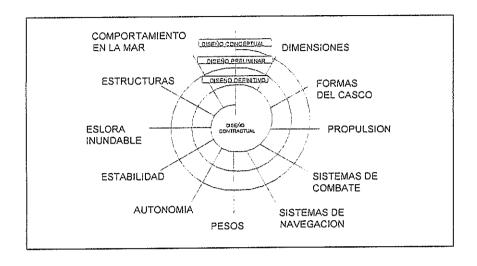


Figura I.- Espiral de diseño, [13].

En la fase de diseño conceptual se abarcarán los siguientes aspectos: determinación de las dimensiones principales y formas del casco, estimación y distribución de pesos, estimación de propulsión, establecimiento de la distribución general y selección del material. La primera fase del diseño preliminar incluirá además de una mejora de los aspectos tratados en la fase anterior, el cálculo estructural y el cálculo de calados y asiento, y, en la segunda tase se incluirá un cálculo de la inestabilidad dinámica longitudinal ("porpoising"), y un análisis estructural del cuerpo de proa de la embarcación, abarcando así todos los pasos descritos en una espiral de diseño clásica.

1.2 ESPECIFICACION DE LOS REQUERIMIENTOS

Rol operativo y actividades que desempeñará la unidad.-

Para establecer los requerimientos del diseño es necesario primero conocer el rol que desempeña el Cuerpo de Guardacostas de la Armada del Ecuador en la actividad marítima: "Garantizar la vida humana en el mar, protección de los recursos de la zona económica exclusiva y controlar y neutralizar actividades ilícitas en la mar". Estos objetivos a su vez dan origen a un sinnúmero de actividades operativas que las unidades deben cumplir: transporte de personal y material en acción cívica y social, protección ecológica (protección del manglar, explotación, movilización, comercialización y adquisición de flora y fauna marina), control de navegación ilegal, neutralización de actividades ilícitas como el contrabando, narcotráfico, pesca ilegal y piratería. Además en el cumplimiento de estos roles la unidad guardacosta deberá estar en capacidad de interactuar con otros buques guardacostas, de la Escuadra Naval y de otras Armadas, en operaciones conjuntas con otras fuerzas, realizar maniobras de remolque de buques pequeños (hasta 400 toneladas de desplazamiento), y, desarrollar maniobras de reabastecimiento en la mar.

Areas de operación.-

En primera instancia la unidad operará en la zona del mar territorial de la región Insular, pero deberá estar en capacidad de realizar viajes al continente para fines

de mantenimiento preventivo y reparaciones mayores, ya que en el archipiélago no existe la infraestructura necesaria para hacerlo. El puerto base en el continente en la mayoría de los casos será Guayaquil, pudiendo ser también Manta o Esmeraldas, como se describe en la figura II.

Un resumen de las condiciones ambientales promedio que presentan las potenciales áreas de operación de la embarcación a diseñarse, son las que se muestran en la tabla I.

	Temperatura (°C)			– Humedad	Estado	Viento	Nubes	Pluv.	
Sector	Máxima		Mínima Seco Húm.	%	de mar	m/s	x/8	mm	
	Seco	Húm.	Seco						
Esmeraldas	35.0	29.2	16.0	22.6	84	2	2.7	6	160.2
Manta	35.5	28.7	13.5	21.6	77	3	3.0	6	71.6
IAIGIIICA	55.5								
Guayaquil	36.9	30.2	14.5	21.7	78	1	1.5	6	241.4
Baltra	33.3	27.6	16.5	21.8	76	3	6.3	4	23.1
Dailea	33.3	27.0	10.5	21.0	, -				
Santa Cruz	38.6	26.6	13.3	21.1	85	3	2.1	5	83.6
Care Caintábal	26.0	27.6	12.7	21.1	80	3	2.6	5	109.3
San Cristóbal	36.0	47.0	14.7	-1.1	30	_		-	

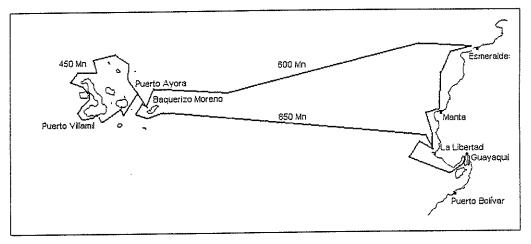

Fuente: www.inocar.mil.ec [19]

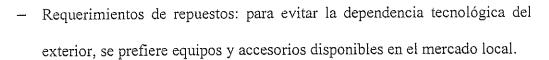
Tabla I.- Condiciones Climatológicas de las posibles áreas de operación

De la tabla anterior se deduce que las condiciones extremas en las cuales la embarcación va a operar son: estado de mar 4, y, vientos de alrededor de 6 m/s (12 nudos); estos datos influirán en el diseño de las formas del casco y comportamiento en la mar. Para el diseño de la planta de acondicionamiento de aire y el funcionamiento de la maquinaria principal, será necesario considerar

ţ

las temperaturas máximas y mínimas de la zona, esto es: máxima 40°C y mínima 14°C y la humedad máxima relativa de 85%.

Fuente Atlas Encarta 97


Figura II.- Potenciales áreas de operación de la embarcación Escala 1:12500000

La pluviosidad registrada en las Islas no es considerable comparada con la del continente, por lo que no será un factor que influya mayormente en el diseño de la embarcación.

Requerimientos específicos

Requerimientos por reglamentación: con la finalidad de cumplir con los convenios internacionales, la embarcación deberá ser diseñada observando los convenios de SOLAS, [18], en lo que a equipamiento para salvataje y control de averías, y las normas MARPOL, [17], en lo que se refiere al

- tratamiento de desechos y aguas de sentinas. En el cálculo estructural se observarán las Reglas de Clasificación de ABS, [1].
- Requerimientos de habitabilidad: debido a las actividades que desempeña, la habitabilidad se reparte entre 04 oficiales y 21 tripulantes, disponiendo además de espacio para 15 personas extras, en casos de realizar maniobras de salvataje.
- Requerimientos de Autonomía: considerando el perfil de crucero de la unidad se requiere autonomía por capacidad de combustible de hasta 2000 millas naúticas, a velocidad de crucero de 15 nudos, y por capacidad de bodega de víveres hasta para 15 días.

- Requerimientos de maniobras: para realizar maniobras de remolque y reabastecimiento en la mar, la unidad debe disponer de: al menos una bita de remolque en popa, carrete y tira de remolque de 500 metros, maniobra de fondeo con cabrestante electrohidráulico y dos anclas (teniendo una de respeto), al menos un bote de goma con quilla de fibra con capacidad para 10 personas, pluma hidráulica para la maniobra del bote capaz de levantar el bote con el motor y dos personas abordo, reflectores de rebusca de 300 metros de alcance.
- Requerimientos electrónicos: equipo de radiogoniómetro para determinar la dirección de la emisión de señales de radio, radar de navegación con entrada de giro, equipos de comunicación conforme se especifica en la

tabla II, identificador amigo enemigo (IFF), interface electrónica de comunicaciones comando y control con la Dirección de la Marina Mercante.

ITEM	CAN	EQUIPO	USO
1	02	Transreceptor UHF	Para maniobras conjuntas y combinadas
2	02	Transreceptor HF	Emergencia e internacional de auxilio
3	01	Transreceptor VHF FM	Portuario
4	01	Transreceptor VHF AM	Coordinación aéreo
5	01	Teléfono satelital	Uso comercial

Tabla II.- Equipos de comunicaciones

- Requerimientos de armamento: un cañón de 0.50 cm de calibre en proa y dos montajes de 20 mm uno a cada banda a la altura de la cuadra.
- Requerimientos de ingeniería: máquinas diesel, aire acondicionado en todos los interiores de la lancha, tanque de tratamiento de aguas negras y planta desalinizadora o evaporadora para la obtención de agua dulce.

1.3 RESTRICCIONES

La principal restricción, debido al área de operación, es la limitación del calado en las proximidades de ciertas islas que no disponen de áreas de fondeo establecidas; hay que destacar sin embargo que todas las islas poseen ayudas a la navegación, esto es, faros o boyas de aproximación, por lo que la posición de la embarcación fondeada, siempre será bastante precisa. La sonda en las áreas de

fondeo de las principales islas, obtenidas del conjunto Cartográfico insular, IOÀ 20 (Carta General del Archipiélago), son:

CARTA	DESCRIPCION	AREA DE FONDEO
IOA 200	Isla San Cristóbal y Española	Dentro del veril de 5.0 metros
IOA 202	Isla Santa Cruz y San Salvador	Dentro del veril de los 10.0 metros
IOA 205	Isla Isabela y Fernandina	Dentro del veril de los 10.0 metros
IOA 206	Isla Isabela (sector Sur)	Dentro del veril de los 5.0 metros

Fuente Cartas publicadas por INOCAR

Tabla III.- Area de fondeo en las principales Islas

La sonda en otras islas que no poseen áreas de fondeo establecidas, se determina la distancia de la costa hasta el veril¹ de los 5.0 metros.

CARTA	DESCRIPCION	DISTANCIA (Mn)
IOA 201	Isla Pinta, Marchena y Genovesa	1.20
IOA 203	Isla Santa Fé y Santa María	2.00
IOA 204	Isla Wolf y Darwin	1.50

Fuente Cartas publicadas por INOCAR

Tabla IV.- Areas de fondeo en otras islas

De lo expuesto en las tablas anteriores, se observa que el mínimo fondo que se dispone en las islas principales es de 5.0 metros o menos, ya que el área de fondeo en la Isla San Cristóbal, se encuentra dentro del veril de los 5.0 metros. Debido a que las sondas en las cartas son hechas en la menor marea de sicigia²,

¹ Veril: curva de nivel submarino

² Sicigia: marea que presenta la máxima pleamar y la mínima bajamar del mes, ocurre cuando se alinean el sol, la luna y la tierra. Se presentan dos veces al mes. Este período se conoce comercialmente como 'Aguaje'.

es de suponerse que en muy pocas ocasiones se encuentren sondas inferiores a las que marcan las cartas. Sin embargo, hay que considerar el efecto de las corrientes que ocasionan el movimiento de bajos, bancos de arena, y que no están contemplados en las cartas, sino que se proveen como aviso a los navegantes. Si se asume un calado mínimo de 2.0 metros, se estaría guardando cierto factor de seguridad para maniobras de aproximación a las islas, manteniendo siempre al menos 2.0 metros de agua bajo la quilla.

Resumiendo se pueden presentar los siguientes requerimientos finales: Requerimientos inherentes al diseño:

RÈQUERIMIENTO	DESCRIPCION	AREA
Calado	No mayor a 2.0 metros	Dimensiones principales
Velocidades	Máxima 25 nudos, crucero 15 nudos	Propulsión
Habitabilidad	04 oficiales y 21 tripulantes, 15 extras	Distribución general
Autonomía	2000 Mn y/o 15 días de víveres	Propulsión
	Máquinas diesel	Propulsión
Ingeniería	Aire acondicionado (40°C-14°C)	Arreglo sala de máquinas
	Planta de agua dulce	Arreglo sala de máquinas
	Tratamiento de aguas negras	Arreglo sala de máquinas

Tabla V.- Requerimientos de diseño

Requerimientos inherentes al equipamiento:

REQUERIMIENTO	DESCRIPCION	AREA
Repuestos	Accesorios y equipos	Todas
Electrónicos	Equipos de detección y comunicaciones	Electrónicos
Armamento	Montaje en proa y en las bandas	Artillería
	Bita de remolque	Distribución general
Maniobras	Carrrete y tira de remolque	Distribución general
	Bote de goma y pluma hidráulica	Ingeniería

Tabla VI.- Requerimientos de Equipamiento

II. DISEÑO CONCEPTUAL

2.1 <u>SELECCIÓN DE DIMENSIONES PRINCIPALES Y COEFICIENTES DE</u> <u>FORMA</u>

El punto de partida para realizar la selección de las dimensiones principales de un embarcación, es la aproximación de una de ellas; en este trabajo se ha escogido a la eslora como dimensión base para la determinación de las restantes. Para estimar una eslora de referencia se han asignado distancias razonables de ciertos espacios obligatorios en los buques y se ha aplicado un coeficiente de seguridad (10%), como se describe a continuación:

DESCRIPCION		DIMENSION	
Peak de proa	2.0	Metros	
Peak de popa (Servomotor)	2.0	Metros	
Sala de máquinas (máquina, reductor y espacio de trabajo)	8.0	Metros	
Sala de maquinaria auxiliar	4.0	Metros	
Area de vivienda (Camarote de oficiales y tripulación)	10.0	Metros	
Area de cocina y cámaras	6.0	Metros	
Pañoles y bodega de víveres	6.0	Metros	
TOTAL	38.0	Metros	
10%	3.8	Metros	
TOTAL ESTIMADO	42.0	Metros	

Tabla VII.- Estimación de la eslora

Con el valor obtenido de eslora (42 metros) y usando la referencia [13], se determinan los valores de las restantes dimensiones fundamentales. Dicho procedimiento es aplicable para un rango de eslora entre 60 y 150 metros, evidentemente por encima del valor obtenido en este trabajo. Sin embargo, al no disponer de otra información válida para embarcaciones menores, se han tomado los valores del extremo inferior o cercanos a este, que se presentan en dicha publicación. Las tablas VIII y IX muestran el cálculo de diversas dimensiones principales y de los coeficientes de formas.

RELACIÓN	DESCRIPCIÓN	VALORES	
L	Eslora	42.0 m	(estimado)
T	Calado	2.0 m	(restricción)
$\frac{L}{\nabla^{\frac{1}{3}}}$	Relación eslora/volumen	6.5	$\nabla = 270 \text{ m}^3$
$C_{P} = \frac{\nabla}{A_{M}L}$	Coeficiente prismático longitudinal	0.60	$A_{\rm M} = 10.71 \; {\rm m}^2$
$C_B = \frac{\nabla}{LBT}$	Coeficiente de bloque	0.45	B = 7.14 m
$\frac{L}{D}$	Relación eslora/puntal	10.0	D = 4.2 m

Tabla VIII.- Dimensiones principales, [13]

RELACIÓN	DESCRIPCIÓN	VALOR
$C_W = 0.44 + 0.52C_P$	Coeficiente del plano de agua	0.752
F = 0.04L	Francobordo en sección media	1.68 m
$n = \frac{L}{10 \div 0.04L} - 1$	Número de mamparos estancos	2.6 (3)
$L_s = 0.5L$	Eslora de la superestructura (máx)	21 m
$z_x = 0.65D$	VCG	2.73 m

Tabla IX.- Otras dimensiones, [13]

Para continuar con el proceso es necesario calcular el coeficiente de inercia, definido de la siguiente forma, [13]:

$$C_{tt} = C_{w} (0.072C_{w} + 0.0106) - 0.003$$
 (1)
 $C_{tt} = 0.04568$

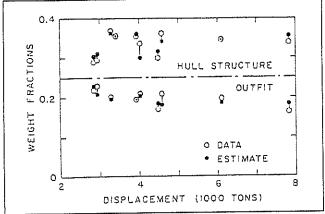
De manera que las dimensiones principales a nivel conceptual son las siguientes:

DIMENSION	VALOR	
Eslora	42.0	m
Manga	7.14	m
Calado	2.0	m
Puntal	4.2	m
Volumen de carena	270.0	m ³
Desplazamiento	276.75	Ton

Tabla X.- Resumen de dimensiones principales

COEFICIENTES	VALOR
Bloque	0.45
Prismático Long.	0.60
Sección Media	0.75
Plano de agua	0.75

Tabla XI.- Coeficientes de forma


La Serie 62, [7], presenta cálculos de cascos planeadores con relaciones eslora, manga desde 2.00 hasta 7.00; la embarcación que se diseñará en este trabajo tiene una relación eslora/manga de 5.88, valor que se encuentra dentro del rango considerado en dicha serie, de forma que los resultados de las pruebas de resistencia pueden usarse en la siguiente etapa del diseño.

2.2 ESTIMACION Y DISTRIBUCION DE PESOS

Se han clasificado los pesos del buque en tres grupos: la estructura, la maquinaria y sistemas auxiliares, y, extras por equipamiento y personal.

4

Peso de la estructura del casco y superestructura.- es obtenido como una fracción del desplazamiento, según se presenta en la figura III. Entrando con el valor del desplazamiento 270 Ton, casco y superestructura tienen un peso aproximado de 1/3 del desplazamiento esto es 90 Ton de estructurales; los apéndices del casco se aproximan como 0.2 veces el del desplazamiento, esto es 54 Ton.

\$SPOX

Figura III.- Estimación del peso de la estructura del casco y apéndices, [13]

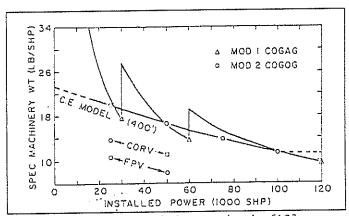


Figura IV.- Peso de la maquinaria, [13]

ì

- Peso de la maquinaria principal y auxiliares.- está relacionado con la potencia instalada, la cual se estima que estará alrededor de 4000 HP aproximadamente. De la figura IV, obtenemos el valor de 25 lb/SHP instalado, por lo que la maquinaria del buque pesaría 100000 libras (45.45 Ton), incluidos accesorios y sistemas auxiliares.
- Peso de equipamiento y personal.- de la diferencia entre desplazamiento y los pesos de casco y maquinaria, se tiene 81 Ton, que se las reparte entre combustible, y equipamiento. El equipamiento representaría aproximadamente 31 Ton e incluye equipos electrónicos y de navegación, habitabilidad y armamento. De esta primera estimación, se espera llevar 50 Ton de combustible. A continuación se presenta un diagrama esquemático de la distribución de pesos.

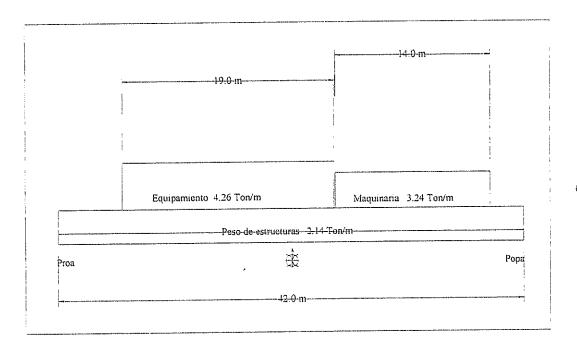


Figura V.- Esquema de la distribución de pesos

2.3 ESTIMACION DE PROPULSION

Para estimar la potencia requerida se han usado algunas formulaciones semiempíricas. La fórmula de Hacker [20], que relaciona la velocidad, en nudos, con el desplazamiento en toneladas y la potencia requerida:

SHP =
$$\frac{V^2 W}{31} = \frac{25^2 \times 276.75}{31} = 5579.6 \text{HP}$$
 (2)

Otra relación que sirve para estimar la potencia instalada, a nivel conceptual, es la del Almirantazgo [10], usando un coeficiente 'K' que depende de la eslora de la embarcación y se encuentra tabulado, para este caso (K=4.5), N es el número de máquinas instaladas.

SHP =
$$\frac{\Delta}{N} \left(\frac{V}{K} \right)^2 = \frac{276.75}{2} \left(\frac{25}{4.5} \right)^2 = 4270 \text{HP}$$
 (3)

George Crouch, [20], propone una relación que incluye la eslora, en pies, el desplazamiento del buque, en libras, y la velocidad, en nudos, para determinar la potencia instalada:

SHP =
$$\Delta \frac{V^2}{34225} \sqrt{\frac{25}{L}} = \frac{608850 \times 625}{34225} \sqrt{\frac{25}{137.76}} = 4736HP$$
 (4)

Starling Burgess propone una modificación a la fórmula de Crouch [20], relacionando la manga máxima, en pies, con un coeficiente 'K' que es un número entre 55 y 59.

$$SHP = \frac{V^2 \Delta}{K^2 B} = \frac{625 \times 608850}{3025 \times 23.42} = 5371 HP$$

$$SHP = \frac{V^2 \Delta}{K^2 B} = \frac{625 \times 608850}{3481 \times 23.42} = 4667 HP$$
(5)

De las ecuaciones (2), (3), (4) y (5), considerando los valores extremos: 5579HP ŷ 4270HP y debido a que estas relaciones proporcionan un número referencial, podemos afirmar que la potencia que se requiere se encontrará en el rango de los 4000 a 5000 HP.

Estimación del diámetro del propulsor

Normalmente el diámetro de la hélice viene dado por la relación, [13]:

$$D = 0.87T = 0.87 \times 2.0 = 1.74m$$
 (6)

2.4 <u>DISTRIBUCION GENERAL</u>

La distribución general se ha desarrollado en base a las estimaciones iniciales de la eslora; las formas del buque no se han definido, hasta esta etapa, por lo que solamente se presenta un esquema, tomando como referencia dicho parámetro. La embarcación contará con una sola cubierta baja y la cubierta de tanques; sobre cubierta principal, la superestructura incluye el puente de gobierno y la sala de equipos electrónicos y de radio.

. . .

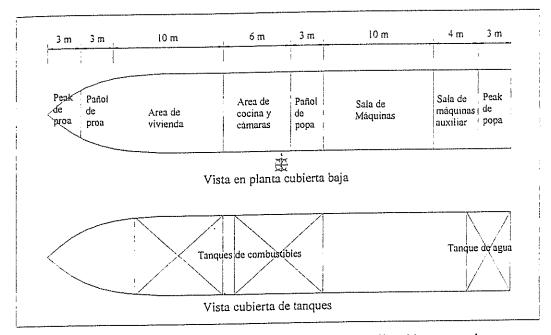


Figura VI.- Diagrama esquemático de la distribución general

Un aspecto importante que debe considerarse en la distribución de los espacios es el volumen de la maquinaria, en la referencia [13], se presenta una fórmula para el volumen de la maquinaria, basada en el desplazamiento de la embarcación:

$$V = 10000 + 20\Delta$$
 [ft³] = $10000 + 20 \times 276.75 = 15535$ ft³ = 440 m³

Hay que recalcar que el volumen de la maquinaria obtenido con esta relación, es independiente de la velocidad o de la potencia instalada, de manera que su uso debe ser restringido al nivel conceptual.

