ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería Eléctrica y Computación

Diseño de un esquema de alivio de carga aplicado al sistema de distribución eléctrica de la isla San Cristóbal en Galápagos

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero en Electricidad

Presentado por:
Synch Sánchez Alejandro Francisco
Tinoco Armijos Oscar Andrés

GUAYAQUIL – ECUADOR Año: 2022

DEDICATORIA

El presente trabajo se lo dedico a mis abuelas que desde el comienzo de este camino me han dicho "espero poder verte graduado". Me alegra saber que con mi esfuerzo y el apoyo de mi familia lograron verme graduado.

Alejandro Synch

Le dedico esta meta cumplida a aquellas personas que han sido parte de mi vida y que partieron de este mundo sin alcanzar a verme graduado, personas que recuerdo con cariño porque que hasta el último momento me enseñaron a ser más humano. Es especial a ti abue...

Oscar Tinoco

AGRADECIMIENTOS

Agradezco mi familia por haberme apoyado económica y emocionalmente durante mi carrera.

Por último, agradezco a mis amigos Oscar Tinoco, Joel Guevara, Bryan Moran, Steeven Delgado y David González y Karen Gutierrez por la ayuda y motivación para completar sin ustedes no hubiera sido posible.

Alejandro Synch

Agradezco a mi familia, con la que conviví durante mi estancia en Guayaquil, por su apoyo incondicional en todo momento

A mis padres, quienes siempre han motivado e impulsado mis sueños, y han sido inspiración para seguir mis ideales.

A mis amigos, tanto a aquellos con los que algún día fuimos buenos amigos y ya casi no hablamos, como a aquellos que son más recientes, en especial a Bryan Moran, Alejandro Synch, Steeven Delgado y David Gonzales.

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; *Alejandro Synch Sánchez y Oscar Tinoco Armijos* damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

Alejandro Synch Sánchez

Oscar Tinoco Armijos

EVALUADORES

Msc. Fernando Vaca Urbano

PROFESOR DE LA MATERIA

Msc. Jimmy Córdova Villagómez

PROFESOR TUTOR

RESUMEN

La isla San Cristóbal en la provincia de Galápagos es un sistema de distribución aislado,

lo cual implica, que cuando hay un problema en el sistema de generación, el sistema no

será capaz de mantener de mantener su frecuencia nominal debido a que no tiene el

respaldo de un sistema más grande como en el caso de los sistemas de distribución

continentales; para solucionar esto se ha planteado un nuevo diseño de alivio de carga,

para el cual se han considerado la prioridad de las cargas especiales y las necesidades

de la red.

Se realizó un diagrama equivalente del sistema de distribución en base a la información

entregada por la Empresa Eléctrica de Galápagos "ELECGALAPAGOS S.A.", de este

modo se identificó y categorizó a los usuarios según su prioridad, y se realizaron

múltiples simulaciones en los escenarios menos favorables para la red, realizando

correcciones mediante la retroalimentación de los resultados de cada una, para

finalmente realizar una comparación entre el diseño propuesto y el actual, todo esto

usando Power Factory Student Version®.

El diseño de alivio de carga final se propone como un conjunto de reconectadores con

función de protección de subfrecuencia, los cuales han sido configurados en valores de

frecuencia precisos y ubicados en sitios estratégicos en la red, para disminuir el impacto

de la perdida de generación.

Finalmente se puede verificar que hay una mejora significativa al utilizar el diseño

propuesto en comparación con el protocolo que actualmente se maneja en la isla.

Palabras Clave: Sistema aislado, alivio de carga, subfrecuencia, Power Factory.

Ī

ABSTRACT

San Cristóbal Island in the Galapagos province is an isolated distribution system, which implies if there is a problem in the generation block, the system will not be able to maintain its nominal conditions because it does not have a larger system as a backup; in order to resolve this, a new load shedding design has been proposed, for which the priority of special loads and the needs of the network have been taken into account. An equivalent diagram was made based on the information provided by Galápagos Electric Company "ELECGALAPAGOS S.A.", in this way users were identified and classified according to their priority, and multiple simulations were performed in the worst case scenarios for the network, making corrections based on the feedback of the results of each one, to finally make a comparison between the proposed design and the existing one, all of this using Power Factory Student Version®. The final load shedding design is proposed as a set of reclosers with underfrequency protection function, which have been configured in precise frequency values and located in strategic places in the network, in order to reduce the impact of the generation loss. Finally, it can be verified that there is a significant improvement when using the proposed design in comparison with the protocol currently used in the island.

Keywords: Isolated system, load shedding, subfrequency, Power Factory.

ÍNDICE GENERAL

RESUMEN	1
ABSTRACT	II
ÍNDICE GENERAL	111
ABREVIATURAS	VI
SIMBOLOGÍA	VII
ÍNDICE DE FIGURAS	VIII
ÍNDICE DE TABLAS	X
ÍNDICE DE ANEXOS	XI
CAPÍTULO 1	1
1 INTRODUCCIÓN	
1.1 Descripción del problema	1
1.2 Justificación del problema	
1.3 Propuesta y alcance del proyecto	
1.4 Objetivos	
1.4.1 Objetivo General	
1.4.2 Objetivos Específicos	
CAPÍTULO 2	
2 MARCO TEORICO	
2.1 Sistemas De Distribución	4
2.1.1 Subestaciones	4
2.1.2 Topología De Los Sistemas De Distribución	4
2.1.3 Transformadores De Distribución	
2.1.4 Elemento Del Alimentador Aéreo	8
2.1.5 Poste	8
2.1.6 Conductores	8
2.1.7 Reconectador	9
2.1.8 Seccionadores	10

2.	.2	Relé De Frecuencia	11
2.	.3	Generación Eléctrica en sistemas aislados	11
	2.3	.1 Generación Fotovoltaica	11
	2.3	2 Generación Eólica	13
	2.3	.3 Generación Térmica	15
2.	.4	Esquema de alivio de carga	17
	2.4	.1 Tipos de alivio de carga	17
	2.4	2 Métodos de implementación de alivios de carga de subfrecuencia.	18
	2.4	.3 Limitación de los esquemas de alivio de carga convencionales	19
	2.4	4 Filosofía de alivio de carga por subfrecuencia	19
	2.4	5 Protección de subfrecuencia para generadores térmicos	20
	2.4	6 Esquemas de alivios de carga típicos	20
CAF	PITU	JLO 3	21
3 M	ETC	DDOLOGÍA	21
3.	.1	Modelamiento de sistema de generación	22
	3.1	.1 Modelamiento del grupo electrógeno	22
	3.1	2 Modelamiento de generadores renovables	26
3.	.2	Modelamiento del sistema de distribución	26
CAF	PITU	JLO 4	31
4 E	SCE	ENARIOS Y SIMULACIONES	31
4.	.1	Estructuración de escenarios	31
4.	.2	Diseño del esquema de alivio de carga	32
CAF	PITU	JLO 5	37
5 R	ESL	JLTADOS Y DISCUSIÓN	37
5.	.1	Escenario 1	37
5.	.2	Escenario 2	40
	5.2	.1 Configuración actual:	40
5.	.3	Escenario 3	43
	5.3	.1 Configuración actual:	43
5	4	Análisis de resultados	46

CAPIT	ULO 6	. 48
6 CON	CLUSIONES Y RECOMENDACIONES	. 48
6.1	Conclusiones	. 48
	Recomendaciones	
BIBLIC	GRAFÍA	. 50
ANEXO	os	. 52

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

IEEE Instituto de ingenieros eléctricos y electrónicos

PSS Estabilizador del sistema de potencia

AVR Regulador automática de voltaje

RMS Valor cuadrático medio

SIMBOLOGÍA

kV kilovoltio

kW Kilovatio

kVAR Kilovoltio amperio reactivo

Hz Hercio

s Segundos

pu Por unidad

MVA Megavoltio amperio

MVAR Megavoltio amperio reactivo

MW Megavatio

ÍNDICE DE FIGURAS

Figura 2.1: Topología radial del sistema de distribución. [1][1]	5
Figura 2.2: Topología anillo con seccionador abierto. [1]	5
Figura 2.3: Topología de auto lazo para sistemas de distribución. [1]	6
Figura 2.4: Modelo de Transformador pad mounted. [3]	7
Figura 2.5: Transformador tipo poste. [3]	7
Figura 2.6: Equipos de un poste de distribución eléctrica. [1]	8
Figura 2.7: Reconectador [22]	10
Figura 2.8: Seccionador remoto trifásico. [3]	10
Figura 2.9: Granja de paneles solares. [5]	12
Figura 2.10: Radiación solar en la superficie terrestre [5]	12
Figura 2.11: Composición de la radiación solar sobre un panel solar. [5]	13
Figura 2.12: Circulación atmosférica del viento en la tierra. [5]	13
Figura 2.13: Capa limite planetaria	14
Figura 2.14: Espectro de Van Hoven. [5]	15
Figura 2.15: Componentes de un aerogenerador. [5]	15
Figura 2.16: Diagrama presión vs volumen y Temperatura vs entropía. [19]	16
Figura 2.17: Ciclo de trabajo del Pistón. [19]	16
Figura 2.18: Grupo Electrógeno CATERPILLAR 3512	17
Figura 2.19: Grupo Electrógeno CUMMINS 1270 kW	17
Figura 3.1: Diagrama equivalente del sistema	30
Figura 4.1 : Diagrama equivalente con la ubicación actual de los relés en la isla	34
Figura 4.2: Diagrama equivalente con la ubicación propuesta para los relés	35
Figura 5.1: Escenario 1. Potencia suministrada por cada generador en condiciones	
nominales	37
Figura 5.2: Escenario 1. Curva de comportamiento durante Alivio de carga del sistem	na.
	37
Figura 5.3: Escenario 1. Potencia suministrada por cada generador luego del alivio d	le
carga actual	38
Figura 5.4: Escenario 1. Potencia suministrada por cada generador luego del alivio d	le
carga propuesto	38
Figura 5.5: Escenario 2. Potencia suministrada por cada generador en condiciones	
nominales	40

Figura 5.6: Escenario 2. Curva de comportamiento durante Alivio de carga del sistema.
40
Figura 5.7: Escenario 2. Potencia suministrada por cada generador luego del alivio de
carga actual41
Figura 5.8: Escenario 2. Potencia suministrada por cada generador luego del alivio de
carga propuesto41
Figura 5.9: Escenario 3. Potencia suministrada por cada generador en condiciones
nominales43
Figura 5.10: Escenario 3. Curva de comportamiento durante Alivio de carga del
sistema43
Figura 5.11: Escenario 3. Potencia suministrada por cada generador luego del alivio de
carga actual44
Figura 5.12: Escenario 3. Potencia suministrada por cada generador luego del alivio de
carga propuesto44

ÍNDICE DE TABLAS

Tabla 2.1 :Esquema de desconexión de carga de 3 pasos. [8]	20
Tabla 2.2: Esquema de desconexión de carga de 6 pasos. [8]	20
Tabla 3.1: Información del estado actual de los generadores	22
Tabla 3.2: Configuración final del AVR para los generadores. Basado en: [9] [10]	24
Tabla 3.3: Configuración final del Gobernador para los generadores. [11]	24
Tabla 3.4: Configuracion final del PSS para los generadores. Basado en: [9] [10]	25
Tabla 3.5: Clasificación de usuarios dentro de la red	27
Tabla 3.6:Demandas picos por alimentador. [12]	28
Tabla 3.7: Potencia de las cargas equivalentes	29
Tabla 4.1: Condiciones de generación y demanda de los escenarios	31
Tabla 4.2: Configuración actual para los relés. [13]	36
Tabla 4.3: Configuración propuesta para los relés	36
Tabla 5.1: Escenario 1. Resumen de resultados	39
Tabla 5.2: Escenario 1. Resumen de resultados	39
Tabla 5.3: Escenario 2. Resumen de resultados	42
Tabla 5.4: Escenario 2. Resumen de resultados	42
Tabla 5.5: Escenario 3. Resumen de resultados	45
Tabla 5.6: Escenario 3. Resumen de resultados	45

ÍNDICE DE ANEXOS

Anexo 1: Diagrama unifilar de generación de la Isla San Cristóbal	.52
Anexo 2: Estabilizador de potencia IEEE-PSS2B	.53
Anexo 3: Regulador automático de voltaje IEEE-ST5B	.54
Anexo 4: Gobernador de turbina IEEE-TGOV1	.55
Anexo 5: Ventanas de configuración de controladores del generador tipo SKL	.56
Anexo 6: Ventanas de configuración de controladores del generador tipo	
CATERPILLAR	.57
Anexo 7: Estructura del controlador modelo SYM_FRAME_NO_DROOP	.58
Anexo 8: Diagrama del sistema de distribución de la isla San Cristóbal	.59
Anexo 9: Escenario 1. Diagrama con configuración actual de reconectadores en	
condiciones nominales	.60
Anexo 10: Escenario 1. Diagrama con configuración actual de reconectadores despu	és
del alivio de carga	.61
Anexo 11: Escenario 1. Diagrama con configuración propuesta de reconectadores er	1
condiciones nominales	.62
Anexo 12: Escenario 1. Diagrama con configuración propuesta de reconectadores	
después del alivio de carga	.63
Anexo 13: Escenario 2. Diagrama con configuración actual de reconectadores en	
condiciones nominales	.64
Anexo 14: Escenario 2. Diagrama con configuración actual de reconectadores despu	és
del alivio de carga	.65
Anexo 15: Escenario 2. Diagrama con configuración propuesta de reconectadores er	1
condiciones nominales	.66
Anexo 16: Escenario 2. Diagrama con configuración propuesta de reconectadores	
después del alivio de carga	.67
Anexo 17: Escenario 3. Diagrama con configuración actual de reconectadores en	
condiciones nominales	.68
Anexo 18: Escenario 3. Diagrama con configuración actual de reconectadores despu	és
del alivio de carga	.69
Anexo 19: Escenario 3. Diagrama con configuración propuesta de reconectadores er	1
condiciones nominales	.70

Anexo 20: Escenario 3. Diagrama con configuración propuesta de reconectadores	
después del alivio de carga	.71
Anexo 21: Detalle del resumen de cargas del Alimentador 19SCB10T01. [14]	.72
Anexo 22: Detalle del resumen de cargas del Alimentador 19SCB10T02. [14]	.80
Anexo 23: Detalle del resumen de cargas del Alimentador 19SCB10T03. [14]	.87

CAPÍTULO 1

1 INTRODUCCIÓN

Los sistemas eléctricos aislados deben estar en la capacidad de generar y distribuir la energía suficiente entre todos los consumidores, cuidando los adecuados índices de calidad, teniendo protocolos de emergencia y capacidad de expansión; tal es el caso de la Isla San Cristóbal, la cual es parte de la provincia de Galápagos ubicada en la región insular del territorio ecuatoriano, cuyo servicio eléctrico está a cargo de la Empresa Eléctrica Galápagos "ELECGALAPAGOS S.A.", la generación de este sistema aislado se conforma por fuentes electrógenas, eólicas y fotovoltaicas, siendo esta última un proyecto aún en crecimiento; la energía se distribuye por medio de tres alimentadores que parten de una misma subestación; el uso de energías renovables supone un gran reto cuando las condiciones ambientales repentinamente dejan de ser favorables para los rangos de generación optima de la red o ante la entrada de un consumidor muy grande, ocasionando la desconexión de estas fuentes debido al desbalance en la frecuencia del sistema y posteriormente llegando hasta un apagón completo de la red o a funcionamientos en sub frecuencia, este tipo de inconvenientes se pueden aplacar con un correcto alivio de carga mediante la configuración de relés de frecuencia ubicados en lugares estratégicos del sistema.

1.1 Descripción del problema

El sistema de distribución eléctrica de la isla San Cristóbal en Galápagos – Ecuador, se conforma de varios tipos de generación con distintas capacidades, como son; siete grupos electrógenos, tres aerogeneradores y un parque de generación fotovoltaica; sin embargo, el sistema no cuenta con un protocolo adecuado que le permita evitar el colapso en casos de emergencia ya sea debido a una falla en la red, la salida de funcionamiento de un generador, disminución de la generación renovable por las circunstancias ambientales o por el ingreso inesperado de un consumidor de gran potencia; por ello la isla sufre múltiples apagones generales que duran largos periodos de tiempo en ser corregidos, ya que primero se deben identificar las causas y el sitio en el cual se originaron. Durante estos eventos son afectados la mayoría de los sectores, incluyendo consumidores especiales como hospital, edificios del 911, oficinas del municipio, base naval y el aeropuerto, los cuales a pesar de contar con generación de

emergencia no deberían estar expuestos a este tipo de circunstancias con una recurrencia elevada.

1.2 Justificación del problema

La falta de servicio eléctrico durante periodos extensos ocasiona malestar e interrumpe las actividades de los habitantes de la isla San Cristóbal, ya que deben esperar un largo tiempo hasta que el sistema se reconstituya, de la misma forma los varios servicios se ven afectados ya que aumenta la dependencia de su generación de emergencia, la cual funciona con combustibles fósiles altamente contaminantes, incrementando así mismo el riesgo de tener problemas en los equipos y teniendo que disminuir las funciones de los edificios para poder ahorrar energía. Por todo ello, es natural que la economía se vea comprometida, ya que las actividades son interrumpidas sin previo aviso y los procesos sufren retrasos; así mismo la seguridad y salud sufren estragos ya que disminuye el alcance de los servicios disponibles. Estos apagones ocasionales debido a desbalances de potencia pueden ser evitados con el uso de un protocolo de alivio de carga, que le dé tiempo suficiente al sistema para restituirse, de esta manera solamente ciertos sectores se quedarán sin energía y la restitución del servicio será más rápida, ya que no tiene que recuperarse de un colapso completo.

1.3 Propuesta y alcance del proyecto

La solución que se propone para este problema consiste en diseñar un esquema de alivio de carga que se ejecute por medio del uso de relés de frecuencia configurados en niveles adecuados y ubicados en sitios estratégicos dentro de la red; para la elaboración de este esquema se ha analizado las necesidades de la isla, logrando identificar a los consumidores prioritarios, los cuales son los que proveen los servicios de salud, seguridad y transporte; del mismo modo se ha tomado en cuenta las condiciones de funcionamiento actuales y la proyección a futuro de los sistemas de generación; con todo esto se tiene como finalidad lograr que el sistema no llegue al colapso completo y que se evite la desconexión de la mayor cantidad posible de cargas especiales; para que así el sistema no sufra un apagón completo, y se eviten daños en los equipos de generación o en las cargas conectadas, por condiciones de subfrecuencia.

1.4 Objetivos

1.4.1 Objetivo General

 Diseñar un esquema de alivio de carga para un sistema eléctrico de distribución, identificando las cargas esenciales y evaluando los posibles escenarios de desconexión de carga evitando el colapso del sistema frente a eventuales fallos de frecuencia en la red.

1.4.2 Objetivos Específicos

- Categorizar los elementos y zonas del sistema eléctrico, para la diferenciación de cargas esenciales, no esenciales y equipos de conexión y desconexión.
- Determinar las condiciones de generación y demanda que provocan inestabilidad en el sistema utilizando simulaciones.
- Experimentar con simulaciones de distintos escenarios de desconexión de cargas no esenciales identificando en cual se afecta al menor número de clientes manteniendo la estabilidad del sistema.
- Determinar los esquemas de operación de equipos de desconexión automática evitando la desconexión de cargas importantes.

CAPÍTULO 2

2 MARCO TEORICO

2.1 Sistemas De Distribución

Se define como un sistema de distribución de energía eléctrica a toda la infraestructura que permite transmitir energía eléctrica desde las subestaciones de alto voltaje conectadas al sistema de trasmisión hasta el cliente final por medio de alimentadores, transformadores de distribución, equipo de seccionamiento y equipo medición.

2.1.1 Subestaciones

Las subestaciones eléctricas son de las principales infraestructuras del sistema de distribución ya que permiten la transformación del nivel de tensión de alto voltaje a bajo voltaje.

Las subestaciones se encuentran compuestos por varios elementos transformadores de potencia, dispositivos de medición, seccionadores, relés de protección. Las subestaciones pueden ser clasificadas dependiendo de su configuración de barras, forma de construcción interior o exterior; en el caso de la subestación de la isla San Cristóbal es de construcción exterior y configuración barra simple. 1]

2.1.2 Topología De Los Sistemas De Distribución

Las principales configuraciones de los sistemas de distribución son radiales, anillo y mallado. La aplicación de cada configuración depende de la robustes, tipo de clientes que se encuentran conectado y el costo de la implementación de la topología.

La topología radial está compuesta por un alimentador principal con ramales secundarios. Esta topología tiene un gran problema, al ocurrir una falla en cualquier parte de los tramos deja fuera de servicio al circuito aguas abajo.

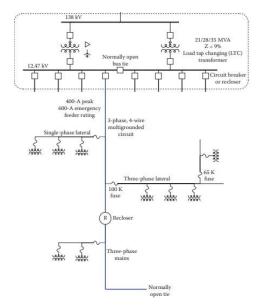


Figura 2.1: Topología radial del sistema de distribución. [1]

La topología en anillo es una configuración la cual dos circuitos distintos los cuales provienen de la misma subestación, dichos circuitos se pueden interconectar por medio de fusibles de acoplamiento normalmente abiertos. Dicha interconexión permite aumentar la confiabilidad del sistema ya que si existe alguna falla en uno de los circuitos el fusible de acoplamiento permitirá alimentar cierta parte del circuito en falla. [1]

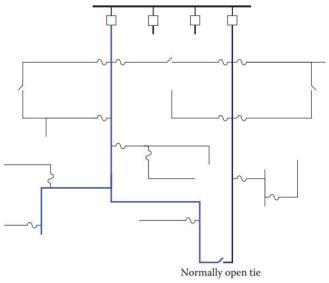


Figura 2.2: Topología anillo con seccionador abierto. [1]

La topología en auto lazo es una mejora de la topología anillo ya que permite aislar la parte del circuito que se encuentra en falla de forma rápida y energizar a los clientes críticos por medio de interruptores. Estos interruptores se accionan manualmente. [1]

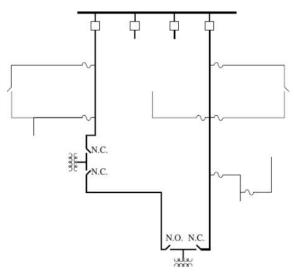


Figura 2.3: Topología de auto lazo para sistemas de distribución. [1]

La topología del sistema de distribución de la isla San Cristóbal en la mayoría de su extensión es radial, excepto por ciertos tramos en los cuales se presentan topologías de anillo.

2.1.3 Transformadores De Distribución

Los transformadores de distribución son los elementos que permiten elevar o bajar el nivel de tensión de los alimentadores secundarios a niveles aceptables para las cargas.

El aspecto más importante para medir el rendimiento de los transformadores es el calentamiento de los devanados, para mitigar este efecto se construye los transformadores para que los devanados sean embebidos en un fluido de características especiales para que funcione como aislador y refrigerante por lo cual se puede clasificar a los transformadores de distribución dependiendo de su forma de refrigeración [2]:

- Tipo seco y enfriamiento por circulación de aire forzado (AA/AFA).
- Refrigeración por aceite y aire con circulación de aire forzado (OA/FA).
- Refrigeración por aceite y aire con circulación de aceite forzado (OA/FOA).

