

621.313 P438



ESCUELA SUPERIOR POLITECNICA DEL LITORAL FACULTAD DE INGENIERIA ELECTRICA

"REQUERIMIENTOS DE POTENCIA REACTIVA PARA LA AUTO-EXCITACION DE UN GENERADOR DE INDUCCION"

# **TESIS DE GRADO**

## Previa a la Obtención del Título de:

INGENIERO EN ELECTRICIDAD Especialización POTENCIA

Presentada por:

## ARTURO DAVID PEREZ ROLANDO

Cuayaquil - Ecuador

1992





## AGRADECIMIENTO

9

Al Ing. GUSTAVO BERMUDEZ F. Director de Tesis. DEDICATORIA

A MIS PADRES

A MIS HERMANAS

1000

ING. JORGE FLORES M. SUB - DECANO FACULTAD DE INGENIERIA EN ELECTRICIDAD

·:

ING. GUSTAVO BERMUDEZ F. DIRECTOR DE TESIS

ING. ARMANDO ALTAMIRANO CH. MIEMBRO DEL TRIBUNAL

Eto Alvaro

ING. OTTO ALVARADO MIEMBRO DEL TRIBUNAL

## DECLARACION EXPRESA

"La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma, a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL".

(Reglamentos de Exámenes y Títulos profesionales de la ESPOL).

ARTURO DAVID PEREZ ROLANDO

#### RESUMEN

Conscientes del gran desarrollo que está dándose en la utilización de otras fuentes de energía, a parte de las tradicionales, hemos creido conveniente presentar con este trabajo una aportación al empleo del generador de inducción. El cual se presenta como una de las mejores alternativas para la utilización de fuentes de energía renovables.

En el primer capítulo se contemplan los conceptos básicos de una máquina de inducción, introduciendo la definición del generador de inducción al final del cápitulo.

En el segundo capítulo se explica detalladamente e1 proceso de auto-excitación en generadores de inducción, presentándose una técnica analítica para estudiar e1 comportamiento del generador de inducción en estado estable, desarrollándose también un sistema computacional para facilitar el estudio del generador de inducción. Se explica además la técnica desarrollada para encontrar el valor de la reactancia capacitiva correspondiente al valor de capacitancia mínimo requerido para provocar Y mantener la auto-excitación. Al finalizar este capítulo estudia una aplicación muy particular se de 105 generadores de inducción.

En el tercer y último capítulo se muestran los datos de las pruebas realizadas en el laboratorio de maquinaria de la ESPOL para una máquina de inducción (Kato), realizándose además una comparación entre los datos obtenidos experimentalmente y los obtenidos teóricamente. Por último se muestra un sistema computacional que aplica la técnica propuesta en el capítulo dos, para determinar los requerimientos mínimos de capacitancia.

Con este trabajo se ha pretendido abarcar, si bién es cierto no todo, pero si una gran parte del estudio del comportamiento del generador de inducción con miras a establecer los requerimientos de potencia reactiva minimos para la auto-excitación del generador de inducción, cuando opera como un sistema aislado.

VII

## INDICE GENERAL

| RESUMEN                                   | VI    |
|-------------------------------------------|-------|
| INDICE GENERAL                            | VIII  |
| INDICE DE FIGURAS                         | XII   |
| INDICE DE TABLAS                          | XVII  |
| SIMBOLOGIA                                | XVIII |
| INTRODUCCION                              | XXII  |
| I. CAPITULO                               | 26    |
| LA MAQUINA DE INDUCCION POLIFASICA        | 26    |
| 1.1 Generalidades y conceptos elementales | 26    |
| 1.1.1 Introducción a la máquina polifá-   |       |
| sica de inducción                         | 26    |
| 1.1.2 Torque en una máquina de in-        |       |
| ducción                                   | 29    |
| 1.2 Circuito equivalente de la máquina de |       |
| inducción                                 | 39    |
| 1.2.1 Pruebas para obtener los paráme-    |       |
| tros de la máquina de in-                 |       |
| ducción                                   | 50    |
| 1.2.1.1 Prueba para la determina-         |       |
| ción de la resistencia del                |       |
| estator                                   | 50    |
| 1.2.1.2 Prueba de vacio                   | 52    |
| 1.2.1.3 Prueba de vacio ideal             | 55    |

Pág.

| 1.2.1.4 Prueba de cortocircuito             | Pág.<br>57 |
|---------------------------------------------|------------|
|                                             | 21         |
| 1.2.1.3 Frueba de velocidad sin-            |            |
| crona                                       | 62         |
| 1.2.2 Potencia desarrollada y eficiencia    |            |
| de una máquina de inducción                 | 64         |
| 1.2.3 Característica Torque-Velocidad       |            |
| de la máquina de inducción                  | 68         |
| 1.3 La máquina de inducción como genera-    |            |
| dor                                         | 73         |
| 1.3.1 Diagrama vectorial de un generador    |            |
| de inducción                                | 75         |
| 1.3.2 Operación del generador de            |            |
| inducción                                   | 78         |
|                                             |            |
| CAPITULO                                    | 85         |
|                                             |            |
| ANALISIS DEL GENERADOR DE INDUCCION COMO UN |            |
| SISTEMA AISLADO                             | 85         |
|                                             |            |
| 2.1 El proceso de auto-excitación en        |            |
| generadores de inducción                    | 85         |
| 2.1.1 Introducción                          | 85         |
| 2.1.2 Consideraciones teóricas              | 88         |
| 2.1.2.1 Modelo sincrono                     | 88         |
| 2.1.2.2 Modelo asincrono                    | 92         |
| 2.1.2.3 Interacción entre modelos.          | 98         |

II.

|      |     |                                          | 1 at 1 |
|------|-----|------------------------------------------|--------|
|      |     |                                          | Pág.   |
|      |     | 2.1.3 Consideraciones prácticas          | 100    |
|      | 2.2 | Técnica analítica para estudiar el       |        |
|      |     | comportamiento en estado estable del     |        |
|      |     | generador de inducción                   | 105    |
|      |     | 2.2.1 Introducción                       | 105    |
|      |     | 2.2.2 Bases teóricas                     | 107    |
|      | 2.3 | Requerimiento mínimo de potencia         |        |
|      |     | reactiva                                 | 116    |
|      |     | 2.3.1 Requerimientos de capacitancia en  |        |
|      |     | vacio                                    | 117    |
|      |     | 2.3.2 Requerimientos de capacitancia     |        |
|      |     | bajo carga                               | 120    |
|      | 2.4 | Aplicación de capacitores estáticos a    |        |
|      |     | generadores de inducción que alimentan   |        |
|      |     | lineas monofásicas                       | 127    |
|      |     | 2.4.1 Introducción                       | 127    |
|      |     | 2.4.2 Excitación con dos capacitores     | 128    |
|      |     | 2.4.3 Excitación con transformador y dos | 120    |
|      |     |                                          | 100    |
|      |     |                                          | 133    |
|      |     |                                          |        |
| 111. | CAP | ITULO                                    | 144    |
|      | PRU | EBAS EXPERIMENTALES                      | 144    |
|      | 3.1 | Obtención de parámetros y curvas         |        |

caracteristicas.....144

Х

| 3.2 Comportamiento del generador de          | Pág. |
|----------------------------------------------|------|
| inducción                                    | 150  |
| 3.2.1 Relación entre capacitancia y          |      |
| voltaje en vacio                             | 150  |
| 3.2.2 Relación entre potencia máxima y       |      |
| capacitancia                                 | 155  |
| 3.2.3 Característica de carga del            |      |
| generador de inducción                       | 157  |
| 3.2.4 Relación entre factor de potencia      |      |
| de la carga y capacitancia                   | 164  |
| 3.3 Programa de computación para obtener los |      |
| diferentes requerimientos de capacitan-      |      |
| cia minima                                   | 166  |
| 3.3.1 Descripción general del sistema        | 166  |
| 3.3.2 Diagrama de flujo y listado del        |      |
| programa                                     | 166  |
| 3.3.3 Manual de usuario                      | 170  |
| 3.3.4 Listado del programa                   | 171  |
| CONCLUSIONES Y RECOMENDACIONES               | 179  |
| APENDICE A                                   | 182  |
| APENDICE B                                   | 199  |
| BIBLIOGRAFIA                                 | 201  |

XI



## INDICE DE FIGURAS

No.

Pág.

|      |                                              | -  |
|------|----------------------------------------------|----|
| 1.1  | Modelo elemenmtal de una máquina             |    |
|      | simplificada de dos polos                    | 29 |
| 1.2  | Diagrama vectorial de las ondas de fuerza    |    |
|      | magnetomotiva                                | 33 |
| 1.3  | Circuito equivalente del estator para un     |    |
|      | motor de inducción polifásico                | 40 |
| 1.4  | Circuito equivalente del rotor para un motor |    |
|      | de inducción polifásico a frecuencia de      |    |
|      | deslizamiento                                | 45 |
| 1.5  | Circuito eqivalente para un motor de         |    |
|      | inducción polifásico                         | 48 |
| 1.6  | Devanados conectados en Y                    | 51 |
| 1.7  | Devanados conectados en Delta                | 51 |
| 1.8  | Esquema para prueba en vacío                 | 52 |
| 1.9  | Circuitos equivalentes en vacío              | 55 |
| 1.10 | Esquema para la prueba de vacío ideal        | 56 |
| 1.11 | Esquema para la prueba de cortocircuito      | 59 |
| 1.12 | Circuito equivalente para la condición de    |    |
|      | cortocircuito                                | 60 |
| 1.13 | Variación típica de Vg/F con respecto a Xm   |    |
|      | a partir de la prueba de velocidad síncrona  | 64 |
| 1.14 | Circuito equivalente aproximado de un        |    |
|      | motor de inducción                           | 69 |
| 1.15 | Aplicación del teorema de Thévenin al        |    |

## XIII

| No.  | circuito equivalente del motor de           | Pág. |
|------|---------------------------------------------|------|
|      | inducción                                   | 69   |
| 1.16 | Torque desarrollado por una máquina de in-  |      |
|      | ducción como una función del deslizamiento  | 71   |
| 1.17 | Torque desarrollado por una máquina de in-  |      |
|      | ducción como una función de la velocidad    | 72   |
| 1.18 | Diagrama vectorial de un generador de       |      |
|      | inducción                                   | 77   |
| 1.19 | Circuito equivalente aproximado para un     |      |
|      | generador de inducción                      | 79   |
| 1.20 | Diagrama fasorial del circuito equivalente  |      |
|      | aproximado del generador de inducción       | 79   |
| 1.21 | Curvas P vs. Q para un generador de         |      |
|      | inducción a un voltaje del 100, 120 y 140   |      |
|      | por ciento, y a una frecuencia del 100 %    | 82   |
| 1.22 | Curvas características de un generador de   |      |
|      | inducción                                   | 84   |
| 2.1  | Modelo síncrono del generador de inducción  |      |
|      | auto-excitado                               | 86   |
| 2.2  | Modelo asíncrono del generador de inducción |      |
|      | auto-excitado                               | 87   |
| 2.3  | Variación de la inductancia magnetizante    |      |
|      | con la corriente magnetizante               | 87   |
| 2.4  | Circuito equivalente del modelo síncrono,   |      |
|      | incorporando el magnetismo remanente como   |      |

| No.  | una fuente de voltaje dependiente de la      | Pág. |
|------|----------------------------------------------|------|
|      | frecuencia                                   | 89   |
| 2.5  | Puntos de posible operación de un            |      |
|      | generador de inducción en modo sincrono      |      |
|      | para tres niveles de magnetismo              |      |
|      | remanente                                    | 91   |
| 2.6  | Gráfico de alpha vs. velocidad de la         |      |
|      | máquina para dos valores de inductancia      |      |
|      | magnetizante. Lm = 0.4 H y 0.24 H            | 95   |
| 2.7  | Curvas de alpha presentando un crecimiento y |      |
|      | decrecimiento exponencial de corrientes      |      |
|      | asíncronas. (máquina de inducción con        |      |
|      | parámetros dados anteriormente)              | 96   |
| 2.8  | Curvas de alpha para el área de operación    |      |
|      | crítica de la máquina con iniciación de      |      |
|      | auto-excitación. Alpha positivo              |      |
|      | correspondiente al crecimiento de            |      |
|      | corrientes asíncronas con excitación         |      |
|      | dominante                                    | 97   |
| 2.9  | Diagrama vectorial coorrespondiente al punto |      |
|      | x (en la figura 2.5 para el circuito         |      |
|      | mostrado en la figura 2.4)                   | 99   |
| 2.10 | Diagrama vectorial correspondiente al punto  | ~ ~  |
|      | Υ                                            | 99   |
| 2.11 | Gráfico de la inductancia magnetizante       |      |

XIV

| No.  |                                              | Pág. |
|------|----------------------------------------------|------|
|      | mostrando barras de error                    | 104  |
| 2.12 | Circuito equivalente del generador de        |      |
|      | inducción con carga                          | 108  |
| 2.13 | Circuito equivalente en vacío                | 119  |
| 2.14 | Variación de K con respecto a R y v          | 123  |
| 2.15 | Variación de K con respecto a Z y al         |      |
|      | factor de potencia de la carga               | 124  |
| 2.16 | Variación de K con respecto a v y al         |      |
|      | factor de potencia de la carga               | 126  |
| 2.17 | Circuito modelo A para un generador de       |      |
|      | inducción trifásico, usando una línea        |      |
|      | monofásica 3 hilos, 120/240 voltios          | 129  |
| 2.18 | Diagrama fasorial del circuito modelo A      | 129  |
| 2.19 | Circuito modelo A'                           | 132  |
| 2.20 | Diagrama fasorial para el circuito A'        | 133  |
| 2.21 | Circuito modelo B                            | 134  |
| 2.22 | Diagrama fasorial del circuito modelo B      | 134  |
| 2.23 | Circuito modelo C                            | 137  |
| 2.24 | Diagrama fasorial del circuito modelo C      | 137  |
| 2.25 | Requerimientos de Voltio-amperios de         |      |
|      | capacitores Vcap vs. Angulo del factor de    |      |
|      | potencia de la máquina                       | 140  |
| 2.26 | Requerimientos de Voltio-amperios vs. Angulo |      |
|      | del factor de potencia de la máquina         | 142  |
| 3.1  | Variación de Vg/F con respecto a Xm. a       |      |

XV



| No   |                                                        | DAG |
|------|--------------------------------------------------------|-----|
| NO.  | partir de la prueba de velocidad sincrona              | 149 |
| 3.2  | Esquema de conexión para determinar el                 |     |
|      | voltaje terminal en vacío Vt, con respecto a           |     |
|      | la variación de C                                      | 153 |
| 3.3  | Variación del voltaje terminal Vt, con                 |     |
|      | respecto a la capacitancia C (en vacío)                | 154 |
| 3.4  | Variación de Pmáx con respecto a K                     | 156 |
| 3.5  | Variación de Pmáx con respecto a v y Xc                | 156 |
| 3.6  | Característica de carga del generador de               |     |
|      | inducción para 70 μf (Máquina Kato)                    | 161 |
| 3.7  | Característica de carga del generador de               |     |
|      | inducción para 80 μf (Máquina Kato)                    | 162 |
| 3.8  | Característica de carga del generador de               |     |
|      | inducción para 90 μf (Máquina Kato)                    | 163 |
| 3.9  | Característica de carga del generador de               |     |
|      | inducción para diferentes factores de                  |     |
|      | potencia                                               | 165 |
| 3.10 | Diagrama de flujo del sistema que determina            |     |
|      | los requerimientos de capacitancia minima,             |     |
|      | para la auto-excitación del g <mark>enerador de</mark> |     |
|      | inducción.                                             | 170 |

## INDICE DE TABLAS

| No    |                                           |      |
|-------|-------------------------------------------|------|
| NO.   |                                           | Pág. |
| Ι.    | Variación de F/v con la velocidad         | 118  |
| II.   | Datos de la prueba voltimetro-amperimetro | 146  |
| III.  | Datos de la prueba en vacío               | 146  |
| IV.   | Datos de la prueba de vacío ideal         | 147  |
| ۷.    | Datos de la prueba de cortocircuito       | 147  |
| VI.   | Datos de la prueba de velocidad síncrona. | 148  |
| VII.  | Valores del voltaje terminal Vt para una  |      |
|       | variación de la capacitancia C en vacío   | 153  |
| VIII. | Característica de carga de la máquina     |      |
|       | Kato                                      | 159  |

## SIMBOLOGIA

- F = Frecuencia.
- p = Número de polos al que se encuentra devanado un estator.
- s = Diferencia de velocidades entre el campo giratorio y el rotor.
- &er = Angulo entre el eje del campo del estator y
  el eje del campo del rotor.

fmm = Fuerza magnetomotiva.

H = Intensidad de campo magnético.

Fe, Fr = Fuerza magnetomotiva del estator y del rotor respectivamente.

- D = Diámetro promedio del entrehierro.
- 1 = Longitud axial del entrehierro.
- g = Espacio libre del entrehierro.

XIX Permeabilidad del espacio libre. Torque electromagnético. resultante del efecto entre las fuerzas magnetomotivas del estator y rotor. Voltaje terminal en el estator. Fuerza contraelectromotriz generada por el flujo resultante en el entrehierro. Corriente del estator.

Re Resistencia efectiva del estator. -----

Reactancia de dispersión del estator. Xle =

Conductancia magnética. Gc \_

Fluio

Bm Susceptancia magnética. =

Voltaje inducido. Ε =

μο

T

øer

V1

٧g

Ie

----

-

=

=

==

=

Zr Impedancia de dispersión del rotor а frecuencia deslizamiento, fase, por referida al estator.

Rr Resistencia efectiva del rotor, referida al = estator.

Reactancia dispersión del rotor sXlr = de а



Ir = , Corriente del rotor referida al estator.

Vn, Vl-1 = Voltaje nominal por fase y de fase a fase respectivamente.

Io = Corriente en vacío.

- Fo = Fotencia total en vacío.
- Rm = Resistencia magnetizante.

Xm = Reactancia magnetizante.

Vcc = Voltaje de cortocircuito por fase.

In = Corriente nominal por fase.

- Pcc = Potencia total de entrada en cortocircuito.
- Pf+v = Pérdidas por fricción más ventilación.

Ph-rot = Pérdidas por hierro rotacional.

- m1 = Número de fases de la máquina de inducción.
- Zcc = Impedancia total en cortocircuito.
- Zth, Vth = Impedancia y voltaje Thévenin.

Td = Torque desarrollado

XX

XXI

. . . .

#### INTRODUCCION

Del exagerado incremento en la explotación de los recursos de energía convencionales no renovables, nace un gran interés en desplazar dichos recursos por otros renovables como la energía eólica, la energía mareomotríz, etc..

Se ha calculado que la energía total en la atmósfera de 14 la tierra es aproximadamente 10 MW y se ha estimado que 6 por lo menos 10 MW corresponde a energía recuperable del viento (10). Este valor es por lo menos díez veces mayor que toda la potencia hidroeléctrica disponible en el mundo.

Del avance tecnológico alcanzado dentro del campo de conversión de energía, los sistemas electromecánicos son los que han permitido alcanzar un gran desarrollo en la conversión de enegía de fuentes no-renovables a energía mecánica y luego a energía eléctrica, pero a partir de fuentes no pulsantes, debido a que para esta última etapa se han utilizado básicamente alternadores síncronos, cuya estructura básica permanece igual desde el siglo pasado donde fueron introducidos.

Tanto la energía eólica, como la energía mareomotriz son fuentes pulsantes de energía, donde la utilización de



alternadores sincronos seria impropia.

Es entonces, cuando el generador de inducción despierta un gran interés debido a su habilidad de convertir potencia mecánica (producto de una fuente de energía pulsante) a potencia eléctrica sobre un amplio rango de velocidad para el rotor.

Además, debido al reciente desarrollo de fuentes estáticas de potencia reactiva, con controladores de potencia de estado sólido, permite que grandes oportunidades se abran para el uso de generadores de inducción a gran escala.

Se han desarrollado tres opciones de diseño de control:

- Sistemas de velocidad variable y frecuencia constante (VSCF);
- Sistemas de velocidad constante y frecuencia constante (CSCF); y,
- Sistemas de velocidad variable y frecuencia variable (VSVF).

El presente trabajo se puede ubicar en la tercera categoría. Donde un arreglo capacitor, generador de inducción y primo-motor de velocidad variable, servirán para aplicaciones autónomas con cargas insensibles a la frecuencia, donde la potencia alterna generada puede utilizarse con una frecuencia variable que corresponda al



cambio de velocidad del primo-motor.

En el desarrollo de este trabajo se justificará claramente el proceso de auto-excitación en los generadores de inducción, y se estudiará una técnica analítica que permita establecer las condiciones del generador en estado estable, actuando como una unidad autónoma.

Pero el objetivo principal de este trabajo está centrado en la obtención de la reactancia capacitiva correspondiente al valor de capacitancia mínimo requerido para provocar y mantener la auto-excitación del generador de inducción.

Cabe señalar que se ha incluido en este trabajo el desarrollo de dos programas de computación; el primero para realizar todos los cálculos pertinentes a la obtención del valor de reactancia capacitiva máxima y el segundo para determinar el comportamiento en estado estable del generador de inducción.

Finalmente se realizarán pruebas con una máquina experimental para observar la validez del análisis teórico explicado en este trabajo.

Quede constancia que este trabajo no pretende ser exhaustivo en el estudio del generador de inducción, sino que de acuerdo al propósito y nombre de la tesis, la de determinar las necesidades mínimas de potencia reactiva del generador de inducción cuando opera como una unidad aislada.

## CAPITULO I

### LA MAQUINA DE INDUCCION POLIFASICA

#### 1.1 GENERALIDADES Y CONCEPTOS ELEMENTALES

## 1.1.1 INTRODUCCION A LA MAQUINA POLIFASICA DE INDUCCION

Cuando el devanado del estator de una máquina de inducción es alimentado por una fuente polifásica balanceada, se produce en el entrehierro un campo magnético giratorio que viaja a la velocidad sincrónica determinada por la frecuencia de alimentación y el número de polos de la máquina.

Se asume que el rotor está girando a una velocidad estable de n rev/min en la misma dirección del campo giratorio del estator, el cual gira a una velocidad n1 rev/min dada por la ecuación (1.1).

Por lo tanto , el rotor está girando a una velocidad de (n1-n) hacia atrás con respecto al

campo giratorio, o también, el deslizamiento del rotor es (n1-n) rev/min.

Generalmente el deslizamiento es expresado como una fracción de la velocidad sincrónica; por lo tanto el deslizamiento en por unidad es:

$$s = (n1-n)/n1$$
 (1.2)

Debido al movimiento relativo entre el flujo giratorio y los conductores del rotor, se induce voltaje en estos de frecuencia sf, llamada frecuencia de deslizamiento.

En el arranque, la velocidad del rotor es cero (n=0), por lo tanto el deslizamiento es s=1 y las frecuencias del rotor y estator son iguales. El campo producido por las corrientes del rotor gira a la misma velocidad que el campo del estator, y resulta un torque de arranque que tiende a girar el rotor en dirección del campo que induce el estator. Si este torque es suficiente para vencer la oposición a la rotación, creada por la carga del eje, entonces el motor llegará a su velocidad de operación.



La velocidad de operación nunca puede ser igual a la velocidad sincrónica, ya que para ello, los conductores del rotor deberían estar estacionarios con respecto al campo del estator, luego la velocidad relativa entre el campo giratorio y el rotor sería cero (n1-n=0) y no se inducirían voltajes en los conductores del rotor.

