Escuela Superior Politécnica del Litoral

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

Reducción de la variación de humedad del producto terminado en un proceso de elaboración de alimento balanceado para mascotas

Proyecto Integrador

Previo la obtención del Título de:

Ingenieros Industriales

Presentado por:

Cristhian Gabriel Macias Zambrano Ricardo Alejandro Ubillus Figueroa

Guayaquil - Ecuador

Año: 2024

Dedicatoria

Dedico el presente proyecto a mi familia, a mis padres, Ricardo y Maritza, por su amor tan incondicional, apoyo constante durante todo este trayecto y los sacrificios que hicieron por hacer posible mi educación, por ustedes tengo las bases de mis principios, mis valores y perseverancia. A mi hermano Santiago, por estar siempre pendiente de mis avances y por cada día darme aliento.

A Gabriela, la madre de mi hijo, por brindarme su apoyo y amor, por ayudarme a nunca decaer y siempre creer en mí en los momentos difíciles, este logro también es tuyo, sin ti no hubiera sido posible llegar tan lejos.

A mi hijo Lucas, el cual ha sido mi completa motivación desde que llego a mi vida, te amo con todo mi corazón.

Alejandro Ubillús

Dedicatoria

Dedico este logro primero a Dios, mi guía constante que me ha sostenido en momentos difíciles. A mis padres, cuyo amor incondicional y apoyo constante han sido fundamentales para alcanzar cada una de mis metas. Agradezco profundamente a todos aquellos que contribuyeron a este proyecto, permitiendo que alcance las expectativas planteadas.

A mi futura esposa, mi mejor amiga y mi incondicional apoyo en esta etapa final, Adamaris Diaz.

A mi mejor amigo, Steven, por ser un gran apoyo espiritual y por siempre contar con sus sabios consejos. Y, por último, a mi mentor, Dakar Muñoz, mi pastor, por su guía y apoyo constante en mi crecimiento personal y profesional.

Cristhian Macias

Agradecimientos

Agradezco a Dios, por todas las bendiciones que se me han presentado y las oportunidades brindadas en este trayecto y por permitirme llegar hasta este momento. A mis padres por brindarme todo lo que pudieron, valores, educación y sobre todo amor.

A Gabriela, la madre de mi hijo, que gracias a su apoyo incondicional no me rendí en diferentes ocasiones, y siempre creyó en mí, gracias por ser mi luz en mis momentos más oscuros, mi alegría en mis momentos más felices, y por ser mi amor incondicional en todo momento.

Gracias a mi hijo Lucas, cuyo amor y cariño ha sido la mayor bendición en mi vida, le dedico esta tesis con la esperanza de que siempre siga adelante y luche por sus sueños.

Alejandro Ubillús

Agradecimientos

Agradezco de manera especial a Dios por ser mi guía en el camino hacia la titulación. A mis padres, Horacio Macias y Rosanna Zambrano les doy un agradecimiento sincero por ser mis pilares y principal fuente de motivación. Mis profesores merecen mi gratitud por el afecto, conocimientos valiosos y experiencias inestimables que brindaron, me contribuyendo significativamente a mi desarrollo profesional. Por último, agradezco a mi mejor amigo Steven quien siempre estuvo orando por mí, por su apoyo constante y su interés en el éxito de este proyecto.

Adicional un agradecimiento especial a un mentor clave Milton Diaz, buen ejemplo y futuro Suegro.

Cristhian Macias

Declaración Expresa

Nosotros Ricardo Alejandro Ubillús Figueroa y Cristhian Gabriel Macias Zambrano

reconocemos que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de

graduación corresponderá al autor o autores, sin perjuicio de lo cual la ESPOL recibe en este

acto una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra

con facultad de sublicenciar, incluyendo la autorización para su divulgación, así como para la

creación y uso de obras derivadas. En el caso de usos comerciales se respetará el porcentaje de

participación en beneficios que corresponda a favor del autor o autores. La titularidad total y

exclusiva sobre los derechos patrimoniales de patente de invención, modelo de utilidad, diseño

industrial, secreto industrial, software o información no divulgada que corresponda o pueda

corresponder respecto de cualquier investigación, desarrollo tecnológico o invención realizada

por mí/nosotros durante el desarrollo del proyecto de graduación, pertenecerán de forma total,

exclusiva e indivisible a la ESPOL, sin perjuicio del porcentaje que nos corresponda de los

beneficios económicos que la ESPOL reciba por la explotación de mi/nuestra innovación, de

ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigación (OTRI) de la

ESPOL comunique a los autores que existe una innovación potencialmente patentable sobre

los resultados del proyecto de graduación, no se realizará publicación o divulgación alguna, sin

la autorización expresa y previa de la ESPOL.

Guayaquil, 26 de enero del 2024.

ejandro Chullen

Ricardo Alejandro

Ubillus Figueroa

risthian Gabriel

Macias Zambrano

M.Sc. María Laura Retamales García Msc. Ingrid Elsa Adanaque Bravo

Resumen

La empresa objetivo se centraba en la producción de balanceado animal, con "Buen Can Pollo" como principal enfoque debido a su alta demanda y alto % de rechazo. Se identificaron problemas como paradas no programadas y cambios en la calidad de la materia prima. El objetivo era reducir la variación de humedad del producto final del 4,28% al 2,3%, con acciones como ajustar especificaciones y reducir paradas no programadas. Se utilizó la metodología DMAIC, con recolección de datos, verificación de confiabilidad, pruebas estadísticas y conclusiones sobre la capacidad del proceso. Se implementaron acciones como tomar muestras más frecuentes, estandarizar procedimientos y el diseño experimental para optimizar variables.

Se destacó la relevancia de una infografía para comunicar decisiones, se identificaron limitaciones como la variabilidad introducida por el recuperador de sólidos y paradas no programadas, junto con desafíos como la variabilidad de las materias primas y posibles errores de registro de datos.

Producto del diseño de experimentos se logró identificar las especificaciones y se implementó un formato de registro de muestras, también así con la ayuda del procedimiento operativo estándar, se minimizaron las variaciones de humedad en el producto terminado y en la prueba piloto se logró obtener 1.25% de variación.

Palabras clave: balanceado, humedad, diseño experimental, metodología DMAIC, Producto "Buen Can Pollo", Restricciones, variabilidad, Índice de capacidad del proceso (cpk).

Abstract

The target company was focused on the production of animal feed, with "Buen Can Pollo" as the focus due to its high demand and high rejection rate. Problems such as unscheduled stops and changes in raw material quality were identified. The objective was to reduce the moisture variation of the final product from 4.28% to 2.3%, with actions such as adjusting specifications and reducing unscheduled stops. The DMAIC methodology was used, with data collection, reliability verification, statistical tests, and conclusions on process capability. Actions such as taking more frequent samples, standardizing procedures, and experimental design to optimize variables were implemented.

The relevance of an infographic to communicate decisions was highlighted, limitations such as variability introduced by the solids reclaimer and unscheduled shutdowns were identified, along with challenges such as raw material variability and data recording errors.

As a result of the design of experiments, the specifications were identified and a sample registration form was implemented, also with the help of the standard operating procedure, moisture variations in the finished product were minimized and, in the pilot, test a variation of 1.25% was obtained.

Keywords: balanced, moisture, experimental design, DMAIC methodology, "Buen Can Pollo" Product, Constraints, variability, Process Capability Index (cpk).

Índice general

Resumen	I
Abstract	II
Capítulo 1	1
1. Introducción	2
1.1 Descripción del problema	3
1.1.1 Definición del problema	4
1.1.2 Alcance del proyecto.	4
1.1.3 Requerimientos del cliente	6
1.1.4 Árbol crítico de la calidad (CTQ Tree)	8
1.2 Objetivos	10
1.2.1 Objetivo general	10
1.2.2 Objetivos específicos	10
1.3 Marco teórico	10
1.3.1 DMAIC	10
Capítulo 2	12
2. Metodología	13
2.1 Medición	14
2.1.1 Plan de recolección de datos	14
2.1.2 Verificación de confiabilidad de los datos	16
2.2 Normalidad de datos	17

2.3	Análisis de capacidad20
Capítu	ılo 323
3.	Resultados y análisis
3.1	Análisis24
3.2	Lluvia de ideas
3.3	Ishikawa de las ideas principales
3.4	Matriz Causa-Efecto
3.5	Plan de Verificación de Causas
3.5	.1 Verificación de Causa N°1: Toma no representativa de datos de muestreo
de l	humedad29
3.5	.2 Verificación de Causa N°2: Procedimientos de Operación Incorrectos30
3.5	.3 Verificación de Causa N°3: Poco control de la humedad por el secador31
3.5	.4 Verificación de Causa N°4: Poca comunicación entre los operadores31
3.6	Análisis de cinco porqués32
3.7	Mejora32
3.8	Diagrama Impacto Esfuerzo33
3.8	.1 Viabilidad de las Soluciones34
Capítu	ılo 436
4.	Implementación de las mejoras
4.1	Nueva Data y Toma de Frecuencias
4.1	.1 Resultado de Mejora 1

4.1.2 Análisis de Resultado de Mejora 1	39
4.2 Estandarización de Procedimientos Operacionales Estándar	40
4.2.1 Resultado de Mejora 2	40
4.2.2 Análisis de Resultado Mejora 2	41
4.3 Diseño de Experimento	42
4.3.1 Resultado de Mejora 3	43
4.3.2 Análisis de Resultado de Mejora 3	43
4.4 Infografía de importancia de toma de Decisiones	51
4.4.1 Resultado de Mejora 4	51
4.4.2 Análisis de Resultados de Mejora 4	52
Capítulo 5	53
5. Resultado y Análisis	54
5.1 Gráfica de Control y Prueba de Normalidad	54
5.2 Análisis de Capacidad	57
5.3 Triple Bottom Line	58
5.3.1 Pilar Económico	58
5.3.2 Pilar Ambiental	58
5.3.3 Pilar Social	58
Capítulo 6	59
6. Control	60
6.1 Plan de Control de Nueva Data y Toma de Frecuencias	60