Otros tipos de transformadores por su construcción:

Pad Mounted: Los transformadores de distribución que se utilizan hoy en día son del tipo pad mounted. Los transformadores de distribución pad mounted están completamente encerrados en cajas de chapa resistentes cerradas, y se montan en el suelo sobre una losa de hormigón. [3]

Figura 2.4: Modelo de Transformador pad mounted. [3]

Tipo Poste: El transformador tipo poste es un transformador de distribución autoprotegido. Equipado con un pararrayos y un fusible tipo expulsión, un disyuntor secundario y una luz de advertencia. Los devanados del transformador se encuentran sumergidos en un aceite dieléctrico dentro del tanque. El conductor del bushing (Borna) que sale del devanado primario se conecta a una de las fases de las líneas trifásicas aéreas a treves de un fusible limitador de corriente [3]

Figura 2.5: Transformador tipo poste. [3]

2.1.4 Elemento Del Alimentador Aéreo

2.1.5 Poste

El poste de servicio es una estructura de madera, metal o cemento en forma de columna que tiene la función de soportar las líneas aéreas eléctricas, cables de teléfono y fibra óptica, así como demás dispositivos para controlar y medir dichos servicios. [1]

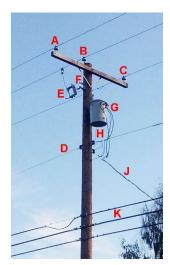


Figura 2.6: Equipos de un poste de distribución eléctrica. [1]

En la *Figura 2.6* se tienen los equipos que componen un poste de distribución eléctrica donde las partes (A, B, C) son los cables trifásicos del alimentador primario, (D) es el cable neutro del sistema, (E) fusible, (F) pararrayos, (G) transformador monofásico de distribución, (H) puesta a tierra del transformador, (J) cable tríplex para conexión con el cliente(k) cable de servicios varios. [2]

2.1.6 Conductores

Los conductores para líneas de distribución están fabricados a partir de aluminio o cobre. El metal más utilizado por las empresas eléctricas para líneas aéreas es el de aluminio debido a que ligero, resistente a la corrosión, paramagnético por lo cual no se ve afectado en gran medida por los campos magnéticos y costo menor. El aluminio utilizado para transmisión de energía eléctrica es la aleación 1350, el cual tiene una composición de aluminio del 99.5% y conductividad mínima del 61%. [1]

Existen distintos conductores a partir del cable los cuales son:

ACSR: Este conductor es conocido por sus siglas como conductor de aluminio con acero reforzado, es un conductor trenzado con una alta resistencia mecánica y alta ampacidad.

AAC: Conductor completamente de aluminio de grado 1350-519, tienen la mayor relación conductividad-peso para líneas aéreas.

AAAC: Conductor trenzado de aleación de aluminio 6201-T81 tiene una alta resistencia y una ampacidad igual a los AAC o ACSR. Este tipo de conductor es utilizado en los sistemas eléctricos cerca de la costa con una corrosión alta.

ACAR: Conductor trenzado de aleación de aluminio 6201-T81 en conjunto con el aluminio 1350.

2.1.7 Reconectador

Es un dispositivo de protección de sobre corriente que automáticamente abre sus contactos y los cierra un número predeterminados de veces al detectar una corriente de falla para de esta forma despejar fallas temporales o aislar fallas permanentes con ayuda del seccionador. El reconectador posee varios modos de operación los cuales se detallarán a continuación: [2]

- Dos operaciones instantáneas (Apertura y cierre) seguido de dos operaciones de apertura de tiempo defino y mantenerse abierto.
- Una apertura instantánea más tres operaciones de tiempo definido.
- Tres operaciones instantáneas más una operación de tiempo definido.
- Cuatro operaciones instantáneas.
- Cuatro operaciones de tiempo definido.

Los últimos avances de tecnología en los reconectadores han permitido la actuación ante eventos anómalos en la frecuencia. La red eléctrica de la Isla San Cristóbal cuenta con reconectadores NOJA OSM, los cuales tiene

la capacidad de ser configurados para actuar ante determinado nivel de frecuencia.

Figura 2.7: Reconectador [22]

2.1.8 Seccionadores

Es un artefacto que permite realizar de forma automática la apertura de una parte del circuito de distribución el cual experimento una falla, después de la actuación del reconectador interrumpiendo la corriente de falla, ya que el seccionador no puede interrumpir corrientes de falla o abrir el circuito bajo carga. El Seccionador se conecta aguas debajo de un reconectador. El seccionador cuenta las actuaciones del reconectador, después de un número establecido de actuaciones del reconectador, el seccionador abre el circuito para aislar completamente el circuito fallado. [2]

Figura 2.8: Seccionador remoto trifásico. [3]

2.2 Relé De Frecuencia

El sistema eléctrico para operar de forma correcta debe mantener la frecuencia dentro de rangos preestablecidos para evitar daños en los equipos sensibles que están conectados a la red tales como motores, generadores, equipos electrónicos. Para salvaguardar los equipos que componen la red ante eventos de variación de frecuencia se desarrollaron dispositivos capaces de medir constantemente la frecuencia, si la frecuencia medida por el dispositivo este fuera de los límites establecidos se activara un temporizador que después de un tiempo determinado generará una señal que abrirá los contactos del relé. [4]

Existen dos relés de frecuencia:

- Relé de sobre frecuencia (Numeración ANSI 810): Este dispositivo actúa cuando la frecuencia supera un límite establecido.
- Relé de subfrecuencia (Numeración ANSI 81U): Este relé actúa cuando la frecuencia cae por debajo de un límite establecido.

2.3 Generación Eléctrica en sistemas aislados

Los sistemas aislados también conocidos como micro redes eléctricas las cuales están compuestas por una colección de elementos de generación eléctrica, cargas que trabajan con un nivel de tensión de distribución y se encuentran alejados del sistema de transmisión principal. Este tipo de sistemas son pequeñas comunidades, islas, campamentos mineros o petrolíferos, etc. Estos sistemas poseen micro generación, el tipo de tecnología para la producción de energía dependerá de los recursos naturales que se encuentren cerca de la micro red o la capacidad de obtener combustibles. En la actualidad estos sistemas tienden a instalar, paneles fotovoltaicos, turbinas eólicas y grupos electrógenos que usan Diesel como principal combustible. [2]

2.3.1 Generación Fotovoltaica

La tierra a nivel atmosférico intercepta cerca de 1.5×10^{18} kWh por año y la demanda de energía de energía mundial 1.5×10^{14} kWh por año. Una forma de aprovechamiento por el ser humano de la energía del sol es utilizando paneles fotovoltaicos, los cuales están compuestos por células de silicio, los electrones que componen el silicio al ser bombardeados por

los fotones provenientes del sol causan que salten a la banda de conducción generando así una corriente eléctrica. [5]

Figura 2.9: Granja de paneles solares. [5]

La radiación solar que llega hasta la superficie de la tierra se ve reducida debido a la composición de la atmosfera como podemos observar en la

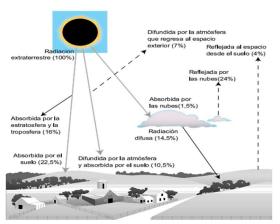


Figura 2.10: Radiación solar en la superficie terrestre [5]

La radiación solar que llega a un panel solar tiene 3 componentes:

- radiación difusa: es la radiación reflejada por las partículas que se encuentran en el aire, nubes, polvo, agua, etc.
- radiación (albedo): Radiación que ha interactuado con los elementos del entorno como terreno, cuerpos de agua etc.
- radiación directa: radiación solar que no ha tenido interacción alguna con el ambiente después de atravesar a la atmosfera.

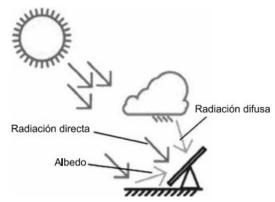


Figura 2.11: Composición de la radiación solar sobre un panel solar. [5]

2.3.2 Generación Eólica

La principal forma de poder generar energía eléctrica por medio del viento es utilizar molinos de viento convirtiendo el movimiento de las masas de aire en movimiento rotacional lo cual mueve el rotor de un generador. Las principales características del recurso eólico son las siguientes: [5]

- La velocidad del viento depende de la altura con especto al piso y la rugosidad del terreno.
- Se puede determinar la densidad de potencial y cuanta energía puede ser extraída de un sitio mediante la distribución Weibull.

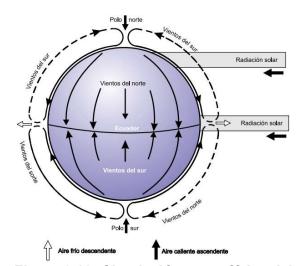


Figura 2.12: Circulación atmosférica del viento en la tierra. [5]

La *Figura 2.13* muestra la superficie del planeta tierra con edificios, casas ya arboles los cuales actúan como obstáculo al paso del viento donde vemos que menos de 100 metros de altura el viento se ve afectada por la rugosidad del terreno hasta los 2000 metros entre los 100 metros a 2000 metros se conoce como la capa de Ekman.

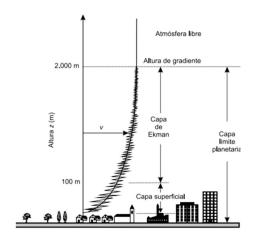


Figura 2.13: Capa limite planetaria.

Para poder estimar la velocidad del viento asumimos que el viento se encuentra estabilidad neutral para poder utilizar la ley de los logaritmos

$$\frac{U_{h1}}{U_{h2}} = \frac{ln(\frac{h_1}{Z_0})}{ln(\frac{h_2}{Z_0})}$$
 (2.1)

Donde:

 h_1 : altura de referecia.

 h_2 : altura dos para estimar velocidad.

 z_0 : Rugosidad del terreno.

Para poder realizar predicciones de la velocidad del viento se deben realizar mediciones de temperatura, presión y velocidad. Para medir turbulencias se deben realizar mediciones de corto plazo, la toma de datos cada 5 segundos durante 5 minutos. Para medida de velocidad del viento se deben hacer toma de datos a largo plazo durante días o semanas.

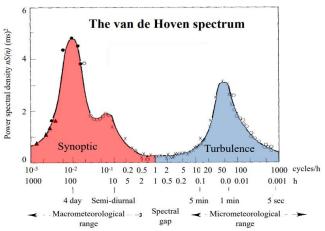


Figura 2.14: Espectro de Van Hoven. [5]

Las partes de un aerogenerador se pueden observar en la Figura 2.15

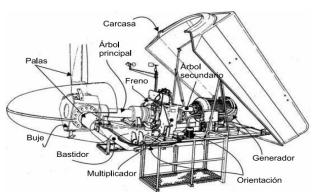


Figura 2.15: Componentes de un aerogenerador. [5]

2.3.3 Generación Térmica

La generación térmica es uno de los métodos de generación eléctrica que ha se ha utilizado por más tiempo debido a su confiabilidad, flexibilidad y capacidad de funcionar en cualquier territorio sin que la geografía ni recursos naturales disponibles jueguen un gran papel para su construcción, a excepción del acceso a combustibles fósiles.

Para la Isla San Cristóbal la tecnología de generación térmica que utiliza son los motores de diésel de combustión interna los cuales están acoplados son generadores, este juego de motor de combustión y generador eléctrico se le conoce como grupo electrógeno.

Los motores de diésel de combustión eléctrica utilizan como fluido de trabajo una mezcla de aire y diésel, su comportamiento se puede analizar por medio del ciclo Diesel ideal se puede observar en la Figura 2.16 de

cuatro pasos reversible donde el agregar calor se produce durante el proceso de presión constate. La Figura 2.16 muestra el estado 1 al estado 2 es una compresión isentrópica(compresión) como el ciclo Otto donde el calor es transferido al fluido de trabajo a una presión constante. El Proceso 2-3 forma parte de la carrera de potencia(combustión). Proceso 3-4 es una expansión isentrópica final de la carrera de potencia. el final del ciclo se representa en el proceso 4-1 el calor es rechazado del aire mientras el pistón se encuentra en un punto muerto inferior (Escape).

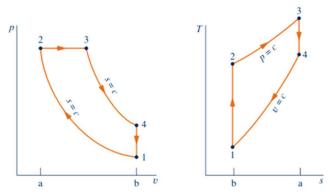


Figura 2.16: Diagrama presión vs volumen y Temperatura vs entropía. [19]

En la Figura 2.17 se muestra el ciclo de trabajo de los pistones en sus distintas etapas de admisión, compresión, combustión y escape

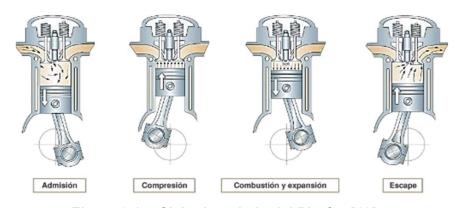


Figura 2.17: Ciclo de trabajo del Pistón. [19]

Los grupos electrógenos que se encuentran en la isla san Cristóbal son de la marca CATERPILLAR 3512 el cual se puede observar en la Figura 2.18.

Figura 2.18: Grupo Electrógeno CATERPILLAR 3512.

El siguiente grupo electrógeno es del fabricante CUMMINS y tiene una capacidad de 1270 kW lo podemos observar en la Figura 2.19.

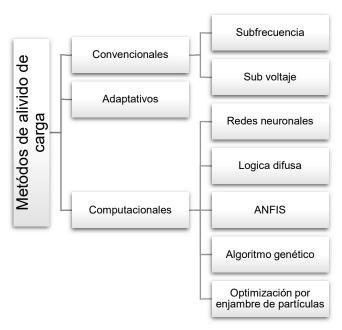


Figura 2.19: Grupo Electrógeno CUMMINS 1270 kW.

2.4 Esquema de alivio de carga

2.4.1 Tipos de alivio de carga

Existen diversos métodos para la aplicación de los esquemas de alivio de carga los cuales se pueden ver en el siguiente cuadro:

Cuadro 2.1: Métodos de alivio de carga. [6]

Debido a las características que presenta nuestro sistema solo se utilizaran métodos convencionales para el diseño del esquema de alivio de carga, los dos métodos convencionales se detallan a continuación [6]

- Alivio de carga por subfrecuencia: este método es aplicado cuando existen eventos que llevan al sistema a variaciones en la frecuencia, dichos eventos están directamente relacionados con el equilibrio entre la generación de energía y la carga conectada en el sistema, eventos que causen la salida de sistemas de generación debido a la pérdida de líneas de transmisión, daños en generadores, ingreso no planeado de grandes grupos de carga provocan que la frecuencia caiga del valor nominales. Por lo cual un esquema de alivio de carga debe realizar de forma rápida para evitar la caída de la frecuencia desconectando carga para reestablecer el equilibrio entre demanda y generación. Para esta técnica se utilizan relés de subfrecuencia (ANSI 81U). [6]
- Alivio de carga por subvoltaje: La mayor cantidad de apagones alrededor del mundo se dan por causa de la inestabilidad de voltaje, esta inestabilidad es provocada por la sobrecarga de las unidades de generación, salida inesperada de generadores o líneas de transmisión. Cuando esto sucede los requerimientos de potencia reactiva fluctúa provocando la caída de voltaje. Para implementar esta técnica se utiliza el relé (ANSI 87). [6]

2.4.2 Métodos de implementación de alivios de carga de subfrecuencia

Desconexión de carga manual/SCADA: La desconexión de carga manual se realiza en la central de control por medio del SCADA, enviando señales de apertura del relé de subfrecuencia. Debido a que los eventos de subfrecuencia suceden en fracciones de segundos la desconexión de carga de forma manual, no se realiza de forma lo suficientemente rápida para mitigar los efectos de la caída de la frecuencia. [7]

Desconexión automática: La desconexión automática de carga se pretende realizar en las subestaciones ya que se pueden desconectar grupos de carga de tamaño considerable sin afectar sectores tan grandes del sistema. Se utilizan dispositivos de medición que se encuentran

permanentemente tomando datos, en caso de eventos subfrecuencia de los relés de la subestación. [7]

Local: La desconexión de carga por baja frecuencia local se realiza donde el evento de subfrecuencia es detectado. La ventaja de este método es la reducción de costos ya que se reduce el número de equipos de comunicación, aumentando la fiabilidad y reduciendo tiempos de respuesta. [7]

Centralizada: La desconexión de carga centralizada ubica las mediciones de frecuencia en la subestación y con ayuda de lógica de control para realizar la desconexión en los alimentadores. [7]

Distribuido: A través de la historia de los sistemas eléctricos la desconexión de carga se ha realizado a nivel de barra(subestaciones), pero con el desarrollo de relés numéricos y la implementación de ellos en los reconectadores ha permitido realizar la desconexión de carga a nivel de circuito. Este método permite aumentar la confiabilidad ya que no solo se tienen medidas en el punto de la subestación si no que en varios puntos del sistema logrando evitar la actuación de los relés por causas de sobrevoltajes detectados a nivel de la subestación. [7]

2.4.3 Limitación de los esquemas de alivio de carga convencionales

La limitación de este tipo de técnicas es son incapaces de poder realizar un alivio de carga optimo. Debido a que solo siguen unos límites preestablecidos de carga a desconectar cuando la frecuencia se desvía de su valor nominal. Esta técnica no puede evaluar las condiciones del sistema después de la salida de un porcentaje de carga. [6]

2.4.4 Filosofía de alivio de carga por subfrecuencia

El esquema de alivio de carga tiene como objetivo el detener la caída de la frecuencia del sistema en un área durante un evento de emergencia de subfrecuencia. Logrando restablecer la frecuencia a valores cercanos 58.5 Hz en diez segundos o menos y a 59.5 Hz en treinta segundos o menos si el sistema posee control secundario, para déficit de generación eléctrica de hasta el 25%-50% de la carga conectada. Para lograr dicho objetivo se

deben realizar estudios en el sistema para detectar las áreas propensas a eventos de subfrecuencia, instalar relés de frecuencia y configurar de forma correcta el sistema de control primario y secundario. [7]

2.4.5 Protección de subfrecuencia para generadores térmicos

Para proporcionar una correcta protección de subfrecuencia a los generadores se debe consultar a los fabricantes. La operación en subfrecuencia de los generadores suele estar dentro del rango de 57-60 Hz. Los sistemas de protecciones de subfrecuencia para generadores ideales son capaces de evitar disparos innecesarios durante un disturbio, donde el sistema puede recuperarse sin la necesidad de desconexión de carga, estos sistemas están compuestos por cinco a seis bandas de frecuencia. [8]

2.4.6 Esquemas de alivios de carga típicos

Una sugerencia para la implementación de esquemas de alivio de cargase muestra en Tabla 2.1 y Tabla 2.2:

Tabla 2.1 :Esquema de desconexión de carga de 3 pasos. [8]

PASOS	FRECUENCIA DE DISPARO[Hz]	DESCONEXIÓN DE CARGA [%]	TIEMPO DE RETARDO FIJO [CICLO]
1	59.3	10	6
2	58.9	15	6
		Porcentaje de carga	
3	58.5		
3	30.5	caída de frecuencia a 58.2	

Tabla 2.2: Esquema de desconexión de carga de 6 pasos. [8]

PASOS	FRECUENCIA DE	DESCONEXION DE	TIEMPO DE RETARDO
	DISPARO[Hz]	CARGA [%]	FIJO[CICLO]
1	59.5	10	6
2	59.2	10	6
3	58.8	5	6
4	58.8	5	14
5	58.4	5	14
6	58.4	5	21

CAPITULO 3

3 METODOLOGÍA

La información necesaria para realizar un análisis que permita el alcance de los objetivos planteados fue obtenida luego de realizar una solicitud a la empresa Eléctrica de Galápagos que es la encargada del manejo de la red de distribución y de generación de la isla San Cristóbal; la documentación recibida es del año 2021 y contiene el diagrama de distribución completo de la Isla, las características generales de los generadores eólicos, térmicos y paneles fotovoltaicos, los índices de calidad de servicio, la potencia pico de los alimentadores, y la configuración de frecuencia de los reconectadores, con esta última se puede conocer el protocolo de desconexión ante cambios en la frecuencia.

El programa utilizado para el análisis de la información y el desarrollo del nuevo diseño de coordinación es *Power Factory Student Edition*® herramienta en donde se pueden realizar simulaciones de eventos y configuración de controladores para los generadores, dado que esta versión del programa tiene un límite máximo de 50 nodos, se ha realizado un modelamiento equivalente reducido de la red de distribución; también se ha identificado y establecido una clasificación de las cargas prioritarias y las no prioritarias, para de esta manera estructurar un esquema de alivio de carga acorde a las necesidades actuales, y que tenga las menores afectaciones posibles.

La estructuración de escenarios se ha realizado evaluando e identificando cuales son las peores circunstancias en las cuales el sistema puede encontrarse, de esta manera se garantiza que la solución brindada tenga mayor probabilidad de poder ser extendida a escenarios que se puedan presentar en el futuro, del mismo modo la coordinación ha sido estudiada para el caso en donde toda la generación fotovoltaica que aún no es construida por completo pero que está programada, haya entrado en funcionamiento.

3.1 Modelamiento de sistema de generación.

Se ha tenido como punto de partida el diagrama de generación (*Anexo 1*) en donde se observan seis generadores electrógenos en conjunto de tres aerogeneradores, las potencias nominales se muestran en la siguiente tabla:

Tabla 3.1: Información del estado actual de los generadores.

Nombre	Tipo	Potencia	Estado
		Max	
G1	Electrógeno: CAT-3512	650kW	Inactivo
G3	Electrógeno: CAT-3512	650kW	Inactivo
G4	Electrógeno: CAT-3512	650kW	Activo
G5	Electrógeno: CAT-3512	650kW	Activo
G10	Electrógeno: CUMMINS	1270kW	Inactivo
G7	Electrógeno: SKL	1670kW	Dañado
G8	Electrógeno: SKL	1670kW	Activo
WTG#1	Aerogenerador	800kW	Activo
WTG#2	Aerogenerador	800kW	Activo
WTG#3	Aerogenerador	800kW	Activo
PV#1	Fotovoltaico	1MW	Activo-parcial

Actualmente la empresa eléctrica de Galápagos no tiene información sobre los controlares de los generadores o de la planta del sistema, por lo cual, en base a las características de generación y las condiciones planteadas para el análisis se han configurado los controladores necesarios para llevar a cabo el estudio. La estructuración de los controlares y el modelamiento de la generación de dichos grupos se explica a continuación.

3.1.1 Modelamiento del grupo electrógeno

El grupo electrógeno es el encargado de aportar la frecuencia al sistema y es al cual se recurre en el momento que existe un disturbio en la red, ya que cuando esto sucede, los controladores internos de estos generadores reaccionan y corrigen la velocidad con la cual están girando y la cantidad de combustible que reciben, pudiendo así cambiar los valores de potencia y frecuencia. Para estudios de este tipo es necesario conocer la reacción de los generadores ante un cambio en las condiciones de la red, y para ello es necesario tener información sobre sus distintas partes de control, tales

como; el estabilizador de sistemas de potencia o PSS (Power System Stabilizer), el regulador automático de voltaje (AVR) y el gobernador del sistema; sin embargo debido a la ausencia de información de este tipo en la documentación entregada por parte del administrador actual del sistema eléctrico de la isla, se ha procedido a usar como punto de referencia a los modelos recomendados por las guías de estudios de estabilidad en sistemas de potencia de IEEE y NEPLAN.