Con el rotor girando en la misma dirección de rotación del campo del estator, la frecuencia de las corrientes del rotor es sf, y la componente del campo del rotor provocada por ellas girará a sn1 rev/min con respecto al rotor y hacia adelante. Pero superpuesta a esta rotación está la rotación mecánica del rotor n rev/min.

La velocidad del campo del rotor en el espacio es la suma de estas dos velocidades e igual a:

$$sn1 + n = sn1 + n1 (1-s) = n1$$
 (1.3)

Los campos del estator y rotor están por lo tanto estacionarios entre sí, en consecuencia se produce un torque estable y se mantiene la rotación.



## 1.1.2 TORQUE EN UNA MAQUINA DE INDUCCION

del el entrehierro El flujo magnético en condición que una estator rotor es У polos de corresponde la aparición а el estator COWO en el tanto magnéticos en en sus respectivos ejes rotor, centrado magnéticos como se muestra en la figura (1.1)para una máquina de 2 polos con un entrehierro uniforme.



Fig. 1.1 Modelo elemental de una máquina simplificada de 2 polos.

El torque es producido por la tendencia, de las dos componentes de campo magnético, a alinear sus ejes magnéticos. El torque es proporcional al producto de las amplitudes de las ondas de fuerza magnetomotivas (fmm) del estator y rotor. Para una máquina con entrehierro uniforme el torque es proporcional al sen der.

La mayor parte del flujo producido por los devanados del estator y rotor (alrededor del 90% en máquinas típicas) cruza el entrehierro y enlaza ambos devanados; este flujo es llamado flujo mutuo.

Sin embargo un pequeño porcentaje del flujo no cruza el entrehierro y enlaza sólo el devanado del estator o del rotor; estos 500 respectivamente, el flujo de dispersión del estator y el flujo de dispersión del rotor. Ellos comprenden también, el flujo de dispersión de las ranuras, en la parte superior del diente, en los cabezales y el flujo de dispersión diferencial (armónico). Y es sólo el flujo mutuo el que concierne directamente en la producción del torque.

Los flujos de dispersión afectan el funcionamiento de la máquina, debido al voltaje que ellos inducen en sus propios devanados. Sus efectos sobre las características eléctricas explican <u>las inductancias de dispersión</u> (como un transformador). Sin embargo este efecto es auxiliar y no forma parte en la producción del torque.

El análisis por lo tanto será en términos del flujo mutuo resultante. Se derivará una expresión para la coenergía magnética almacenada en el entrehierro en términos de las fuerzas magnética del estator y rotor y el ángulo √er entre sus ejes magnéticos.

El torque puede ser encontrado de la derivada parcial de la coenergía con respecto al ángulo Jer.

Ahora se asumirá que la componente tangencial del campo magnético en el entrehierro es despreciable comparada con la componente radial. También se asumirá que la longitud radial del entrehierro es pequeño comparado con radio del rotor o estator. e1 Con estas asunciones existe una diferencia despreciable entre la densidad del flujo en la superficie del rotor, en la superficie del estator, o en cualgier otra distancia radial del entrehierro. El campo en el entrehierro se reduce entonces a un campo radial H o B cuya intensidad varía con el ángulo alrededor de la periferia.

El integral de línea de H a lo largo del

entrehierro es simplemente Hg e igual a la fuerza magnetomotiva Fer de los devanados del estator y rotor, esto es:

Donde Fer denota la onda de fuerza magnetomotiva como una función del ángulo alrededor de la periferia.

Las ondas de fuerza magnetomotiva del estator y rotor son ondas espaciales sinusoidales con un ángulo de fase der entre sus ejes magnéticos en grados eléctricos. Ellos pueden ser representados por los vectores de espacio Fe y Fr dibujando a lo largo de sus ejes mágneticos de las ondas de f.m.m. del estator y rotor, como se muestra en la figura (1.2).

El torque es producido por la tendencia a alinearse de los campos magnéticos del estator y rotor.

La f.m.m. resultante Fer actuando a lo largo del entrehierro, también es una onda sinusoidal es el vector suma. Y su valor pico es encontrado a partir de la ley del coseno.



Fig. 1.2 Diagrama vectorial de las ondas de f.m.m.

 $Fer^{2} = Fe^{2} + Fr^{2} + 2 Fe Fr \cos \sqrt{er}$ (1.5)

Donde las magnitudes F son los valores pico de las ondas f.m.m.. La resultante radial del campo H es una onda de espacio sinusoidal cuyo valor pico (Hpico) se lo obtiene a partir de la ecuación (1.4).

$$Hpico = Fer/g$$
(1.6)

Ahora consideremos la coenergía del campo magnético almacenada en el entrehierro.

La densidad de la coenergia en un punto donde la intensidad del campo magnético es H es 2 ( $\mathcal{M}$  o/2)H en unidades SI. La densidad de coenergia promedio sobre el volumen del entrehierro es  $\mathcal{M}$ /2veces el valor promedio de 2 H. El valor promedio del cuadrado de una onda sinusoidal es la mitad de su valor pico. Por lo tanto:

Densidad de coenergía promedio = 
$$(\mathcal{M} o/2)$$
  
2 2  
H pico/2 =  $\mathcal{M} o/4$  (Fer/g) (1.7)

La coenergía total es : W'fld = (densidad de coenergía promedio) \* (volumen del entrehierro)

$$W' fld = \mathcal{M}_0 \pi D1 / 4 g (Fer)$$
 (1.8)

donde:

D = diámetro promedio del entrehierro (m) 1 = longitud axial del entrehierro (m) g = espacio libre del entrehierro (m)  $\mathcal{M}_0$ = permeabilidad del espacio libre = 4 **\*** 10 (H/m)

De la ecuación 1.6 la coenergía almacenada en el entrehierro puede ahora ser expresada en términos de las amplitudes pico de las ondas f.m.m. del estator y rotor y el ángulo de espacio-fase entre ellas; esto es:

2 - 2W'fld =  $M_0 \pi D 1/4g$  (Fe + Fr + 2 Fe Fr cos er ) (1.9)

Una expresión para el torque electromagnético se puede obtener ahora en términos de la interacción de los campos magnéticos tomando la derivada parcial de la coenergía del campo con



respecto al ángulo. Para una máquinea de 2 polos:

$$T = \frac{\partial willd}{\partial er} = -\frac{\mathcal{U}_0 77 \text{ Dl}}{2 \text{ g}} \text{ Fe Fr SENder} \quad (1.10)$$

Para una máquina de p polos la ecuación 1.11 da el torque por par de polos.

El torque para una máquina de p polos es entonces:

Esta ecuación nos indica que el torque es proporcional a los valores pico de ondas de f.m.m. del estator y rotor. Torques iguales y opuestos hacen esfuerzo sobre el rotor y estator. El torque sobre el estator es simplemente transmitido a través de la estructura de la máquina a su base.

De la figura 1.2 se puede observar que Fr sen er es la componente de la onda Fr en cuadratura de espacio eléctrico con la onda Fe. Similarmente Fer sen der es la componente de la onda Fe en cuadratura con la onda Fr.

For lo tanto, el torque es proporcional al

35



producto de un campo magnético con la componente del otro en cuadratura con el primero, como el producto cruz del análisis vectorial. También se puede notar en la figura (1.2):

Fe sender = Fer sendr 
$$(1.12)$$
  
Fr sender = Fer sende  $(1.13)$ 

El torque puede entonces ser expresado en términos de la onda de f.m.m. resultante Fer mediante la sustitución de cualquiera de las ecuaciones 1.12 ó 1.13 en la ecuación 1.11, así tenemos:

$$T = - (P \pi M_0 D 1/4g)$$
 Fr Fer Sen  $\sqrt{r}$  (1.15)

Comparando las ecuaciones 1.11, 1.14, y 1.15 se observa que el torque puede ser expresado en términos de la componente de campos magnéticos debidos a cada corriente actuando sola, como en la ecuación 1.11, o en términos del campo resultante y también de las componentes, como en las ecuaciones 1.14 y 1.15, con tal que se
use el ángulo correspondiente entre los ejes de los campos.

En las ecuaciones 1.11, 1.14 y 1.15 los campos han sido expresados en términos de los valores pico de sus ondas de f.m.m. Cuando la saturación magnética es despreciada, los campos pueden ser expresados en términos de sus ondas densidad de flujo o en términos del flujo total por polo. Esto es el valor pico B del campo debido a la onda de f.m.m. distribuida sinusoidalmente en una máquina con un entrehierro uniforme es Ho F/g, donde F es el valor pico de la onda de f.m.m. Por ejemplo, la f.m.m. resultante Fer produce una onda de densidad de flujo resultante cuyo valor pico es o Fer/g. Esto es :

T = -P/2 (  $\pi$  D1/2) Ber Fr sen  $\sqrt{r}$  (1.16)

Una de las limitaciones inherente en el diseño de aparatos electromagnéticos es la densidad de flujo de saturación de los materiales magnéticos.

Debido a la saturación en los dientes de la armadura el valor pico Ber de la onda densidad de flujo resultante en el entrehierro está limitada en 1 1 (64.5 kilolíneas/pulg). El valor permisible máximo de la onda de f.m.m. está limitado por el aumento de temperatura del devanado y otros requerimientos del diseño.

Formas alternativas surgen cuando es reconocido que el flujo resultante por polo es:

y que el valor promedio de una sinusoide sobre 1/2 longitud de onda es  $2/\pi$  veces su valor pico. Esto es:

$$\oint = 2D1B/F \tag{1.18}$$

donde B es valor pico de la correspondiente onda densidad de flujo. For ejemplo, sustituyendo la ecuación 1.18 en la ecuación 1.16 tenemos :

$$T = -\pi/2 (F/2) \oint er Fr sen \sqrt{r}$$
(1.19)

donde  $\oint$  er es el flujo resultante producido por el efecto combinado de las f.m.ms. del estator y rotor. Como se puede observar, el torque de una máquina con entrehierro uniforme puede ser expresado de algunas formas en términos de sus campos magnéticos. Todos ellos expresan el hecho de que el torque es proporcional a la interacción de los campos y al seno del ángulo espacial eléctrico entre sus ejes magnéticos.

El signo negativo indica que el torque electromagnético actúa en una dirección que tiende a disminuir el ángulo de desplazamiento entre sus campos.



### 1.2 CIRCUITO EQUIVALENTE DE LA MAQUINA DE INDUCCION

Para este análisis sólo serán consideradas máquinas con devanados polifásicos simétricos alimentados por voltajes polifásicos balanceados. Como en muchas otras discusiones de dispositivos polifásicos, es de mucha ayuda pensar en máquinas trifásicas conectadas en Y, para de esta manera, las corrientes sean siempre los valores de línea y los voltajes valores de línea a neutro.

Primero considerar las condiciones en el estator. La rotación sincrónica de la onda de flujo en el entrehierro genera fuerza contra-electromotriz (f.c.e.m.) polifásica balanceada en las fases del estator. El voltaje terminal en el estator difiere de la f.c.e.m. por la caída de voltaje en la impedancia de dispersión del estator, la relación fasorial para la fase bajo esta consideración es:

$$V1 = Vg + Ie (Re + jXle)$$
 (1.20)

donde:

V1 = voltaje terminal en el estator.

Vg = f.c.e.m. generada por el flujo resultante en el entrehierro.

Ie = corriente del estator.

40

Re = resistencia efectiva del estator.

Xle = reactancia de dispersión del estator.

Las direcciones positivas se muestran en el circuito equivalente de la figura 1.3.

El flujo resultante en el entrehierro es creado por las corrientes de las f.m.m. combinadas del estator y rotor. La corriente en el estator puede ser descompuesta en dos componentes, una componente de carga y una componente de excitación.



Fig. 1.3 Circuito equivalente del estator para un motor de inducción polifásico.

La componente de carga Ir produce una f.m.m. la cual contrarresta la f.m.m. de la corriente del rotor.

La componente de excitación IØ es la corriente adicional del estator requerida para crear el flujo resultante en el entrehierro y es una función de la f.c.e.m. Vg.

La corriente de excitación puede ser descompuesta a su vez en una componente pérdidas en el núcleo Ic en fase con Vg y una componente de magnetización Im atrasada a Vg en 90 grados. En el circuito equivalente la corriente de excitación puede SPr distribuida en un ramal en paralelo formada por la conductancia Gc, que representa las pérdidas en el núcleo y la susceptancia magnetizante Bm en paralelo, conectadas entre Vg, tal como lo muestra la figura 1.3.

Los valores de Gc y Bm son usualmente determinados a valores de frecuecia y voltaje de operación normal de la máquina.

Para completar el circuito, los efectos del rotor deben ser incorporados. Esto será realizado considerando corrientes y voltajes del estator y rotor en términos de cantidades referidas al estator.

En cuanto a lo que concierne a las componentes fundamentales, ambos, el rotor devanado y el rotor jaula de ardilla reaccionan produciendo una onda de f.m.m. que tiene el mismo número de polos que la onda de flujo inducida, viajando a la misma velocidad que

la onda de flujo, y con un ángulo de torque igual 90 grados mayor que el ángulo de factor de potencia del rotor. La reacción de la onda de f.m.m. del rotor sobre el estator requiere una componente de carga compensada de la corriente del estator y con lo cual permite al estator absorver de la línea la potencia necesaria para sostener el torque creado por interacción de las ondas de flujo y f.m.m. 1.2 E1 único medio por el cual el estator sabe lo que está pasando es a través del flujo del entrehierro y las ondas de f.m.m. del rotor. Consecuentemente, si el rotor fuera reemplazado por uno que tenga la misma f.m.m. y factor de potencia a la misma velocidad, el estator debería ser incapaz de detectar el cambio. Dicho reemplazo permite la idea de referir cantidades del rotor al estator, una idea que es de gran valor en la traducción de las consideraciones de f.m.m. а flujo en el circuito equivalente de la máquina.

Consideremos por ejemplo, un rotor devanado para el mismo número de polos y fases que el estator.

El número de vueltas efectivas por fase en el devanado del estator es <u>a</u> veces el número en el devanado del rotor.

Comparando el efecto magnético de este rotor con el

43

de un rotor equivalente magnéticamente teniendo el mismo número de vueltas que el estator. Para el mismo flujo y velocidad la relación entre el voltaje Erotor inducido en el rotor real y el voltaje E2e inducido en el rotor equivalente es:

Si los rotores son equivalentes magnéticamente, sus amperio-vueltas deben ser iguales, y la relación entre la corriente del rotor real Irotor y la corriente I2e en el rotor equivalente debe ser:

Consecuentemente la relación entre la impedancia de dispersión a frecuencia-deslizamiento Z del rotor 2e equivalente y la impedancia de dispersión a frecuencia-deslizamiento Zrotor del rotor real debe ser:

$$Z = E / I = a Erotor / IrotIr = a Zrotor$$

$$Ze = 2e \qquad (1.23)$$

Los voltajes, corrientes e impedancias en el rotor equivalente son definidos como sus valores referidos al estator.



Desde el punto de vista del estator, los efectos reflejados del rotor aparecen en términos de cantidades referidas, y la teoría de ambos rotores jaula de ardilla y devanado pueden ser formulados en términos del rotor referido. Se debe asumir, por lo tanto, que las constantes del rotor referidas son conocidas.

Cuando el rotor es corto-circuitado, la relación fasorial entre la f.c.e.m. a frecuencia de deslizamiento generada en la fase de referencia del rotor referido y la corriente I2e en esta fase es:

$$E / I = Z = Rr + jsXlr$$
 (1.24)  
2e 2e 2e

donde:

Z = impedancia de dispersión del rotor a frecuencia r de deslizamiento, por fase, referida al estator.

Rr = resistencia efectiva referida.

sXlr = reactancia de dispersión referida a frecuencia de deslizamiento.

La reactancia es expresada en esta forma porque es proporcional a la frecuencia del rotor y por lo tanto al deslizamiento. Esto es, Xlr es definido como el valor referido de la reactancia de dispersión del rotor a <u>frecuencia</u> <u>del</u> <u>estator</u>. El circuito equivalente a frecuencia de deslizamiento de una fase del rotor referido es mostrado en la figura 1.4



Fig. 1.4 Circuito equivalente del rotor para un motor de inducción a frecuencia de deslizamiento.

El estator ve una onda de flujo y una onda de f.m.m. girando a velocidad sincrónica. La onda de flujo induce el voltaje E2e en el rotor a frecuencia de deslizamiento y la f.c.e.m. del estator Vq. Si no fuera por el efecto de la velocidad, el voltaje del rotor referido debería ser igual al voltaje del estator, ya que el devanado del rotor referido es idéntico que el devanado del estator. Debido a que la velocidad relativa de la onda de flujo con respecto al rotor es <u>s</u> veces su velocidad con respecto al estator, la relación entre los valores efectivos de las f.e.m. del estator y rotor es:



La onda de f.m.m. del rotor es opuesta a la f.m.m. de la componente de carga Ir de la corriente del estator, y por lo tanto, para valores efectivos:

Dividiendo la ecuación 1.25 para la ecuación 1.26, se tiene:

Cuando se reconoce que el torque puede ser calculado en términos de f.m.m. y del flujo resultante en el entrehierro, <u>como en la ecuación 1.19</u>, y que torques iguales y opuestos actúan sobre el rotor y estator, se ve que la onda de f.m.m. creada por la corriente de carga del estator Ir debe estar desplazada en el espacio de la onda de flujo resultante por el mismo ángulo que entre la onda de f.m.m. del rotor y el flujo resultante del entrehierro, llamado ángulo de torque  $\sqrt{er}$ .

El Ángulo tiempo-fase entre el voltaje del estator Vg y la corriente de carga del estator Ir deberá por lo tanto, ser igual al ángulo de tiempo correspondiente para el rotor, llamado, ángulo de factor de potencia del rotor  $\oint 2$ . El hecho de que los torques del

rotor y estator están en oposición es considerado, desde que la corriente del rotor I 🛛 es creada por la 20 f.e.m. del rotor E por cuanto la corriente del 2P está fluyendo contra la f.c.e.m. estator I2 del estator. Por lo tanto, la ecuación 1.27 PS verdadera, no sólo para valores efectivos, sino también en un sentido fasorial. Realizando la sustitución de la ecuación 1.24 en el equivalente fasorial de la ecuación 1.27, se tiene:

Dividiendo para s se tiene:

$$Vg / Ir = Rr/s + j X1r$$
 (1.29)

Esto es, el estator ve las condiciones magnéticas en el entrehierro las cuales resultan en un voltaje inducido en el estator Vg y una corriente de carga en el estator Ir y, debido a la ecuación 1.29 estas condiciones son idénticas con el resultado de conectar una impedancia Rr/s + jXlr en paralelo a E'.

Consecuentemente, el efecto del rotor puede ser incorporado en el circuito equivalente de la figura 1.3 conectando esta impedancia entre los terminales ab. El resultado final es mostrado en la figura 1.5.



Fig. 1.5 Circuito equivalente para un motor de inducción polifásico.

El efecto combinado de la carga del eje y la resistencia del rotor aparece como una resistencia variable Rr/s, en función del deslizamiento y por lo tanto de la carga mecánica.

La corriente en la impedancia del rotor reflejada es igual a la componente de carga de la corriente del estator; el voltaje entre esta impedancia es igual al voltaje del estator Vg. Debería notarse que cuando los voltajes y las corrientes del rotor son reflejadas al estator, sus frecuencias también cambian a la frecuencia del estator.

Todo fenómeno eléctrico del rotor, cuando es visto desde el estator, cambia a un fenómeno con frecuencia del estator, debido a que el devanado del estator simplemente ve ondas de flujo y f.m.m. viajando a velocidad sincrónica.

## 1.2.1 PRUEBAS PARA OBTENER LOS PARAMETROS DE LA MAQUINA DE INDUCCION

Para determinar los parámetros de la máquina de inducción, es necesario realizar cuatro pruebas experimentales, en las cuales se considerará lo siguiente:

El valor de la tensión es por fase. El valor de la corriente por fase. La potencia de entrada es total. Dichas pruebas son detalladas a continuación:

## 1.2.1.1 <u>Prueba para la determinación de la</u> resistencia <u>del estator</u>.-

Con esta prueba se determina el valor de la resistencia del devanado del estator, por fase.

Esta prueba deberá realizársela luego de que la máquina haya operado por algún tiempo, es decir, caliente.

Deberá considerase el tipo de conexión de los devanados del estator, tal como se muestra en las figuras 1.6 y 1.7 y en las ecuaciones 1.30 y 1.31, para devanados conectados en "Y" y en "delta" respectivamente.



Fig. 1.6 Devanados conectados en Y.



Fig. 1.7 Devanados conectados en Delta.

$$Re = ----- (1.31)$$
2 A



### 1.2.1.2 Prueba de vacio

Esta prueba corresponde a la prueba de circuito abierto en un transformador.

Se aplica tensión y frecuencia nominal al estator de la máquina, sin carga mecánica en su eje, teniédose sólo carga por fricción y ventilación de la máquina.

Consideremos el siguiente esquema:



Fig. 1.8 Esquema para prueba en vacio

Sea: Vn = V1-1/ 3 = voltaje nominal por fase. Io = (Ia+Ib+Ic)/3 = corriente en vacio por fase.

Po = P1 + P2 = potencia total

de entrada.

La potencia Po se consume en: - Férdidas en el cobre del devanado del estator.

PCu ===> m1 Io Re

Pérdidas por histéresis y corrientes
 de Faulcolt debidas al flujo
 principal.

Ph+f

- Pérdidas de fricción y ventilación del rotor.

#### Pf+v

- Pérdidas en el hierro debido a la rotación y a las aberturas de las ranuras.

#### Ph-rot

O sea que son las pérdidas por altas frecuencias en los dientes del estator y del rotor debido principalmente a las corrientes parásitas producidas por las rápidas pulsasiones del flujo cuando los dientes y las ranuras cambian sus posiciones relativas.

- Teóricamente existen unas pérdidas

adicionales en el cobre del rotor, pero la corriente del rotor en vacío es tan pequeña que estas pueden despreciarse.

> Rr/s ===> valor bastante alto. Ir pequeña.

Aún cuando s = 0 (en realidad s = 0.001) existe un pequeño valor de corriente debido a las armónicas en la densidad del flujo, a la no uniformidad del entrehierro y al pequeño deslizamiento producido por las cargas de fricción y ventilación.

El factor de potencia en vacío es:

cosøo = Po / (m1 Vn Io) (1.32)

Valor que oscila entre 0,05 (87,13 grados) y 0,15 (81,37 grados).

Como Ir es muy pequeña se puede considerar el circuito del rotor abierto, figura 1.9 (a) ó (b).



Fig. 1.7 (a) y (b) circuitos equivalentes en vacío.

Es necesario el conocimiento de Ph+f para la determinación de Rm, para que de este modo se puedan representar las pérdidas Ph+f.

Para obtener esto se requiere también de la siguiente prueba:

1.2.1.3 Frueba de vacío ideal

Se requiere la máquina que sea llevada a la velocidad sincrónica por medio de otra máquina auxiliar. en este caso Ir = 0 Pf+v y Pfe-rot son proporcionadas por la máquina auxiliar.

Se considera el siguiente esquema:



Fig. 1.10 Esquema para la prueba de vacío ideal.

Sea: Vn' = V1-1/ $\sqrt{3}$  = voltaje nominal por fase. Io' = (Ia+Ib+Ic)/3 = corriente en vaciopor fase. Po' = P1 + P2 = potencia total. Luego, la potencia Po se consumirá en: 2 Fo' = m1 Io' Re + Ph+f donde: Ph+f = Po' ~ m1 Io' Re (1.33)Si se procede a calcular considerando los circuitos de la figura 1.9 : 2 Ph+f = m1 Vg Gc 2  $G_{C} = Ph+f/(m1 Vq)$  (1.34) Vg = Vn - Io (Re + jXle) (1.35)

Io es la de vacío, ya que en

condiciones de funcionamiento siempre se consideran con f+v y fe-rot.