6.2	Plan de Control de Procedimientos Operacionales Estándar	60
6.3	Plan de Control de Diseño Experimento	60
6.4	Plan de Control Infografía de la importancia de toma de Decisiones	61
Capít	tulo 7	62
7.	Conclusiones y Recomendaciones	63
7.1	Conclusiones	63
7.2	Recomendaciones	64
R	REFERENCIAS	66

Índice de Figuras

Figura 1.1Pareto de productos con mayor producción	3
Figura 1.2 % Variación de Humedad de Producto Buen Can Pollo ARMG	4
Figura 1.3 Diagrama SIPOC	5
Figura 1.4 Voz del Cliente 1	6
Figura 1.5 Voz del Cliente 2	6
Figura 1.6 Diagrama de Afinidad	7
Figura 1.7 Diagrama CTQ Tree	8
Figura 2.1 Gráfica de Distribución Normal de Datos recolectados	17
Figura 2.2 Prueba de normalidad para datos historicos	18
Figura 2.3 Prueba de normalidad con Trasformada de Johnson	19
Figura 2.4 Diferencia de medianas entre datos recolectados e historicos	20
Figura 2.5 Gráfica de Control	21
Figura 2.6 Análisis de Capacidad	22
Figura 3.1 Lluvia de Ideas de Causas 1	25
Figura 3.2 Lluvia de ideas de Causas 2	26
Figura 3.3 Diagrama Ishikawa % Variación de Humedad en PT	27
Figura 3.4 Muestreo de Humedad en producto terminado	30
Figura 3.5 Cambios/Arranques en Línea no estandarizados	31
Figura 3.6 Variación de parámetros	32
Figura 3.7 Análisis 5 porqué	32
Figura 3.8 Soluciones Propuestas	33
Figura 3.9 Matriz Impacto – Esfuerzo para las mejoras	34
Figura 4.1 Plan de Implementación de Soluciones	37
Figura 4.2 Nueva data para la toma de humedades	38

Figura 4.3 Tendencia de Cantidad de Muestras por día	39
Figura 4.4 No de Muestra vs % Variación de Humedad - Antes	39
Figura 4.5 No de Muestra vs % Variación de Humedad – Después	40
Figura 4.6 Formato de Procedimiento Operacional Estándar	41
Figura 4.7 Revisión de Formato POE	42
Figura 4.8 Resumen del Diseño	43
Figura 4.9 Variables controlables y no controlables	43
Figura 4.10 Análisis Anova	46
Figura 4.11 Resumen del Modelo	46
Figura 4.12 Coeficientes	47
Figura 4.13 Ecuación de Regresión	48
Figura 4.14 Pareto con Nivel de Significancia	49
Figura 4.15 Optmizador de Respuesta	50
Figura 4.16 Optimo Posible	50
Figura 4.17 Explicación sobre la importancia de la Infografía	51
Figura 4.18 Infografía de Practicas Operacionales	52
Figura 5.1 Reducción de % de Variación de Humedad por día	54
Figura 5.2 Prueba de Normalidad	55
Figura 5.3 Prueba de Estabilidad	56
Figura 5.4 Análisis de Capacidad – Antes	57
Figura 5.5 Análisis de Capacidad – Después	57
Figura 6.1 Plan de Control	60

Índice de Tablas

Tabla 1.1 Descripción del problema con la Herramienta 3W+2H	4
Tabla 2.1 Plan de recoleccón de datos	14
Tabla 2.2 Plan de recoleccón de datos	14
Tabla 2.3 Formato de registro de datos	16
Tabla 3.1 LLuvia de ideas de la variación de humedad	26
Tabla 3.2 Ponderación Matriz Causa - Efecto	28
Tabla 3.3 Tabla de verificación de Causas	29
Tabla 4.1 Corridas del Experimento	44

Capítulo 1

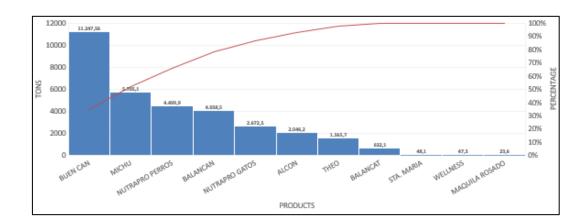
1. Introducción

La variación de humedad en la producción de balanceado puede afectar significativamente la calidad del producto final. Un control preciso es crucial para garantizar la uniformidad del contenido nutricional y la textura del balanceado. Los cambios en la humedad pueden influir en la mezcla de ingredientes, la extrusión y la estabilidad del producto almacenado. Es fundamental implementar medidas de monitoreo y ajuste para mantener estándares consistentes y asegurar la eficiencia del proceso productivo.

En las últimas décadas, el control de la humedad en la producción de balanceado ha experimentado avances significativos. La industria ha adoptado tecnologías más precisas de medición y monitoreo, como sensores avanzados y sistemas automatizados. Además, se han desarrollado métodos de secado más eficientes y sistemas de gestión de procesos que permiten ajustes en tiempo real para mantener la humedad dentro de los rangos deseados. Estas mejoras han contribuido a una producción más consistente, eficiente y a la mejora general de la calidad del balanceado animal.

Este Indicador se ha transformado en un recurso crucial para detectar sectores de oportunidad en la fabricación de alimentos balanceados. La ejecución efectiva, tomando en cuenta los detalles particulares del proceso, resulta fundamental para lograr mediciones exactas.

El presente proyecto analiza la evaluación de la variación de humedad en una instalación de alimentos balanceados, evaluando su aptitud para descubrir áreas de mejora y representar de manera precisa la situación de la planta.

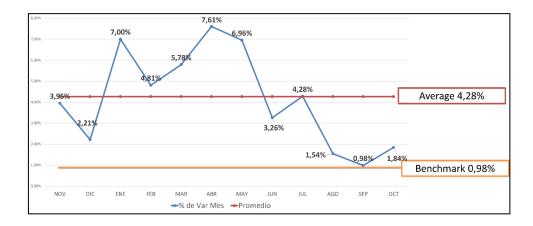

Usando la metodología DMAIC (definición, medición, análisis, implementación, control), en el presente documento se evaluará y analizará como esta este indicador en las líneas de producción que el cliente desee revisar, así como también la confiabilidad de la información usada como ingreso para su revisión y posteriormente se propondrán soluciones

que garanticen la confiabilidad de la información y el correcto manejo de la humedad dentro del producto terminado.

1.1 Descripción del problema

Actualmente, en la empresa de balanceados para mascotas, se presenta disconformidad con las humedades y su variación dentro del producto terminado debido a varios factores y situaciones diarias que impiden su control con exactitud y a su vez, las bajas humedades, aunque no afecten la calidad de este si inquieren en pérdidas económicas.

Figura 1.1Pareto de productos con mayor producción



Este proyecto se centrará en el producto que se produce en mayor cantidad, como lo muestra la Figura 1.1 es el producto "Buen Can pollo" que al ser de mayor producción es el que mayores pérdidas podría ocasionar.

Los operadores implicados en la humedad del producto terminado son varios y estos están regidos a parámetros que deben manejarse con precisión, pero como la información no está estandarizada, esto permite un amplio manejo empírico en sus métricas.

En la Figura 1.2 se presenta la variación de humedad del producto más vendido y en el cual se centrará nuestra investigación, este nos servirá para definir nuestro problema.

Figura 1.2% Variación de Humedad de Producto Buen Can Pollo ARMG

1.1.1 Definición del problema

Desde noviembre de 2022 hasta la actualidad en la línea 12 de producto terminado se ha producido una alta variación de humedad en la presentación de "BUEN CAN POLLO ARMG" donde encontramos una variación de humedad con una media del 4,28%, sin embargo, en la empresa se han registrado valores inferiores a la media, llegando hasta el 0,98%, esto se estableció utilizando la herramienta 3w+2h que se observa en la Tabla 1.1

Tabla 1.1Descripción del problema con la Herramienta 3W+2H

¿What?		¿Where?	¿When?	¿How much?	¿How do we know?
% variación o Humedad d presentación "E CAN POLLO AR fuera de cont	e BUEN MG"	En la línea 12 de producto acabado	De noviembre de 2022 hasta la actualidad	Un % de variación de la humedad con una media del 4,28%.	Se han registrado valores inferiores a la media, llegando hasta el 0,98%.

1.1.2 Alcance del proyecto.

El proyecto se llevará a cabo en la línea de producción de balanceado, y estará enfocado en el producto "buena lata pollo" que es según la variación más alta que existe

dentro del almacén tal como lo indica la Figura 1.2. En la Figura 1.3, a continuación, se muestra el SIPOC para poder comprender de forma más detallada nuestra área de interés, las cuales son, secado y extrusión que, según el VOC, es donde se genera la variación de la humedad.

Figura 1.3Diagrama SIPOC

Como se logra apreciar el proceso inicia en el área de mezclado en donde toda la materia prima (MP) se coloca dentro de las tolvas para luego dosificar de acuerdo con la cantidad que se requiera producir, para luego pasar al área de fresado o molienda que consiste en pulverizar la "MP" con molinos, esto se hace con el objetivo de hacer los granos tan pequeños para que puedan ser utilizados en el área de extrusión en donde ya se le da forma al producto terminado, posteriormente es secado para proceder a dar un baño de vitaminas y finalmente es envasado.