Para el PSS se ha usado el modelo PSS2B (Anexo 2), para el AVR se ha usado el ST5B (Anexo 3) y para el gobernador se ha usado el TGOV1(Anexo 4); todos estos modelos están disponibles en la librería de *Power Factory*® y se agregan al sistema usando el lenguaje de simulación de *Digsilent*® o "DSL" por sus siglas en inglés; estos modelos a su vez se integran sobre el esquema de controlador "Sym Frame_no droop" que está en la misma librería (Anexo 7).

Al configurar un controlador, este debe adaptarse al tipo de generador que está manejando, es decir se debe hacer una calibración de las cualidades originales del controlador, esto se realiza mediante una prueba en donde una vez implementadas todos las partes en el esquema y luego de instalar el controlador en el generador, se aplica una pequeña variación a la señal de entrada del AVR, con la finalidad de analizar la respuesta y verificar que esta cumpla con los requisitos básicos de estabilidad, los cambios realizados en la configuración van de la mano con los rangos recomendados en los manuales de cada modelo de los elementos de control, finalmente es necesario realizar una calibración general cuando ya todos los generadores están en funcionamiento, de esta manera se encontró que los generadores CATERPILLAR(Anexo 6) y CUMMING pueden tener las mismas configuraciones, por otra parte, al generador SKL (Anexo 5) le corresponden a otros valores de ganancia en el PSS. A continuación, se muestra la configuración final de cada parte del controlador.

Tabla 3.2: Configuración final del AVR para los generadores. Basado en: [9] [10]

Configuración del AVR	CATERPILLAR y CUMMIN	SKL
Tr Constante de tiempo del filtro de entrada del regulador	0 [s]	0 [s]
TB1 constante de tiempo de retraso del 1er bloque de guía de retardo (canal avr)	6 [s]	6 [s]
TC1 constante de tiempo de entrega del 1er bloque de guía de retardo (canal avr)	0,8 [s]	0,8 [s]
Kr Ganancia del regulador de voltaje	300 [pu]	350 [pu]
TB2 constante de tiempo de retardo del 2º bloque de guía de retardo (canal avr)	0,01 [s]	0,01 [s]
TC2 constante de tiempo de entrega del 2º bloque de guía de retardo (canal avr)	0,08 [s]	(a) [8]
TUB1 constante de tiempo de retardo del 1er bloque de guía de retardo (canal uel)	10 [s]	10 [s]
TUC1 constante de tiempo de entrega del 1er bloque de guía de retardo (canal uel)	2 [s]	2 [s]
TUB2 constante de tiempo de retardo del 2º bloque de guía de retardo (canal uel)	0,05 [s]	0,05 [s]
TUC2 constante de tiempo de entrega del 2º bloque de guía de retardo (canal uel)	0,1 [s]	0,1 [s]
TOB1 constante de tiempo de retardo del 1er bloque de guía de retardo (canal oel)	2 [s]	2 [s]
TOC1 constante de tiempo de entrega del 1er bloque de guía de retardo (canal oel)	0,1 [s]	0,1 [s]
TOB2 constante de tiempo de retardo del 2º bloque de guía de retardo (canal oel)	0,08 [s]	0,08 [s]
TOC2 constante de tiempo de entrega del 2º bloque de guía de retardo (canal oel)	0,08 [s]	(s] 80,0
Kc Factor de compensación actual	0 [pu]	0 [pu]
T1 Constante de tiempo del regulador de voltaje	0,004 [s]	0,004 [s]
Kterm_fed Marca de terminal de alimentación	0 [1/0]	0 [1/0]
Vrmin	-4 [pu]	-4 [pu]
VRmin Límite mínimo del regulador de voltaje	-4 [pu]	-4 [pu]
VRmax Límite máximo del regulador de voltaje	5 [pu]	5 [pu]

Tabla 3.3: Configuración final del Gobernador para los generadores. [11]

Configuración del Gobernador	CATERPILLAR Y CUMMIN	SKL
T3 Tiempo de retardo de la turbina constante	10 [pu]	10 [pu]
T2 Constante de tiempo derivada de turbina	2 [pu]	2 [pu]
At Coeficiente de potencia de la turbina	1 [pu]	1 [pu]
Dt Factor de pérdidas por fricción	0 [pu]	0 [pu]
R Controlador de droop	0,05 [pu]	0,05 [pu]
T1 Constante de tiempo del gobernador	0,2 [s]	0,2 [s]
PN potencia estimada de la turbina(=0->PN=Pgnn)	0 [Mw]	0 [Mw]
Vmin Límite mínimo de puerta	0 [pu]	0 [pu]
Vmax Límite máximo de la puerta	1 [pu]	1 [pu]

Tabla 3.4: Configuracion final del PSS para los generadores. Basado en: [9] [10]

Configuración del PSS	CATERPILLAR Y CUMMIN	SKL
Tw1 1º Filtrado 1ª Constante de Tiempo	10 [s]	10 [s]
Tw2 1º Filtrado 2ª Constante de Tiempo	10 [s]	10 [s]
T6 1ª constante de tiempo del transductor de señal	0 [s]	0 [s]
Tw3 2º Filtrado 1ª Constante de Tiempo	10 [s]	10 [s]
Tw4 2º Filtrado 2ª Constante de Tiempo	0 [s]	0 [s]
Ks2 2º Factor del Transductor de Señal	0,99 [pu]	0,99 [pu]
T7 2ª constante de tiempo del transductor de señal	10 [s]	10 [s]
Ks3 Factor de acoplamiento de filtrados	1 [pu]	1 [pu]
Ks1 Ganancia de PSS	10 [pu]	10 [pu]
Ts1 1ª constante de tiempo derivada de guía de retardo	0,15 [s]	0,15 [s]
Ts2 1ª constante de tiempo de retardo de guía de retardo	0,025 [s]	0,025 [s]
Ts3 2ª constante de tiempo derivada de la guía de retardo	0,15 [s]	0,15 [s]
Ts4 2ª constante de tiempo de retardo de la guía de retardo T8 Filtro de seguimiento de rampa Derivada. Constante de	0,02 [s]	0,02 [s]
tiempo T9 Seguimiento de rampa constante de Filtro Retardo de Tiempo	0,5 [s] 0,1 [s]	0,5 [s] 0,1 [s]
N Filtro de seguimiento de rampa	1 [-]	1 [-]
M Filtro de seguimiento de rampa	5 [-]	5 [-]
lc1 1er selector de entrada [1-6]	1	1
lc2 2º Selector de entrada [1-6]	3	3
Kd Factor de derivación	0 [pu]	0 [pu]
IPB Selector base de PSS (1=gen MVA, 0=gen MW)	0	0
Ts10 3ª constante de tiempo derivada de guía de retardo Ts11 3ª constante de tiempo de retardo de la guía de	0 [s]	0 [s]
retardo	0,033 [s]	0,033 [s]
Vstmin Salida mínima del controlador	-0,1 [pu]	-0,1 [pu]
Vstmax Salida máxima del controlador	0,1 [pu]	0,1 [pu]

Para los generadores se ha seleccionado el modelo de máquina síncrona que ofrece *Power Factory*®, la configuración general de la máquina debe coincidir con las características descritas en la placa del generador, las cuales en este caso se encuentran presentes en la *Tabla 3.1*, en este caso se ha configurado cada modelo de generador como modelos del proyecto, para que de esta manera se facilite la selección al momento de crear los otros generadores que sean del mismo tipo, ya que solo se deberá seleccionar desde la librería del proyecto. Todos los generadores térmicos fueron conectados a una misa barra y por medio de un transformador para

cada uno, que les permita elevar el voltaje hasta 13,8kV. La información sobre el despacho es asignada en el diseño de escenarios.

3.1.2 Modelamiento de generadores renovables

El estudio que se realizará, tiene como objetivo evaluar al sistema ante la salida de funcionamiento de toda la generación renovable debido a que este tipo de generación es la primera en desconectarse cuando se produce un problema en la frecuencia ya que su sistema de protección busca resguardar la electrónica que maneja de por medio; dado todo lo anteriormente descrito se puede asumir que no es necesario un equipo de control para la generación renovable, ya que el análisis parte desde un punto de despacho que ya se ha equilibrado en la red, y la desconexión de la generación es súbita, es decir, no tiene que reaccionar ante un estímulo de la red, por lo tanto para el modelamiento de estos generadores se hará uso únicamente de los generadores eólicos y solares que provee Power Factory[®], a estos generadores se les colocan las características de potencia acorde con la Tabla 3.1, a los tres generadores eólicos se los conectó a una misma barra por medio de un transformador asignado a cada uno de ellos que les permita elevar el voltaje hasta 13,8kV, desde esta barra se extenderá una conexión hasta la barra donde están conectados los generadores térmicos. Por otra parte, el generador fotovoltaico se conecta directamente a la barra de generadores térmicos.

3.2 Modelamiento del sistema de distribución

Debido a que se está usando *Power Factory Student Edition*®, se tiene una gran limitación para las simulaciones, ya que el máximo de nodos que se puede usar es de 50, para llegar a este número no todos los nodos son tomados en cuenta y se hace acorde a los criterios mencionados por *Power Factory*® en el contrato de la licencia, así que las simulaciones que fueron usadas para este proyecto deben cumplir con esta condición, por ello se decidió que la red sería reducida en un diagrama equivalente en donde todos los nodos de las cargas tendría un mismo voltaje, esto es posible ya que el análisis en frecuencia será el mismo para cualquier nivel de voltaje y mientras se mantenga los datos de potencia de las cargas correctamente definidos no habría un cambio significativo en los resultados.

Así que partiendo desde el diagrama de distribución original (Anexo 8), para poder elaborar un diagrama equivalente correctamente que luego permita hacer desconexiones estratégicas, primero se tuvo que identificar y clasificar a los usuarios entre prioritarios, no prioritarios y medianamente prioritarios, de esta manera se obtuvo:

Tabla 3.5: Clasificación de usuarios dentro de la red.

Prioritarios	Prioridad media	No prioritarios
Hospital		
ECU 911		
Consejo de Gobierno	Ároas comorcialos y	
Estación de policía	Áreas comerciales y turísticas cercanas al malecón	Usuarios residenciales
Hospital del IESS		Osuarios residenciales
Aeropuerto		
Base Naval		
GAD Municipal		

La clasificación que se muestra en la Tabla 3.5se establece basándose en las indicaciones dadas por los profesionales entrevistados de la Empresa Eléctrica y en las necesidades identificadas actualmente el sistema. Esta clasificación nos permitió elaborar el diagrama equivalente procurando que las cargas prioritarias queden en grupos más ligeros de potencia, ya que de esta manera se optimiza la ubicación de los relés de frecuencia y se mejora el impacto que tiene cada desconexión de carga en el sistema.

El nivel de voltaje para las cargas se configuró en 13,8kV; debido a la falta de información precisa en la documentación sobre la potencia de cada usuario, se aplicó una técnica de estimación basada en la potencia pico de los alimentadores y en la capacidad de transformación de la red; es decir, la red se dividió en diversas zonas de acuerdo con la ubicación de los reconectadores y la conveniencia de las cargas prioritarias, se determinó la capacidad de transformación de cada una de estas zonas en cada una de las fases y se aplicó la *Ecuación 3.1* usando la potencia pico del alimentador que corresponde a cada zona, para así conseguir la potencia por fase que se ubicaría en la carga del diagrama equivalente.

Tabla 3.6:Demandas picos por alimentador. [12]

Alimentador	ALIM-19SCB10T01	ALIM-19SCB10T02	ALIM-19SCB10T03
Demanda pico	1365,59 kVA	1175,07 kVA	313,11 kVA

$$S_{F-EZ} = \frac{CTr_{F-Z}}{CTr_A} * D_{pA}$$
 (3.1)

Donde:

 S_{EZ} : Potencia de fase equivalente de la zona.

 CTr_{F-Z} : Capacidad de transformación de la fase de la zona.

 CTr_A : Capacidad de transformación total del alimentador.

 D_{pA} : Demanda pico del alimentador

Después de calcular la potencia equivalente de cada una de las fases de cada una de las zonas, estos valores fueron ingresados en las fases de las cargas correspondientes dentro del diagrama equivalente con un factor de potencia de 0,92, ya que este es el factor de potencia exigido por las regulaciones de consumidores a nivel nacional; las cargas de este sistema son desbalanceadas, por lo tanto, el equivalente también lo será. Para diferenciar adecuadamente las cargas en el diagrama equivalente, se les asignó un código que se conforma de una letra seguida del número del alimentador al cual corresponde. Las potencias de las cargas equivalentes y el código de nombre asignado se pueden ver en la *Tabla 3.7*, cada carga equivalente contiene un grupo de usuarios de la red original (

Anexo 21). El tipo de conductor asignado al diagrama equivalente es el ACSR 3/0 PIGEON, se usó el mismo tipo de conductor para todo el sistema, cada carga fue asignada a una barra, y las conexiones entre ellas fueron realizadas respetando la conexión original de las zonas establecidas en el diagrama original, obteniendo así las mismas características de distribución que en el sistema original.

Tabla 3.7: Potencia de las cargas equivalentes.

Alimentador	Código de la carga equivalente	Fase A [kVA]	Fase B [kVA]	Fase C [kVA]
	Sector Urbano San Cristóbal A_1	7,541	30,162	18,851
	Sector Urbano San Cristóbal B_1	96,016	13,070	58,313
	Sector Urbano San Cristóbal C_1	0,000	7,541	0,000
	Sector Urbano San Cristóbal D_1	117,632	120,648	131,959
A	Sector Urbano San Cristóbal E_1	40,216	25,135	32,676
ALIM- 19SCB10T01	Sector Urbano San Cristóbal F_1	12,568	20,108	23,878
7000270707	Sector Urbano San Cristóbal G_1	20,108	80,432	20,108
	Sector Urbano San Cristóbal H_1	20,108	5,027	5,027
	Sector Urbano San Cristóbal I_1	7,541	22,622	18,097
	Sector Urbano San Cristóbal K_1	0,000	0,000	11,311
	Sector Urbano San Cristóbal L_1	113,611	136,232	149,051
	Sector Urbano San Cristóbal A_2	18,314	4,578	14,880
	Sector Urbano San Cristóbal B_2	32,049	38,917	59,520
	Sector Urbano San Cristóbal C_2	48,074	75,545	48,074
	Sector Urbano San Cristóbal D_2	4,578	4,578	25,182
ALIM-	Sector Urbano San Cristóbal E_2	10,302	27,471	0,000
19SCB10T02	Sector Urbano San Cristóbal F_2	62,954	14,880	4,578
	Sector Urbano San Cristóbal G_2	38,459	27,471	65,930
	Sector Urbano San Cristóbal H_2	114,462	73,256	73,256
	Sector Urbano San Cristóbal I_2	0,000	0,000	6,868
	Sector Urbano San Cristóbal J_2	122,704	90,425	67,762
41.14	Sector Rural San Cristobal A_3	48,225	145,722	40,886
ALIM- 19SCB10T03	Sector Rural San Cristobal B_3	17,939	3,960	8,853
1930010103	Sector Rural San Cristobal C_3	18,870	9,086	19,569

Cada uno de los alimentadores fue conectado a la barra de generación principal creada en el punto 3.1, simulando la derivación producida en la subestación de la isla, en el modelamiento de la red solo se consideraron datos relacionados con el consumo, generación y puntos de conexión; ya que estos son los esenciales para el análisis en los escenarios de alivio de carga, elementos de protección o transformación no fueron ingresados en el equivalente. A continuación, se adjunta el diagrama resultante:

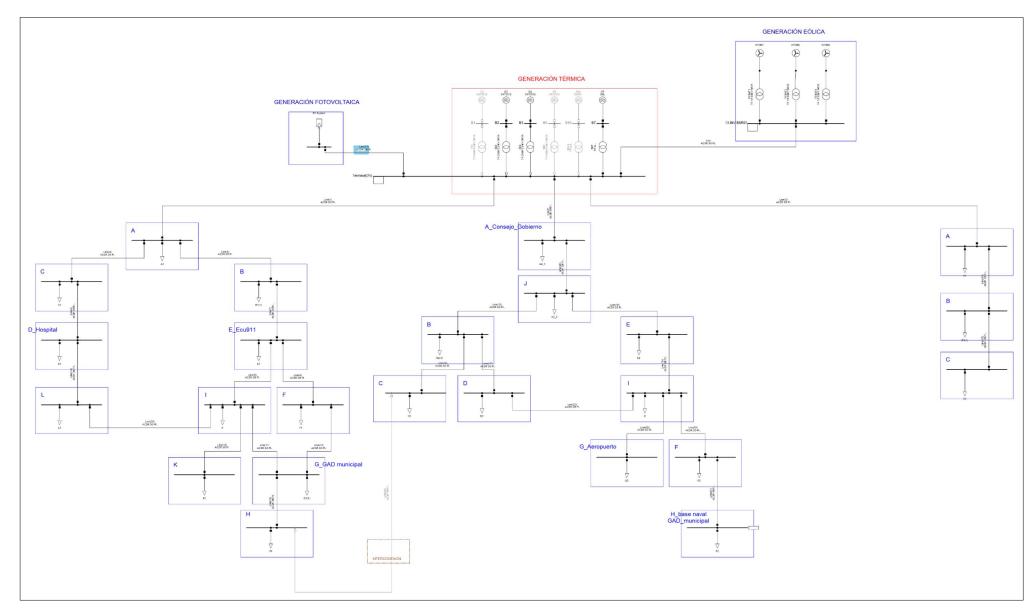


Figura 3.1: Diagrama equivalente del sistema.

CAPITULO 4

4 ESCENARIOS Y SIMULACIONES

4.1 Estructuración de escenarios

Para este estudio se han propuesto tres escenarios distintos, entre los cuales la variación existente son las condiciones de generación. Los escenarios fueron elaborados con la finalidad de analizar los peores casos posibles que se identificaron en la isla, estos escenarios se producen cuando la mayor parte de la generación está a cargo de las energías renovables y existe una salida súbita de generación eólica, lo cual conlleva a que la frecuencia del sistema decaiga, causando que el sistema de protección del parque fotovoltaico desconecte al conjunto solar para proteger su electrónica interna, así los generadores térmicos son los únicos que quedan conectados y en quienes recae el trabajo de suministrar potencia, pero por lo general no todos los generadores térmicos están conectados al mismo tiempo, por esta razón se han propuesto condiciones de generación basadas en los informes del sistema y las proyecciones del sistema. Para las condiciones de generación también se ha considerado que el parque solar ya terminó su construcción por completo, de tal manera que está trabajando a su potencia nominal. A continuación, se muestra una tabla con las condiciones de generación para cada escenario:

Tabla 4.1: Condiciones de generación y demanda de los escenarios.

Condiciones de generación Grupo electrógeno Aerogeneradores Fotovoltaic **CATERPILLA CATERPILLA** SKL WTG# 2,85377 WTG#1 WTG#2 0 G7 [MVA] [MVA] [MVA] [MVA] G3 [MVA] G4 [MVA] [MVA] [MVA] Escenario 0 0,48 0 0,4398 0,48 0,48 1 Escenario 0,08523 0 0,4439 0,45 0,45 0,45 1 2 Escenario 0,4474 0,08542 0,08542 0,42 0,42 0,42 1 3

Para lograr las condiciones planteadas en cada escenario sin limitar la capacidad de despacho de las unidades térmicas, se configuró únicamente el despacho de los generadores renovables, y se seleccionó la opción "Power Factor" como controlador de voltaje local. Por otra parte, para las unidades térmicas no se configuró un despacho en específico, sino solo se ubicó un límite máximo y se seleccionó la opción "Voltage" como controlador de voltaje local. Para todos los escenarios, la máquina que sirve como barra de compensación del sistema es el generador SKL.

La elaboración de los casos de estudio se realizó en escenarios distintos de *Power Factory*®, esto para evitar problemas con las limitantes de la licencia; en los tres escenarios se tiene el mismo diagrama equivalente y únicamente se mantienen activos los generadores que participaron en cada caso. Al final se tienen seis escenarios, donde tres corresponden al diseño original y los otros tres corresponden al diseño propuesto.

4.2 Diseño del esquema de alivio de carga

El mismo esquema de alivio de carga debe funcionar para los tres escenarios propuestos, el proceso de recuperación de la frecuencia fue evaluando mediante la gráfica de frecuencia de la barra principal, el tipo de simulación ejecutada es una RMS, ya que se requería examinar el desarrollo de la frecuencia durante un periodo largo, dentro de esta simulación se creó el evento de salida de todo el conjunto eólico en los primeros segundos y previamente ya se había configurado un relé de frecuencia para el parque fotovoltaico, de tal manera que cuando la frecuencia decaiga por debajo de 59,5Hz, el conjunto solar se desconecta de la red.

Como punto de partida se tomó la configuración original de los reconectadores de la red, la cual estaba detallada en los informes obtenidos, se registraron los resultados y se comenzó a realizar mejoras, las cuales fueron cambios en las posiciones de los relés, aumento del número de relés y cambio en la frecuencia de disparo; por este motivo es necesario crear una copia de cada proyecto en la cual se realizarán los cambios, teniendo finalmente seis escenarios de *Power Factory*®.

Usando las herramientas del programa se evaluaron las nuevas ubicaciones y se probaron los valores de frecuencia de disparo, los cuales fueron modificando la gráfica de frecuencia hasta que alcanzó condiciones de funcionamiento y tiempos de recuperación adecuados, al mismo tiempo que se procuró desconectar la menor cantidad de usuarios y respetando el orden de prioridad descrito en la *Tabla 3.5*, para el análisis se consideró que una frecuencia que está subiendo por encima de 59Hz ya está comenzando a estabilizarse y que si decae por debajo de 58Hz, está entrado en condiciones críticas.

Como se indicó antes, un alivio de carga se logra mediante la configuración e instalación estratégica de los reconectadores; las simulaciones de este capítulo evalúan el desempeño del protocolo actual de la isla y del alivio de carga diseñado en base a los análisis de las condiciones y reacciones del sistema; se han colocado relés de frecuencia para simular la función de los reconectadores. Ambos protocolos de alivio de carga fueron probados en los mismos escenarios y condiciones.

Las simulaciones realizadas son tipo RMS, este tipo de simulación permite ver la respuesta del sistema a lo largo de un periodo, en este caso la respuesta que se tomó como punto de análisis es la gráfica de frecuencia del sistema, como era esperado, en condiciones normales esta grafica no tuvo ningún cambio, ya que el sistema estaba sin ninguna perturbación es decir en estado estable, por ello fue necesario que se use la herramienta "eventos", ya que así se puede programar la salida de la generación eólica, esta última fue seleccionada debido a que es la más propensa a sufrir daños y más sensible a los cambios meteorológicos debido a su localización geográfica; al hacer esto se puede ver como la gráfica de frecuencia del sistema se altera y comienza a caer, este comportamiento fue previsto y por teoría se conoce que el conjunto fotovoltaico se desconectará al censar un cambio evidente en la frecuencia, sin embargo, como las características del equipo de control del parque fotovoltaico no formaban parte de la documentación, este fue instalado directamente a la barra principal del sistema, por ello es necesario agregar un relé de subfrecuencia el cual tiene como única finalidad, simular el sistema de protección de la central fotovoltaica, la frecuencia de disparo a la cual se configuró este relé es de 59,5Hz, con esto se logra un comportamiento más cercano al real.