Xle se calcula a partir de la prueba de rotor bloqueado.

$$Io = Ie + Im \tag{1.36}$$

Conocido Io y Im procedemos a calcular Ie

$$Im! = \sqrt{Io^2 - Ie^2}$$
 (1.38)

Luego, Vg = Io / bm Bm = Im / Vg (1.39)

Conociendo Gc y Bm, se procede a calcular:

$$2 2$$

$$Rm = Gc / (Gc + Bm)$$
(1.40)
$$2 2$$

$$Xm = Bm / (Gc + Bm)$$
(1.41)

### 1.2.1.4 Prueba de cortocircuito

Las condiciones de reposo s=1 en un motor de inducción son iguales a las de un transformador en cortocircuito.

La prueba se la realiza de la siguiente manera:



Manteniédose bloqueado el rotor mecánicamente, de tal manera que no gire. se alimenta el motor de inducción con voltaje reducido, el cual es el necesario para hacer corriente nominal el circular en estator; la frecuencia también debe ser reducida ya que los valores de resistencia efectiva e inductancia dispersión del rotor, de que corresponden a frecuencias del rotor a pequeños deslizamientos, debido diferir considerablemente de pueden sus valores a frecuencia nominal, particularmente con rotores de doble jaula.

Los procedimientos para estas pruebas de los estándares de la IEEE, sugieren utilizar un valor correspondiente al 25% del valor de la frecuencia nominal. Luego la reactancia de dispersión total a frecuencia nominal se obtiene considerando la reactancia proporcional a la frecuencia. Sin embargo, estos efectos de la



59

frecuencia son despreciables, en máquinas normales menores a 25 HP, por lo que la impedancia de rotor bloqueado, puede medirse directamente a frecuencia nominal para estos casos.

Se considera el siguiente esquema:



Fig. 1.11 Esquema para la prueba de cortocircuito.

Sea: Vcc =  $V1-1/\sqrt{3}$  = el voltaje de

cortocircuito

por fase.

In = (Ia+Ib+Ic)/3 = la corrien-

te nominal

por fase.

Pcc = P1 + P2 = la potencia

total de en-

trada.



Fig. 1.12 Circuito equivalente para la condición de cortocircuito.

Ya que (Rr + jXlr) < Xm In (Re + jXle) es grande

Sólo fluye una pequeña corriente en el circuito magnético y las pérdidas del hierro debido a dicho flujo magnético son pequeñas.

En estas condiciones se tiene:

$$Pf+v = 0$$

$$Ph-rot = 0$$

y no existe potencia mecánica en el eje, toda la potencia se consume en las resistencias del cobre del estator y rotor.

2 2 Pcc = m1 In Re + m1 Ir Rr (1.42)

La corriente primaria está determinada principalmente por la suma de la impedancia primaria y secundaria. La f.c.e.m. Vg es la que reduce la corriente del primario cuando el motor gira. Cuando el motor se encuentra en reposo sólo existe una pequeña f.c.e.m., luego la corriente primaria viene a ser alta de 4 a 8 veces la corriente nominal, cuando se aplica tensión nominal durante la prueba de cortocircuito.

Para evitar el sobrecalentamiento de los arrollamientos se hace la prueba de cortocircuito a una tensión Vcc que es alrededor del 30% al 50% de la tensión nominal.

El factor de potencia en reposo es:

 $\cos \phi = \Pr(\pi 1 \ \text{Vcc} \ \text{In})$  (1.43)

que es mayor que en vacío, pero que permanece pequeño debido a la alta componente reactiva de la corriente necesaria para producir los flujos de dispersión del estator y rotor. De los datos medidos, se tiene que:

$$Z_{CC} = V_{CC}/I_{D}$$
 (1.44)

$$R_{CC} = P_{CC} / m1 In^2$$
 (1.45)

Si se desprecia la rama de excitación, se tiene:

$$Rcc = Re + Rr \tag{1.46}$$

$$X_{CC} = \sqrt{\frac{2}{Z_{CC}} - R_{CC}}$$
(1.47)

$$X_{CC} = X_{le} + X_{lr}$$
 (1.48)

Para los fines de cálculo se tiene que:

$$Rr = Rcc - Re$$
 (1.49)

$$Xcc/2 = Xle = Xlr$$
 (1.50)

En el capítulo II se verá la necesidad de una prueba más, esta es: La prueba de velocidad síncrona, la cual permite desarrollar una relación entre el voltaje del entre-hierro y la reactancia magnetizante.

# 1.2.1.5 Prueba de velocidad síncrona

La máquina es llevada a su velocidad

sincrona mediante por un prime motor, se procede a medir la impedancia por fase para diferentes valores de voltaje de entrada Vent. Como lo que se necesita es la variación de Xm con respecto al flujo del entre-hierro, que es proporcional a Vg/F. es necesario calcular el voltaje en elentre-hierro, para lo cual se resta la caída de voltaje debido а la impedancia de dispersión del estator, del voltaje de entrada. Se obtiene Xm para cada voltaje, restando la impedancia de dispersión del estator de la impedancia de entrada medida. La figura 1.13 muestra la curva típica de esta relación.

63



Fig. 1.13 Variación típica de Vg/F con respecto a Xm a partir de la prueba de velocidad síncrona.

## 1.2.2 POTENCIA DESARROLLADA Y EFICIENCIA DE UNA MAQUINA DE INDUCCION

A partir del circuito equivalente es posible determinar aspectos del funcionamiento en estado estable como: variación de corriente, velocidad, torque, pérdidas, así como también requerimientos de potencia.

Como en toda máquina, por la ley de la conservación de la energía se sabe que, la potencia de salida de una máquina de inducción está dada por la diferencia entre la potencia por:

 $Fm = m1 \ Vl-n \ Il \ \cos \phi \qquad (1.51)$ 

donde m1 es el número de fases del estator. Las pérdidas son:

1. Férdidas en el cobre del estator: P Cu-est = m1 Ie<sup>2</sup> Re (1.52)

2. Pérdidas en el hierro:

```
P h+f
```

```
3. Pérdidas en el cobre del rotor:
2
P Cu-rot = m1 Ir Rr (1.53)
```

4. Pérdidas por fricción y ventilación:

```
P f+v
```

5. Pérdidas por hierro rotacional:

P h-rot

No existe una forma general de cómo tratar las pérdidas en el hierro en el modelo.

Las pérdidas en el hierro que resultan del flujo de dispersión en el estator no son despreciables como lo sería en un transformador. Las pérdidas en el hierro del rotor varían con la frecuencia del rotor, y por lo tanto con el deslizamiento. Bajo condiciones de operación normal, el deslizamiento es aproximadamente 0,03 por lo que la frecuencia será de sólo 2 Hz (para F = 60 Hz), y la pérdida en el hierro del rotor es despreciable. Fero en el arranque y durante la aceleración la pérdida en el hierro del rotor es un valor alto que decrece, mientras la fricción y ventilación empiezan en cero y se incrementan conforme se acelera la máquina. Como resultado, la suma de las pérdidas por fricción, ventilación y hierro rotacional se la puede considerar constante.

Permitiendo llamar a estas pérdidas como "Pérdidas Rotacionales".

P rot = P f+v + P h+f + P h-rot (1.54) Aunque esta definición no es muy exacta, tiene la virtud de ser conveniente.

La cantidad más importante en el análisis de máquinas de inducción es la potencia transferida por el campo magnético del entrehierro desde los devanados del estator al rotor.

Esta cantidad estará representada por el símbolo Pg. Pg = potencia del entre-hierre ELIOTE

Si se desprecian, en este punto, las pérdidas en el hierro del estator, la potencia en el entre-hierro estaría dada por la diferencia entre la potencia de entrada y las pérdidas en cobre del estator.

o también, del circuito equivalente:

$$Pg = m1 Ir Rr/s$$
 (1.56)

Pg es la potencia de entrada al rotor, la cual es parcialmente consumida como pérdidas en el cobre del rotor y la diferencia está disponible para desarrollar potencia mecánica.

Pmec-des = potencia mecánica desarrollada.

### Entonces:

Pmec-des = Pg - P Cu-rot = 2 Pmec-des = m1 Ir Rr/s - m1 Ir Rr = 2 Pmec-des = m1 Ir Rr (1-s)/s = Pmec-des = (1-s) Pg (1.57)

De donde se puede concluir que del total de la potencia entregada al rotor, la fracción

correspondiente a (1-s) es convertida en potencia mecánica, mientras que la fracción s es disipada por el rotor en forma de calor. Lo cual hace evidente que las máguinas con deslizamientos grandes son máquinas de baja eficiencia. Habiendo determinado la potencia mecánica desarrollada, sustrayendo de la potencia de entrada sólamente las pérdidas en el cobre, la potencia mecánica de salida neta encontrada será restando las pédidas rotacionales de la potencia mecánica desarrollada.

Po = potencia mecánica de salida Po = Pmec-des - P rot Po = Pmec-des - P f+v - P h+f - Ph-rot (1.58)

# 1.2.3 CARACTERISTICA TORQUE-VELOCIDAD DE MAQUINAS DE INDUCCION

Si se aplica el teorema de Thévenin al circuito equivalente, se puede obtener una expresión para el torque de una máquina de inducción como una función de su deslizamiento.

Aplicando Thévenin en los puntos a y b de la figura 1.14, se obtiene la figura 1.15.



Fig. 1.14 Circuito equivalente aproximado de un motor de inducción.



Fig. 1.15 Aplicación del teorema de Thévenin al circuito equivalente del motor de inducción.

donde:

Si se considera que:

Re << (Xle + Xm)

También X1 = X1e (1.61)

entonces la siguiente expresión involucra un



error mínimo.

Vth = V1m ( Xm / (Xle + Xm) ) (1.62) Ahora, la parte real de Zth (ec. 1.60) es Re 2 2 2 2 (Xm / (Re + (Xle + Xm) ), lo cual es muy 2 2 2 2 (Xm / (Re + (Xle + Xm) ), lo cual es muy 2 2 2 aproximado a Re Xm / (Xle + Xm) , ya que Re  $\leq$  $\leq$  (Xle + Xm ) .

Por lo tanto

(R1 = Re involucra un error de sólo alrededor del 5 %).

Una expresión para Ir se puede desarrollar ahora, en función del voltaje Thévenin Vth

El torque desarrollado está dado por:

2 Td = Fg / Ws = (1/Ws) (m1) (Ir) (Rr/s)

Si en esta última ecuación se sustituye Ir por la ecuación (1.64)se tendría:

En la ecuación (1.59) se observa que Vth es

70



Fig. 1.17 Torque desarrollado por una máquina de inducción como una función de la velocidad.

A partir de la figura 1.17 se pueden obtener las siguientes conclusiones:

- a) Existe un torque máximo definido , Tmáx, en el rango de operación del motor.
- b) El torque de plena carga está aproximadamente entre 0.4 y 0.5 del Tmáx.
- c) Una vez que la máquina está en operación, sólo una pequeña parte de la curva está involucrada, la parte que va desde vacío hasta plena carga. Existe una variación

proporcional al voltaje en los terminales del motor, a cualquier velocidad el torque es proporcional al cuadrado del voltaje suministrado. Cuando esta expresión, para el torque desarrollado , es dibujado como una función del deslizamiento (s) y como una función de la velocidad (w), aparecen las curvas de las figuras (1.16) y (1.17) respectivamente .



Fig. 1.16 Torque desarrollado por una máquina de inducción como una función del deslizamiento.
y el voltaje en el entre-hierro es:

$$Vg = Vt + Ie (Re + jXle)$$
 (1.71)

La corriente en el ramal magnetizante es:

$$Im = -Vg / jXm$$
 (1.72)

E1 diagrama fasorial de voltajes y corrientes calculados por este procedimiento se muestra en la fig. 1.20. Es significativo resaltar el hecho de que la corriente en el estator, la cual representa la corriente de salida del generador, adelanta al voltaje terminal en el del factor de potencia 🏾 ángulo La componente reactiva de esta corriente le (sen@) determina la potencia reactiva que debe ser suministrada por los capacitores en paralelo.

La ecuación 1.69 muestra que un valor de deslizamiento dado determina el valor de Z. Esto a su vez determina el valor de Ie y consecuentemente la potencia y los VARS de salida del generador Vt Ie\* (donde Ie\* es el conjugado del fasor Ie). Para un voltaje terminal dado, existe una relación fija entre la potencia real y reactiva.

Las curvas características I, que ilustran esta

lineal en este rango. En vacío, la velocidad está muy cerca a la velocidad sincrona, (s = 0) y a plena carga, el deslizamiento es un tanto menor a dicha velocidad.

- d) El torque de arranque (s=1) es ligeramente mayor que el torque a plena carga. Pero puede ser mayor mediante un diseño especial o usando cierto método de arranque.
- e) La máquina opera como un generador ( Td<O, w>O, potencia negativa) cuando la máquina es llevada a velocidades mayores que la de sincronismo.
- f) La máquina actúa como un freno cuando es girada en sentido contrario con respecto al campo giratorio (Td > 0, w < 0, potencia mecánica negativa).

## 1.3 LA MAQUINA DE INDUCCION COMO GENERADOR

De acuerdo con la ecuación del deslizamiento s = (nsn)/ns, es posible un deslizamiento negativo ( s < 0 ) cuando la velocidad del rotor sea mayor que la velocidad síncrona ( n > ns ).

Debido a que la máquina al girar como motor no puede alcanzar la velocidad uniforme n= ns, debe ser otra

74



máquina (un primo-motor) la que lleve al rotor a una velocidad superior a ns.

De la ecuación (1.57) se puede determinar que para s<0 la Pmec.des. viene a ser negativa.

Esto significa que a velocidades por encima de la sincrónica el rotor no proporciona potencia mecánica sino que consume potencia mecánica, esto es, la máquina funciona como generador. De este modo el motor de inducción, manejado por un primomotor arriba de su velocidad síncrona funciona como generador de inducción.

De la ecuación (1.65) se deduce que para s < 0 el par motor (Td) cambia de signo, lo cual se muestra también por la consideración siguiente:

A la velocidad por debajo de la sincrónica se induce una fem en el arrollamiento del rotor que corresponde a la velocidad relativa entre el flujo giratorio y el rotor, ( ns-n ).

A la velocidad síncrona ( n=ns ) esta fem viene a ser cero debido a que la velocidad relativa entre el flujo giratorio y el rotor es cero. A velocidades por encima de la sincrónica ( n > ns ) la velocidad relativa entre el flujo giratorio y el rotor cambia su signo comparada con las velocidades por debajo de la sincrónica, y por lo tanto E2' e I2' cambian sus signos. Ya que el par motor está determinado por el producto del flujo y la corriente de armadura, el par motor cambia de signo a velocidad por encima de la sincrónica.

#### 1.3.1 DIAGRAMA VECTORIAL DE UN GENERADOR DE INDUCCION

Del circuito equivalente de la máquina de inducción, se obtienen las ecuaciones de Kirchhoff para el fucionamiento como generador.

| E1 | - | jIeXle | = | Ie | Re | + | V1 | (1.66) |
|----|---|--------|---|----|----|---|----|--------|
|    |   |        |   |    |    |   |    |        |

sE2 - jIr s XIr = Ir Rr ; S<0 (1.67)

E1 = E2 = - Im Zm = - (Ie+Ir) Zm (1.68)

A partir de estas ecuaciones se obtiene el diagrama vectorial correspondiente (Fig. 1.18).

La fem secundaria E2′ se adelanta del flujo ∮ en 90 grados y es opuesta a la dirección de E2′ para el motor. Ya que s es negativo, +jIr sXlr se atrasa a la corriente Ir en 90 grados e Ir se adelanta de E2 .

El está adelante de Vi como lo sería para un generador.

La corriente primaria Ie se adelanta a la tensión primaria, V1, esto es, cuando el generador de inducción funciona como un sistema aislado puede únicamente alimentar a una carga capacitiva. Lo cual se explica de la siguiente manera:

El primo-motor puede influir únicamente en 1a componente activa de la corriente y no en la componente reactiva; por lo tanto, el rotor no puede proporcionar corriente reactiva. Ya que la corriente reactiva ( $I\emptyset$ ) en fase con elflujo principal ( 🖉 ) es necesaria para mantener este flujo y se necesita otra corriente reactiva para mantener los flujos de dispersión, estas corrientes deben ser proporcionadas por el estator, por una corriente adelantada del estator ( Fig. 1.18 ).





Fig. 1.18 Diagrama vectorial de un generador de inducción

donde:

IeXle⊥ Ie

IeRe || Ie

## 1.3.2 OPERACION DEL GENERADOR DE INDUCCION

inducción actúa La máguina de como un generador cuando es movida por un primo-motor; y cuando la velocidad del rotor es incrementada hasta igualar la velocidad síncrona, no hay movimiento relativo entre los conductores del rotor y el flujo giratorio, luego no se induce voltaje o corriente en los conductores del rotor. Un mayor incremento en la velocidad del rotor causa una inversión en la dirección relativa de rotación entre los conductores del rotor y el flujo, y el voltaje y corriente del rotor son correspondientemente invertidas. E1 bajo estas condiciones, deslizamiento, es considerado negativo. El torque suministrado por el eje del primo-motor transferido a través del entrehierro al estator, desde el cual es entregado al sistema como potencia generada. La potencia neta de salida es la potencia suministrada al eje menos las pérdidas de la máquina y es una función del deslizamiento.

El circuito equivalente aproximado y el diagrama fasorial de un generador de inducción sen mostrados en las figuras 1.19 y 1.20 respectivamente. Por simplicidad, se ha despreciado las pérdidas en el núcleo en este circuito equivalente.

1



Fig. 1.19 Circuito equivalente aproximado para un` generador de inducción.



Fig. 1.20 Diagrama fasorial del circuito equivalente aproximado del generador de inducción.

El circuito equivalente contiene dos variables, el deslizamiento s, el cual es función de la velocidad, y la reactancia magnetizante la cual es determinada por la saturación y es una función del voltaje en el entrehierro Vg.

La reactancia magnetizante puede ser obtenida de la curva de saturación para la máquina en cuestión; pero para variaciones de voltaje terminal con límites estrechos (normalmente encontrados en sistemas de potencia), es suficientemente exacto considerar la reactancia magnetizante una constante.

La potencia de salida de un generador de inducción puede ser deducida a partir del circuito equivalente de la fig. 1.19.

Cuando el deslizamiento es conocido o asumido y la reactancia magnetizante Xm es también conocida, el circuito equivalente puede ser reducido a una simple impedancia:

$$Z = Re + j Xle + (Rr/s + jXlr) (jXm) / (Rr/s + j(Xlr + Xm))$$
(1.69)

La corriente del estator es:

$$Ie = -Vt / Z$$
 (1.70)





Fig. 1.21 Curvas P vs. Q para un generador de inducción a un voltaje del 100, 120 y 140 por ciento, y a una frecuencia del 100%.

Se notará que para estas curvas hay un límite definido para la potencia de salida del generador de inducción.

Este valor límite de potencia será llamado límite de potencia del generador y está dado por la siguiente ecuación:

donde:

Si se desprecia la resistencia del estator (Re=>O) y se usa la definición de X', la expresión para la potencia límite puede ser escrita de la siguiente manera:

Curvas con las características típicas de un generador de inducción se muestran en la figura 1.22.

La eficiencia es buena para cargas mayores al 25% de la carga nominal; por lo tanto esto es comparable a un generador sincrónico.

El factor de potencia, por otro lado, progresivamente disminuye cuando la carga y el deslizamiento son reducidos de sus valores nominales. La razón de esto es que mientras el voltaje en el entre-hierro permanezca



Fig. 1.22 Curvas características de un generador de inducción.

constante, la corriente magnetizante será constante. Así, la corriente reactiva requerida por el generador es sustancialmente constante a través de todo el rango de carga. Consecuentemente, para obtener el factor de favorable, la máquina potencia más deberá operar tan cerca a la carga nominal como sea posible todo el tiempo.

## CAPITULO II

## ANALISIS DEL GENERADOR DE INDUCCION COMO UN SISTEMA AISLADO

# 2.1 EL PROCESO DE AUTO-EXCITACION EN GENERADORES DE INDUCCION

En esta sección se examinará el fenómeno de autoexcitación en máquinas de inducción, además se presentará una interpretación física de cómo ocurre la auto-excitación.

## 2.1.1 INTRODUCCION

En muchas de sus aplicaciones un generador de inducción debe operar como un sistema aislado, y consecuentemente es imperativo que ocurra la auto-excitación y se mantenga.

Se estudiará el procedimiento mediante el cual se realiza la auto-excitación y se discutirá cómo el voltaje terminal puede, bajo condiciones favorables, aumentar desde un valor relativamente insignificante causado por el magnetismo remanente en el rotor y crecer hasta el voltaje nominal de la máquina.

La física del proceso es desarrollada

considerando el comportamiento de la máquina primero como una máquina síncrona que posee un rotor permanentemente magnetizado y luego como una máquina asíncrona cuando el voltaje terminal alcance un valor que evidencie que la auto-excitación se ha producido.

La máquina arranca como un generador con polos permanentes (figura 2.1) y luego es conectada como una máquina asíncrona (figura 2.2), la transición dependerá de los parámetros de la máquina, la velocidad del rotor y el tamaño de los capacitores. Los parámentros de los circuitos son asumidos todos constantes excepto la inductancia magnetizante , la cual varía tal como se muestra en la figura 2.3.



Fig. 2.1 Modelo síncrono del generador de inducción auto-excitado.



Fig. 2.2 Modelo asíncrono del generador de inducción auto-excitado.

caída de la inductancia a valores elevados La corriente magnetizante es bien conocida y de determina el voltaje final de estado estable. Mientras que su comportamiento a valores bajos corriente magnetizante ha sido de no este investigado profundamente, si bien en rango es donde se determina las características iniciales de la auto-excitación de la máquina.



# 2.1.2 CONSIDERACIONES TEORICAS

Para los dos circuitos equivalentes simples mostrados en las figuras 2.1 y 2.2, se realizará un análisis de las relaciones entre el voltaje terminal, corriente y velocidad del rotor.

## 2.1.2.1 MODELO SINCRONO

El circuito equivalente para el modelo síncrono, figura 2.1, tiene la forma de un circuito resonante en el cual la función forzante es el magnetismo remanente en el rotor, induciendo corrientes en el estator a frecuencia de linea.

El magnetismo remanente presente en el rotor es medido en términos del voltaje а circuito abierto (capacitores desconectados) a su respectiva frecuencia. Para determinar la respuesta de la función forzante, se incorpora al circuito equivalente una fuente de voltaje, donde su magnitud y frecuencia depende de la velocidad del rotor, tal como se muestra en la figura

2.4.

De la figura 2.4, la corriente magnetizante Im puede ser determinada: Im = KWr / (Re + j(Wr(Le+Lm)-(1/WrC))) (2.1)



Fig. 2.4 Circuito equivalente del modelo síncrono, incorporando el magnetismo remanente como una fuente de voltaje dependiente de la frecuencia.

Donde Wr es la frecuencia eléctrica sincrona proporcional a la velocidad del rotor, K = Voc/Wo (una constante proporcional a la densidad de flujo magnético remanente en el rotor) y Voc el voltaje a circuito abierto producido a frecuencia nominal del sistema Wo.

En este circuito, la respuesta normal

de un circuito resonante frente a una función forzante es modificada por una inductancia magnetizante no lineal y la variación en magnitud de la función forzante con la velocidad del rotor.