1.1.3 Requerimientos del cliente

Para poder llegar a la raíz del problema se necesitan herramientas eficaces que nos permitan entender con mayor detalle lo que realmente sucede dentro de la línea de producción y así proceder a dar ideas para si solución, una de esas herramientas es VOC "la voz del cliente". Esta herramienta nos permite consultar a los miembros de la organización tanto operativo como administrativo las razones que podrían estar afectando al proceso, a continuación, se muestran los hallazgos recolectados:

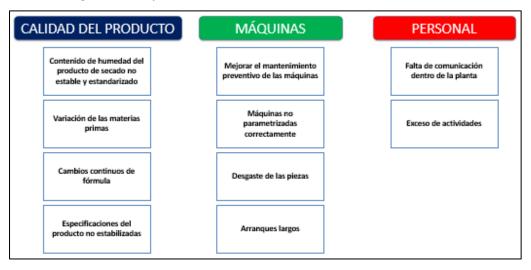
Figura 1.4Voz del Cliente 1

Figura 1.5

Voz del Cliente 2

JEFE DE	PLANTA	JEFE DE PRO	DDUCCIÓN	OPERADOR	R DE SECADO	
Alta variación de líquidos en el recuperador de sólidos	Falta de parametrización en el proceso de secado	Materias primas variables	Falta de normalización de los parámetros para la estabilización de la humedad	Falta de herramientas para una comunicación eficaz	Errores en el sistema del secador de la planta 2	
Problemas de dosificación al inicio del proceso	Encontrar el punto de equilibrio para el secado del producto.	"Aw" como limitación	Problemas mecánicos y operativos de los secadores	Falta de mantenimiento preventivo	Es necesaria una mayor comunicación entre supervisores	
Elevadas cantidades de merma	Falta de estandarización de los parámetros de la máquina	Mala comunicación entre la extrusora y el secador	Variaciones del vapor	Sobrecarga de actividades	Problemas mecánicos concurrentes	

Podemos apreciar que los actores principales para este proyecto fueron:

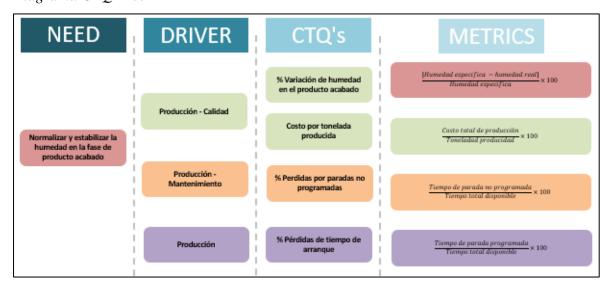

- Supervisores de calidad
- Supervisores de producción
- Operadores de extrusora
- Jefe de planta
- Jefe de producción
- Operadores de secado

Cada participante fue clave para la elaboración de este proyecto, puesto que, son los que tienen mayor experiencia y conocimiento de lo que realmente ocurre en el GEMBA.

A todos los involucrados se les cuestionó a través de encuestas, grupo focal, entrevistas, las posibles causas del problema, generando así una lluvia de ideas que se aprecia en la Figura 1.4 y Figura 1.5

Con la información que proporciono cada colaborado de la empresa se logró realizar el diagrama de afinidad en donde las causas principales son categorizadas como se muestra en el diagrama de afinidad a continuación:

Figura 1.6Diagrama de Afinidad


El diagrama de afinidad es una herramienta que nos permitió organizar de manera categorica la información más reelevante que se recolecto con el VOC, esto nos ayuda a tener una idea de que futuras soluciones se podrían plantear en este proyecto.

1.1.4 Árbol crítico de la calidad (CTQ Tree)

Luego de que se realizó con éxito el VOC donde se identificó la necesidad del cliente, se procede a utilizar la herramienta CTQ para poder transformar esas necesidades en variables cuantificables. En la ¡Error! No se encuentra el origen de la referencia. a c ontinuación se logra establecer el árbol critico de la calidad identificando además las métricas ambientales.

Figura 1.7

Diagrama CTQ Tree

Las métricas ambientales (Triple bottom line) es una herramienta que nos ayuda a definir la sostenibilidad en cualquier proceso o proyecto y abarca tres aspectos principales que son:

- Pilar ambiental: ayuda a mantener un compromiso estrecho entre el proyecto a realizar y el medio ambiente, en este caso se identificó la necesidad de reducir el consumo de gas licuado de petróleo (GLP).
- Pilar social: es fundamental dentro de una organización, ya que, de este depende la carga laboral, seguridad y el éxito dentro de la empresa. En esta organización se pretende reducir la taza de rotación del personal disminuyendo así las cargas.

1.2 Objetivos

1.2.1 Objetivo general

Reducir la variación de la humedad del producto acabado del 4,28% al 2,3% en un proceso de fabricación de alimentos para mascotas

1.2.2 Objetivos específicos

- Identificar y ajustar las especificaciones en el proceso del producto acabado.
- Reducir las paradas no programadas en mantenimiento autónomo.
- Proponer soluciones
- Realizar la prueba piloto y realizar la evaluación de los resultados.

1.3 Marco teórico

1.3.1 DMAIC

Como mencionan (Garcia Gonzales, Juarez León, Guevara Ramirez, & García Perez, 2021) es una herramienta que está enfocada a mejorar paulatinamente los procesos existentes, esta herramienta es una metodología que ayuda a la toma de decisiones en procesos ya creados y consta de 5 etapas: Definir, medir, analizar, mejorar, controlar.

Definir: Es la primera etapa de la metodología en donde se identifica el problema principal a resolver dentro de una organización. Según (Berbach, 2009) para definir apropiadamente un problema se necesitan responder preguntas tales como ¿Por qué es necesario...? ¿Qué beneficios tiene? ¿Qué se necesita para lograrlo?

Medir: (Brue, 2002) menciona que el siguiente paso es identificar las características o requisitos que el cliente percibe como claves (variables de desempeño) y que parámetros (variables de entrada) son los que afectan el desempeño de la organización y a partir de estas variables se define la manera en que será medida la capacidad del proceso.

Analizar: En este punto, con los datos que han sido recolectados de la situación actual se observan las oportunidades de mejora, además esta fase define si el problema tiene solución,

es un caso puntual, o no puede ser resuelto mediante esta metodología. Para esta etapa se utilizan diferentes herramientas de análisis tales como:

- Pruebas estadísticas
- Diagramas
- Estudio de correlaciones

Mejorar: En esta etapa se desarrollan las posibles soluciones que serán implementadas y validaran si el proceso ha mejorado. En este paso al igual que el anterior se requieren herramientas tales como:

- Lluvia de ideas
- Herramientas de simulación
- Análisis de causa efecto
- Modo de falla

Controlar: Una vez encontrada la solución del problema se necesita asignar un control que asegure que lo implementado continue funcionando sobre un periodo determinado de tiempo.

Capítulo 2

2. Metodología.

Mediante la implementación de la metodología DMAIC, que constituye una de las herramientas más frecuentemente empleadas en proyectos de mejora continua, se destaca su relevancia en la fase de medición. En este contexto, a través del análisis de datos y la aplicación de técnicas estadísticas, logramos una identificación más precisa de los problemas. Este proceso implica la estratificación y verificación de las causas que evidencien un impacto significativo. Dichas causas son consideradas para llevar a cabo un análisis más exhaustivo y direccionar de manera más precisa el problema previamente identificado en la sección anterior.

2.1 Medición

2.1.1 Plan de recolección de datos

En este apartado se ha tomado en cuenta las métricas que tendrán un impacto o que directamente afecten positiva o negativamente el problema específico. Por lo que, se ha ejecutado un plan de recopilación de datos que se muestra en la *Tabla 2.1 Plan de recoleccón de datos*

What?	Type of data	Where to collect it?	When to collect it?	Collection method	Operational Definition	Stratification factor	Sample	Reason
% variación humedad en PT	Cuantitativo	Consumidor Línea 12	Del 22 de noviembre hasta hoy	Datos históricos	No aplicable	Producto - Categoria - Pliego de condiciones	No aplicable	Conocer el % de variación de la humedad en PT
Paradas programadas	Cuantitativo Cualitativo	Consumidor Línea 12	Del 22 de noviembre hasta hoy	Datos históricos	No aplicable	Linea 12 - Paradas programadas	No aplicable	Sabiendo el tiempo que perdemos con el PP.
Paradas no programadas	Cuantitativo Cualitativo	Consumidor Línea 12	Del 22 de noviembre hasta hoy	Datos históricos	No aplicable	Línea 12 - Paradas no programadas	No aplicable	Sabiendo el tiempo que perdemos por PNP.
Costo por tonelada producida	Cuantitativo	Consumidor Línea 12	Del 22 de noviembre hasta hoy	Datos históricos	No aplicable	Línea 12 - Producción total	No aplicable	Para saber cuánto reducimos el coste de producción
Temperatura en la secadora	Cuantitativo	Consumidor Línea 12	Del 22 de noviembre hasta hoy	Datos históricos	No aplicable	Linea 12 - Temperatura en la secadora	No aplicable	Para saber cuánto tenemos de variación de humedad en secadero

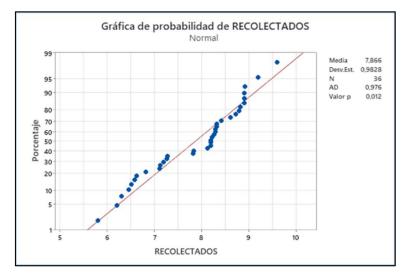
Tabla 2.2 Plan de recoleccón de datos

Tabla 2.3 Plan de recoleccón de datos

, con el objetivo de comprender la situación actual del proceso. Mediante esta recopilación de información, se llevará a cabo el análisis de las distintas causas que puedan ser cruciales para darle solución a este proyecto.

2.1.2 Verificación de confiabilidad de los datos.

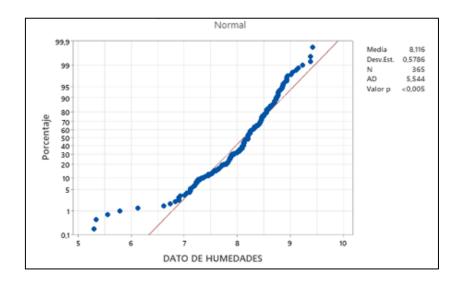
Para poder verificar los datos históricos que tiene la organización, se decidió realizar una toma de datos mediante observación directa en el piso de trabajo mediante la ayuda de una plantilla mostrada a continuación:


Tabla 2.4

Formato de registro de datos

Fecha	Línea	Turno	N°	Humedades

Se ha realizado la recopilación de datos concernientes a los niveles de humedad, revelando una distribución que no sigue el patrón de una distribución normal como se aprecia en la Figura 2.1.



