665.54 P221

ESCUELA SUPERIOR POLITECNICA DEL LITORAL

FACULTAD DE INGENIERIA ELECTRICA

"REDISEÑO Y AUTOMATIZACION DE UNA ESTACION DE BOMBEO-ALMACENAMIENTO
Y DISTRIBUCION DE COMBUSTIBLE"

TESIS DE GRADO
Previa a la obtención del Título de:

INGENIERO EN ELECTRICIDAD ESPECIALIZACION POTENCIA

Presentada por:

AURO MIGUEL PARDO JARAMILLO

GUAYAQUIL-ECUADOR 1.989

AGRADECIMIENTO

A los ingenieros:

JORGE FLORES MACIAS, Director de Tesis y JUAN GALLO GALARZA, por su colaboración en la realización de este trabajo.

DEDICATORIA

A MIS PADRES

A VERONICA

A MIS HIJOS

DECLARACION EXPRESA

" La responsabilidad por los hechos, ideas y doctrinas expuestos en esta tesis, me corresponden exclusivamente; y, el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITECNICA DEL LITORAL ".

(Reglamento de Exámenes y Títulos profesionales de la ESPOL).

AURO MIGUE PARDO JARAMILLO.

TRIBUNAL DE GRADO

C. Villa fuete

PRESIDENTE

ING. JORGE FLORES M.

DIRECTOR DE TESIS

ING. JUAN GALLO G. PRINCIPAL

PRINCIPAL

RESUMEN

Esta tesis presenta el rediseño y automatización de un sistema formado por una estación de bombeo y un terminal de abastecimiento y distribución de fuel oil, el mismo que es un combustible residuo de la refinación del petróleo usado en los sectores: elèctrico, industrial y naviero.

Este sistema fue construido con caracter de emergente por la Corporación Estatal Petrolera Ecuatoriana (CEPE), siendo actualmente su operación manual.

En el primer capítulo de esta tesis se hace una descripción del fuel oil indicándose la forma de transportación y los sitios de distribución; se proporciona además una proyección de la oferta y la demanda del mismo. En otra sección de este capítulo, se incluye el alcance técnico del proyecto construido por CEPE.

En el segundo capítulo se efectúa una evaluación de las instalaciones existentes tanto en la estación de bombeo de Tres Bocas como en el terminal de almacenamiento y

distribución del Salitral, describiendose la parte eléctrica y mecánica de cada uno de ellos. También se hace una descripción de los métodos de operación actual.

En el tercer capítulo se plantean l'as adecuaciones mecánicas necesarias para llevar a cabo la automatización, evaluándose el alcance y las ventajas de la misma.

En el cuarto capítulo se realiza la automatización, explicándose los procesos operativos para la recepción y bombeo en la estación de Tres Bocas y para la recepción y distribución en el terminal del Salitral. Forman parte de este capítulo los planos de control con la descripción de la nomenclatura y simbología utilizadas en ellos.

En el quinto capítulo se proporciona las recomendaciones necesarias para la instalación de los equipos de acuerdo al área donde sean ubicados, para garantizar máxima seguridad. En este capítulo se incluyen el manual de operaciones del terminal.

Pinalmente, se emiten conclusiones y recomendaciones para lograr el óptimo funcionamiento y la máxima seguridad del sistema.

INDICE GENERAL

		Pág.
	RESUMEN	V
	INDICE GENERAL	VII
	INDICE DE TABLAS	Х
	INDICE DE FIGURAS	XI
	INDICE DE DIAGRAMAS	XII
S. UTORAL	INTRODUCCION	13
OTEC	CAPITULO I.	
	REQUERIMIENTOS DE ABASTECIMIENTO.	
	1.1 Evaluación de requerimientos de fuel oil	14
	1.1.1 Proyección de la demanda de fuel oil	16
	1.1.2 Proyección de la oferta de fuel oil	17
	1.1.3 Transporte de fuel oil	19
	1.1.4 Centros de descarga y distribución	20
	1.2 Alcance técnico del proyecto construido por	
	CEPE	20
	CAPITULO II	
	EVALUACION DE LAS INSTALACIONES EXISTENTES.	
	2.1 Evaluación parte elèctrica en Tres Bocas	25
	2.2 Evaluación parte mecánica en Tres Bocas	29

	Pág.
2.3 Evaluación parte electrica en Salitral	31
2.4 Evaluación parte mecánica en Salitral	34
2.5 Mecanismos y/o métodos de operación actual	39
CAPITULO III	
CRITERIOS OPERATIVOS PARA LA AUTOMATIZACION.	
3.1 Adecuación del sistema mecánico	44
3.2 Rediseño elèctrico	45
CAPITULO IV	
AUTOMATIZACION.	
4.1 Automatización en estación de bombeo en Tres	
Bocas	48
4.1.1 Nomenclatura y simbología	56
4.1.2 Planos de control para la automatización	
de la estación de bombeo de fuel oil	
ubicada en Tres Bocas	59
4.2 Automatización en terminal de almacenamiento y	,
distribución del Salitral	86
4.2.1 Nomenclatura y simbología	99
4.2.2 Planos de control para la automatizació	1
del terminal de almacenamiento	y
distribución de fuel oil ubicado e	n
Salitral	105
4.3 Facilidades de transporte del producto	. 143

	Pág.
CAPITULO V	
RECOMENDACIONES E INDICACIONES PARA LA INSTALACION	
Y MANIPULEO DEL EQUIPO.	
5.1 Criterios para la instalación de equipos	147
5.2 Manual de operación general	154
5.2.1 Manual de operación de la estación de	
bombeo de Tres Bocas	154
5.2.2 Manual de operación del terminal de	
almacenamiento y distribución de l	
Salitral	161
CONCLUSIONES Y RECOMENDACIONES	173
BIBLIOGRAFIA	176

INDICE DE TABLAS.

	No.		Pág.
	I	Rendimiento de los combustibles	14
	II	Determinación de zonas de influencia	16
	III	Demanda de fuel oil	17
	IV	Oferta de fuel oil por refinerías	18
	V	Equipo principal en estación de bombeo de	
		Tres Bocas	52
	VI	Equipo auxiliar en estación de bombeo de Tres	
		Bocas	54
SOLIF	VII	Pulsadores en consola de control de estación	
PEHION		de bombeo de Tres Bocas	81
To a series	AIII	Luces piloto en consola de control de estació	n
1	J.C.	de bombeo de Tres Bocas	83
101	BLIOTEGA	Equipo principal en terminal del Salitral	93
	X	Equipo auxiliar en terminal del Salitral	95
	XI	Selectores y pulsadores en consola de contro	1
		del terminal en Salitral	136
	XII	Luces piloto en consola de control de termina	1
		en Salitral	140

INDICE DE FIGURAS.

No.		Pág.
1.1	Distribución de fuel cil en el pais	23
1.2	Ubicación geográfica del sistema	24
4.1	Operación de los interruptores de límite de	
	las válvulas motorizadas	57
4.2	Secuencia de operación de la estación de	
	bombeo de Tres Bocas	58
4.3	Plano de control típico	60
4.4	Secuencia de operación del terminal en	
	Salitral	101
4.5	Intercomunicación necesaria para la operación	145
5.1	Detalles de instalación de equipos	151
5.2	Clasificación de áreas peligrosas en la	
	estación de bombeo de Tres bocas	152
5.3	Clasificación de áreas peligrosas en el	
	terminal del Salitral	153

INDICE DE DIAGRAMAS

No.		Pág.
2.1	Diagrama unifilar en estación de bombeo de Tres	
	Bocas	27
2.2	Diagrama de flujo en estación de bombeo de Tres	
	Bocas	30
2.3	Diagrama unifilar en terminal del Salitral	33
2.4	Diagrama de flujo en área de almacenamiento del	
	Salitral	37
2.5	Diagrama de flujo en los sistemas de bombeo y	
	distribución del Salitral	38
4.1	Nuevo diagrama de flujo en estación de bombeo	
	de Tres Bocas	49
4.2	Nuevo diagrama de flujo en el área de	
	almacenamiento del Salitral	90
4.3	Nuevo diagrama de flujo en los sistemas de	
	bombeo y distribución del Salitral	91

INTRODUCCION.

Debido a que el sistema de almacenamiento de fuel oil construido por CEPE se opera manualmente y no posee señalización que indique las maniobras que se efectúan, el objetivo de esta tesis es realizar la centralización del mando, que permita operar el sistema desde una consola de control en la cual se visualizará el estado en que se encuentran cada uno de los equipos y será posible detectar las fallas que se puedan presentar en los mismos.

Para cumplir con este objetivo, primeramente, se realiza una revisión de las instalaciones elèctricas y mecánicas existentes y de sus mecanismos de operación; procediendo luego a realizar las adecuaciones necesarias para el rediseño, anotándose las alternativas de operación del sistema. Finalmente se elaboran los planos de control necesarios, emitiendo un manual de operaciones que permita al personal encargado tener una idea más clara del funcionamiento de estas instalaciones.

CAPITULO I

REQUERIMIENTOS DE ABASTECIMIENTO.

1.1 EVALUACION DE REQUERIMIENTOS DE FUEL OIL.

El fuel oil es un residuo de la refinación del petróleo que posee un alto valor calorífico y bajo precio (ver tabla I). A pesar de ser ideal para usarse en los sectores elèctrico, industrial y naviero como combustible en plantas termoelèctricas, hornos y motores marinos, presenta problemas en su manejo debido a la alta viscosidad que alcanza a temperatura ambiente, lo cual le resta aceptación.

TABLA I
RENDIMIENTO DE LOS COMBUSTIBLES

PRODUCTO	KCAL/GAL	KCAL/\$
DIESEL No. 1	21924	548.10
DIESEL No. 2	32918	822.95
FUEL DIL	35422	1416.88

En nuestro país el fuel oil se produce en la

refinería de Esmeraldas y en las refinerías de Anglo y Repetrol localizadas en la península de Santa Elena, con un 60% de producción en el norte y un 40% en el sur. En cambio, la demanda de este combustible ha estado centralizada con el 73% del consumo nacional en la provincia del Guayas copando cerca del 84% de la producción de la zona sur.

El transporte de este producto se realiza por via terrestre mediante tanqueros y ductos, y por via marítima utilizando buques tanque.

Con el objeto de poder determinar el área de influencia de cada uno de los centros de oferta y de estos a los diferentes clientes localizados en distintas áreas de nuestro territorio, a continuación en la Tabla II se presenta un análisis comparativo de costos de transporte desde las diferentes refinerías a cada una de las provincias consumidoras de este producto.

Del análisis de la Tabla II se concluye que la refinería de Esmeraldas cubre el área norte y la Península el área centro y sur del país.

TABLA II

DETERMINACION DE ZONAS DE INFLUENCIA

ZONA DE CONSUMO		FLETE E	N SUC	RES/GAL DE	SDE
		ESMERALDAS		PENINSULA	
N	ESMERALDAS	0.78	T x	14.63	
O R	PICHINCHA IMBABURA	7.06	X	13.06	18.5
T	COTOPAXI	7.88	X	16.46	
E	TUNGURAHUA	8.85	x	9.98	
	MANABI	11.53		8.61	X
	PENINSULA	14.63		0.78	X
	GUAYAS	11.11		3.52	X
S	LOS RIOS	8.57		6.06	X
U	CHIMBORAZO	10.25		9.43	X
R	AZUAY	19.03		11.49	X
	CARAR	16.71		9.19	X
	EL ORO	13.99		8.20	X
	LOJA	22.20		14.61	X

donde:

X = Menor costo de transporte.

Los valores presentados son fletes por auto-tanque para residuo expedidos por la Corporación Estatal Petrolera Ecuatoriana (CEPE) el año de 1986.

1.1.1. - PROYECCION DE LA DEMANDA DE FUEL OIL.

La proyección de la demanda del residuo ha sido tomada de la Subgerencia de

Planificación de CEPE.

La Tabla III presenta la demanda nacional y un desgloce por zonas de influencia, que abarca hasta el año 2006.

TABLA III

DEMANDA DE FUEL OIL

(en barriles por día calendario)

AÑOS	DEMANDA NACIONAL	DEMANDA ZONA NORTE	DEMANDA ZONA SUR
1989	19632	2425	17207
1990	20509	2533	17976
1991	20368	2515	17853
1992	20468	2615	18566
1993	21276	2627	18649
1994	21588	2666	18922
1995	21921	2707	19214
1996	22248	2747	19501
1997	22581	2789	19792
1998	23030	2844	20186
1999	23501	2903	20598
2000	23960	2958	21002
2001	24440	3018	21422
2002	24928	3078	21850
2003	25550	3156	22394
2004	26192	3235	22957
2005	26851	3317	23534
2006	27250	3398	24122

1.1.2.- PROYECCION DE LA OFERTA DE FUEL OIL.

En el Ecuador el fuel oil se produce en la refinería de Esmeraldas y en las refinerías

de Anglo y Repetrol localizadas en la península de Santa Elena.

Esta proyección fue elaborada por la comisión Plan Fuel Oil de CEPE.