Resolviendo la ecuación (2.1), usando los valores para la inductancia magnetizante y corriente de la figura (2.3) y los siguientes parámetros de una máquina experimental; Rr = 2,1 , Re = 2,98 , Lr = Le = 13,5 mH y C = 25 uF (parámetros de una máquina de inducción trifásica, 4 polos, 2,25 KW), se pueden obtener una serie de posibles puntos de operación síncrona.

Graficando estos puntos se obtienen curvas como las que se muestran en la figura 2.5 para valores de magnetismo remanente, variando el voltaje a circuito abierto de 0,5 V a 0,1 V a 50 Hz.

Las curvas crecen gradualmente mientras el incremento de corriente causa un rápido crecimiento de la



Fig. 2.5 Funtos de posible operación de un generador de inducción en modo síncrono para tres niveles de magnetismo remanente.

inductancia magnetizante (ver figura 2.3), y una disminución repentina asociada con la frecuencia resonante síncrona la cual causa que las curvas se desplomen.

Si la velocidad de la máquina es incrementada desde cero, la respuesta produce una curva de la forma hasta antes de alcanzar el codo (punto X), en dicho punto, el incremento de la velocidad del rotor puede causar un salto pasando a la resonancia síncrona (punto Y).

Debe de notarse que estas curvas junto con aquellas para el modo asíncrono, pueden ser alteradas con respecto a la velocidad de la máquina simplemente variando la capacitancia conectada a la máquina. El rango 1.0 a 1.4 por unidad fue conveniente para el equipo usado como primo-motor de la máquina de inducción. Este rango de velocidad puede ser reducido simplemente incrementando la capacitancia.

#### 2.1.2.2 MODELO ASINCRONO

Utilizando el circuito de la figura 2.2, la corriente suministrada por la máquina al capacitor (corriente del estator) Iest, está dada por:

 $Iest = Real (Ie e^{mt})$  (2.2)

donde Real significa la parte real, Ie es la corriente compleja del estator y  $m = \propto + jw$ .

Similarmente, para el circuito del rotor, la corriente del rotor Iro es: Iro = Real (Ir  $e^{(m-jv)t}$ ) (2.3) donde Ir es la corriente del rotor

compleja y v es la velocidad del rotor.



Usando las ecuaciones de lazo de con la notación estandar Kirchhoff tenemos: Ie (Re+ m(Le+Lm) + 1/mc) + Ir m Lm = 0(2.4)У Ir (Rr + (m-jv) (Lr + Lm)) + Ie(m-jv)Lm = 0(2.5)Resolviendo las ecuaciones (2.4) y (2.5) para Ir tenemos: 2 ((m c(Le+Lm) + m c Re + 1) (-Rr-(m-2 2

2 2 jv)(Lr+Lm)) m (m-jv) c Lm ) Ir = 0(2.6)

Asumiendo Ir = 0, y simplificando la ecuación (2.6) en términos de m, tenemos:

m3 c ((Lr+Lm) (Le+Lm) - Lm2) + m2 c ((Le+Lm) Rr + (Lr+Lm) Re - jv ((Lr+Lm) 2 (Le+Lm) - L m)) + m (c Re Rr + (Lr+Lm) - jvc (Lr+Lm) Re) + (Rr - jv(Lr+Lm)) =0 (2.7)

En este punto, la ecuación puede ser normalizada convirtiéndola a valores

93

por unidad. Entonces, si v es expresada como una fracción de Wo, se tendría a partir de la ecuación (2.7):

3 - 2(m/Wo) ((Xr+Xm) (Xe+Xm) - Xm) + 2 (m/Wo) ((Xe+Xm) Rr + (Xr+Xm) Re - jv 2 ((Xr+Xm) (Xe+Xm) - Xm)) + (m/Wo) (Re Rr + Xc(Xr+Xm) - jv (Xr+Xm) Re) + Xc (Rr - jv (Xr+Xm)) = 0 (2.8)

Las raíces de esta ecuación cúbica definen condiciones bajo las cuales es posible la operación de la máquina asíncrona.

Resolviendo para m =  $\propto$  + jw siempre se dos raíces que tienen ∝ obtienen negativo y no son de interés aquí. Sin embargo, la tercera raíz tiene un ∝ que puede ser negativo, positivo o cero, y es esta raiz que determina si 1a corriente del rotor, la corriente Y voltaje del estator, decrecen, 50 incrementan o se mantienen. La figura 2.6 muestra un gráfico de ∝ versus la velocidad de la máquina para dos valores de Lm. Una velocidad resonante



Fig. 2.6 Gráfico de vs. velocidad de la máquina para dos valores de inductancia magnetizante. Lm = 0.4 H y 0.24 H.

Para que crezcan las corrientes asíncronas, y por lo tanto para que ocurra autoexcitación, debe excederse la velocidad resonante. La velocidad a la cual ocurre resonancia puede ser reducida mediante el incremento de la capacitancia terminal.

A partir de los valores de inductancia magnetizante mostrados en la figura 2.3, pueden obtenerse curvas de corriente y velocidad de la máquina para diferentes valores de  $\propto$ , tal como se muestra en la figura 2.7.

La operación en estado estable de la máquina debe ser en un punto de resonancia; por ejemplo  $\propto =0$ .



Fig. 2.7 Curvas de « presentando un crecimiento y decrecimiento exponencial de corrientes asíncronas. (máquina de inducción con parámetros dados anteriormente).

Pero como puede observarse, a una velocidad particular, existen dos puntos que sastifacen este criterio , A y B.

El punto A representa el punto al cual la máquina está completamente excitada. El punto B, sin embargo, representa una condición inestable, en el cual cualquier cambio en la velocidad que la máquina salga causará de resonancia, el incremento en la velocidad tendiendo a causar autoexcitación con resonancia obtenida en el punto A, causará que la máquina retorne al modo síncrono. Es el punto B el de interés, y la figura 2.8 muestra curvas desarrolladas alrededor de esta área.



Fig. 2.8 Curvas de ∝ para el área de operación crítica de la máquina con iniciación de auto-excitación. ∝ positivo correspondiendo al crecimiento de corrientes asíncronas con excitación dominante.



# 2.1.2.3 Interacción entre modelos

modelos entre 105 interacción La y asincronos puede ser sincronos observado combinando la curva a = 0. para operación asincrona. con las para la respuesta sincrona curvas mostradas en la figura 2.5. Para un valor dado de magnetismo remanente, una máquina arrancada del reposo tendrá una corriente en la capacitancia que sigue la curva síncrona apropiada (A) hasta el punto de codo (X). Si la velocidad se incrementa más, la corriente deberá saltar descontinuamente al punto Y, el cual se encuentra en el area donde la operación asíncrona es posible.

Bajo estas condiciones, una componente asincrona crecerá rápidamente У e1a1 voltaje terminal se incrementarà valor apropiado. Los polos fijos del debido a la remanencia son rotor destruidos y la componente síncrona de la corriente decae a cero. Si el punto operación síncrona está cerca del de

punto X, sólo un pequeño disturbio se requiere para iniciar la autoexcitación.



Fig. 2.9 Diagrama vectorial correspondiente al punto X (en la figura 2.5 para el circuito mostrado en la figura 2.4).



Fig. 2.10 Diagrama vectorial correspondiente al punto Y.

El efecto de esta transición sobre la máguina síncrona puede observarse en diagramas vectoriales de 105 las figuras 2.9 y 2.10 (para el circuito de la figura 2.4). Bajo resonancia, el ángulo de carga 👘 es tal que la fuerza magnetomotiva F1, producida por la corriente fluyente, refuerza la fuerza magnetomotiva remanente F2 que produce la fuerza magnetomotiva resultante Fo. Mientras sube la resonancia, la corriente actua para reducir el magnetismo remanente. El cambio en fase de la corriente entre los dos puntos de operación es del orden de 150 grados. Para que la frecuencia de resonancia de línea sea superada y la auto-excitación la máquina síncrona debe ocurra, sostener esta variación grande, en fase con una oscilación considerable del ángulo de carga.

#### 2.1.3 CONSIDERACIONES PRACTICAS

Un problema importante en la operación de generadores de inducción, como unidades aisladas, es el hecho de garantizar la auto-

excitación cuando la máguina tiene una cantidad desconocida de magnetismo remanente en el rotor y este es acelerado desde el reposo. Un entendimiento del mecanismo de autoexcitación permite hacer ciertas recomendaciones para mejorar la confiabilidad de la operación.

Una reducción en el magnetismo remanente puede conducir a rangos de aceleración reducidos, como previamente se mostró, si los capacitores terminales permanecen conectados mientras la máquina se acelera.

Similarmente, cualquier carga conectada a 1a reduce la habilidad de esta para máguina excitarse. Por 10 tanto, para mejorar la confiabilidad de operación, es recomendable que, en toda situación los capacitores permanezcan desconectados hasta que se alcance la velocidad final de la máquina y además que cualquier carga mayor permanezca desconectada hasta que la máquina esté plenamente excitada (usualmente, debido a dispositivos de control, alimentará cierta carga conectada a la salida del generador).

101

Adicionalmente, la confiabilidad en el arranque puede asegurarse si se cumple con alguna de las cuatros consideraciones siguientes:

a) Pasando corriente DC a través de la máquina antes de su arranque para garantizar suficiente magnetismo remanente.

b) Conectando capacitores terminales cargados. Si los capacitores están cargados a un alto voltaje, respecto al rango de voltaje de la máquina, la corriente de descarga es normalmente suficiente para causar autoexcitación.

c) Incrementando la velocidad de la máquina sobre su valor nominal, causando que la velocidad resonante a magnetización baja sea excedida, y por consiguiente iniciar la autoexcitación (notar que los rodamientos y el rotor de la máquina, deben estar diseñados para velocidades mayores).

d) Añadiendo suficiente capacitancia terminal para reducir la velocidad resonante por debajo de la velocidad nominal de la máquina.

En los últimos dos métodos, debe tenerse

cuidado para evitar sobrevoltajes altos cuando se excita la máquina. En máquinas grandes estos dos métodos pueden no ser prácticos por causa de la reducción en la inductancia magnetizante a muy bajas corrientes.

Típicamente, la relación entre la inductancia en el rango de operación esencialmente lineal y la inductancia para muy bajas corrientes está por el orden de 5:1 sólo para el hierro. La presencia del entrehierro reduce la relación. Esto es, una máquina pequeña puede tener una relación de 2:1, mientras que máquinas grandes alcanzarán 5:1. Con relaciones altas. capacitancias muy altas o velocidades de la máquina muy altas se requerirán para asegurar auto-excitación por cualquiera de los últimos dos métodos.

Trabajos experimentales en esta área son algunas veces un poco confusos debido a comportamientos iniciales inesperados.

Un ejemplo es que el pequeño transiente resultante del desconectar y reconectar la capacitancia a una máquina no excitada, parece ser suficiente para empezar la auto-excitación.



También máquinas pequeñas de inducción con anillos deslizantes, pueden no excitarse por causa de la caída de voltaje discreta en los contactos de las escobillas.



Fig. 2.11 Gráfico de la inductancia magnetizante mostrando barras de error.

2.2 TECNICA ANALITICA PARA ESTUDIAR EL COMPORTAMIENTO EN ESTADO ESTABLE DEL GENERADOR DE INDUCCION AUTO-EXCITADO

En esta sección se desarrolla una técnica analítica usando el método de Newton-Raphson para analizar la reactancia magnetizante saturada y la frecuencia generada de un generador de inducción auto-excitado para valores dados de capacitancia, velocidad y carga.

## 2.2.1 INTRODUCCION

Como ya se ha mencionado anteriormente, si un banco de capacitores trifásico apropiado se conecta a los terminales de una máquina de inducción en funcionamiento, una FEM es inducida en los devanados de la máquina debido a la excitación provocada por los capacitores. Este fenómeno se denomina "Auto-excitación por capacitor", el cual puede ser usado para operar una máquina de inducción como generador.

Los voltajes y corrientes inducidos continuarían creciendo, pero la saturación magnética alcanza un estado de equilibrio.

El análisis de estado estable del generador de

BIFLIO LEGA punto inducción es de interés, tanto del de vista de diseño como del punto de vista operacional. Conociendo los parámetros de la máquina, debería ser posible determinar 511 funcionamiento para condiciones dadas de capacitancia, velocidad y carga. Si el voltaje terminal y frecuencia son conocidos, como en el caso de una máquina conectada a una barra infinita, la predicción del funcionamiento es directo. Sin embargo, en un generador excitado por capacitor, usado como una fuente de potencia aislada, el voltaje terminal y la frecuencia son desconocidos y tienen que ser calculados para valores dados de velocidad, capacitancia e impedancia de carga. El análisis es complicado debido a la saturación magnética la máguina y la necesidad de escoger en parámetros adecuados correspondientes a esta

106

Con la ayuda del método de Newton-Raphson se desarrolla un procedimiento para identificar los parámetros saturados y la frecuencia generada para una carga dada. Con el uso de estos valores identificados el funcionamiento de estado estable puede ser fácilmente

condición saturada.

calculado a partir del circuito equivalente. El procedimiento es simple, comprensible, eficiente, y muy adecuado para una simulación digital.

#### 2.2.2 BASES TEORICAS

Para el análisis presentado en esta sección, se harán las siguientes asunciones:

 a) Se asume que la saturación magnética sólo afecta a la reactancia magnetizante mientras que todos los otros parámetros del circuito equivalente serán asumidos constantes.

De la auto-excitación resulta la saturación del flujo principal. Como el valor de la reactancia magnetizante Xm refleja la magnitud del flujo principal, es escencial incorporar en el análisis, la variación de Xm con respecto al nivel de saturación del flujo principal.

El paso de los flujos de dispersión ocurre principalmente en el aire, y por consiguiente estos flujos no están afectados por la saturación del flujo principal.

 b) Las reactancias de dispersión del estator y rotor, en por unidad, serán tomadas iguales. Esta asunción es normalmente válida en análisis de máquinas de inducción.

c) Se desprecian las pérdidas en el núcleo.

d) Armónicas de espacio de FMM y armónicas de tiempo en el voltaje inducido y formas de onda de la corriente serán ignoradas.

Esta asunción es válida en máquinas bien diseñadas. Además, las formas de onda experimentales de voltajes generados exhiben armónicas de tiempo despreciables.

El circuito equivalente de estado estable de un generador de inducción auto-excitado por capacitor con una carga conectada a sus terminales se muestra en la figura 2.12.



Fig. 2.12 Circuito Equivalente del generador de inducción con carga.


Donde:

Donde: Re, Rr = Resistencia por fase<sup>BLIOTEC</sup> estator y rotor ( referida al estator).

Xle, Xlr = Reactancia de dispersión del estator y rotor (referida al estator).

Xm = Reactancia magnetizante.

( Todas las reactancias están calculadas a frecuencia base ).

F, v = Frecuencia y velocidad en p.u. respectivamente.

Ie, Ir, Il = Corriente del estator, rotor (referida al estator) y carga por fase.

Vt. Vg = Voltaje terminal y del entrehierro, respectivamente.

Luego, en la figura 2.12, los valores de estado estable de Xm y F son desconocidos y tienen que ser determinados para valores dados de capacitancia, velocidad y carga, para de esta manera calcular la respuesta de estado estable

De la figura 2.12, considerando una carga resistiva pura, la ecuación de lazo para la corriente le puede escribirse como:

$$Zn Ie = 0$$
 (2.10)

donde

Zn = ((-jXc R/F<sup>3</sup>)/(R/F -jXc/F<sup>2</sup>)) + (Re/F + jXle) + ((jXm(Rr/(F-v) + jXlr)) / (Rr/(F-v) + j(Xm + Xlr)))

(2.11)

Bajo estado estable auto-excitación implica Ie  $\neq$  0.

Por lo tanto, de la ecuación 2.10, Zn = 0, lo que implica que tanto la parte real como la parte imaginaria del lado derecho de la ecuación 2.11 deben ser separadamente igual a cero. Sustituyendo Xle = Xlr = Xl, se simplifican las siguientes dos ecuaciones simultaneas no lineales con Xm y F como variables desconocidas:

 $f(Xm,F) = (C1Xm + C2) F^{3} + (C3Xm + C4) F^{2}$ + (C5Xm + C6) F + (C7Xm + C8) = 0 (2.12) donde:

$$C1 = -2X1 R$$

$$C2 = -X1^{2} R$$

$$C3 = 2X1 R$$

$$C4 = X1^{2} R = -C2$$

$$C5 = Xc (R + Re + Rr)$$

$$C6 = XcX1 (R + Re + Rr) + Re R Rr$$

$$C7 = -Xc (Re + R)$$

$$C8 = -X1 Xc (Re + R)$$

$$Y$$

$$D1 = 2X1Xc + R (Re + Rr)$$

$$D2 = R X1 (Re + Rr) + X1^{2} Xc$$

$$D3 = Re R + 2X1Xc$$

$$D3 = Re R + 2X1Xc$$

$$D4 = -X1 (Re R + X1 Xc)$$

$$D5 = -Xc Rr (R + Re)$$

$$(2.15)$$

Para resolver las ecuaciones 2.12 y 2.13 se adoptará una técnica numérica encontrando así los valores de la reactancia magnetizante saturada Xm y la frecuencia de salida en p.u. F para los valores dados de los parámetros de la máquina, R , Xc y v. Aquí, el método de Newton-Raphson es muy apropiado para resolver las ecuaciones 2.12 y 2.13. En este método la matriz Jacobiano [J] está dada por:

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} J11 & J12 \\ & & \\ J21 & J22 \end{bmatrix}$$
(2.16)

donde

$$J11 = \int f / \int Xm \qquad J12 = \int g / \int F$$

$$J21 = \int f / \int Xm \qquad J22 = \int g / \int F$$

$$(2.17)$$

El método de Newton-Raphson requiere una suposición inicial de las variables desconocidas, por ejemplo Xmo, Fo. Debido a que  $F \cong v$  y Xm es menos que la no saturada, Xmo y Fo pueden escogerse como:

$$Xmo = Xm (no saturada)$$
  
Fo = v

Ahora fo = f (Xmo, Fo) = 0 y go = g (Xmo, Fo) = 0.

Después de la primera iteración, Xm y F asumirán los valores de Xm + h y Fo + k en el proceso para sastifacer las ecuaciones



2.12 y 2.13; los incrementos h y k están dados por:

$$\begin{bmatrix} h \\ \vdots & -1 \\ = & \begin{bmatrix} J \end{bmatrix} \\ \end{bmatrix}$$
 (2.19) 
$$\begin{bmatrix} -fo \\ \\ -go \end{bmatrix}$$

Este proceso de iteración continuará hasta que se alcance la precisión deseada, por ejemplo cuando  $|f(Xm,F)| < \mathcal{E}$  y  $|g(Xm,F)| < \mathcal{E}$ . Un algoritmo computacional simple se desarrolla más adelante incorporando el procedimiento anterior y los valores de estado estable de Xm y F podrán computarse para cualquier valor de C, v y R.

Habiendo determinado F y Xm, el siguiente paso es calcular el voltaje en el entrehierro Vg y el voltaje terminal Vt (fig. 2.12).

Para este propósito se puede obtener informacioón observando la variación de Xm con la cantidad Vg/F la cual relaciona el flujo del entrehierro. La información requerida puede ser obtenida experimentalmente llevando la máquina de inducción a la velocidad sincrona correspondiente a la frecuencia de línea, por ejemplo F=1, y midiendo la reactancia

113

magnetizante para valores diferentes de voltaje entrada a frecuencia de línea. Este de procedimiento se denomina prueba de velocidad síncrona (sección 1.2.1.5). Una curva de Va/F puede graficarse usando los Χm versus resultados experimentales. Esta curva puede ser linealizada obteniédose una expresión de la forma Vg=A-BXm, o si se desea mayor exactitud se puede obtener un polinomio de mayor orden (sección 3.2.1).

Conociendo Xm saturada de estado estable y F, puede calcularse el voltaje Vg del entrehierro. Con Vg, Xm, F, Xc, v, R y los parámetros de la máquina, el cálculo del voltaje terminal Vt y la corriente de carga es directo usando el

circuito equivalente de la figura 2.12.

A continuación se resumen expresiones para las respectivas variables.

Ie = (Vg/F) / (Re/F + jXle - jXcR/(F R jFXc)) Ir = (-Vg/F) / (Rr/(F-v) + jXlr) (2.20) Il = -jXcIe / (RF - jXc) Vt = Il R Potencia de entrada = P ent.



Basándose en la técnica analítica explicada, en el APENDICE "A" se desarrolla un programa computacional el cual calcula el funcionamiento en estado estable de la unidad, para valores dados de velocidad, capacitancia terminal y resistencia de carga. El programa puede ser utilizado para determinar las características de operación del generador.

Este programa es utilizado para determinar las características de carga calculando Vt, F, Ps, etc. cuando la conductancia de carga bl = 1/Res variada en pasos regulares ( $\triangle$  bl) desde blmín a blmáx.

#### 2.3 REQUERIMIENTOS MINIMOS DE POTENCIA REACTIVA

A partir de la técnica analítica desarrollada para estudiar el comportamiento del generador de inducción, es posible establecer los requerimientos mínimos de potencia reactiva para la autoexcitación de un generador de inducción, encontrando el valor de la capacitancia mínima (Cmín) requerida, utilizando el método analítico que se describe a continuación y partiendo del punto en que las ecuaciones 2.12 y 2.13 son resueltas numéricamente para obtener la reactancia magnetizante saturada Xm y la frecuencia en por unidad F. Además conociendo la relación entre Xm y Vg/F, a partir de la prueba de velocidad síncrona:

a) asume un valor de capacitancia C y se resuelven Se 125 ecuaciones 2.12 y 2.13 para Xm y F. El valor inicial de C debería ser 10 suficiente grande para causar la del generador por ejemplo, que Xm tenga autoexcitación un valor que caiga en la región de saturación.

b) Gradualmente disminuir el valor de C en pasos y calcular
 Xm correspondiente a cada valor de C. Se obtiene una grafica
 de Xm versus C.

c) Cmín se obtiene del gráfico como la intrersección de la curva Xm versus C y la línea Xm = Xsmáx, donde Xsmáx es la reactancia máxima saturada de la máquina la cual puede medirse experimentalmente llevando la máquina a v=1 p.u., aplicando un voltaje de prueba variable manteniendo F = 1 p. u. y midiendo Xm para cada nivel de voltaje (prueba de velocidad síncrona).

A partir del programa desarrollado en el APENDICE "A" para calcular el comportamiento del generador de inducción en estado estable, en el capítulo III se desarrolla un programa que calcula la capacitancia mínima requerida para la autoexcitación de un generador de inducción.

## 2.3.1 REQUERIMIENTOS DE CAPACITANCIA EN VACIO

Para el caso de vacío o no carga, se desarrolla un modelo analítico simplificado, el cual da una buena estimación de la capacitancia mínima (Cmín).

Usando los datos obtenidos de las pruebas para conseguir los parámetros de la máquina, las ecuaciones 2.12 y 2.13 son resueltas para diferentes valores de velocidad. Con el propósito de obtener dicha solución, es escencial especificar el valor de la capacitancia C. Estos valores de C son obtenidos empleando el método discutido en la sección anterior.

Esto es, el valor de F fue encontrado para cada velocidad correspondiente a una capacitancia terminal la cual es suficiente para provocar la autoexcitación.

117



La tabla I muestra la relación F/v para diferentes velocidades para una máquina de prueba con los siguientes parámetros en por unidad:

Re = 0,062; Rr = 0,07; Xle = Xlr = 0,093 y Xsmáx = 2,31.

Es obvio, de la tabla I, que cuando se cumplen las condiciones para auto-excitación (C = Cmín), F es muy cercano a la velocidad por unidad.