Debido a que su valor p es significativamente menor que la referencia 0.05 se concluye que los datos no siguen una distribución normal, esto sugiere realizar utilizar técnicas estadísticas más avanzadas para corroborar la tendencia de los datos.

2.2 Normalidad de datos

Se realizó una prueba de normalidad a los datos históricos brindados por la organización, los datos considerados fueron tomados desde noviembre 2022 hasta octubre 2023 con un tamaño de muestra de N=365 y con una media de 8.116 % de humedad obtuvimos la ¡Error! No se encuentra el origen de la referencia. que se muestra a c ontinuación:

La prueba realizada a estos datos se realizó con un intervalo de confianza del 95% para comprobar la siguiente hipótesis:

Ho: Los datos históricos de las humedades siguen una distribución normal

H1: Los datos históricos de las humedades no siguen una distribución normal

En la **¡Error! No se encuentra el origen de la referencia.** se detalla que el valor p q ue se obtuvo con los datos es inferior a 0.05 por lo que la hipótesis "Ho" es rechazada dando como resultado que no existe suficiente evidencia estadística para concluir que los datos siguen una distribución normal.

En consecuencia, es necesario realizar otras pruebas estadísticas para corroborar la normalidad tanto de los datos recolectados como los históricos.

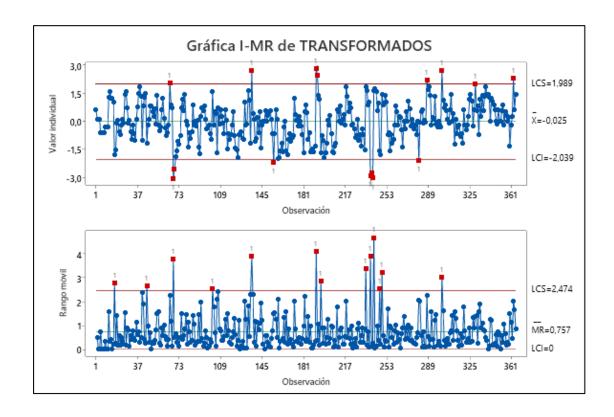
Figura 2.3


Prueba de normalidad con Trasformada de Johnson

En la ¡Error! No se encuentra el origen de la referencia. se evidencia la aplicación d e la transformada de Johnson, esto se lo realiza para transformar datos de modo que sigan una distribución normal, después de este paso se pudo aplicar una prueba Man-Whitney para verificar si existe diferencia significativa entre los datos recolectados y los históricos como se muestra a continuación.

Figura 2.4

Diferencia de medianas entre datos recolectados e historicos



Esta prueba demuestra que no existe diferencia significativa entre las medianas de los datos históricos versus los tomados, esta conclusión se hace considerando el valor p que es significativamente mayor a la referencia 0.05, en pocas palabras la data es confiable para hacer futuros análisis.

2.3 Análisis de capacidad

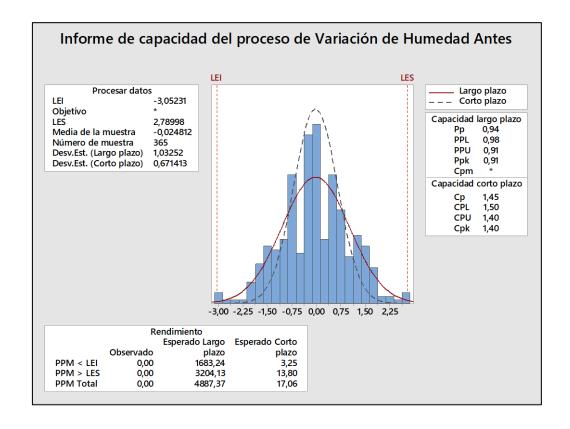

Una vez realizada las pruebas estadísticas necesarias para los datos históricos es necesario realizar una gráfica de control pasa así determinar los datos que estén fuera de rango y quitarlos del proceso. En la ¡Error! No se encuentra el origen de la referencia. se e videncia la variabilidad del proceso con datos que están fuera de los límites de control dentro del proceso, esto puede ser originado por varias causas que serán mencionadas más adelante.

Figura 2.5 *Gráfica de Control*

Tras llevar a cabo la corrección de los datos atípicos en la mencionada gráfica, se procede a efectuar el análisis de capacidad, como se ilustra en la ¡Error! No se encuentra el o rigen de la referencia.. En este análisis se destaca que el índice de capacidad del proceso (cpk) ha sido calculado como 1.40. Este resultado permite concluir de manera positiva, indicando que el proceso exhibe capacidad para cumplir con las especificaciones establecidas. La cifra del cpk, al superar el umbral de 1.0, respalda la aptitud del proceso para generar resultados consistentes y conformes a los requerimientos predefinidos.

Figura 2.6 *Análisis de Capacidad*

Capítulo 3

3. Resultados y análisis

3.1 Análisis

Con el propósito de llevar a cabo un análisis riguroso, se utilizaron diversas herramientas metodológicas que facilitaron la identificación de posibles causas subyacentes a los problemas identificados. Entre estas herramientas, se incluyen sesiones de lluvia de ideas, matriz de impacto-esfuerzo y el diagrama de Ishikawa. Este enfoque analítico estructurado contribuyó a una evaluación más completa y sistemática, permitiendo una identificación más precisa de las causas potenciales que pueden estar contribuyendo al problema en cuestión.

3.2 Lluvia de ideas

Considerando que la problemática está asociada al porcentaje de humedad presente en el producto "Buen Can", la presente herramienta se orientará hacia la obtención de aportes individuales de cada una de las partes involucradas, es decir los supervisores, extrusores, secadores, analistas de calidad y jefe de producción. Se buscará recopilar la perspectiva de cada persona respecto a las posibles causas subyacentes del inconveniente, con el objetivo de obtener una comprensión integral de los factores que podrían estar contribuyendo al problema identificado. Este enfoque permitirá un análisis más exhaustivo y colaborativo, promoviendo la identificación de soluciones informadas y estratégicas. Las ideas obtenidas se las muestra en los ANEXOS

A continuación, se muestra la segmentación de ideas principales establecidas por los miembros de la organización:

Figura 3.1

Lluvia de Ideas de Causas 1

P1	Jefe de Planta - Renato Pesantes
I1	Control de humedad por parte del Secador
12	Conocimiento de humedad por parte del secador vs merma por la baja humedad
13	Input (Información proporcionada por el extrusor)
14	Toma de Muestras no representativas con respecto a humedad
15	Mal manejo de los parámetros de secado (cama, temperaturas, tiempo de secado en piso)
16	Control exhaustivo de humedades en cambios de alimentación
P2	Supervisor - Alexis Ruiz
17	Control de la frecuencia de la toma de muestras de humedad de pt, secador y extrusora
18	Inyección de agua en la extrusora
19	Variación de alimentación por taponamiento
110	Comunicación entre secador y extrusor
l11	Materia prima que ingresa a molienda con humedad cambiante debido a lluvias
Р3	Supervisor - Carlos Mazon
l12	Temperatura de secador
I13	Variación de agua en bomba de inyeccion en el Sistema de Recuperador de Solidos
114	Variación de alimentación por taponamiento
I15	Comunicación entre secador y extrusor
116	Toma de muestras no representativas debido a falta de muestreo
P4	Supervisor - Jhonny Castro
117	Mucho Flujo de agua en la extrusora
I18	Presencia de humedades diferentes debido a la variabilidad de la materia prima
119	Pocos muestreos por hora
120	Corridas cortas afectan a la variación
I21	Cuando falta algun operador, los suplentes no tienen tanto conocimiento como el titular.
122	El recuperador de solidos influye mucho en la variación
P5	Supervisor - Erick Cabanilla
123	Variacion de Vapor en la alimentación
124	No existe una buena parametrización en el sistema de secado
125	Problemas mecánicos en los secadores
126	Obstrucciones en la alimentación de gas y valvulas de gas
127	Piezas desgastadas causan problemas mecánicos
128	Mantenimientos preventivos realizados de forma incorrecta
129	Problemas operativos en los secadores

Figura 3.2 *Lluvia de ideas de Causas 2*

	,
P6	Secador - Francisco Reyes
130	Recuperador de solidos influye mucho en la humedad
I31	Problemas en sitema de las compuertas del secador
132	Tiempo de calibración del secado tardío
133	Falta de comunicación entre supervisores, secadores y extrusores.
P7	Secador - Ricardo Oviedo
134	Probelmas mecánicos
135	Estabilización del proceso tardía
136	Poco muestreo de humedades
P8	Extrusor - Luis Caceres
137	En la humedad influye el recuperador de solidos
138	Alimentación en extrusora variable
139	Corridas cortas afectan el proceso
140	Variación de en bomba de inyección en el sistema de recuperador de solidos
P9	Secador - John Tumbaco
141	Materia prima variable
142	Toma de muestras de humedades
143	Recuperador de Solidos influye en el proceso
P10	Extrusor - Angel Villagomez
144	Alimentación en extrusora variable
145	Tiempo de estabilizacion extendido
146	Poca frecuencia en toma de muestras de humedades
147	Variación de temperatura en cama del secador
P11	Extrusor - Fredddy Borrero
148	Tiempo de estabilizacion del proceso
149	Conocimiento de parametros por parte del extrusor
150	Problemas mecánicos en los secadores

Tabla 3.1

LLuvia de ideas de la variación de humedad

Ideas principales
Toma de muestras no representativas en cuanto a humedad.
Variación del vapor en la extrusora.
Control de la humedad por el secador.
Las piezas desgastadas causan problemas mecánicos.
Input (Información proporcionada por la extrusora)

Menos Control exhaustivo de la humedad durante los cambios de alimentación.