TABLA IV

OFERTA DE FUEL DIL POR REFINERIAS

(en barriles por día calendario)

AÑO	ANGLO	REPETROL	ESMERALDAS	TOTAL
1989	19400	4450	26000	49850
1990	21000	4450	26000	51450
1991	21000	4450	26000	51450
1992	21000	4450	26000	51450
1993	21000	4450	26000	51450
1994	21000	4450	26000	51450
1995	21000	4450	26000	51450
1996	21000	4450	26000	51450
1997	21000	4450	26000	51450
1998	21000	4450	26000	51450
1999	21000	4450	26000	51450
2000	21000	4450	26000	51450
2001	21000	4450	26000	51450
2002	21000	4450	26000	51450
2003	21000	4450	26000	51450
2004	21000	4450	26000	51450
2005	21000	4450	26000	51450
2006	21000	4450	26000	51450

Realizando en análisis comparativo de la oferta-demanda se deduce que existe un excedente de oferta a nivel nacional.

Cada centro de ofertas satisface con exceso

los requerimientos de sus áreas de influencia, por lo tanto existirá exportación por cada uno.

1.1.3. - TRANSPORTE DEL FUEL OIL.

De acuerdo a estadísticas de CEPE, la demanda del fuel oil en la provincia del Guayas representa un 73% del consumo nacional lo cual hace que el transporte desde la península hasta Guayaquil sea el principal movimiento a nivel nacional, a consecuencia de su volumen.

Realizando un análisis de costos de transporte se concluye que el más económico es el transporte marítimo, a mas de lo cual, este presenta otras ventajas como son conservación de carreteras y el uso de menor número de unidades.

Es importante señalar que CEPE reconoce los costos de transporte terrestre, marítimo y fluvial desde los centros de abastecimiento hasta los centros de consumo, a todos los usuarios de este producto.

1.1.4. - CENTROS DE DESCARGA Y DISTRIBUCION.

Despuès de un análisis tècnico-económico CEPE proyecta la construcción de un terminal de almacenamiento y distribución a ubicarse en el sitio denominado Salitral que es donde se hallan centralizados los principales clientes del fuel oil y que son INECEL, EMELEC y la Cemento Nacional.

Este terminal será abastecido via marítima, con la posibilidad de que posteriormente se construya un ducto para abastecimiento de fuel oil desde La Libertad hasta Salitral.

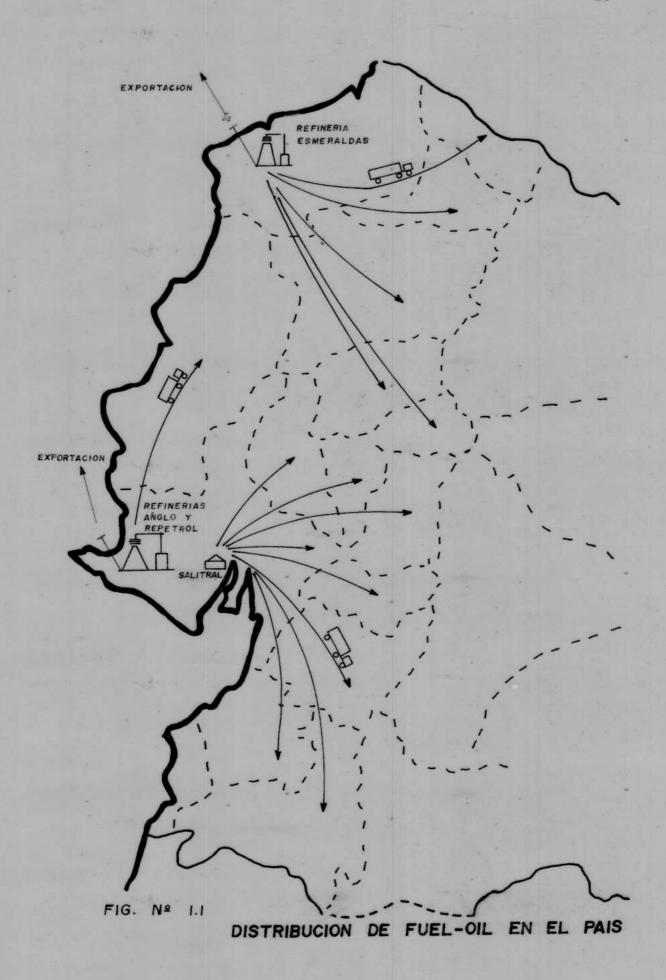
En conclusión, la distribución del fuel oil al interior del país se hará por medio de autos-tanque desde los centros de producción y desde Salitral como se muestra en la Fig. 1.1.

1.2 ALCANCE TECNICO DEL PROYECTO CONSTRUIDO POR CEPE.

CEPE construyó con caracter de emergente un sistema completo de abastecimiento de fuel oil para solucionar el bloqueo a los muelles que varias empresas tenían en el Estero Salado para el cabotaje de este combustible, ocasionado por la construcción de la via Perimetral a la ciudad de Guayaquil. En

la Fig. 1.2 se puede apreciar la ubicación geográfica del sistema.

Este sistema comprende lo siguiente:


- Construcción de un muelle en el Estero Salado a la altura del sitio denominado Tres Bocas en el que atracarán los buques.
- Una estación de bombeo ubicada en Tres Bocas.
- Un terminal de almacenamiento de fuel oil en el sitio denominado Salitral.
- Un ducto de transporte desde la estación de Tres Bocas hasta el terminal del Salitral, de 14" de diámetro con una longitud aproximada de 4104 metros.
- En el terminal del Salitral se cuenta con una sala de bombas y con una isla de carga cuya capacidad de operación es para cuatro tanqueros simultáneamente.

Este sistema se abastecerá mediante buques-tanque que entregarán el producto procedente de las refinerías en Tres Bocas, para luego ser almacenado en el terminal del Salitral desde donde se distribuirá por tanqueros a la zona centro y sur del país.

El caudal de bombeo desde Tres Bocas hasta Salitral es de 1000 galones por minuto.

El caudal de entrega en cada uno de los cuatro brazos de carga en el terminal del Salitral es de 400 galones de fuel oil por minuto.

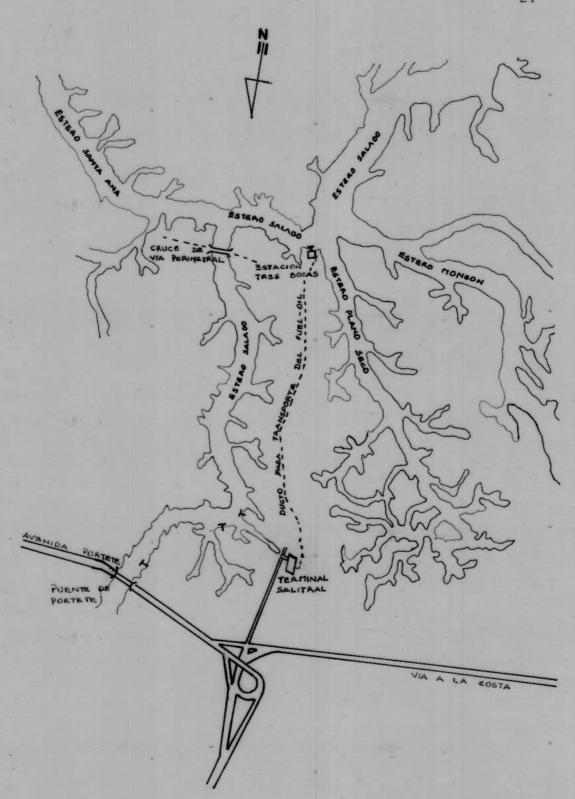


FIG. Nº 1.2 UBICACION GEOGRAFICA DEL SISTEMA

CAPITULO II

EVALUACION DE LAS INSTALACIONES EXISTENTES.

2.1 EVALUACION PARTE ELECTRICA EN TRES BOCAS.

El sistema de bombeo de fuel oil en Tres Bocas es alimentado desde una sub-estación eléctrica que además provee de energía al sistema de bombeo de gas licuado de petróleo.

BIBLIOTEG

La acometida de alta tensión se hace desde una línea aèrea de 13200 voltios hasta una celda de alta tensión provista de un seccionador tripolar y del equipo de medición, desde aquí se alimenta a un transformador de 1000 KVA, 13200/480 voltios.

En la sub-estación se tiene un centro de control de motores en el que se encuentran los disyuntores termomagnèticos, arrancadores, pulsadores de control y regletas de conexión del equipo que constituye la estación de bombeo y que es el siguiente:

 3 válvulas motorizadas equipadas con motores de inducción trifásicos de 1.6 HP, 230/460 voltios,
 8.0/4.0 Amperios con arrancador reversible incorporado, pulsadores para abrir, parar y cerrar, interruptores de fin de carrera, interruptores limitadores e interruptores de torsión.

- 2 motores de inducción trifásico de 350 HP, 230/460 voltios, 376 Amperios adecuados para uso como máquina motriz de las bombas centrífugas de fuel oil.

Asociado con cada bomba centrífuga se tiene el siguiente equipo elèctrico:

descarga, 1 interruptor de flujo en la succión, 1 interruptor de vibración en la carcasa de la bomba, los motores están provistos con detectores de temperatura de los devanados. Además existe un interruptor de baja presión en la succión que es común para las dos bombas centrífugas.

- 2 Motores de inducción trifásicos de 50 HP, 230/460 voltios, 119/59.5 Amperios que sirven como máquina motriz para la bomba de engranajes.

Las bombas de engranaje poseen un interruptor común de baja presión en la succión.

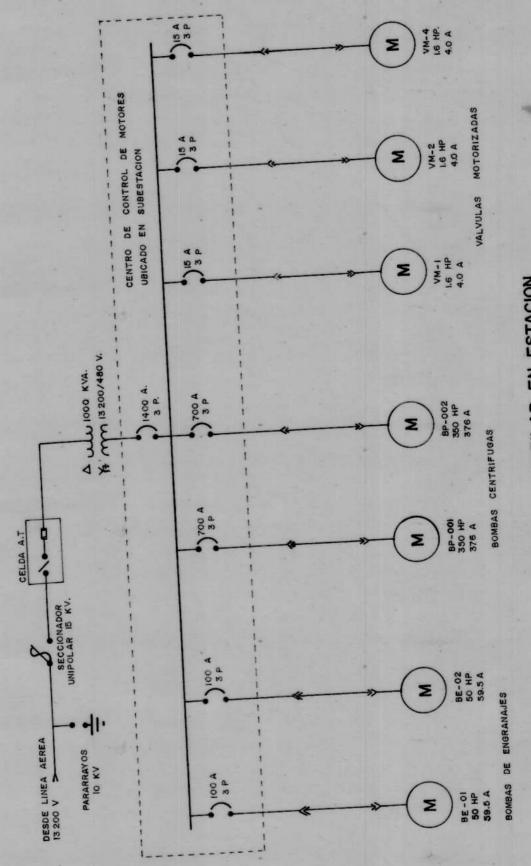


DIAGRAMA Nº 2.1 D

DIAGRAMA UNIFILAR EN ESTACION DE BOMBEO DE TRES BOCAS

En la succión de las bombas se tiene un distribuidor de producto que permite mediante válvulas alinear el sistema de acuerdo con la bomba escogida para operar.

El sistema de bombeo está formado por dos juegos de bombas que son:

- 2 bombas de engranajes, de las cuales una operará y la otra será de reserva, cuyas características de operación les permiten manejar fluidos de alta viscosidad.
- 2 bombas centrífugas, de las cuales una operará y la otra será de reserva con capacidad para desplazar un caudal de 1000 galones por minuto de fuel oil a una temperatura de 120° F, cada una.

Las bombas centrífugas tienen válvulas motorizadas en la succión y válvulas manuales en la descarga, siendo su acople por medio de juntas de expansión.

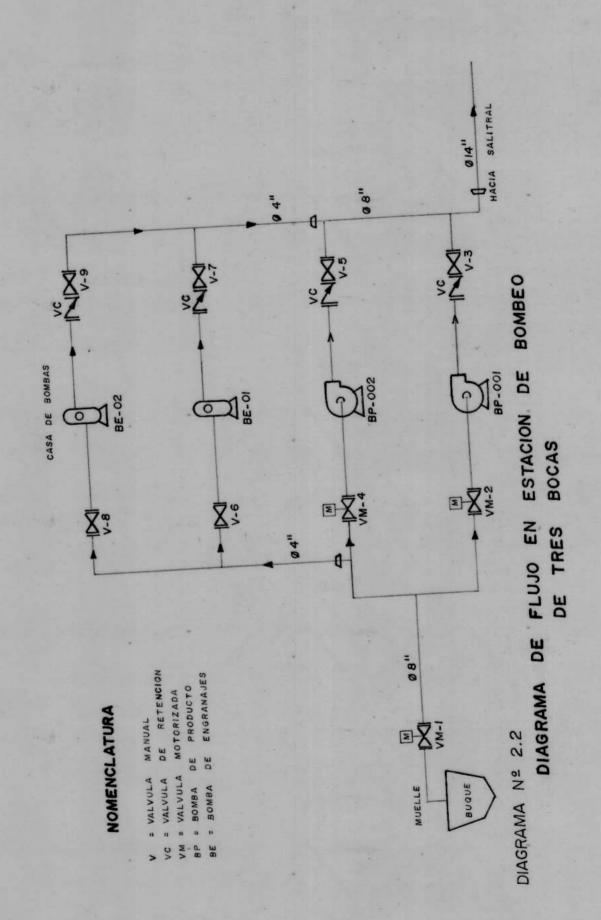
Las bombas de engranajes tienen válvulas manuales tanto en la succión como en la descarga.

Además todas las bombas están provistas de válvulas de retención (cheque) en la descarga.

El transporte de fuel oil desde la estación de bombeo

En el diagrama 2.1 se presenta un diagrama unifilar del equipo que constituye la estación de bombeo de Tres Bocas.