Cálculo del centro de gravedad longitudinal (LCG) .-

Se tomará como punto de referencia al extremo de proa del buque, véase la figura V, y se consideran los pesos como cargas uniformemente distribuidas, así se tiene:

$$\sum M = LCG \times \Delta$$

$$LCG = \frac{\sum M}{\Delta} = \frac{2.14 \times 42 \times 21 + 4.26 \times 19.0 \times 15.5 + 3.24 \times 14.0 \times 32.0}{276.75} = \frac{4593.57}{276.75} = 16.6 \text{m}$$

Esta posición está medida desde el extremo de proa del buque, por lo que la posición respecto a la sección media es 4.4 m hacia proa.

La posición del centro de gravedad hacia proa, ocasiona que la embarcación tenga encabuzamiento, es decir, asiento por proa, aunque no es común observar un LCG hacia proa, se ha observado que embarcaciones militares, que desarrollan altas velocidades, son diseñadas con cierto encabuzamiento.

Cálculo del centro de gravedad vertical (VCG).-

Se tomará como punto de referencia la cubierta principal del buque, véase la figura VII, y dos condiciones de carga: una completamente cargado de combustible y otra al 25%.

- Completamente cargado.-

$$\sum M = VCG \times \Delta$$

$$VCG = \frac{\sum M}{\Delta} = \frac{18.0 \times 1.52 - 2.1 \times 72.0 - 3.42 \times 80 - 3.25 \times 45.4}{276.75} = \frac{-194.51}{276.75} = -1.969 \text{ m}$$

La posición vertical del centro de gravedad, respecto a la cubierta principal, es 1.969 m bajo la cubierta.

- Con la capacidad de líquidos al 25%.-

$$\sum M = VCG \times \Delta$$

$$VCG = \frac{\sum M}{\Delta} = \frac{18.0 \times 1.52 - 2.1 \times 72.0 - 3.42 \times 42.5 - 3.25 \times 45.4}{264.25} = \frac{-416.74}{264.25} = -1.57 \text{ m}$$

La posición vertical del centro de gravedad, respecto a la cubierta principal, es 1.57 m bajo la cubierta.

El cálculo del VCG por medio de la relación descrita en [13], como 0.65 veces el puntal, 2.73 metros desde la quilla ó 1.47m bajo la cubierta.

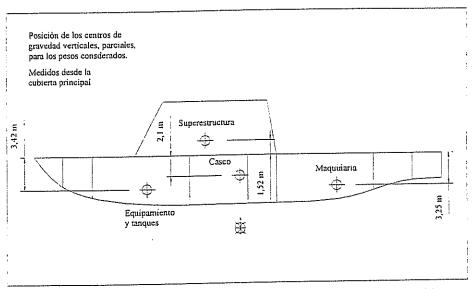


Figura VII.- Posición del centro de gravedad vertical, en la distribución general

2.5 <u>DISCUSIÓN SOBRE LA SELECCIÓN DEL MATERIAL</u>

En la referencia [30], se presenta una comparación entre diversos materiales para la construcción de embarcaciones menores: aluminio, acero, fibra de vidrio y materiales compuestos. A continuación se resumen las características principales de los materiales en discusión.

ŧ

PROPIEDAD		ALUMINIO 5086	M. COMPUESTO	ACERO	FIBRA
Densidad	Ton/ft ³	166	94	490	34
Resistencia a la flexión	Ksi	40	30	60	11.5
Módulo de Young	10 ⁶ Ksi	10.3	1.3	30	1.7
Resistencia a la tensión	Ksi	28/18		30	
Compresión	Ksi	26	22	60	7.4
Espesor para igual deflección	(rel)	1.43	2.85	1.00	2.65
Espesor vs Mto. Flector	(rel)	1.04	1.04	1.00	1.92
Peso por estructura	(rel)	49	55	100	105
Esfuerzo de ruptura	In Ton/in ³	5720		13500	150

Fuente 'Small Craft Engineering: Structures'

Tabla XI.- Propiedades de materiales de construcción naval, [30].

La selección del material del casco de una embarcación no se basa únicamente en las propiedades que tengan los mismos tipos, sino que debe considerarse también los objetivos que se desean conseguir: habitabilidad, desplazamiento, calado, velocidad de operación, etc. De hecho cada material es bueno en situaciones particulares, por lo que el ingeniero que realiza el diseño debe evaluar sus objetivos y la situación particular que envuelve el diseño, y compensar la deficiencia del material elegido para el mismo. En la tabla XII se muestran algunas de las ventajas y desventajas de los principales materiales usados en la construcción naval.

MATERIAL	<i>VENTAJAS</i>	DESVENTAJAS
Aluminio	Resistente a impactos menores y mayores	Dificil conseguir formas curvas
	Peso ligero	Baja resistencia a la fatiga
	Resistente a la corrosión	Elevado costo de material
Mat.compuestos	Gran resistencia a la fatiga	Baja resistencia a impactos
	Material con costo moderado	Estructura muy pesada
		Poco resistente a efectos ambientales
		Difícil de reparar piezas dañadas
		Alto costo de manufactura
Acero	Resistente a impactos mayores	Peso elevado de las estructuras
	Alta resistencia a la fatiga	Dificil conseguir formas curvas
	Fácil reparación	Poca resistencia a la corrosión
	Costo de material moderado	
Fibra de vidrio	Resistente a impactos menores	Poca resistencia a impactos mayores
	Fácil obtención de formas curvas	Baja resistencia a la fatiga
	Alta resistencia a la corrosión	Difícil reparación
	Bajo costo de manufactura	Costos elevados del material
	Peso moderado de la estructura	

Tabla XII.- Ventajas y desventajas de los materiales usados en construcción naval, [30].

El material escogido para el diseño de la embarcación es Acero, debido básicamente a dos aspectos: los buques de la Armada de dimensiones similares, lanchas misileras (36 m y 45 m de eslora) y lanchas guardacostas clase PGM (25m y 30 m de eslora), son de acero, por lo que se ha acumulado experiencia tecnológica en el manejo de este material. Además, la capacidad de construcción naval en el país se basa principalmente en el acero, especialmente para embarcaciones de las dimensiones de este diseño. La experiencia en construcciones de aluminio en nuestro medio está limitada a embarcaciones con

eslora de alrededor de 15 metros. Por otro lado nunca se ha construido, en el país, embarcaciones militares con materiales compuestos.

Resultados a nivel conceptual que serán revisados en la siguiente fase

Para finalizar esta etapa del diseño, a continuación se presentan aspectos que deben ser revisados en la etapa de diseño preliminar.

- El volumen estimado para espacio de máquinas, 440 m³, sobrepasa al espacio asignado para el área de máquinas en el plano de distribución general; considerando este espacio como un bloque cuadrado de dimensiones LxBxD, se dispone tan solo de 420 m³.
- Una vez obtenida una potencia instalada, se puede determinar un consumo de combustible. Para esta potencia, el consumo es de 0.5 lb/(HP-hr). El requerimiento de autonomía es de 2000 Mn. Considerando la velocidad de crucero de 15 nudos, la embarcación cubrirá esta distancia en 133.3 horas; lo que representa en consumo de combustible:

TIEMPO	VELOCIDAD	CONSU	MOS (lb)	CONSUN	(OS (Ton)
(horas)	(nudos)	4000 HP	5000 HP	4000 HP	5000 HP
133.33	15	266660	333325	119.2	148.81
80.00	25	160000	200000	71.42	89.28

Tabla XIII.- Consumo de combustible

Se estimó 50 Ton, de combustible; lo que comparado con los valores de la tabla XIII, indica que se debe aumentar la capacidad de combustible, en la siguiente fase del diseño.

ŧ

Obtenidas las formas es necesario hacer una nueva distribución de pesos,'
debido a que el valor del LCG, se encuentra a proa de la sección media, la
embarcación probablemente estará encabuzada, por lo que es necesario
redistribuir los pesos hacia popa.

III. DISEÑO PRELIMINAR

3.1 LINEAS DE FORMAS Y CALCULOS HIDROSTATICOS

Generación de las Líneas de Formas.- Empleando los programas Gformas, [22], y Alisam, [23], se generaron las líneas de formas del buque y se desarrolló un alisamiento, de tal manera que los coeficientes y relaciones entre las dimensiones principales, estimados en la fase conceptual, se satisfagan o aproximen. Siguiendo el procedimiento establecido en el programa, se obtuvo el perfil y la cubierta principal, figura VIII, y la sección media, figura IX, en la que se han incluido cuatro chinas, dos de las cuales fueron usadas como referencia para el alisamiento y dos se han mantenido. Los parámetros iniciales para la generación de las formas se muestran en la tabla XIV y XV. El alisamiento de las formas obtenidas con Gformas, se desarrolló con orden 3 en las cerchas, tipo 'B', esto quiere decir, que se obtiene continuidad hasta en primera derivada.

El aspecto general de las Líneas de Formas de la embarcación, se observa en la 'figura X.

	C00.	RDENAL	DAS
DESCRIPCION	X (m)	Y(m)	Z(m)
Eslora total Semimanga Puntal en sección media Perfil longitudinal definido por 8 puntos y unidos por una cercha de orden 3. Altura de cubierta en proa 4.5 m Altura de cubierta en popa 4.2 m	42.000 -0.10 2.00 4.00 10.00 20.00 30.00 35.00 42.00	3.434	4.200 4.50 1.50 0.00 0.00 0.00 0.00 1.40 1.60

Tabla XIV.- Parámetros iniciales empleados por el programa 'Gformas', [22].

	ORDENADA	10	PET	<u>IDIENTE</u>	<u> </u>
X (m)	Y(m)	Z(m)	X(°)	Y(°)	Z(°)
-0.10 0.20 2.50 6.00 10.00 21.00 42.00	0.00 0.50 1.50 2.50 3.00 3.60 3.30				
2.72 2.22 2.50 0.77	0.00 0.00 0.00 0.00	1.00 1.50 1.20 3.30	45 45 45 45	10 12 10 15	-5 -6 -5 -2
21.00 21.00 21.00 , 21.00 42.00 42.00 42.00	0.40 2.80 3.20 3.43 0.00 2.50 3.30	0.30 0.80 1.20 2.00 1.65 1.70 1.80		0 0 0 0	0 0 0 0
	X (m) -0.10 0.20 2.50 6.00 10.00 21.00 42.00 2.72 2.22 2.50 0.77 21.00 21.00 21.00 21.00 42.00 42.00	X (m) Y(m) -0.10 0.00 0.20 0.50 2.50 1.50 6.00 2.50 10.00 3.00 21.00 3.60 42.00 3.30 2.72 0.00 2.22 0.00 2.50 0.00 0.77 0.00 21.00 2.80 21.00 3.20 21.00 3.43 42.00 0.00 42.00 2.50 42.00 3.30	X (m) Y(m) Z(m) -0.10 0.00 0.50 2.50 1.50 6.00 2.50 1.50 6.00 10.00 3.00 21.00 21.00 3.60 42.00 42.00 3.30 1.50 2.50 0.00 1.50 2.50 0.00 1.20 0.77 0.00 3.30 21.00 2.80 0.80 21.00 3.20 1.20 21.00 3.43 2.00 42.00 0.00 1.65 42.00 2.50 1.70 42.00 3.30 1.80	X (m) Y(m) Z(m) X(°) -0.10 0.00 0.50 2.50 1.50 0.00 2.50 1.50 6.00 2.50 10.00 3.00 21.00 3.60 42.00 3.30 45 45 45 45 45 2.22 0.00 1.50 45	X (m) Y(m) Z(m) X(°) Y(°) -0.10 0.00 0.50 2.50 1.50 6.00 2.50 1.50 6.00 2.50 10.00 3.00 21.00 3.60 42.00 3.30 45 10 2.72 0.00 1.50 45 12 2.50 0.00 1.20 45 10 0.77 0.00 3.30 45 15 15 15 21.00 0.40 0.30 0 0 21.00 2.80 0.80 0 0 0 21.00 3.20 1.20 0

Tabla XV.- Parámetros iniciales para definir las ordenadas que representan la cubierta principal y chinas

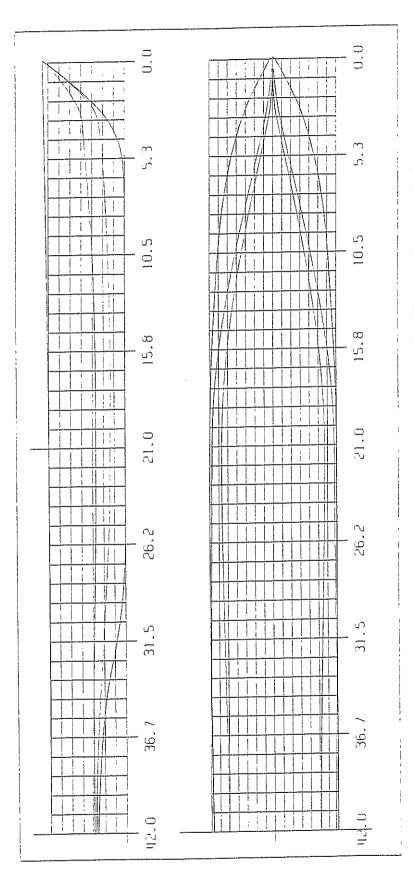


Figura VIII.- Perfil y cubierta principal de la embarcación, obtenidos por "Alisam", [23].

ţ

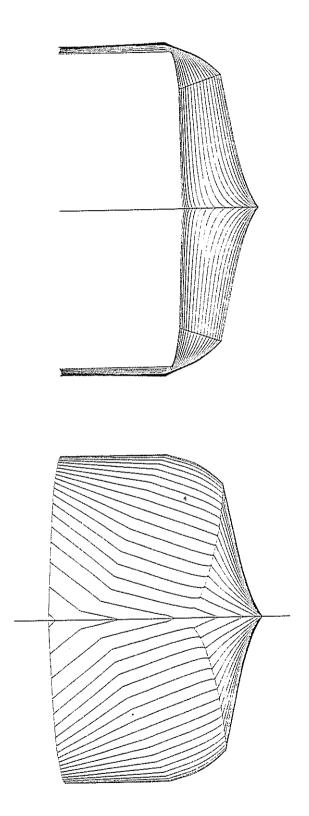
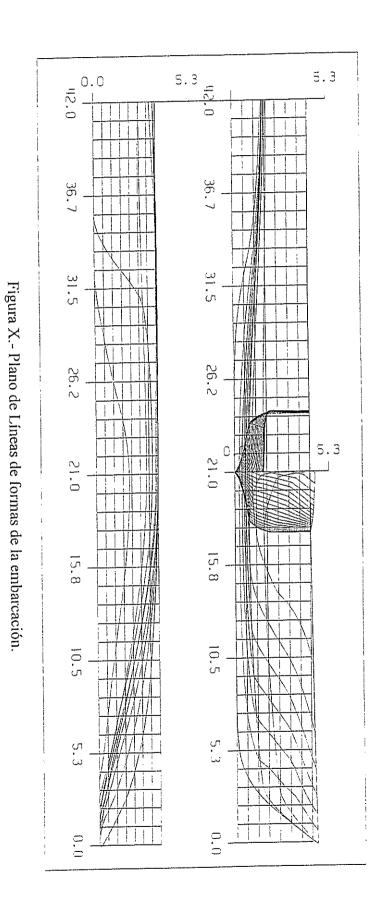



Figura IX.- Sección media, vista desde proa y desde popa.

G ESPO

ţ

Cálculos Hidrostáticos.- Partiendo de la tabla de puntos generada por el programa 'Alisam', se ejecutó el módulo de cálculos hidrostáticos del programa SHCP, [34], obteniéndose los siguientes resultados:

DESCRIPCION	DIMENSION
Desplazamiento de diseño	232.329 TON
Eslora total	42.0 m
Eslora en LAD	39.93 m
Calado de diseño	2.0 m
LCG	1.198 m a popa de sección media

Tabla XVI.- Cálculos hidrostáticos básicos

						_			
H	VOL	DESP.	LCB	КВ	SM	AW_	CP	CW	CIW
(m)	(m^3)	(Ton)	(m)	(n	n²)	<u></u>		
1.26	85	86.9	1.69	0.88	170	145	0.449	0.548	0.412
1.68	157	160.6	0.18	1.16	247	206	0.515	0.735	0.598
2.1	249	255.6	-1.48	1.43	292	228	0.589	0.787	0.703
2.52		356.2	-2.26	1.68	327	239	0.635	0.803	0.73
2.73	I	408	-2.49	1.8	345	242	0.653	0.81	0.74
2.94		460.4	-2.66	1.92	362	245	0.668	0.816	0.747
3.36	' ' '	566.8	-2.87	2.15	397	249	0.692	0.829	0.754
3.78	l	674.2	-2.94	2.38		250	0.712	0.845	0.756
3.70	020	0/4.2	/-						

Tabla XVII.- Cálculos Hidrostáticos 1ra. Parte. Asiento 0.0 m

\overline{H}	LCF			BML	BMT	KML	КМТ	1 (771)
(m)	(m)	TP I	CD/P -		(m	1)		MTI
1.26	0.08	148.87	-0.28	95.4	4.29	96.3	5.17	197.4
1.68	-3.73	211.06	18.75	120.3	3.96	121.4	5.12	459.8
2.10	-4.31	233.99	24	90.8	3.25	92.2	4.68	552.6
2.52	-4.14	244.45	24.12	69.6	2.6	71.3	4.28	590.6
2.73	-4.04	248.3	23.88	62.5	2.35	64.3	4.15	607.4
2.94		251.26	23,43	56.8	2.13	58.7	4.05	623
3.36	1	254.94	21.73	48.4	1.74	50.6	3.89	653.7
3.78	-3.07	256.24	18.7	42.9	1.41	45.3	3.79	688.9

Tabla XVIII.- Cálculos Hidrostáticos, 2ª. Parte. Asiento 0.0

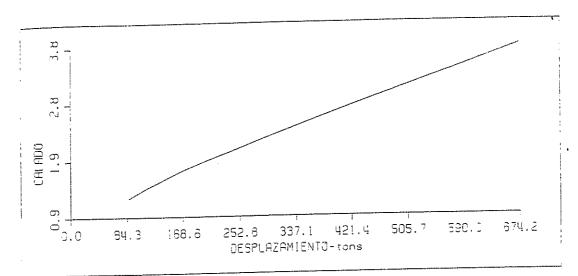


Figura XIII.- Curva de Desplazamiento en Agua Salada (ton) vs. Calado (metros)

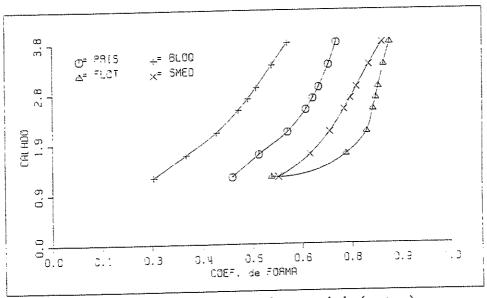


Figura XIV.- Coeficientes de forma, calado (metros).

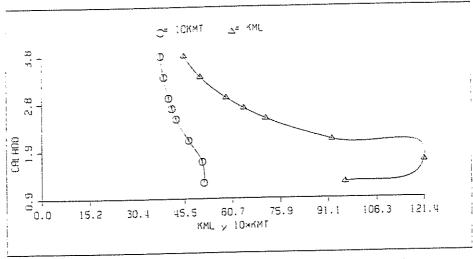


Figura XV.- Variación del KMT y KML, (metros)

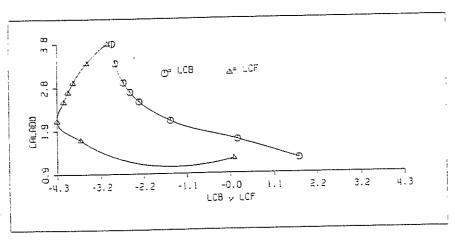


Figura XVI.- Variación del LCF y LCB, en metros (+ a proa)

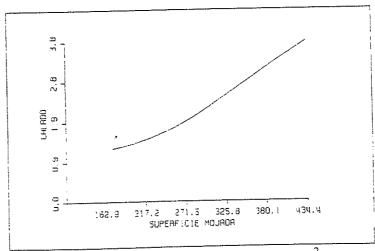


Figura XVII.- Superficie Mojada en m².

4

Resumen de cálculos hidrostáticos y comparación con preliminares.- La tabla XIX establece una comparación entre los resultados obtenidos en el diseño preliminar y el diseño conceptual.

DESCRIPCION	CONCEPTUAL	PRELIMINAR	DIF. (%)
Esiora total	42.00 m	42.00 m	0.00
Manga	7.14 m	6.86 m	3.90
Calado	2.00 m	2.00 m	0.00
Puntal	4.20 m	4.20 m	0.00
Desplazamiento	276.75 Ton	232.39 Ton	16.0
Coef. De bloque	0.45	0.419	6.88
Coef. Prismático	0.60	0.574	4.33
Coef. Sec. Media	0.75	0.686	8.53
Coef. Plano Agua	0.75	0.783	4.21
LCG/LCB	+4.4 m	-1.2 m	

Tabla XIX.- Resumen de dimensiones principales

La comparación del LCG en el diseño conceptual y el LCB en el diseño preliminar, indica que la embarcación tendrá un asiento por proa considerable, que debe ser considerado al momento de desarrollar la distribución de pesos.

Cálculo de la eslora inundable.- se calculó la eslora inundable, empleando el módulo Flngh, "Floodable Length", del programa SHCP, [34], y considerando los tres tipos de espacios descritos en SOLAS, [18], (Parte B, regla 8): espacios asignados a carga, carbón o pertrechos, para la sección a popa de las salas de máquinas (permeabilidad 60%), espacios ocupados como alojamientos, para la sección a proa de las salas de máquinas (permeabilidad 95%), y, espacios ocupados por maquinaria (permeabilidad 85%).