Variación del avance del obturador

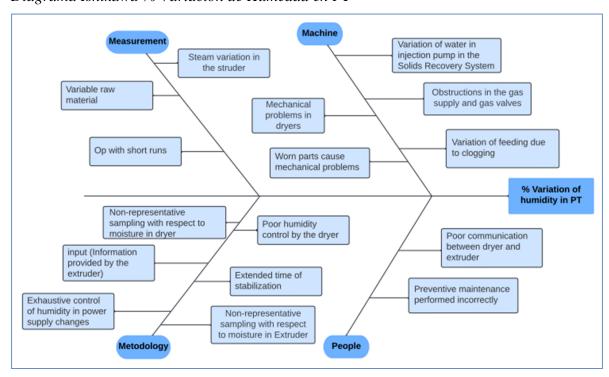
Tiempo Extendido de Estabilización

Obstrucciones en el suministro de gas y en las válvulas de gas.

Menor Comunicación entre el secador y la extrusora.

Materia prima variable

Problemas mecánicos en los secadores.


Variación del agua en la bomba de inyección del Sistema de Recuperación de Sólidos

Op con tiradas cortas

Mantenimiento preventivo realizado incorrectamente

3.3 Ishikawa de las ideas principales

Figura 3.3Diagrama Ishikawa % Variación de Humedad en PT

3.4 Matriz Causa-Efecto

Para verificar el nivel de impacto que tendría cada una de las causas mencionadas en el punto anterior, se recurrió a la herramienta de Matriz Causa – Efecto, para el cual estarían involucrados las personas que intervienen de forma directa en el proceso tales como el supervisor de producción, el analista de calidad, el extrusor, el secador y el jefe de producción.

Para una correcta estratificación de causas, el criterio para calificar cada una de las mismas fue el siguiente:

Tabla 3.2Ponderación Matriz Causa - Efecto

Nivel de Impacto	Ponderación
Causas que no impactan en la variación	0
de humedad	
Causas que tienen un impacto débil en la	1
variación de humedad	
Causas que tienen un impacto medio en	3
la variación de humedad	
Causas que tienen un impacto alto en la	9
variación de humedad	

3.5 Plan de Verificación de Causas

Debido a que las causas potenciales ya fueron obtenidas a través del punto anterior, se procede a la verificación de cada una de ellas. Al momento de revisar la verificación, podemos observar el método por el cual es evaluado y como afecta a nuestra variable.

Tabla 3.3 *Tabla de verificación de Causas*

Xi	Causa	Impacto	¿Cómo fue verificado?	Estado
1	Toma no representativa de datos de muestreo de humedad	Poco tiempo de reacción en momentos de Variación	Inspección Visual - Gemba	Verificado
2	Procedimientos de operación incorrectos	Las líneas no están del todo calibradas por un mal de procedimiento de arranque	Inspección Visual - Gemba	Verificado
3	Poco control de la humedad por el secador	Parámetros Incorrectos para el producto a condiciones normales	Inspección Visual - Gemba	Verificado
4	Poca Comunicación entre los operadores	No existe un flujo de comunicación entre operadores correcto	Inspección Visual - Gemba	Verificado

Entonces procedemos a realizar la verificación de cada una de las causas.

3.5.1 Verificación de Causa N°1: Toma no representativa de datos de muestreo de humedad

Se verifica mediante una inspección visual – Gemba que tanto el analista de calidad como el operador del secador y extrusor, no mantienen constante la cantidad de muestras tomadas por hora, lo que conlleva a que exista un tiempo de respuesta demasiado tardío en un caso de una variación de humedad alta/baja. Se realizaron ciertas verificaciones teniendo un promedio de 1 muestra por cada hora transcurrida.

Figura 3.4 *Muestreo de Humedad en producto terminado*

3.5.2 Verificación de Causa N°2: Procedimientos de Operación Incorrectos

Al momento de realizar los cambios, o al inicio de turno, se ha corroborado que cada uno de los operadores de los diferentes turnos sigue un procedimiento totalmente distinto, lo que conlleva a que no estén alineados y de esta forma la máquina no reciba un trato adecuado.

Figura 3.5Cambios/Arranques en Línea no estandarizados

3.5.3 Verificación de Causa N°3: Poco control de la humedad por el secador

Se verificó el trabajo de los secadores, en donde como resultado se obtuvo que en ciertas ocasiones los parámetros son diferentes, a pesar de que el producto semielaborado llegue en condiciones normales, al no tener definido un parámetro exacto conlleva a que el producto tenga ciertos porcentajes de variación con respecto a la humedad.

3.5.4 Verificación de Causa Nº4: Poca comunicación entre los operadores

Al mismo tiempo de verificar los parámetros usados, se pudo observar que a pesar de tener radios, no existe una comunicación efectiva entre el secador y extrusor, al momento de realizar un cambio en el extrusor, el secador debe d saberlo de forma inmediata, de forma que pueda cambiar los parámetros del secador y ajustarlos con la humedad respectiva, sin embargo al no estar, se lo llama por radio, en ocasiones este indicaba que lo realizaba después de terminar alguna actividad o simplemente no respondía.

Figura 3.6Variación de parámetros

3.6 Análisis de cinco porqués

Luego de haber validado las causas potenciales, se precede a utilizar la herramienta del 5 porqué, para identificar la causa raíz que está afectando al problema enfocado.

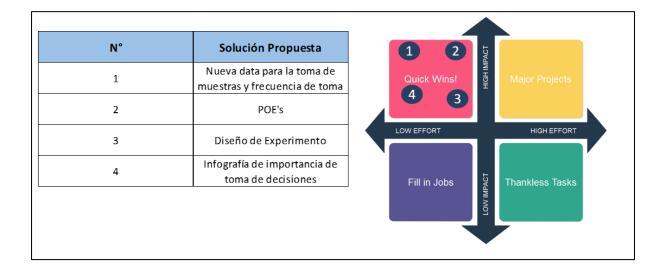
Figura 3.7 *Análisis 5 porqué*

Causa Potencial	1	2	3	4	5
Toma no representativa de datos de muestreo de humedad	No se ha establecido una metodología exacta	No ha habido una reunion en donde vean el impacto del control	No se ha hecho un análisis del control		
Procedimiento de operación incorrectos	No sigue los procedimientos	No se lo ha capacitado	No se han estandarizados los procedimientos		
Poco control de la humedad por el secador	Los operadores elijen parámetros de forma empírica	No se han definido parámetros idóneos para el proceso	No se ha realizado una prueba para obtener los parámetros idóneos	No se ha realizado una estandarización de forma específica en los parámetros	
Poca comunicación entre los operadores	No toman en serio el trabajode la toma de decisiones	No se ha dado una charla de la importancia de toma de decisiones en el proceso			

3.7 Mejora

Luego de revisar las causas raíz, estas se apegan a las diferentes soluciones que se socializó con el equipo, de modo que sean lo más fácil de entender y lo más técnico posible.

Figura 3.8Soluciones Propuestas


Causa Potencial	Causa Raiz	Solución Propuesta
Toma no representativa de datos de muestreo de humedad	No se ha hecho un análisis del control	Nueva data para la toma de muestras y frecuencia de toma aumentada.
Procedimiento de operación incorrectos	No se han estandarizados los procedimientos	POE's
Poco control de la humedad por el secador	No se ha realizado una estandarización de forma específica en los parámetros	Diseño de Experimento
Poca comunicación entre los operadores	No se ha dado una charla de la importancia de toma de decisiones en el proceso	Infografía de importancia de toma de decisiones

3.8 Diagrama Impacto Esfuerzo

Al momento de revisar las soluciones que se idearon, estás deben primero ser capaces de tener un gran impacto en nuestra variable, y de la misma forma debe de ser de poco esfuerzo, para poder ubicar las soluciones en los respectivos lugares, se logró juntar a todo el equipo para poder concretar si creen que las soluciones son fáciles de realizar y conlleven un impacto significativo a la variable de respuesta.

Figura 3.9

Matriz Impacto – Esfuerzo para las mejoras

3.8.1 Viabilidad de las Soluciones

Para la primera solución se analizará las muestras y las frecuencias con las que toman los analistas de calidad, y así mismo los secadores, esto con la finalidad de ver cuánto es el tiempo de respuestas con respecto a un cambio de parámetros realizado en ese momento, recordar que mientras más grande sea el tiempo entre una toma de muestra y otra, más tiempo puede ser en que haya salido producto tanto por debajo como por encima de las especificaciones. De esa forma se espera tener un mayor control en el proceso.

Con respecto a la segunda solución se procederá a realizar una actualización de los POE's de cambio e inicio de turno, haciendo más énfasis en el de inicio de turno, esto debido a que muchos de los operadores de diferentes turnos, no tienen actividades definidas al momento de ajustar/calibrar los parámetros de la máquina, lo que conlleva a que el arranque provoque cierta cantidad de merma, al igual que en los cambios. Se espera que con un POE estructurado y los pasos con respecto al arranque y ajustes de máquina (ya anteriormente concientizado por todos) se logre aplicar para los 2 turnos y se sigan los pasos adecuados.

Para la solución 3 el encontrar una mejor combinación de factores, o en todo caso unos parámetros en donde estos ajusten la variación de humedad de tal forma que se reduzca, para ello se realizará una verificación con datos históricos de los quemadores y se obtendrá además cuál de ellos tienen un mayor nivel de significancia con respecto a la variación de humedad.

Por último, para la capacitación sobre la importancia de toma de decisiones, esta no solo permitirá que los operadores tomen un poco más de importancia en lo que hacen, si no que hará que entre ellos exista un mutuo apoyo, ya que el problema inicial era que había poca comunicación entre ellos.

Capítulo 4

4. Implementación de las mejoras

Con la confirmación del Key Customer, se procedió a realizar el plan de implementación de las mejoras, en donde indican el lugar, quien va a estar involucrado, y la fecha de cuando se lo implementará.