2.2 EVALUACION PARTE MECANICA EN TRES BOCAS.


La estación de Tres Bocas está constituida por tres sistemas principales que son:

- El muelle.
- El sistema de tubería de transporte.
 - El sistema de bombeo.

Los buques-tanque provenientes de los centros de producción del fuel oil llegarán hasta el muelle en donde se tiene una válvula motorizada que sirve para acoplar la manguera de descarga del buque con el ducto de transporte conectado a la succión del sistema de bombas.

La tubería que une el buque-tanque y el sistema de bombas es de 8" de diámetro nominal teniendo instalado en su recorrido indicadores de temperatura, indicadores de presión, eliminadores de aire y medidores e indicadores de flujo.

La instalación de esta tubería es aèrea sin aislamiento y sin calentamiento.

en tres bocas y el terminal de almacenamiento en Salitral se hace por medio de un ducto aèreo de 14" de diámetro nominal sin aislamiento y sin calentamiento. En el trayecto existe una derivación equipada con un sistema de medición que sirve para abastecer un tanque de almacenamiento de INECEL y EMELEC, la operación del sistema de válvulas en sus instalaciones será realizado manualmente por el personal de las instituciones antes mencionadas, según sus requerimientos.

El diagrama 2.2 muestra un diagrama de flujo de la estación de bombeo de Tres Bocas.

2.3 EVALUACION PARTE ELECTRICA EN SALITRAL.

En el terminal de almacenamiento y distribución de fuel oil en Salitral se tiene una sub-estación alimentada desde una línea aèrea de 13200 voltios. La sub-estación está formada por un seccionador tripolar, equipo de medición en alta tensión, un transformador de 1000 KVA, 13200/480 voltios y los centros de control de motores donde se hallan los disyuntores termomagnèticos, arrancadores, pulsadores de control y regletas de conexión del equipo elèctrico existente que es el siguiente:

- 3 motores de inducción de 250 HP, 460 voltios, 272 amperios que servirán como máquina motriz para las bombas centrífugas de producto.
- 4 válvulas motorizadas equipadas con motores de inducción trifásicos dos de 1.6 HP y dos de 2.6 HP, 460 voltios, 4.0 y 5.9 amperios respectivamente con arrancador reversible incorporado, pulsadores para abrir, parar y cerrar, interruptores de fin de carrera, interruptores de límite e interruptores de torsión.

Asociado con cada bomba centrífuga se tiene el siguiente equipo:

1 interruptor de alta presión en la descarga, 1 interruptor de flujo y 1 interruptor de baja presión en la succión. Además cada motor está provisto de detectores de temperatura de los devanados.

El terminal cuenta con un generador de 400 KW que operará en caso de emergencia. Cabe mencionar además que existe un sistema contra incendios que opera con una bomba vertical de 200 HP.

En el diagrama 2.3 se presenta un diagrama unifilar

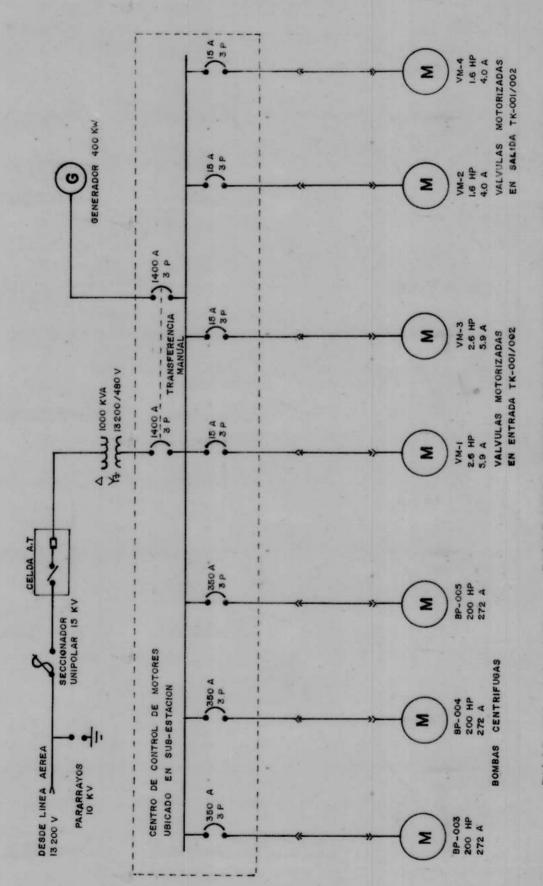


DIAGRAMA Nº 2.3 DIAGI

DIAGRAMA UNIFILAR EN TERMINAL DEL SALITRAL

del equipo elèctrico instalado en el terminal del Salitral.

2.4 EVALUACION PARTE MECANICA EN SALITRAL.

En Salitral se tiene el terminal de almacenamiento y distribución de fuel oil cuyas principales áreas son:

- Area de almacenamiento.
- Casa de bombas.
- Tubería de transporte.
- Area de distribución.

Se dispone de dos tanques de almacenamiento de techo cónico cuyas características son las siguientes:

TANQUE No. 1 CAPACIDAD 50000 Barriles.

DIAMETRO 32.74 Metros.

ALTURA 10.80 Metros.

TANQUE No. 2 CAPACIDAD 20000 Barriles.

DIAMETRO 21.94 Metros.

ALTURA 8.68 Metros.

El fuel oil bombeado desde Tres Bocas podrá ser almacenado en cualquiera de los dos tanques, los mismos que están equipados con válvulas motorizadas tanto en la entrada como en la salida permitiendo la

carga o la descarga del producto.

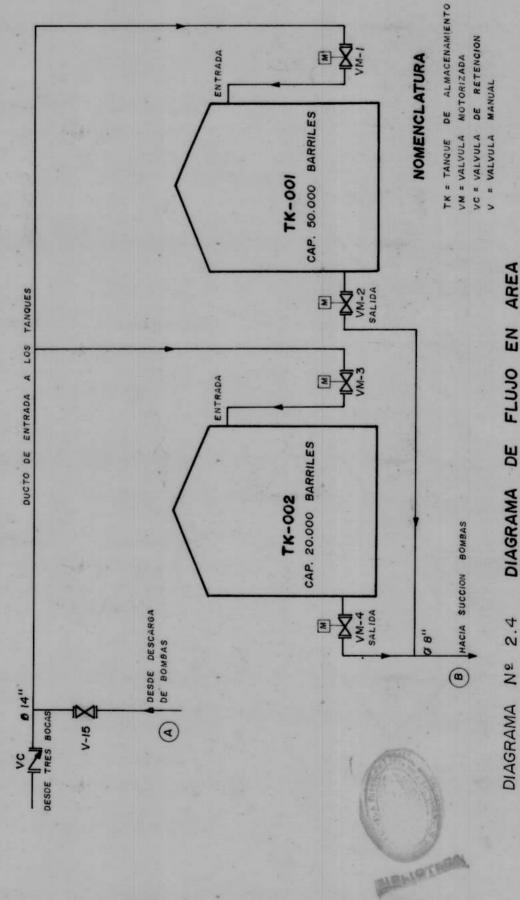
Cada tanque está provisto con indicadores de temperatura y de nivel. El sistema de bombeo está formado por tres bombas centrifugas con capacidad de desplazar 800 galones por minuto de fuel oil a una temperatura de 120° F cada una. De este conjunto de bombas operará una con cada isla de carga y la restante será de reserva.

La tubería tanto en la succión como en la descarga de las bombas está provista de un distribuidor de producto que se alineará por medio de válvulas manuales de acuerdo a la secuencia de operación seleccionada.

Las bombas poseen válvulas manuales tanto en la succión como en la descarga. Además se cuenta con un conjunto de válvulas manuales que permitirán realizar el proceso de recirculación hacia los tanques de almacenamiento.

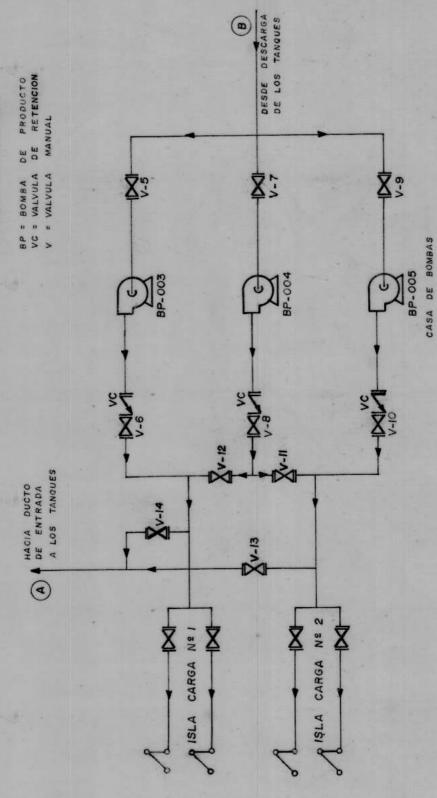
Debido a que el fuel oil puede llegar a temperaturas muy bajas alcanzando altas viscosidades, el mètodo idóneo para su almacenamiento es con calentamiento mediante serpentinas de vapor en el fondo y descarga de los tanques, así como, en toda la tubería de fuel

oil dentro del terminal, la misma que está aislada con silicato de calcio y recubierta con aluminio.


El calor necesario para mantener el sistema a 120° F lo proporciona un caldero de 100 HP que entrega 3450 libras de vapor por hora a 150 psi.

El área de distribución está formada por dos islas de carga, con dos brazos de carga cada una, lo cual da una capacidad de operación para cuatro tanqueros simultáneamente con un despacho de 400 galones por minuto.

Cada brazo de carga está provisto de un sistema de medición y una válvula de cierre rápido.


La línea está equipada con válvulas de retención (cheque) en la descarga de las bombas, indicadores de presión, indicadores de temperatura, eliminadores de aire, medidores de flujo y contadores registradores.

El diagrama 2.4 presenta el área de almacenamiento y el diagrama 2.5 muestra la estación de bombeo y la isla de carga.

Nº 2.4 DIAGRAMA DE FLUJO EN AREA
DE ALMACENAMIENTO DEL SALITRAL

NOMENCLATURA

BOMBEO DE EN SISTEMAS Y DISTRIBUCION DEL SALITRAL DIAGRAMA DE FLUJO 2.5 ol Z DIAGRAMA

2.5 MECANISMOS Y/O METODOS DE OPERACION ACTUAL.

En la estación de bombeo de Tres Bocas el equipo electrico puede ser comandado de la siguiente manera:

- La válvula motorizada ubicada en el muelle puede operarse desde el sitio y desde la casa de bombas.
- Las válvulas motorizadas instaladas en la succión de las bombas centrífugas sólo pueden comandarse localmente.
- Los motores de las bombas de engranajes y centrífugas pueden controlarse desde el sitio y desde la sub-estación.
- El equipo de instrumentación envía sus señales hasta la sub-estación y actua en el circuito de arranque de las bombas.

Antes de detallar el mètodo de operación actual es importante resaltar que la instalación de la tubería de transporte que une la estación de bombeo de Tres Bocas con el terminal de almacenamiento y distribución del Salitral es aèrea, sin aislamiento y sin calentamiento; esto permitirá que el fuel oil que queda en el ducto entre dos operaciones de bombeo consecutivas se enfrie hasta alcanzar la temperatura ambiente volviendose altamente viscoso y difícil de

manejar formandose lo que denominaremos el "taco frio".

Debido a la alta viscosidad del fuel oil a bajas temperaturas los buques-tanque entregarán el producto a 120° F, siendo la temperatura mínima de operación de 100° F.

El sistema de bombeo de Tres Bocas está formado por una bomba principal y otra de reserva tanto para las bombas de engranajes como para las centrífugas, es decir, que el operador deberá conocer cual es el equipo que operará para poder alinear correctamente el sistema de válvulas.

Antes de iniciar el bombeo, el operador de la estación de Tres Bocas debe comunicarse por radio con el operador del terminal del Salitral, el mismo que tiene que realizar las maniobras necesarias para recibir el producto.

El proceso de operación en Tres Bocas puede describirse de la siguiente manera:

- Acoplar la manguera de descarga del buque-tanque a la válvula motorizada ubicada en el muelle y abrirla.

BIBLIOTECA

- Alinear el sistema de válvula que permitirá iniciar el bombeo con la bomba de engranajes, la cual se caracteriza por poder manejar líquidos muy viscosos. El desplazamiento del taco frio se hace a un caudal bajo que es aproximadamente el 25% del caudal de operación normal, es decir, 250 galones por minuto. Esta bomba operará hasta que el taco frio se rompa, lo cual hace que la contrapresión disminuya.
- Apagar la bomba de engranajes y cerrar sus válvulas de succión y de descarga.
- Alinear el sistema de válvulas para operar con la bomba centrífuga y arrancarla. Esta bomba tiene la capacidad de desplazar un caudal de 1000 galones por minuto de fuel oil a una temperatura de 120° F.

El producto bombeado desde Tres Bocas llega hasta el terminal de almacenamiento y distribución en Salitral, en donde el equipo eléctrico puede ser comandado de la siguiente forma:

- Las válvulas motorizadas de entrada y salida de los tanques sólo pueden operarse localmente.
- Las bombas centrífugas pueden controlarse desde la isla de carga y desde la casa de bombas.

- El equipo de instrumentación envía sus señales hasta la sub-estación y actúa en el circuito de arrangue de las bombas.