		· · · ·	E-loug Image	Posición	Eslora Inun
Posición_	Eslora Inun	Posición	Eslora Inun	Permeabi	
Permeabi	lidad 0.60	Permeab	ilidad 0.85	Permeau	IIdad 0.95
				^	0
10.901	EXT.	7.736		0	_
11.76	20.28	8.4	14.206	8.4	12.044
13.44	19.219	10.08	12.309	10.08	10.671
15.12	19.673	11.76	11.696	11.76	10.228
16.8	21.119		11.747	13.44	10.312
18.48	23.493		12.265	15.12	10.784
	26.889		13.255	16.8	11.665
20.16	31.746	·	14.757	18.48	12.996
21.84		20.16		20.16	14.834
22.679	EXI.	21.84		21.84	17.259
		23.52		23.52	20.418
					21.784
		25.2			19.429
		26.88			
		28.56			
		30.24			
		31.92		_	
		33.6			
		35.28			_
		35.761	EXT.	42	. 0

Tabla XX.- Eslora inundable (todas las dimensiones en metros)

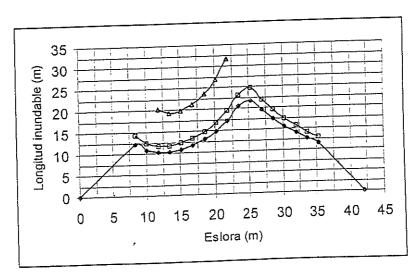


Figura.- XVIII.- Curva de eslora inundable, la superior para Permeabilidad de 0.60, la intermedia 0.85 y la inferior 0.95.

Para determinar la ubicación de los mamparos estancos en la unidad, se realiza el cálculo descrito en SOLAS, [18], Parte B, Regla 6, usando la curva de eslora inundable y el factor de subdivisión. Sin embargo en la misma Regla, párrafo 5.5 expresa que para buques de eslora menor a 55 metros, el factor que debe asumirse es igual a la unidad, por lo que la ubicación de los mamparos estancos se hace refiriéndose únicamente al cálculo de eslora inundable, representada en la figura XVIII.

Considerando la permeabilidad del 85% que corresponde a la sala de máquinas; se requiere de una separación entre mamparos de hasta 20 metros de manera que ubicando un mamparo alrededor de la sección media, permite tener cierta flexibilidad en la posición y tamaño de la sala de máquinas. La permeabilidad de 95 corresponde a la sección a proa de las salas de máquinas, donde el máximo espaciamiento entre mamparos debe ser de 10 metros, lo que permitirá tener compartimentos de hasta 10 metros de eslora. Finalmente la sección a popa de la sala de máquinas tiene asignada permeabilidad 60, que prácticamente no tendría restricción en lo que se refiere a la colocación de los mamparos estancos.

3.2 CALCULO DE ESTABILIDAD TRANSVERSAL

Empleando el módulo Intact, "Intact Stability" del programa SHCP, [34], se desarrolló el cálculo de curvas cruzadas de estabilidad y estabilidad intacta. Para ejecutar el cálculo de curvas cruzadas se usaron los datos mostrados en la tabla XIX.

Calados	0.5 m	1.0 m	1.5 m	2.0 m	2.5 m		
Asiento			000	4 0 °	50°	60°	700
Escora	10°	20°	30°	40°	30.	00	70

Tabla XIX.- Condiciones de entrada para el cálculo de curvas cruzadas

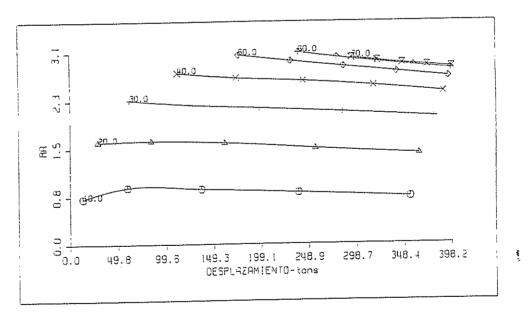


Figura XIX.- Curvas Cruzadas de estabilidad.

Para el cálculo de curvas de estabilidad intacta, se usaron los parámetros descritos en la tabla XX, que corresponden a la primera condición. Esta

condición es a plena carga, tanques llenos, los valores del KG, para el cálculò fueron obtenidos a partir del valor determinado en el diseño conceptual, $2.73\,\mathrm{m}$, véase subtema 2.4, con una variación de $\pm 10\,\mathrm{cm}$. En la segunda condición los tanques están llenos a un 10% de su capacidad, el desplazamiento en esta condición es de $134.77\,\mathrm{Ton}$, y el nuevo KG de $3.42\,\mathrm{m}$.

Los resultados obtenidos se muestran en las figuras XIX y XX y en las tablas XXI y XXII; para la primera condición y en la figura XXI y en la tabla XXIII para la segunda condición analizada.

							
Calados	2.0 m						
Asiento							
KG	2.63 m	2.73 m	2.83 m				
Escora	10°	20°	30°	40°	50°	60°	70°

Tabla XX.- Condiciones de entrada para el cálculo de curvas de estabilidad intacta

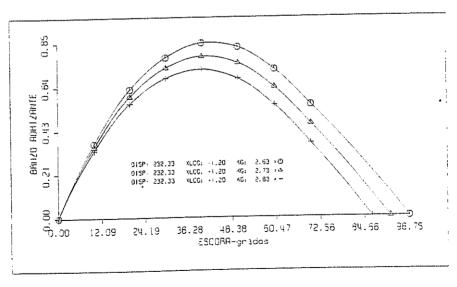


Figura XX.- Curvas de estabilidad intacta. Primera condición de carga (tanques llenos)

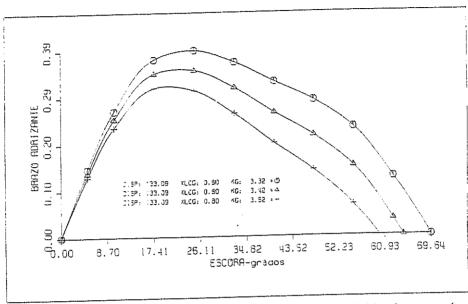


Figura XXI.- Curvas de estabilidad intacta. Segunda condición de carga (tanques al 10%)

	F	DESPL	Brazo	ТСВ	VCB	LCB	Escora	DESPL	Brazo	TCB	VCB	LCB	
H (m)	Escora (°)	(Ton)	J	(m			(°)	(Ton)		(n			
0.5		13.398	0.728	0.656	0.475	2.742	50	175.93	3.017	2.201	2.091	-3.95	
1	1	59.136	0.906	0.775	0.818	1.682		230.203	2.922	1.991	2.144	-3.498	
1.5	1	135.794	0.878	0.691	1.135	0.073		285.15	2.834	1.794	2.194	-3.125	
2	1	237.794	0.818	0.577	1.434	-1.382		340.024	2.749	1.605	2.242	-2.811	
2.5	1	354.082	0.743	0.453	1.715	-2.252		394.285	2.664	1.42	2.286	-2.557	
0.5	1	28.966	1.634	1.444	0.811	1.071	60	238,469	3.06	2.086	2.329	-3.747	
1	1	83.684		1.361	1.097	-0.338		278.411	2.977	1.918	2.33	-3.373	
1.5	i	160.541	1.62	1.228	1.364	-1.333		318.427	2.907	1.761	2.34	-3.053	
2	1	255.527	1.528	1.041	1.608	-1.926		358.006	2.845	1.612	2.355	-2.787	
2.5	1	363.16		0.859	1.846	-2.344		397.129	2.789	1.47	2.372	-2.559	
0.5	1			1.944	1.252	-1.816	70	293.538	2.968	1.917	2.46	-3.395	
1	1	122.658		1.741	1.45	-2.184		320.035		1.807	2.451	-3.151	
1.5		197.212		1.56	1.652	-2.392		346.383		1.701	2.446	-2.935	
	2	283.572		1.371	1.849	-2,483		372.49		1.599	2.446		
2.5		379.053	_	1.169.	2.033	-2.507		398.208	2.815	1.501	2.449	-2.571	
0.:				2,159	1.686	-3.435							
	1	173.219		1.942	1.819	- 3.193							
1.:		243.204		1.752	1.966	-3.009							
	2	316.087		1.55	2.086	-2.775							
2.:		389.008		1.335	2.18	-2.55							_

Tabla XXI.- Resultados de los cálculos de las curvas cruzadas de estabilidad El signo negativo indica que es de sección media hacia popa.

ŧ

En el módulo para realizar el cálculo de estabilidad transversal se ha incluido, un análisis para determinar si se satisfacen los requerimientos básicos de la OMI, [18]. Como se puede observar en la tabla XVI, todas las condiciones analizadas satisfacen los requerimientos especificados en la referencia [18]. Nótese el valor de altura metacéntrica inicial (GM_o) de 2.25, cuando el mínimo requerido es 0.15, para buques de pasaje, esto provocará aceleraciones violentas es los movimientos de restauración, aspecto que debe ser considerado, para posteriores análisis y cálculos, ya que podría ocasionar malestar en la tripulación, durante la navegación.

En la condición que involucra un desplazamiento con el 10% de líquidos, tabla XXIII, el ángulo de escora para el máximo adrizamiento no satisface los requerimientos básicos de estabilidad impuestos por OMI, y en el caso extremo, KG igual a 3.52 m, tampoco satisface la mitad de los requerimientos. Estas condiciones deberán ser consideradas cuando se haga un cálculo más exacto de la posición del centro de gravedad vertical.

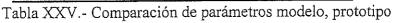
	ICION I							
Desplazamiento	232.33 Ton							
LCG	-1.2 m	Porcentaje						
VCG	2.63 m	del						
		Requerido	Satisface					
Area hasta 30°	14.02 m grad	4.45	l					
Area hasta 40°	22.24 m grad	4.31	1					
Area entre 30° y 40°	8.23 m grad	4.79	l					
Escora en brazo máximo	42.68 °	1,71						
Brazo máximo	0.85 m	4.27	ł					
GM inicial	2.36 m	15.71	SI					
Area bajo curva de brazos	52.51 m grad							
Máximo ángulo de estabilidad positiva	96.75 °							
Area hasta la inmersión de escotilla	52.51 m grad							
COND	CION 2							
Desplazamiento	232.33 Ton							
LCG	-1.2 m	Porcentaje						
VCG	2.73 m	del						
		Requerido	Satisface					
Area hasta 30°	13.25 m grad	4.2	SI					
Area hasta 40°	20.9 m grad	4.05	SI					
Area entre 30° y 40°	7.65 m grad	4.45	SI					
Escora en brazo máximo	41.24°	1.65	SI					
Brazo máximo	0.79 m	3.93	SI					
GM inicial	2.25 m	15.03	SI					
Area bajo curva de brazos	46.19 m grad							
Máximo ángulo de estabilidad positiva	91.53 °							
Area hasta la inmersión de escotilla	46.19 m grad							
CONDI	CION 3							
Desplazamiento	232.33 Ton							
LCG	-1.2 m	Porcentaje						
VCG	2.83 m	del						
		Requerido	Satisface					
Area hasta 30°	12.48 m grad	3.96	SI					
Area hasta 40°	19.56 m grad	3.79	SI					
Area entre 30° y 40°	7.08 m grad	4.12	SI					
Escora en brazo máximo	39.74 °	1.59	SI					
Brazo máximo	0.72 m	3.61	SI					
GM inicial	2.15 m	14.36	SI					
Area bajo curva de brazos	40.44 m grad	·						
Máximo ángulo de estabilidad positiva	86.6°							
Area hasta la inmersión de escotilla	40.44 m grad							

Tabla XXII.- Resultados del análisis de estabilidad intacta. Para la primera condición

COND	ICION I						
Desplazamiento	133.09 Ton						
LCG	0.8 m	Porcentaje					
VCG	3.32 m	del					
		Requerido	Satisface				
Area hasta 30°	8.71 m grad	2.77	SI				
Area hasta 40°	12.25 m grad	2.38	SI				
Area entre 30° y 40°	3.54 m grad	2.06	SI				
Escora en brazo máximo	22.84 °	0.91	NO				
Brazo máximo	0.4 m	1.98	SI				
GM inicial	1.77 m	11.82	SI				
Area bajo curva de brazos	18.3 m grad						
Máximo ángulo de estabilidad positiva	69.64 °						
Area hasta la inmersión de escotilla	18.3 m grad						
			····				
	CION 2						
Desplazamiento	133.09 Ton	•					
LCG	0.8 m	Porcentaje					
VCG	3.42 m	del					
		Requerido	Satisface				
Area hasta 30°	7.95 m grad	2.52	SI				
Area hasta 40°	10.91 m grad	2.12	Į.				
Area entre 30° y 40°	2.96 m grad	1.72	SI				
Escora en brazo máximo	21.81°	0.87	NO				
Brazo máximo	0.36 m	1.79	SI				
GM inicial	1.67 m	11.15	SI				
Area bajo curva de brazos	14.8 m grad						
Máximo ángulo de estabilidad positiva	64.43°						
Area hasta la inmersión de escotilla	14.8 m grad						
The state of the s	CION 3 133.09 Ton						
Desplazamiento		Dama ambaia					
LCG	0.8 m	Porcentaje					
VCG	3.52 m	del	0				
	7 10 1	Requerido					
Area hasta 30°	7.18 m grad	2.28	SI				
Area hasta 40°	3.79 m grad	0.74	NO				
Area entre 30° y 40°	No se puede		NO				
Escora en brazo máximo	20.77 °	0.83	NO				
Brazo máximo	0.32 m	1.61	SI				
GM inicial	1.57 m	10.49	SI				
Area bajo curva de brazos	7.26 m grad						
Máximo ángulo de estabilidad positiva	18.97°						
Area hasta la inmersión de escotilla	3.79 m grad						

Tabla XXIII.- Resultados del análisis de estabilidad intacta. Para la segunda condición

3.3 CALCULO DE RESISTENCIA Y PROPULSION

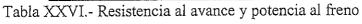

El uso del programa 'Disprop', [24], permite realizar un cálculo de la resistencia al avance y selecciona una hélice de la serie B, que absorba la potencia disponible, para impulsar la embarcación. Los datos, referentes a la embarcación, en condición de media carga, que el programa requiere son los que se muestran en la tabla XXIV y los resultados obtenidos al ejecutar el programa se muestran en la tabla XXVI y las figuras XXII y XXIII. Nótese que como se trata de una embarcación planeadora, se requiere como datos de entrada el área del fondo y la longitud proyectada de la china.

133.20 ft	Area de Apéndices	265 ft ²
23.41 ft	Area sumergida del espejo	30.23 ft ²
6.56 ft	Inmersión de la hélice	3.87 ft
2658.00 ft ²	Long. Proy. De la china	131.20 ft
5540.00 ft³	Area Proy. Del fondo	$2397.00 \mathrm{ft}^2$
0.33	LCG	-4.10 %L
0.65	Diámetro del propulsor	4.25 ft
0.52	Ae/Ao	1.15
0.74	Número de palas	4
0.59 %L	Número de hélices	4
6.56 ft	Eficiencia del eje	0.90
6.56 ft		
	6.56 ft 2658.00 ft ² 5540.00 ft ³ 0.33 0.65 0.52 0.74 0.59 %L 6.56 ft	23.41 ft 6.56 ft 10.56 ft 2658.00 ft ² 5540.00 ft ³ 0.33 0.65 0.65 0.52 0.74 0.59 %L 6.56 ft Area sumergida del espejo Inmersión de la hélice Long. Proy. De la china Area Proy. Del fondo LCG Diámetro del propulsor Ae/Ao Número de palas Número de hélices Eficiencia del eje

Tabla XXIV.- Datos de entrada en 'Disprop', [24].

Para ejecutar el programa 'Disprop', [24], se ha elegido el modelo 4668 de cascos planeadores, de la serie 62, [6], la tabla XXV compara los parámetros necesarios en el cálculo, entre el modelo y el prototipo.

PARAMETRO	MODELO	PROTOTIPO
Lp/Bpa	6.72	6.56
Lp/Bpx	5.50	5.60
Bpx/Bpa	1.22	1.17
Centro del área proyectada del fondo	48.8%Lp	45.9%Lp
Medio ángulo de entrada	39° .	36°



Es necesario indicar que los modelos de la serie 62, tienen un cuerpo prismático hacia popa, mientras que el prototipo tiene una entrada para la ubicación de las hélices.

V (nudos)	R (lb)	R (Ton)	Potencia (HP)
3.39	835.50	0.37	15.07
5.09	1806.00	0.81	48.87
6.79	3837.00	1.71	138.44
8.48	7299.00	3.26	329.16
11.03	17000.00	7.59	996.82
14.00	36440.00	16.27	2712.07
17.67	63190.00	28.21	5935.79
21.21	70490.00	31.47	7948.08
24.60	75940.00	33.90	9931.15
28.14	80730.00	36.04	12076.83
31.53	83250.00	37.17	13954.11

Los valores de potencia, que se muestran en la tabla XXVI, corresponden a la potencia al eje, que se requiere para mover la embarcación, habiéndose asumido un coeficiente propulsivo de 0.57.

En la figura XXIII, se observa, el inicio de la zona de semi desplazamiento alrededor de los 10 nudos, Fn = 0.26, y la zona de planeo se encuentra alrededor de los 18 nudos, Fn = 0.47, que es el punto donde la resistencia al avance se estabiliza, esto se manifiesta en el cambio de pendiente de la curva. Para alcanzar la velocidad de 25 nudos, propuesta como requerimiento de diseño, la embarcación necesita alrededor de 10000 HP.

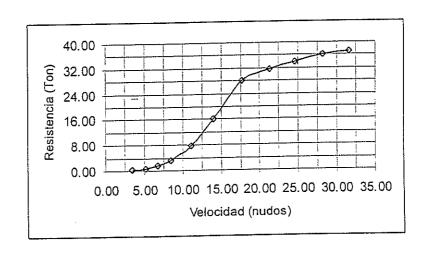


Figura XXII.- Resistencia al avance en Toneladas vs. Velocidad en nudos

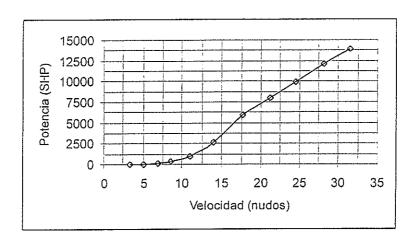


Figura XXIII.- Potencia en HP vs. Velocidad en nudos

De los catálogos del fabricante, [4], se ha elegido el motor MTU/DDC 3285 16V, que entrega una potencia al freno de 3285 bhp, girando a 2100 RPM. De manera que con 4 máquinas se procuraría potencia para alcanzar una velocidad de 30 nudos, aproximadamente. Otros datos importantes del motor se presentan en la tabla XXVII. La figura XXIV, obtenida del catálogo virtual del fabricante, muestra la apariencia de la máquina en varias vistas, incluyendo sus dimensiones.

Engine MTU/DDC 16V-4000 Engine Model T162-7N02/03 Potencia al freno 3285 BHP (2450 kW) @ 2100 RPM Potencia al eje 3190 SHP (2380 kW) @ 2100 RPM Descripción: Turbocargado-post enfriado Número de cilindros 16 Diámetro y Carrera 6.50 in x 7.50 in (165 mm x 190 mm) Desplazamiento 3967 cu in (65 litros) Razón de compresión 13.7 a 1 Aceite lubricante 258 litros Intervalo de cambio de aceite 500 horas Peso (seco) sin reductor 16,105 lbs (7305 kg)

Tabla XXVII.- Especificaciones de la máquina seleccionada

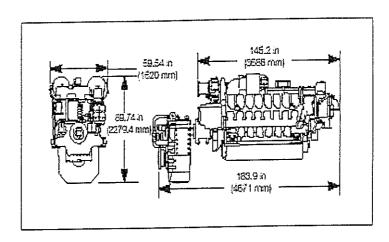


Figura XXIV.- Aspecto de la máquina seleccionada, [4].

Diseño del propulsor.- El programa, Disprop, [15], selecciona una hélice de la serie B, que dadas las características de la embarcación, absorbe la potencia que se le entrega. Para seleccionar la hélice que opere a la más alta eficiencia, se probaron diferentes combinaciones de diámetros y velocidades de rotación. Estas opciones arrojaron los resultados que se muestran en la tabla XXVIII.

Diámetro (pies)	4.00	4.25	4.50
945 RPM			
Velocidad (nudos)	26.50	26.07	24.87
Relación Paso/diámetro	0.98	0.87	0.77
Eficiencia del propulsor	0.56	0.55	0.51
950 RPM .			
Velocidad (nudos)	26.47	26.01	24.76
Relación Paso/diámetro	0.97	0.87	0.76
Eficiencia del propulsor	0.56	0.55	0.51
955 RPM	Ì		
Velocidad (nudos)	26.44	25.95	24.66
Relación Paso/diámetro	0.97	0.86	0.75
Eficiencia del propulsor	0.56	0.55	0.51

Tabla XXVIII.- Datos iniciales de los propulsores seleccionados

Para estos tres propulsores, se han calculado los valores de operación que se indican en la tabla XX.