TABLA I

| Velocidad<br>(r.p.m) | F/v   |
|----------------------|-------|
| 500                  | 0,996 |
| 800                  | 0,997 |
| 1100                 | 0,998 |
| 1500                 | 0,999 |

Variación de F/v con la velocidad (velocidad base= 1500 r. p. m.)

En vacío, el circuito equivalente de la figura 2.13 puede ser usado en lugar del que se muestra en la figura 2.12 sin una considerable pérdida de precisión.



Fig. 2.13 Circuito equivalente en vacío.

Como se discutió previamente, cuando el generador es auto-excitado por capacitores, el valor de Xm cae en la región de saturación. En el umbral de la autoexcitación : Xm = Xsmáx.

Esto es asumiendo Xm = Xsmáx y F = v, ecuaciones 2.12 y 2.13 pueden ser resueltas para el valor de Xc =(1/wc).

En dicha solución apligada a las ecuaciones 2.12 y 2.13 se obtienen los siguientes dos valores de Xc:

$$Xc = - \operatorname{Re} \operatorname{Rr} / (Xsmáx - v) \tag{2.21}$$

$$Xc = v^2 \quad (Xle + Xsmax) \tag{2.22}$$

La ecuación 2.21 da un valor negativo de capacitancia terminal C, lo cual no es real y no es de mucha importancia. Sin embargo, de la ecuación 2.22, el mínimo valor de capacitancia terminal (en Faradios) requerido para auto-excitación está dado por:

$$Cmin = 1 / w v^2$$
 (Xle + Xsmáx) (2.23)

Esto es, Cmín es inversamente proporcional al cuadrado de la velocidad de la máquina en p.u. (v). Es también inversamente proporcional a la reactancia magnetizante no-saturada Xsmax (Xle + Xsmáx + Xsmáx = reactancia magnetizante no-saturada).

El valor de Cmín determinado a partir de la ecuación 2.23 es suficiente para tener auto-excitación en estado estable.

Bajo condiciones transientes, el proceso de excitación es también afectado por la aceleración de la máquina. Si un capacitor terminal, C = Cmín, es usado y el generador es arrancado partiendo del reposo, el voltaje puede que no crezca para cada caso. Por esto, en la práctica, el capacitor terminal C deberá tener un valor algo mayor que Cmín para asegurar la autoexcitación.

#### 2.3.2 REQUERIMIENTOS DE CAPACITANCIA BAJO CARGA

La ecuación 2.23 da el valor minimo de la capaci-

tancia requerida para mantener la auto-excitación en condiciones de vacío. Pero cuando se conecta carga a la máquina, el valor de la capacitancia terminal se deberá incrementar. La cantidad de este incremento dependerá de la máquina, así como también de los parámetros de la carga.

No es posible derivar una expresión analítica simple relacionando la capacitancia terminal con la carga, parámetros de la máquina y velocidad.

Por lo tanto, para una máquina cargada el valor requerido de capacitancia terminal puede ser computado usando el método analítico descrito anteriormente en el inicio de la sección 2.3.

Con el propósito de realizar un estudio, y con la ayuda de un programa que se desarrolla al final del capítulo III, los requerimientos de capacitancia han sido computados para valores diferentes de impedancia de carga, factor de potencia de carga, así como también para diferentes valores de velocidad de la máquina.

Los resultados están dados en las figuras 2.14 a 2.16. Debería notarse que el valor mínimo requerido de capacitancia terminal para una máquina cargada (Clmín)

121

(BIELIOTECS)

está dado por :

Clmin = K Cmin

donde Cmín es la capacitancia terminal mínima en vacío requerida para producir auto-excitación (Ec. 2.23) y el valor del factor k es dado en las figuras 2.14 a 2.16.

Es obvio, de estas figuras, que los requerimientos de capacitancia dependen de la impedancia de carga, factor de potencia de la carga (cargas inductivas) y velocidad de la máquina.

Las figuras 2.14 a 2.16 son de una máquina la cual tiene los siguientes parámetros:

Zbase = 43,3 Ohmios, Re = 0,071; Rr = 0,0881; Xle = Xlr = 0,1813 y Xsmáx = 3,23 (todos en por unidad).

Para máquinas con parámetros del circuito equivalente diferentes, el valor del factor k es ligeramente diferente. Sin embargo, se pueden usar los valores de la constante k dados en las figuras 2.14 a 2.16 como una guía aproximada, cuando se desee estimar la capacitancia de excitación requerida bajo condiciones de velocidad y carga conocida.



Fig. 2.14 Variación de K con respecto a R y v.

Es importante puntualizar que el factor de potencia de la carga mencionado en las figuras 2.15 y 2.16 corresponden a la frecuencia base. El valor real del factor de potencia de la carga dependerá de la frecuencia real F (la cual depende de los parámetros de la máquina, su velocidad e impedancia de carga).

La figura 2.14 muestra que para una velocidad dada, cuando la resistencia de carga disminuye, el factor k se incrementa.

Generalmente para un valor dado de R, k es más pequeño para valores más bajos de velocidad. Ya que el valor real de la capacitancia requerida es kCmin y Cmin es 2 inversamente proporcional a V , el valor de la capacitancia requerida bajo carga aumenta cuando la velocidad disminuye. Sin embargo en contraste con el caso en vacio, para un valor fijo de carga resistiva, este incremento es 2 menor que 1/V .



Fig. 2.15 Variación de k con respecto a Z y al factor de potencia de la carga.

La figura 2.15 muestra que cuando el factor de potencia de la carga es disminuido gradualmente, el valor de k inicialmente se incrementa, hasta un valor máximo y entonces declina.

Cuando una carga puramente inductiva es conectada a la máquina, la potencia de salida es cero. Por tanto, se

puede usar el circuito aproximado de la figura 2.13. Consecuentemente, el valor de k para una carga puramente inductiva es independiente de V y está dada por:

$$K = 1 + ((Xle + Xsmax) / X)$$
 (2.25)

Para cargas R-L de factor de potencia variable, el valor de k es afectado debido a dos razones: En primer lugar cuando el factor de potencia disminuye, la corriente de carga se torna más inductiva y así la capacitancia terminal tiene que ser incrementada para compensar esta componente inductiva, en adición al suministro de los requerimientos de excitación de la máquina.

En segundo lugar, para valores fijos de Z y v, cuando el factor de potencia disminuye, la potencia de salida decrece con tendencia a incrementar la razón F/V, con lo cual se aproxima al caso en vacío. En tales casos, de excitación los requerimientos se deben al estator y se requiere principalmente menos capacitancia comparado al caso cuando la potencia de salida de la máquina es alta la razón F/V es baja Y los requerimientos de excitación son para el así estator así como también para el rotor.

La influencia neta de estos dos factores es el comportamiento no lineal de k versus la característica del factor de potencia como se muestra en la figura 2.15.

Estas características no lineales son también evidentes en la figura 2.16, la cual muestra que k es también afectado por la velocidad cuando el factor de potencia es mayor que cero. Sin embargo, para factor de potencia cero, k no depende de la velocidad como es evidente en la ecuación 2.25.



Fig. 2.16 Variación de K con respecto a v y al factor de potencia de la carga.



# 2.4 APLICACION DE CAPACITORES ESTATICOS A GENERADORES DE INDUCCION QUE ALIMENTAN LINEAS MONOFASICAS

En esta sección se estudiará una aplicación particular de los generadores de inducción autoexcitados actuando como unidades aisladas. Estos estarán alimentando líneas monofásicas utilizando diferentes métodos de auto-excitación.

## 2.4.1 INTRODUCCION

Los capacitores de arranque y de trabajo para motores de inducción han sido ampliamente usados en sistemas monofásicos de 2 hilos.

Estos motores tienen un devanado en cuadratura e internamente son similares a una máquina bifásica. El flujo giratorio no es constante en amplitud y el devanado en cuadratura es un compromiso entre una alta eficiencia a plena carga y a distintos valores de carga.

Una máquina de inducción trifásica tiene un flujo giratorio de amplitud constante y tiene una eficiencia cerca del 12 % más alta y un costo más bajo que una máquina monofásica.

Todo compromiso usando una máquina trifásica

puede ser en los circuitos externos mas no en los internos.

A potencia constante (lo cual es típico en una turbina Pelton) la máquina trifásica puede ser operada balanceadamente usando dos capacitores diferentes para los dos voltajes monofásicos diferentes (3 hilos, monofásico) para proveer exactamente la corriente requerida y el ángulo de fase para el tercer terminal de la máquina.

## 2.4.2 EXCITACION CON DOS CAPACITORES

El circuito mostrado en la figura 2.17 tiene dos capacitores. El capacitor C2 es conectado entre los terminales B y C, y el capacitor C3 entre el terminal C y la derivación central monofásica (puesta a tierra). Las corrientes por los capacitores son I2 e I3 respectivamente.

El generador de inducción trifásico, 240 voltios, será operado con voltajes balanceados y corrientes balanceadas y un ángulo de factor de potencia entre el voltaje y la corriente en los devanados de 🕈 grados. 🕆 es típicamente cercano a sesenta grados.



Fig. 2.17 Circuito modelo A para un generador de inducción trifásico, usando una línea monofásica 3 hilos, 120/240 voltios.

Este generador de inducción trifásico puede alimentar la línea monofásica 120/240 voltios, 3 hilos con la adecuada selección de los capacitores y un transformador.

El diagrama fasorial para el circuito, modelo A, se muestra en la figura 2.18.



Fig. 2.18 Diagrama fasorial del circuito modelo A.

Il es la corriente en el devanado, desde el punto C hasta el neutro N.

Del diagrama fasorial tenemos que:

II = I2 + I3 (2.26)  $\alpha = \vartheta - 60^{\circ}$   $\beta = 90^{\circ} - \vartheta$   $\alpha + \beta = 30^{\circ}$ sen ( $\alpha + \beta$ ) = 0,5 II = cos \vartheta de la ley del seno: sen  $\alpha / I3 = sen \beta / I2 = sen(180 - \alpha - \beta) / I1 = 0,5$ II = 0,5 I1 I2 / I1 = 2 cos  $\vartheta ==>$  I2 = 2 I1 cos  $\vartheta$  (2.27) I3 / I1 = 2 sen  $\alpha ==>$  I3 = 2 I1 sen  $\alpha$  (2.28)

Los voltajes en los capacitores son:

$$V_{BC} = \sqrt{3} \quad V_{CN} \qquad (2.29)$$

$$V_{GC} = 1,5 V_{CN}$$
 (2.30)

Los volio-amperios del generador de inducción son:

$$VA_{GEN} = 3 V_{CN} I1$$
 (2.31)

Los voltio-amperios del capacitor C2 son:

 $VAc_{2} = 2 \sqrt{3} \quad V_{CN} \quad I1 \quad \cos \ \Im \quad (2.32)$  Los voltio-amperios del capacitor C3 son:

VAcs = 2(1,5) VcN I1 sen  $\propto$  (2.33)

Las relaciones entre los voltio-amperios de los capacitores con los voltio-amperios del generador son:

VAc2 / VA gen =  $\cos \frac{1}{2}(2/3)$  (2.34) VAc3 / VA gen =  $\sin \alpha$  (2.35)

Cuando el generador es desconectado y desacelerado, el capacitor C2 entre los terminales BC causará auto-excitación. El contactor debería tener 3 polos, uno para abrir el circuito del capacitor C2 y los otros dos para abrir las líneas de potencia. Si el capacitor C2 no es desconectado, la máquina tiende a frenar muy rápido, probablemente debido a una acción de frenado por las corrientes de Eddy.

Para el caso de un generador de inducción trifásico a 120 Voltios, operando en un sistema 120/240 Volt. 3 hilos se tiene el circuito modelo A', el cual se muestra en la figura 2.19. Este circuito es adecuado para máquinas con ángulos de fase interno entre 30 y 60 grados. Para un ángulo de fase de 30 grados, C2 es cero y la corriente I6<sup>+</sup> a través de C6 es la corriente de la máquina.

Para un ángulo de fase de 60 grados, C6 es cero y la corriente I2 a través de C2 es la corriente de la máquina.

Para ángulos de fase intermedios, ambos C2 y C6 tendrán corriente.

En la figura 2.20 se muestra el diagrama fasorial para este circuito.



Fig. 2.19 Circuito modelo A'



Fig. 2.20 Diagrama fasorial para el circuito A' 2.5.3 EXCITACION CON TRANSFORMADOR Y DOS CAPACITORES

E1 modelo anterior fue conveniente para generadores de inducción cuyos ángulos de factor de potencia fueran mayores a 60 grados. El modelo B, que se muestra en la figura 2.21 **e**5 adecuado para generadores de inducción trifásicos en los cuales la corriente tiene un ángulo de fase menor que 60 grados. En la figura 2.22, un transformador con relación de vueltas unitaria tiene su primario conectado desde la línea B a tierra, y el secundario es conectado al terminal B, por lo tanto el voltaje desde el terminal D a tierra será el doble que el voltaje de B a tierra. La fase C es alimentada por el capacitor C2 desde el terminal B y también por el capacitor C4 desde el terminal D.

El diagrama fasorial del circuito modelo B es mostrado en la figura 2.22.







Fig. 2.22 Diagrama fasorial del circuito modelo B.

$$I1 = I2 + I4$$
 (2.36)

El ángulo entre I2 e I4 es:

sen' 
$$(2/\sqrt{7}) - 30^\circ = 19,1^\circ$$

Se define:

 $sen(\alpha + \sigma) = sen 19,1^{\circ} = 0,3273$ 

de la ley del seno:

sen  $\propto$  /I4 = sen  $\mathcal{O}$  /I2 = sen(180° -  $\propto$  -  $\mathcal{O}$ )/I1 = 0,3273/I1

I4/I1 = 3,055 sen  $\propto$  =  $\sqrt{7}$  sen ↔ - 1,528 cos ↔ (2.38)

Los voltajes de los capacitores son:

$$V_{BC} = \sqrt{3} V_{CN} \qquad (2.39)$$

$$V_{DC} = \sqrt{21} / 2 V_{CN}$$
 (2.40)

Los voltios-amperios del capacitor C2 son: VA C2 =  $\sqrt{3}$  VcN (2,309 sen 2 cos 2 ) I1 (2.41)

Los voltios-amperios del capacitor C4, son:

VA C4 = 
$$V_{CN}\sqrt{21}$$
 (3,055)/2 sen  $\propto$  I1 (2.42)

Las relaciones de los voltio-amperios de los capacitores con los voltio-amperios del generador son :

VA C2/VA gen = (2,309 sen & - 2,0 cos & )/ 3 (2.43)

VA C4/VA gen =  $(3,055/6)\sqrt{21}$  sen  $\alpha$  = 2,33sen  $\alpha$ (2.44)

Para el caso de una alimentación de 240 voltios-2hilos, con el devanado del estator conectado en delta (triángulo), se usaría el modelo C mostrado en la figura 2.23, el cual consta de un transformador 240/240 voltios, cuyo terminal E está a 240 voltios del terminal B, a 360 Voltios del potencial de tierra y a 480 voltios del terminal A. El terminal E es conectado al terminal C del motor a través del capacitor C5. El capacitor C2 es usado aquí también, entre los terminales B y C.

El diagrama fasorial para este modelo es mostrado en la figura 2.24.

El fasor correspondiente al voltaje BC es uno por unidad y el fasor del voltaje EC es  $\sqrt{3}$  por



Fig. 2.24 Diagrama fasorial del circuito modelo C.

unidad. El fasor de la corriente I2 atrasa al voltaje V en 90 grados. El fasor de la BC corriente I5 atrasa a V en 90 grados. La EC suma de estos dos fasores es I , que CN corresponde a la corriente en el devanado de uno por unidad a un ángulo de fase igual a & .

Las componentes, en fase y fuera de fase, de la corriente en el devanado son respectivamente:

$$R = 15\sqrt{3}/2 + 12/2$$
 (2.45)

$$Q = 15/2 + 12\sqrt{3}/2 \tag{2.46}$$

 $\vartheta = \cos^{-1}(f.p.) = \tan^{-1}(Q/R)$ 

$$1.0 = R^2 + Q^2$$

de la ley del seno para este triángulo:

 $15 = 2 \operatorname{sen} \alpha = 2 \operatorname{sen} (60^\circ - \vartheta)$  (2.47)

$$I2 = 2 \operatorname{sen} \beta = 2 \operatorname{sen} (\vartheta - 30^\circ)$$
 (2.48)

Los VARS del capacitor C5 son:

VAR C5 = 
$$(2\sqrt{3})$$
 sen  $(60^{\circ} - 4)$  (2.49)

y del capacitor C2:

VAR C2 = 2 sen 
$$(\vartheta - 60^{\circ})$$
 (2.50)

$$VA T = 2 \text{ sen } (60^\circ - \Im)$$
 (2.51)

Las relaciones de los VA de los capacitores y del transformador con respecto a los VA de la máquina son:

VA T/ VA gen = 
$$2/\sqrt{3}$$
 sen (60° –  $2$ ) (2.52)

VAR C2/VA gen =  $2/\sqrt{3}$  sen ( $\vartheta$  - 30°) (2.53)

VAR C5/VA gen = 2 sen ( $60^{\circ} - 4^{\circ}$ ) (2.54)

Los VARS de la máquina son :

VAR maq./VA gen = sen  $\vartheta$  (2.55)

La compensación capacitiva para la línea monofásica es:

VAR C6/VA gen = sen ↔ - (VA C2/VA gen) - (VA C5/VA gen (2.56)

Estos requerimientos de VA son mostrados en la figura 2.25.

El circuito de este modelo puede ser usado para máquinas con ángulo de factor de potencia entre 30° y 60°grados. Fara & entre 49°y 60°



Voltio-amperios internos del generador VA gen = 3.

- a) Capacitor C2 a voltaje uno por unidad.
- b) Capacitor C5 a voltaje 3 por unidad.
- c) VAR / VA gen sistema capacitivo.
- d) VAR / VA gen sistema inductivo. También VA C6/VA gen.
- e) VA trans / VA gen.
- f) Sólo factor de potencia de la máquina.

grados, un capacitor C6 puede ser usado entre las líneas monofásicas para compensar el factor de potencia a la unidad.

Para & menores que 49 grados, la línea monofásica tiene un factor de potencia en atraso, y el capacitor C6 no puede usarse para una corrección capacitiva.

El circuito modelo C es adecuado para factores de potencia entre 0.866 y 0.70.

El circuito modelo B tiene algunas ventajas para factores de potencia entre 0.70 y 0.50, sólo si no se desea tener un factor de potencia unitario en la línea monofásica.

Considerando los VAR capacitivos de C2,C5 y C6, los circuitos modelo B y modelo C son equivalentes.

La figura 2.26 es un gráfico de los voltioamperios requeridos por los capacitores como una función del ángulo del factor de potencia del generador de inducción trifásico.

Una observación de las curvas en la figura 2.26 muestra que la mayoría de ellos son casi líneas rectas.



i) Capacitor C6 modelo C.

Aproximaciones prácticas para el modelo A son: VA C2/VA gen = 0,187 (91° -  $\forall$ ) (2.57) VA C3/VA gen = 0,0173 ( $\forall$  - 60°) (2.58) VA C6/VA gen = 0,5 - 0,0052313 (90° -  $\forall$ ) --5 2 6,0448 \*10 (90° -  $\forall$ ) (2.59) Aproximaciones prácticas para el modelo B son: VA C2/VA gen = 0,577 - 0,0298(60° -  $\forall$ ) (2.60) VA C4/ VA gen = 0,0403(60° -  $\forall$ ) (2.61)

VA C6/ VA gen = 0,2887 - 0,02067(60° - ↔ ) (2.62)

En las expresiones anteriores, C6 es la capacitancia entre la línea monofásica para producir factor de potencia unitaria en la línea.

Aproximaciones prácticas para el modelo C son: VA C2/VA gen = 0,019246 (ター 30°) (2.63) VA C5/VA gen = 0,03333 (60° - �) (2.64) VA C6/VA gen = 0,2887 - 0,02625 (60° - �) (2.65)

### CAPITULO III

#### PRUEBAS EXPERIMENTALES

En este capítulo se pretende básicamente, realizar un estudio comparativo entre valores obtenidos experimentalmente con los valores obtenidos teóricamente.

Para ello se ha utilizado una máquina de inducción acoplada a un motor de corriente continua, de las que dispone el laboratorio de maquinaria de la ESPOL.

En primer lugar se determinan los parámetros y curvas necesarias de la máquina de inducción, utilizando para ello las pruebas convencionales explicadas en el capitulo I. Luego, se estudia el comportamiento del generador de inducción, relacionando la capacitancia con diferentes parámetros. Además con la ayuda del programa desarrollado en el apéndice A se establece la comparación teórica – experimental del generador de inducción.

Finalmente se desarrolla un programa computacional para obtener los requerimientos mínimos de potencia reactiva (capacitancia mínima).