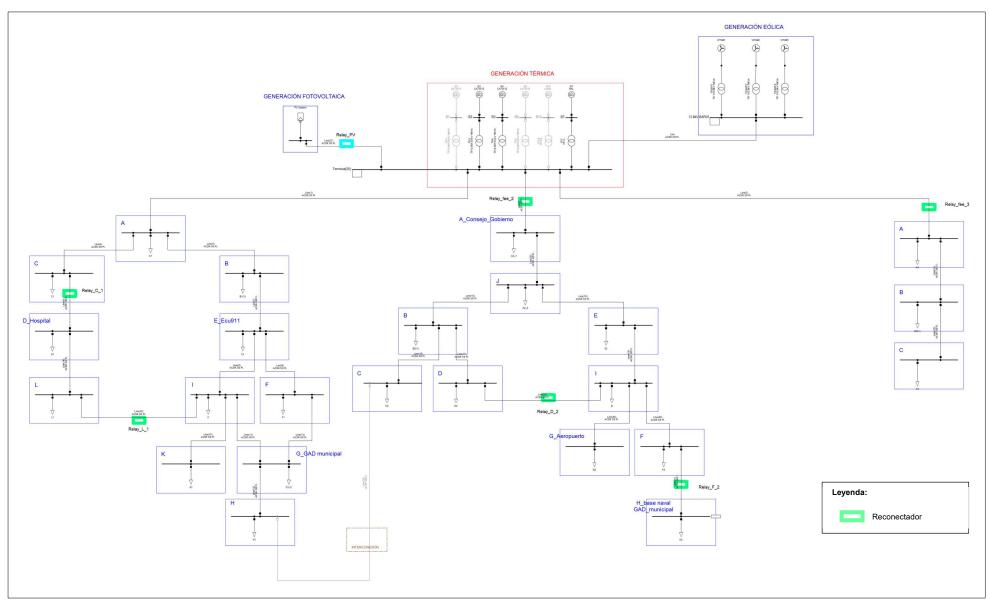


Figura 4.1 : Diagrama equivalente con la ubicación actual de los relés en la isla.

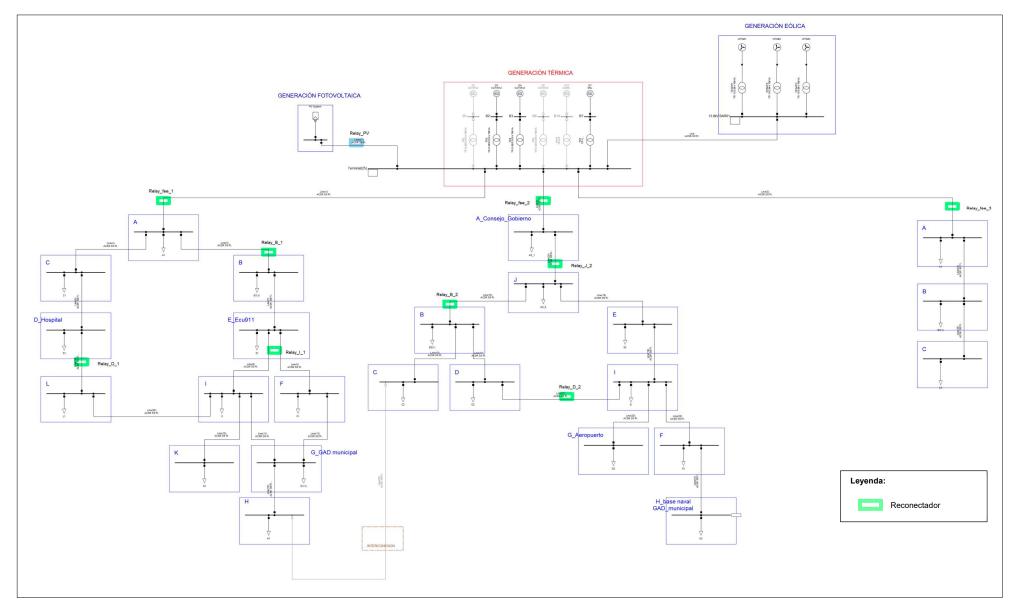


Figura 4.2: Diagrama equivalente con la ubicación propuesta para los relés.

A cada relé se le asignó un nombre, el cual se puede ver en los diagramas equivalentes, la configuración que tiene cada uno de los equipos se muestra en las *Tabla 4.2 y Tabla 4.3*, esta consiste en valores de frecuencia de disparo y tiempo de retraso para el accionamiento; las frecuencias han sido seleccionadas en base a varias pruebas realizadas durante las simulaciones, de tal manera que los usuarios sean desconectados paulatinamente y respetando el orden de prioridad, para que con cada salida de carga, la frecuencia del sistema se vaya recuperando. Por otra parte, el tiempo de retraso en el accionamiento es un valor estándar correspondiente al tiempo que demora un reconectador en recibir una señal y cambiar de estado.

Tabla 4.2: Configuración actual para los relés. [13]

CONTIGURACION ACTUAL			
FRECUENCIA	RETRASO		
58,1 Hz	0,2 s		
58,2 Hz	0,2 s		
58,2 Hz	0,2 s		
58,2 Hz	0,2 s		
59,8 Hz	0,2 s		
58,0 Hz	0,2 s		
58,3 Hz	0,2 s		
	FRECUENCIA 58,1 Hz 58,2 Hz 58,2 Hz 58,2 Hz 59,8 Hz 58,0 Hz		

Tabla 4.3: Configuración propuesta para los relés.

DISEÑO PROPUESTO

DISENO FROFOLSTO				
IDENTIFICACIÓN	FRECUENCIA	RETRASO		
Realy_J_2	58,8 Hz	0,2 s		
Relay_B_1	57,5 Hz	0,2 s		
Relay_B_2	59,3 Hz	0,2 s		
Relay_D_1	58,8 Hz	0,2 s		
Relay_D_2	59,3 Hz	0,2 s		
Relay_I_1	58,8 Hz	0,2 s		
Relay_PV	59,8 Hz	0,2 s		
Relay_fee_1	57,5 Hz	0,2 s		
Relay_fee_2	57,5 Hz	0,2 s		
Relay_fee_3	59,8 Hz	0,2 s		

CAPITULO 5

5 RESULTADOS Y DISCUSIÓN

A continuación, se presentan las gráficas de frecuencia, gráficas de potencia y tablas con los resultados obtenidos de las simulaciones de los distintos escenarios.

5.1 Escenario 1

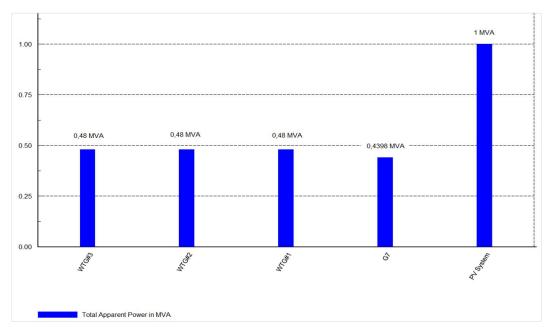


Figura 5.1: Escenario 1. Potencia suministrada por cada generador en condiciones nominales.

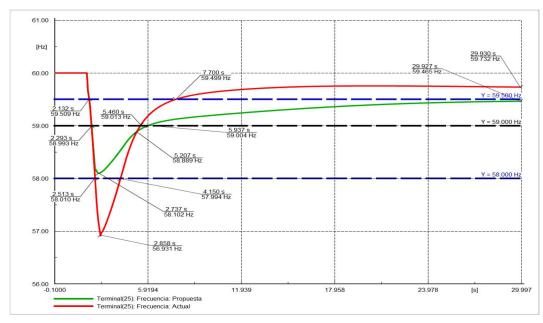


Figura 5.2: Escenario 1. Curva de comportamiento durante Alivio de carga del sistema.

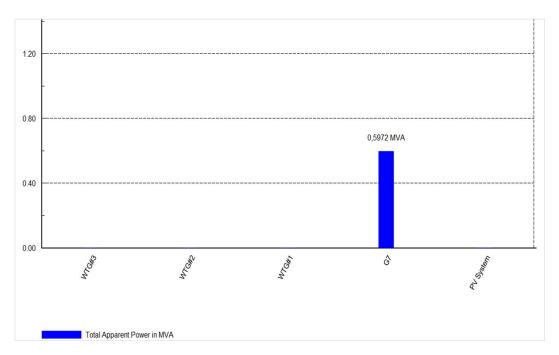


Figura 5.3: Escenario 1. Potencia suministrada por cada generador luego del alivio de carga actual.

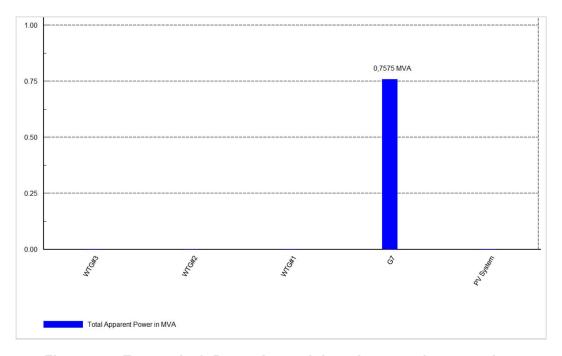


Figura 5.4: Escenario 1. Potencia suministrada por cada generador luego del alivio de carga propuesto.

Power Factory® nos permite visualizar los resultados del flujo de potencia en condiciones normales y los resultados posteriores al alivio de carga en el diagrama, es decir, se puede ver las potencias de las líneas y las barras que han sido desconectadas. (Anexo 9-Anexo 12)

Tabla 5.1: Escenario 1. Resumen de resultados y observaciones del diseño actual.

Recuperación del sistema Frecuencia más baja 56,93 Hz Frecuencia Post recuperación 59,73 Hz Tiempo de recuperación 5,46 s Protocolo de desconexión Cargas prioritarias mantenidas Observaciones Funcionó en frecuencias **GAD Municipal** menores a 57 Hz. Debido a que no ECU 911 está activado la protección de subfrecuencia

Tabla 5.2: Escenario 1. Resumen de resultados y observaciones del diseño propuesto.

Recuperación del sistema			
Frecuencia más baja	58,10 Hz		
Frecuencia Post recuperación	59,46 Hz		
Tiempo de recuperación	5,94 s		
Protocolo de descone	rión		
Cargas prioritarias mantenidas	Observaciones		
Hospital	Funcionó en		
Consejo de Gobierno	frecuencias		
ECU 911	mayores a 58 Hz		

5.2 Escenario 2

5.2.1 Configuración actual:

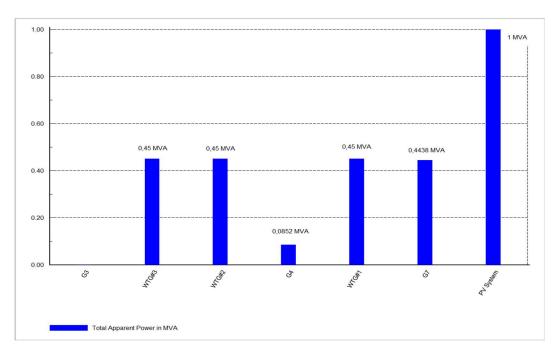


Figura 5.5: Escenario 2. Potencia suministrada por cada generador en condiciones nominales.

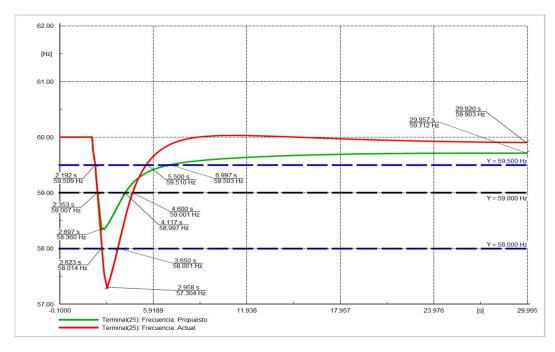


Figura 5.6: Escenario 2. Curva de comportamiento durante Alivio de carga del sistema.

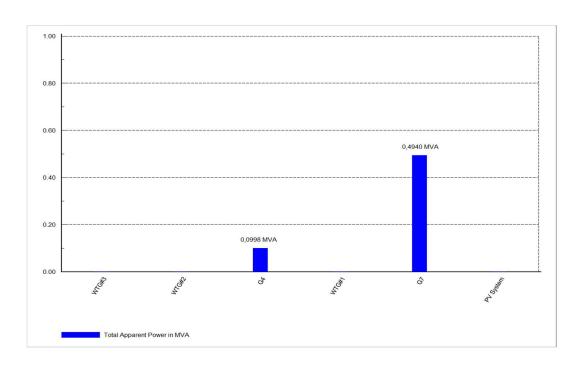


Figura 5.7: Escenario 2. Potencia suministrada por cada generador luego del alivio de carga actual.

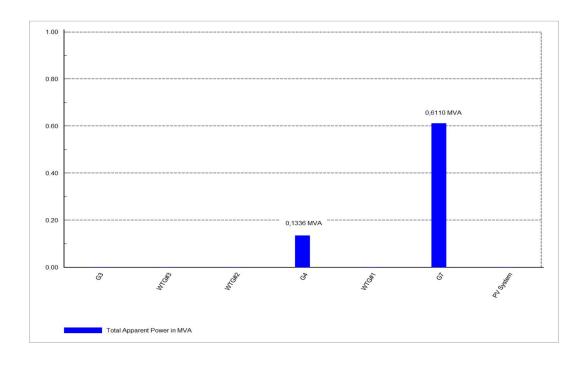


Figura 5.8: Escenario 2. Potencia suministrada por cada generador luego del alivio de carga propuesto.

Power Factory® nos permite visualizar los resultados del flujo de potencia en condiciones normales y los resultados posteriores al alivio de carga en el diagrama, es decir, se puede ver las potencias de las líneas y las barras que han sido desconectadas. (Anexo 13-Anexo 16)

Tabla 5.3: Escenario 2. Resumen de resultados y observaciones del diseño actual.

Recuperación del sistema	
Frecuencia más baja	57,30 Hz
Frecuencia Post recuperación	59,90 Hz
Tiempo de recuperación	4,6 s
Protocolo de desconexión	
Cargas prioritarias mantenidas	Observaciones
GAD Municipal ECU 911	Funcionó en frecuencias inferiores a 57,5Hz Debido a que no
	está activado la protección de subfrecuencia

Tabla 5.4: Escenario 2. Resumen de resultados y observaciones del diseño propuesto.

Recuperación del sistema 58,36 Hz Frecuencia más baja Frecuencia Post recuperación 59,71 Hz Tiempo de recuperación 4,12 s Protocolo de desconexión Cargas prioritarias mantenidas Observaciones Funcionó en Hospital frecuencias Consejo de Gobierno superiores a ECU 911 58,35Hz

5.3 Escenario 3

5.3.1 Configuración actual:

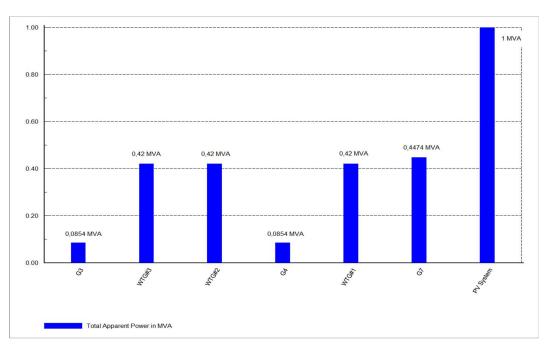


Figura 5.9: Escenario 3. Potencia suministrada por cada generador en condiciones nominales.

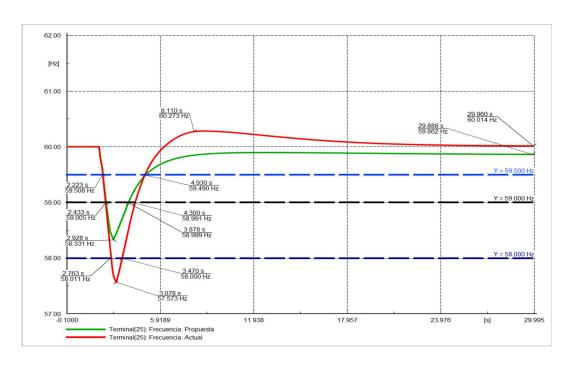


Figura 5.10: Escenario 3. Curva de comportamiento durante Alivio de carga del sistema.

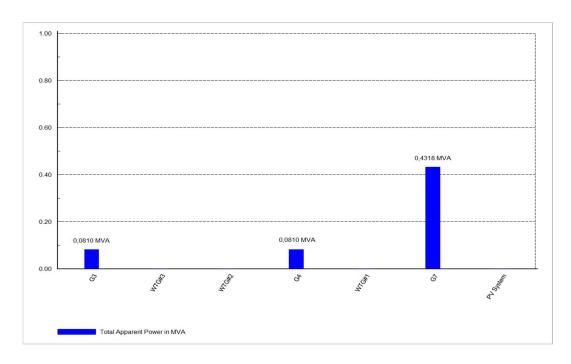


Figura 5.11: Escenario 3. Potencia suministrada por cada generador luego del alivio de carga actual.

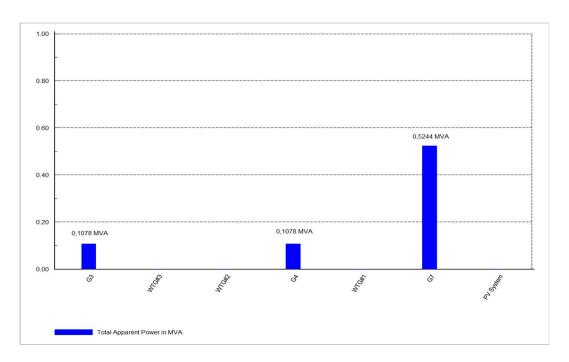


Figura 5.12: Escenario 3. Potencia suministrada por cada generador luego del alivio de carga propuesto.

Power Factory® nos permite visualizar los resultados del flujo de potencia en condiciones normales y los resultados posteriores al alivio de carga en el diagrama, es decir, se puede ver las potencias de las líneas y las barras que han sido desconectadas. (Anexo 17-Anexo 20)

Tabla 5.5: Escenario 3. Resumen de resultados y observaciones del diseño actual.

Frecuencia más baja 57,57 Hz Frecuencia Post recuperación 60,01 Hz Tiempo de recuperación 4,30 s Protocolo de desconexión Cargas prioritarias mantenidas Observaciones Consejo de Gobierno Frecuencias inferiores a 58 Hz

Tabla 5.6: Escenario 3. Resumen de resultados y observaciones del diseño Propuesto

Recuperación del sistema Frecuencia más baja 58,33 Hz Frecuencia Post recuperación 59,86 Hz 3,88 s Tiempo de recuperación Protocolo de desconexión Cargas prioritarias mantenidas Observaciones Funcionó en Hospital frecuencias Consejo de Gobierno superiores a ECU 911 58,35Hz

5.4 Análisis de resultados.

En el primer escenario, en la *Figura 5.2*, se puede ver que el tiempo de recuperación para ambos diseños es muy parecido, sin embargo, la curva de frecuencia del diseño actual decae hasta por debajo de 57Hz, y debido a que no tienen activada la protección de subfrecuencia, el GAD Municipal y el ECU 911 se exponen a un funcionamiento inadecuado, además el Hospital de la isla es desconectado a pesar de considerarse un consumidor prioritario. En cambio, el diseño propuesto mantiene al sistema por encima de 58Hz y dando servicio ininterrumpido al Hospital, GAD Municipal y al ECU 911, disminuyendo la exposición a riesgos de los usuarios prioritarios. Esta mejora se ha logrado debido a que se han agregado tres protecciones de subfrecuencia adicionales al sistema, que en conjunto con las configuraciones de frecuencia de disparo asignadas permiten que la salida de carga sea paulatina y gradual, dándole tiempo a los controladores de los generadores para procesar y enviar una corrección, a la vez que se le da tiempo a los componentes mecánicos para reaccionar; esto evita que la frecuencia sufra un cambio abrupto, tanto en la caída como en la recuperación.

En el segundo escenario, en la Figura 5.6, se puede evidenciar como el tiempo de recuperación usando el diseño propuesto es menor al tiempo de recuperación usando la configuración actual de la isla, además de que se evita trabajar en frecuencias menores a 58Hz, un detalle interesante a tomar en cuenta de la curva de la configuración actual, además del hecho de llegar a condiciones desfavorables con picos muy pronunciados, es que no logra estabilizarse en un solo valor final de frecuencia, y en su lugar queda aumentando y disminuyendo, posiblemente como consecuencia de la salida masiva de cargas, lo cual produce que los controladores de los generadores den una respuesta muy pronunciada, y que luego deban dar otra respuesta para corregir el exceso de la anterior, generando vibraciones que permanecen en la curva hasta que al fin logran ser corregidas. En cambio, la curva del diseño propuesto si bien no alcanza el valor de 60Hz por completo, si alcanza un valor muy cercano y estable, esto se debe a que las salidas de usuarios del sistema fueron graduales, permitiéndole a los controladores generar respuestas acordes a las necesidades reales de la red y evitando respuestas excesivas; la diferencia entre el valor final de la frecuencia de

la curva del diseño propuesto es corregida fácilmente por los controladores secundarios.

Otro punto que podemos tomar como base de comparación es que para escenarios donde la generación renovable es menor, la configuración actual de los relés genera un pico de frecuencia por encima de los 60Hz con un aumento brusco, esto debido a que ese diseño tiene las frecuencias de disparo muy cercanas entre sí, lo cual provoca la salida de una gran cantidad de cargas en muy poco tiempo, cargas que en varios casos no sería necesario desconectar; este efecto se lo puede ver en la *Figura 5.10* que corresponde al tercer escenario, en ella se ve que la frecuencia de la curva de la configuración actual decae hasta 57,5Hz antes de reaccionar y al hacerlo tiene un aumento intempestivo, esto indica que la salida de carga que se produce es muy grande, posiblemente como consecuencia de la falta de reconectadores trabajando en conjunto para aislar y privar del suministro a ciertas zonas de la red antes de desconectar un alimentador completo. Por otra parte, en la curva del diseño propuesto se puede observar que antes de llegar a su punto mínimo hay una salida de carga que cambia la rapidez de caída de la frecuencia, esto se logra debido a que el diseño propuesto posee conjuntos de reconectadores que van desenergizando zonas en orden de prioridad hasta que se logra la restitución, de esta forma el cambio que deberán realizar los generadores no es abrupta, dando como resultado una curva de frecuencia que aumenta con menos agresividad; los valores finales de ambas curvas son muy cercanos, pero se debe tener en cuenta que para lograr la curva de la configuración actual se tuvo que generar un pico de frecuencia y que se desconectó gran parte de la red, incluyendo al hospital, y que la parte de la red que quedó en funcionamiento se debe a la ausencia de una protección de subfrecuencia en ese tramo del circuito.