En el proceso de carga de los tanques debe abrirse la válvula motorizada de entrada y cerrarse la válvula motorizada de salida del tanque seleccionado. El tanque está equipado con indicadores de temperatura y de nivel, por lo que el operador debe determinar cual es el volumen de producto que está en capacidad de recibir en el tanque sin que se produzca derrame de fuel oil.

En el proceso de descarga el operador tiene que evaluar visualmente cual es el nivel bajo de los tanques para evitar que las bombas queden trabajando en vacío.

Deberá existir una planificación para el uso de las bombas de producto, puesto que de las tres bombas instaladas se tiene una operando con cada isla de carga y la tercera es de reserva.

Para poder arrancar una bomba, ésta debe ser seleccionada previamente desde la isla de carga a la cual bombeará el producto y el sistema de válvulas debe ser alineado correctamente.

Cada isla de carga cuenta con dos brazos de carga que están provistas de válvulas de cierre rápido y de registradores en los cuales se marca el volumen de fuel oil despachado.

En caso de que se necesite recircular el producto hacia los tanques, el operador debe proceder a la alineación de las válvulas respectivas que permitan este proceso.

En la descripción presentada se puede notar que en la operación actual, debido a que la mayoría de las válvulas son manuales y de que los controles de los equipos elèctricos son casi todos locales, el personal encargado debe realizar las maniobras necesarias en el lugar de instalación de cada uno de los equipos.

CAPITULO III

CRITERIOS OPERATIVOS PARA LA AUTOMATIZACION.

3.1 ADECUACION DEL SISTEMA MECANICO.

Para poder realizar la automatización es necesario efectuar la adecuación del sistema mecánico de tal forma que una vez que el buque-tanque sea acoplado al sistema, desde un solo centro de mando, se pueda operar todo el equipo para realizar el bombeo del producto hasta los tanques de almacenamiento, para lo cual es necesario el cambio de válvulas manuales por válvulas motorizadas en la succión y descarga de las bombas de engrananjes, así como en la descarga de las bombas centrifugas.

Además se debe incrementar la instalación de un interruptor de alta presión en la descarga de las bombas de engranajes que servirá para indicar que el taco frio ha sido desplazado y que la bomba centrífuga puede entrar a funcionar.

En Salitral existirá otra consola de control desde donde se comandará el proceso de carga y descarga de

BIBLIOTEGA

los tanques y distribución a los tanqueros repartidores. Esta operación requiere el cambio de válvulas manuales por válvulas motorizadas en la succión y descarga de las bombas de producto, así como del juego de válvulas que permiten la alternabilidad en el uso de las bombas y de aquellas que sirven para recircular.

Adicionalmente los tanques de almacenamiento deberán equiparse con interruptores de nivel alto para prevenir derrame de producto, así como interruptores de nivel bajo que impedirán el funcionamiento de las bombas en vacío.

3.2 REDISEÑO ELECTRICO.

Una vez que se ha realizado la instalación del equipo electrico adecuado para centralizar el control en una sola consola, el rediseño electrico comprenderá la instalación de los ductos electricos y del cableado necesario desde los equipos y/o desde la sub-estación hasta el cuarto de control donde se ubicará la consola.

Así, tanto en la estación de bombeo de Tres Bocas como en el terminal de almacenamiento y distribución del Salitral, la consola de control estará provista

de los pulsadores de marcha y paro de todos los motores, de los pulsadores para abrir, cerrar y parar todas las válvulas motorizadas, incluyendo además luces indicadoras que mostrarán que están realizandose ciertos pasos importantes, que están en marcha ciertos equipos o que se han alcanzado ciertos límites o condiciones de alarma.

El tener centralizado el control permitirá en Tres Bocas que el operador, una vez que el buque-tanque se ha acoplado, pueda realizar el mando de todo el proceso de alineamiento de válvulas y arranque de bombas, de acuerdo al equipo seleccionado para efectuar el bombeo, desde un solo tablero de control, contando con señalización que le informará el estado de cada equipo durante todo el proceso.

Otra ventaja es que habrá una señal automática que le indicará cuando el taco frio ha sido desplazado y el sistema está listo para operar con la bomba centrífuga.

En el terminal del Salitral la instalación de los interruptores de nivel alto darán mayor seguridad a la operación bombeo-recepción, ya que, en caso de alcanzarse niveles altos peligrosos, se emitirá una alarma sonora y visual en la consola para que el

operador tome las medidas preventivas y, en caso de no hacerlo, la válvula de entrada del tanque se cerrará automáticamente evitandose el derrame del producto. Al cerrarse la válvula de entrada del tanque se producirá una sobrepresión en la línea de transporte del fuel oil que hará operar el interruptor de alta presión en la descarga de la bomba centrífuga en Tres Bocas, apagándola automáticamente.

Los interruptores de bajo nivel que se instalarán en los tanques, permitirán realizar la operación de distribución hacia los tanqueros repartidores sin que exista la posibilidad de que el nivel sea tan bajo que la bomba quede trabajando en vacío.

Adicionalmente se ha incrementado un mecanismo de control que permite seleccionar los tanques para operaciones de carga, descarga y recirculación. En el rediseño se cuenta con relês auxiliares, asociados a cada equipo e instrumentos de control, los mismos que ante la presencia de una falla en el proceso, operarán efectuando los bloqueos necesarios y proveerán al operador de señalización que le permitirá detectar instantáneamente la causa.

CAPITULO IV

AUTOMATIZACION.

4.1 AUTOMATIZACION EN ESTACION DE BOMBEO DE TRES BOCAS.

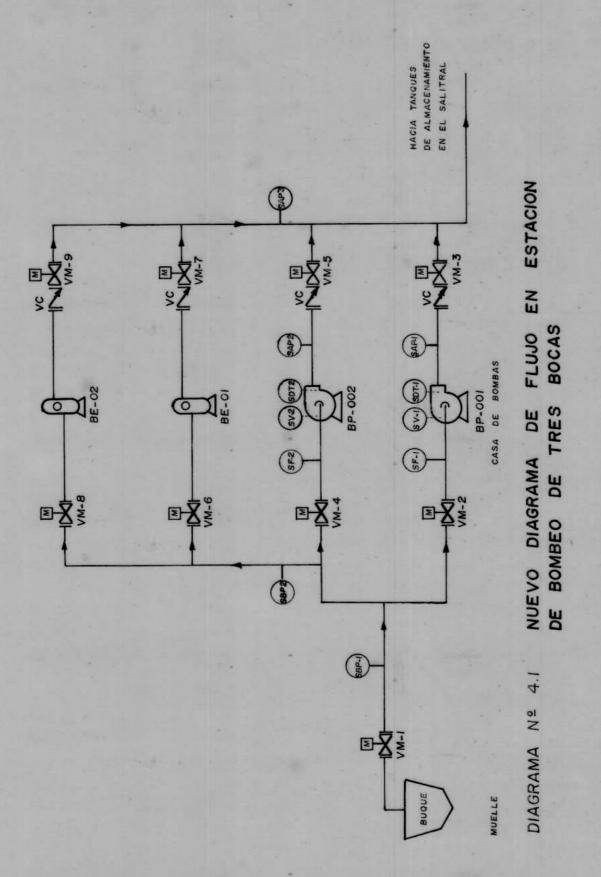
Las instrucciones de operación que son presentadas a continuación se refieren al manejo y al uso de la consola de control de la estación de bombeo de fuel oil ubicada en el sitio denominado Tres Bocas. Este sistema:

- Recibe el fuel oil que llega en buques-tanque desde los centros de producción.
- Transporta el fuel oil a los tanques de almacenamiento localizados en Salitral.

La consola estará provista de los mandos e indicadores necesarios para operar el sistema. Incluye tambien señalización del sistema con lámparas indicadoras que mostrarán que están realizandose ciertos pasos importantes, que están en marcha ciertos equipos o que se ha alcanzado ciertos límites o condiciones de alarma.

Los buques-tanque poseen un sistema de bombeo que permite la descarga de fuel oil hasta la succión de las bombas ubicadas en la estación de Tres Bocas.

Esta operación se controla mediante una válvula motorizada que sirve de acople entre la manguera de descarga del buque-tanque y la tubería conectada a las bombas.


El sistema consta de:

Un juego de bombas de engranajes, una operando y otra de reserva, cuya función es desplazar el taco frio que se forma en la tubería de transporte debido al fuel oil que queda en la línea entre dos descargas consecutivas. La entrada y salida de cada una de estas bombas estará controlada por medio de válvulas motorizadas.

Un juego de bombas centrífugas, una operando y otra de reserva, la cual se pondrá en funcionamiento una vez que el taco frio ha sido desplazado y que transportará el producto hasta los tanques de almacenamiento en Salitral. La entrada y salida de cada una de estas bombas estará controlada por medio de válvulas motorizadas.

Como medio de protección se tendrá interruptores de baja presión y de flujo en la succión de las bombas e interruptores de alta presión en la descarga.

Las bombas centrífugas están equipadas con interruptores de vibración, y su motor con detectores de temperatura en los devanados.

Cada una de las válvulas motorizadas energiza un relètanto en posición abierta como en posición cerrada, lo cual permite dar señalización del estado de la válvula en la consola de control y realizar los bloqueos necesarios que garantizen una correcta secuencia de operación.

El diagrama 4.1 muestra el nuevo diagrama de flujo de la estación de bombeo de Tres Bocas.

Todas las válvulas motorizadas tendrán luces de señalización en la consola que operarán de la siguiente manera:

FOCO PARA ABRIR: Permanecerá prendido para posición abierta y cualquier posición intermedia, se apagará cuando la válvula este completamente cerrada.

FOCO PARA CERRAR: Permanecerá prendido para posición cerrada y cualquier posición intermedia, se apagará cuando la válvula estê completamente abierta.

BIBLIOTECA

El funcionamiento de los interruptores de límite de las válvulas motorizadas se muestra en la figura 4.1. En la figura 4.2 se presenta la secuencia de operación del sistema.

A continuación en la Tabla V se presenta la lista del equipo principal de la estación de bombeo de Tres Bocas con la nomenclatura utilizada en los diagramas de flujo y en los planos elèctricos de control.

En la Tabla VI se tiene los relès auxiliares asociados con cada equipo principal, que se usarán para dar señalización y realizar los bloqueos necesarios durante la operación de bombeo en Tres Bocas.

TABLA V

EQUIPO PRINCIPAL EN ESTACION DE BOMBEO DE TRES BOCAS

NOMENCLATURA	DESCRIPCION					
VM-1	Válvula motorizada en muelle a la que se acopla el buque tanque.					
VM-2	Válvula motorizada en la succión de la bomba de producto BP-001.					
VM-3	Válvula motorizada en la descarga de la bomba de producto BP-001.					
VM-4	Válvula motorizada en la succión de la bomba de producto BP-002.					

NOMENCLATURA	DESCRIPCION					
VM-5	Válvula motorizada en la descarga de la bomba de producto BP-002.					
VM-6	Válvula motorizada en succión de BE-01.					
VM-7	Válvula motorizada en descarga de BE-01.					
VM-B	Válvula motorizada en succión de BE-02.					
VM-9	Válvula motorizada en descarga de BE-02.					
BP-001	Bomba centrífuga de producto.					
BP-002	Bomba centrífuga de producto.					
BE-01	Bomba de engranajes para desplazamiento del taco frio.					
BE-02	Bomba de engranajes para desplazamiento del taco frio.					
SBP-1	Interruptor de baja presión en succión de bombas centrífugas de producto.					
SBP-2	Interruptor de baja presión en succión de bombas de engranajes.					
SAP-1	Interruptor de alta presión en descarga de bomba de producto BP-001.					
SAP-2	Interruptor de alta presión en descarga de bomba de producto BF-002.					
SAP-3	Interruptor de alta presión en descarga de bombas de engranajes.					
SF-1	Interruptor de flujo en succión de BP-001					
SF-2	Interruptor de flujo en succión de BP-002					
SV-1	Interruptor de vibración en bomba BP-001.					
SV-2	Interruptor de vibración en bomba BP-002.					
SDT-1	Detector de temperatura de los devanados del motor de BP-001.					
SDT-2	Detector de temperatura de los devanados del motor de BP-002.					

TABLA VI EQUIPO AUXILIAR EN ESTACION DE BOMBEO DE TRES BOCAS

RELE EQUIPO AUXILIAR ASOCIADO		FUNCION	BLOQUEO			
BE-1	BE-01	- Señalización de arranque de BE-01. - Señal de taco frio desplazado	- Arranque de BE-02.			
BE-2	BE-02	- Señalización de arranque de BE-02. - Señal de taco frio desplazado.	- Arranque de BE-01.			
BP-1	BP-001	- Señalización de arranque de BP-001.	- Arranque de BP-002. - Señal de taco frio desplazado.			
BP-2	BP-002	- Señalización de arranque de BP-002.	- Arranque de BP-001. señal de taco frio desplazado.			
RA-1	VM-1	- Señalización de válvula abierta.	- Arranque de BE-01, BE-02. - Arranque de BP-001, BP-002. - Señales de baja presión si la válvula no está abierta.			
RC-1		- Señalización de válvula cerrada.				
RA-2	VM-2	- Señalización de válvula abierta.	- Arranque de BP-001. - Señal de bajo flujo si la vál- vula no está abierta.			
RC-2		- Señalización de válvula cerrada.				
RA-3	VM-3	- Señalización de válvula abierta.	- Arranque de BP-001.			
RC-3		- Señalización de válvula cerrada.				
RA-4	VM-4	- Señalización de válvula abierta.	- Arranque de BP-002. - Señal de bajo flujo si la vál vula no está abierta.			
RC-4		- Señalización de válvula cerrada.				
RA-5	VM-5	- Señalización de válvula abierta.	- Arranque de BP-002.			
RC-5		- Señalización de válvula cerrada.				
RA-6	VM-6	- Señalización de válvula abierta.	- Arranque de BE-01.			
RC-6		- Señalización de válvula cerrada.				
RA-7	VH-7	- Señalización de válvula abierta.	- Arranque de BE-01.			