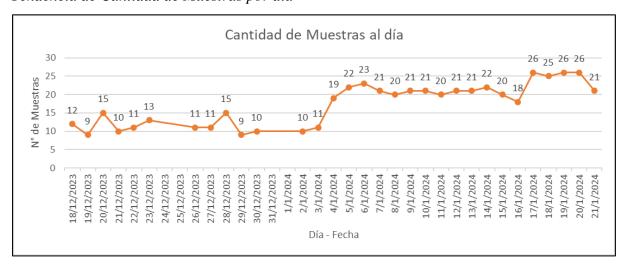
Figura 4.1 *Plan de Implementación de Soluciones*

N°	Solución Propuesta	¿Por qué?	¿Cómo?	¿Dónde?	¿Cuándo?	¿Quién?
1	Nueva data para la toma de muestras y frecuencia de toma aumentada.	Los datos donde reportan no son muy dinámicos en cuanto al análisis, a pesar de tener datos correctos y ya verificados.	Creación de una nueva data y estableciendo el rango de frecuencia de toma de muestras	Dpto. de Calidad y Producción	28/12/2023	Analista de Calidad / Secador / Extrusor
2	POE's	Establecer los procedimientos para el inicio de actividades es importante	A través de GEMBA se observarán los pasos a seguir con mejoras si fuera necesario, para definir un proceso estandarizado.	Cabin of Secador/Extrusor	19/12/2024	Secador / Extrusor
3	Diseño de Experimento	Es necesario definir los parámetros de la línea	A través de un diseño de experimento con las respectivas variables	Cabin of Secador	4/1/2024	Secador
4	Infografía de importancia de toma de decisiones	Es necesario porque los operadores necesitan capacitación sobre la toma de decisiones y cómo afectan la humedad del producto.	Creando una infografía con la toma de decisioes	Cabin of Secador/Extrusor	4/1/2023	Secador / Extrusor

4.1 Nueva Data y Toma de Frecuencias

Para la nueva data se hizo un cuadro por sección ya sea este en extrusora, secadora o simplemente Pt, de forma que esta tabla sea de más ayuda que la anterior, puesto que la anterior tenía contaminación visual y datos que simplemente no agregaban valor.

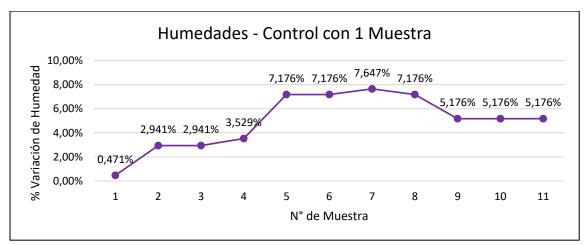
Figura 4.2


Nueva data para la toma de humedades

EXTRUSORA	Humedad Extrusora 1 (%)	Aw Extrusora	Densidad Extrusora (g/L)	Humedad Extrusora E131(%)	Humedad del PRE	Textura Extrusora	Flotabilidad Extrusora (%)	Hundimiento Extrusora (segundos)	Color de Croqueta (OK/NOK)
	1								

4.1.1 Resultado de Mejora 1

Teniendo ya los modelos y la frecuencia indicada a los analistas de calidad, secador y extrusor, se empezó a tomar 2 muestras por hora, antes realizaban 1 muestra por hora, pero al realizar 2 muestras/hr el tiempo de reacción es más rápido, por otra parte, tenemos la diferencia de los días en donde se estaba usando la frecuencia de muestreo normal, y luego la frecuencia de muestreo propuesta como solución, según la gráfica tiene un aumento de aproximadamente el 67%.


Figura 4.3Tendencia de Cantidad de Muestras por día

4.1.2 Análisis de Resultado de Mejora 1

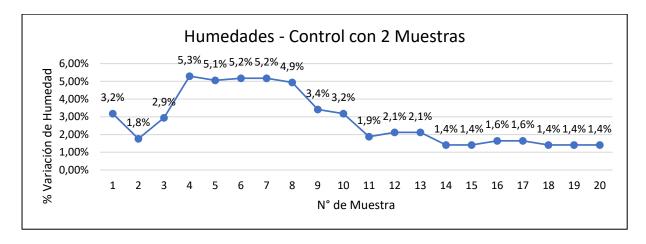
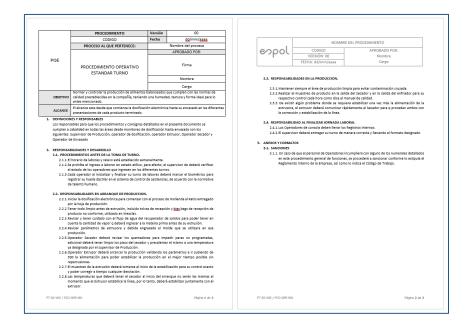

Como resultado de este procedimiento, podemos ver en 2 pequeñas muestras la forma de respuesta ante una variación de humedad, ya sea o muy húmeda o seca, en los siguientes gráficos observamos el detalle.

Figura 4.4No de Muestra vs % Variación de Humedad - Antes

En la gráfica anterior podemos observar que a partir de la muestra 9 ocurre una estabilización, pero entre el 8 y el 9 se observa que hubo un control a partir de ahí, por otro lado, tenemos la otra gráfica en donde tenemos más muestras tomadas en un día.


En la figura 4.5 observamos que tenemos más muestras durante el día, lo que resalta del gráfico es la estabilización que obtiene y la rapidez con la que ocurre la misma, a partir del dato 11 nótese la estabilización del proceso.

4.2 Estandarización de Procedimientos Operacionales Estándar

4.2.1 Resultado de Mejora 2

Se realizó el formato para los procedimientos que se requerían, en este caso era el procedimiento de las actividades al iniciar el turno en Cabina de Secador y Extrusor.

Figura 4.6Formato de Procedimiento Operacional Estándar

4.2.2 Análisis de Resultado Mejora 2

Una vez realizado el formato, se lo verificó en última instancia con el jefe de Planta por si existiera alguna duda con respecto a los otros POE, y de ser necesario ya recurrir a la firma de él y poder tenerlo en la base de datos. Con este documento, ante cualquier duda de actividades realizadas por el operador extrusor o secador, se la podrá corroborar en el documento antes mencionado, adicional a esto, las actividades que antes realizaban sin seguir un procedimiento y afectaba al producto de forma que su variación de humedad aumentaba se eliminará por completo ya que todos los turnos tendrán la misma forma de realizar sus cambios, limpiezas, etc.

Figura 4.7 *Revisión de Formato POE*

4.3 Diseño de Experimento

En esta investigación, se emplea el diseño factorial como una técnica de DOE en la cual se incluyen las variables, las cuales tendrán diferentes niveles y en conjunto serán un análisis dentro del proceso para encontrar el Par que cumpla con el objetivo propuesto de humedad.

A partir de un análisis visual y recolectado en la línea de producción se llegó a una toma de temperaturas representativas y más utilizadas por los operadores, para tantear según sus palabras, y encontrar el mejor valor para la producción en proceso, por lo tanto, el modelo tiene 5 niveles para el secador 1 y 4 niveles para el secador 2, dando como resultado el planteamiento de nuestro diseño:

Figura 4.8Resumen del Diseño

Resumen del diseño						
Factores:	2	Réplicas:	2			
Corridas base:	20	Total de corridas:	40			
Bloques base:	1	Total de bloques:	1			
Número de nivele	s: 5; 4					

4.3.1 Resultado de Mejora 3

Las corridas que se realizaron fueron de manera aleatorias con el fin de obtener un diseño con menos errores, dado que así se intenta evitar que el efecto de que un factor esté confundido con el de otro factor no intencionado y se introduzca sesgo en los valores de los efectos, con 2 réplicas tendremos 40 observaciones en total al final del experimento, cabe señalar que se realiza 2 réplicas solamente debido a la cantidad de niveles que tiene cada factor y realizar más incurriría en mayores costos de los planificados.

Figura 4.9

Variables controlables y no controlables

Controllable Variables		Uncontrollal	ble Variables	Response Variable
Dryer	Dryer			
Temperature	Temperature			
#1(°C)	#2(°C)		Floor	
123	93	Bed size on		Humidity
124	94	dryer floor Time	Retention	пиннину
125	95		Tille	
126	96			
127				

4.3.2 Análisis de Resultado de Mejora 3

En la siguiente Tabla se muestra la matriz del diseño factorial con las humedades dadas para cada una de las combinaciones de los factores, es decir para cada experimento realizado. Las cuarenta respuestas se pueden combinar para obtener información, el valor

medio, dos efectos principales y un efecto de interacción entre dos factores. En la Tabla se muestran los resultados de estas cuarenta combinaciones. El cálculo de estos efectos ha sido realizado a partir de las respuestas de todos los experimentos, dado que así se reduce la incertidumbre del valor estimado.