Diámetro (pies)	4.00	4.25	4.50
945 RPM			
Empuje (libras)	20550	20320	19760
Torque (libras/pie)	15810	15810	15810
Factor de estela	0.0304	0.0254	0.0203
Factor de empuje	0.0418	0.0377	0.0335
Eficiencia en agua abierta	0.6543	0.6352	0.5883
Eficiencia relativa rotativa	0.9674	0.9742	0.9808
Tao	0.0808	0.0617	0.0471
Sigma	0.1116	0.1001	0.0906
950 RPM			
Empuje (libras)	20550	20290	19710
Torque (libras/pie)	15730	15730	15730
Factor de estela	0.0304	0.0254	0.0203
Factor de empuje	0.0418	0.0377	0.0335
Eficiencia en agua abierta	0.6531	0.6327	0.5842
Eficiencia relativa rotativa	0.9679	0.9747	0.9812
Tao	0.0799	0.0609	0.0465
Sigma	0.1106	0.0992	0.0897
955 RPM			
Empuje (libras)	20540	20270	19670
Torque (libras/pie)	15650	15650	15650
Factor de estela	0.0304	0.0254	0.0203
Factor de empuje	0.0418	0.0377	0.0335
Eficiencia en agua abierta	0.6518	0.6301	0.5801
Eficiencia relativa rotativa	0.9683	0.9751	0.9817
Tao	0.0790	0.0602	0.0459
Sigma	0.1096	0.0983	0.0889

Tabla XXIX.- Valores de operación de los propulsores

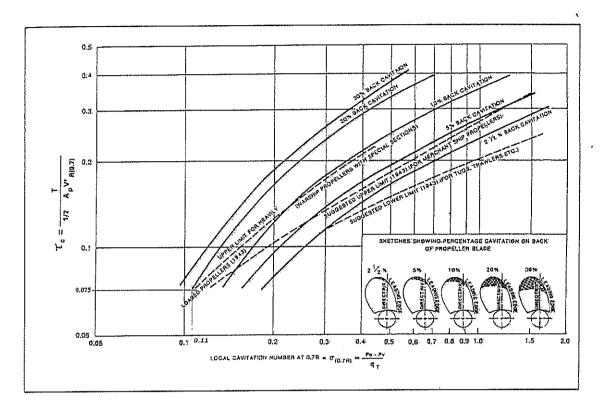


Figura XXV.- Diagrama de cavitación posterior, [31]

Entrando con los valores de Tao y Sigma, en la figura XXV se observa que la cavitación para la hélice seleccionada, 4.00 pies de diámetro, estaría sobre el límite del 10%, superando los límites permitidos para las embarcaciones militares. Sin embargo en la condición analizada es a máxima velocidad, que no es el caso común de la embarcación, por lo que a velocidad de crucero y parcialmente cargado, no sería problema la cavitación.

Una vez determinados la maquinaria y los propulsores, la embarcación, para su operación normal requiere una instalación propulsora con las características que se indican en la tabla XXX:

	ITEM	DESCRIPCION
1	04 Máquinas principales	MTU/DDC 16V-4000 (3285 BHP)
2	04 Reductores	Razón de reducción 2.2:1
3	04 Propulsores	Diámetro 1.22 m, empuje 9.2 Ton, Torque 7.06 Ton*pie. (Serie B)
		940 RPM

Tabla XXX.- Resumen del cálculo de resistencia y propulsión

La tabla XXXI, muestra una comparación entre las tres principales condiciones de carga, y el torque necesario y velocidad de rotación del propulsor, para alcanzar las velocidades, y la figura XXVI las curvas de torque para cada velocidad de rotación del propulsor.

CONDICION LIGERO			CONDICION MEDIA CARGA			CONDICION PLENA CARGA		
Velocidad	l Torque	RPM	Velocidad	Torque	RPM	Velocidad	Torque	RPM
(nudos)	(lb ft)	ICI IVI	(nudos)	(lb ft)	IG IVI	(nudos)	(lb ft)	KU IVI
3.06E+0	0 1.16E+02	8.89E+01	3.39E+00	1.84E+02	1.02E+02	3.61E+00	2.44E+02	9.98E+01
4.60E+0	2.49E+02	1.33E+02	5.09E+00	3.94E+02	1.52E+02	5.41E+00	5.24E+02	1.49E÷02
6.13E+0	4.91E+02	1.81E+02	6.79E+00	7.94E+02	2.09E+02	7.22E+00	1.08E+03	2.06E+02
7.66E÷0	8.72E+02	2.33E+02	8.48E+00	1.44E+03	2.72E+02	9.02E+00	1.99E+03	2.69E+02
9.96E+0	1.87E+03	3.21E+02	1.10E+01	3.17E+03	3.80E+02	1.17E+01	4.46E+03	3.79E+02
1.26E+0	1 3.77E+03	4.32E+02	1.40E+01	6.55E+03	5.18E+02	1.49E+01	9.32E+03	5.21E+02
1.60E+0	6.42E+03	5.56E+02	1.77E+01	1.12E+04	6.69E+02	1.88E+01	1.60E+04	6.74E+02
1.92E+0	7.40E+03	6.31E+02	2.12E+01	1.28E+04	7.51E+02	2.26E+01	1.81E+04	7.52E+02
2.22E+0	8.28E+03	7.02E+02	2.46E+01	1.41E+04	8.26E+02	2.62E+01	1.98E÷04	8.22E+02
2.54E+0	9.17E+03	7.74E+02	2.81E+01	1.53E+04	9.02E+02	2.99E+01	2.13E+04	8.92E+02
2.85E+0	l 9.91E+03	8.41E÷02	3.15E+01	1.63E+04	9.72E+02	3.35E+01	2.24E+04	9.56E+02
0-2								

Tabla XXXI.- Torque y velocidad de operación para varias condiciones de carga

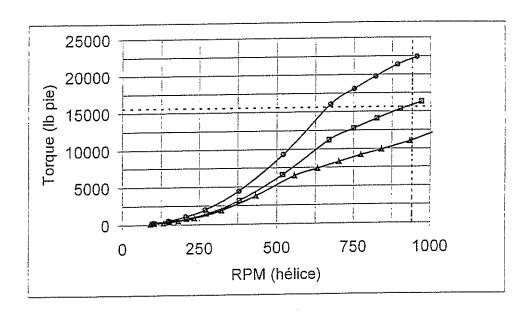


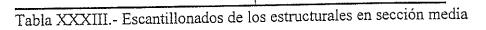
Figura XXVI.- Torque vs. RPM · Δ condición ligera, □ condición a media carga, ○ condición plena carga

En la figura XXVI, la línea punteada horizontal representa el torque continuo obtenido con la expresión:

$$Q = \frac{SHP}{N}R$$

Donde 'N' es el número de revoluciones por minuto del motor y 'R' la razón de reducción. El torque continuo para el motor seleccionado es de 15616 lb ft. Se observa, en la figura, que para la condición de plena carga el torque que necesita entregar el motor para alcanzar la velocidad de operación es de 22400 lb ft que representa el 43.44% más del torque continuo, y la condición contraria, es decir, ligero, la misma velocidad alcanza con un torque de 11000 lb ft, el 70% del torque continuo, esto quiere decir, que a plena carga la embarcación no puede

desarrollar más de 650 RPM, lo que seguramente ocasionará recalentamiento, y' el caso contrario ocurre en la condición ligero, donde la embarcación alcanzará la velocidad de operación con poco torque, que ocasiona que el motor funcione a un régimen de subcalentamiento, sin embargo es necesario acudir al fabricante del motor para que éste determine los rangos de operación del motor y los problemas que pueden suscitarse si se sale de estos márgenes.


3.4 CALCULO ESTRUCTURAL

Siguiendo las reglas de clasificación para construcción de buques de acero de eslora menor a 90 metros, de la American Bureau of Shipping, [1], se determinaron los escantillones del casco. De acuerdo al arreglo estructural, que se muestra en la figura XXVII, y siguiendo un tipo de construcción longitudinal, con bulárcamas transversales separadas 1.2 metros, y refuerzos longitudinales separados 0.6 metros. Las fórmulas y los valores usados en las mismas se detallan en la tabla XXXII.

=11.35-0.1L; C ₂ =0.01
=110; C ₁ =0.044L+3.75
=190
600; h=4.2
,
=1200; h=4.2
=1200
= 600; h=4.2
=0.8; h=3.4; s=1.2; l=1.66 =1; h=0.4; s=0.6; l=1.7
=0.915; h=0.02L+0.46; s=1.2; l=2 =0.915; h=0.02L+0.46; s=0.6; l=2
C=0.6; h=0.01L+0.61; s=1.2; l=6.4 C=0.6; h=0.01L+0.61; s=0.6; l=6.4
3=600; q=235/Y; Y=290; h=2.1; c=290 $k = (3.075 \sqrt{\frac{b}{a}} - 2.077) / (\frac{b}{a} + 0.2727)$
C=0.3; h=2.1; s=0.6; l=6.66 S=600; q=235/Y; Y=290; h=2.1; c=290 $k = (3.075\sqrt{\frac{b}{a}} - 2.077)/(\frac{b}{a} + 0.2727)$
ча а
Si k

Tabla XXXII.- Fórmulas y valores de las variables

 PARTE 3 SECCION 6				
Módulo Seccional (Sec. Media)				
Mínimo 3/6.3.1	796.44	m cm2		
Momento flector 3/6.3.2				
Агтибо	-7006	kN m	-714.85 Ton m	
Quebranto	4127.4	kN m	421.16 Ton m	
Momento de inercia				
Inercia	965.29	m2 cm2		
PARTE 3 SECCION 4	}			. O.D
Quilla (espesor) 3/4.3.1	37.725	mm		ESTO
Quilla (altura)	158.93	mm		#172 is 18
PARTE 3 SECCION 15 y 16 (Cubierta)				
Espesor del planchaje				CIB ESPOL
Fondo 3/15,3.2	7.3411	mm		
Costado 3/15.5.1	7.0882	mm	entre sección media y 0.4L	
Costado en los extremos 3/15.5.3	7.2364	mm	entre el extremo y 0.1L	
Cubierta 3/16.3	6.0517	mm		
PARTE 3 SECCION 7				
Estructura del fondo				
Cuaderna transversal (MS) 3/7.5.5	247.61	cm**3	T175x100x10	
Cuaderna longitudinal (MS) 3/7.7.3	54.101	cm**3	L100x50x8	
PARTE 3 SECCION 8				
Estructura del costado				
Cuadernas transversales (MS) 3/8.3	43.411	cm**3		
Refuerzos longitudinales (MS) 3/8.5	21.706	cm**3	L50x50x6	
PARTE 3 SECCION 10				
Baos y refuerzos de cubierta				
Baos (MS) 3/10.1.2	233.16	cm**3	T150x100x10	
Esloras (MS) 3/10.3.2	116.58	cm**3	L100x75x10	ESPO.
PARTE 3 SECCION 12				
Mamparos estancos	:			
Planchas, espesor 3/12.5.1	4.5757	mm		CIB POL
Refuerzos, mód. Seccional 3/12.5.2	130.78	cm**3	T 100X75X12	- POPO!
Mamparos de colisión				
Planchas espesor	5.0116	mm		
Refuerzos, mód. Seccional		cm**3	T100x100x10	
Reduction, mod. Sectional				•

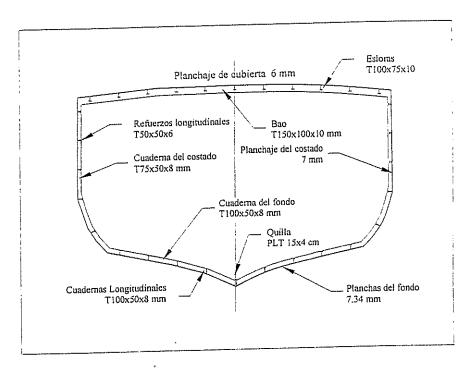


Figura XXVII.- Arreglo estructural de la sección maestra

ELEMENTO	Z (cm)	Area (cm²)	$A*Z$ (cm^3)	$I_g \over (cm^4)$	I_T (cm^t)			
0.31	7.5	60	450	1125	4500			
Quilla	95.65	303.25	29005.86	13.51	2774424.26			
Plancha fondo	200	147	29400	540225	6420225			
Plancha costado	420 420		85680	6.102	35985606.1			
Cubierta Cuaderna longitudinal 1			457.8	45.24	17510.31			
	38.15		660	45.24	36345.24			
Cuaderna longitudinal 2	55		696	45.24	40413.24			
Cuaderna longitudinal 3	58		978	45.24	79752.24			
Cuaderna longitudinal 4	81.5		1464	45.24	178653.24			
Cuaderna longitudinal 5	122		2295.6	45.24	439193.52			
Cuaderna longitudinal 6	191.3		1513.2	11.64	381640.68			
Refuerzo longitudinal 1	252.2		1375.2	11.64	587074.68			
Refuerzo longitudinal 2	312.8	_	2233.2	11.64	831208.68			
Refuerzo longitudinal 3	372.2			544.14	18276319.7			
Esloras (6)	417.199		43805.895		66052866.9			
SUMA		909.25	200516.358	do	000022800.7			
		,		, uo				
	İ	Z=	220.53 cm	Mínimo	9650000			
		Li -		exceso	14.61%			
	Calculado	MS=	2.99E+05 cm ³					
	Mínimo		0.79E+05 cm ³					
	Exceso	26 50%						

Tabla XXXIV.- Cálculo de la inercia y módulo seccional

La tabla XXXIV presenta un resumen de los cálculos de inercia y módulo seccional de la sección media mostrada en la figura XXVII. Como se esperaba el módulo seccional calculado 2.99E+05 cm³, es mucho mayor que el exigido por ABS, [1], 0.79E÷05 cm³, esto se debe a que en embarcaciones de esloras pequeñas, la flexión del buque viga no es de importancia primaria, en este rango de eslora, los comportamientos secundario y terciario son más importantes.

Cálculo del peso de la estructura por unidad de área.- para facilitar la estimación del peso de la estructura del casco y cubierta, se ha determinado el peso estructural por unidad de área. Para poder estimar adecuadamente los valores se ha dividido el casco en tres regiones: fondo, costado y cubierta. La figura XXXVIII presenta un panel típico de los considerados para hacer el cálculo de peso por unidad de área, y los cálculos están mostrados en la tabla XXXV.

	17361	ALA	ESP.	AREA	VOLUMEN	PESO	TOTAL	PESO/AREA
ELEMENTOS	ALMA ALA ESP. mm		mm ²	mm ³	То	n	Ton/m ²	
FONDO Longitudinales Transversales Planchaje	100	50 50	8 8 7.34	1200 1200	1440000 720000 5284800	1.13E-02 5.65E-03 4.15E-02	5.84E-02	8.12E-02
COSTADO Longitudinales Transversales Planchaje	50 75		6 8 7	600 1000	720000 600000 5040000	5.65E-03 4.71E-03 3.96E-02	4.99E-02	6.93E-02
CUBIERTA Longitudinales Transversales Planchaie	100		10 6	2500	2100000 1500000 4320000	1.65E-02 1.18E-02 3.39E-02	6.22E-02	

Tabla XXXV.- Cálculo del peso por unidad de área de los paneles estructurales

ţ

Para la estimación del peso se ha usado la densidad del acero al carbono que es de 7850 Kg/m³, y los espaciamientos que se especifican en la figura XXVIII.

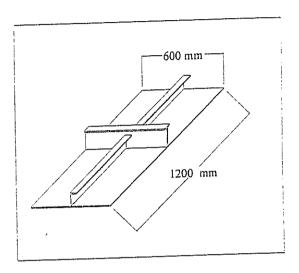


Figura XXVIII.- Panel estructural

A partir de los resultados hidrostáticos las superficies del fondo, costado y cubierta son: 218 m², 254 m² y 105 m², de manera que el peso de la estructura tendría los siguientes valores:

	AREA	PESO/AREA	<i>PESO</i>
REGION	(m^2)	(Ton/m^2)	(Ton)
Fondo Costado	218 254	8.12E-02 6.93E-02	17.70 17.60
Cubierta TOTAL	105	8.64E-02	9.07 44.37

Tabla XXXVI.- Peso por unidad de área

Si se suma un 20% por bases de máquinas, mamparos y suelda, y, 25% por pesos de apéndices y superestructura, se tiene un peso total de 64.33 Ton. En el diseño

conceptual se había aproximado a 90.0 Ton el peso de los estructurales del casco y superestructura.

3.5 DISTRIBUCIÓN GENERAL

Una vez determinados los equipos que se instalarán a bordo y las características principales (dimensiones y formas), se hará una distribución general observando los lineamientos básicos de habitabilidad, exigidos por normas internacionales, emitidas por organismos como la IMO, en lo que se refiere a la habitabilidad y ocupación de espacios de maquinaria. La distribución general también se ve influenciada por la ubicación de los mamparos estancos. Así tenemos, en las figuras XXIX y XXX un arreglo de interiores bajo y sobre cubierta. La lancha cuenta con 07 compartimentos estancos, tabla XXXVII: de popa a proa, el servomotor, compartimento de popa, sala de máquinas de popa, sala de máquinas de proa, área de tripulación, pañol de armamento y peak de proa; garantizando la estanqueidad de la unidad, ya que el requerido en los cálculos es de solo cuatro. Con la distribución presentada, se consigue alojamiento para una dotación fija de 21 tripulantes y 06 oficiales.

ITEM	POSICION CUADERNAS		COMPARTIMENTO	PARAMETRO		
01 02 03 04 05 06 07 08 09	7.4 7.4 18.0 25.2 32.4 39.6	00-02 02-06 02-06 06-15 06-15 15-21 21-27 27-33 27-33 33-35	Peak de proa Pañol de armamento y planta de agua Tanques de agua dulce Area de tripulación Tanques de combustible de proa Sala de máquinas de proa Sala de máquinas de popa Area de popa Tanques de combustible de popa Servomotor	2.4 m 30 m ³ 33 m ² 72 m ³ , 57.6 Ton 7.2 m 7.2 m 15 m ² , 37.5 m ³ 62 m ³ , 49.6 Ton		

Tabla XXXVII.- Distribución general bajo cubierta

En la cubierta principal se dispone de una extensa área a popa, que en un futuro puede arreglarse de tal forma que permita a la lancha recibir un helicóptero pequeño. Hacia la "cuadra" se pueden colocar calzos para dos botes de goma de 3.5 m de eslora. La superestructura contiene el área común, cámaras y cocina, enfermería y detalía; además, en este nivel, también se encuentra el área de oficiales, con capacidad para 06 oficiales. En la cubierta del puente de gobierno se ha colocado la sala de radio y un puente amplio, que podría considerarse como un centro operativo de combate.

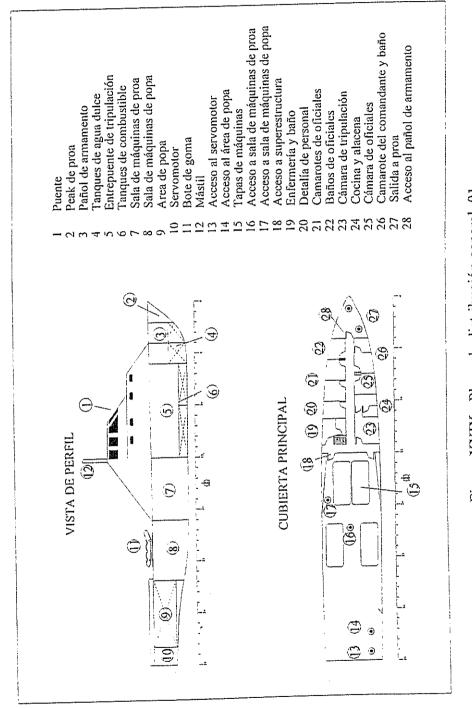


Figura XXIX.- Plano de distribución general, 01

Figura XXX.- Plano de distribución general 02

Estimación de pesos y cálculo del LCG y KG.- Conociendo valores reales de peso de estructura, capacidades de los tanques, tipo y clase de maquinaria a colocarse, se puede realizar una nueva estimación de pesos para calcular el LCG y el KG de la embarcación. La tabla XXXVIII detalla los cálculos de estos parámetros.

PEGGNINGION	PESO (Ton)				MOMENTOS (Ton m)		
DESCRIPCION	(1011)	X	Y	Z	Х	Y	Z
Máquina Eb proa	10.0	21.6	1.0	1.0	216.0	10.0	10.0
Máquina Bb proa	10.0	21.6	-1.0	1.0	216.0	-10.0	10.0
Máquina Eb popa	10.0	27.6	1.0	1.0	276.0	10.0	10.0
Máquina Eb proa	10.0	27.6	-1.0	1.0	276.0	-10.0	10.0
Casco y superestructura	60.0	19.0	0.0	2.73	1140.0	0.0	163.8
Tanques de agua	30.0	4.8	0.0	1.14	144.0	0.0	34.2
Tanques de combustible proa	57.6	12	0.0	0.5	691.2	0.0	28.8
Tanques de combustible popa	49.6	36.0	0.0	2.9	1785.6	0.0	143.9
I andues de compastore popa	237.2				4744.8	0.0	410.7

Tabla XXXVIII.- Cálculo de centros de gravedad reales

Luego la posición de los centros de gravedad, en la condición de plena carga, sería:

$$LCG = \frac{M_x}{P} = \frac{4744.8}{237.2} = 20.00 \approx 1.00 \text{ m} \text{ a proa de sección media}$$

$$KG = \frac{M_z}{P} = \frac{410.7}{237.2} = 1.73 \text{ m} \text{ desde el punto más bajo de la quilla}$$

3.6 BALANCE ELECTRICO

Aplicando el método descrito en la referencia [3], se determina el balance eléctrico de la embarcación para tres condiciones de carga: una en navegación

normal, esto es, sistema de aire acondicionado, sensores electrónicos encendidos, luces de camarotes y áreas comunes en servicio, sistemas auxiliares funcionando al 50%; otra condición es en puerto, donde no se encuentran en servicio los sistemas electrónicos de detección, pero si los de radio; y la tercera condición es la de entrada y salida de puerto, todos los sistemas operando en toda su capacidad. De igual forma se han dividido todos los equipos eléctricos a bordo, en las 6 categorías recomendadas:

Categoría I.- Auxiliares de propulsión y seguridad

Categoría II.- Auxiliares necesarios a la navegación

Categoría III.- Alumbrado

Categoría IV.- Aparatos de fuerza: aire acondicionado, ventilación

Categoría V.- Aparatos especiales: cabrestantes, plumas, molinetes, etc.

Categoría VI.- Red de socorro: equipos de radio.