RELE AUXILIAR ASDCIADO RC-7 VM-7		FUNCION	BLOQUEO		
		- Señalización de válvula cerrada.			
RA-B	VM-8	- Señalización de válvula abierta.	- Arranque de BE-02.		
RC-8		- Señalización de válvula cerrada.			
RA-9	VM-9	- Señalización de válvula abierta.	- Arranque de BE-02.		
RC-9		- Señalización de válvula cerrada.			
RBP-1	SBP-1	- Señalización de baja presión en succión de BP-001 o BP-002.	- Arranque de BP-001 y BP-002.		
RBP-2	SBP-2	- Señalización de baja presión en succión de BE-01 o BE-02.	- Arranque de BE-01 y BE-02.		
RAP-3	SAP-3	- Señalización de que el taco frio ha sido desplazado. - Apaga la bomba de engranajes que este trabajando.			
RAP-1	SAP-1	- Señalización de alta presión en descarga de bomba BP-001. - Apaga la bomba BP-002.			
RAP-2	SAP-2	- Señalización de alta presión en descarga de bomba BP-002. - Apaga la bomba BP-002.			
RF-1	SF-1	- Señalización de bajo flujo en la succión de bomba BP-001.	- Arranque de BP-001.		
RF-2	SF-2	- Señalización de bajo flujo en la succión de bomba BP-002.	- Arranque de BP-002.		
RV-1	SV-1	- Señalización de vibración en BP-001 - Apaga la bomba BP-001.			
RV-2	SV-2	- Señalización de vibración en BP-002 - Apaga la bomba BP-002.			
RDT-1	SDT-1	- Señalización de alta temperatura en motor de BP-001. - Apaga la bomba BP-001.			
RDT-2	SDT-2	- Señalización de alta temperatura en motor de BP-002. - Apaga la bomba BP-002.			

4.1.1 NOMENCLATURA Y SIMBOLOGIA.

BP	- F	Bomba de producto.
BE		Bomba de engranajes.
FA	$-\otimes$	Luz piloto color ambar.
FR	$-\otimes$	Luz piloto color rojo.
FV	$-\otimes$	Luz piloto color verde.
LA	→	Interruptor de límite al abrir. Incorporado en válvula motorizada.
LC		Interruptor de límite al cerrar. Incorporado en válvula motorizada.
MC	<u> </u>	Pulsador de marcha en consola de control.
MS		Pulsador de marcha en sitio.
MT		Pulsador de marcha en tablero.
PC		Pulsador de paro en consola.
PS	<u>-ele-</u>	Pulsador de paro en sitio.
PT	-ele-	Pulsador de paro en tablero.
RA	RA-	Relè auxiliar asociado con la abertura de una válvula motorizada.
RC	RC-	Relè auxiliar asociado con el cierre de una válvula motorizada.
SEL		Selector.
STA		Interruptor de torque para protección en dirección de abrir la válvula motorizada.
STC		Interruptor de torque para protección en dirección de cerrar la válvula motorizada.
VM		Válvula motorizada.

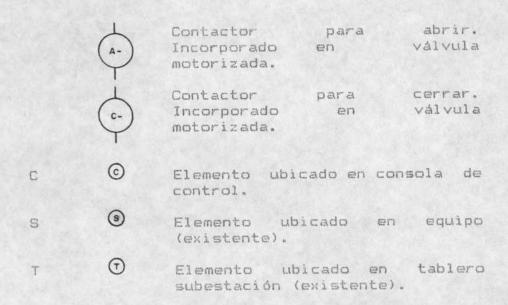


FIGURA 4.1

OPERACION DE LOS INTERRUPTORES DE LIMITE DE LAS VALVULAS

MOTORIZADAS.

OPERACION DE VALVULAS	CONTACTO	POSICION DE LA VALVULA				FUNCION		
		ABIERTO					CERRADO	LONGIUM
ABRIR	LA-1	-		1	1			En paralelo con STC.
	LA-2	I	MM		Mari	HHH	-	Señal para la automatización.
	LA-3		mu			IIII		Luz piloto en válvula.
	LA-4		am		12222			Limite abierto.
CERRAR	LC-5			1			-11	En paralelo con STA.
	LC-6	-	um			um		Señal para la automatización.
	LC-7	-					-	Luz piloto en válvula.
	LC-8	100			211212			Limite cerrado.

Contacto abierto.

Contacto cerrado.

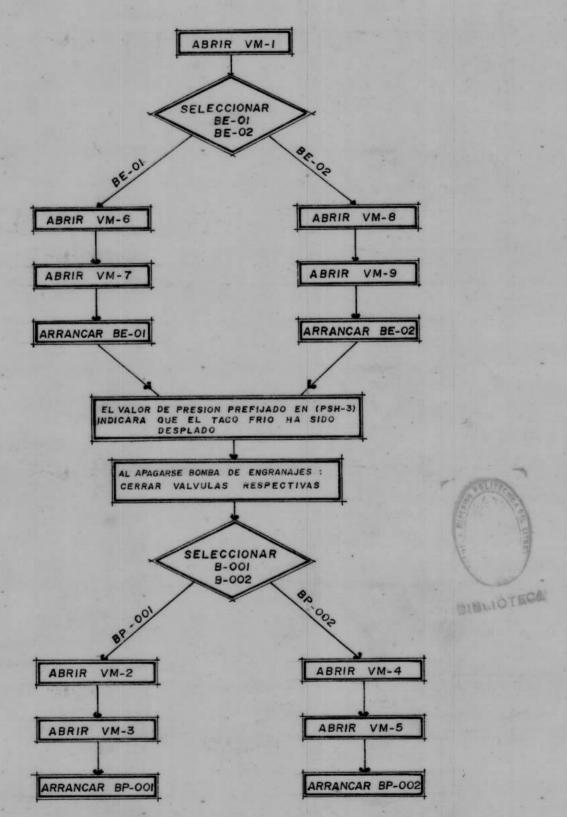


FIGURA Nº 4.2 SECUENCIA DE OPERACION DE LA ESTACION DE BOMBEO DE TRES BOCAS

4.1.2 PLANOS DE CONTROL PARA LA AUTOMATIZACION DE LA ESTACION DE BOMBEO DE FUEL OIL UBICADA EN TRES BOCAS.

Los planos de control han sido elaborados en tres secciones que son:

- 1. DIAGRAMA No 4.2: Presenta los planos de control del equipo instalado en sitio con los puntos de conexión de los elementos usados para el control a distancia.
- 2. DIAGRAMA No 4.3: Contiene los planos de la consola de control de Tres

 Bocas en la que existe señalización del estado en que se encuentran los equipos y desde donde se puede comandar todo el sistema.
- 3. DIAGRAMA No 4.4: Presenta los planos de control de las bombas existentes en la estación de bombeo, cuyos arrancadores están ubicados en el tablero de la subestación, y en los que se ha intercalado los bloqueos necesarios de acuerdo a la secuencia de operación considerada en la

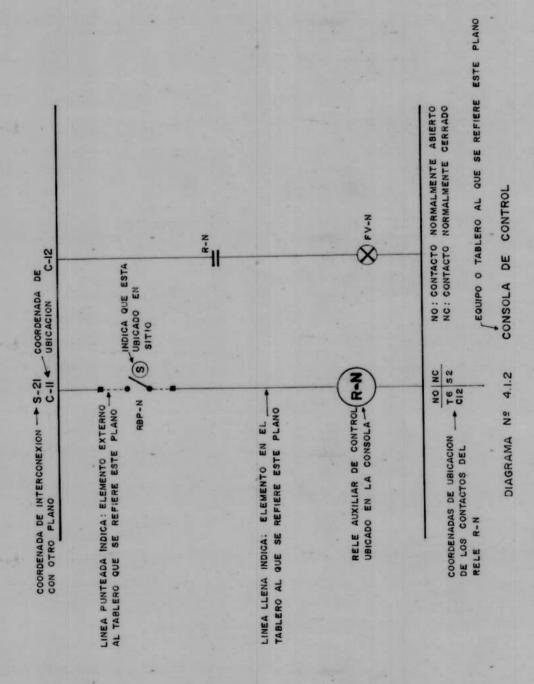


FIGURA Nº 4.3 PLANO DE CONTROL TIPICO

automatización.

Al revisar un plano, la linea llena indica que es un elemento que forma parte del tablero o equipo al cual se refiere ese plano. La linea punteada indica que ese elemento no forma parte del equipo o tablero al que se refiere ese plano.

En la figura No. 4.3 se hace una explicación de lo que representa la nomenclatura de los planos.

La Tabla VII presenta un listado de los pulsadores que estarán en la consola de control de Tres Bocas tanto para abrir, parar y cerrar las válvulas motorizadas como para arrancar y parar las bombas. Se proporciona además la coordenada de referencia que permite determinar el sitio donde se hará la conexión.

La Tabla VIII consta de las luces de señalización de la consola de Tres Bocas.

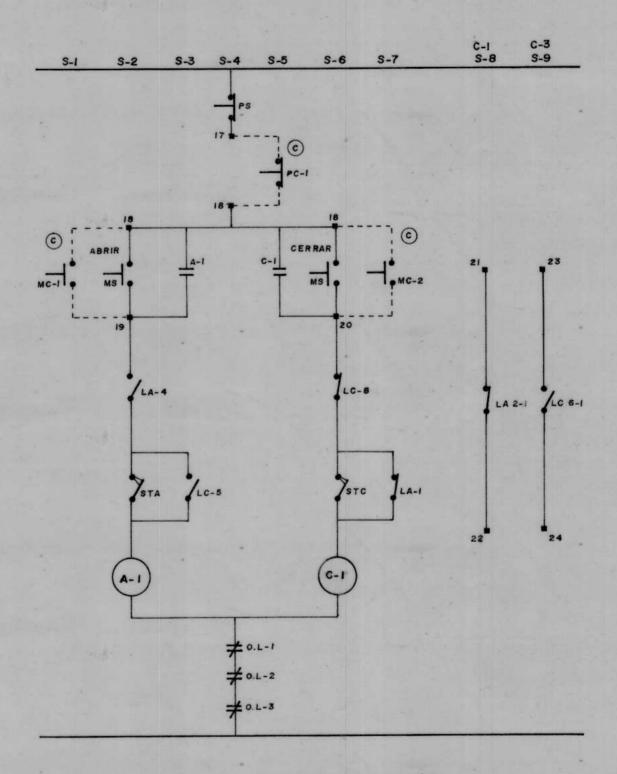


DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 1/9
VALVULA MOTORIZADA VM-1

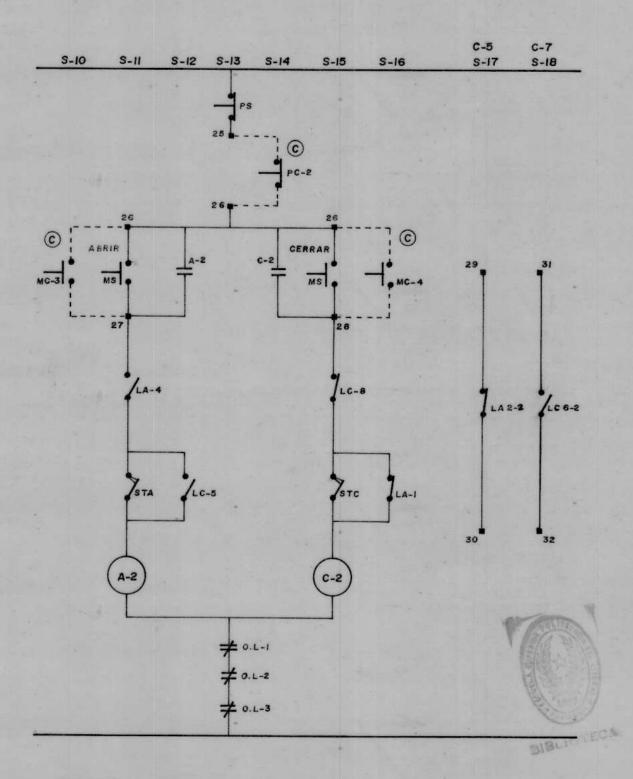


DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 2/9
VALVULA MOTORIZADA VM-2

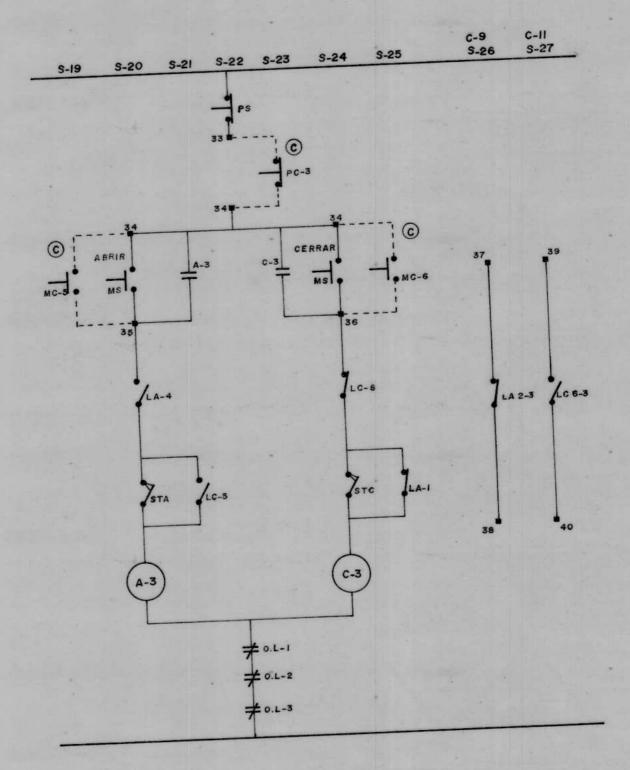


DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 3/9
VALVULA MOTORIZADA VM-3