Tabla 4.1Corridas del Experimento

OrdenEst	OrdenCorrida	TipoPt	Bloques	Dryer	Dryer	Humidity
Ordeniest	Ordencorrida	прогс	bioques	Temperature 1	Temperature 2	riamatty
12	1	1	1	125	96	8,65
39	2	1	1	127	95	6,6
9	3	1	1	125	93	7,2
36	4	1	1	126	96	6,8
30	5	1	1	125	94	7,18
29	6	1	1	125	93	7,25
35	7	1	1	126	95	7,13
22	8	1	1	123	94	7,4
40	9	1	1	127	96	6,5
1	10	1	1	123	93	7,43
19	11	1	1	127	95	6,8
2	12	1	1	123	94	7,43
33	13	1	1	126	93	7,07
38	14	1	1	127	94	7,18
5	15	1	1	124	93	7,88
26	16	1	1	124	94	8,52
28	17	1	1	124	96	8,76
10	18	1	1	125	94	7,78
8	19	1	1	124	96	8,66
14	20	1	1	126	94	7,63
23	21	1	1	123	95	8,01
21	22	1	1	123	93	8,86
16	23	1	1	126	96	7,15
24	24	1	1	123	96	7,78
31	25	1	1	125	95	7,4
37	26	1	1	127	93	7,33
7	27	1	1	124	95	7,68
32	28	1	1	125	96	8,04
34	29	1	1	126	94	8,24
11	30	1	1	125	95	7,6
3	31	1	1	123	95	8,06

6	32	1	1	124	94	8,44
4	33	1	1	123	96	8
18	34	1	1	127	94	7,39
27	35	1	1	124	95	7,61
17	36	1	1	127	93	7,33
13	37	1	1	126	93	7,54
25	38	1	1	124	93	7,49
2	39	1	1	127	96	7,39
15	40	1	1	126	95	7,37

Figura 4.10

Análisis Anova

Fuente	GL	SC Ajust.	MC Ajust.	Valor F	Valor p
Modelo	19	10,9200	0,5747	4,90	0,000
Lineal	7	6,3404	0,9058	7,72	0,000
Dryer Temperature 1	4	5,5661	1,3915	11,86	0,000
Dryer Temperature 2	3	0,7743	0,2581	2,20	0,120
Interacciones de 2 términos	12	4,5796	0,3816	3,25	0,010
Dryer Temperature 1*Dryer Temperature 2	12	4,5796	0,3816	3,25	0,010
Error	20	2,3470	0,1173		
Total	39	13,2670			

Figura 4.11

Resumen del Modelo

Resumen del modelo								
S	R-cuad.	R-cuad. (ajustado)						
0,342564	82,31%	65,50%	29,24%					

Figura 4.12

Coeficientes

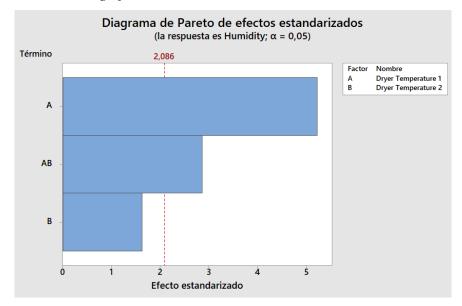

		EE del			
Término	Coef	coef.	Valor T	Valor p	FIV
Constante	7,6140	0,0542	140,57	0,000	
Dryer Temperature 1					
123	0,257	0,108	2,37	0,028	1,60
124	0,516	0,108	4,76	0,000	1,60
125	0,024	0,108	0,22	0,830	1,60
126	-0,248	0,108	-2,29	0,033	1,60
Dryer Temperature 2					
93	-0,0760	0,0938	-0,81	0,427	1,50
94	0,1050	0,0938	1,12	0,276	1,50
95	-0,1880	0,0938	-2,00	0,059	1,50
Dryer Temperature 1*Dryer Temperature 2					
123 93	0,350	0,188	1,86	0,077	2,40
123 94	-0,561	0,188	-2,99	0,007	2,40
123 95	0,352	0,188	1,87	0,076	2,40
124 93	-0,369	0,188	-1,97	0,063	2,40
124 94	0,245	0,188	1,31	0,206	2,40
124 95	-0,297	0,188	-1,58	0,129	2,40
125 93	-0,337	0,188	-1,79	0,088	2,40
125 94	-0,262	0,188	-1,40	0,177	2,40
125 95	0,050	0,188	0,27	0,791	2,40
126 93	0,015	0,188	0,08	0,938	2,40
126 94	0,464	0,188	2,47	0,023	2,40
126 95	0,072	0,188	0,38	0,706	2,40

Figura 4.13 *Ecuación de Regresión*

Ecuación de regresión Humidity = 7,6140 + 0,257 Dryer Temperature 1_123 + 0,516 Dryer Temperature 1_124 + 0,024 Dryer Temperature 1_125 - 0,248 Dryer Temperature 1_126 - 0,549 Dryer Temperature 1_127 - 0,0760 Dryer Temperature 2_93 + 0,1050 Dryer Temperature 2_94 - 0,1880 Dryer Temperature 2_95 + 0,1590 Dryer Temperature 2_96 + 0,350 Dryer Temperature 1*Dryer Temperature 2_123 93 - 0,561 Dryer Temperature 1*Dryer Temperature 2_123 94 + 0,352 Dryer Temperature 1*Dryer Temperature 2_123 95 - 0,140 Dryer Temperature 1*Dryer Temperature 2_123 96 - 0,369 Dryer Temperature 1*Dryer Temperature 2_124 93 + 0,245 Dryer Temperature 1*Dryer Temperature 2_124 94 - 0,297 Dryer Temperature 1*Dryer Temperature 2_124 95 + 0,421 Dryer Temperature 1*Dryer Temperature 2_124 96 - 0,337 Dryer Temperature 1*Dryer Temperature 2_125 93 - 0,262 Dryer Temperature 1*Dryer Temperature 2_125 94 + 0,050 Dryer Temperature 1*Dryer Temperature 2_125 95 + 0,548 Dryer Temperature 1*Dryer Temperature 2_125 96 + 0,015 Dryer Temperature 1*Dryer Temperature 2_126 93 + 0,464 Dryer Temperature 1*Dryer Temperature 2_126 94 + 0,072 Dryer Temperature 1*Dryer Temperature 2_126 95 - 0,550 Dryer Temperature 1*Dryer Temperature 2_126 96 + 0,341 Dryer Temperature 1*Dryer Temperature 2_127 93 + 0,115 Dryer Temperature 1*Dryer Temperature 2_127 94 - 0,177 Dryer Temperature 1*Dryer Temperature 2_127 95 - 0,279 Dryer Temperature 1*Dryer Temperature 2_127 96

En la figura 4.12 se muestra el valor de cada p y dado que son menores que 0.05 mediremos la significancia, que al momento y en orden se encuentran, en primer lugar, el secador 1, la combinación del secador 1 y secador 2 en segundo y al final el secador 2. Estas respuestas se observarán en la gráfica de manera más detallada.

Figura 4.14Pareto con Nivel de Significancia

En la imagen de Pareto observamos como el impacto de la variable secador 1 y la combinación de secador 1 y secador 2 son aquellas las cuales son importantes dentro del modelo.

Figura 4.15Optimizador de Respuesta

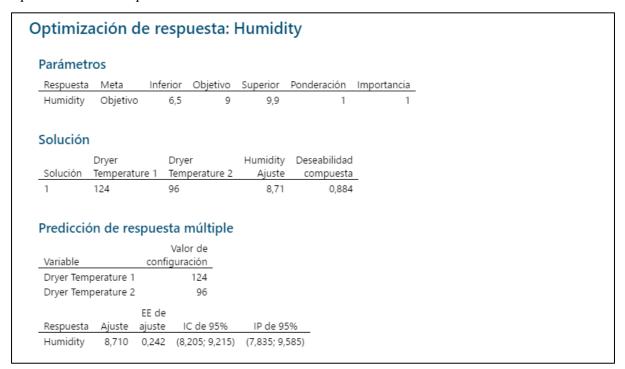
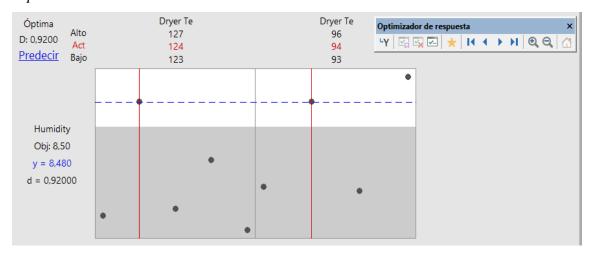



Figura 4.16

Optimo Posible

En la figura 4.16 tenemos el óptimo posible donde Minitab nos brinda el conjunto de valores más cercanos para lograr el objetivo, el cual para nuestro modelo es 124 grados Celsius en el secador 1 y 94 grados Celsius en el secador 2.

4.4 Infografía de importancia de toma de Decisiones

La infografía ayudará a mejorar el sentido de comunicación de los operadores no solo de la línea expuesta en el proyecto en mención, si no también, los operadores de cada una de las líneas que se encuentran en planta, con el fin de que tomen conciencia sobre la importancia de sus decisiones.

4.4.1 Resultado de Mejora 4

La información brindada en la infografía es sobre prácticas operativas la cual no solo habla de comunicación entre los operados, sino también con diferentes temas que se relacionan con el operador e influyen en el proceso, como conocimiento de funciones, gestión del tiempo, documentación, etc.

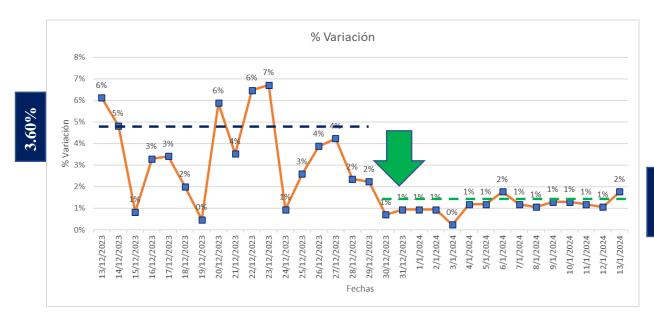
Figura 4.17

Explicación sobre la importancia de la Infografía

4.4.2 Análisis de Resultados de Mejora 4

La infografía anteriormente mencionada se presentó a Gerencia, para que posterior a la finalización del proyecto la puedan imprimir en formatos A3 y así designar en donde ubicar la señalética para las practicas operacionales.

Figura 4.18 *Infografía de Practicas Operacionales*

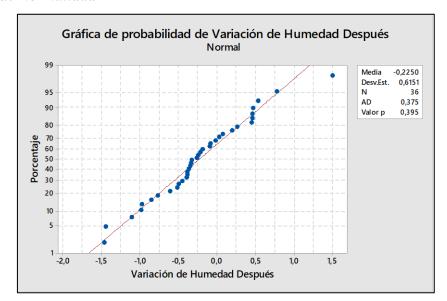


Capítulo 5

5. Resultado y Análisis

En la siguiente serie de tiempo podemos observar el comportamiento de nuestra variable con respecto a las mejoras realizadas y aplicadas a partir del 28 de diciembre del 2023, en donde antes de realizarlas tenemos un promedio de 3.60%, logrando alcanzar un 1.25%, recordando que nuestra variable o benchmark es de 0.98%, es decir se logró reducir 91.81%.