La asignación de los coeficientes de utilización (Ku), se ha hecho de acuerdo a las instrucciones que se encuentran en la definición del este coeficiente en la referencia [3]. La tabla XXXIX muestra el cálculo detallado del balance eléctrico de la embarcación, se han considerado la mayoría de equipos principales y que afectan directamente a la operatividad de la unidad. De esta tabla se determina que la máxima carga que debe satisfacerse se presenta cuando la embarcación está haciendo una maniobra de emergencia, esto es persecución, salvataje,

EQUIPO	CANT	POT	TOTAL	En la mai		En puerto		Emerger	icia
ŁŲGIFO	C,1111			Ku	Kw	Ku	kW .	Ku 🕡	kW
CATEGORÍA I									
Bombas contraincendio	2	6	12	0.8	9.6	0.5	6	0.95	
Bombas de combustible	2	2	4	0.8	3.2	0.4	1.6	0.8	3.2
Bombas de agua dulce	2	2	4	0.5	2	0.5	2	0.5	
Bombas de agua unice Bombas de achique	2	6	12	0.4	4.8	0.4		0.5	
Bombas del Aire acondicionado	2	9	18	0.9	16.2	0.9	16.2	0.9	16.2
Bombas de aceite	4	2	8	0.8	6.4	0.4	3.2	0.8	6.4
Bombas de aceite Bomba del circuito sanitario	1	5	5	0.4	2	0.4	2	0.5	2.5
Wit.	1	3	3	0.5	1.5	0	0	0.95	2.85
Bombas de la pluma	1	3	3	0.9	2.7	0	0	0.95	2.85
Bombas del circuito hidráulico	•	-	_						
CATEGORIA 2	1	1	1	0.5	0.5	0	0	0.5	0.5
Luces de navegación	2	3	6	0.25		0	0	0.5	3
Reflectores de rebusca	1	0.3	0.3	0.5			0	0.5	0.15
Luces del panel del puente	1 -	0.5	0.5	0.5			0.25	C	0
Luces de posición	l i	0.5 5	5	0.95	-			0.95	4.75
Radar de navegación	1	2	2	0.9			0	0.95	1.9
Girocompás	1	5	ے 5	0.95				0.95	
Servomotor	1	3	ر	0.55	7.75				
CATEGORIA 3			i	0.5	0.5	0.5	0.5	0.5	5 0.5
Alumbrado de camarotes	1	1	2					0.:	5 1
Alumbrado de entrepuentes	1	2	0.2					0.9	
Alumbrado de cámara y cocina	1	0.2	0.2					0.9	
Alumbrado de enfermería	1	0.2		0.3				0.8	
Alumbrado de sala de máquinas	1	1	1			-		0.9	
Alumbrado de la sección de popa	1	0.5	0.5					0.9:	
Alumbrado de exteriores	1	1.5	1.5	0.5	U./-	, 0	0.75	0.5.	,
CATEGORIA 4	1					3 0.3	3 4.8	0	5 8
Compresores de aire	2	8	16					0.9	_
Compresores del aire acondicionado	2	8	16					0.9	
Ventiladores del aire acondicionado	5	3	15					0.9	
Ventilación de sala de máquinas	2	3	6					0.9.	
Molinete	2	8	16			•	•		
Cabrestante	1	7				•	0		•
Chigres	2	8	16	5 0.5	5	8 () 0	0.	0 12.0
CATEGORIA 5	}							0	<u></u>
Cargador de baterias	1	2							
Equipos de guerra electrónica	3	5			5 14.2		0 0		
Equipos de radio	5	3	1:	5 0.8	8 1	2 0.	5 7.5	0.9	5 14.25
CATEGORIA 6						_			e 0.000
Red de comunicaciones internas	1	2.5	2		5 2.37				
Equipos de radio auxiliares	1	. 2	:	2 0	J	1 0.	5 l	0.9	95 L.S
Edurhon as seems assessed to									
TOTALES			223.	7	154.		85		181.8
RENDIMIENTO GENERADOR 0.8	E		279.6	3	193.	1	106)	227.3

Tabla XXXIX.- Balance eléctrico de la embarcación

abordaje u otra maniobra inherente a sus funciones. Debido a que el cálculo es a nivel preliminar, no se ha determinado el 'cosφ' para cada aparato, sino que se ha asumido, siguiendo la recomendación del autor de la referencia [3], como igual a 0.8, así se tiene que la máxima carga es de aproximadamente 230 kW.

En la referencia [18], Capítulo II-1, parte D, reglas 40 y 41, determina que al menos deben existir a bordo 02 plantas generadoras, o más, siempre que uno sea considerado de respeto, es decir, de emergencia. Con esta consideración se tienen las siguientes opciones para instalar generadores a bordo de la embarcación, tabla XL.

PARAMETRO		OPO	CIONES	
CANTIDAD	03	03	02	02
TIPO	CAT 3306	CAT 3306B	CAT 3408	DD 6063 TK45
RPM	1800	1800	1800	1500
POTENCIA (kW)	170	190	350	234
PESO (kg)	1120	1120	1742	<i>23</i>
LxBxH (m)	2.6x1.3x0.9	2.5x1.1x0.92	2.8x1.2x1.4	
POT. TOTAL (kW)	510	570	700	468

Tabla XL.- Opciones de generadores para instalar a bordo

Para homogenizar los repuestos y mantenimiento, la elección es de colocar 02 .

generadores marca Detroit Diesel, tipo DD 6063 TK35, ya que las máquinas principales también han sido elegidas de este fabricante. Además un solo generador de este tipo soporta toda la carga del buque, sin trabajar a toda su capacidad. Si se elige la opción del similar CAT 3408, el generador estaría

subutilizado, ya que tan solo la tercera parte de su capacidad permanece en uso; 'colocar tres generadores pequeños se ve limitado porque dos generadores en paralelo abastecen toda la carga del buque, pero tienen un exceso considerable, casi del doble.

Resumen de parámetros obtenidos.- para cerrar la primera etapa del diseño preliminar, se presenta un resumen de los parámetros obtenidos y posibles correcciones en la siguiente etapa del diseño.

El valor de la altura metacéntrica para la condición de carga al 10%, debe ser revisada cuando se realice el cálculo de capacidades y la posición del KG; se debe prestar atención a la cavitación posterior de los propulsores, para la condición al 10% de capacidades.

Comparación entre unidades similares ya existentes.- para poder establecer parámetros valederos de verificación del diseño, es necesario comparar los resultados obtenidos, con unidades similares existentes, y en operación. Esta comparación se muestra en la tabla XLI.

PARAMETRO	TNC 45	<i>DISEÑO</i>	LM 35	
Eslora total	45.95	42.00	35.7	m.
Eslora en línea de agua	43.46	39.64	34.2	m.
Manga moldeada	7.26	6.86	5.15	m.
Puntal en sección media	4.00	4.2	3.50	m.
Calado medio	1.85	2.00	1.80	m.
Desplazamiento a plena carga	300	232	140	Ton
Desplazamiento a media carga	270	114	113	Ton
Potencia máxima desarrollada	13092	13140	9000	HP
Máxima velocidad a media carga	37	25	42	Nudos
Autonomía a 15 kn	2000	2000	800	Mn.
Capacidad de combustible	45	107.2	20	Ton
Capacidad de agua	3	30	į	Ton
Dotación: Oficiales	05	06	04	personas
Dotación: Tripulantes	21	21	15	Personas
Máquinas principales (#,tipo)	4, MTU 16V	4,MTU/DDC 16V	3 MTU MB 518	
	396TB	4000	20V672	
otencia al freno de cada una	3273, 2100 rpm	3285, 2100 rpm	2750, 1670 rpm	BHP
lélices propulsoras(#, tipo)	4, 3 palas	4, 4 palas	3, 3 palas	
Generadores (#, tipo)	3	2	2	
otencia de cada uno	135 kVA, 450V	234, 450V		kW

Tabla XLI.- Comparación con unidades existentes.

IV. SEGUNDA FASE DEL DISEÑO PRELIMINAR

4.1 FORMAS Y DIMENSIONES PRINCIPALES

Con la finalidad de hacer un ajuste de las líneas de formas de la embarcación y habiéndose utilizado para la generación de las mismas el programa Alisam, [23], con cerchas de orden 3, a continuación se hará un nuevo alisamiento variando el orden de la cercha. Se ejecutará también el módulo de cálculos hidrostáticos del programa SHCP, [34], para cada caso, con la finalidad de determinar si el valor del desplazamiento de la embarcación varía sustancialmente.

La tabla XLII, establece la comparación de las variaciones del desplazamiento respecto del calado para cada orden elegido en el alisamiento. Comparando los

resultados para el calado de diseño, la variación másica es de 0.56%, por lo que se concluye que el orden de la cercha no influye notablemente en el valor del desplazamiento de la embarcación, por lo que el alisamiento usando cualquier orden no interfiere mayormente en los resultados finales de la embarcación.

Calado	Des	plazami	iento (I	on)
(m)	່ s3 t3 [ົ]	s3 t4	s4 t4	s4 t3
1.26	84.3	83		84
1.68	157.8		156.1	157.6
2.1	250.3	248.9	248.6	250
2.52	345.8	•	344	345.4
2.73	394.7	393.2	392.8	394.2
2.94	444.1	442.6	442.1	443.6
3.36	545.1	543.7	543.1	544.5
3.78	649.1	647.6	646.9	648.3

Tabla XLII.- Desplazamiento versus calado Donde 's' y 't' son el orden de las cerchas tipo B.

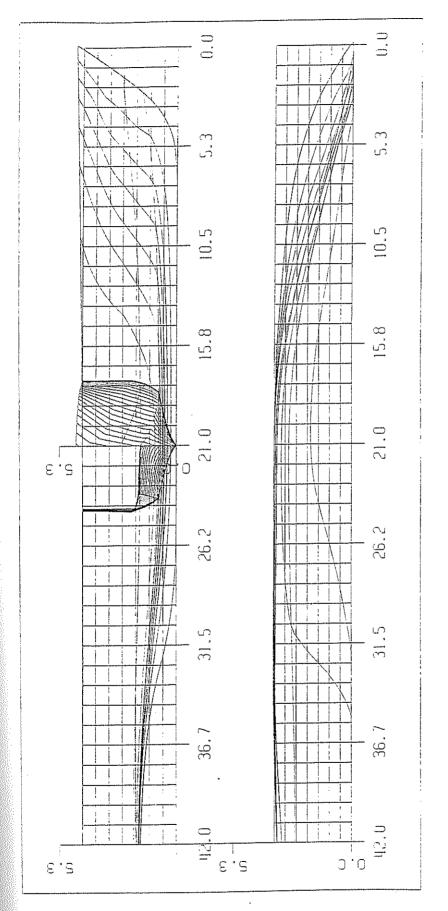


Figura IXL.- Plano de Líneas de Formas con alisamiento, orden de cerchas 4.

ţ

4.2 CAPACIDAD DE LÍQUIDOS Y DISTRIBUCIÓN DE PESOS

Para determinar la cantidad de combustible que se requiere llevar a bordo, se usarán las curvas de consumo de combustible de las máquinas, provistas en el catálogo del fabricante, [4]. Para empezar este cálculo, con la ayuda del programa 'Eficprop', [21], se determina la velocidad de rotación de la hélice en función de la velocidad de avance del buque; esta información se presenta en la tabla XLIII. En la tabla XXX del capítulo anterior, se determinó que la reducción que se necesita en el buque es de 2.2 a 1, por lo que se obtiene a través de esta relación, la velocidad de rotación de la máquina. Este valor a su vez permite determinar el consumo por máquina, a partir de la curva de consumos, figura XXXI. Los valores calculados a diferentes velocidades se presentan en la Tabla XLIV. Para determinar el tiempo de navegación, se usó la autonomía por combustible de 2000 millas naúticas, establecida como requerimientos del diseño.

Velocidad (nudos)	RPM Propulsor	RPM máquina
		319.66
3.66	145.30	
5.50	216.10	475.42
7.33	297.20	653.84
9.16	386.10	849.42
11.91	539.10	1186.02
15.12	735.70	1618.54
19.09	950.10	2090.22
22.90	1065.00	2343.00

Tabla XLIII.- Revoluciones en función de la velocidad

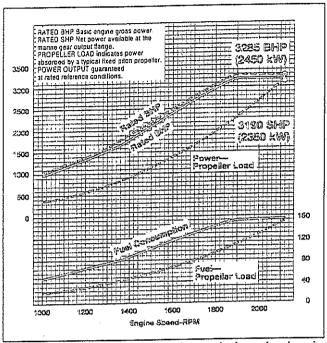


Figura XXXI.- Curvas de rendimiento de la máquinaria principal, [4]

Velocidad	Consumo	Total máq.	Horas	Consumo t			Generador	Total
(nudos)	(gal/h)	(gal/h)	1107 40	(gal)	(m³)	(Ton)	(Ton)	(Ton)
11.91	30	120	167.93	20151.13	78.09	66.37	8.30	74.67
15.12	60	240	132.28	31746.03	123.02	104.56	6.54	111.10
19.09	128	512	104.77	53640.65	207.86	176.68	5.18	181.86
22.90	160	640	87.34	55895.20	216.59	184.10	4.31	188.42

Tabla XLIV.- Consumo de combustible para conseguir autonomía de 2000 millas. Tiempo (horas) = 2000 Mn/velocidad (nudos).

En el capítulo 3.5, se realizó una estimación de la cantidad de combustible disponible, 107 Ton de combustible, que comparado con 111.1 Ton, necesarios para tener una autonomía de 2000 millas a la velocidad de crucero de 15 nudos; permite concluir que se satisface el requerimiento establecido.

La tabla XLII, establece una relación entre la velocidad del buque y la distancia que recorrería a dicha velocidad con la cantidad de combustible disponible, 107 Ton. La figura XXXII, muestra la tendencia de la autonomía versus la velocidad. Nótese que en general, a mayor velocidad, la autonomía disminuye, aunque esta tendencia tiende a reducirse para mayores velocidades, posiblemente por la eficiencia de la hélice propulsora en esta región.

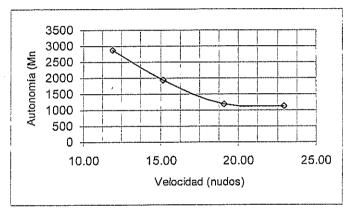


Figura XXXII.- Autonomía en función de la velocidad, para 107 Ton de combustible.

	í	Disponible	Horas	Distancia	Días	Consumo	
(nudos)	(gal/hora)	(gal)	navegadas	Distancia	2,00	(gal)	(m ³)
11.91	30	32485.77	240.64	2866	10.03	10026.47	38.85
15.12	60	32485.77	127.40	1926	5.31	5308.13	20.57
19.09	128	32485.77	61.64	1177	2.57	2568.45	9.95
22.90	160	32485.77	49.60	1136	2.07	2066.52	8.01

Tabla XLV.- Autonomía en función de la velocidad

El cálculo de la cantidad de agua necesaria a bordo, se desarrolló basado en los requerimientos para buques de pasaje, que es de 40 galones, (0.1514 m³), diarios por persona.

en condiciones normales, la dotación de la lancha es de 25 personas. Por lo que la cantidad de 30Ton disponible en la unidad satisface los requerimientos de agua dulce a bordo.

La nueva distribución de pesos, incluyendo las capacidades reales de la lancha se detallan en la tabla XLVI, donde también se ha calculado la posición longitudinal y vertical del CG en condición de consumibles al 10% y al 100%.

DESCRIPCION	Peso 100%	Peso 10%	P	Posición (m)		Momentos 100% (Ton m)			Momentos 10% (Ton m)		
Descriat Gron	(Ton)	(Ton)	Х	Y	Z	Х	Y	Z	х	у	Z
Maquina Eb proa	10	10	21.6	1	2	216	10	20	216	10	20
Máguina Bb proa	10	10	21.6	-1	2	216	-10	20	216	-10	20
Máquina Eb popa	10	10	27.6	1	2.46	276	10	24.6	276	10	24.6
Máquina Eb proa	10	10	27.6	-1	2.46	276	-10	24.6	276	-10	24.6
Casco y superestructura	60	60	19	0	3	1140	0	180	1140	0	180
Tanques de agua proa	10	1.5	6	0	1.14	60	0	11.4	9	0	1.71
Tanques de agua popa	15	1.5	40.5	0	1.14	608	0	17.1	60.75	0	1.71
Tanques combustible proa	50	5	12.6	0	0.5	630	0	25	63	0	2.5
Tanques combustible popa	55.29	5.5	36	0	2.9	1990	0	160.3	201.6	0	16.24
TOTAL	230.29	113.6				5412	0	483	2458	0	291.4

Tabla XLVI.- Cálculos previos a la obtención del LCG y VCG

Por lo tanto el LCG y VCG en la dos condiciones son los siguientes:

$$LCG_{100\%} = \frac{M_X}{\Delta} = \frac{5412}{230} = 23.53 \text{m} \approx -2.53 \text{m} \quad \text{(a popa de sección media)}$$

$$LCG_{10\%} = \frac{M_X}{\Delta} = \frac{2458}{113.6} = 21.6 \, \text{lm} \approx -0.62 \text{m} \quad \text{(a popa de sección media)}$$

VCG_{100%} =
$$\frac{Mz}{\Delta} = \frac{483}{230} = 2.10$$
m (sobre la quilla)
VCG_{10%} = $\frac{Mz}{\Delta} = \frac{291.4}{113.6} = 2.57$ m (sobre la quilla)

Usando el programa SHCP, [34], y considerando estas dos condiciones de carga mencionadas, consumibles al 100% y al 10%, se obtienen los resultados descritos en la tabla XLVII.

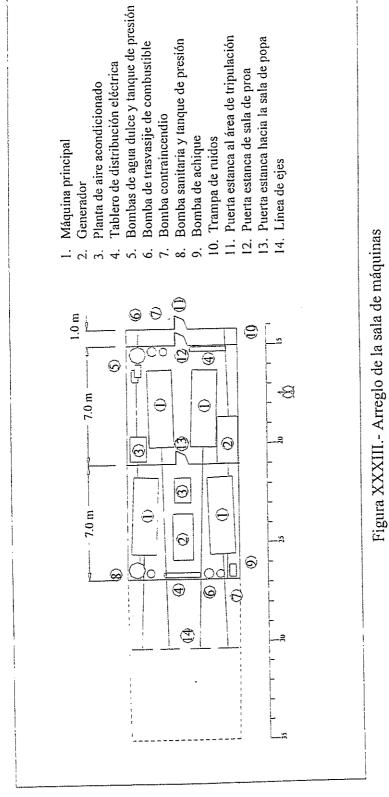
```
CONDICION 100% DE LIQUIDOS
                                     230.000 TONS SW
DESPLAZAMIENTO DE DISENO
LCG DE DÍSENO
                                      -2.530 UNID. DESDE SECCION MEDIA (+PROA)
CALADO DE DISENO
                                       1.928 UNID.
ASIENTO DE DISENO
                                       0.586 UNID. (+POR POPA)
                                      42.000 UNID.
ESLORA TOTAL
ESLORA ENTRE PERPENDICULARES
                                      42.000 UNID.
ESLORA EN LINEA DE AGUA DISENO
                                      39.805 UNID.
ESTACION DE MAXIMA AREA (LAD)
                                      22.206 UNID. DESDE PER. PR
MANGA EN ESTACION MAXIMA AREA
                                       6.842 UNID.
COEFICIENTE DE AREA SECCIONAL
                                      0.674
COEFICIENTE PRISMATICO
                                       0.596
COEFICIENTE BLOQUE
                                      0.402
CONDICION 10% DE LÍQUIDOS
DESPLAZAMIENTO DE DISENO
                                     113.600 TONS SW
                                      -0.620 UNID. DESDE SECCION MEDIA (+PROA)
LCG DE DISENO
                                      1.395 UNID.
CALADO DE DISENO
                                      0.627 UNID. (+POR POPA)
ASIENTO DE DISENO
ESLORA TOTAL
                                      42.000 UNID.
ESLORA ENTRE PERPENDICULARES
                                      42.000 UNID.
ESLORA EN LINEA DE AGUA DISENO
                                      39,230 UNID.
                                      22.169 UNID. DESDE PER. PR
ESTACION DE MAXIMA AREA (LAD)
                                      6.492 UNID.
MANGA EN ESTACION MAXIMA AREA
                                      0.591
COEFICIENTE DE AREA SECCIONAL
                                      0.487
COEFICIENTE PRISMATICO
                                      0.288
COEFICIENTE BLOQUE
```

Tabla XLVII.- Cálculo de calado y asiento en condiciones de carga de Consumibles al 100% y 10%

Esta nueva distribución de pesos, soluciona el asiento por proa, que había sido determinado en la fase anterior, por lo que la embarcación ahora en cualquiera de sus condiciones navega asentada por popa. Sin embargo, para determinar si se satisface el requerimiento de calado mínimo se estima el calado medio, 1.93 metros aproximadamente, pero con asiento por popa de 0.63 metros, lo que

significa que el calado en popa es de 1.93 + 0.63/2 = 2.245 metros. Para la condición de 10% de líquidos, el asiento y el calado medio suman 2.0 metros.

4.3 ARREGLO DE LA SALA DE MÁQUINAS. SISTEMA PROPULSOR Y DISEÑO DEL SISTEMA DE GOBIERNO


Arreglo de la sala de máquinas.- Los equipos que corresponden al área de ingeniería de la embarcación y que han sido considerados para realizar el arreglo, de las salas de máquinas, se describen en la tabla XLVIII.

			SALA DE N	AAQUINAS	- SERVO	PROA
ITEM	DESCRIPCION	CANTIDAD	PROA	POPA	SERVO	
01	Máquinas principales	04	2	2		
02	Generadores	02	1	1		
03	Planta de aire acondicionado	02	1	l		
04	Tablero de distribución	02	1	ì		
05	Bombas de agua dulce	02	2			
06	Bombas de achique	02	1	l		
07	Bombas contra incendios	02	I	l		
08	Bombas de combustible	02	1	l		
09	Bomba sanitaria	01		1		
10	Banco de baterías	. 01			l	,
11	Planta desalinizadora	01				l 2
12	Compresores de aire	02				2
13	Ventiladores de las salas	02	1	l ·		
14	Extractores de aire	02	1	ì		
15	Transformadores	. 02	1	1		
16	Sistema hidráulico	02			2	

Tabla XLVIII.- Equipos del departamento de ingeniería y su ubicación

En la sección de proa de la embarcación y a popa del pañol de armamento se ha designado un local para la ubicación de la planta desalinizadora y los compresores de aire. Un diagrama esquemático del arreglo de las salas de máquinas se presenta en la figura XXXIII. Nótese la inclinación de las máquinas principales, que es necesaria para conseguir que las hélices estén separadas lo suficiente entre ellas; dicha inclinación respecto de la horizontal de las máquinas de proa es de -2°, y las de popa de +2°. Los ventiladores y extractores de las máquinas se ubican sobre cada máquina y las descargas de gases por las bandas, tanto de máquinas como de generadores.