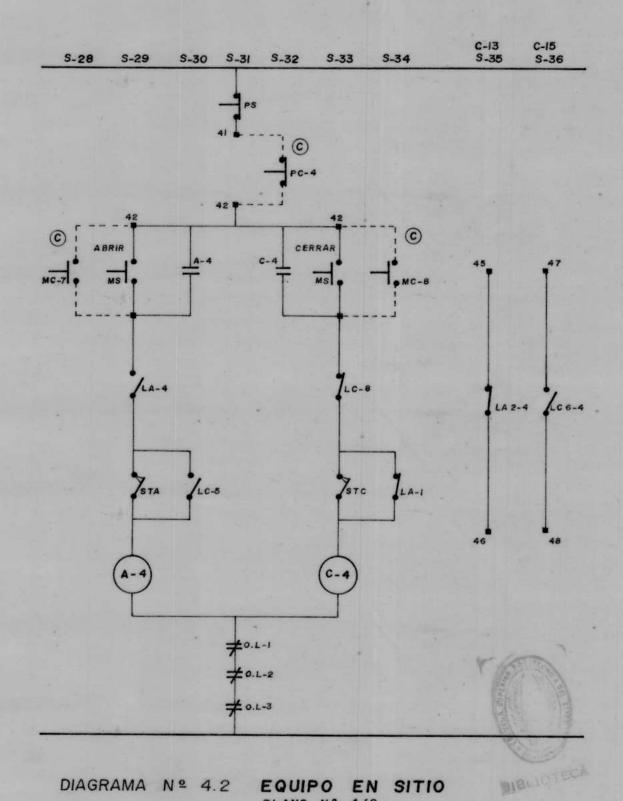


DIAGRAMA Nº 4.2 EQUIPO EN SITIO PLANO Nº 4/9 VALVULA MOTORIZADA VM-4

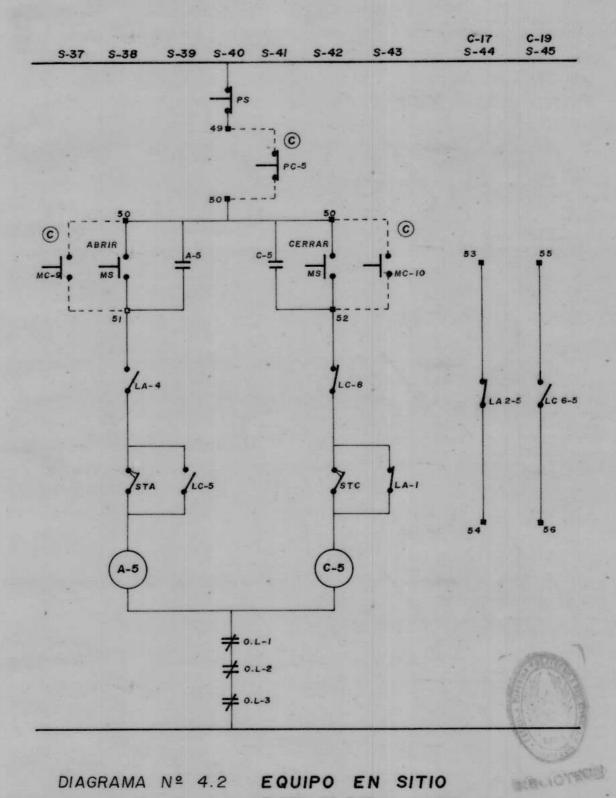


DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 5/9
VALVULA MOTORIZADA VM-5

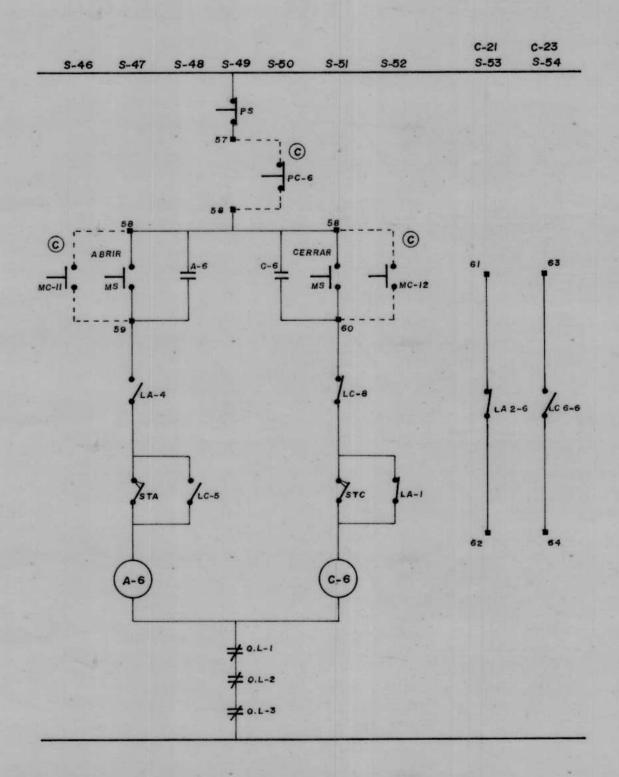


DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 6/9
VALVULA MOTORIZADA VM-6