CAPITULO 6

6 CONCLUSIONES Y RECOMENDACIONES

6.1 Conclusiones

El alivio de carga de forma automática es una de las ultimas contramedidas a utilizar para evitar el colapso del sistema, logrando reestablecer el balance entre generación y demanda; sin embargo, al analizar un sistema eléctrico debemos tomar en cuenta las necesidades tanto técnicas como sociales de la red, en la Isla San Cristóbal se tienen tres alimentadores, donde dos corresponden a zonas urbanas y uno a zona rural, las cargas de estos han sido categorizadas en tres tipos, las cargas no prioritarias, las cuales corresponden a los usuarios residenciales, las medianamente prioritarias, las cuales corresponden a los usuarios del sector comercial y las cargas prioritarias, la cuales son; el Hospital público, Ecu 911, Consejo de gobierno, estación de policía, Hospital IESS, Aeropuerto, Base Naval y GAD Municipal; siendo el de mayor importancia el Hospital público debido a su tamaño y cantidad de pacientes recibidos.

Las condiciones de generación de la isla en conjunto con la proyección de expansión prevista para la generación fotovoltaica implican la posibilidad de escenarios donde el protocolo de alivio de carga es crucial para mantener la continuidad del servicio, tal es el caso de escenarios en donde la mayor parte de la red está alimentada por generación renovable, de esta forma se ha identificado que el peor escenario posible es cuando se tiene solo un generador térmico funcionando al 25% de su capacidad y hay una caía critica de la generación eólica.

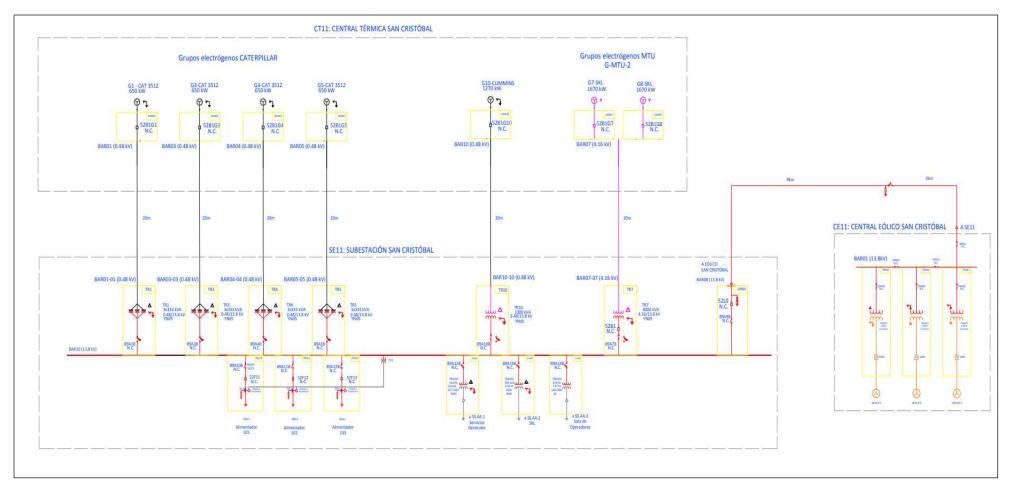
Para evitar la desconexión completa del sistema y precautelar el correcto funcionamiento del suministro de la isla, se necesita configurar e instalar los reconectadores en los valores y puntos de la red mencionados en los capítulos anteriores, ya que estos han sido diseñados recolectando la retroalimentación de resultados de varias configuraciones distintas y se ha ido mejorando en cada simulación, de tal manera que el diseño final contempla las características topológicas y la densidad de carga de la red y se adapta a estas.

Debido a que la red de distribución es mayoritariamente radial y varias cargas prioritarias están ubicadas en secciones aguas abajo de los alimentadores, cuyos

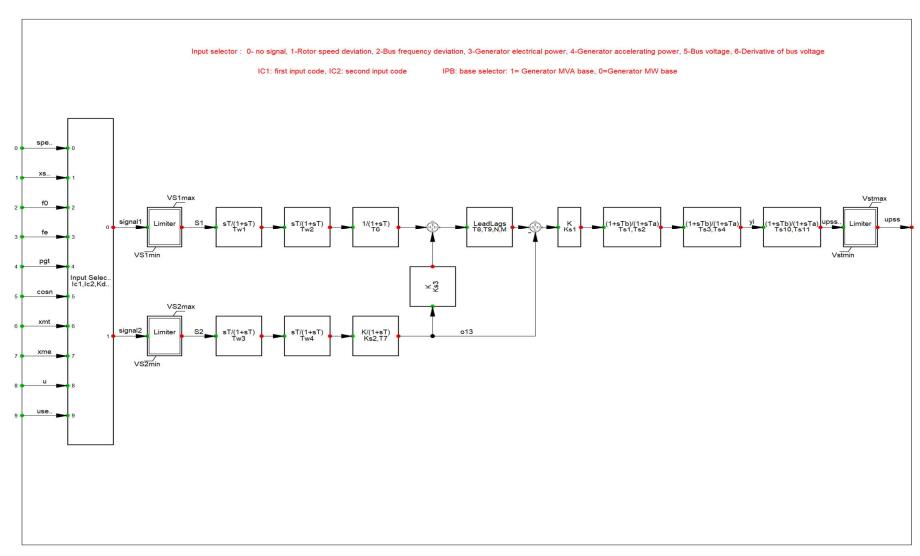
tramos tienen una alta densidad de carga previa a la ubicación del cliente prioritario, va a ser necesario desconectarlas incluso en escenarios que sean más favorables que los examinados en este trabajo, ya que muchas veces será indispensable desconectar los tramos en los que se encuentran para poder lograr mejoras significativas en la frecuencia y así evitar el colapso del sistema. Las cargas prioritarias que son propensas a ser desconectadas son el aeropuerto, la base naval y el GAD Municipal, de estos, los dos primeros tienen un sistema de generación de emergencia lo cual disminuye las consecuencias de la desconexión, por otra parte las cargas prioritarias que no sufrirán desconexiones son el Hospital público, el Ecu 911 y el Consejo de Gobierno; los cuales a su vez son entes que representan la salud, la seguridad y el control de migración de la isla, tres sectores básicos para garantizar la calidad de vida de la población.

En conclusión, el diseño de alivio de carga propuesto respeta el orden de prioridad de los usuarios de la red, y mantiene energizadas a las cargas más esenciales de forma ininterrumpida incluso en el peor de los escenarios posibles identificados, todo esto sin que se llegue a frecuencias críticas de funcionamiento; implicando así una mejora significativa con respecto a la configuración actual del sistema, en la que se expone al hospital en cada desconexión y se deja parte de la red funcionando en condiciones de frecuencia menores a 57,5Hz durante parte del tiempo de recuperación.

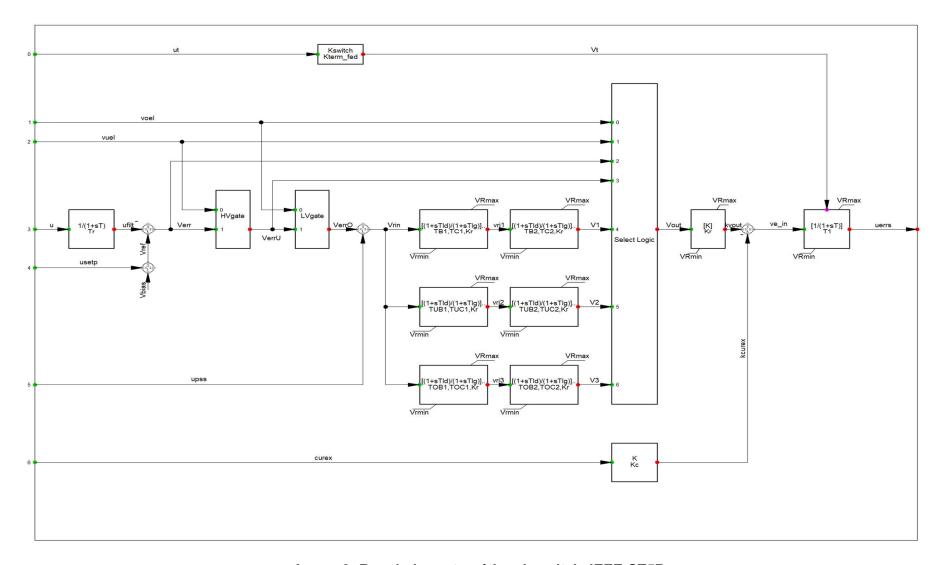
6.2 Recomendaciones

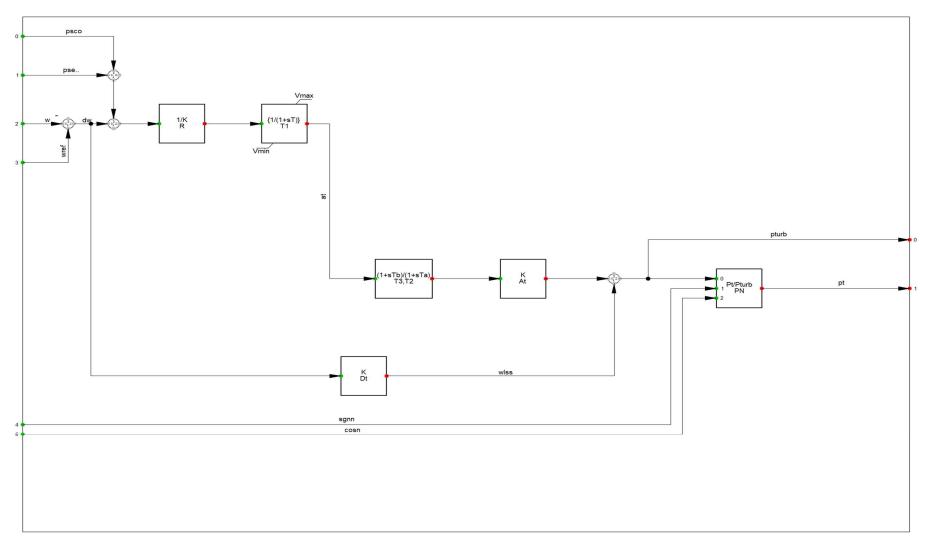

- Establecer una línea de comunicación activa con los profesionales de la administradora de la red en la que se vaya a trabajar, tanto para conseguir la información técnica como para conocer las experiencias que ellos han tenido con el sistema, las cuales pueden permitirnos tomar la decisión más acertada al sistema que se está trabajando, ya que debemos recordar que cada red tiene condiciones y usuarios distintos, y por ende habrá necesidades distintas.
- Acotar la información que se haya obtenido sobre la actualidad del sistema con la información de proyectos que estén planeados a un futuro cercano, ya que de esta manera los resultados perderán menos valor a medida que pase el tiempo.

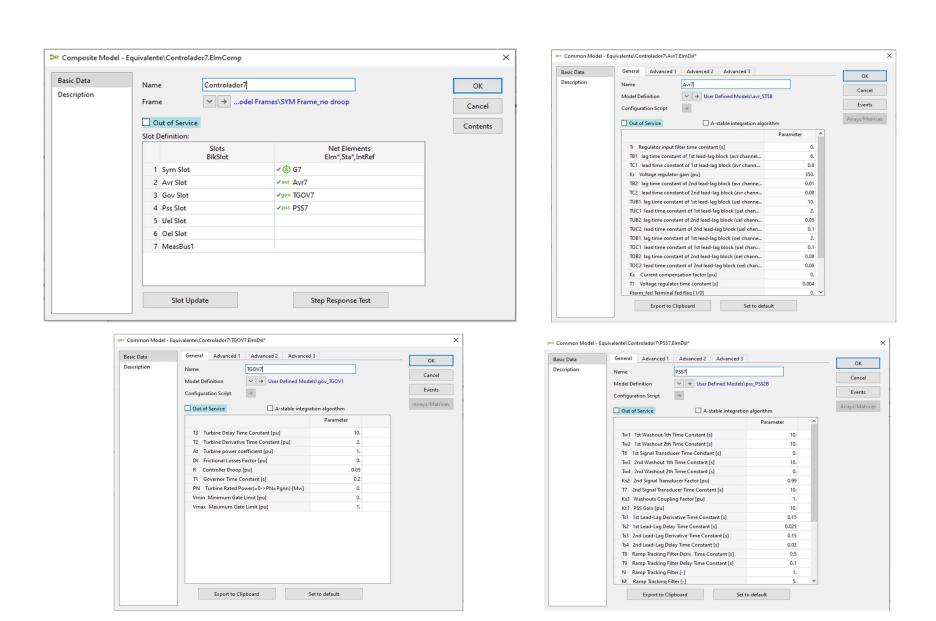
BIBLIOGRAFÍA

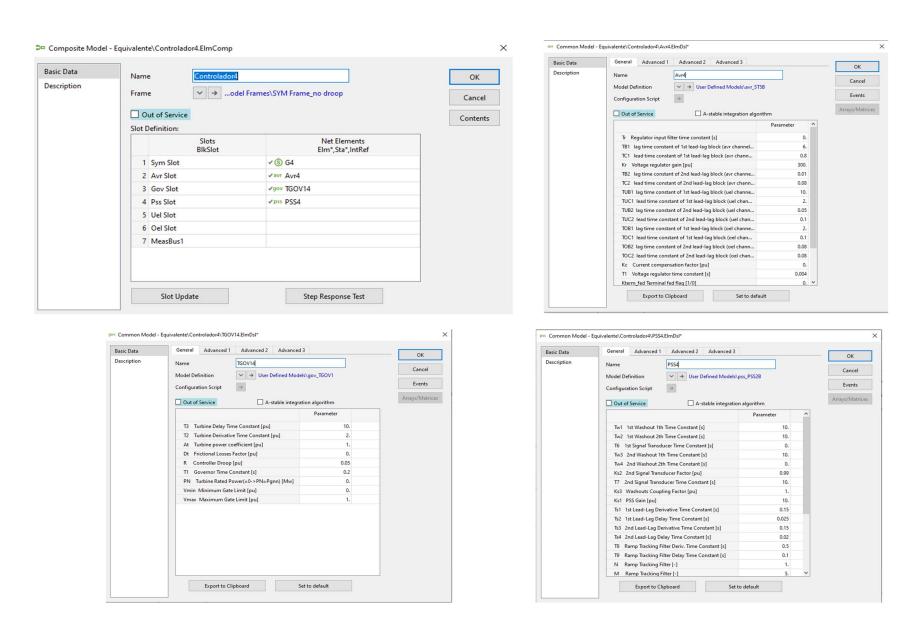

- [1] T. A. Short, Electric Power Distribution handbook, Boca Ratón: CRC Press, 2014.
- [2] T. Gönen, Electric Power Distribution Engineering, Boca Ratón: CRC Press, 2013.
- [3] J. E. M. Thomas M. Shoemaker, The Lineman's and Cableman's Hanbook, McGraw-Hill Education, 2017.
- [4] Schenider Electric, «Protección contra infrafrecuencia/sobrefrecuencia(Código ANSI 81),» 2020. [En línea]. Available: https://product-help.schneider-electric.com/ED/MTZ/Micrologic_X_User_Guide/EDMS/DOCA0102ES/index.htm# t=DOCA0102xx%2FProtectionFunctions%2FProtectionFunctions-17.htm.
- [5] J. A. Carta González, R. Calero Pérez, A. Colmenar Santos y M. A. Castro Gil, Centrales de energías renovables, Madrid: Pearson, 2009.
- [6] J. A. Laghari, H. Mokhlis, A. Bakar y H. Mohamad, «Application of computational intelligence techniques for load shedding in power systems: A review,» *Energy Conversion and Management Volume 75*, pp. 130-140, 2013.
- [7] IEEE, «Std C37.117 Guide for the application of protective relays used for abnormal frequency load shedding and restoration,» New York, 2007.
- [8] IEEE, Guide for abnormal Frequency Protection for Power Generating Plants, New York: The Institute of Electrical and Electroncis Engineers, 1993.
- [9] IEEE, «IEEE Recommended Practice for Excitation System Models for Power System Stability Studies,» IEEE, New York, 2006.
- [10] NEPLAN, «Power system stabilizer models,» Küsnacht, Suiza, 2008.
- [11] NEPLAN, «EXCITER MODELS,» Küsnacht, Suiza, 2008.
- [12] ELECGALAPAGOS-S.A., «Balance Energetico 2021-Preliminar,» San Cristobal, 2021.

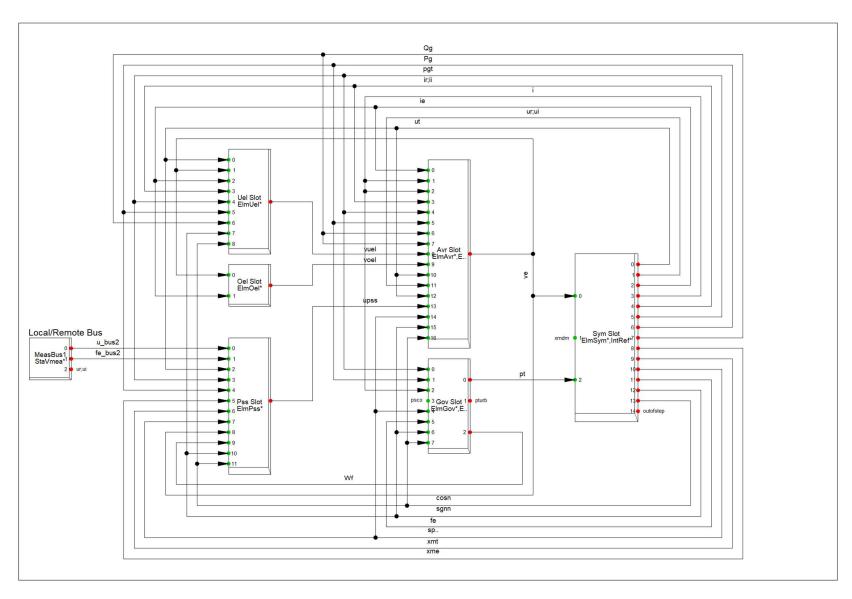
- [13] ELECGALAPAGOS-S.A., «Coordinación San Cristobal,» San Cristobal, 2021.
- [14] ELECGALAPAGOS-S.A., «Arcgis map,» 20 12 2021. [En línea]. Available: https://gis.elecgalapagos.com.ec/visor/.
- [15] H. Saadat, Power System Analysis, Milwauke: McGraw-Hill, 1999.
- [16] CONELEC, «REGULACIÖN No. CONELEC-004/01 CALIDAD DEL SERVICIO ELËCTRICO DE DISTRIBUCIÖN,» 23 Mayo 2001. [En línea]. Available: https://www.regulacionelectrica.gob.ec/wp-content/uploads/downloads/2016/02/Regulacion-No.-CONELEC-004-01.pdf.
- [17] T. M. Shoemaker y J. E. Mack, The Lineman's and Cablemean's Handbook, Mc Graw Hill, 2017.
- [18] General Electric, «Gas Power Customer Training,» [En línea]. Available: https://www.geenergytechnicaltraining.com/momentum/course_details.php?ctid=1 71].
- [19] M. J. Moran, H. N. Shapiro y D. D. Boettner, Fundamentals of engineering Thermodynamics, John Wiley, 2014.
- [20] ELECGALAPAGOS-S.A., «Diagrama unifilar San Cristóbal CE11-SE11,» San Cristóbal, 2020.
- [21] PowerFactory, «Standar Models Library,» 2021.
- [22] NOJA-Power, «Product guide: OSM Recloser,» Queensland, 2020.


ANEXOS

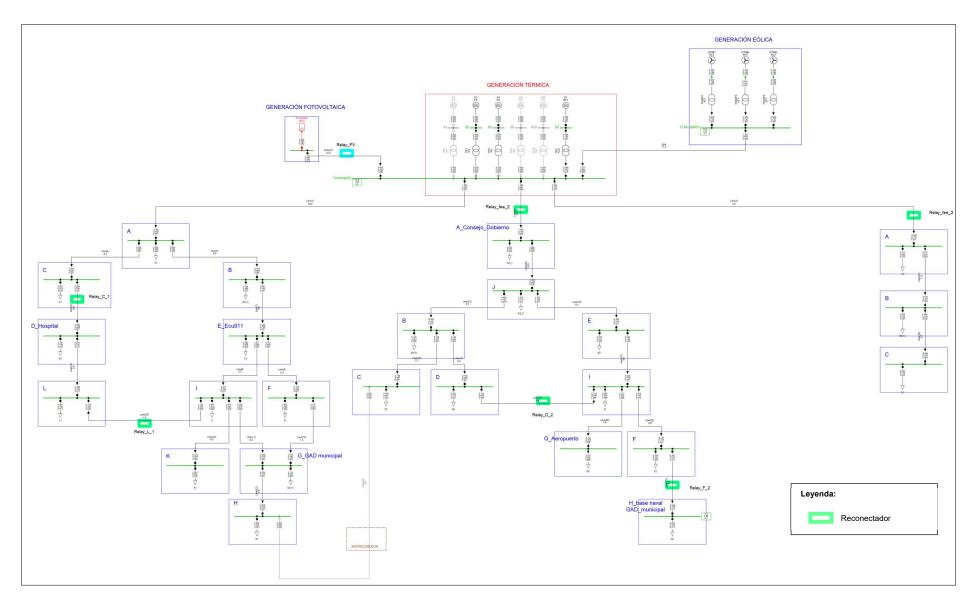

Anexo 1: Diagrama unifilar de generación de la Isla San Cristóbal.

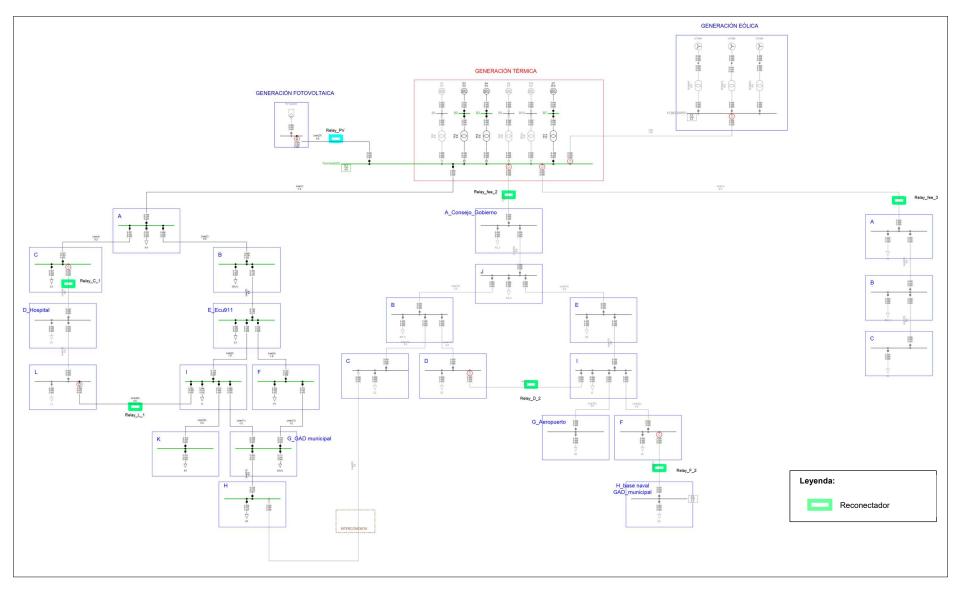

Anexo 2: Estabilizador de potencia IEEE-PSS2B.