#### 3.1 OBTENCION DE PARAMETROS

Del laboratorio de maquinaria de la ESPOL, se ha
escogido una máquina KATO, cuyos datos de placa son los siguientes:

MAQUINA DE INDUCCION (como motor): Potencia de salida: 1,5 HP Velocidad nominal: 1715 r.p.m. Voltaje nominal: 220 V Corriente nominal: 4.2 A Frecuencia nominal: 60 Hz Número de polos: 4 Fases: 3 Clase de aislamiento: B MOTOR DE CORRIENTE CONTINUA (PRIMO - MOTOR) Modelo: IEA 69 Tipo: 14054 Potencia de salida: 1.5 HP Velocidad: 1800 r.p.m. Voltaie nominal: 125 V Corriente nominal: 12 A Trabajo continuo Temperatura: 50° C Voltaje del devanado de campo: 70 V Corriente del devanadado de campo: 0,32 A Por conveniencia, en la mayoría de los casos, se han utilizado sólo valores en por unidad, para lo cual se

definen las siguientes constantes base:

Voltaje base: V base = 220 V Corriente base: I base = 4,2 A Impedancia base: Z base = V base/ I base = 52,38 Admitancia base: Y base = 1 / Z base = 0,0191 S Fotencia basse: P base = V base I base = 924 W Velocidad base: N base = 1800 rev/min Frecuencia base: F base = 60 Hz

A partir de las pruebas explicadas en la sección 1.2.1, se han tomado los siguientes datos:

#### TABLA II

#### DATOS DE LA PRUEBA VOLTIMETRO-AMPERIMETRO

| Voltaje (Vdc) | Corriente (Ido | <pre>c) Re=Vdc/2Idc(Ω)</pre> |
|---------------|----------------|------------------------------|
| 4,903         | 1 A            | 2,45                         |
| 7,376         | 1,5 A          | 2,46                         |
| 9,729         | 2 A            | 2,43                         |
| 14,20         | 3 A            | 2,37                         |

Re = Re promedio = 2,43 (3.1)

#### TABLA III

#### DATOS DE LA PRUEBA EN VACIO

| ∨1-1  | Ia   | Ib   | Ic  | P1   | P2  |
|-------|------|------|-----|------|-----|
| (∨)   | (A)  | (A)  | (A) | (W)  | (W) |
| 216,9 | 3,35 | 3,25 | 3,5 | -240 | 430 |

$$Vn = 125, 2 V$$
 (3.2)

Io = 3,37 A (3.3)

 $Po = 190 \quad W$  (3.4)

 $\cos \theta \sigma = 0,15$  (3.5)

## TABLA IV

## DATOS DE LA PRUEBA DE VACIO IDEAL

| ∨1-1  | Ia  | ІЬ  | Ic   | P1   | P2  |
|-------|-----|-----|------|------|-----|
| (∨)   | (A) | (А) | (A)  | (W)  | (W) |
| 217,2 | 3,4 | 3,3 | 3,45 | -260 | 420 |

$$Vn' = 125, 4 V$$
 (3.6)

$$Io' = 3,38 A$$
 (3.7)

$$Vg = Vn - Io (Re + jXle) = 118,43 V$$
 (3.11)

$$Ic = Vg Gc = 0,215936 A$$
 (3.12)

$$Im = \sqrt{Io^2 - Ic^2} = 3,373 A$$
 (3.13)

$$Bm = Im / Vg = 0,02848$$
 (3.14)

## TABLA V

## DATOS DE LA PRUEBA DE CORTOCIRCUITO

| ∨1-1 | Ia   | Ib  | Ic  | Ρ1  | P2  |
|------|------|-----|-----|-----|-----|
| (∨)  | (A)  | (A) | (A) | (W) | (W) |
| 36,9 | 4,15 | 4,0 | 4,3 | 40  | 150 |

|                                              | A CONTRACTOR |
|----------------------------------------------|--------------|
| Vcc = 21,30 V                                | (3.15)       |
| In = 4,15 A                                  | (3.16)       |
| Pcc = 190 W                                  | (3.17)       |
| $\cos \theta cc = 0,716$                     | (3.18)       |
| Zcc = Vcc/In = 5,20                          | (3.19)       |
| Rcc = Pcc / (m1 In <sup>2</sup> ) = 3,68     | (3.20)       |
| $X_{CC} = \sqrt{Z_{CC}^2 - R_{CC}^2} = 3,67$ | (3.21)       |
| Xcc/2 = Xle = Xlr = 1,84                     | (3.22)       |
| Rr = Rcc - Re = 1,25                         | (3.23)       |

TABLA VI DATOS DE LA PRUEBA DE VELOCIDAD SINCRONA

| ∨1-1<br>(∨) | Ie<br>(A) | P1+P2<br>(W) | Vg/F=V11-IeZe<br>(p.u.) | Xm=(V1-1/Ie)-Ze<br>(p.u.) |
|-------------|-----------|--------------|-------------------------|---------------------------|
| 14,84       | 0,4       | 2            | 0,11032                 | 1,15601                   |
| 40,01       | 1,13      | 17           | 0,29667                 | 1,10067                   |
| 51,85       | 1,40      | 27           | 0,38544                 | 1,15398                   |
| 69,40       | 1,87      | 49           | 0,51598                 | 1,15654                   |
| 87,06       | 2,30      | 75           | 0,64806                 | 1,18093                   |
| 101,27      | 2,67      | 102          | 0,75384                 | 1,18325                   |
| 118,36      | 3,17      | 143          | 0,88021                 | 1,16368                   |
| 125,00      | 3,43      | 165          | 0,92824                 | 1,13420                   |
| 132,11      | 3,80      | 194          | 0,97831                 | 1,07952                   |
| 142,54      | 4,43      | 249          | 1,05015                 | 0,99411                   |
| 153,43      | 5,35      | 333          | 1,12109                 | 0,87954                   |
| 165,55      | 6,66      | 466          | 1,19517                 | 0,75244                   |
| 170,17      | 7,12      | 518          | 1,22417                 | 0,72136                   |
| 175,48      | 8,32      | 648          | 1,24662                 | 0,62877                   |





Fig. 3.1 Variación de Vg/F con respecto a Xm, a partir de la prueba de velocidad síncrona.

#### 3.2 COMPORTAMIENTO DEL GENERADOR DE INDUCCION

## 3.2.1 RELACION ENTRE CAPACITANCIA Y VOLTAJE EN VACIO

El voltaje en los terminales de un generador de inducción como un sistema aislado depende de la velocidad, de la carga y del valor de la capacitancia terminal. Si C < Cmin el voltaje no crecerá y por el contrario si C >> Cmin, el voltaje en los terminales puede ser excesivo y peligroso. Por lo tanto, para una operación segura, es conveniente encontrar una relación entre voltaje en los terminales, velocidad y capacitancia terminal.

Para el caso en vacío dicha relación se la describe a continuación.

El voltaje terminal en vacío puede ser obtenido a partir del circuito equivalente aproximado de la Fig. 2.14. Para auto-excitación dicho circuito debería tener una impedancia de lazo mínima. El valor de Xm que sastiface este requerimiento está dado por:

$$2 Xm = (Xc/v) - X1e$$
 (3.24)

Para máquinas de inducción, y utilizando la prueba de velocidad síncrona explicada en la sección 1.2.1.5, es posible expresar la variación del voltaje en el entrehierro en función de Xm (fig. 3.1) por un polinomio de segundo orden del siguiente tipo:

$$Vg = F (A Xm^2 + B Xm + C)$$
 (3.25)

de la fig. 3.1 (ver APENDICE "B")

$$Vg/F = -3,732 Xm^2 + 2,614 Xm + 0,778$$
 (3.26)

De las ecuaciones 3.24 y 3.25 se puede escribir:

 $Vg = v[A(Xc/v^2 - Xle)^2 + B(Xc/v^2 - Xle) + C]$ (3.27)

ya que F = v.

Sustituyendo los valores de los parámetros de la máquina, es posible expresar el voltaje del entre-hierro Vg en términos de la reactancia capacitiva terminal Xc y la velocidad v por una relación de la forma:

donde A, B'y C' son constantes. Por lo tanto, una vez que la máquina es excitada, Vg



progresivamente se incrementa a medida que crece la capacitancia C. Conociendo Vg, es sencillo determinar el voltaje en los terminales Vt, resolviendo el circuito de la figura 2.14.

Para el caso de la máquina Kato:

Vt = Io (0,0464 + j0,0351) + Vg [p.u.] (3.30)

La tabla VII muestra los datos experimentales obtenidos a partir de la máquina Kato conectada bajo el esquema de la figura 3.2, así como también los datos calculados a partir del método simplificado que se acaba de desarrollar.

En la figura 3.3 se muestra la variación del voltaje terminal con respecto a la capacitancia, cuando el generador se encuentra en vacío.

Se puede observar que puede utilizarse el método simplificado para predecir el voltaje terminal Vt en vacío, sin una considerable pérdida de exactitud.



Fig. 3.2 Esquema de conexión para determinar el voltaje terminal en vacío Vt, con respecto a la variación de C.

#### TABLA VII

VALORES DEL VOLTAJE TERMINAL VL PARA UNA VARIACION DE LA CAPACITANCIA C EN VACIO.

| Cap  | acitancia<br>(дF) | C;<br>; | Vt experimental<br>(p.u.) | : | Vt calculado<br>(p.u.) |
|------|-------------------|---------|---------------------------|---|------------------------|
| ;=== | 70                | :       | 0,8914                    | : | 0,8770                 |
|      | 75                | :       | 1,1000                    | : | 1,0341                 |
| :    | 80                | !       | 1,1991                    | ; | 1,1417                 |
|      | 85                | :       | 1,2455                    | ; | 1,2140                 |
| :    | 90                | ;       | 1,3068                    | ; | 1,2609                 |
|      |                   |         |                           |   |                        |

Nota: Los voltajes son por fase.





3.2.2 RELACION ENTRE POTENCIA MAXIMA Y CAPACITANCIA

Existe un cierto valor de potencia máxima, Pmáx, el cual puede ser obtenido de un generador de inducción aislado teniendo un valor de capacitancia fijo.

Cuando la impedancia de carga decrece gradualmente, la potencia de salida inicialmente se incrementa desde cero a Pmáx.

Sin embargo, cualquier disminución mayor de la impedancia de carga, resulta en una disminución de la potencia de salida. Este comportamiento continua hasta que la capacitancia terminal es insuficiente para mantener la auto-excitación del generador y es entonces cuando se produce un colapso en el voltaje terminal a cero.

El valor de esta potencia máxima es análogo al límite de estabilidad en estado estable de una máquina síncrona. Las figuras 3.4 y 3.5 muestran la potencia máxima para una carga resistiva de la máquina Kato.

Como se puede observar en la figura 3.4, para un valor de velocidad dado, Pmáx se incrementa en una forma aproximadamente lineal con



Fig. 3.4 Variación de Pmáx con respecto a K.



Fig. 3.5 Variación de Pmáx con respecto a v y Xc.

respecto a K.

Si se fija el valor de la capacitancia terminal, entonces la Pmáx varía con respecto a la velocidad en una forma no lineal.

La figura 3.5 muestra la variación de Pmáx con respecto a la velocidad en por unidad para diferentes valores de reactancia capacitiva a Es interesante notar que terminal Xc. velocidades más bajas, Pmáx aumenta la con embargo, а terminal C. Sin capacitancia inicialmente más altas, esta velocidades aumenta pero luego disminuye cuando C se incrementa.

Por esta razón, se tiene que considerar cuidadosamente ambos parámetros v y C para obtener el valor óptimo de Pmáx.

## 3.2.3 CARACTERISTICA DE CARGA DEL GENERADOR DE INDUCCION

La característica de carga del generador de inducción indica la variación del voltaje terminal y frecuencia, con respecto a la potencia de salida a un valor fijo de capacitancia.

utilización del programa Mediante la desarrollado en el apéndice A, para estudiar el comportamiento del generador de inducción, se puede determinar fácilmente el voltaje y la terminal para un rango de frecuencia conducctancia de carga dado (carga con f. p. unitario), un valor fijo de capacitancia C y a un valor de velocidad constante.

Las figuras 3.6, 3.7 y 3.8 muestran las caractrísticas de carga de la máquina Kato para tres valores de capacitancia por fase C (70, 80 y 90 F respectivamente) a velocidad constante, v= 1 p.u.

La tabla VIII muestra muestra los valores experimentales obtenidos con la máquina Kato para los valores de capacitancia antes mencionados.

Como se esperaba el voltaje terminal cae conforme aumenta la carga, hasta llegar al colapso (voltaje igual a cero). Se puede observar que para valores de capacitancia mayores, la potencia de salida se incrementa considerablemente, siendo una restricción el voltaje de salida el cual puede elevarse a valores peligrosos.

TABLA VIII CARACTERISTICA DE CARGA DE LA MAQUINA KATO

| $   \begin{bmatrix} \mathcal{A} \ F \end{bmatrix}  [p.u.] \ [$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,0937       0,8027       0,9947         0,1875       0,7082       0,9935         70       0,2812       0,6218       0,9932         0,3750       0,4382       0,9930         0,4687       0,0000       0,0000         0,1875       1,1655       0,9928         0,1875       1,1655       0,9928         0,1875       1,1418       0,9900         0,2812       1,1314       0,9905         0,3750       1,1027       0,9880         0,4687       1,0827       0,9868         0,5624       1,0573       0,9862         80       0,6562       1,0236       0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0,1875       0,7082       0,9935         70       0,2812       0,6218       0,9932         0,3750       0,4382       0,9930         0,4687       0,0000       0,0000         0,0937       1,1655       0,9928         0,1875       1,1418       0,9900         0,2812       1,1314       0,9905         0,3750       1,1027       0,9880         0,3750       1,0827       0,9868         0,5624       1,0573       0,9862         80       0,6562       1,0236       0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70       0,2812       0,6218       0,9932         0,3750       0,4382       0,9930         0,4687       0,0000       0,0000         0,0937       1,1655       0,9928         0,1875       1,1418       0,9900         0,2812       1,1314       0,9905         0,3750       1,1027       0,9880         0,4687       1,0827       0,9868         0,5624       1,0573       0,9862         80       0,6562       1,0236       0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0,3750       0,4382       0,9930         0,4687       0,0000       0,0000         0,0937       1,1655       0,9928         0,1875       1,1418       0,9900         0,2812       1,1314       0,9905         0,3750       1,1027       0,9880         0,4687       1,0827       0,9868         0,5624       1,0573       0,9862         80       0,6562       1,0236       0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0,4687       0,0000       0,0000         0,0737       1,1655       0,7928         0,1875       1,1418       0,9900         0,2812       1,1314       0,9905         0,3750       1,1027       0,7880         0,4687       1,0827       0,9868         0,5624       1,0573       0,9862         80       0,6562       1,0236       0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0,0737       1,1655       0,7728         0,1875       1,1418       0,7900         0,2812       1,1314       0,7905         0,3750       1,1027       0,7880         0,4687       1,0827       0,7868         0,5624       1,0573       0,7862         80       0,6562       1,0236       0,7835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,1875 ; 1,1418 ; 0,9900<br>0,2812 ; 1,1314 ; 0,9905<br>0,3750 ; 1,1027 ; 0,9880<br>0,4687 ; 1,0827 ; 0,9868<br>0,5624 ; 1,0573 ; 0,9862<br>80 0,6562 ; 1,0236 ; 0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0,2812 : 1,1314 : 0,9905<br>0,3750 : 1,1027 : 0,9880<br>0,4687 : 1,0827 : 0,9868<br>0,5624 : 1,0573 : 0,9862<br>80 0,6562 : 1,0236 : 0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0,3750 ¦ 1,1027 ¦ 0,9880<br>0,4687 ¦ 1,0827 ¦ 0,9868<br>0,5624 ¦ 1,0573 ¦ 0,9862<br>80 0,6562 ¦ 1,0236 ¦ 0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,4687 : 1,0827 : 0,9868<br>0,5624 : 1,0573 : 0,9862<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0,5624   1,0573   0,9862<br>80 0,6562   1,0236   0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 80 0,6562 ; 1,0236 ; 0,9835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0,7499 0,9914 0,9822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0,8436 0,9595 0,9815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0,9374 0,9136 0,9798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,0311 0,8609 0,9785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,1249 0,7809 0,9765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,2186 0,6745 0,9748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,3123 0,4782 0,9742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1,4061 ; 0,0000 ; 0,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| CAPACITANCIA<br>C | POTENCIA:<br>SALIDA<br>Ps | VOLTAJE<br>TERMINAL<br>Vt | FRECUENCIA |
|-------------------|---------------------------|---------------------------|------------|
|                   |                           | 1 2410                    |            |
|                   |                           |                           |            |
|                   | 0,1875 ;                  | 1,2245                    | ; 0,9787   |
|                   | 0,3750 ;                  | 1,1895                    | ; 0,9763   |
|                   | 0,5624 ;                  | 1,1550                    | : 0,9742   |
|                   | 0,7499 ;                  | 1,1123                    | : 0,9702   |
| 90                | 0,9374 ;                  | 1,0673                    | ; 0,9675   |
|                   | 1,1249 ;                  | 1,0123                    | ; 0,9647   |
|                   | 1,3123 ¦                  | 0,9532                    | ; 0,9630   |
|                   | 1,6873 ;                  | 0,7036                    | ; 0,9572   |
|                   | 1,7810 ;                  | 0,6068                    | ; 0,9565   |
|                   | 1,8748 ;                  | 0,0000                    | ; 0,0000   |





Fig. 3.6 Característica de carga del generador de inducción para 70 µF (máquina Kato).





# 3.2.4 RELACION ENTRE FACTOR DE POTENCIA DE LA CARGA Y CAPACITANCIA.

el estudiado 5610 se ha ahora Hasta comportamiento y los requerimientos de potencia reactiva del generador de inducción cuando este cierto alimenta cargas resistivas. Si bién es que en la mayoría de los casos, las cargas se ven afectadas por la resistivas no frecuencia de alimentación, pero cuando se necesite un control exacto de la frecuencia Y del voltaje terminal, el generador deberá ir sistema de control con acoplado Б un componentes de estado sólido. Dicho tema no será tratado en el presente trabajo.

Si la carga que se desea acoplar al generador de inducción no es completamente resistiva, entonces la característica de carga del generador de induccioń será como se muestra el la figura 3.9.

Para impedancias de carga inductivas, los capacitores terminales deben suministrar los requerimientos de potencia reactiva de la carga así como también los requerimientos de mmagnetización del generador de inducción.



Mientras que para impedancias de carga capacitivas, la capacitancia de la carga ayuda a suministrar los requerimientos de potencia reactiva del generador de inducción.



Fig. 3.9 Caractrística de carga del generador de inducción, para diferentes factores de potencia.

# 3.3 PROGRAMA COMPUTACIONAL PARA OBTENER LOS DIFERENTES REQUERIMIENTOS DE CAPACITANCIA MINIMA

3.3.1 DESCRIPCION GENERAL DEL SISTEMA

Este sistema tiene como objetivo determinar la reactancia capacitiva correspondiente a la capacitancia mínnima requerida para la autoexcitación de un generador de inducción, operando como un sistema aislado.

El lenguaje utilizado para codificar este sistema es el PASCAL, debido a las múltiples ventajas y facilidades que presta por ser un lenguaje estructurado y aplicable para programación de tipo científico.

Mediante el ingreso de los parámetros de la máquina de inducción y los valores de la carga, el usuario podrá determinar el valor de la reactancia capacitiva máxima requerida para provocar y mantener la auto-excitación del generador de inducción, mediante una solución gráfica y numérica.

#### 3.3.2 ANALISIS DETALLADO

El programa se denomina CMIN y se requiere ingresar los valores de los parámetros de la máquina de inducción y de la carga, en por unidad, por fase y en el siguiente orden:

Resistencia del estator (Re) Resistencia del rotor. (Rr) Reactancia del estator y rotor (Xle=Xlr=Xl) Resistencia de la carga (R) Reactancia capacitiva en paralelo (Xc)

Este es un valor arbitrario que se toma, pero que procede de un valor de capacitancia lo suficientemente grande, como para provocar que la reactancia magnetizante caiga en la región de saturación.

#### Delta Xc

Corresponde al valor con que se desea que aumente la reactancia capacitiva, hasta que encuentre el valor que corresponda a la capacitancia minima.

#### Reactancia magnetizante máxima (Xsmax)

Este valor corresponde a la reactancia máxima no saturada, obtenida a partir de la prueba de velocidad síncrona.

Reactancia magnetizante inicial (Xmo)

Corresponde a un valor inicial supuesto, para resolver las ecuaciones (2.12) y (2.13) por el método de Newton Raphson. Como Xm es menor que la no saturada, Xmo = no saturada.

Velocidad (v)

Debido a que la aplicación principal de generadores de inducción es para cargas resistivas, el sistema sólo acepta valores reales de impedancia de carga.

Si se requiere determinar el valor de la capacitancia mínima requerida para mantener la auto-excitación del generador de inducción cuando alimenta impedancias de carga inductivas, las ecuaciones (2.12) y (2.13) deberán reeplazarse por las ecuaciones (3.31) y (3.32)

Por lo que las constantes c1..c8 y d1..d5 de las ecuaciones (2.14) y (2.15) respectivamente, deberán reemplazarse por las constantes a1..a8



y b1..b9, ecuaciones (3.33) y respectivamente.

$$a1 = -(Rr X + R X1r + R X1e + Re X)$$
  

$$a2 = -(X1e (RrX + R X1r) + X X1r)$$
  

$$a3 = v(R X1r + R X1e + Re X)$$
  

$$a4 = X1r (X1e R + X)v + R Rr Re$$
  

$$a5 = (R Rr Re) Xc$$
  

$$a6 = Rr Xc (X + X1e) + (R + Re) Xc X1r$$
  

$$a7 = -v(R + Re) Xc$$
  

$$a8 = -v Xc X1r (R + Re)$$

b1 = -X (X1r + 1) b2 = -X X1r b3 = v X (X1r + 1) b4 = v X X1r + R Rr X1e b5 = R Re + R Rr + Xc(X + X1r + 1) (3.34) b6 = [R Re + Xc (X + 1)] X1r + Re X b7 = -v [R Re + Xc (X + X1r + 1)] b8 = -v [R Re + Xc (X + 1)] X1rb9 = -Rr Xc (R + Re)

Tanto los datos de entrada como los valores calculados para obtener la solución, son almacenados en un archivo de salida (Ej. RESULT.COM), pero la solución también es obtenida gráficamente por pantalla como resultado de la intersección de dos curvas, tal como se explicó en el capítulo dos sección 2.3.

3.3.3 DIAGRAMA DE FLUJO



Fig. 3.10 Diagrama de flujo del sistema que determina los requerimientos de capacitancia mínima, para la autoexcitación del generador de inducción.

### 3.3.4 LISTADO DEL PROGRAMA

```
program cmin;
```

const

{Definición de constantes}

eps=0.0001; f=60; q=3;

{Definición de variables}

var

```
textfile:text;
s1,s2,s3,s4:string[80];
c1,c2,c3,c4,c5,c6,c7,c8,db1,inic,d1,d2,d3,d4,d5,birr,dirr,bill,dill:real;
i,j,k,l,para,vel,aa1,aa2,b1,b2,ii:integer;
alfa,beta,delta,rr,Db,bL,bLmax,rl,x1,xc,rs,bvt,dvt,bpi:real;
cont,fn,gn,xmo,xsm,Dc,aa,bb,fo,x,vf,a,b,c,xi,fi,d:real;
opci:char;
```

{Ecuaciones simultaneas no-lineales f y g, en función de F y Xm, ecs. (2.12) y (2.13)}

```
function ff(f,xm:real):real;
begin
    ff:=((c1*xm+c2)*f*f*f)+((c3*xm+c4)*f*f)+((c5*xm+c6)*f)+(c7*xm+cB);
end;
function gg(f,xm:real):real;
begin
    gg:=((d1*xm+d2)*f*f)+((d3*xm+d4)*f)+(d5);
end;
```

```
(Matriz Jacobiano)
```

```
function j11(f:real):real;
begin
    j11:=(c1tftftf)+(c3tftf)+(c5tf)+c7;
end;
function j12(f,xm:real):real;
begin
    j12:=(3t(c1txm+c2)tftf)+(2t(c3txm+c4)tf)+(c5txm+c6);
end;
.
function j21(f:real):real;
```



```
begin
    j21:=(d1*f*f)+(d3*f);
end;
function j22(f,xm:real):real;
begin
    j22:=(2*(d1*xm+d2)*f)+(d3*xm+d4);
end;
```

```
(Programa principal)
```

begin

```
textbackground(11);
textcolor(15);
clrscr;
textbackground(0);
window(15,2,65,23);
clrscr;
window(15,2,65,24);
s1:='_';
for i:=1 to 80 do
sl:=concat(s1, '_');
gotoxy(1,1);
writeln(', copy(s1,1,47), ',');
for i:=1 to 20 do
begin
gotoxy(2,i+1);
write('[');
gotoxy(50,i+1);
write('|');
end;
gotoxy(1,22);
write('L',copy(s1,1,47),'J');
gotoxy(12,5);
write('PROGRAMA COMPUTACIONAL PARA');
qotoxy(8,7);
write('OBTENER LA CAPACITANCIA MINIMA DE');
gotoxy(4,9);
write('AUTOEXCITACION DEL GENERADOR DE INDUCCION ');
gotoxy(5,15);
write('Tesis de Grado de:');
gotoxy(10,17);
write('ARTURO DAVID PEREZ ROLANDO');
cont:=0;
repeat
   cont:=cont+0.5;
until cont=15000;
window(1,1,80,25);
textbackground(11);
textcolor(15);
```

{Ingreso de parámetros de la máquina de inducción y datos de carga}

```
clrscr;
textbackground(1);
gotoxy(54,2);
write('__, copy(s1,1,24),'_1');
gotoxy(54,3);
write('| DATOS DE ENTRADA
                                1');
gotoxy(54,4);
write('|
                                (');
qotoxy(54,5);
write('| Ingrese los siguientes |');
gotoxy(54,6);
write('| datos en por unidad : |');
gotoxy(54,7);
writeln('L', copy(s1,1,24), 'J');
window(2,2,52,23);
clrscr;
window(2,2,52,24);
gotoxy(1,1);
writeln('__',copy(s1,1,47),'_');
for i:=1 to 20 do
begin
gotoxy(2,i+1);
write('|');
gotoxy(50,i+1);
write('|');
end;
gotoxy(1,22);
write('L', copy(s1,1,47), 'J');
gotoxy(5,3);
write('Resistencia del Estator ( Re )');
qotoxy(5,5);
write('Resistencia del Rotor
                                ( Rr )');
gotoxy(5,7);
write('Reactancia Est./Rotor (Xle=Xlr)');
qotoxy(5,9);
write('Res. de Carga
                                ( RL )');
qotoxy(5,11);
write('Reac. Cap. en Paralelo ( Xc )');
qotoxy(5,13);
write('Delta Xc ');
gotoxy(5,15);
write('Reactancia Magnetizante máx.( Xsm )');
gotoxy(5,17);
write('Reactancia Magnetizante ( Xm )');
gotoxy(5,19);
write('Velocidad ( v )');
```