1

*

*

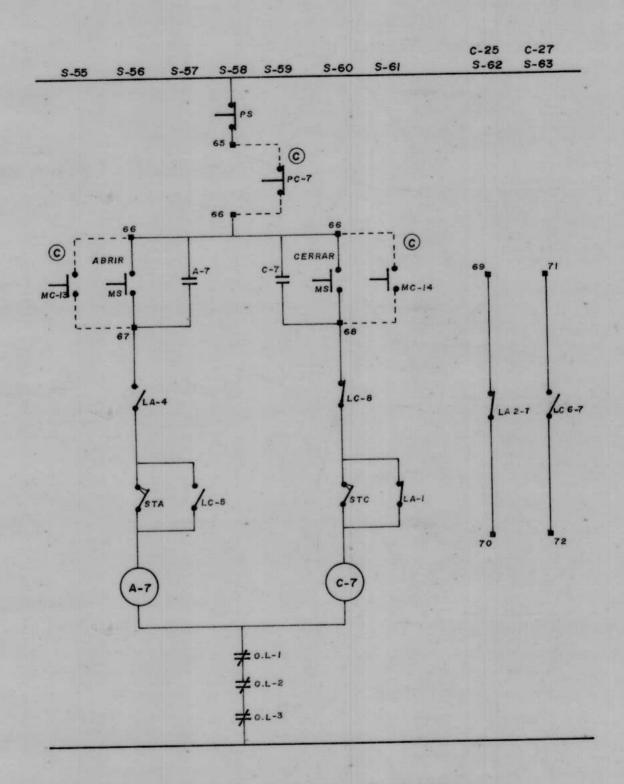
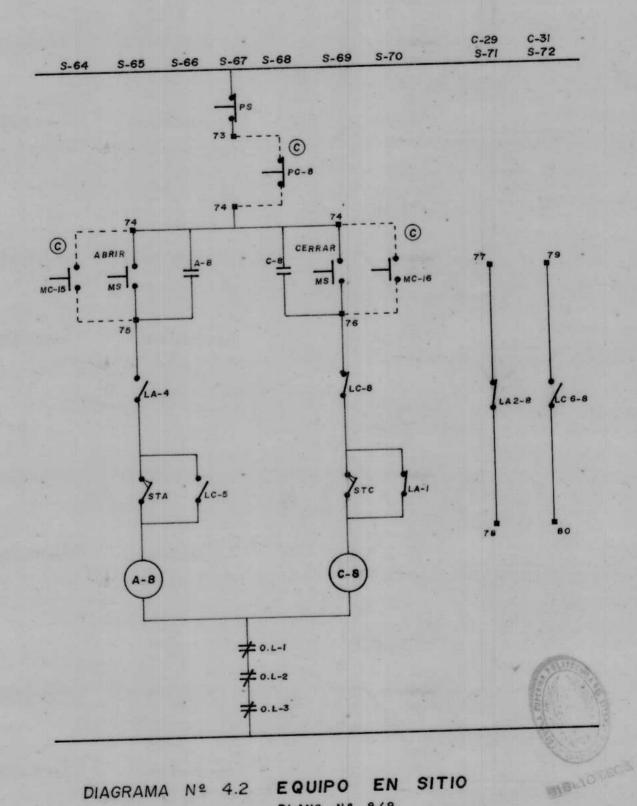
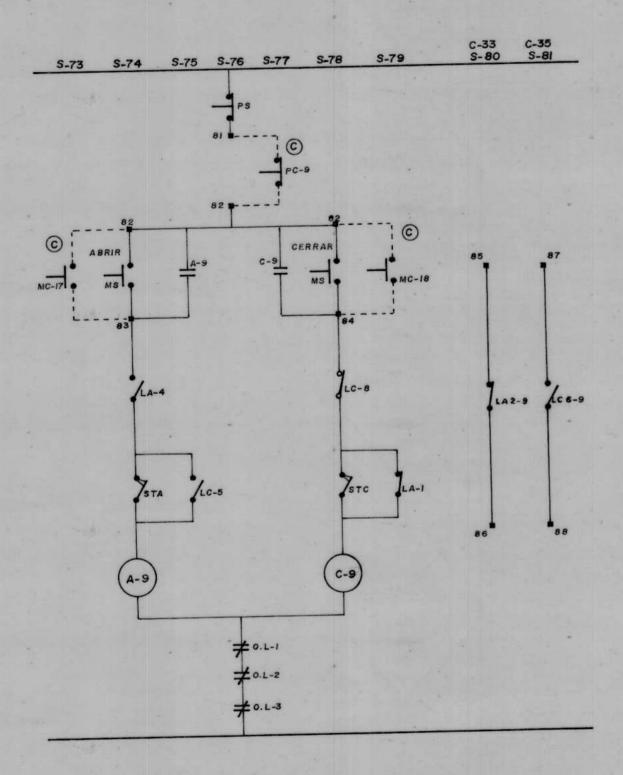
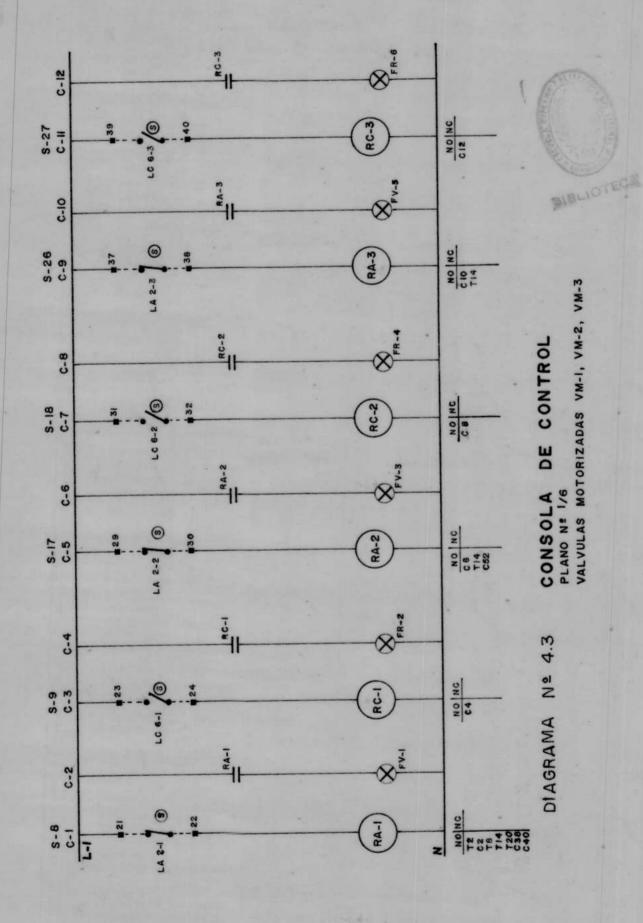
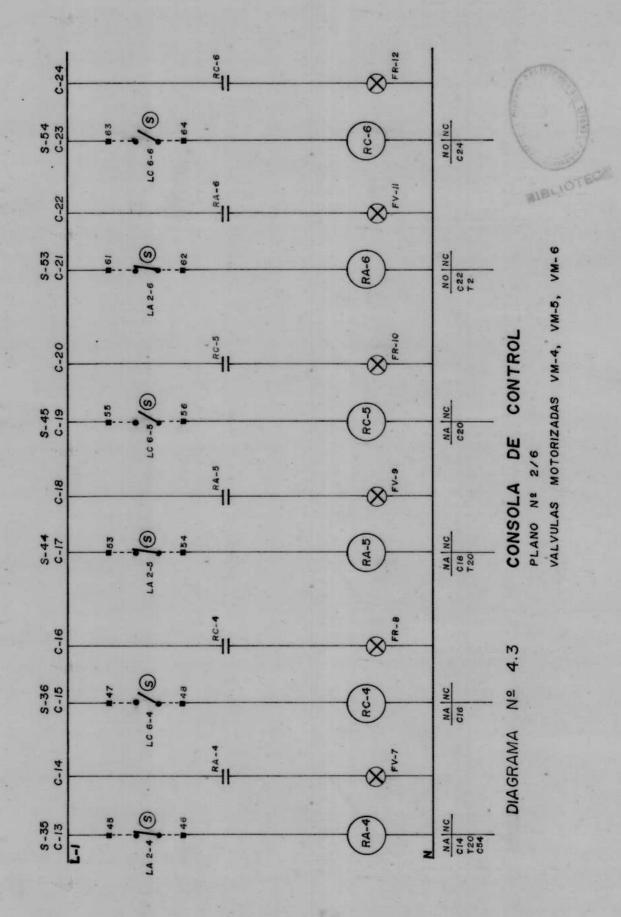
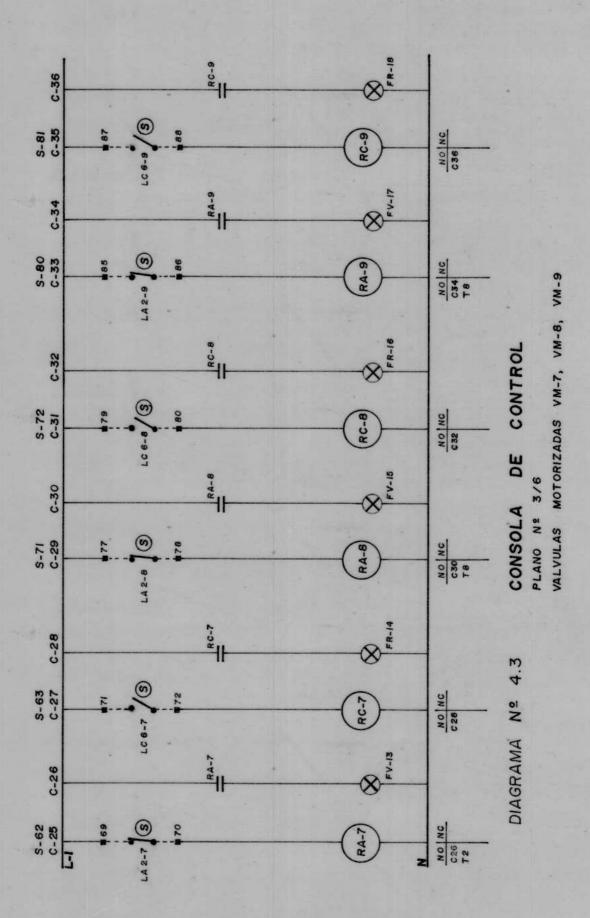
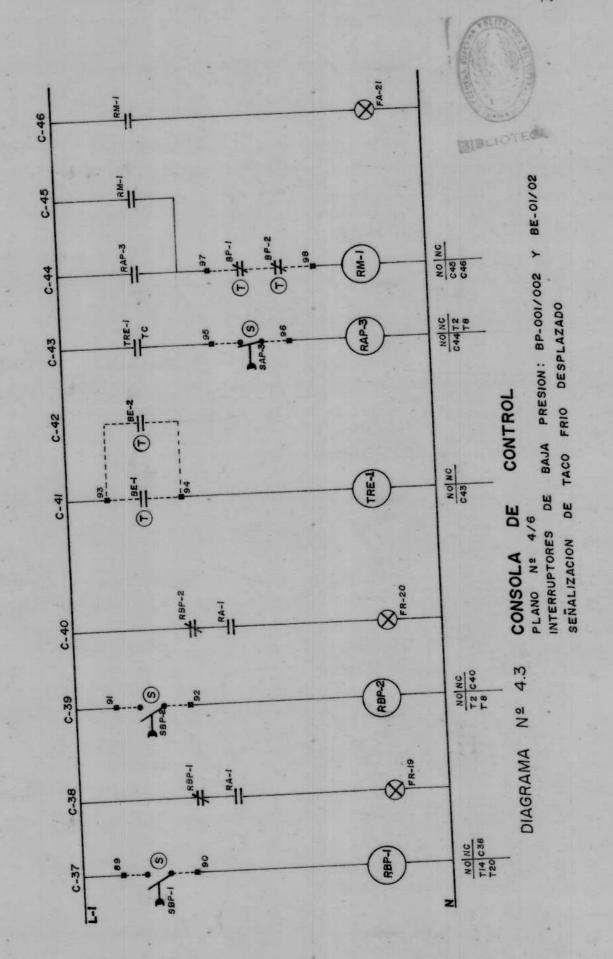
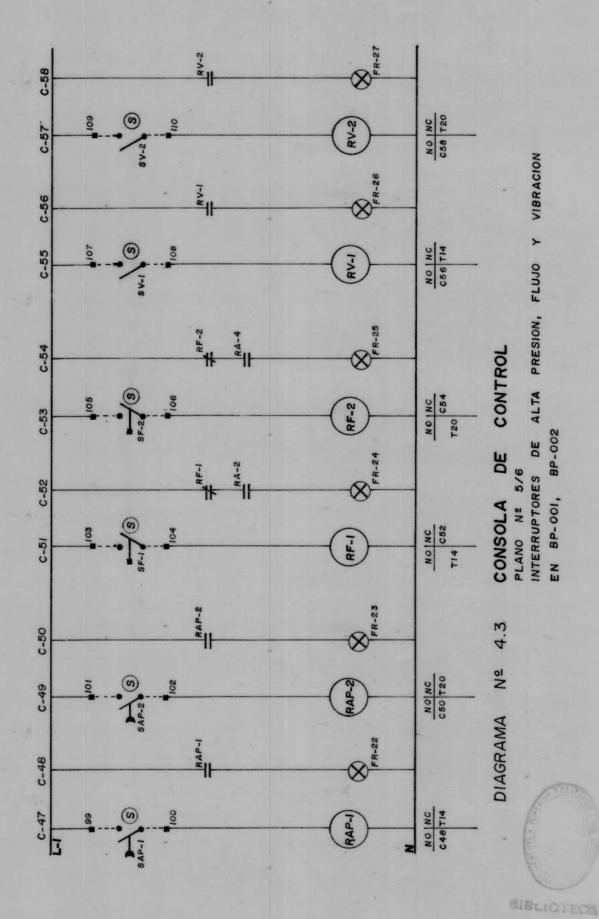
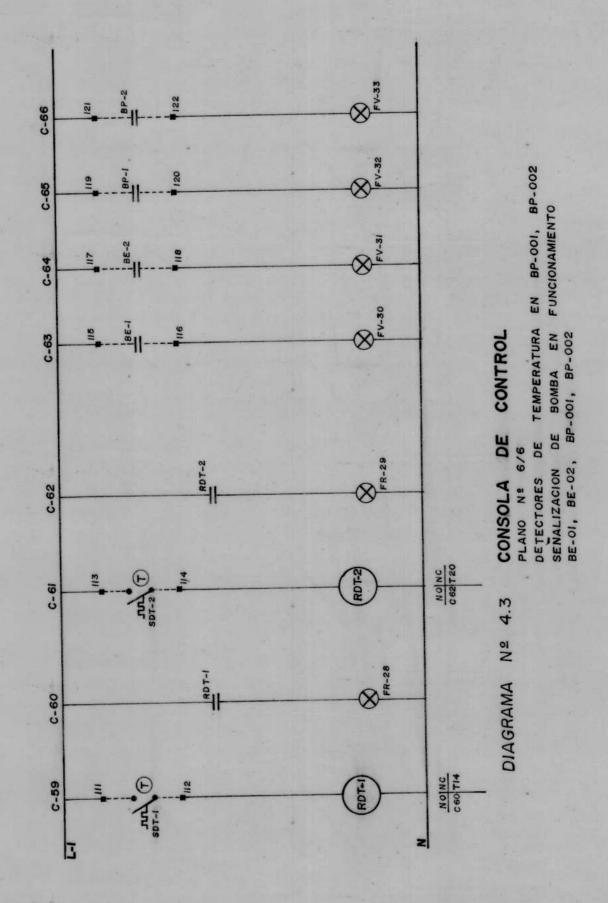



DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 7/9
VALVULA MOTORIZADA VM-7

SITIO DIAGRAMA Nº 4.2 EN EQUIPO PLANO Nº 8/9 VALVULA MOTORIZADA VM-8


DIAGRAMA Nº 4.2 EQUIPO EN SITIO
PLANO Nº 9/9
VALVULA MOTORIZADA VM-9



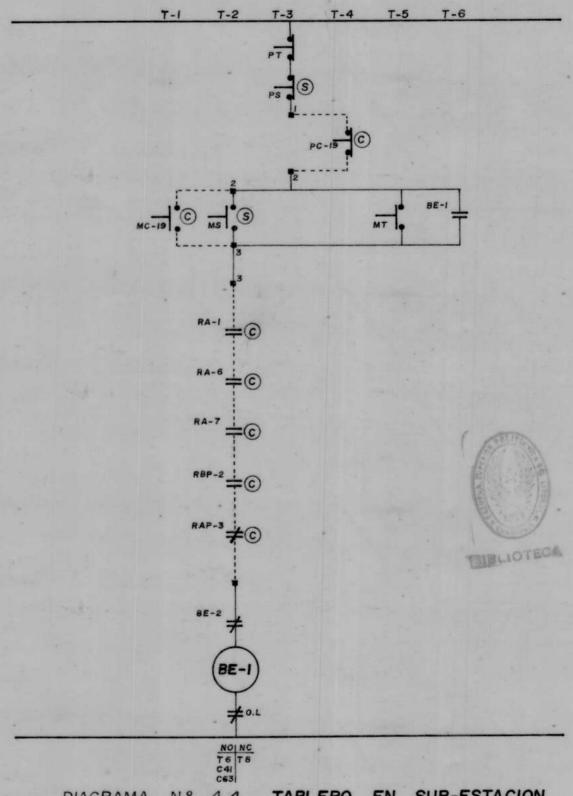


DIAGRAMA Nº 4.4

TABLERO EN SUB-ESTACION PLANO Nº 1/4 BOMBA DE ENGRANAJES BE-01

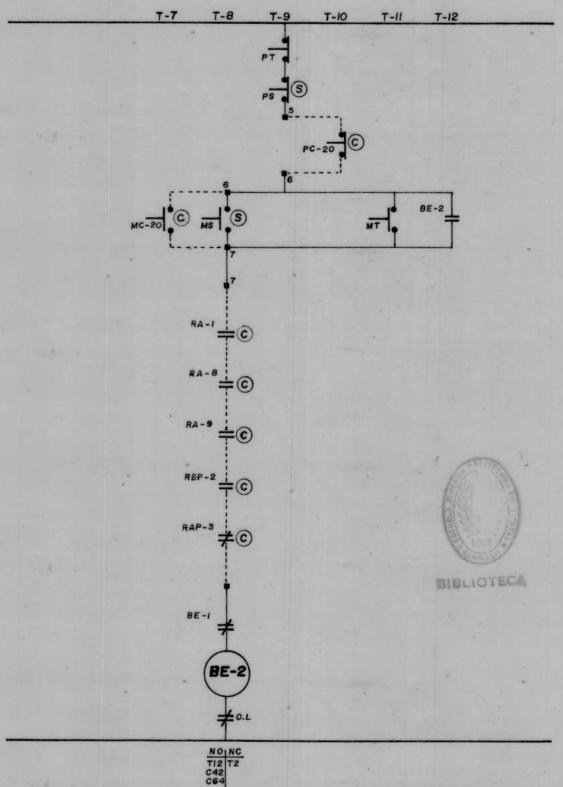


DIAGRAMA Nº 4.4

TABLERO EN SUB-ESTACION PLANO Nº 2/4 BOMBA DE ENGRANAJES BE-02

79

DIAGRAMA Nº 4.4

TABLERO EN SUB-ESTACION PLANO Nº 3/4
BOMBA CENTRIFUGA BP-001

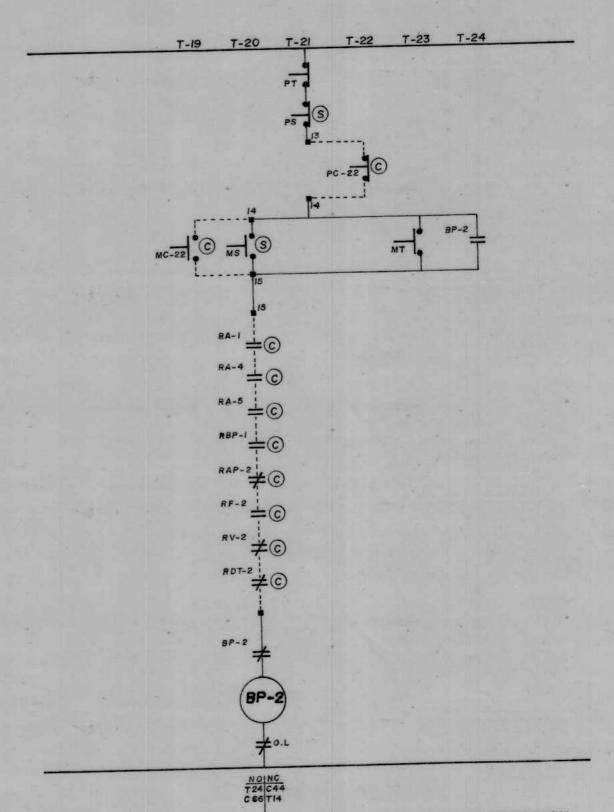


DIAGRAMA Nº 4.4

TABLERO EN SUB-ESTACION PLANO Nº 4/4 BOMBA CENTRIFUGA BP-002

PULSADORES EN CONSOLA DE CONTROL DE LA ESTACION DE BOMBEO DE TRES BOCAS

PUNTOS DE CONEXION		FUNCION	REFERENCIA DE CONEXION
17 PC-I 18	Pulsador	paro VM-1.	S-5
18 <u>IMC-1</u> 19	Pulsador	abrir VM-1.	S-1
1820	Pulsador	cerrar VM-1.	S-7
57 PC-6 58	Pulsador	paro VM-6.	S-50
58 MC-II 59	Pulsador	abrir VM-6.	S-46
58 <u>IMC-12</u> 60	Pulsador	cerrar VM-6.	S-52
65 PC-7 66	Pulsador	paro VM-7.	S-59
66 IMC-13 67	Pulsador	abrir VM-7.	S-55
66 IMC-14 68	Pulsador	cerrar VM-7.	S-61
PC-19 2	Pulsador	paro bomba BE-01	Т4
2 <u>IMC-49</u> 3	Pulsador	marcha bomba BE-01.	T1
73 PC-8 74	Pulsador	paro VM-8.	S-68 -
74 IMC-15 75	Pulsador	abrir VM-8.	5-64
74 IMC-16 76	Pulsador	cerrar VM-8.	S-70
8I	Pulsador	paro VM-9.	S-77
82 IMC-17 83	Pulsador	abrir VM-9.	S-73
8284	Pulsador	cerrar VM-9.	S-79