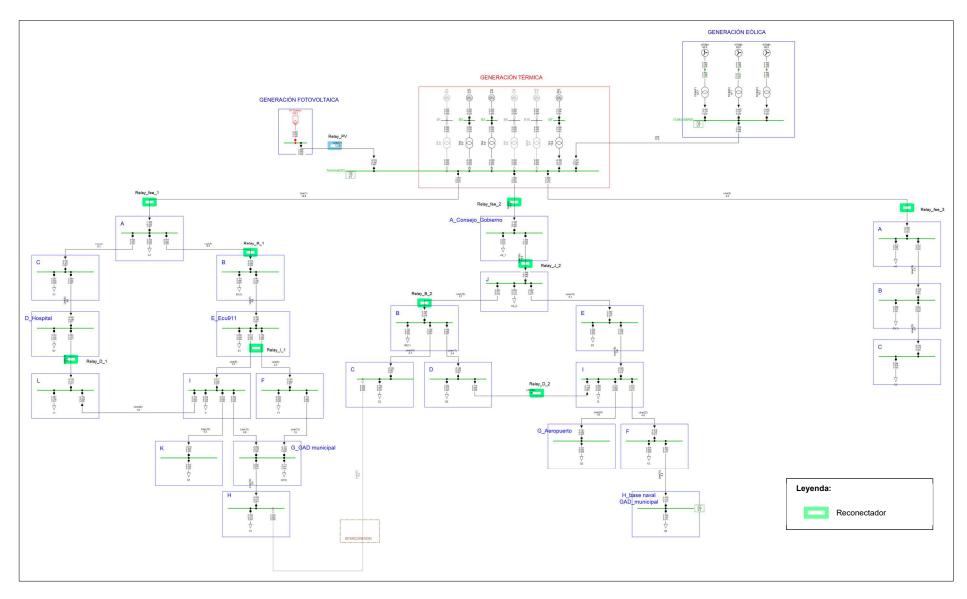

Anexo 3: Regulador automático de voltaje IEEE-ST5B.

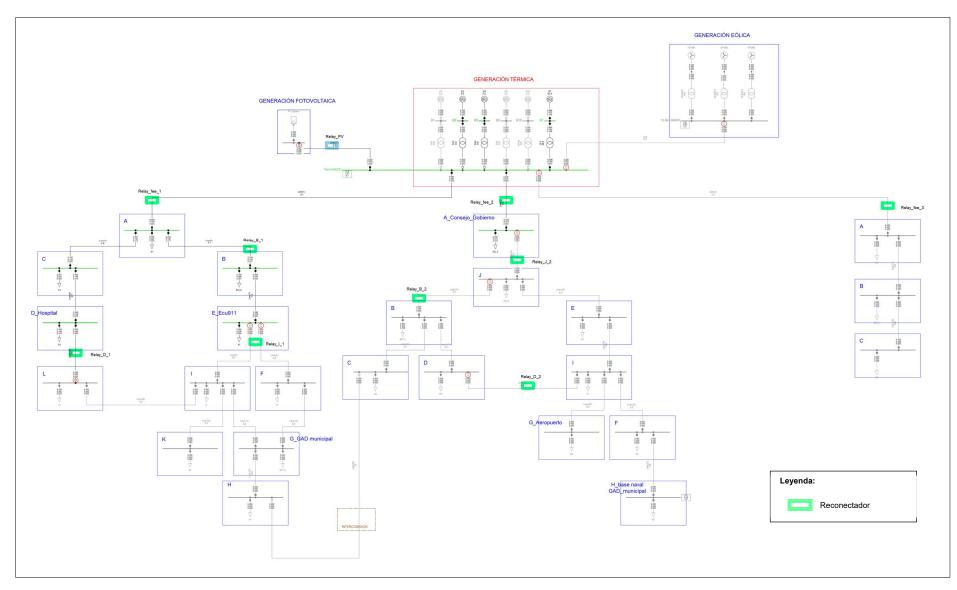

Anexo 4: Gobernador de turbina IEEE-TGOV1.

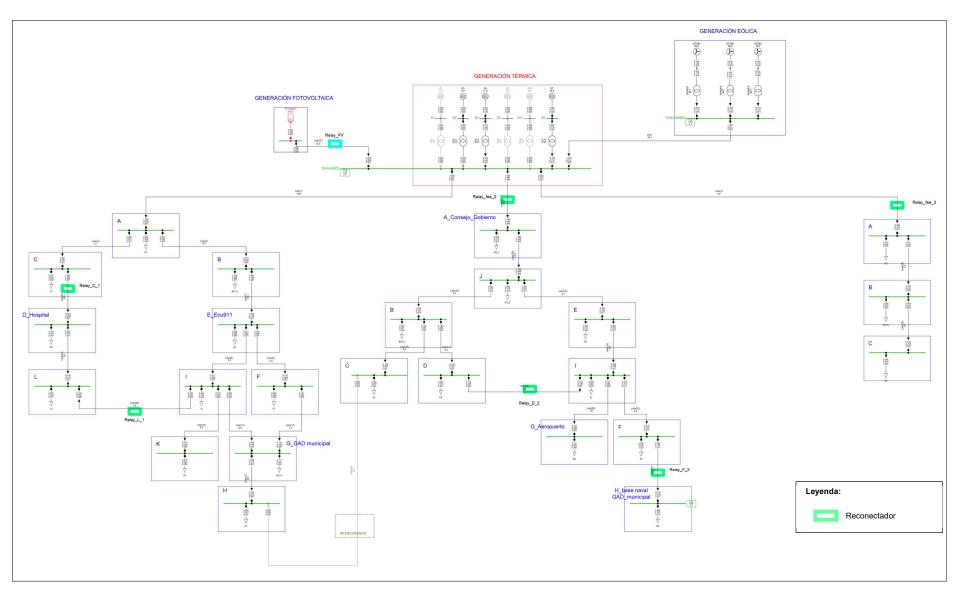
Anexo 5: Ventanas de configuración de controladores del generador tipo SKL.

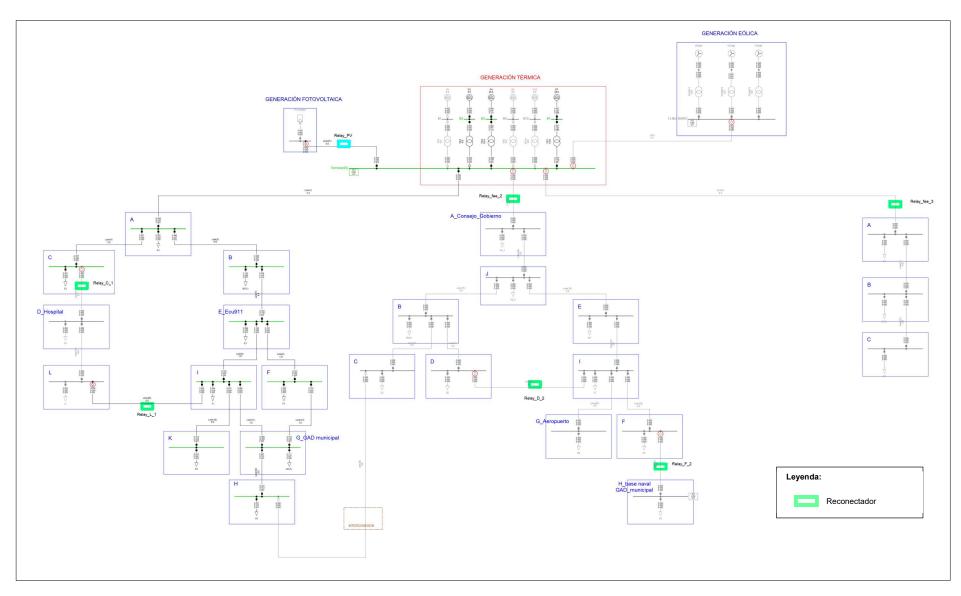

Anexo 6: Ventanas de configuración de controladores del generador tipo CATERPILLAR.

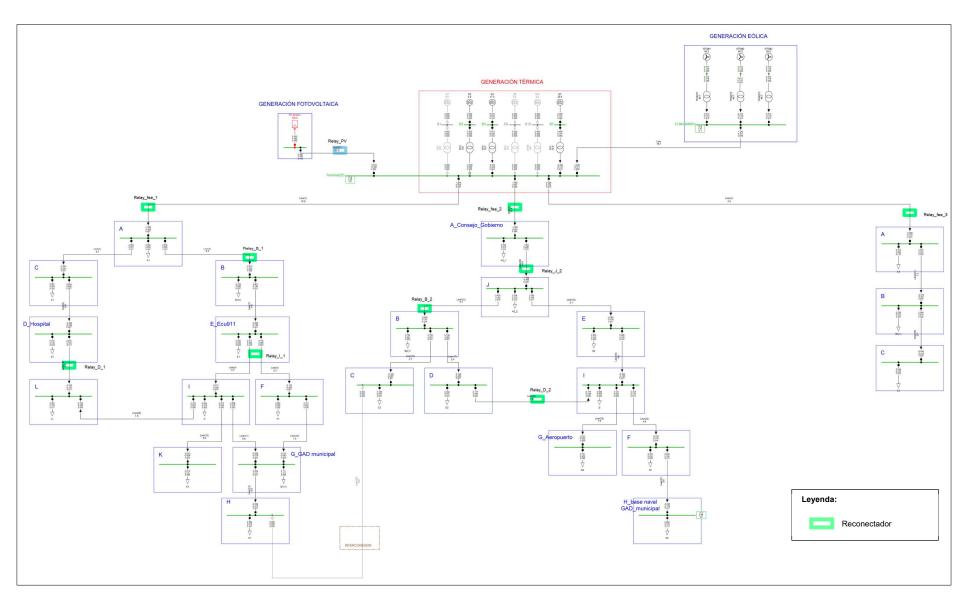

Anexo 7: Estructura del controlador modelo SYM_FRAME_NO_DROOP.

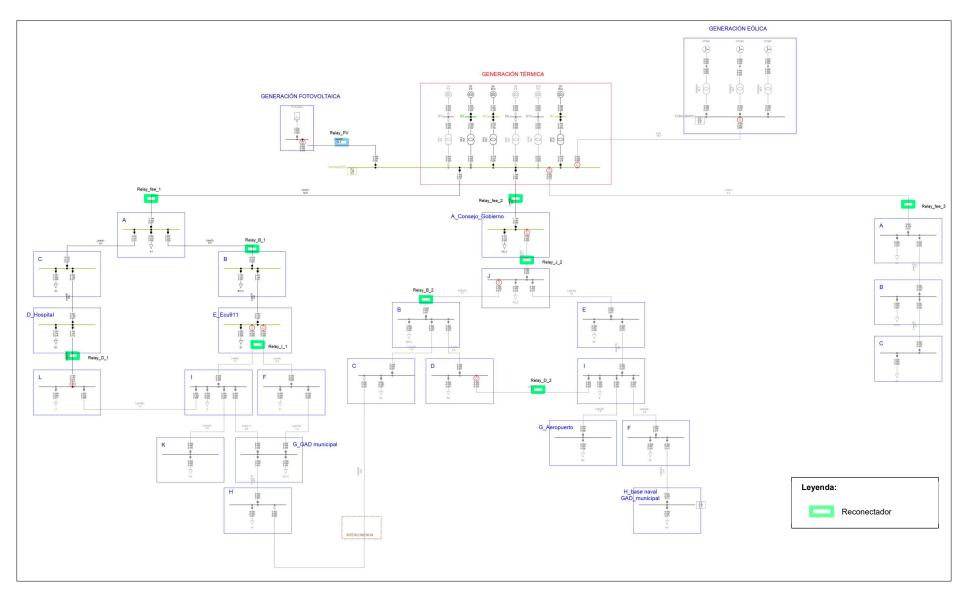

Anexo 8: Diagrama del sistema de distribución de la isla San Cristóbal.

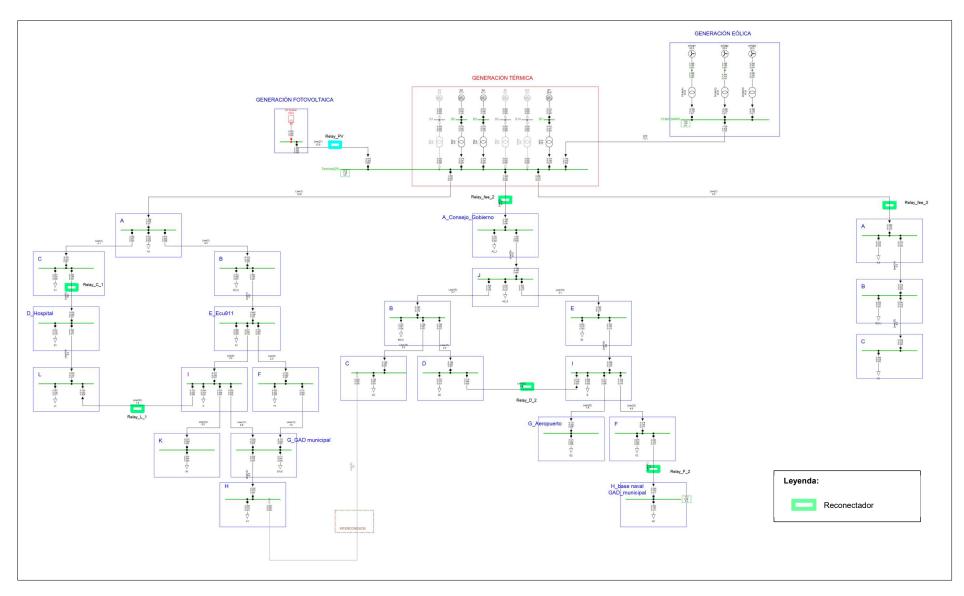

Anexo 9: Escenario 1. Diagrama con configuración actual de reconectadores en condiciones nominales.

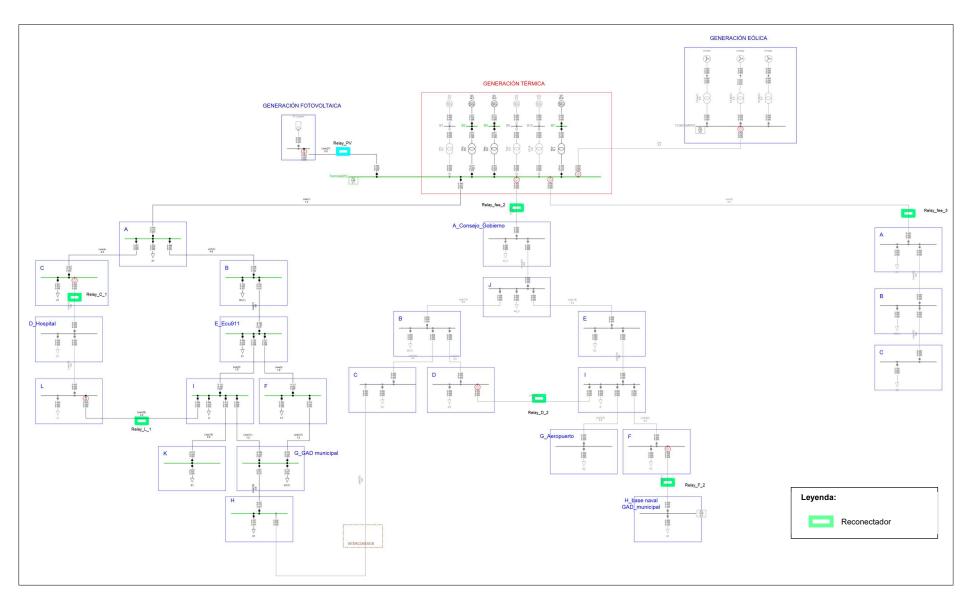

Anexo 10: Escenario 1. Diagrama con configuración actual de reconectadores después del alivio de carga.

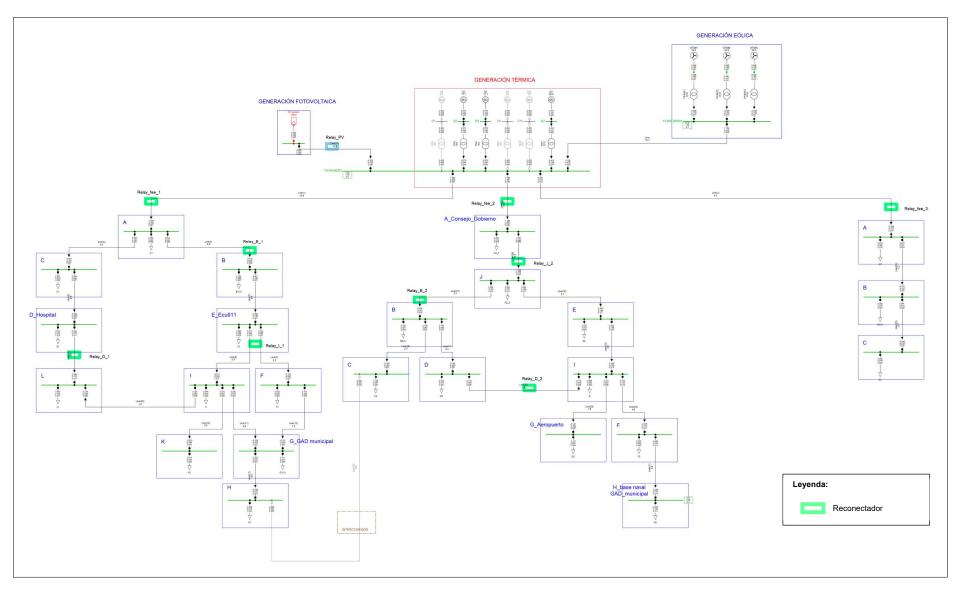

Anexo 11: Escenario 1. Diagrama con configuración propuesta de reconectadores en condiciones nominales.

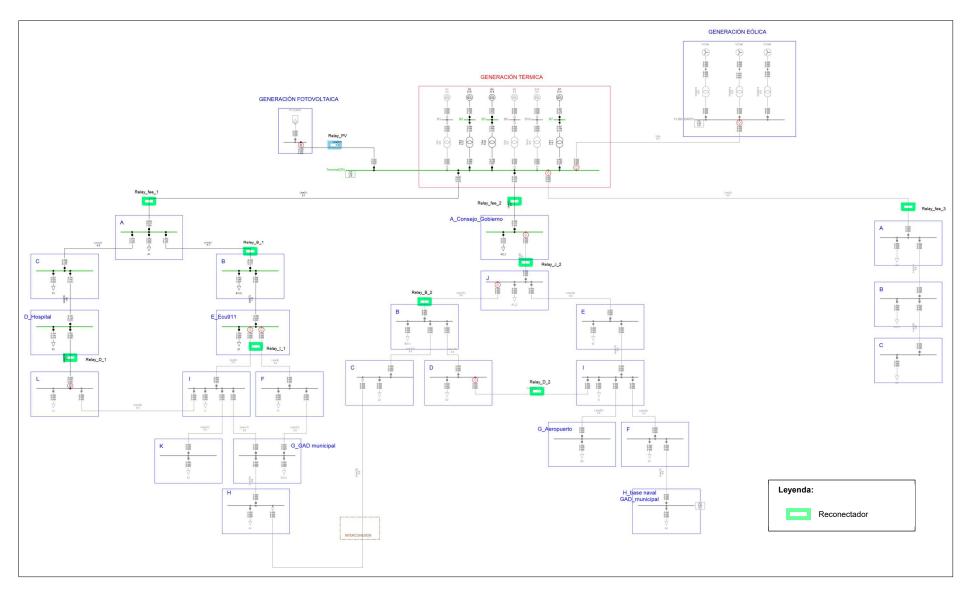

Anexo 12: Escenario 1. Diagrama con configuración propuesta de reconectadores después del alivio de carga.


Anexo 13: Escenario 2. Diagrama con configuración actual de reconectadores en condiciones nominales.


Anexo 14: Escenario 2. Diagrama con configuración actual de reconectadores después del alivio de carga.


Anexo 15: Escenario 2. Diagrama con configuración propuesta de reconectadores en condiciones nominales.


Anexo 16: Escenario 2. Diagrama con configuración propuesta de reconectadores después del alivio de carga.


Anexo 17: Escenario 3. Diagrama con configuración actual de reconectadores en condiciones nominales.

Anexo 18: Escenario 3. Diagrama con configuración actual de reconectadores después del alivio de carga.

Anexo 19: Escenario 3. Diagrama con configuración propuesta de reconectadores en condiciones nominales.

Anexo 20: Escenario 3. Diagrama con configuración propuesta de reconectadores después del alivio de carga.