Figura 5.1Reducción de % de Variación de Humedad por día



5.1 Gráfica de Control y Prueba de Normalidad

La evaluación del % de variación de humedad es importante para poder observar el progreso desde el modelo inicial hasta el modelo actual con las soluciones propuestas implementadas, por lo que iniciamos con la verificación de la normalidad de los datos, y se

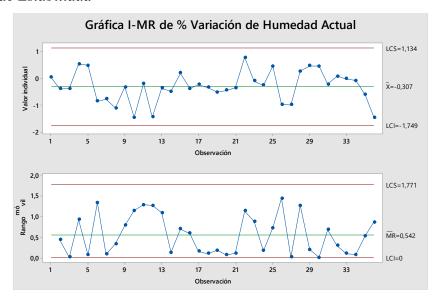
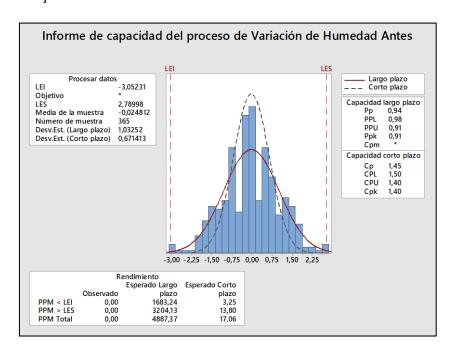

mantengan estables, bajo control estadístico. Para poder hacer estas pruebas se tomaron diferentes muestras a partir del día que se comenzaron a implementar las mejoras, obteniendo los siguientes resultados:

Figura 5.2Prueba de Normalidad

Podemos observar en la figura 5.2 que el valor de p es de 0.312, lo que quiere decir que nuestros datos siguen una distribución normal, esto se debe a que el valor de p es mucho mayor que el nivel de significancia que es 0.05.

Figura 5.3Prueba de Estabilidad



En la figura 5.3 podemos observar que el proceso se encuentra bajo control, esto debido a que los datos tomados para esta prueba se mantienen dentro de los límites de especificación.

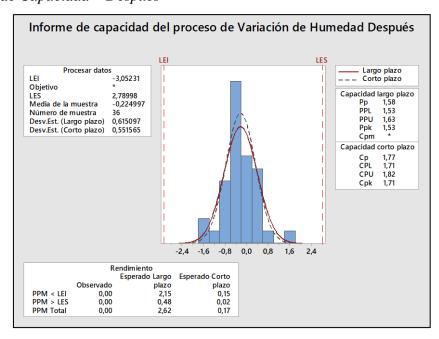

5.2 Análisis de Capacidad

Figura 5.4

Análisis de Capacidad – Antes

Figura 5.5Análisis de Capacidad – Después

Al observar el Cpk antes observamos que es de 1.40, a diferencia del de ahora 1.71 por lo que notamos que nuestro proceso mejoró, además de del que el Ppk pasó de 0.91 a 1.53 lo que significa una reducción en la variación del proceso.

5.3 Triple Bottom Line

5.3.1 Pilar Económico

Con respecto al pilar económico se redujo los costos de manufactura, esto debido a que se redujo el uso del sistema de recuperador de sólido tanto en GLP y Energía

Descripción	Valor (\$)
Ahorro de Gas Licuado de Petróleo	\$25.920
Ahorro de consumo energético	\$12.240
	\$38.160

5.3.2 Pilar Ambiental

Con respecto al pilar ambiental se redujo el consumo de 216.000 Kilos de Gas Licuado de Petróleo, el mismo que ayuda a reducir la huella de carbono y a su vez también es un ahorro económico.

5.3.3 Pilar Social

Y para el pilar social al tener como solución mejor comunicación entre los operadores, se elevó la eficiencia entre ellos, y la comprensión entre ellos mismos.

Capítulo 6

6. Control

Se presenta el plan de control para las diferentes soluciones.

Figura 6.1Plan de Control

No.	SOLUTION	WHAT?	WHY?	HOW?	WHEN?	WHO?	WHERE?
1	New data with representative and frequent records.	Frequent and Data	Because they should have more control of records.	With the new data and methodology.	Daily	Quality Control and Production	Excel File
2	Experiment design.	Parameters	Because they should have more control of parameters and humidity.	Excel with parameter tracking	Daily	Production	Excel File
3	POE's	Procedures	All the operators should to follow the same procedures.	Have procedures ready for backups or new personnel	Weekly	Production	Production Cabin
4	Training Plan regarding decision making with Infographics.	Importance of decisions	Because the decisions influence the process	Take into account the training provided	Weekly	Operational Excellent	Production Cabin

6.1 Plan de Control de Nueva Data y Toma de Frecuencias

Para el control de la nueva data y toma de frecuencias, el soporte será el mismo documento, de modo que todos los días deben de contar como mínimo 15 tomas, el cual ya fue socializado con el área de producción y calidad.

6.2 Plan de Control de Procedimientos Operacionales Estándar

Con respecto al control de procedimiento operacional estándar se debe de anotar en el reporte de producción y cambios todas las actividades que se hagan en la línea, de forma que se encuentre detallado todas las actividades y los propios jefes o supervisores de producción puedan revisar las mismas y consideren cual se encuentre de forma correcta y cual no.

6.3 Plan de Control de Diseño Experimento

Con respecto al plan de control del diseño de experimento en el Excel en donde tienen los registros de los parámetros, el supervisor a cargo deberá de revisar de forma semanal si se están usando los parámetros conseguidos en el diseño de experimento.

6.4 Plan de Control Infografía de la importancia de toma de Decisiones

El control sobre la infografía se especificaron los puntos en donde deben estar puesto los futuros poster, sin embargo, de ser necesario se pueden agregar más puntos, por lo que el formato se encuentra editable.

Capítulo 7

7. Conclusiones y Recomendaciones

7.1 Conclusiones

- Mediante el análisis del proceso, se identificaron los factores con mayor o menor impacto en la humedad, así como aquellos relacionados con la misma.
- La implementación del nuevo formato de registro de muestras
 permitirá la generación de informes utilizando POWER BI, facilitando
 su análisis posterior, adicionalmente se logró mejorar el tiempo de
 muestreo y la data.
- El Procedimiento Operativo Estándar resultó ser una herramienta invaluable para los operadores, especialmente aquellos con poca experiencia, al guiarlos en la ejecución de actividades en el Secador y la extrusora para lograr mantener estabilidad en la humedad.
- Gracias al diseño experimental, se logró determinar la combinación
 óptima de parámetros para minimizar las variaciones de humedad en el
 producto terminado obteniendo como respuesta las temperaturas de
 cada secador, alcanzando una variación del 1.25%.
- El plan de formación implementado para los operadores tuvo un impacto significativo, generando refuerzos que ayudaron en momentos críticos como la puesta en marcha y el muestreo.
- La eficacia del sistema de recuperación de sólidos se tradujo en un notable ahorro de tiempo y recursos, reduciendo significativamente los costos asociados con reprocesos y materiales.
- La prueba piloto demostró que los parámetros establecidos fueron los óptimos para el proceso dando resultados favorables para el proceso,

validando los valores de los factores estandarizados y evidenciando la reducción de 4.28% de variación a 1.25% de variación en la humedad de producto terminado.

7.2 Recomendaciones

- Deberán evaluar el sistema de muestreo mediante una división de responsabilidades entre operadores y analistas de calidad, con el fin de garantizar una mayor precisión y fiabilidad en los datos recolectados, para que puedan seguir trabajando como lo propuesto en el cap. 3.
- En caso de que exista el ingreso de un equipo nuevo al sistema ya establecido se deberá actualizar los Procedimientos Operativos Estándar (SOP) para que puedan acoplarse a los nuevos tiempos operativos.
- Se recomienda realizar reuniones periódicas (semanales o quincenales)
 entre el personal de calidad y los representantes de producción para
 revisar los datos recopilados y tabulados en Power BI, para seguir
 mejorando.
- Se recomienda promover la comunicación y el intercambio de experiencias entre los operadores de diferentes líneas mediante reuniones específicas para recopilar experiencias, conforme a los procedimientos establecidos en el cap. 3.
- Se deberá comprender que el diseño experimental no funcionara como formato y si existe cambios, estos supondrán la creación de otro diseño que considere estos factores con sus respectivos niveles.

 Se recomienda tener un minucioso monitoreo del consumo de Gas
 Licuado de Petróleo por el área de contabilidad debido al alto nivel de ahorro alcanzado, esperando que pueda mantenerse en el tiempo.

8. REFERENCIAS

- Berbach. (2009). The first step of DMAIC. *Integrando la Metodologia DMAIC de Seis Sigma*, (pág. 2).
- Brue. (2002). Six Sigma for Managers. McGraw-Hill.
- Caldentey, E., & Pizarro, C. (s.f.). Administración de inventarfios.
- Chase, R., & Robert Jacobs, F. (2009). Administración de operaciones. En *Administración de operaciones* (pág. 577).
- Garcia Gonzales, R., Juarez León, S., Guevara Ramirez, I., & García Perez, J. (2021).

 DMAIC-SIX SIGMA. 169.
- Han, J. a. (2001). Data mining: concepts and techniques. *Morgan Kaufmann*.
- Liu, B., Wang, L., & Fu, X. (1999). Incorporating external knowledge in market basket analysis., (págs. 167-176).
- Majumdar, R., & Selvi, K. (2014). *Six Sigma-Overview of DMAIC and DMADV*.

 International Journal of Innovative Science and Modern Engineering.
- REAL ACADEMIA ESPAÑOLA. (2014). *Educación*. En Diccionario de la Lengua Española.
- Srikant, R., & Agrawal, R. (1994). Fast algorithms for mining association rules., (págs. 487-499).
- Stephen Uselac, Z. L. (1993). *The Human side of total Quiality team Management*.

 Londonville.
- Suárez, O. d. (s.f.). Una aproximación a la heuristica y metaheuristica. En *Una aproximación* a la heuristica y metaheuristica.