#### repeat

repeat {\$i-} gotoxy(41,3); readln(rs); (\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,5); readln(rr); (\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,7); readln(x1); {\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,9); readln(rl); (\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,11); readln(xc); {\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,13); readln(Dc); {\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,15); readln(xsm); (\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,17); readln(xmo); {\$i+} until ioresult=0; repeat {\$i-} gotoxy(41,19);

174



');

```
readln(vel):
        {$i+}
      until ioresult=0;
      opci:='n';
        qotoxy(3,21);
        write('Desea corregir algún valor? (s/n) ==> ');
        readln(opci):
        gotoxy(3,21);
                                                        `);
        write('
    until opci='n';
    window(54,10,79,14);
    clrscr;
    window(54,10,80,16);
    writeln('_r',copy(s1,1,24),'');
                                        );
    writeln('
                                        1);
    writeln('
    writeln('
                                       1);
    writeln('L',copy(s1,1,24),'J');
    gotoxy(3,3);
    write('Salida : ');
    readln(s1);
(Registro de datos para impresión)
       assign(textfile,s1);
       rewrite(textfile);
        writeln(textfile):
                                                        PROGRAMA COMPUTACIONAL PARA');
        writeln(textfile,
                                            OBTENER LA CAPACITANCIA MINIMA DE AUTOEXCITACION');
        writeln(textfile,
                                                         DEL GENERADOR DE INDUCCION ();
        writeln(textfile.
        writeln(textfile);
        writeln(textfile);
                                                          $$$ DATOS DE ENTRADA $$$');
        writeln(textfile,
        writeln(textfile);
        writeln(textfile,
                                              Resistencia del Estator ( Re ) = ',rs:10:3);
                                              Resistencia del Rotor ( Rr ) = ',rr:10:3);
        writeln(textfile,
                                              Reactancia Est./Rotor (Xle=Xlr) = ',xl:10:3);
        writeln(textfile,
                                                                           = ',rl:10:3);
        writeln(textfile,
                                              Res. de Carga (RL)
                                               Reac. Cap. en Paralelo ( Xc ) = ',xc:10:3);
        writeln(textfile,
                                                                              = ',Dc:10:3);
                                               Delta Xc
        writeln(textfile,
                                               React. Magnetizante Max. ( Xsm )= ',xsm:10:3);
        writeln(textfile,
                                               Reactancia Magnetizante ( Xm ) = ',xmo:10:3);
        writeln(textfile,
                                                                              = ',vel:10);
        writeln(textfile,
                                               Velocidad ( v )
        writeln(textfile);
        writeln(textfile);
        writeln(textfile,
                                                           Xsa
                                                                          Xi
                                                                                          Хc
                                                                                                  1);
        writeln(textfile,
```

```
para:=-1;
textcolor(14);
window(1,1,80,25);
hires;
hirescolor(15);
graphbackground(14);
draw(115,18,615,18,1);
draw(115,18,115,179,1);
draw(115,179,615,179,1);
draw(615,18,615,179,1);
qotoxy(53,25);
           Xc (p.u.) ');
write('
qotoxy(2,2);
write('Xm (p.u.)');
                     ','','Vs.',' Xc');
      s3:=concat('Xm
      i:=length(s3);
      qotoxy(40-round(i/2),1);
      write(s3);
      draw(115,58,615,58,1);
      qotoxy(2,8);
      write(' Xsm -->');
      gotoxy(2,9);
      write(xsm:10:3);
      ii:=0;
```

```
repeat
```

```
(Aplicación del método de Newton-Raphson para resolver las ecuaciones (2.12) y (2.13)}
    c1:=-2$x1$r1;
    c2:=-xl$xl$rl;
    c3:=2#x1%r1;
    c4:=xl$xl$rl;
    c5:=xcl(rl+rs+rr);
    c6:=xclxll(rl+rs+rr);
    c7:=-xcl(rs+rl);
    c8:=-xl$xc$(rs+rl);
    d1:=(2$x1$xc)+r1$(rs+rr);
    d2:=(r1$x1$(rs+rr))+(x1$x1$xc);
     d3:=rs#rl+(2#xl#xc);
    d4:=-xl$(rs8rl+(xl$xc));
     d5:=-xc$rr$(r1+rs);
     i:=1;
     xi:=xmo;
     fi:=vel;
        fn:=ff(fi,xi);
        gn:=gg(fi,xi);
```

```
while ((abs(fn)>eps) or (abs(qn)>eps)) and (i<1000)
       begin
          a:=j11(fi);
          b:=j12(fi,xi);
          c:=j21(fi);
          d:=j22(fi,xi);
          delta:=(atd)-(btc);( writeln(delta, ', fn, ', qn);)
          alfa:=(b$qn-(fn$d))/delta;
          beta:=(fntc-(atgn))/delta;
          xi:=xi+alfa;
          fi:=fi+beta;
          i:=i+1;
          fn:=ff(fi,xi);
          qn:=qq(fi,xi);
       end;
{Solución gráfica}
   if i<1000 then
   begin
                   if ii=0 them
                   begin
                     aa1:=115;
                     aa2:=115;
                     b2:=179;
                     db1:=(xsm-xi)/121;
                     inic:=xi;
                     b1:=179;
                     ii:=2;
                     gotoxy(2,19);
                      gotoxy(26,4);
                                   X = ',aa2,' Y = ',b2,' Xc = ',xc:10:3);
                     write('
                     qotoxy(3,24);
                       write(' Xm inic.');
                   end
                   else
                   begin
                     aa2:=aal+1;
                     b2:=179-round((xi-inic)/db1);
                      draw(aa1,b1,aa2,b2,1);
                      gotoxy(26,4);
                                   X = ',aa2,' Y = ',b2,' Xc = ',xc:10:3);
                      write('
                      aal:=aa2;
                      para:=para-1;
                      if xi>=xsm then
                      begin
```

.

```
qotoxy(round(aa1/8),24);
                       write(' Xc ( Cmin)');
                       qotoxy(round(aa1/8),25);
                       write(xc:10:3);
                       para:=20;
                     end;
                     b1:=b2;
                  end;
                                         ',×5m:10:3,' p.u. ',×i:10:3,' p.u. ',×c:8:4,' p.u.');
      writeln(textfile,'
      xc:=xc+Dc;
      end
   else writeln('el sistema es divergente');
until (i>1000) or (para=0) or (aa2>=615) or (xi>xsm);
repeat until keypressed ;
close(textfile);
textmode:
end.
  procedure imprime(infi :string[80]);
    begin
        assign(textfile,sl);
        ($i-) reset (textfile){$i+};
        ok:=(ioresult = 0);
        if (not ok) then
           begin
           gotoxy(i,j);
           write('Archivo no existente');
```

end; if ok then begin repeat

end;

end;

readln(texto,sttr); writeln(lst,sttr); until sttr='FIN'; 178

## CONCLUSIONES Y RECOMENDACIONES

Hay que diferenciar el comportamiento del generador de inducción cuando este trabaja en paralelo a la red pública (barra infinita) y cuando trabaja como un sistema aislado.

Cuando trabaja conectado a una barra infinita ofrece algunas ventajas sobre el generador sincrono convencional:

-No tiene efecto sobre la frecuencia del sistema.

-No tiene efecto sobre el voltaje del sistema.

-No necesita equipo de sincronización para conectarse a la red.

-No necesita una fuente de voltaje D.C. para su excitación.

-El control y los dispositivos de protección son básicamente los mismos que para un motor.

-No puede contribuir con corriente de cortocircuito en una falla del sistema.

-Tiende a amortiguar cualquier armónica no deseada en la forma de onda del voltaje del sistema.

-Su rotor, sin escobillas (Jaula de ardilla), es el más simple y de construcción más robusta de cualquier máquina eléctrica.

-Fácilmente disponibles a 3600 o 1800 r.p.m. para

capacidades desde 100 a 1000 KW. -Reducido costo de la unidad. -Fácil mantenimiento.

Los generadores de inducción, cuando trabajan conectados a una barra infinita, ha sido solicitados particularmente capacidades hidroeléctricas de instalaciones en relativamente pequeñas en donde algunas máquinas pueden ser instaladas para abarcar la capacidad total. En esta el número de máquinas en operación puede ser forma. variada dependiendo de las condiciones de agua para que cada máquina sea operada a plena carga todo el tiempo. La localización ideal de la planta es donde se requieren capacidades pico, en un punto del sistema donde hay disponible suficiente reactivos que provean la excitación del generador.

La utilización del generador de inducción, cuando trabaja como un sistema aislado, se ha desarrollado debido a los enfatizados cambios sobre los problemas de la energía, desarrollo de adquiriendo gran importancia debido al nomotores movidos por fuentes energía de primo mar, biogas, convencionales tales como el viento, el etc.. Sumándosele a esto el desarrollo de convertidores de enrgia estáticos, lo que facilita el control de generadores auto-excitados en término de frecuencia Y voltaje de salida.
De la experiencia del presente trabajo se sugieren las siguientes recomendaciones:

Si un capacitor terminal C=Cmín se utiliza y el generador se arranca partiendo del reposo, el voltaje terminal puede que no cresca para cada caso. Por esto, en la práctica, el capacitor terminal C deberá tener un valor algo mayor que Cmín para asegurar la auto-excitación.

El método para arrancar puede variar de una instalación a otra, sin embargo usando los métodos descritos en la sección 2.1.3, la confiabilidad de arrancar puede ser muy alta.

Finalmente se recomienda que este trabajo sea continuado con el desarrollo de un control en téminos de frecuencia y voltaje de salida con la ayuda de convertidores de energía estáticos.

#### APENDICE "A"

#### MANUAL DE PROCEDIMIENTOS

#### 1. DESCRIPCION GENERAL DEL SISTEMA.-

Este sistema tiene por objetivo realizar los cálculos necesarios para estudiar el comportamiento del generador de inducción, en estado estable, obteniendo resultados a través de las ecuaciones 2.20, y mediante la aplicación de la técnica analítica explicada en la sección 2.2.

Al igual que en el sistema desarrollado en el capítulo tres, el lenguaje utilizado para la codificación es el FASCAL, debido a la estructuración y a las ventajas que presta por ser un lenguaje aplicable para la programción de tipo científico.

Lo que se ha querido conseguir con el sistema es facilitar al usuario la realización de los cálculos que con lleva al estudio del comportamiento del generador de inducción auto-excitado, cuando opera como una unidad aislada.

#### 2. ANALISIS DETALLADO

Se requiere cargar el programa TURBO PASCAL en un

computador con un sistema operativo DOS.

El programa de denomina ANALIS y se requiere ingresar por pantalla los valores de los parámetros de la máquina de inducción y de la carga, en por unidad, por fase y en el siguiente orden:

> Resistencia del estator (Re) Resistencia del rotor (Rr) Reactancia del estator y rotor (Xle=Xlr=Xl) Resistencia de carga máxima (1/blmín)

Corresponde al valor de conductancia de carga mínima del rango de carga en estudio.

# Resistencia de carga mínima (1/blmáx)

Corresponde al valor de conductancia de carga máxima del rango de carga en estudio.

#### Delta bl

Corresponde al tamaño con que se desea dividir el rango de carga en estudio.

## Reactancia capacitiva (Xc)

Corresponde al valor de la reactancia capacitiva en paralelo y por fase que se conecta al generador.

Reactancia magnetizante (Xmo)

Corresponde a un valor inicial supuesto, para resolver las ecuaciones (2.12) y (2.13) por el método de Newton-Raphson. Como Xm es menor que la no saturada, Xmo = no saturada.

#### Velocidad (v)

Además, será necesario el ingreso de las constantes que integran el modelo matemático que relaciona el voltaje en el entre-hierro (Vg/F) con la reactancia magnetizante Xm, modelo obtenido a partir de los datos de la prueba de velocidad sincrona (sección 3.1 y apéndice B).

El programa considera que el modelo obtenido es un polinomio de segundo orden, de la forma Vg/F = A Xm<sup>2</sup> + B Xm + C, por lo que los valores de las constantes a ingresar son A, B y C.

Luego el programa pide un nombre para el archivo de salida, donde almacenará los resultados.

Al finalizar el proceso de ingreso de datos, es posible rectificar todos o algunos de ellos.



```
program analisis;
 { Definición de Constantes }
   const
      puntos=10;
      eps=0.0001;
      f=60;
      q=3;
 { Definición de tipos }
 type
      valor=array[1..puntos] of real;
{ Definición de Variables}
   var
      textfile:text;
      s1,s2,s3,s4:string[80];
      c1,c2,c3,c4,c5,c6,c7,c8,d1,d2,d3,d4,d5:real;
      birr, beta, delta, dirr, bill, dill, xi, fi, vf,
      bvt,dvt,bpi,dpi,bl:valor;
      z,i,j,k,l,vel:integer;
      alfa, rr, Db, bLmax, rl, xl, xc, rs,
      fn,gn,xmo,aa,bb,cc,fo,x,a,b,c,d:real;
      cont:real;
      opci:char;
{Ecuaciones simultaneas no-lineales f y g, en Función de F y Xm, ecs. (2.12) y (2.13)}
    function ff(f,xm:valor):real;
   begin
ff:=((c1$xm[z]+c2)$f[z]$f[z]$f[z])+((c3$xm[z]+c4)$f[z]$ f[z])+((c5 $xm[z]+c 6)$f[z])+(c7$xm[z]+c8);
    end;
    function gg(f,xm:valor):real;
    begin
 gg:=((d1$xm[z]+d2)$f[z]$f[z])+((d3$xm[z]+d4)$f[z])+(d5) ;
    end;
 {Matriz Jacobiano}
    function j11(f:valor):real;
    begin
 j11:=(c1#f[z]#f[z]#f[z])+(c3#f[z]#f[z])+(c5#f[z])+c7;
```

```
end;
  function j12(f,xm:valor):real;
  begin
j12:=(3‡(c1‡xm[z]+c2)‡f[z]‡f[z])+(2‡(c3‡xm[z]+c4)‡f[z]) +(c5‡xm[z] +c6);
  end;
   function j21(f:valor):real;
   begin
     j21:=(d1*f[z]*f[z])+(d3*f[z]);
   end;
   function j22(f,xm:valor):real;
   begin
      i22:=(2*(d1*xm[z]+d2)*f[z])+(d3*xm[z]+d4);
   end;
Procedure pscreen(bbl,xxi,ffi,vgf,bet,del:valor);
  begin
    gotoxy(5,z+5);
                              ',xxi[z]:4:3,' ',ffi[z]:4:3,' ',vgf[z]:4:3,'
                                                                                 ',bet[z]:4:3,
     write(bbl[z]:4:3,'
'+j(',del[z]:4:3,')')
  end;
procedure printer(bbl,bir,dir,bil,dil,bt,dt:valor);
  begin
    gotoxy(3, z+5);
    write(' ',bbl[z]:4:3,' ',bir[z]:4:3,'+j(',dir[z]:4:3,')',' ',bil[z]:4:3,'+j(',dil[z]:4:3,')','
                                                                                                       í,
    bt[z]:4:3,'+j(',dt[z]:4:3,')')
  end;
procedure ppout(bbl,pin,pout:valor);
begin
  gotoxy(3,z+5);
                                     ',pin[z]:4:3,' ',pout[z]:4:3);
  write(' ',bbl[z]:4:3,'
end;
   procedure encera(xxi,ffi,vgf,bet,del,bir,dir,bil,dil,
                    bt,dt,bi,di:valor);
    begin
      for z:=1 to puntos do
       begin
          xxi[z]:=0;ffi[z]:=0;bet[z]:=0;del[z]:=0;
          bir[z]:=0;dir[z]:=0;bil[z]:=0;dil[z]:=0;
          bt[z]:=0;dt[z]:=0;bi[z]:=0;di[z]:=0;
        end
      end;
```

```
{ Programa Principal }
```

begin

```
textbackground(11);
    textcolor(15);
    clrscr;
    textbackground(0);
    window(15,2,65,23);
    clrscr:
    window(15,2,65,24);
    s1:='_';
    for i:=1 to 80 do
    s1:=concat(s1, '_');
    qotoxy(1,1);
    writeln(' _ r', copy(s1,1,47), ' 1');
for i:=1 to 20 do
    begin
    qotoxy(2,i+1);
    write('|');
    gotoxy(50,i+1);
    write('|');
    end;
    gotoxy(1,22);
    write(' L',copy(s1,1,47),'J');
    gotoxy(12,5);
    write('PROGRAMA COMPUTACIONAL PARA');
    gotoxy(4,7);
    write('ESTUDIAR EL COMPORTAMIENTO EN ESTADO ESTABLE');
    qotoxy(4,9);
                     DEL GENERADOR DE INDUCCION ');
    write('
    gotoxy(5,15);
     write('Tesis de Grado de:');
     gotoxy(10,17);
     write('ARTURD DAVID PEREZ ROLANDD');
     cont:=0;
     repeat
     cont:=cont+0.25
     until cont=15000;
     window(1,1,80,25);
     textbackground(11);
     textcolor(15);
     clrscr:
(Ingreso de parámetros de la máquina de inducción y datos de carga)
     textbackground(1);
     gotoxy(54,2);
     write('___, copy(s1,1,24),'_1');
gotoxy(54,3);
     write('| DATOS DE ENTRADA
                                      (');
```



```
gotoxy(54,4);
                                (');
write('|
gotoxy(54,5);
write('| Ingrese los siguientes |');
gotoxy(54,6);
write('| datos en por unidad: |');
gotoxy(54,7);
writeln('L',copy(s1,1,24),'l');
window(2,2,52,23);
clrscr;
window(2,2,52,24);
gotoxy(1,1);
writeln(' r',copy(s1,1,47),');
for i:=1 to 20 do
begin
gotoxy(2,i+1);
write('|');
gotoxy(50,i+1);
write('|');
end;
qotoxy(1,22);
 write(' L', copy(s1,1,47),'J');
 qotoxy(5,4);
 write('Resistencia del Estator ( Re )');
 gotoxy(5,6);
 write('Resistencia del Rotor
                                 ( Rr )');
 qotoxy(5,8);
 write('Reactancia Est./Rotor (Xle=Xlr)');
 gotoxy(5,10);
 write('Res. de Carga max. ( 1/bL min )');
 gotoxy(5,12);
 write('Res. de Carga min. ( 1/bL máx )');
 gotoxy(5,14);
 write('Reactancia Capacitiva ( Xc )');
 gotoxy(5,16);
 write('Reactancia Magnetizante ( Xmo )');
 qotoxy(5,18);
 write('Velocidad (v)');
 repeat
    repeat
     {$i-}
      gotoxy(40,4);
      readln(rs);
      {$i+}
    until ioresult=0;
    repeat
      {$i-}
      gotoxy(40,6);
      readln(rr);
```

```
{$i+}
until ioresult=0;
repeat
  ($i-)
  gotoxy(40,8);
  readln(x1);
  {$i+}
until ioresult=0;
repeat
  {$i-}
  gotoxy(40,10);
  readln(rl);
  {$i+}
until ioresult=0;
repeat
  {$i-}
  gotoxy(40,12);
  readln(alfa);
  ($i+)
until ioresult=0;
repeat
  {$i-}
  gotoxy(40,14);
  readln(xc);
  {$i+}
 until ioresult=0;
 repeat
   {$i-}
   gotoxy(40,16);
   readln(xmo);
   {$i+}
 until ioresult=0;
 repeat
   {$i-}
   gotoxy(40,18);
   readln(vel);
   {$i+}
 until ioresult=0;
 opci:='n';
   gotoxy(3,20);
   write(' ');
   gotoxy(3,20);
   write('Desea corregir algún valor? (S/N) ==> ');
   readln(opci);
   gotoxy(3,20);
   write(' ');
until opci='n';
                        {Cálculo de conductancia minima}
b1[1]:=1/rl;
                    {Cálculo de conductancia máxima}
bLmax:=1/alfa;
```

```
Db:=(bLmax-bl[1])/puntos; {Cálculo de delta}
window(54,8,79,17);
clrscr;
```