Anexo 21: Detalle del resumen de cargas del Alimentador 19SCB10T01. [14]

Sector Urbano				Carga	_		Carga			Carga	
San Cristóbal A	,			Α	/,	54	В	30,1	16	С	18,85
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens pr	im	Tens sec (kVLL)
ALIM-19SCB10T01	146024_MTA	1A25T	MTA_S_146024	MTA_L_146024	Α	Monofásico		25,00		13,80	0,24
					Tot Fase	A	25,00	Carga e	qui A	7,54	
ALIM-19SCB10T01	146020_MTA	1A37.5T	MTA_S_146020	MTA_L_146020	В	Monofásico		37,50		13,80	0,24
ALIM-19SCB10T01	146022_MTA	1A25T	MTA_S_146022	MTA_L_146022	В	Monofásico		25,00		13,80	0,24
ALIM-19SCB10T01	146032_MTA	1A37.5T	MTA_S_146032	MTA_L_146032	В	Monofásico		37,50		13,80	0,24
					Tot Fase	В	100,00	Carga e	qui B	30,16	
ALIM-19SCB10T01	146034_MTA	1A37.5T	MTA_S_146034	MTA_L_146034	С	Monofásico		37,50		13,80	0,24
ALIM-19SCB10T01	146028_MTA	1A15T	MTA_S_146028	MTA_L_146028	С	Monofásico		15,00		13,80	0,24
ALIM-19SCB10T01	146026_MTA	1A10T	MTA_S_146026	MTA_L_146026	С	Monofásico		10,00		13,80	0,24
					Tot Fase	С	62,50	Carga e	qui C	18,85	

Sector Urbano				Carga		C	arga		С	arga	
San Cristobal B				Α	96	,02	В	13,0	07	С	58,31
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prim	l	Tens sec (kVLL)
ALIM-19SCB10T01	144054_MTA	1A50T	MTA_S_144054	MTA_L_144054	Α	Monofásico		50,00		13,80	0,24
ALIM-19SCB10T01	47854_MTS	1P25T	MTS_S_47854	MTS_L_47854	Α	Monofásico		25,00		13,80	0,24

ALIM-19SCB10T01	41377_MTS	1P37.5T	MTS_S_41377	MTS_L_41377	Α	Monofásico	1	37,50	13,80	0,24
ALIM-19SCB10T01	144133_MTA	1A37.5T	MTA_S_144133	MTA_L_144133	Α	Monofásico)	37,50	13,80	0,24
ALIM-19SCB10T01	144121_MTA	1A75T	MTA_S_144121	MTA_L_144121	Α	Monofásico	1	75,00	13,80	0,24
ALIM-19SCB10T01	144135_MTA	1A50T	MTA_S_144135	MTA_L_144135	Α	Monofásico)	50,00	13,80	0,24
					Tot Fase A	A	275,00	Carga equi A	82,95	
ALIM-19SCB10T01	40805_MTS	3P30T	MTS_S_40805	MTS_L_40805	ABC	Trifásico a columnas		30,00	13,80	0,22
ALIM 10CCD10T01	410C2 MTC	2DEAT	MTC C 410C2	MTC 1 410C2	ADC	Trifásico a		F0.00	12.00	0.22
ALIM-19SCB10T01	41062_MTS	3P50T	MTS_S_41062	MTS_L_41062	ABC	columnas Trifásico a		50,00	13,80	0,22
ALIM-19SCB10T01	144685_MTA	3C50T	MTA_S_144685	MTA_L_144685	ABC	columnas		50,00	13,80	0,22
				•	Tot trifase	e	130,00	Carga trifase	39,21	
ALIM-19SCB10T01	144052_MTA	1A25T	MTA_S_144052	MTA_L_144052	С	Monofásico)	25,00	13,80	0,24
ALIM-19SCB10T01	168904_MTA	1A50T	MTA_S_168904	MTA_L_168904	С	Monofásico)	50,00	13,80	0,24
ALIM-19SCB10T01	169332_MTA	1A37.5T	MTA_S_169332	MTA_L_169332	С	Monofásico)	37,50	13,80	0,24
ALIM-19SCB10T01	144046_MTA	1A37.5T	MTA_S_144046	MTA_L_144046	С	Monofásico)	37,50	13,80	0,24
				•	Tot Fase (3	150,00	Carga equi C	45,24	

Sector Urbano				Carga		1	Carga		(Carga	
San Cristobal C				Α	0,	.00	В	7,5	4	С	0,00
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prin	n	Tens sec (kVLL)
ALIM-19SCB10T01	40421_MTS	1P25T	MTS_S_40421	MTS_L_40421	В	Monofásico		25,00		13,80	0,24
					Tot Fase	В	25,00	Carga e	qui B	7,54	

Sector Urbano				Carga			Carga			Carga	
San Cristobal D		,		Α	117	7,63	В	120,	65	С	131,96
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prii	m	Tens sec (kVLL)
ALIM-19SCB10T01	144493_MTA	1A15T	MTA_S_144493	MTA_L_144493	Α	Monofásico)	15		13,8	0,24
ALIM-19SCB10T01	144681_MTA	1A25T	MTA_S_144681	MTA_L_144681	Α	Monofásico)	25		13,8	0,24
ALIM-19SCB10T01	144714_MTA	1A25T	MTA_S_144714	MTA_L_144714	Α	Monofásico)	25		13,8	0,24
					Tot Fase	A	65,00	Carga e	qui A	19,61	
ALIM-19SCB10T01	40816_MTS	3O400T	MTS_S_40816	MTS_L_40816	ABC	Trifásico a columnas Trifásico a		400		13,8	0,22
ALIM-19SCB10T01	40812_MTS	30500T	MTS_S_40812	MTS_L_40812	ABC	columnas Trifásico a		500		13,8	0,22
ALIM-19SCB10T01	40815_MTS	3075T	MTS_S_40815	MTS_L_40815	ABC	columnas		75		13,8	0,22
				Te	ot Fase A	BC	975,00	Carga e	qui	294,08	
				•			373700	,,,,,		25 1,00	
ALIM-19SCB10T01	144683_MTA	1A37.5T	MTA_S_144683	MTA_L_144683	В	Monofásico)	37,5		13,8	0,24
ALIM-19SCB10T01	168263_MTA	1A37.5T	MTA_S_168263	MTA_L_168263	В	Monofásico)	37,5		13,8	0,24
				•	Tot Fase	В	75,00	Carga e	qui B	22,62	
ALIM-19SCB10T01	144716_MTA	1A37.5T	MTA_S_144716	MTA_L_144716	С	Monofásico)	37,5		13,8	0,24
ALIM-19SCB10T01	144496_MTA	1A37.5T	MTA_S_144496	MTA_L_144496	С	Monofásico)	37,5		13,8	0,24
ALIM-19SCB10T01	144677_MTA	1A37.5T	MTA_S_144677	MTA_L_144677	С	Monofásico)	37,5		13,8	0,24
					Tot Fase	С	112,50	Carga e	qui C	33,93	

Sector Urbano				Carga			Carga		Carga	
San Cristobal L				A	113	3,61	В	136,	23 C	149,05
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T01	47844_MTS	1P75T	MTS_S_47844	MTS_L_47844	Α	Monofásico)	75	13,8	0,24
ALIM-19SCB10T01	47846_MTS	1P50T	MTS_S_47846	MTS_L_47846	Α	Monofásico)	50	13,8	0,24
ALIM-19SCB10T01	40759_MTS	1P25T	MTS_S_40759	MTS_L_40759	Α	Monofásico)	25	13,8	0,24
ALIM-19SCB10T01	145337_MTA	1A37.5T	MTA_S_145337	MTA_L_145337	Α	Monofásico)	37,5	13,8	0,24
ALIM-19SCB10T01	145025_MTA	1A37.5T	MTA_S_145025	MTA_L_145025	Α	Monofásico)	37,5	13,8	0,24
					Tot Fase	A	225,00	Carga ed	qui A 67,86	
ALIM-19SCB10T01	144044_MTA	3C50T	MTA_S_144044	MTA_L_144044	ABC	Trifásico a columnas Trifásico a		50	13,8	0,22
ALIM-19SCB10T01	145012_MTA	3C50T	MTA_S_145012	MTA_L_145012	ABC	columnas		50	13,8	0,22
ALIM-19SCB10T01	145098_MTA	3C45T	MTA_S_145098	MTA_L_145098	ABC	Trifásico a columnas Trifásico a		45	13,8	0,24
ALIM-19SCB10T01	145352_MTA	3C50T	MTA_S_145352	MTA_L_145352	ABC	columnas		50	13,8	0,22
ALIM-19SCB10T01	145056_MTA	1P10T	MTA_S_145056	MTA_L_145056	ABC	Monofásico)	10	13,8	0,24
ALIM-19SCB10T01	40742_MTS	3P45T	MTS_S_40742	MTS_L_40742	ABC	Trifásico a columnas Trifásico a		45	13,8	0,22
ALIM-19SCB10T01	40744_MTS	3050T	MTS_S_40744	MTS_L_40744	ABC	columnas		50	13,8	0,22
ALIM-19SCB10T01	40773_MTS	3P30T	MTS_S_40773	MTS_L_40773	ABC	Trifásico a columnas Trifásico a		30	13,8	0,22
ALIM-19SCB10T01	147077_MTA	3050T	MTA_S_147077	MTA_L_147077	ABC	columnas		50	13,8	0,22
ALIM-19SCB10T01	147076_MTA	3P75T	MTA_S_147076	MTA_L_147076	ABC	Trifásico a columnas		75	13,8	0,22
				Te	ot Fase A	ВС	455.00	Carga ed	qui 137,24	
							,	-	- /	
ALIM-19SCB10T01	144993_MTA	1A37.5T	MTA_S_144993	MTA_L_144993	В	Monofásico	1	37,5	13,8	0,24
ALIM-19SCB10T01	145029_MTA	1A50T	MTA_S_145029	MTA_L_145029	В	Monofásico	1	50	13,8	0,24
				75						

ALIM-19SCB10T01	47824_MTS	1P50T	MTS_S_47824	MTS_L_47824	В	Monofásico	50	13,8	0,24
ALIM-19SCB10T01	47848_MTS	1P50T	MTS_S_47848	MTS_L_47848	В	Monofásico	50	13,8	0,24
ALIM-19SCB10T01	145058_MTA	1A25T	MTA_S_145058	MTA_L_145058	В	Monofásico	25	13,8	0,24
ALIM-19SCB10T01	145111_MTA	1A50T	MTA_S_145111	MTA_L_145111	В	Monofásico	50	13,8	0,24
ALIM-19SCB10T01	144718_MTA	1A37.5T	MTA_S_144718	MTA_L_144718	В	Monofásico	37,5	13,8	0,24
				•	Tot Fase I	30	0,00 Carga equi B	90,49	
ALIM-19SCB10T01	145027_MTA	1A37.5T	MTA_S_145027	MTA_L_145027	С	Monofásico	37,5	13,8	0,24
ALIM-19SCB10T01	40738_MTS	1P25T	MTS_S_40738	MTS_L_40738	С	Monofásico	25	13,8	0,24
ALIM-19SCB10T01	145046_MTA	1A15T	MTA_S_145046	MTA_L_145046	С	Monofásico	15	13,8	0,24
ALIM-19SCB10T01	40755_MTS	1P25T	MTS_S_40755	MTS_L_40755	С	Monofásico	25	13,8	0,24
ALIM-19SCB10T01	47842_MTS	1P50T	MTS_S_47842	MTS_L_47842	С	Monofásico	50	13,8	0,24
ALIM-19SCB10T01	145042_MTA	1A25T	MTA_S_145042	MTA_L_145042	С	Monofásico	25	13,8	0,24
ALIM-19SCB10T01	145117_MTA	1A15T	MTA_S_145117	MTA_L_145117	С	Monofásico	15	13,8	0,24
ALIM-19SCB10T01	145031_MTA	1A25T	MTA_S_145031	MTA_L_145031	С	Monofásico	25	13,8	0,24
ALIM-19SCB10T01	145038_MTA	1A50T	MTA_S_145038	MTA_L_145038	С	Monofásico	50	13,8	0,24
ALIM-19SCB10T01	145023_MTA	1A37.5T	MTA_S_145023	MTA_L_145023	С	Monofásico	37,5	13,8	0,24
ALIM-19SCB10T01	41061_MTS	1P37.5T	MTS_S_41061	MTS_L_41061	С	Monofásico	37,5	13,8	0,24
				•	Tot Fase (34	2,50 Carga equi C	103,31	

Sector Urbano				Carga			Carga		(Carga	
San Cristobal E				Α	40	,22	В	25,3	14	С	32,68
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prir	n	Tens sec (kVLL)
ALIM-19SCB10T01	145021_MTA	1A50T	MTA_S_145021	MTA_L_145021	Α	Monofásico		50,00		13,80	0,24
					Tot Fase	A	50,00	Carga e	qui A	15,08	

				•	Tot Fase	С	25,00	Carga equi C	7,54	
ALIM-19SCB10T0	1 144674_MTA	1A25T	MTA_S_144674	MTA_L_144674	С	Monofásico		25,00	13,80	0,24
				To	ot Fase A	ВС	250,00	Carga equi ABC	75,41	
ALIM-19SCB10T0	1 169369_MTA	3C50T	MTA_S_169369	MTA_L_169369	ABC	Trifásico a columnas		50,00	13,80	0,22
ALIM-19SCB10T0	1 41098_MTS	3P200T	MTS_S_41098	MTS_L_41098	ABC	Trifásico a columnas		200,00	13,80	0,22

Sector Urbano San Cristobal F				Carga A	12	,57	Carga B	20,1		Carga C	23,88
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	_	Cap Nom (kVA)	Tens pri		Tens sec (kVLL)
ALIM-19SCB10T01	41112_MTS	3P75T	MTS_S_41112	MTS_L_41112	ABC	Trifásico a columnas Trifásico a		75,00		13,80	0,22
ALIM-19SCB10T01	41101_MTS	3P50T	MTS_S_41101	MTS_L_41101	ABC	columnas		50,00 Carga ed	qui	13,80	0,22
				To	ot Fase A	ВС	125,00	ABC		37,70	
ALIM-19SCB10T01	144710_MTA	1A25T	MTA_S_144710	MTA_L_144710	В	Monofásico		25,00		13,80	0,24
				•	Tot Fase	В	25,00	Carga ed	qui B	7,54	
ALIM-19SCB10T01	169371_MTA	1A37.5T	MTA_S_169371	MTA_L_169371	С	Monofásico		37,50		13,80	0,24
				-	Tot Fase	С	37,50	Carga ed	qui C	11,31	

Sector Urbano	Carga		Carga		Carga	
San Cristobal G	Α	20,11	В	80,43	С	20,11

Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T01	47780_MTS	3P150T	MTS_S_47780	MTS_L_47780	ABC	Trifásico a columnas Trifásico a	150,00	13,80	0,21
ALIM-19SCB10T01	145313_MTA	3C50T	MTA_S_145313	MTA_L_145313	ABC	columnas	50,00	13,80	0,22
				To	ot Fase A	BC 200,00	Carga ed ABC	qui 60,32	
ALIM-19SCB10T01	47782_MTS	1P50T	MTS_S_47782	MTS_L_47782	В	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T01	47784_MTS	1P50T	MTS_S_47784	MTS_L_47784	В	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T01	47790_MTS	1P37.5T	MTS_S_47790	MTS_L_47790	В	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T01	41091_MTS	1P37.5T	MTS_S_41091	MTS_L_41091	В	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T01	47792_MTS	1P25T	MTS_S_47792	MTS_L_47792	В	Monofásico	25,00	13,80	0,24
				•	Tot Fase	B 200,00	Carga ed	qui B 60,32	

Sector Urbano San Cristobal H				Carga A	20	,11	Carga B	5,0		Carga C	5,03
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prii	m	Tens sec (kVLL)
ALIM-19SCB10T01	144059_MTA	1A50T	MTA_S_144059	MTA_L_144059	Α	Monofásico		50,00		13,80	0,24
				-	Tot Fase	A	50,00	Carga e	qui A	15,08	
ALIM-19SCB10T01	144040_MTA	3C50T	MTA_S_144040	MTA_L_144040	ABC	Trifásico a columnas		50,00	i	13,80	0,22
				To	ot Fase A	ВС	50,00	Carga e	qui	15,08	

Sector Urbano	Carga		Carga		Carga	
San Cristobal I	Α	7,54	В	22,62	С	18,10

Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prim		Tens sec (kVLL)
ALIM-19SCB10T01	13442_MTS	3P75T	MTS_S_13442	MTS_L_13442	ABC ot Fase Al	Trifásico a columnas	75,00	75,00 Carga ed ABC	qui	13,80 22,62	0,22
ALIM-19SCB10T01	144687_MTA	1A50T	MTA_S_144687	MTA_L_144687	B Tot Fase I	Monofásico B		50,00		13,80 15,08	0,24
ALIM-19SCB10T01 ALIM-19SCB10T01	145059_MTA 145335_MTA		MTA_S_145059 MTA_S_145335	MTA_L_145059 MTA_L_145335		Monofásico Monofásico		25,00 10,00		13,80 13,80	0,24 0,24
					Tot Fase (С	35,00	Carga ed	qui C	10,56	

Sector Urbano San Cristobal K (Carga no la linea)				Carga A	0,	,00	Carga B	0,0		Carga C	11,31
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo		Cap Nom (kVA)	Tens prir	n	Tens sec (kVLL)
ALIM-19SCB10T01	40737_MTS	1P37.5T	MTS_S_40737	MTS_L_40737	С	Monofásico		37,50		13,80	0,24
					Tot Fase	С	37,50	Carga e	qui C	11,31	

Anexo 22: Detalle del resumen de cargas del Alimentador 19SCB10T02. [14]

Sector Urbano									
San Cristobal A		1		Carga A	18,31	Carga B	4,58	Carga C	14,88
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	41697_MTS	1050T	MTS_S_41697	MTS_L_41697	Α	Monofásico	50,00	13,80	0,24
					•	Tot Fase A	50,00	Carga equi A	13,74
ALIM-19SCB10T02	3204_MTS	3P50T	MTS_S_3204	MTS_L_3204	ABC	Trifásico a columnas	50,00	13,80 Carga equi	0,22
					T	ot Fase ABC	50,00	ABC	13,74
ALIM-19SCB10T02	146030_MTA	1A37.5T	MTA_S_146030	MTA_L_146030	С	Monofásico	37,50	13,80	0,24
						Tot Fase C	37,50	Carga equi C	10,30
Sector Urbano					Carga		Carga		Carga
					Carga		Carga		Carga
San Cristobal J		1			A	122,70	B	90,43	Carga
	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	_	122,70 Tipo	_	90,43 Tens prim (kVLL)	_
Nombre red ALIM-19SCB10T02			Nodo origen MTS_S_17089	Nodo destino MTS_L_17089	A		B Cap Nom	Tens prim	Tens sec
Nombre red ALIM-19SCB10T02	tramo	equipo 1P75T		MTS_L_17089	A Fase	Tipo	B Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
Nombre red ALIM-19SCB10T02 ALIM-19SCB10T02	tramo 17089_MTS	equipo 1P75T 1A25T	MTS_S_17089	MTS_L_17089 MTA_L_144403	A Fase A A	Tipo Monofásico	Cap Nom (kVA) 75,00	Tens prim (kVLL)	Tens sec (kVLL)
Nombre red ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02	tramo 17089_MTS 144403_MTA	equipo 1P75T 1A25T 1A25T	MTS_S_17089 MTA_S_144403 MTA_S_144434	MTS_L_17089 MTA_L_144403	Fase A A	Tipo Monofásico Monofásico	B Cap Nom (kVA) 75,00 25,00	Tens prim (kVLL) 13,80 13,80	C Tens sec (kVLL) 0,24 0,24
Nombre red ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02	tramo 17089_MTS 144403_MTA 144434_MTA	equipo 1P75T 1A25T 1A25T 1A37.5T	MTS_S_17089 MTA_S_144403 MTA_S_144434	MTS_L_17089 MTA_L_144403 MTA_L_144434 MTA_L_144124	Fase A A A	Tipo Monofásico Monofásico Monofásico	B Cap Nom (kVA) 75,00 25,00	Tens prim (kVLL) 13,80 13,80 13,80	Tens sec (kVLL) 0,24 0,24 0,24
Nombre red ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02	tramo 17089_MTS 144403_MTA 144434_MTA 144124_MTA	equipo 1P75T 1A25T 1A25T 1A37.5T	MTS_S_17089 MTA_S_144403 MTA_S_144434 MTA_S_144124	MTS_L_17089 MTA_L_144403 MTA_L_144434 MTA_L_144124 MTA_L_144401	Fase A A A	Tipo Monofásico Monofásico Monofásico Monofásico	B Cap Nom (kVA) 75,00 25,00 25,00 37,50	Tens prim (kVLL) 13,80 13,80 13,80 13,80	C Tens sec (kVLL) 0,24 0,24 0,24
Nombre red ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02	tramo 17089_MTS 144403_MTA 144434_MTA 144124_MTA 144401_MTA	equipo 1P75T 1A25T 1A25T 1A37.5T 1A25T 1P25T	MTS_S_17089 MTA_S_144403 MTA_S_144434 MTA_S_144124 MTA_S_144401	MTS_L_17089 MTA_L_144403 MTA_L_144434 MTA_L_144124 MTA_L_144401 MTS_L_39817	Fase A A A A A	Tipo Monofásico Monofásico Monofásico Monofásico Monofásico	B Cap Nom (kVA) 75,00 25,00 25,00 37,50 25,00	Tens prim (kVLL) 13,80 13,80 13,80 13,80 13,80 13,80	C Tens sec (kVLL) 0,24 0,24 0,24 0,24 0,24
Nombre red ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02 ALIM-19SCB10T02	tramo 17089_MTS 144403_MTA 144434_MTA 144124_MTA 144401_MTA 39817_MTS	equipo 1P75T 1A25T 1A25T 1A37.5T 1A25T 1P25T 1A37.5T	MTS_S_17089 MTA_S_144403 MTA_S_144434 MTA_S_144124 MTA_S_144401 MTS_S_39817 MTA_S_144129	MTS_L_17089 MTA_L_144403 MTA_L_144434 MTA_L_144124 MTA_L_144401 MTS_L_39817	Fase A A A A A A	Tipo Monofásico Monofásico Monofásico Monofásico Monofásico Monofásico	B Cap Nom (kVA) 75,00 25,00 25,00 25,00 25,00	Tens prim (kVLL) 13,80 13,80 13,80 13,80 13,80 13,80 13,80	C Tens sec (kVLL) 0,24 0,24 0,24 0,24 0,24

ALIM-19SCB10T02	144360_MTA	1A50T	MTA_S_144360	MTA_L_144360	Α	Monofásico	50,00	13,80	0,24
						Tot Fase A	375,00	Carga equi A	103,02
						- 15/			
ALIM-19SCB10T02	40098_MTS	3015T	MTS_S_40098	MTS_L_40098	ABC	Trifásico a columnas	15,00	13,80	0,22
ALIM-19SCB10T02	3523 MTS	3I150T	MTS S 3523	MTS L 3523	ABC	Trifásico a columnas	150,00	13,80	0,24
ALIM 1930B10102	3323_1113		1113_3_323	M15_L_5525	ADC	Trifásico a	•	13,00	·
ALIM-19SCB10T02	144458_MTA	3C50T	MTA_S_144458	MTA_L_144458	ABC	columnas	50,00	13,80 Carga equi	0,22
						Tot Fase ABC	215,00		59,06
ALIM-19SCB10T02	144407_MTA	1A25T	MTA_S_144407	MTA_L_144407	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144239_MTA	1A37.5T	MTA_S_144239	MTA_L_144239	В	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T02	144409_MTA	1A25T	MTA_S_144409	MTA_L_144409	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144232_MTA	1A50T	MTA_S_144232	MTA_L_144232	В	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	144127_MTA	1A25T	MTA_S_144127	MTA_L_144127	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144358_MTA	1A15T	MTA_S_144358	MTA_L_144358	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T02	144472_MTA	1A25T	MTA_S_144472	MTA_L_144472	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144355_MTA	1A25T	MTA_S_144355	MTA_L_144355	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144397_MTA	1A15T	MTA_S_144397	MTA_L_144397	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T02	144399_MTA	1A15T	MTA_S_144399	MTA_L_144399	В	Monofásico	15,00	13,80	0,24
						Tot Fase B	257,50	Carga equi B	70,74
ALIM-19SCB10T02	144389_MTA	1A25T	MTA_S_144389	MTA_L_144389	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	39820_MTS	1P37.5T	MTS_S_39820	MTS_L_39820	С	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T02	144353_MTA	1A25T	MTA_S_144353	MTA_L_144353	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144405_MTA	1A37.5T	MTA_S_144405	MTA_L_144405	С	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T02	144211_MTA	1A50T	MTA_S_144211	MTA_L_144211	С	Monofásico	50,00	13,80	0,24
						Tot Fase C	175,00	Carga equi C	48,07