Sistema propulsor.- Usando las Reglas de Clasificación de ABS, [1], parte 4, sección 7, se determinó el diámetro del eje propulsor, según la fórmula:

$$D = 100K^3 \sqrt{\left(\frac{H}{R}\right) \left[\frac{c_1}{U} + c_2\right]}$$

Donde 'D' es el diámetro del eje en milímetros, 'c1 = 540' (para buques con eslora entre 20 y 45.7 m), 'c2 = 160', 'K' factor de diseño que para este caso es igual a 0.95, 'H' potencia en kW (2450kW = 3285 HP), 'R' revoluciones del eje 1000 máximo; 'U' esfuerzo del material, 400 N/mm². Esta fórmula calcula un diámetro para el eje propulsor de 1704.66 mm (6 ¾ in, disponible en el mercado, La figura 3.3 de la referencia [5], página 18, permite determinar el espaciamiento de los cojinetes de acuerdo al diámetro y al número de revoluciones por minuto del eje. Para un diámetro de 17 cm, un eje de acero girando a 1000 RPM, se requieren cojinetes separados hasta 5.5 metros entre sí. Con la forma del casco y la ubicación de las salas de máquinas, se tiene que para el caso de las líneas de ejes que salen de la sala de máquinas de proa, 12.25 metros de longitud, el paso a través del mamparo entre los dos compartimentos, permite disponer de un soporte; y la salida del casco antes de finalizar el otro compartimento permite ubicar el prensa estopa manteniendo una distancia no soportada de 4.8 metros, por lo que no se requiere la colocación de cojinetes de apoyo extras. La línea de ejes de la sala de máquina de popa tiene una longitud de 5.7 metros, que comparado con la separación entre cojinetes de 5.5 m, no requiere de cojinetes extras, ya que el túnel de salida del casco, se encontrará en la mitad de la línea.

Sistema de gobierno.- Con la finalidad de obtener mayor maniobrabilidad, se ha considerado la utilización de 2 timones, cuyas dimensiones serán obtenidas de las fórmulas descritas en la referencia [2]; así se tiene:

- Area proyectada de la pala:

Primera aproximación: 0.025LT, debido a la maniobrabilidad que se desea, se ha tomado el máximo porcentaje. Esta aproximación da por resultado 1.8 m².

Fórmula de Det Norske Veritas: $AR = 0.01L_{pp}T\left(1+50CB^2\left(\frac{B}{L_{pp}}\right)^2\right)$, el área resultante para la embarcación es de 1.007 m².

Fórmula presentada por Japón: $AR = 0.01L_{pp}T\left(\frac{k_1B}{L_{pp}CB} + k_2\right)$, donde k_1 y k_2 ,

pueden aproximarse con las fórmulas: $k_1 = \frac{54}{7.2 - 30 \frac{V}{L_{pp}}}; \quad k_2 = \frac{0.0008B}{T \left(\frac{L_{pp}}{B \cdot CB}\right)^2},$

siendo V la velocidad en nudos. El área proyectada del timón para la embarcación es de: 1.52 m².

ţ

Considerando que el diámetro de la hélice que debe colocarse, es de 1.3 m para que la pala trabaje adecuadamente debe tener una longitud vertical de aproximadamente igual al diámetro de la hélice. El área proyectada del timón es de 1.5 m², distribuidos en dos palas de 0.76 m², cada pala tiene las siguientes dimensiones 1.2 metros de alto por 0.63 metros de largo, dimensiones que permiten tener una razón de aspecto de 1.57.

Diámetro de la mecha del timón.- las Reglas de Clasificación de ABS, [1], Parte 3, sección 5, establecen que el mínimo diámetro de la mecha superior del timón viene dada por la expresión:

$$s = N_u \sqrt[3]{Q_R K_s}$$

Donde 's' es el mínimo diámetro en milímetros, ' N_u ' es 42.0, ' Q_R ' torque determinado en el mismo capítulo y que resulta ser: 9.57 kNm, ' K_s ' factor del material igual a 0.522. El mínimo diámetro empleando esta fórmula es de 71.79 mm, luego el diámetro de la mecha se toma como de 3 pulgadas (76.2 mm), que es el valor más cercano, y es comercial.

La tabla IL, contiene un resumen de la información calculada para el sistema propulsor y sistema de gobierno de la embarcación.

CANT	DESCRIPCION	<u>DIMENSIONES</u>
02	Ejes de acero sólidos	15 m de longitud por 6 ¼ " de diámetro
02	Ejes de acero sólidos	05 m de longitud por 6 ¾ " de diámetro
02	Cojinetes de apoyo	Para atravesar los mamparos
04	Prensa estopas	7" de diámetro interior
02	Palas de acero rectangulares	1.2x0.63 metros
02	Mechas de timón	3" de diámetro.

Tabla IL.- Resumen de requerimientos del sistema propulsor y de gobierno

4.4 ANÁLISIS DEL COMPORTAMIENTO DEL BUQUE EN LA MAR Y ESTABILIDAD DINÁMICA LONGITUDINAL

Comportamiento del buque en la mar.- En la referencia [14], parte 3.1, se hace una explicación que los movimientos de cabeceo y levantamiento en embarcaciones planeadoras para relaciones de velocidad (4) menores a 2.0 pueden calcularse en forma similar a los buques de desplazamiento. Debido a ésto, para analizar el comportamiento del casco en la mar, se ha usado el programa "Scores", [28], hasta una relación de velocidad (4), de 2.0, con los parámetros de entrada que se muestran en la tabla L, que corresponden a la condición de carga al 10% de la capacidad de los tanques del buque.

$$\frac{V}{\sqrt{L}} \approx 2.0$$
 'V en nudos y L en pies' (4)

DAD INCTRO	VALOR
PARAMETRO	YALOR
Eslora	42.0 m
Desplazamiento	115 Ton
Amplitud de la ola	1.0 m
Angulos de incidencia	00° a 180° (15°)

Tabla L.- Parámetros de entrada del programa SCORES, [27].

En la referencia [8], Comstock establece criterios de aceptación para el comportamiento del buque en la mar, para el caso de mono-cascos en tránsito de punto a punto y que son, reproducidos en la tabla LI. Para la ejecución del programa SCORES [28], calculando la respuesta, se ha empleado la representación para mares irregulares por el método de los dos parámetros, período promedio del estado de mar y altura de significativa de ola, 4.3 seg y 4.7 pies, respectivamente, para un estado de mar 3, tabla I. Dicho programa calcula el espectro de mar, las respuestas del buque en levantamiento, cabeceo y balance, y los espectros de respuesta en los tres movimientos. Empleando el método detallado en el "Anexo 01", se obtuvieron los siguientes parámetros de comparación: RMS en balance, cabeceo, aceleración vertical, aceleración lateral, número de slams por hora y número de veces que la cubierta se moja por hora.

Los resultados obtenidos en los cálculos y su comparación con los establecidos por Comstock [8], se muestran en la tabla LII y el diagrama polar de velocidades en la figura XXXIV.

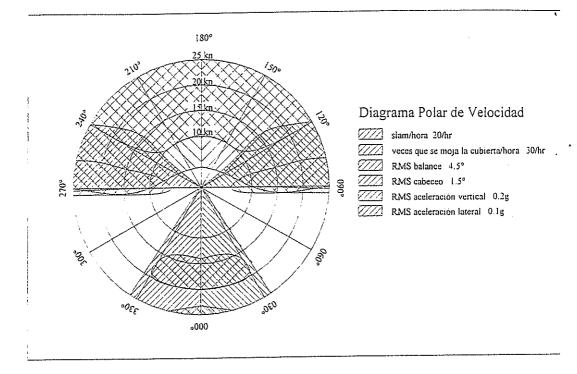


Figura XXXIV.- Diagrama polar de velocidades

El diagrama polar de velocidades representa el comportamiento del buque para una condición de carga de 10% del total de sus capacidades; hay que notar que en la escala ubicada al costado del diagrama se encuentran los valores máximos permitidos por Comstock [8]. Por ejemplo en lo que se refiere al slam, del diagrama se determina que a partir de un ángulo de incidencia de la ola de 90°, es decir por el costado hasta las olas por proa, el buque realiza más de 20 slam/hora, sin embargo su cubierta no se moja más de 30 veces, esto es debido al francobordo en esta condición de carga es de 2.6 m. aproximadamente, otro parámetro que influye notablemente en el tránsito del buque es el cabeceo, que en el caso de recibir las olas por popa, con un rango entre 30° a cada banda, excede

los 1.5°, establecidos por Comstock, esto se debe a que el estado de mar 3, es agitado y el parámetro de comparación es bajo.

											····			i
Cruce de canal						10		† ; ; ; ; ;	0.4	2/100				
Remolca dor	sito	168, 1972)	1	3 3 6 1 1		<u>च</u>		1 1 1 1 1 5 5	6'0	6/100	,		, , , , , , ,	
Carga General	Tránsito	Aertssen (1068, 1972)	1	1		6.0	i i i i i	1	0.2	4/100		901/5	25/100	
Granelero		,		1		0.5	1 1 1 1 1		0.2	3/100	; ; ;	5/100	25/100	
Mono-casco Naval	Rebusca de sonar	Olson (1977)	9.6))))			1	20% en 2 hrs.	0.2	3/100	120/lir.	30/lur.		
Мопо-са	R.A.S.	Olson (1977)		2.4					0,2	3/100		30/hr		
Mono-casco Naval	Operación con Helo	Comstock (1980)	2.5	1.5		0.2	0.1			20/lur,		30/lu.		1,0
Mono-cas	Operación	Olson (1977)	3.2		1.26	1 1 1 1 1 1			0.2	3/100		30/lir		1.83
2000- 3000 t. SES		Mandel (1979)	1.5	1.5		1.0	0,1	10% en 2 hr.	0.6	; ; ;		, , , ,	 	1 1 1 1 1 1
Hidro- foil		Stark (1977)	1.25	1.50		0.11	90 0	10% en 4 lus.	0.5	1 1		, , , , ,	; ; ; ; ; ;	
Bote planeador	nto a punto	Allen (1978)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ;	4	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		1	1	: : : : :
3350 L. SWATH	Fránsito de punto a punto	Olson (17781)	9'6					20% en 2 hrs.				1	; ; ; ; ;	• • • • • • • • • • • • • • • • • • •
o Naval		Comstoc k (1980)	4.0	5.1	·	0.2	0.1		; ; ; ; ; ;	20/hr	1	30/hr.		! ! !
Mono-casco		Olson (1771)	9.6		(:) (20% en 2 hrs.	0.2	3/100	1	30/lu.	1	
Tipo de buque	Función	Fuente	Rms balance Áng (°).	Rms Cabeceo Áng. (°).	Rms Vert	Rms Vert.	Rms Lat.	Malestar debido al	Slam	Slam Frec.	Domo sonar Emery Free	Cub. mojada Free	Prop. Emerg.	Rms Vel. Relativa, m/s

Tabla L1.- Criterios de comportamiento del buque en la mar, [32].

	- Victorial (a)	N	lúmero	de Slam	por hora	<u></u>
RMS Balance (°)	RMS aceleración vertical (g)	Velocidad (nudos)				
Velocidad (nudos)	(°) Velocidad (nudos)	(°) —	10	15	20	25
(°) 10 15 20 25	(0 13 20	0	0.00	0.00	2.83	24.40
0 0.00 0.00 0.00 0.00	0 0.01 0.00 0.00	15	0.00	0.00	3.21	13.98
15 0.415 0.406 0.387 0.417	15 0.01 0.00	30	0.00	0.00	0.04	0.81
30 0.875 0.845 0.817 0.815	JU 0.01 0.00 1.42	45	0.03	0.00	0.00	0.00
45 1.42 1.31 1.31 1.28	45 0.02 0.01 0.00	60	6.19	0.06	0.00	0.00
60 2.06 1.81 1.74 1.75	00 0.05 0.02 0.00	75	14.18	4.49	0.74	0.11
75 2.88 2.51 2.29 2.16	75 0.05 0.05 0.05		47.92	42.38	36.78	34.78
90 4.58 4.57 7.54 7.17	90 0,04 0.01 0.01		57.41	7.21		185.32
105 7.74 7.89 7.54 7.17	103 0.10 0.12 0.11		91.22	60.44	844.82	88.77
120 7.17 6.38 5.55 4.76		135		106.64	783.89	51.47
135 5.43 4.42 3.54 2.75	135 0	150		131.06	997.10	54.05
150 3.54 2.8 2.01 1.38	[30 0,27 0,32 0.46	165			1024.96	58.27
165 1.72 1.26 0.919 0.597	700 0,20	180			1534.22	73.89
180 0 0 0 0	180 0.27 0.36 0.07 0.36	100				
		Λ.	ma eah	re cubie	rta por h	эга
RMS cabeceo	RMS aceleración lateral	Λį			d (nudos	
Velocidad (nudos)	(°) Velocidad (nudos)	(°) –	10	15	20	25
(°) 10 15 20 25	10 15 24	0	0.00	9.55	59.31	5.60
0 0.97 2.72 3.55 1.82	0 0.00 0.00 0.00 0.00	15	0.00	1.08	82.08	4.56
15 0.983 2.06 4.21 1.8	15 0.02 0.05 0.05	30	0.00	13.75	108.37	2.17
30 1.01 2.61 3.85 1.69	J0 0.02 0.05	45	0.01	0.01	0.46	0.19
45 1.01 0.878 1.55 1.21	45 0.01 0.05 0.00	60	0.20	0.09	0.00	0.45
60 0.923 0.816 0.481 1.04	00 0.05 0.04	75	0.05	0.04	0.02	0.02
75 0.613 0.576 0.522 0.484	75 0.05 0.05	90	0.02	0.01	0.01	0.01
90 0.029 0.046 0.655 0.659	90 0.00 0.00 0.00	105	1.03	0.00	1.18	1.13
105 0.684 0.671 0.655 0.659	105 0.24 0.4.	120	8.57	0.37		1.13
120 1.23 1.17 1.1 1.07	120 0.05 0.00	135	3,78	2.30	0.44	0.10
135 1.49 1.36 1.23 1.15	133 0.03 0.01 0.02	150	1.84		0.09	0.01
150 1.55 1.38 1.22 1.11	130 0.05 0.01	165	0.72		0.02	
165 1.55 1.36 1.19 1.07	105 0.05 0.00	180	0.93		0.02	0.00
180 1.54 1.35 1.17 1.05	180 0.00 0.00 0.00 0.00					

Tabla LII.- Parámetros de comparación de Comstock, [8].

De la misma forma se puede comprobar, como se esperaba, que los problemas de aceleración lateral y balance ocurran cuando las olas vienen de costado.

Estabilidad dinámica longitudinal.- la referencia [29], define la inestabilidad dinámica longitudinal, 'porpoising', como la combinación de oscilaciones de un buque en cabeceo y en levantamiento, de manera sostenida o con incremento en amplitud, que ocurre mientras planea en aguas tranquilas. Para determinar si la embarcación entra en un régimen de inestabilidad longitudinal, se debe evaluar el coeficiente de sustentación para la superficie de planeo, definido como la razón entre el peso del buque y la fuerza inercial del mismo. La tabla IL, muestra el valor de este coeficiente para varias condiciones de carga y para la máxima velocidad, 25 nudos. El coeficiente de sustentación se ha calculado con la relación (5) y (6), la primera calcula el coeficiente para embarcaciones de fondo plano, y la segunda aplica una corrección para embarcaciones con astilla muerta.

$$C_{LO} = \frac{\Delta}{\frac{1}{2}\rho V^2 b^2} \tag{5}$$

$$C_{L\beta} = C_{LO} - 0.0065 \,\beta \,C_{LO}^{0.6} \tag{6}$$

Donde 'β' es el ángulo de astilla muerta, 'V' la velocidad del buque, 'Δ' el desplazamiento y 'b' la manga de la superficie del fondo. Una vez obtenido los valores del coeficiente de sustentación se grafican los puntos en la figura XXXV, [29], que determina los límites de inestabilidad dinámica. De la serie 62, [6], para el cálculo de resistencia y propulsión fue seleccionado el modelo 4667, para

la prueba 7, página 552, de estos resultados y con el número de Froude obtenido con la relación (7) se determina el ángulo de asiento durante el planeo.

$$\operatorname{Fn} = \frac{\mathsf{V}}{\sqrt{\sqrt[3]{\mathsf{V}}\mathsf{g}}} \quad (7)$$

Δ (TON)	100	125	150	175	200	225	232
CLo	0.296	0.370	0.444	0.518	0.592	0.666	0.687
C _{Lβ}	0.186	0.245	0.304	0.365	0.426	0.488	0.505
$\sqrt{0.5C_L}$	0.305	0.350	0.390	0.427	0.461	0.494	0.503
Fn	1.914	1.844	1.789	1.743	1.705	1.672	1.663
Asiento (°)	5.2	4.75	4.62	4.6	4.3	4	3.7

Tabla LIII.- Cálculo del coeficiente de sustentación

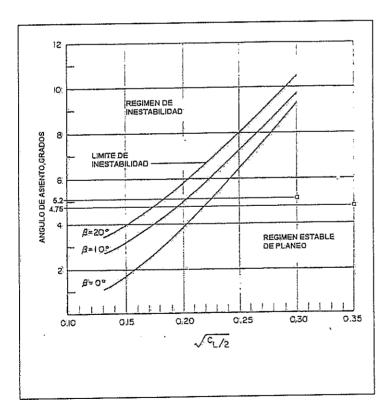


Figura XXXV.- Régimen de Inestabilidad versus ángulo de asiento, [29].

Observando la figura XXXV se determina que la embarcación no tendrá problemas de inestabilidad dinámica longitudinal, durante el planeo, en condición de consumibles al 10%. Dado que los valores del coeficiente de sustentación aumentan conforme aumenta el desplazamiento, se espera que en la condición cargado, tampoco va a tener problemas de inestabilidad longitudinal.

4.5 ANÁLISIS DE LA ESTRUCTURA DE PROA

El diseño estructural de embarcaciones rápidas planeadoras es más complejo que el diseño de embarcaciones de semidesplazamiento y desplazamiento, debido a que es necesario tratar el problema dinámico causado por el impacto de la estructura del fondo con la superficie del agua. Para poder manejar de una forma más fácil este problema, se ha introducido el concepto de carga estática equivalente, descrito en detalle en la referencia [16]. El cálculo de esta carga estática equivalente viene dado por la siguiente fórmula:

$$p = (\bar{p} \times F_{I} \times F_{T}) + p_{h}$$
 (8)

donde ' \bar{p} ' es la máxima presión efectiva, definida por la ecuación (9), ' F_I ', es el factor de impacto que tiene un máximo valor de 1.0 para paneles entre mamparos, ' F_T ', es el factor de distribución de carga transversal, que tiene una

máximo valor de 1.0 para paneles con un ancho menor del 10% de la mitad de la manga, y, 'ph ' es la presión hidrostática debido al calado.

$$\bar{p} = p_{01} \times DLF \tag{9}$$

Donde se define a 'DLF' como el factor dinámico de carga, "Dynamic Load Factor", que no es sino un factor de seguridad, que según el autor de la referencia [16], el valor de 1.1 es suficiente para los casos de embarcaciones planeadoras, y, 'p₀₁' es el valor máximo de presión, considerando los esfuerzos locales de un elemento, calculado por la fórmula :

$$p_{01} = \frac{3p_0}{KG} \tag{10}$$

Donde ' p_0 ' es la máxima fuerza por unidad de longitud a lo largo del casco y está determinado por la fórmula :

$$p_0 = \frac{3W}{2L} \left(1 + \frac{y_{CG}}{g} \right) \tag{11}$$

En la relación (11) se define como 'W' al desplazamiento en libras, 'L' la eslora en pulgadas, 'ÿcg' la aceleración del centro de gravedad longitudinal, que del cálculo del comportamiento del buque en la mar, se determinó que el máximo valor que toma es de 0.3 veces la aceleración de la gravedad, y, 'g' la aceleración de la gravedad. La tabla LIV, muestra un resumen de los cálculos realizados y el valor de la presión estática equivalente.

	SI	Inglés		
PARAMETRO	(m)	(ft)		
L esiora	42	137.76		
B manga	6.86	22.5008		
T calado	2	6.56		
KG centro de gravedad	1.83	6.0024		
W desplazamiento	2067800	211	Ton	
Aceleración de proa	3.3	g		
Aceleración de popa	-1.3	-		
Aceleración del LCG	0.3	-	*	
Aceleración del LCG	0.3	g	4	

Máxima fuerza por unidad de longitud a lo largo del casco

Po 557.520325 lb/in

La máxima presión para considerar esfuerzos locales

Po₁ 14.1646424 lb/in²

Presión máxima efectiva

P 15.5811066 lb/in²

La presión estática equivalente

P 19.8451066 psi

136.57 kN/m²

Tabla LIV.- Cálculo de la presión estática equivalente

Adicionalmente se ha realizado el cálculo sugerido por DNV [9], Sección 5 párrafo G 300, para estimar la presión de slaming sobre la estructura del fondo.

$$p_{sl} = 240 \gamma \overline{L} \left(1 - \frac{20d_b}{L} \right)$$
 (12)

donde 'd b' es el calado en lastre de la embarcación, expresado en metros. El resultado de la aplicación de esta fórmula es de 518.24 kN/m², valor notablemente diferente del estimado empleando la referencia [16]. Considerando que la embarcación diseñada opera con relaciones de velocidad por

debajo de 2.0, se ha tomado la presión obtenida en la tabla LIV, para proceder al' diseño estructural.