{Ingreso de las constantes para el polinomio de segundo orden que relaciona el voltaje en el entre-hierro Vg/F con la reactancia magnetizante Xm}

```
window(54,8,80,24);
writeln('___,copy(s1,1,24),'__');
writeln('___Aproximación Polinomial(');
writeln('
            de la variación del
                                     ');
writeln('
            voltaje en el entre-
                                     '):
writeln('
           hierro con respecto
                                     1;
                                     ·);
writeln('
             a la reactancia
                                     ·);
writeln('
                magnetizante
writeln('
                                     ');
           Vg/F = A Xm^2+B Xm + C
writeln('
                                    ');
writeln('
                                     ·);
writeln('
                                     ·);
                                     ');
writeln('
writeln('
                                     ·);
                                     ');
writeln('
writeln('
                                    ʻ);
writeln('L',copy(s1,1,24),'J');
gotoxy(4,10);
write(' A = ');
gotoxy(4,11);
write(' B = ');
gotoxy(4,12);
write(' C = ');
repeat
 repeat
   {$i-}
    gotoxy(14,10);
   readln(aa);
   {$i+}
 until ioresult=0;
  repeat
   {$i-}
    gotoxy(14,11);
   readln(bb);
   {$i+}
 until ioresult=0;
  repeat
   {$i-}
    gotoxy(14,12);
   readln(cc);
   {$i+}
  until ioresult=0;
```

```
192
```

```
gotoxy(2,14);
                                 ');
     write('
     gotoxy(2,14);
     write('Corregir? (s/n) ');
     readln(opci);
     gotoxy(2,14);
                                  ·);
     write('
   until opci='n';
   qotoxy(3,13);
   write('Salida : ');
   readln(s1);
      assign(textfile,s1);
      rewrite(textfile);
      writeln(textfile);
      writeln(textfile, ' PROGRAMA COMPUTACIONAL PARA');
                                         ESTUDIAR EL COMPORTAMIENTO EN ESTADO ESTABLE');
      writeln(textfile,
                                                   DEL GENERADOR DE INDUCCION ');
      writeln(textfile,'
      writeln(textfile);
      writeln(textfile);
                                                   ### DATOS DE ENTRADA ###');
       writeln(textfile,
       writeln(textfile);
                                       Resistencia del Estator ( Re ) = ',rs:10:3);
       writeln(textfile,
                                       Resistencia del Rotor ( Rr ) = ',rr:10:3);
       writeln(textfile,'
                                       Reactancia Est./Rotor (Xle=Xlr) = ',xl:10:3);
       writeln(textfile,
                                       Res. de Carga máx. ( 1/bL min ) = ',rl:10:3);
       writeln(textfile,
                                       Res. de Carga min. ( 1/bL máx ) = ',alfa:10:3);
       writeln(textfile,
                                       Delta bL = ',Db:10:3);
       writeln(textfile,'
                                       Reactancia Capacitiva ( Xc ) = ',xc:10:3);
       writeln(textfile,
                                       Reactancia Magnetizante ( Xmo ) = ',xmo:10:3);
       writeln(textfile,
                                       Velocidad ( v ) = ',vel:10);
       writeln(textfile,
       writeln(textfile);
       writeln(textfile);
       writeln(textfile);
                                                  Vg/F = A Xm^2 + B Xm + C
                                                                               ');
       writeln(textfile,
       writeln(textfile);
                                           A = ',aa:10);
       writeln(textfile,
                                           B = ',bb:10);
       writeln(textfile,'
                                           C = ',cc:10);
       writeln(textfile,
       writeln(textfile);
       writeln(textfile);
encera(xi,fi,vf,beta,delta,birr,dirr,bill,dill,
      bvt,dvt,bpi,dpi);
  z:=0;
```

repeat

```
z:=z+1;
 rl:=1/bl[z];
 c1:=-2#x1#r1;
 c2:=-x1#x1#rl;
 c3:=2#x1#r1;
 c4:=xl$xl$rl;
 c5:=xc‡(rl+rs+rr);
 c6:=xc$xl$(rl+rs+rr);
 c7:=-xc$(rs+rl);
 c8:=-x1$xc$(rs+r1);
 d1:=(2$x1$xc)+r1$(rs+rr);
 d2:=(rl$xl$(rs+rr))+(xl$xl$xc);
 d3:=rs$rl+(2$xl$xc);
 d4:=-xlt(rstrl+(xltxc));
 d5:=-xctrrt(rl+rs);
  i:=1;
  xi[z]:=xmo;
  fi[z]:=vel;
     fn:=ff(fi,xi);
     gn:=gg(fi,xi);
  while ((abs(fn)>eps) or (abs(gn)>eps)) and (i<1000)
     begin
        a:=j11(fi);
        b:=j12(fi,xi);
        c:=j21(fi);
        d:=j22(fi,xi);
        delta[z]:=(a$d)-(b$c);
        alfa:=(b$gn-(fn$d))/delta[z];
        beta[z]:=(fn$c-(a$gn))/delta[z];
        xi[z]:=xi[z]+alfa;
        fi[z]:=fi[z]+beta[z];
        i:=i+1;
         fn:=ff(fi,xi);
         gn:=gg(fi,xi);
     end;
if i<1000 then
begin
```

```
window(1,1,80,25);
   textbackground(15);
   textcolor(15);
   clrscr;
   textbackground(1);
   window(2,2,79,23);
   clrscr;
     vf[z]:=(aa$xi[z]$xi[z])+(bb$xi[z])+cc;
     { Cálculo de las ecuaciones 2.20 }
      a:=fi[z]#fi[z]#fi[z];
      b:=fi[z]#fi[z];
      alfa:=((fi[z]$rl$rs+(fi[z]$xc$x1))$(fi[z]$rl$rs+ (fi[z]$xc$ x1))); alfa:=vf[z]/(alfa+((b$x1$rl-(rs$xc)-
      (xc$r1))$(b$x1$r1-(rs$xc)-(xc$r1)))); beta[z]:=(a$r1$r1$rs+(a$r1$xc$x1)-
      (a$x]$xc$r])+(fi[z]$xc$xc$rs)+(fi[z]$xc$xc$r])); delta[z]:=(b$r]$rs$xc+(b$xc$xc$x])+(a$fi[z]$x1$r
      ltrl)-(btrltrstxc)-(btrltrltxc));
      beta[z]:=alfa$beta[z];
      delta[z]:=alfatdelta[z];
      alfa:=vf[z]/((rr/(fi[z]-vel))*(rr/(fi[z]-vel))+(x1*x1));
      birr[z]:=-(rr/(fi[z]-vel))#alfa;
      dirr[z]:=alfatxl;
      alfa:=xc/(((rl*fi[z])*(rl*fi[z]))+(xc*xc));
      bill[z]:=alfat(beta[z]txc+(delta[z]trltfi[z]));
      dill[z]:=alfat(delta[z]*xc-(rl*fi[z]*beta[z]));
      bvt[z]:=bill[z]$rl;
      dvt[z]:=dill[z]*rl;
      bpi[z]:=-(qt(birr[z]tbirr[z]tdirr[z]tdirr[z])trrtfi[z])/( fi[z]-vel);
      dpi[z]:=(q#(bill[z]#bill[z]+dill[z]#dill[z])#rl) ;
      bl[z+1]:=bl[z]+Db;
    end
  else writeln('el sistema es divergente');
until ((bl[z]-Db)>bLmax) or (i>1000);
{ PRIMERA TABLA }
clrscr;
gotoxy(2,2);
write('CONDUCTANCIA REACTANCIA FRECUENCIA VOLTAJE DEL CORRIENTE');
gotoxy(2,3);
                     MAGNET. ENTREHIERRO ESTATOR');
write(' DE CARGA
gotoxy(2,4);
                                     (p.u.) (p.u.) (p.u.)');
                         (p.u.)
writeln(' (p.u.)
  for z:=1 to puntos do
     pscreen(bl,xi,fi,vf,beta,delta); { Presentación de la primera tabla de }
                                       { valores }
```

194

```
gotoxy(5,20);
write('Presione cualquier tecla para continuar');
repeat until keypressed;
{ Guardando Resultados en el Archivo de Salida }
writeln(textfile):
writeln(textfile);
writeln(textfile,'CONDUCTANCIA REACTANCIA FRECUENCIA VOLTAJE DEL CORRIENTE');
writeln(textfile,' DE CARGA MAGNET. ENTREHIERRO ESTATOR');
writeln(textfile,' (p.u.)
                                          (p.u.) (p.u.) (p.u.)');
                             (p.u.)
writeln(textfile):
for z:=1 to puntos do
                                                                          ',vf[z]:4:3,' ',beta[z]:4:3,
writeln(textfile, ',bl[z]:4:3, ',xi[z]:4:3, ',fi[z]:4:3, '
'+j(',delta[z]:4:3,')');
writeln(textfile);
writeln(textfile);
{ SEGUNDA TABLA }
clrscr;
gotoxy(2,2);
                                      CORRIENTE VOLTAJE');
write('CONDUCTANCIA CORRIENTE
gotoxy(2,3);
                     ROTOR
                                     DE CARGA TERMINAL');
write(' DE CARGA
gotoxy(2,4);
                                      (p.u.) (p.u.)');
write(' (p.u.)
                     (p.u.)
  for z:=1 to puntos do
     printer(bl,birr,dirr,bill,dill,bvt,dvt); { Presentación de la segunda }
                                                   { tabla de valores }
  gotoxy(5,20);
  write('Presione cualquier tecla para continuar');
 repeat until keypressed;
 { Guardando Resultados en el Archivo de Salida }
 writeln(textfile);
 writeln(textfile);
 writeln(textfile,'CONDUCTANCIA CORRIENTE CORRIENTE VOLTAJE');
 writeln(textfile, DE CARGA ROTOR
                                                DE CARGA TERMINAL'):
 writeln(textfile,
                                (p.u.) (p.u.) (p.u.)');
                   (p.u.)
 writeln(textfile):
 for z:=1 to puntos do
 writeln(textfile, ',bl[z]:4:3, ',birr[z]:4:3, '+j(',dirr[z]:4:3, ')',
 ',bill[z]:4:3,'+j(',dill[z]:4:3,')',' ', bvt[z]:4:3,'+j(',dvt[z]:4:3,')');
 writeln(textfile);
 writeln(textfile);
 { TERCERA TABLA }
 clrscr;
 gotoxy(2,2);
```

195

```
POTENCIA DE POTENCIA DE');
write('CONDUCTANCIA
gotoxy(2,3);
write(' DE CARGA
                                         SALIDA');
                          ENTRADA
gotoxy(2,4);
                                         (p.u.)');
write(' (p.u.)
                          (p.u.)
  for z:=1 to puntos do
      ppout(bl,bpi,dpi);
  gotoxy(5,20);
  write('Presione cualquier tecla para continuar');
repeat until keypressed;
                                 POTENCIA DE POTENCIA DE');
writeln(textfile, CONDUCTANCIA
writeln(textfile, DE CARGA
                                   ENTRADA SALIDA');
writeln(textfile,' (p.u.)
                                    (p.u.) (p.u.)');
writeln(textfile);
 for z:=1 to puntos do
   writeln(textfile, ',bl[z]:4:3, ',bpi[z]:4:3, ',dpi[z]:4:3);
clrscr;
close(textfile);
end.
  procedure imprime(infi :string[80]);
     begin
         assign(textfile,s1);
         {$i-} reset (textfile){$i+};
         ok:=(ioresult = 0);
         if (not ok) then
            begin
             gotoxy(i,j);
             write('Archivo no existente');
          end;
          if ok then
           begin
             repeat
                readln(texto,sttr);
                 writeln(lst,sttr);
             until sttr='FIN';
           end;
```

```
end;
```

#### PROGRAMA COMPUTACIONAL PARA ESTUDIAR EL COMPORTAMIENTO EN ESTADO ESTABLE DEL GENERADOR DE INDUCCION (Ag/12/92)

### \*\*\* DATOS DE ENTRADA \*\*\*

| Resistencia del Estator ( Re )  | Ξ | 0.062 |
|---------------------------------|---|-------|
| Resistencia del Rotor ( Rr )    | Ξ | 0.070 |
| Reactancia Est./Rotor (Xle=Xlr) | Ξ | 0.093 |
| Res. de Carga máx. ( 1/bL mín ) | Ξ | 1.890 |
| Res. de Carga mín. ( 1/bL máx ) | Ξ | 0.940 |
| Delta bL                        | Ξ | 0.053 |
| Reactancia Capacitiva ( Xc )    | Ξ | 1.312 |
| Reactancia Magnetizante ( Xmo ) | Ξ | 2.180 |
| Velocidad ( v )                 | = | 1     |

 $Vg/F = A Xm^2 + B Xm + C$ 

| А | Ξ | -1.950E-01 |
|---|---|------------|
| В | Ξ | 1.4900E-01 |
| С | = | 1.3740E+00 |

| CONDUCTANCIA                  | REACTANCIA                                      | FRECUENCIA                                   | VOLTAJE DI                                    | EL CORRIENTE                                                               |
|-------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|
| DE CARGA                      | MAGNET.                                         |                                              | ENTREHIER                                     | RO ESTATOR                                                                 |
| (p.u.)                        | (p.u.)                                          |                                              | (p.u.)                                        | (p.u.)                                                                     |
| 0.529                         | 0.210                                           | 0.961                                        | 1.397                                         | 0.824+j(-0.938)                                                            |
| 0.583                         | 0.201                                           | 0.958                                        | 1.396                                         | 0.894+j(-0.916)                                                            |
| 0.636                         | 0.192                                           | 0.954                                        | 1.395                                         | 0.962+j(-0.894)                                                            |
| 0.690                         | 0.185                                           | 0.951                                        | 1.395                                         | 1.029+j(-0.871)                                                            |
| 0.743                         | 0.178                                           | 0.948                                        | 1.394                                         | 1.094+j(-0.849)                                                            |
| 0.796                         | 0.171                                           | 0.944                                        | 1.394                                         | 1.159+j(-0.826)                                                            |
| 0.850                         | 0.166                                           | 0.941                                        | 1.393                                         | 1.222+j(-0.803)                                                            |
| 0.903                         | 0.160                                           | 0.938                                        | 1.393                                         | 1.284+j(-0.781)                                                            |
| 0.957                         | 0.156                                           | 0.935                                        | 1.393                                         | 1.345+j(-0.758)                                                            |
| 1.010                         | 0.151                                           | 0.935                                        | 1.392                                         | 1.405+j(-0.735)                                                            |
| CONDUCTANCIA                  | CORRIENTE                                       | CORI                                         | RIENTE                                        | VOLTAJE                                                                    |
| DE CARGA                      | ROTOR                                           | DE (                                         | CARGA                                         | TERMINAL                                                                   |
| (p.u.)                        | (p.u.)                                          | ( p                                          | .u.)                                          | (p.u.)                                                                     |
| 0.529 0<br>0.583 0<br>0.636 0 | .769+j(0.039)<br>.838+j(0.047)<br>.906+j(0.055) | -0.163+j<br>-0.099+j<br>-0.026+j<br>0.054+j( | (-0.713)<br>(-0.792)<br>(-0.864)<br>-0.928) f | -0.308+j(-1.347)<br>-0.170+j(-1.360)<br>-0.041+j(-1.358)<br>.078+j(-1.345) |

| 0.690 | 0.973+j(0.063) | 0.054+j(-0.928) | 0.078+j(-1.345) |
|-------|----------------|-----------------|-----------------|
| 0.743 | 1.039+j(0.072) | 0.139+j(-0.983) | 0.187+j(-1.323) |
| 0.796 | 1.103+j(0.082) | 0.227+j(-1.031) | 0.285+j(-1.295) |
| 0.850 | 1.166+j(0.091) | 0.318+j(-1.072) | 0.374+j(-1.261) |
| 0.903 | 1.228+j(0.101) | 0.410+j(-1.105) | 0.454+j(-1.223) |
| 0.957 | 1.289+j(0.112) | 0.503+j(-1.132) | 0.525+j(-1.183) |
| 1.010 | 1.349+j(0.123) | 0.595+j(-1.153) | 0.589+j(-1.141) |

| CONDUCTANCIA<br>DE CARGA<br>(p.u.) | POTENCIA DE<br>ENTRADA<br>(p.u.) | POTENCIA DE<br>SALIDA<br>(p.u.) |
|------------------------------------|----------------------------------|---------------------------------|
| 0 520                              | 3,096                            | 3.031                           |
| 0.523                              | 3.362                            | 3.281                           |
| 0.500                              | 3.620                            | 3.523                           |
| 0.690                              | 3.872                            | 3.756                           |
| 0 743                              | 4.117                            | 3.982                           |
| 0.796                              | 4.355                            | 4.199                           |
| 0.850                              | 4.587                            | 4.410                           |
| 0.000                              | 4.814                            | 4.613                           |
| 0.957                              | 5.034                            | 4.810                           |
| 1.010                              | 5.249                            | 5.000                           |

#### APENDICE "B"

OBTENCION DE UN MODELO CON EL CUAL SE RELACIONA EL VOLTAJE EN EL ENTREHIERRO (Vg/F), EN FUNCION DE LA REACTANCIA MAGNETIZANTE (Xm).

Modelo escogido: Vo/F (Xm) = a Xm<sup>2</sup> + b Xm + c

Variables: Dependiente ==> Vq/F (efecto) Independiente ==> Xm (causa)

Datos experimentales (n): 9 (De los 14 datos sólo se toman los 9 que se encuentran en la zona de saturación magnética).

Dato # Volt.Entreh Reac.Mag.

|           | Va/F(p.u.) | Xm(p.u.) | Xm^4 | Xm^3 | χωz  | Vq/F\$Xm² | Vg/F#Xm | Vg/F calc |
|-----------|------------|----------|------|------|------|-----------|---------|-----------|
| 1         | 0.75       | 0.68     | 0,22 | 0,32 | 0,47 | 0,35      | 0,51    | 0,82      |
| 2         | 0.88       | 0.67     | 0,20 | 0,30 | 0,45 | 0,40      | 0,59    | 0,85      |
| 3         | 0.93       | 0.65     | 0,18 | 0,28 | 0,43 | 0,40      | 0,61    | 0,89      |
| 4         | 0.98       | 0.62     | 0.15 | 0,24 | 0,39 | 0,38      | 0,61    | 0,96      |
| 5         | 1.05       | 0.57     | 0,11 | 0,19 | 0,33 | 0,35      | 0,60    | 1,05      |
| 6         | 1,12       | 0.51     | 0,07 | 0,13 | 0,26 | 0,29      | 0,57    | 1,14      |
| 7         | 1.20       | 0.43     | 0.04 | 0,08 | 0,19 | 0,23      | 0,52    | 1,21      |
| R         | 1,22       | 0.42     | 0,03 | 0,07 | 0,17 | 0,21      | 0,51    | 1,22      |
| 9         | 1,25       | 0,36     | 0,02 | 0,05 | 0,13 | 0,16      | 0,45    | 1,24      |
| Sumatoria | 9,38       | 4,93     | 1,01 | 1,67 | 2,82 | 2,76      | 4,98    | 9,38      |
|           |            |          |      |      |      |           |         |           |

| Sum  | Xa^4 | Sum | Xm^3 | Sum | Xm² | 1 | 8 | а | 1 |   | ;      | Sum ( | Vg/ | F\$X@* | :) | 1  |
|------|------|-----|------|-----|-----|---|---|---|---|---|--------|-------|-----|--------|----|----|
| 1    |      |     |      |     |     | 1 | 1 |   | ; |   | 8<br>6 |       |     |        |    | 1  |
| ;Sum | Xm^3 | Sum | X m² | Sum | Χø  | : | 1 | b | 1 | = | ł      | Sum ( | Vg/ | F‡Xn   | )  | i. |
| 1    |      |     |      |     |     | 1 | 1 |   | : |   | 1      |       |     |        |    | 1  |
| Sum  | Xm²  | Sum | Xa   |     | n   | ; | : | С | 1 |   | ;      | Su    | Ø   | Vg/F   |    | ł  |
|      |      |     |      |     |     |   |   |   |   |   |        |       |     |        |    |    |
|      |      |     |      |     |     |   |   |   |   |   |        |       |     |        |    |    |

det. = 0,000738692 a' = -0.00275 b' = 0,001931

c'= 0,000574

a = a'/ det. = -3,732083
b = b'/ det. = 2.6143617
c = c'/ det. = 0,7782128

 $V_{q}/F(X_m) = -3,732 \quad X_m^2 + 2,614 \quad X_m + 0,778 \quad (3.26)$ 

#### EJEMPLD

UBTENCION DE UN MODELO CON EL CUAL SE RELACIONA EL VOLTAJE EN EL ENTREHIERRO (Vq/F). EN FUNCION DE LA REACIANCIA MAGNETIZANIE (Xm). (Datos de la máquina para ejemplo del Apéndice A)

Modelo escouido: Vo/F (Xm) = a Xm² + b Xm + c

Variables: Dependiente ==> Vo/F (efecto) Independiente ==> Xm (causa)

Datos experimentales (n): 12 puntos que se encuentran en la zona de saturación magnética.

| Dato #   | Volt.Entreh | Reac.Mag. |         |       |                  |          |          |            |
|----------|-------------|-----------|---------|-------|------------------|----------|----------|------------|
|          | Vg/F(p.u.)  | Xm(p.u.)  | X m ` 4 | Xm 3  | χ <sub>m</sub> 2 | Vq/F#Xm² | Vg/F\$Xm | Vg/F calc. |
| 1        | 0.74        | 2,14      | 20.87   | 9,76  | 4.57             | 3.39     | 1,59     | 0,80       |
| 2        | 0,82        | 2,10      | 19.38   | 9,24  | 4,40             | 3,60     | 1,71     | 0.83       |
| 5        | 0,92        | 2,05      | 17.61   | 8,60  | 4,20             | 3,86     | 1,88     | 0,86       |
| 4        | 0.99        | 1,90      | 13,10   | 6,88  | 3.62             | 3,57     | 1,88     | 0,95       |
| 5        | 1.05        | 1,74      | 9,24    | 5,30  | 3,04             | 3,20     | 1,84     | 1,04       |
| 6        | 1.14        | 1.55      | 5,83    | 3,75  | 2.41             | 2,75     | 1,77     | 1,14       |
| 7        | 1.21        | 1.33      | 3,14    | 2,36  | 1,77             | 2,15     | 1,61     | 1,23       |
| 8        | 1.24        | 1.27      | 2,63    | 2,07  | 1,62             | 2,01     | 1,58     | 1,25       |
| 9        | 1.27        | 1.13      | 1,60    | 1,43  | 1,27             | 1,61     | 1,43     | 1,30       |
| 10       | 1.30        | 1.02      | 1.08    | 1,06  | 1,04             | 1,36     | 1,33     | 1,32       |
| 11       | 1.35        | 0.95      | 0.82    | 0.86  | 0.91             | 1,22     | 1,28     | 1.34       |
| 12       | 1.39        | 0,90      | 0,65    | 0,72  | 0,80             | 1.12     | 1,24     | 1,35       |
| Sumatori | a 13.42     | 18,08     | 95,96   | 52,03 | 29,65            | 29,83    | 19,14    | 13,42      |

| 1 | SUM | Xm 4 | Sum | Xm 3             | Sum | Xm² | 1 | ; | Э | 1 |   | 1 | SUM | (Vq. | F\$Xm  | 2) | ; |
|---|-----|------|-----|------------------|-----|-----|---|---|---|---|---|---|-----|------|--------|----|---|
| ł |     |      |     |                  |     |     | 1 | 1 |   | 1 |   | 1 |     |      |        |    | 1 |
| I | Sum | Xm^3 | Sum | χ <sub>m</sub> 2 | Sum | Χm  | 2 | 1 | Ь | 1 | = | 1 | Sum | (Vq  | /F\$Xm | )  | ; |
| 1 |     |      |     |                  |     |     | : | 1 |   | 7 |   | 1 |     |      |        |    | 1 |
| 1 | Sum | Xm²  | Sum | Χm               |     | n   | ţ | 1 | С | 1 |   | 1 | S   | นก   | Vg/F   |    | 1 |

| det. = | 6,424398623 | 9  | Ξ | -1,25215 |
|--------|-------------|----|---|----------|
|        |             | þ. | Ξ | 0,959670 |
|        |             | C. | = | 8,830091 |

a = a'/ det. = -0,194905

b = b'/ det. = 0.1493790

c = c'/ det. = 1,3744618

 $V_Q/F(X_m) = -0.195 X_m^2 + 0.149 X_m + 1.3/4$ 

#### BIBLIDGRAFIA

- Michael Liwschitz Garik Clyde C. Whipple
   "Máquinas de Corriente <u>Alterna</u>"
- Fitzgerald, Kingsley, Umans "Electric Machinery"
- 3. G. Raina and O. P. Malik "Wind Energy Conversion Using a Self-Excited Induction Generator", (IEEE Transactions on PAS, Vol. PAS-102, No. 12, Diciembre 1.983).
- 4. A. K. Tandon, S.S. Murthy and G.J. Berg "Steady State Analysis of Capacitor Self-Excited Induction Generators" (IEEE Transactions on PAS. Vol. PAS-103, No. 3, marzo 1.984).
- 5. J.M. elder, J.T. boys and J.L. Woodward "The Process of Self-Excitation in Induction Generators" ( IEEE PROC., Vol. 130, Pt. B, No 2, marzo de 1.983).
- 6. S.S. Yegna Narayanan and V.J. Johnny "Contributions to the Steady State Analysis of Wind-Turbine Driver Self-Excited Induction Generators" (IEEE Trans. on E.C., Vol. EC-1, No 1 March 1.986).
- 7. J.E. Barkle and B.W. Ferguson "Theory and

Applications of induction Generators" (AIEE, Febrero 1.954).

- 8. William D. Bolin "Power Cost Reduction Using Small Induction Generators" (IEEE Trans. on Industry Applications, Vol. IA-20, No. 5, septiembre/octubre 1.984).
- 9. N.H. Malik and A.A. Mazi "Capacitance Requirements for Self-Excited Induction Generators" (IEEE Trans. on E.C., Vol. EC-2, No. 1, March 1.987).
- Lahcene Ouazene and George McPherson, Jr. "Analysis of Isolated Induction Generators" (IEEE Trans. on PAS, Vol. PAS-102, No. 8 1.983).
- 11. Z.M. Salameh and L.F. Kazda "Analysis of Steady State Perfomance of The Double Output Induction Generator" (IEEE Trans. on E.C., Vol. EC-1, No. 1, marzo 1.986).
- 12. Jhon R. Parsons, Jr. "Cogeneration Application of Induction Generators" (IEEE Trans. on I.A., Vol. IA-20, No. 3, mayo/junio 1.984).
  - 13. TURBO FASCAL Reference Manual.