Sector Urbano					Carga		Carga		Carga
San Cristobal B					Α	32,05	В	38,92	C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	39819_MTS	1P25T	MTS_S_39819	MTS_L_39819	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144137_MTA	1A50T	MTA_S_144137	MTA_L_144137	Α	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	41111_MTS	1P25T	MTS_S_41111	MTS_L_41111	Α	Monofásico	25,00	13,80	0,24
						Tot Fase A	100,00	Carga equi A	27,47
ALIM-19SCB10T02	144071_MTA	3C50T	MTA_S_144071	MTA_L_144071	ABC	Trifásico a columnas	50,00	13,80 Carga egui	0,22
					Т	ot Fase ABC	50,00		13,74
ALIM-19SCB10T02	39821_MTS	1P75T	MTS_S_39821	MTS_L_39821	В	Monofásico	75,00	13,80	0,24
ALIM-19SCB10T02	144207_MTA	1A25T	MTA_S_144207	MTA_L_144207	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	41379_MTS	1P25T	MTS_S_41379	MTS_L_41379	В	Monofásico	25,00	13,80	0,24
						Tot Fase B	125,00	Carga equi B	34,34
ALIM-19SCB10T02	144065_MTA	1A50T	MTA_S_144065	MTA_L_144065	С	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	144411_MTA	1A25T	MTA_S_144411	MTA_L_144411	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	157049_MTA	1A50T	MTA_S_157049	MTA_L_157049	С	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	144050_MTA	1A50T	MTA_S_144050	MTA_L_144050	С	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	40097_MTS	1P25T	MTS_S_40097	MTS_L_40097	С	Monofásico	25,00	13,80	0,24
						Tot Fase C	200,00	Carga equi C	54,94

Sector Urbano San Cristobal C					Carga A	48,07	Carga B	75,55	Carga C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	47804_MTS	1P50T	MTS_S_47804	MTS_L_47804	Α	Monofásico	50,00	13,80	0,24
						Tot Fase A	50,00	Carga equi A	13,74
						Trifásico a			
ALIM-19SCB10T02	145315_MTA	3C50T	MTA_S_145315	MTA_L_145315	ABC	columnas Trifásico a	50,00	13,80	0,22
ALIM-19SCB10T02	40807_MTS	3P75T	MTS_S_40807	MTS_L_40807	ABC	columnas	75,00	13,80	0,22
ALIM-19SCB10T02	47798_MTS	3P150T	MTS_S_47798	MTS_L_47798	ABC	Trifásico a columnas	150,00	13,80	0,21
ALIM-19SCB10T02	47796_MTS	3P100T	MTS_S_47796	MTS_L_47796	ABC	Trifásico a columnas	100,00	13,80	0,22
					٦	Tot Fase ABC	375,00	Carga equi ABC	103,02
ALIM-19SCB10T02	41093_MTS	1P50T	MTS_S_41093	MTS_L_41093	В	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	47794 MTS	1050T	MTS_S_47794	MTS_L_47794	В	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	47806 MTS	1P50T	MTS_S_47806	MTS_L_47806	В	Monofásico	50,00	13,80	0,24
ALIN 133CB10102	17000_1113	11 301	1113_3_17000	1113_L_17000	5	Tot Fase B	150,00	•	41,21
						TOL FASE D	130,00	carya equi b	71,21
ALIM-19SCB10T02	40804_MTS	1P25T	MTS_S_40804	MTS_L_40804	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	145359_MTA	1A25T	MTA_S_145359	MTA_L_145359	С	Monofásico	25,00	13,80	0,24
						Tot Fase C	50,00	Carga equi C	13,74

Sector Urbano San Cristobal D					Carga A	4,58	Carga B	4,58	Carga C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim	Tens sec (kVLL)
ALIM-19SCB10T02	144069_MTA	3C50T	MTA_S_144069	MTA_L_144069	ABC	Trifásico a columnas	50,00	13,80 Carga equi	0,22
ALIM-19SCB10T02	39782 MTS	1P37.5T	MTS S 39782	MTS L 39782	C	ot Fase ABC Monofásico	50,00 37,50	13,80	13,74 0,24
ALIM-19SCB10T02	39815_MTS	1P37.5T	MTS_S_39815	MTS_L_39815	С	Monofásico Tot Fase C	37,50 37,50 75,00	13,80	0,24

Sector Urbano San Cristobal E					Carga A	10,30	Carga B	27,47	Carga C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	144131_MTA	1A37.5T	MTA_S_144131	MTA_L_144131	Α	Monofásico	37,50	13,80	0,24
						Tot Fase A	37,50	Carga equi A	10,30
ALIM-19SCB10T02	39818_MTS	10100T	MTS_S_39818	MTS_L_39818	В	Monofásico Tot Fase B	100,00 100,00	13,80 Carga equi B	0,24 27,47

Sector Urbano San Cristobal F					Carga	62 OF	Carga	14 00	Carga
Sali Cristopai F					Α	62,95	В	14,88	С
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	145325_MTA	1A25T	MTA_S_145325	MTA_L_145325 84	Α	Monofásico	25,00	13,80	0,24

ALIM-19SCB10T02	41118_MTS	1P25T	MTS_S_41118	MTS_L_41118	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	41110_MTS	1P25T	MTS_S_41110	MTS_L_41110	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	41378_MTS	1P25T	MTS_S_41378	MTS_L_41378	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	145367_MTA	1A50T	MTA_S_145367	MTA_L_145367	Α	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T02	41115_MTS	1P25T	MTS_S_41115	MTS_L_41115	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	145662_MTA	1A37.5T	MTA_S_145662	MTA_L_145662	Α	Monofásico	37,50	13,80	0,24
						Tot Fase A	212,50	Carga equi A	58,38
ALIM-19SCB10T02	40802_MTS	3P50T	MTS_S_40802	MTS_L_40802	ABC	Trifásico a columnas Tot Fase ABC	50,00 50,00	13,80 Carga equi ABC	0,22 13,74
ALIM-19SCB10T02	145370_MTA	1A37.5T	MTA_S_145370	MTA_L_145370	В	Monofásico	37,50	13,80	0,24
						Tot Fase B	37,50	Carga equi B	10,30

Sector Urbano San Cristobal G					Carga A	38,46	Carga B	27,47	Carga C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	144362_MTA	1A25T	MTA_S_144362	MTA_L_144362	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	42178_MTS	1A15T	MTS_S_42178	MTS_L_42178	Α	Monofásico	15,00	13,80	0,24
						Tot Fase A	40,00	Carga equi A	10,99
ALIM-19SCB10T02	40100_MTS	3O300T	MTS_S_40100	MTS_L_40100	ABC	Trifásico a columnas Tot Fase ABC	300,00 300,00	13,80 Carga equi ABC	0,24 82,41
ALIM-19SCB10T02	144364_MTA	1A25T	MTA_S_144364	MTA_L_144364	С	Monofásico	25,00	13,80	0,24

						Tot Fase C	140,00	Carga equi C	38,46
ALIM-19SCB10T02	47852_MTS	1P25T	MTS_S_47852	MTS_L_47852	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	144395_MTA	1A15T	MTA_S_144395	MTA_L_144395	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T02	39796_MTS	1P37.5T	MTS_S_39795	MTS_L_39796	С	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T02	39794_MTS	1P37.5T	MTS_S_39794	MTS_S_39795	С	Monofásico	37,50	13,80	0,24

Sector Urbano San Cristobal H					Carga A	114,46	Carga B	73,26	Carga C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	145645_MTA	1A25T	MTA_S_145645	MTA_L_145645	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T02	47442_MTS	1P75T	MTS_S_47442	MTS_L_47442	Α	Monofásico	75,00	13,80	0,24
ALIM-19SCB10T02	47444_MTS	1P50T	MTS_S_47444	MTS_L_47444	Α	Monofásico	50,00	13,80	0,24
						Tot Fase A	150,00	Carga equi A	41,21
ALIM-19SCB10T02 ALIM-19SCB10T02	147059_MTA 145658_MTA	3P500T 3P300T	MTA_S_147059 MTA_S_145658	MTA_L_147059 MTA_L_145658	ABC ABC	Trifásico a columnas Trifásico a columnas	500,00	13,80 13,80	0,22 0,22
						Tot Fase ABC	800,00	Carga equi ABC	219,77

Sector Urbano San Cristobal I					Carga A	0,00	Carga B	0,00	Carga C
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T02	144067_MTA	1A25T	MTA_S_144067	MTA_L_144067	С	Monofásico	25,00	13,80	0,24
						Tot Fase C	25,00	Carga equi C	6,87

Anexo 23: Detalle del resumen de cargas del Alimentador 19SCB10T03. [14]

Sector Rural San									
Cristobal 1		1	Carga A	48,224	53125	Carga B	145,72	Carga C	40,89
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T03	140992_MTA	1A25T	MTA_S_140992	MTA_L_140992	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140200_MTA	1A25T	MTA_S_140200	MTA_L_140200	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140990_MTA	1A15T	MTA_S_140990	MTA_L_140990	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141012_MTA	1A15T	MTA_S_141012	MTA_L_141012	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141014_MTA	1A5T	MTA_S_141014	MTA_L_141014	Α	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	141016_MTA	1A5T	MTA_S_141016	MTA_L_141016	Α	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	161525_MTA	1A5T	MTA_S_161525	MTA_L_161525	Α	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	141018_MTA	1A10T	MTA_S_141018	MTA_L_141018	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140998_MTA	1A15T	MTA_S_140998	MTA_L_140998	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	169870_MTA	1A10T	MTA_S_169870	MTA_L_169870	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141000_MTA	1A15T	MTA_S_141000	MTA_L_141000	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141002_MTA	1A15T	MTA_S_141002	MTA_L_141002	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141004_MTA	1A10T	MTA_S_141004	MTA_L_141004	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141006_MTA	1A10T	MTA_S_141006	MTA_L_141006	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141008_MTA	1A25T	MTA_S_141008	MTA_L_141008	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	141010_MTA	1A15T	MTA_S_141010	MTA_L_141010	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141044_MTA	1A50T	MTA_S_141044	MTA_L_141044	Α	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T03	140996_MTA	1A50T	MTA_S_140996	MTA_L_140996	Α	Monofásico	50,00	13,80	0,24
					Tot F	ase A	320,00	Carga equi A	44,73
ALIM-19SCB10T03	141067_MTA	3C30T	MTA_S_141067	MTA_L_141067	ABC	Trifásico a columnas	30,00	13,80	0,22

ALIM-19SCB10T03	141127_MTA 3C45T	MTA_S_141127	MTA_L_141127	ABC	Trifásico a columnas	45,00	13,80	0,24
				тот	Trifase	75,00	Carga equi 3F	10,48
ALIM-19SCB10T03	37861_MTS 1P37.5	MTS_S_37861	MTS_L_37861	В	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T03	140994_MTA 1A15T	MTA_S_140994	MTA_L_140994	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140360_MTA 1A25T	MTA_S_140360	MTA_L_140360	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140348_MTA 1A5T	MTA_S_140348	MTA_L_140348	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140362_MTA 1A15T	MTA_S_140362	MTA_L_140362	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140298_MTA 1A25T	MTA_S_140298	MTA_L_140298	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140342_MTA 1A5T	MTA_S_140342	MTA_L_140342	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140335_MTA 1A5T	MTA_S_140335	MTA_L_140335	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140951_MTA 1A5T	MTA_S_140951	MTA_L_140951	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140338_MTA 1A5T	MTA_S_140338	MTA_L_140338	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140340_MTA 1A5T	MTA_S_140340	MTA_L_140340	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140356_MTA 1A10T	MTA_S_140356	MTA_L_140356	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140371_MTA 1A15T	MTA_S_140371	MTA_L_140371	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140370_MTA 1A15T	MTA_S_140370	MTA_L_140370	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140949_MTA 1A10T	MTA_S_140949	MTA_L_140949	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140336_MTA 1A5T	MTA_S_140336	MTA_L_140336	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	141125_MTA 1A10T	MTA_S_141125	MTA_L_141125	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140969_MTA 1A10T	MTA_S_140969	MTA_L_140969	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140858_MTA 1A5T	MTA_S_140858	MTA_L_140858	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140856_MTA 1A5T	MTA_S_140856	MTA_L_140856	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140872_MTA 1A5T	MTA_S_140872	MTA_L_140872	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140870_MTA 1A10T	MTA_S_140870	MTA_L_140870	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140868_MTA 1A5T	MTA_S_140868	MTA_L_140868	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140866_MTA 1A10T	MTA_S_140866	MTA_L_140866	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140924_MTA 1A15T	MTA_S_140924	MTA_L_140924	В	Monofásico	15,00	13,80	0,24

ALIM-19SCB10T03	140864_MTA 1A5T	MTA_S_140864	MTA_L_140864	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140861_MTA 1A5T	MTA_S_140861	MTA_L_140861	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140859_MTA 1A5T	MTA_S_140859	MTA_L_140859	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140863_MTA 1A5T	MTA_S_140863	MTA_L_140863	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140947_MTA 1A5T	MTA_S_140947	MTA_L_140947	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140854_MTA 1A5T	MTA_S_140854	MTA_L_140854	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140972_MTA 1A10T	MTA_S_140972	MTA_L_140972	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140852_MTA 1A5T	MTA_S_140852	MTA_L_140852	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140850_MTA 1A5T	MTA_S_140850	MTA_L_140850	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140848_MTA 1A5T	MTA_S_140848	MTA_L_140848	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	37860_MTS 1P25T	MTS_S_37860	MTS_L_37860	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	141130_MTA 1A10T	MTA_S_141130	MTA_L_141130	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	37872_MTS 1P25T	MTS_S_37872	MTS_L_37872	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	141131_MTA 1C15T	MTA_S_141131	MTA_L_141131	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	37857_MTS 1025T	MTS_S_37857	MTS_L_37857	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140349_MTA 1A10T	MTA_S_140349	MTA_L_140349	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140327_MTA 1A5T	MTA_S_140327	MTA_L_140327	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140363_MTA 1A15T	MTA_S_140363	MTA_L_140363	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140350_MTA 1A10T	MTA_S_140350	MTA_L_140350	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	158716_MTA 1A15T	MTA_S_158716	MTA_L_158716	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140369_MTA 1A15T	MTA_S_140369	MTA_L_140369	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	152576_MTA 1A10T	MTA_S_152576	MTA_L_152576	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153202_MTA 1A10T	MTA_S_153202	MTA_L_153202	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153226_MTA 1A10T	MTA_S_153226	MTA_L_153226	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153232_MTA 1A10T	MTA_S_153232	MTA_L_153232	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153230_MTA 1A10T	MTA_S_153230	MTA_L_153230	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153234_MTA 1A10T	MTA_S_153234	MTA_L_153234	В	Monofásico	10,00	13,80	0,24

ALIM-19SCB10T03	153236_MTA 1A10T	MTA_S_153236	MTA_L_153236	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153218_MTA 1A10T	MTA_S_153218	MTA_L_153218	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140982_MTA 1A10T	MTA_S_140982	MTA_L_140982	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140967_MTA 1A50T	MTA_S_140967	MTA_L_140967	В	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T03	140963_MTA 1A15T	MTA_S_140963	MTA_L_140963	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141505_MTA 1A25T	MTA_S_141505	MTA_L_141505	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	162164_MTA 1A10T	MTA_S_162164	MTA_L_162164	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140365_MTA 1A15T	MTA_S_140365	MTA_L_140365	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140210_MTA 1A10T	MTA_S_140210	MTA_L_140210	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140354_MTA 1A10T	MTA_S_140354	MTA_L_140354	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140352_MTA 1A10T	MTA_S_140352	MTA_L_140352	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140965_MTA 1A10T	MTA_S_140965	MTA_L_140965	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140961_MTA 1A10T	MTA_S_140961	MTA_L_140961	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	169224_MTA 1A15T	MTA_S_169224	MTA_L_169224	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	169218_MTA 1A25T	MTA_S_169218	MTA_L_169218	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	162481_MTA 1A10T	MTA_S_162481	MTA_L_162481	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140333_MTA 1A5T	MTA_S_140333	MTA_L_140333	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140329_MTA 1A5T	MTA_S_140329	MTA_L_140329	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	169228_MTA 1A5T	MTA_S_169228	MTA_L_169228	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	169367_MTA 1A15T	MTA_S_169367	MTA_L_169367	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	169312_MTA 1A10T	MTA_S_169312	MTA_L_169312	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	169310_MTA 1A10T	MTA_S_169310	MTA_L_169310	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	152251_MTA 1A10T	MTA_S_152251	MTA_L_152251	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	152249_MTA 1A10T	MTA_S_152249	MTA_L_152249	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	152881_MTA 1A10T	MTA_S_152881	MTA_L_152881	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140331_MTA 1A5T	MTA_S_140331	MTA_L_140331	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	169305_MTA 1A10T	MTA_S_169305	MTA_L_169305	В	Monofásico	10,00	13,80	0,24

ALIM-19SCB10T03	140220_MTA	1A10T	MTA_S_140220	MTA_L_140220	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	161854_MTA	1A5T	MTA_S_161854	MTA_L_161854	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	169300_MTA	1A10T	MTA_S_169300	MTA_L_169300	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	169298_MTA	1A10T	MTA_S_169298	MTA_L_169298	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	171489_MTA	1A15T	MTA_S_171489	MTA_L_171489	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140980_MTA	1A15T	MTA_S_140980	MTA_L_140980	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140691_MTA	1P25T	MTA_S_140691	MTA_L_140691	В	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140846_MTA	1A5T	MTA_S_140846	MTA_L_140846	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140844_MTA	1A5T	MTA_S_140844	MTA_L_140844	В	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	140665_MTA	1A15T	MTA_S_140665	MTA_L_140665	В	Monofásico	15,00	13,80	0,24
						тот в	1017,50	Carga equi B	142,23
ALIM-19SCB10T03	37858_MTS	1P37.5T	MTS_S_37858	MTS_L_37858	С	Monofásico	37,50	13,80	0,24
ALIM-19SCB10T03	141047_MTA	1A10T	MTA_S_141047	MTA_L_141047	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141049_MTA	1A15T	MTA_S_141049	MTA_L_141049	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	37866_MTS	1P50T	MTS_S_37866	MTS_L_37866	С	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T03	140358_MTA	1A15T	MTA_S_140358	MTA_L_140358	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140984_MTA	1A15T	MTA_S_140984	MTA_L_140984	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	159296_MTA	1A10T	MTA_S_159296	MTA_L_159296	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153248_MTA	1A10T	MTA_S_153248	MTA_L_153248	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153362_MTA	1A10T	MTA_S_153362	MTA_L_153362	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140197_MTA	1A15T	MTA_S_140197	MTA_L_140197	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	153246_MTA	1A10T	MTA_S_153246	MTA_L_153246	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	153244_MTA	1A10T	MTA_S_153244	MTA_L_153244	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140251_MTA	1A15T	MTA_S_140251	MTA_L_140251	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	140346_MTA	1A15T	MTA_S_140346	MTA_L_140346	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141030_MTA	1A15T	MTA_S_141030	MTA_L_141030	С	Monofásico	15,00	13,80	0,24

ALIM-19SCB10T03	141028_MTA	1A15T	MTA_S_141028	MTA_L_141028	С	Monofásico	15,00	13,80	0,24
					то	тс	267,50	Carga equi C	37,39
Sector Rural San							Carga		Carga
Cristobal 2				Carg	ga A	17,94	В	3,96	С
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T03	141034_MTA	1A5T	MTA_S_141034	MTA_L_141034	Α	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	141040_MTA	1A10T	MTA_S_141040	MTA_L_141040	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141038_MTA	1A10T	MTA_S_141038	MTA_L_141038	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141036_MTA	1A10T	MTA_S_141036	MTA_L_141036	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	171476_MTA	1A15T	MTA_S_171476	MTA_L_171476	Α	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141051_MTA	1A5T	MTA_S_141051	MTA_L_141051	Α	Monofásico	5,00	13,80	0,24
ALIM-19SCB10T03	141032_MTA	1A10T	MTA_S_141032	MTA_L_141032	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	140996_MTA	1A50T	MTA_S_140996	MTA_L_140996	Α	Monofásico	50,00	13,80	0,24
ALIM-19SCB10T03	141075_MTA	1A10T	MTA_S_141075	MTA_L_141075	Α	Monofásico	10,00	13,80	0,24
					Tot F	ase A	125,00	Carga equi A	17,47
ALIM-19SCB10T03	140986_MTA	1P10T	MTA_S_140986	MTA_L_140986	ABC	Monofásico	10,00	13,80	0,24
					тот т	rifase	10,00	Carga equi 3F	1,40
ALIM-19SCB10T03	141053_MTA	1A25T	MTA_S_141053	MTA_L_141053	В	Monofásico	25,00	014	0,24
					то	ТВ	25,00	Carga equi B	3,49
ALIM-19SCB10T03	140988_MTA	1A10T	MTA_S_140988	MTA_L_140988	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141073_MTA	1A10T	MTA_S_141073	MTA_L_141073	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141071_MTA	1A15T	MTA_S_141071	MTA_L_141071	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141069_MTA	1A15T	MTA_S_141069	MTA_L_141069	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	166979_MTA	1A10T	MTA_S_166979	MTA_L_166979	С	Monofásico	10,00	13,80	0,24
					то	тс	60,00	Carga equi C	8,39

Sector Rural San							Carga		Carga
Cristobal 3				Carg	ga A	18,87	В	9,09	С
Nombre red	Nombre del tramo	Id equipo	Nodo origen	Nodo destino	Fase	Tipo	Cap Nom (kVA)	Tens prim (kVLL)	Tens sec (kVLL)
ALIM-19SCB10T03	141086_MTA	1A25T	MTA_S_141086	MTA_L_141086	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	168587_MTA	1A25T	MTA_S_168587	MTA_L_168587	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	141081_MTA	1A25T	MTA_S_141081	MTA_L_141081	Α	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	141082_MTA	1A10T	MTA_S_141082	MTA_L_141082	Α	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141042_MTA	1A15T	MTA_S_141042	MTA_L_141042	Α	Monofásico	15,00	13,80	0,24
					Tot F		100,00	Carga equi A	13,98
ALIM-19SCB10T03	37870_MTS	3P75T	MTS_S_37870	MTS_L_37869	ABC	Trifásico a columnas Trifásico a	75,00	13,80	0,22
ALIM-19SCB10T03	141063_MTA	3C30T	MTA_S_141063	MTA_L_141063	ABC	columnas	30,00	13,80	0,22
					тот т	rifase	105,00	Carga equi 3F	14,68
ALIM-19SCB10T03	141059_MTA	1A10T	MTA_S_141059	MTA_L_141059	В	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141077_MTA	1A15T	MTA_S_141076	MTA_L_141077	В	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141079_MTA	1A5T	MTA_S_141079	MTA_L_141079	В	Monofásico	5,00	13,80	0,24
					TO ⁻	ГВ	30,00	Carga equi B	4,19
ALIM-19SCB10T03	141065_MTA	1A10T	MTA_S_141065	MTA_L_141065	С	Monofásico	10,00	13,80	0,24
ALIM-19SCB10T03	141057_MTA	1A15T	MTA_S_141057	MTA_L_141057	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141088_MTA	1A25T	MTA_S_141088	MTA_L_141088	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	140325_MTA	1A25T	MTA_S_140325	MTA_L_140325	С	Monofásico	25,00	13,80	0,24
ALIM-19SCB10T03	161204_MTA	1A15T	MTA_S_161204	MTA_L_161204	С	Monofásico	15,00	13,80	0,24
ALIM-19SCB10T03	141061_MTA	1A15T	MTA_S_141061	MTA_L_141061	С	Monofásico	15,00	13,80	0,24
					TO	тс	105,00	Carga equi C	14,68