El cálculo del espesor del planchaje para soportar la presión de slam va a seguir la formulación, sugerida por DNV, porque en ella se presenta explícitamente la presión; dicho parámetro se lo obtiene de la fórmula (13), donde 's' es el espaciamiento entre estructurales.

$$t = 0.9s_{\gamma_i} \overline{P_{sl} + t_k} \tag{13}$$

Y el valor del módulo seccional para los estructurales del fondo, tanto longitudinales como transversales se puede calcular, usando la fórmula:

$$Z = 0.21^2 \text{sP}_{\text{sl}} \, \text{W}_{\,\text{k}} \tag{14}$$

Los valores obtenidos con la aplicación de las relaciones (13) y (14) son, para el espesor del planchaje del fondo, 8.31 mm, y los módulos seccionales para los longitudinales: 50.01 cm³, (L 75x50x10 mm), y, las bulárcamas transversales 293.11 cm³, (T 175x100x12.5 mm). Esto quiere decir que para mantener el espaciamiento de estructurales es necesario cambiar sustancialmente las dimensiones de los elementos, y debido a que un aumento en los escantillonados de los estructurales traería como consecuencia el aumento sustancial en el peso de la estructura, respecto de la definición estructural pasada, se decidió alterar el espaciamiento entre longitudinales. La tabla LV establece una relación entre la separación entre longitudinales y el peso por unidad de área, y la figura XXXVI,

indica el mínimo peso por unidad de área para la separación entre cuadernas entre 500 y 450 mm.

				CIB PSPOI	Volumen	Peso	peso/area
Cuggión	SM	SM (transv.)	Plancha	Elemenio	mm ³	Ton	Ton/m ²
Separación	cm ³	cm ³	mm	(mm)		7.85E-02	1.09E-01
(mm)	49.7305998	397.8447984	8.31061	L 100x50x8	9125420	7.16E-02	1.09E-01
600 550	45.5863832	397.8447984	7.78473	L 75x50x10 L 50x50x10	8155306	6.40E-02	1.07E-01
500	41.4421665	397.8447984	7.25884	L 75x50x8	7385797	5.80E-02	1.07E-01
450	37.2979499	397.8447984	6.73296	L 50x50x8	6599396	5.18E-02	1.08E-01
400	33.1537332	397.8447984			5917100	4.64E-02	1.11E-01
400 350	29.0095166	397.8447984		L 50x50x6	5335910	4.19E-02	1.16E-01
300	24.8652999	397.8447984		1	4813826	3.78E-02	1.26E-01
250	20.7210833	397.8447984			4364849	3.43E-02	1.43E-01
200	16.5768666		4.10354	ión peso/áre		separació	n de
200			alo rolac	ion neso/art	a, 0011 14	O-P	

Tabla LV.- Variación de la relación peso/área, con la separación de longitudinales

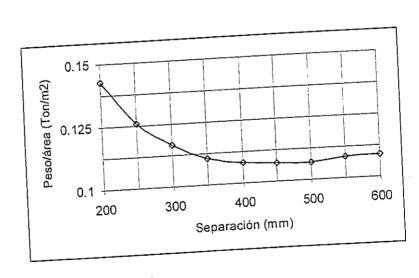


Figura XXXVI.- Peso/área versus separación entre longitudinales

La tabla LVI muestra el cálculo del módulo seccional de la viga buque, en detalle, para los estructurales seleccionados, 334847.136 cm³, que comparándolo con el sugerido por ABS, tabla XXXIII, de 79644 cm³, excede en 4.2 veces.

Este valor y el de momento flector obtenido en la tabla XXXIII, de 7000 kN m, permitirá determinar el esfuerzo a la flexión de la embarcación, mediante la relación (15).

Usando ahora la formulación descrita en la referencia [35], página 214, para el esfuerzo crítico de un panel de plancha, asumida como simplemente soportada en sus cuatro bordes, (16), se calcula este esfuerzo y se lo compara con el obtenido con la relación (15).

ELEMENTO	Centroide (cm)	Area (cm²)	Ау	Ig	INERCIA TOTAL
Quilla	7.500	60.000	450.000	1125.000	4500.000
Plancha fondo	95.650	300.000	28695.000	13.510	2744690,260
Plancha costado	200.000	147.000	29400.000	540225.000	6420225.000
Cubierta	420.000	204.000	85680.000	6.102	35985606.102
Cuaderna longitudinal 1	38.150	37.500	1430.625	45.240	54623.584
Cuaderna longitudinal 2	55.000	37.500	2062.500	45.240	113482.740
Cuaderna longitudinal 3	58.000	37.500	2175.000	45.240	126195.240
Cuaderna longitudinal 4	81.500	37.500	3056.250	45.240	249129.615
Cuaderna longitudinal 5	122.000	37.500	4575.000	45.240	558195.240
Cuaderna longitudinal 6	191.300	37.500	7173.750	45.240	1372383.615
Refuerzo longitudinal l	252.200	6.000	1513.200	11.640	381640.680
Refuerzo longitudinal 2	312.800	6.000	1876.800	11.640	587074.680
Refuerzo longitudinal 3	372.200	6.000	2233.200	11.640	831208.680
Esloras (6)	417.199	105.000	43805.895	544.140	18276319.728
·		1059.000	214127.220		67705275.164 cm ⁴
		Y=	202.198	cm	
		MS=	334847.136	cm³	

Tabla LVI.- Cálculo del módulo seccional en la sección maestra.

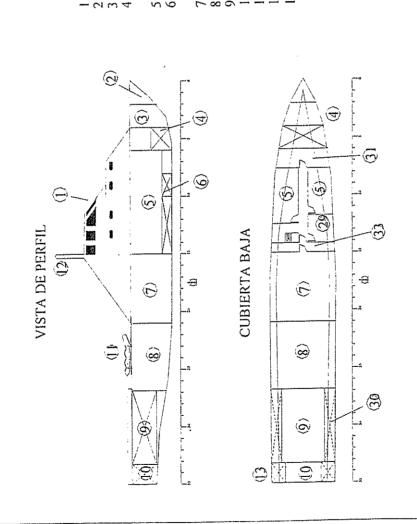
$$\sigma = \frac{M_f}{SM} \quad (15)$$

$$\sigma = \frac{7000 \text{kNm}}{0.334874 \text{m}^3} = 20.9 \times 10^6 \frac{\text{N}}{\text{m}^2}$$

$$\sigma_{\rm cr} = \frac{4\pi^2 D}{b^2 t}$$
 (16); donde

$$D = \frac{Et^3}{12(1-v^2)}$$

donde 'b' es la separación entre longitudinales, 't' el espesor de la plancha.


$$\sigma_{\rm cr} = \frac{4\pi^2 \times \frac{13500 \times 0.28^3}{12(1 - 0.3^2)}}{19.68^2 \times 0.28} \left[\frac{\text{Ton}}{\text{in}^2} \right] = 9.87 \frac{\text{Ton}}{\text{in}^2}$$

que equivale a 1.56×10^6 N/m², que como se esperaba se encuentra muy por debajo del esfuerzo de flexión que soporta la viga buque que es de 20.9×10^6 N/m². Por tanto no se espera tener problemas de pandeo de las planchas.

4.6 DISTRIBUCIÓN GENERAL

Con la finalidad de mejorar la posición del LCG del buque, calculada en el capítulo 4.2, fue necesario trasladar los tanques de combustible hacia la popa, aumentando de esta forma el tamaño de los tanques laterales que se encuentran en el compartimento de popa. Además también se debió mover 15 toneladas de agua dulce a dos tanques laterales ubicados en las bandas del local del servomotor. En lo que se refiere a compartimentaje estanco y distribución de espacios, se mantiene la distribución general mostrada en las figuras XXIX y XXX, del capítulo anterior.

Los cambios enunciados en el párrafo anterior, se presentan en la tabla LVII y la figura XXXVII, muestra la nueva distribución de espacios bajo la cubierta principal.

modificados 10 m3 Entrepuente de tripulación Tanques de combustible

Pañol de armamento Fanques de agua dulce,

Peak de proa

uente

modificados, 50 Ton. Sala de máquinas de proa Sala de máquinas de popa

Area de popa

Servomotor

Fanques de agua de popa

15 m3

Bote de goma Mástil

Figura XXXVII.- Distribución General modificada.

ł

ITEM	POSICION (m)	CUADERNAS	COMPARTIMENTO	PARAMETRO
01	0.0	00-02	Peak de proa	2.4 m
02	2.4	02-06	Pañol de armamento y planta de agua	_
03	2.4	02-06	Tanques de agua dulce de proa	10 m ³
04	7.4	06-15	Area de tripulación	33 m ²
05	7.4	06-15	Tanques de combustible de proa	62.5 m³, 50.0 Ton
06	18.0	15-21	Sala de máquinas de proa	7.2 m
07	25.2	21-27	Sala de máquinas de popa	7.2 m
08	32.4	27-33	Area de popa	15 m ² , 37.5 m ³
09	32.4	27-33	Tanques de combustible de popa	69.1 m³, 55.29 Ton
10	39.6	33-35	Tanques de agua de popa	lõ m³
11	39.6	33-35	Servomotor	2.4 m

Tabla LVII.- Distribución general bajo cubierta

4.7 ESTIMACIÓN DE COSTOS

La estimación de costos ha sido desarrollada considerando la construcción del casco y superestructura, más la base de máquinas, por separado, para lo cual se toma como referencia el costo de la libra de acero mercado local, cuyo precio es de USD 0.16, [15]. Tomando de la tabla XXXVI, el peso total del casco y superestructura es de 60 TON, equivalente a 134400 libras de acero. A este peso es necesario añadir el peso de soldadura, que se estima en 12% aproximadamente del peso total del acero, a un valor promedio de USD 2.0 la libra de soldadura.

La tabla LVIII, muestra en detalle el desglose de la estimación de costos del casco y superestructura.

Los costos mostrados no incluyen el diseño previo a la construcción y deben estar de acuerdo a los requerimientos establecidos por las autoridades competentes y por el Colegio de Ingenieros Navales; además, al costo total que se indica en la tabla LVIII, deben sumarse los costos por instalación de equipos auxiliares en las salas de máquinas y áreas de ingeniería en general y equipos electrónicos y de navegación, además de los acabados de interiores en las áreas de vivienda y comunes.

//// // // // // // // // // // // // /	DESCRIPCION	PESO	COSTO	(USD)
ITEM	DESCRIPCION	(Ton)	Unitario	Total
01	Acero Naval	60	360	15600
02	Soldadura	7.2	4480	32256
03	Valor agregado por trabajo	60	22400	1344000
04	Máquinas principales (04)		200000	800000
05	Generadores (02)		75000	150000
06	Sistema de propulsión (04)		30000	120000
07	Pintura			250000
	TOTAL			2711856

Tabla LVIII.- Resumen de la estimación de costos

Con la finalidad de tener una idea más concreta de esta estimación, se toma como referencia las lanchas océanicas construidas en los Astilleros de la Armada Chilena, de 36 m de eslora; por un costo total, completamente equipadas y listas para operar, de USD 8000000.00, (ocho millones de dólares).

V. CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

El diseño de un prototipo exige un sentido algo conservador, por parte del ingeniero diseñador a nivel local, al no tener unidades similares en las que basarse para el diseño, y regirse únicamente por modelos experimentales. A pesar de que la comparación con unidades similares en tamaño y forma, que realizan las mismas o parecidas funciones, es válida para tener una idea de cuáles son los rangos en los que deben manejarse los parámetros dimensionales del diseño, como eslora, manga, calado, puntal, potencia, velocidad y desplazamiento, el diseño conceptual y preliminar debería ser una constante retroalimentación y discusión entre el armador y el diseñador. Tan solo el que va a hacer uso de la embarcación diseñada tiene una

idea precisa de cuál es el tipo de unidad que necesita y qué requerimientos debe satisfacer. Al finalizar este trabajo el diseñador se ha convertido en el armador, por lo que pueden existir características o requerimientos no contemplados durante el inicio del diseño, ya que el empleo táctico y estratégico de esta unidad no es competencia del ingeniero sino del oficial de operaciones guardacostas.

El uso del computador en el proceso y los procedimientos de diseño y de cálculo, facilitan el trabajo y contribuyen a que la detección y corrección de errores sean más fáciles. En el presente trabajo se emplearon programas de: Generación y Alisamiento de las formas del buque, véanse referencias [11] y [17], de cálculos Hidrostáticos y otras características del casco, véase referencia [12], de cálculo de Resistencia y Propulsión, véanse referencias [15] y [22], y, de cálculo de parámetros del Comportamiento del buque en la mar, referencia [27]. Sin embargo no se cuenta aún con un programa o un paquete integrado y relacionado entre sí, que ejecute en forma conjunta un diseño a nivel preliminar, abarcando los aspectos que involucran la espiral de diseño. Una opción para integrar los programas usados en este cálculo se muestra en la figura XXXVII. La propuesta es crear un programa principal y varios módulos de cálculos, de acuerdo a los requerimientos que se establezcan; el programa principal genera las dimensiones principales a partir de los requerimientos y restricciones; con esta información se generan las formas y se las alisa, si es requerido; seguidamente se realizan los cálculos hidrostáticos, y los resultados se los compara con los requerimientos; si no los satisface, se regresa a la modificación de las formas y se repite el proceso. Al final el modelo habrá pasado por todos los módulos y se habrán verificado los requerimientos.

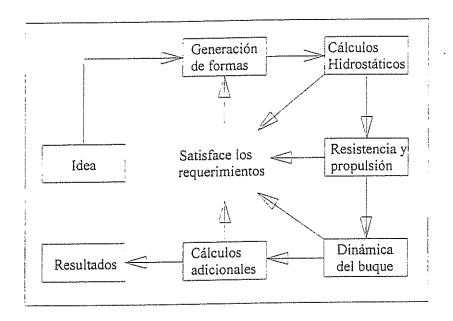


Figura XXXVII.- Integración de los programas para diseño.

En la tabla XXI, se presentan los resultados del cálculo de estabilidad intacta, para tres posiciones diferentes del centro de gravedad vertical, 3.32 m, 3.42 m. y 3.52 m, desde la quilla, estimadas en la etapa preliminar, sin embargo, ninguna de estas condiciones satisface los requerimientos de la IMO, en lo referente al ángulo de escora para el máximo adrizamiento. Posteriormente en la tabla XXXVIII, se realiza una estimación más precisa del valor de KG y se obtiene que éste se encuentra alrededor de 1.73 m. sobre la parte inferior de la quilla, para la condición de plena carga. Finalmente en la tabla XLVI se hace una estimación para las condiciones extremas: consumibles al 100% y al 10%, y se obtienen alturas del centro de gravedad de 2.1 m y 2.57 m, respectivamente, desde la parte inferior de la quilla. Se

espera, conforme se observa en la tabla XXIII, que mientras la posición del KG baja; el ángulo de escora para máximo adrizamiento entra en el rango de aceptación de la IMO; por otro lado al integrar varias etapas del diseño la estimación del centro de gravedad, se hace más exacta y va encerrándose en un rango determinado. Claramente se observa que en la condición al 100% de consumibles la posición del centro de gravedad se encuentra alrededor de 2.0 m, por lo que se esperaría que para la siguiente etapa del diseño este parámetro mantenga la tendencia observada. No obstante, mejorando la estimación del centro de gravedad a nivel preliminar, haría fácil, la predicción inmediata para posteriores cálculos, con el consiguiente ahorro de tiempo.

En la figura XXV, se grafica la posición del propulsor escogido, dentro de un diagrama de cavitación posterior, y como se esperaba, para este diseño, la hélice se encuentra sobre el 10% de cavitación posterior, muy por encima del mínimo requerido para embarcaciones militares. En este cálculo se han usado los resultados experimentales de los propulsores de la serie 'B' de Wagenigen, debido a la limitación de pruebas de otros tipos de hélices en nuestro medio. Debido a que el diseño de este tipo de hélices no se ajusta a los requerimientos de embarcaciones de alta velocidad, será necesario posteriormente recabar información acerca de otros diseños de hélices que permita resolver los problemas descritos.

En la figura XXVI se observa que a plena carga el propulsor no puede desarrollar más de 650 RPM, siendo 950 RPM la velocidad continua, al torque de trabajo del motor

principal, lo que ocasionaría recalentamiento en la maquinaria. En este punto, es' necesario incluir una discusión con el armador, para conocer qué situación le conviene mantener, baja velocidad a plena carga o llegar a la velocidad de funcionamiento a media carga. Entonces se podrá escoger una hélice para satisfacer la condición que seleccione el armador.

El análisis de la respuesta dinámica, fue desarrollado para un estado de mar 3, empleando la formulación de dos parámetros, espectro de Bretschneider. Observando el diagrama polar de velocidades, figura XXXIV, se concluye, que el diseño de la embarcación en términos generales, va encaminado a la consecución, de un comportamiento del buque en el mar determinado y refleja que la embarcación que se ha diseñado, no satisface completamente los requerimientos de tránsito. Aunque en los criterios de comparación no se establece el valor para malestar del personal por movimiento, se esperaría, en estas condiciones, que no satisfaga este criterio, ya que el buque sobrepasa el límite de 20 slams/hora, desde los 10 nudos de velocidad en adelante, y la velocidad de crucero establecida en el capítulo 1 es de 15 nudos. Finalmente, en el país no existe información sobre este tipo de embarcaciones, menos aún de que criterios dinámicos debe satisfacer en determinadas condiciones, por lo que es difícil corroborar los resultados obtenidos.

El proceso de cálculo estructural en el caso de embarcaciones planeadoras, puede verse comprometido por la falta de precisión en la estimación de la presión dinámica. Los métodos empleados para realizar esta estimación no llegan a resultados

consistentes, véase la tabla LIV, [28], y relación (12), [29], 136.5 kN/m² y 518.24 kN/m², respectivamente. A pesar de que la formulación que presentan las sociedades clasificadoras, contiene un margen de seguridad alto, que los hace confiables, se podría, también, incurrir en un sobre dimensionamiento de los estructurales de la embarcación, lo que conllevaría a un aumento en el peso, costo de construcción y de materiales de la misma.

5.2 <u>RECOMENDACIONES</u>

La función del ingeniero como diseñador de una embarcación determinada, debe incluir una discusión sobre las posibilidades y las limitaciones que pueda tener la embarcación sugerida por el armador. Es necesario empezar a inculcar, en los estudiantes de Ingeniería Naval, una doctrina de diseño que no se base únicamente en dimensiones fundamentales, eslora, manga, volumen de bodega, sino que también incluya características operativas y estratégicas de la embarcación. La orientación del diseño para embarcaciones de uso especial como remolcadores, dragas y de uso militar en general, debido a que su desplazamiento no depende de carga sino del consumo de combustible, agua y víveres, debe estar orientada o debe partir del comportamiento del buque en la mar, debido a que en ciertas maniobras, o ciertos equipos, para su operación o ejecución tienen limitaciones de movimiento. Entonces,

una embarcación se diseña para operar con estos equipos o para realizar estas 'maniobras, y no como un mero ajuste de dimensiones principales que son las únicas que provee el armador.

Una de las dificultades y por lo tanto limitaciones encontradas en el desarrollo de este trabajo es que la información disponible para este tipo de embarcaciones es desactualizada y en determinados aspectos, como estructural, propulsión, materiales recomendados, y, comportamiento en la mar, no existe. Por lo que se recomienda que el área de diseño renueve o adquiera material que sirva de referencia, para futuros proyectos y que sea información, en lo posible, reciente.

Se recomienda que los cursos de Programación Aplicada y aquellos que desarrollan temas de especialización profesional, como Arquitectura Naval, Estructuras, Propulsión, Vibraciones del buque, y Diseño, que se dictan en la facultad, incluyan dentro de su pensum académico, una orientación y motivación, permanente, a los estudiantes, en la utilización del computador como la herramienta principal en su vida profesional. El uso del computador en este trabajo ha sido una herramienta fundamental y extremadamente valiosa.

Si se desea continuar con el diseño de esta embarcación, es necesario realizar un cálculo estructural más detallado. El haber obtenido valores de presiones dinámicas notablemente diferentes, con las formulaciones disponibles, y considerando que se trata de una embarcación de planeo, donde dicho parámetro es fundamental, las

estimaciones basadas en estas presiones pueden no satisfacer por completo, las exigencias del material. Se recomienda, por tanto, buscar un proceso que permita obtener un valor confiable, o que corrobore uno de los calculados. Se recomienda también realizar pruebas de resistencia con un modelo a escala de la embarcación, ya que para el diseño preliminar se emplearon modelos con formas de casco prismáticos, y las formas generadas para este diseño, producen un coeficiente de sección que no se mantiene constante hacia la popa, sino que va disminuyendo. Esto puede traer cambios, en la estimación de la resistencia al avance de la embarcación y no ajustarse de manera precisa con el modelo empleado. También se podría considerar la adaptación de un apéndice como el mostrado en la figura XXXVIII, usado generalmente para mejorar el asiento en los cascos planeadores no prismáticos, aunque, su eficiencia no puede predecirse sino en forma experimental.

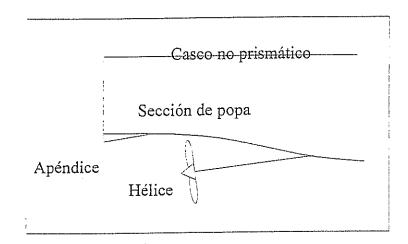


Figura XXXVIII.- Apéndice usado en cascos no prismáticos

ANEXO 01

Cálculo de los parámetros para el diagrama polar de velocidades.- De la ejecución del programa SCORES, [28], se toman los valores de frecuencia de ola, espectro de mar, frecuencia de encuentro, y amplitud y fase de: levantamiento, cabeceo y balance. Los valores de los espectros de respuesta de amplitud, cabeceo y balance y sus respectivos valores significativos se leen directamente del archivo de resultados del programa.

Para calcular el espectro de respuesta del buque para los movimientos no calculados por SCORES, [28], como por ejemplo aceleración vertical, aceleración lateral, desplazamiento relativo vertical y velocidad relativa vertical, se sigue el método sugerido por Battacharya, [27], capítulo 6, el que parte del espectro de mar y lo transforma a espectro de mar con frecuencia de encuentro, usando la relación:

$$\omega_e = \omega_o - \frac{\omega_o^2 V}{g} \cos \mu \qquad (1)$$

donde ' ω_0 ' es la frecuencia de la ola incidente, 'V' es la velocidad del buque y ' μ ' el ángulo de incidencia de la ola. Luego el espectro de mar a la frecuencia de encuentro es igual a:

$$S(\omega_e) = S(\omega_o) \frac{1}{1 - \frac{2\omega_o V}{g} \cos \mu}$$
 (2)

De esta forma ambos espectros mantienen igual área bajo la curva de distribución.

Las figuras la y 1b, muestran la diferencia que existe entre el espectro de mar a la frecuencia de la ola y el espectro del mar a las frecuencias de encuentro.

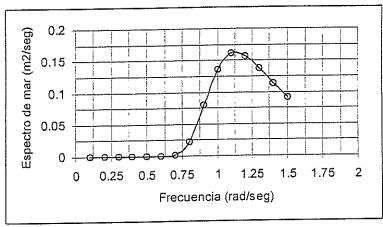


Figura 1a.- Espectro de mar a la frecuencia de la ola

El siguiente paso es la determinación del espectro de respuesta para la aceleración vertical, aceleración lateral, desplazamiento vertical relativo y velocidad relativa vertical del buque respecto de la ola. Estos

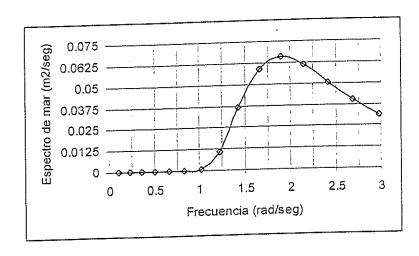


Figura 1b.- Espectro de mar a la frecuencia de encuentro

valores se obtienen combinando la amplitud y fase de respuesta en cabeceo y levantamiento, según la relación (3), figura 2, como se trata de un movimiento armónico, el cálculo de velocidad se hará multiplicando la amplitud por la frecuencia de encuentro, y el de la aceleración, por la frecuencia de encuentro al cuadrado.

$$\eta = \eta_3 - X\eta_5 - \xi_w \quad (3)$$

$$\eta_3 = |\eta_3| \operatorname{Cos}\alpha \hat{i} + |\eta_3| \operatorname{Sen}\alpha \hat{j}$$

$$\eta_5 = |\eta_5| \operatorname{Cos}\beta \hat{i} + |\eta_5| \operatorname{Sen}\beta \hat{j}$$

$$\xi_w = \zeta \cdot \operatorname{Cos}(-kx \cos \mu) \hat{i} + \zeta \cdot \operatorname{Sen}(-kx \cos \mu) \hat{j}$$

Donde:

- Función que determina la posición, velocidad o aceleración del buque en un η
- $|\eta_3|$ amplitud de la respuesta en Función de la respuesta en levantamiento, η_3 levantamiento
- Función de la respuesta en cabeceo, |η₅| amplitud de la respuesta en cabeceo η5
- Angulo de desfase del levantamiento α
- Angulo de desfase del cabeceo β
- Vector que determina la posición de una partícula de agua en la superficie de la ola $\xi_{\rm w}$
- Amplitud de la ola ζ
- Angulo de incidencia de la ola hacia el buque μ
- Número de la ola, $(2\pi/\lambda)$

X Distancia desde sección media hasta el punto donde se quiere realizar el análisis, para este cálculo se tomó como la mitad de la eslora, para analizar el movimiento del extremo de proa.

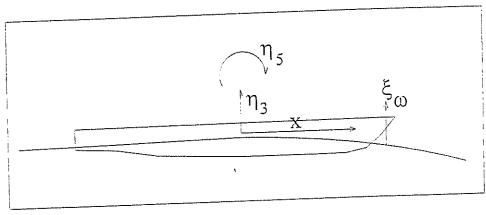


Figura 2.- Movimientos de la embarcación

Para los cálculos se obtuvo el valor de la magnitud de la aceleración, de la velocidad relativa y del movimiento relativo empleando las relaciones (4), (5) y (6), respectivamente:

$$|\eta| = -\omega_e^2 \sqrt{(\eta_3 | \cos\alpha - X | \eta_5 | \cos\beta)^2 + (\eta_3 | \sin\alpha - X | \eta_5 | \sin\beta)^2}$$

$$|\eta| = \omega_e \sqrt{(\eta_3 | \cos\alpha - X | \eta_5 | \cos\beta - \zeta \cos(-kx \cos\mu))^2 + (\eta_3 | \sin\alpha - X | \eta_5 | \sin\beta - \zeta \sin(-kx \cos\mu))^2}$$

$$|\eta| = \sqrt{(\eta_3 | \cos\alpha - X | \eta_5 | \cos\beta - \zeta \cos(-kx \cos\mu))^2 + (\eta_3 | \sin\alpha - X | \eta_5 | \sin\beta - \zeta \sin(-kx \cos\mu))^2}$$
(6)

Seguidamente se expresa la respuesta como una relación respecto de la amplitud dé la ola, RAO (Response Amplitude Operator), dividiendo la magnitud de respuesta para la amplitud de la ola, obtenida con las relaciones (4), (5) y (6), y elevando este término al cuadrado. Las figuras 3ª y 3b muestran los valores de los RAOs de las respuestas de velocidad relativa y desplazamiento relativo.

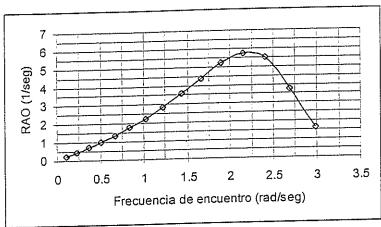


Figura 3ª.- RAO de la velocidad relativa

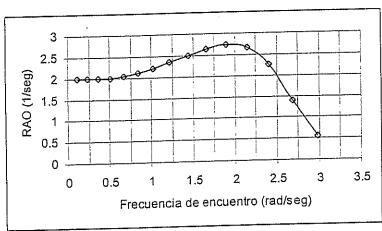


Figura 3b.- RAO del desplazamiento relativo

Finalmente la respuesta del buque, en cada parámetro buscado, es el producto del espectro de mar a la frecuencia de encuentro con el RAO cuadrado de cada parámetro (7).

$$S_{\phi}(\omega_{e}) = S(\omega_{e}) \cdot |H(\omega_{e})|^{2}$$
 (7)

Donde:

 $S_{\varphi}(\omega_e)$ Espectro del parámetro buscado a la frecuencia de encuentro

 $S(\omega_e)$ Espectro de mar a la frecuencia de encuentro

 $_{0}H(\omega_{e})^{2}$ RAO al cuadrado, magnitudes obtenidas con las relaciones (4), (5) y (6).

Las figuras 4a y 4b, presentan los espectros de respuesta de velocidad relativa entre el buque y la ola en la proa y el desplazamiento relativo.

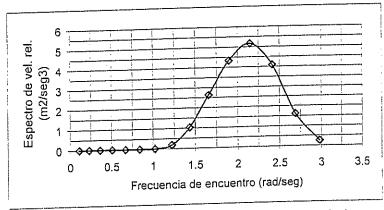


Figura 4a. – Espectro de respuesta de la velocidad relativa a la frecuencia de encuentro

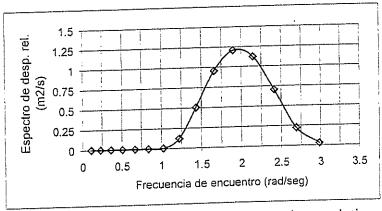


Figura 4b. – Espectro de respuesta del desplazamiento relativo a la frecuencia de encuentro

Los momentos del espectro que se requieren para cálculos posteriores se los obtiéne usando la relación:

$$m_n = \int_{-\infty}^{\infty} \omega_n S(\omega) d\omega \quad (8)$$

La integración del espectro de respuesta se la ha hecho utilizando la regla trapezoidal, y para evitar las singularidades, el intervalo de las abcisas es tomado como un intervalo en frecuencias naturales y no en frecuencias de encuentro.

Espectro de	Frec ola	Frec. De	Amp. Lev.	Fase Lev.	Amp. Cab.	Fase Cab.	Amp. Bal.	Fase Bal.
mar		encuentro s ⁻¹	m	(°)	(°)	(°)	(°)	(°)
	s ⁻¹		1.0001	180	0.0296	90.1	0.0507	-90.5
0	0.1	0.10657		180	0.1213	90.4	0.2052	-91.8
0	0.2	0.2263	1.0004	180	0.2789	92.1	0.4746	-93.8
0	0.3	0.35917	1.0004		0.4683	94.9	0.8859	-96.5
0	0.4	0.5052	1.0001	179.7	0.4667	90	1.4947	-99.8
0	0.5	0.66437	1.0095	179.1		83.6	2.4162	-104.1
0	0.6	0.8367	1.0265	178.5	0.9573		3.9148	-109.9
0.001	0.7	1.02217	1.0503	177.6	1.3237	78.4		-118.9
0.001	0.8	1,2208	1.0832	176.1	1.7546	73.1	6.7375	
- "	0.9	1.43257	1.1266	173.4	2.2513	67.3	13.6026	-136.9
0.08	0.5	1.65749	1.1799	168.9	2.8206	60.3	29.8484	164.4
0.136	1	1.89557	1,2376	161.7	3.4673	50.9	18.5925	97.9
0.161	1.1	2.14679	1.2769	150.1	4.1456	37.6	11.1988	76.1
0.157	1.2		1.2241	132.5	4.5857	18.2	8.0366	63.8
0.137	1.3	2.41116		110.8	4.2143	-5.8	6.2306	54.3
0.114	1.4	2.68868	0.9775	93.5	3.0751	-26.6	4.9803	46
0.092	1.5	2.97936	0.6233		or SCORE		<u></u>	·····

Tabla ILX.- Información entregada por SCORES, [27].

Las tablas ILX, LX y LXI muestran el resumen de este cálculo para un ángulo de encuentro de 120°, velocidad del buque 25 nudos y estado de mar 3.

Los parámetros de velocidad relativa y desplazamiento relativo, son necesarios para determinar el número de slams por hora y el número de veces que la cubierta se moja; se conoce como 'slamming', al impacto de la superficie del fondo con la superficie del agua y se produce cuando la velocidad relativa entre el buque y la superficie de la ola excede cierto valor, que para una embarcación de 525 ft de eslora se la determinó en 12 ft/seg, (3.65 m/seg) y se sugiere que para buques de diferentes esloras este valor se lo obtenga de la escala de Froude, proporcional a \sqrt{L} . El número de veces que se moja la cue bierta es la cantidad de veces que la superficie de la ola excede la cubierta del buque en la sección de proa. El número de slam por hora y el número de veces que la cubierta se moja en una hora, son determinados a partir de la formulación propuesta en la referencia [32], página 113, asumiendo que la función probabilística del espectro de la respuesta cumple con la función de Rayleigh, la probabilidad de que se presente un evento mayor que 'F₁', se determina con la ecuación (9); el período aparente del evento se calcula con la fórmula (10); por lo tanto se puede

expresar el fenómeno en términos del número de veces por hora mediante la ecuación (11).

$$P_{F_1} = e^{-\frac{F_1^2}{2m_0}}$$
 (9) $T_x = 2\pi \sqrt{\frac{m_2}{m_4}}$ (10) $N_T = 3600 \frac{P_F}{T_x}$ (11)

Donde 'F₁' es el evento que debe suscitarse, en caso de slam es la velocidad de slam, y para las veces que se moja la cubierta es el francobordo, en la condición de carga analizada.

Frec natural	Frec. De encuentro	Espectro de respuesta				
s ⁻¹	s-l	Levantamiento	Cabeceo	Balance		
0.1	0.10657	0.00E+00	0.00E+00	0.00E+00		
0.2	0.2263	0.00E+00	0.00E+00	0.00E÷00		
0.3	0.35917	0.00E+00	0.00E+00	0.00E+00		
0.4	0.5052	3.54E-33	7.76E-34	2.78E-33		
0.5	0.66437	2.61E-13	1.14E-13	5.71E-13		
0.6	0.8367	2.20E-06	1.91E-06	1.22E-05		
0.7	1.02217	1.44E-03	2.29E-03	2.01E-02		
0.8	1.2208	2.61E-02	6.85E-02	1.01E+00		
0.9	1.43257	1.01E-01	4.03E-01	1.47E+01		
1	1.65749	1.90E-01	1.08E+00	1.21E+02		
1.1	1.89557	2.47E-01	1.94E+00	5.57E+01		
1.2	2.14679	2.55E-01	2.69E+00	1.97E+01		
1.3	2.41116	2.06E-01	2.89E+00	8.87E+00		
1.4	2.68868	1.09E-01	2.02E+00	4.42E+00		
1.5	2.97936	3.56E-02	8.66E-01	2.27E+00		
	mo	1.15E-01	1.15E÷00	2.27E+01		
	R.M.S. $(\sqrt{m_0})$	3.39E-01	1.07E+00	4.76E+00		

Tabla LX.- Determinación de los espectros de respuesta.

Frec natural	Frec. De encuentro	RAO (Response Amplitude Operator)				
s ⁻¹	s ⁻¹	Aceleración	Velocidad	Desplazamiento		
0.1	0.10657	-0.01135875	0.21315491	2.0001399		
0.2	0.2263	-0.05126686	0.45284365	2.00107667		
0.3	0.35917	-0.12924506	0.71901077	2.00186755		
0.4	0.5052	-0.25504129	1.01002947	1.99926656		
0.5	0.66437	-0.45680986	1.35160949	2.03442283		
0.6	0.8367	-0.77903946	1.76590752	2.11056235		
0.7	1.02217	-1.28027097	2,26698469	2.21781572		
0.7	1.2208	-2.05446857	2.87562252	2.35552304		
0.8	1.43257	-3.22255218	3.59238309	2.50764925		
0.9	1.65749	-4,94435755	4.39042061	2.64883686		
1 1	1.89557	-7,41945291	5,18612224	2.73591703		
1.1	2.14679	-10.7335622	5.73402895	2.67097804		
1.2	2.41116	-14.2603038	5.46186986	2.26524572		
1.3		-15.6612182	3.74906069	1.39438709		
1.4	2.68868	-13.646441	1.63643851	0.5492584		
1.5	2.97936	-13.04041	1.000-10001			

Tabla LXI.- Determinación de los RAOs.

ACELERA	CION			VELOCIDAD	RELATIVA		
	Integración	m_0	Integración	m_2	Integración	m ₄	Integra
m ₀	IIICEIGIGI	0		0		0	
0	o	0	0	0	0	0	
0	0	0	0	0	0	0	
_	ŏ	0	0	0	0	0	
0	0	0	0	0	0	0	
0	ol	0	0	0	0	0	
=	8.1955E-05	0.00513922	0.00025696	2.8071E-09	1.4035E-10	2.8833E-08	1.441
0.00163909 0.0928585	0.00472488	0.18192251	0,00935309	0.00028272	1.4136E-05	0.00161724	8.086
	0.00472488	1.0324173	0.06071699	0.11331868	0.00568007	0.35914014	0.018
0.8307874	0.0401623	2.62150787	0.18269626	4.13007591	0.21216973	7.05415351	0.370
3.32474733	0.60937603	4.33023408	0.3475871	45,440679	2.47853774	38.9769571	2,301
8.86277331	1.34753213	5,16201681	0.47461254	236.730164	14.1085421	88.8580413	6.391
18.0878692 27.8598084	2.29738388	4.08698707	0.46245019	618.199824	42.7464994	77.3448168	8.31
27.8398084	2.79105082	1.60232199	0.28446545	644.31011	63.1254967	15.2954023	
	2.79103002	0.24636965	0.09243458	239.7105	44.2010305	0.44000152	0.786
17.1327324	9.55880575	m ₀ =	1.91457317	$m_2 =$	166.87797	m ₄ =	22.81
$m_0 = R.M.S. \left(\sqrt{m_0} \right)$		R.M.S. $(\sqrt{m_0})$	1.38368102	$\sqrt{m_2} =$	12.9181257	$\sqrt{m_4} =$	4,776
		. P _F =	0.41903168				
		T _X =	16.994449				
		N _T =	88.7651049	Slam/Hr.			

Tabla LXII.- Determinación del espectro de respuesta de aceleración y Slam/hora

	Integración	m ₂	Integración	m ₄	Integración
m ₀ 0	THE STATE OF THE S	0		0	
0	0	0	0	0	
	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	0	0	0	0	
0	ŭ	0.00513922	0.00025696	0.00536962	0.0002684
0.00491371	0.00024594 0.00634927	0.18192251	0.00935309	0.27112869	0.0138249
0.12206075	0.00634927	1.0324173	0.06071699	2.11878543	0.119495
0.50306438		2.62150787	0.18269626	7.20199804	0.466039
0.95422179	0.07286431	4.33023408	0.3475871	15.5593349	1.138066
1.20512396	0.10796729	5,16201681	0,47461254	23.7902246	1.967477
1.12005742	0.11625907	4.08698707	0.46245019	23,7604862	2.377535
0.70299333	0.09115254	1,60232199	0.28446545	11.5831859	1.767183
0.22165195	0.04623226	0.24636965	0.09243458	2.18692141	0.688505
0.027755	0.01247035		1.91457317	$m_4 =$	8,538397
$m_0 =$	0.48479758	m ₂ ==	1.38368102	· · · · · · · · · · · · · · · · · · ·	2,922053
M.S. ($\sqrt{m_0}$)	0.69627407	$\sqrt{m_2} =$	1.50500.02	$\sqrt{m_4} =$	
P _F =	0.00093779				
Τ _X =	2.97527882				
N _T =	1.13470121 A	gua/Hr.			

Tabla LXIII.- Determinación del espectro de respuesta de Número de veces que se Moja la cubierta/hora.

BIBLIOGRAFIA

- ABS, 'Reglas de construcción de embarcaciones de acero de eslora menor a 90 m', 1998
- ALVARIÑO, AZPÍROZ Y MEIZOSO, 'El proyecto básico del buque mercante',
 Fondo editorial del Colegio Oficial de Ingenieros Navales, 1997.
- 3. BAQUERIZO, MANUEL, 'Lecciones de electricidad aplicada al buque',1976.
- 4. Catálogos 'www.cat.com' y 'www.detroitdiesel.com'. 2000.
- CATERPILLAR ENGINE DIVISION, 'Application and installation guide', Caterpillar, 1982.
- CLEMENT, P., 'Resistance Tests of a Systematic Series of Planing Hull Forms', SNAME, 1963.
- 7. CLEMENT, P., 'SNAME Small Craft data sheets for design and for resistance prediction'. SNAME, 1965.
- 8. CONMSTOCK, E.N., BALES, S.L. Y KEANE, R.G., "Seakeeping in Ship Operations", SNAME Star Symposium, San Diego, 1980.
- 9. DET NORSKE VERITAS, "Rules for classification of steel ships", DNV, 1991.
- 10. DETROIT DIESEL, "Elements of Marine Propulsion". DD, 1980
- 11. DUCANE, P., 'High speed small craft'. David&Charles,Limited, 1974.

- E. STRAUBINGER, W. CURRAN V. FIGHERA, 'Fundamentals of Naval Surface Ship weight estimating'. Naval Engineers Journal, vol 95, pp. 127-143, 1983
- 13. EAMES M. C. 'Concept Exploration and approach to small warship design' (RINA), 1976.
- 14. F. MICHELSEN, J. MOSS, 'Small craft engineering Resistance, propulsion and sea keeping'. U. Michigan, 1971
- 15. GERPRO, Gerencia de Producción 'Astinave', 2000.
- 16. HELLER, R., "On the structural design of planing craft", RINA, 1961.
- 17. IMO, "Maritime Polution" (MARPOL). IMO, 1993.
- 18. IMO, "Safety of life at Sea" (SOLAS). IMO, 1997.
- 19. INOCAR, 'Condiciones climatológicas de la región Insular', 1999.
- 20. LORD, LINDSAY. "Naval Architecture of planing hulls". Cornell Maritime Press, 1963.
- 21. MARÍN, J., "Eficprop (Análisis propulsivo)", 1999.
- 22. MARÍN, J., "Gformas, Generación de las formas de un casco, Manual del usuario", 1999.
- 23. MARÍN J. R., 'Alisam (Alisamiento de las formas de un buque), Manual del usuario', 1999.
- 24. MARÍN J. R., 'Disprop (Diseño Propulsivo de un buque) Manual del usuario', 1998
- 25. MILL SUPPLY CO., 'DIXIE', New Orleands, Shreveport.

- 26. OMI, 'Criterios de estabilidad sin avería aplicables a los buques de pasaje y a los buques de carga', OMI, 1987.
- 27. RAMESWARE, BHATTACHARYA, "Dynamic of marine vehicles", John Willey, 1962.
- 28. RAFF, A., "Program SCORES ship structural response in waves", SSC Report 230, 1972.
- 29. SAVITSKY, D. "Hydrodinamic design of planing hulls", SNAME, 1964.
- 30. SILVIA P., SCOTT R., 'Small craft engineering structures'. U. Michigan, 1971.
- 31. SNAME, 'Principles of Naval Architecture', vol 2. SNAME, 1988
- 32. SNAME, 'Principles of Naval Architecture', vol 3. SNAME, 1988
- 33. SNAME, 'Ship design and construction'. SNAME, 1980.
- 34. US. NAVY, 'SHCP, Manual del usuario'. US Navy, 1976.
- 35. W. MUCKLE, "Strength of ships structures", Edward Arnold Publishers, 1967.

Esto será el detonante para su popularidad negativa o positiva de un destino turístico.

El incremento del turismo ha sido propicio para desarrollar medios de transporte, ésta creciente demanda turística ha permitido potenciar el servicio de transporte y mejorar la calidad de estos.

Esta demanda es cada vez más exigente y sofisticada, que busca calidad buenos precios en sus desplazamientos.

Se debe añadir que en la mejora de la calidad de los transportes ha influido también la fuerte competencia existente en este mercado que ha generado la necesidad de diferenciar sus productos mediante reducción de costos y la oferta de una mayor calidad.

1.4.2 Tipos de Transporte Turísticos

1.4.2.1 Transporte Terrestre

Transporte por Carretera: Medio de transporte de viajeros de uso común. Los traslados pueden realizarse en autocar o en automóvil. El primero se utiliza por las empresas de transporte públicas o privadas por carretera y disponen de una flota de autocares con la que pueden prestar su servicio en régimen de línea regular o en servicio discrecional. El segundo suele ser de propiedad particular individual o en régimen de alquiler con o sin chofer. Las ventajas del transporte por carretera son la libertad de acción, la comodidad, la economía de costes y la flexibilidad, aunque también presenta inconvenientes tales como las congestiones de tráfico, la contaminación atmosférica y la ruptura de países por el establecimiento de nuevas carreteras y autopistas.