PUNTOS DE CONEXION	FUNCION	REFERENCIA DE CONEXION
5 PC-20 6	Pulsador paro bomba BE-02.	T10
67	Pulsador marcha bomba BE-02.	Т7
25 PC-2 26	Pulsador paro VM-2.	S-14
26 <u>IMC</u> -3 27	Pulsador abrir VM-2.	S-10
26 <u>IMC-4</u> 28	Pulsador cerrar VM-2.	S-16
33 PC-3 34	Pulsador paro VM-3.	5-23
34 IMC-5 35	Pulsador abrir VM-3.	S-29
34 <u>IMC-6</u> 36	Pulsador cerrar VM-3.	S-25
9 PC-21 10	Pulsador paro bomba BP-001.	T16
10IMC-21_II	Pulsador marcha bomba BP-001.	T13
41 PC-4 42	Pulsador paro VM-4.	S-32
42 IMC-7	Pulsador abrir VM-4.	5-28
42 IMC-8	Pulsador cerrar VM-4.	S-34
49 PC-5 50	Pulsador paro VM-5.	S-41
50 IMC-9	Pulsador abrir VM-5.	S-37
50 IMC-IO 52	Pulsador cerrar VM-5.	S-43
13 PC-22 14	Pulsador paro bomba BP-002.	T22
14IMC-22	Pulsador marcha bomba BP-002.	T19

LUCES PILOTO EN CONSOLA DE CONTROL DE LA ESTACION DE BOMBEO DE TRES BOCAS.

TABLA VIII

IDENTIFI- CACION	SEMAL QUE PROPORCIONA	REFERENCIA DE UBICACION
FV-1	Abertura de VM-1	C-2
FR-2	Cierre de VM-1.	C-4
FV-3	Abertura de VM-2.	C-6
FR-4	Cierre de Vm-2.	C-8
FV-5	Abertura de VM-3.	C-10
FR-6	Cierre de VM-3.	C-12
FV-7	Abertura de VM-4.	C-14
FR-8	Cierre de VM-4.	C-16
FV-9	Abertura de VM-5.	C-18
FR-10	Cierre de VM-5.	C-20
FV-11	Abertura de VM-6.	C-22
FR-12	Cierre de VM-6.	C-24
FV-13	Abertura de VM-7.	C-26
FR-14	Cierre de VM-7.	C-28
FV-15	Abertura de VM-8.	C-30
FR-16	Cierre de VM-8.	C-32

IDENTIFI- CACION	SEÑAL QUE PROPORCIONA	REFERENCIA DE UBICACION
FV-17	Abertura de VM-9.	C-34
FR-18	Cierre de VM-9.	C-36
FR-19	Baja presión en succión de BP-001/BP-002.	C-38
FR-20	Baja presión en succión de BE-01/BE-02.	C-40
FA-21	Desplazamiento del "taco frio"	C-46
FR-22	Alta presión en descarga de BP-001.	C-48
FR-23	Alta presión en descarga de BP-002.	C-50
FR-24	Bajo flujo en succión de BP-001.	C-52
FR-25	Bajo flujo en succión de BP-002.	C-54
FR-26	Vibración en bomba BP-001.	C-56
FR-27	Vibración en bomba BP-002.	C-58
FR-28	Calentamiento en el motor BP-001.	C-60
FR-29	Calentamiento en el motor BP-002.	C-62
FV-30	Bomba BE-01 en funcionamiento.	C-63
FV-31	Bomba BE-02 en funcionamiento.	C-64
FV-32	Bomba BP-001 en funcionamien- to.	C-45
FV-33	Bomba BP-002 en funcionamien- to.	C-66

A continuación se presenta el cálculo del transformador de voltaje que alimentará a los dispositivos de control a instalarse en la consola de la estación de bombeo de Tres Bocas y que serán los siguientes:

- 20 relës auxiliares de control 120 V, 60 Hz, con un consumo de bobina de 45 VA al atraer y 7.3 VA al retener.
- 9 relès para señalización 120 V, 60 Hz con un consumo de bobina de 3.5 VA al atraer y 1.2 VA al retener.
- 33 Luces pilotos 120 V, 2.5 W.

Primeramente se determina la carga instalada:

Relès	de	control	372	VA	
Relès	de	señalización	18	VA	
Luces			82	VA	
			472	VA	-

Siendo la demanda máxima:

Reles	de	control	112	VA	
Relès	de	señalización	18	VA	
Luces			37	VA	
			167	VA	

Considerando una reserva del 20% resulta que el transformador que deberá utilizarse será de 200 VA, 480/120 V, al que se protegerá con fusibles de 1 Amperio en el primario y 2 Amperios en el secundario.

4.2 AUTOMATIZACION EN TERMINAL DE ALMACENAMIENTO Y DISTRIBUCION DEL SALITRAL.

Las instrucciones de operación que son presentadas a continuación se refieren al manejo y uso de la consola de control en el terminal de almacenamiento y distribución de fuel oil ubicado en el sitio denominado Salitral, este sistema:

- Recibe el fuel oil bombeado desde Tres Bocas, procedente de los buques-tanque y lo descarga en tanques de almacenamiento.
- Por medio de un sistema de bombas saca el fuel
 oil de los tanques para cargar camiones de
 reparto en la isla de carga.

La consola estará provista de los mandos y controles necesarios para operar el sistema. Incluye también señalización del sistema con lámparas indicadoras que mostrarán que están realizandose ciertos pasos importantes, que están en marcha ciertos equipos o que se ha alcanzado ciertos límites o condiciones de alarma.

Los tanques de almacenamiento podrán ser seleccionados para carga o para descarga. El tanque seleccionado para carga no podrá ser selecionado para descarga y viceversa. Cualquiera de los dos tanques puede ser seleccionado para recircular el producto. Existirán luces de señalización que indicarán que operación se está ejecutando en cada tanque.

Además cada tanque estará equipado con un nivel alto de dos posiciones, la mas baja hará sonar una alarma y la mas alta cerrará automáticamente la válvula de entrada al tanque. Tambien en cada tanque habrá un nivel bajo que apagará y/o bloqueará el encendido de las bombas de producto y proporcionará una señal luminosa en la consola.

La carga a los tanqueros se podrá hacer desde dos islas de carga equipadas con dos brazos de carga cada una.

Se considera que cada isla operará con una bomba de producto, la consola tendrá selectores que permitirán escoger cuales serán las bombas de producto que funcionarán.

El sistema contará con tres bombas de producto, dos de las cuales operarán y la otra será de reserva. De acuerdo a la disposición existente de la tubería mecánica del producto se puede tener tres alternativas de operación que son las siguientes:

ALTERNATIVA No 1: Bomba BP-003 Operando con isla No 1

Bomba BP-004 Operando con isla No 2

Bomba BP-005 Reserva.

ALTERNATIVA No 2: Bomba BP-004 Operando con isla No 1

Bomba BP-005 Operando con isla No 2

Bomba BP-003 Reserva.

ALTERNATIVA No 3: Bomba BP-003 Operando con isla No 1

Bomba BP-005 Operando con isla No 2

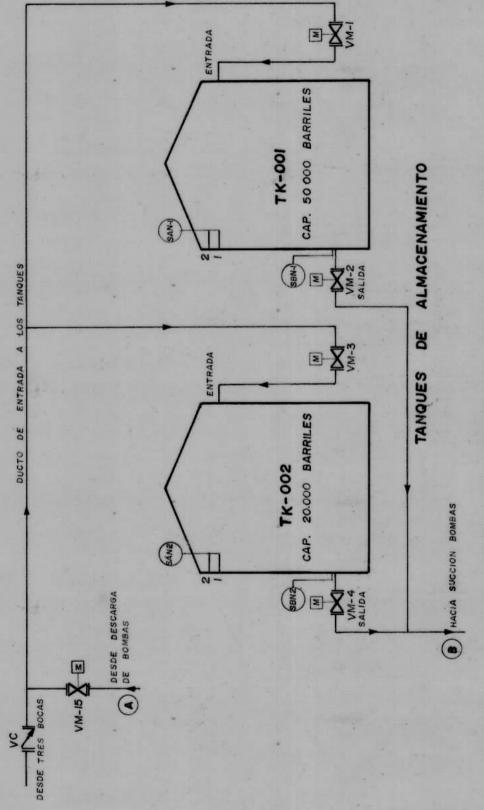
Bomba BP-004 Reserva.

Como medio de protección cada bomba cuenta con un interruptor de alta presión en la descarga, un interruptor de baja presión y uno de flujo en la succión. Además los motores están equipados con detectores de temperatura en los devanados.

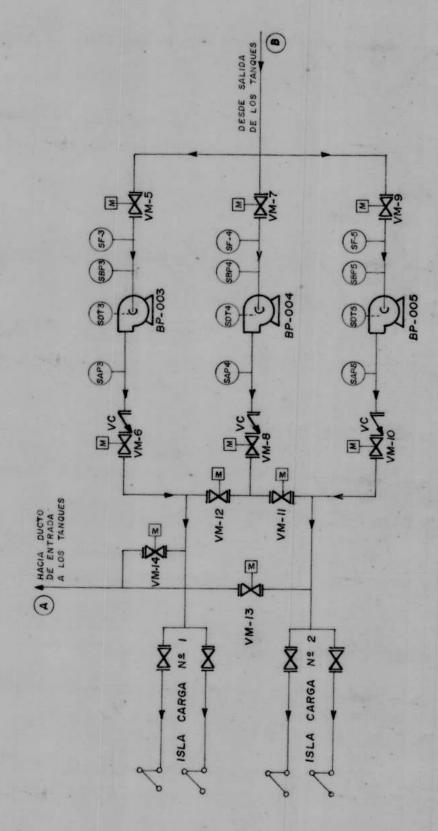
Para que una bomba de producto pueda arrancar debe cumplirse lo siguiente:

- La bomba debe haber sido seleccionada para operar.
- Debe haber un tanque seleccionado para descarga, la válvula de salida de este tanque debe estar abierta, y el nivel del producto en el tanque no debe ser bajo.

- Las válvulas motorizadas en la succión y en la descarga de la bomba seleccionada deben estar abiertas.
- El flujo y la presión en la succión de la bomba seleccionada debe ser el adecuado.
- Si una bomba está funcionando y la presión en la descarga es demasiado alta será apagada automáticamente.


Todas las válvulas motorizadas tendrán luces de señalización en la consola que operarán de la siguiente manera:

FOCO PARA ABRIR: Permanecerá prendido para posición abierta y cualquier posición intermedia, se apagará cuando la válvula este completamente cerrada.


FOCO PARA CERRAR: Permanecerá prendido para posición cerrada y cualquier posición intermedia, se apagará cuando la válvula estê completamente abierta.

El diagrama 4.2 muestra el nuevo diagrama de flujo en el área de almacenamiento del Salitral.

El diagrama 4.3 presenta el nuevo diagrama de flujo

NUEVO DIAGRAMA DE FLUJO EN EL AREA DE ALMACENAMIENTO DEL SALITRAL Nº 4.2 DIAGRAMA

NUEVO DIAGRAMA DE FLUJO EN LOS SISTEMAS DE BOMBEO Y DISTRIBUCION DEL SALITRAL DIAGRAMA Nº 4.3

en los sistemas de bombeo y distribución del Salitral.

La secuencia de operación está representada en la figura 4.4.

A continuación se presenta la Tabla IX en la que se tiene una descripción del equipo principal que forma parte del sistema de almacenamiento y distribución de fuel oil, indicando la nomenclatura con la cual se los designa en los diagramas mecánicos y eléctricos.

En la Tabla X se detallan los relès auxiliares asociados con cada equipo principal, que se utilizan para dar señalización y realizar los bloqueos necesarios durante la operación del equipo en el terminal del Salitral.

TABLA IX
EQUIPO PRINCIPAL EN TERMINAL DEL SALITRAL.

NOMENCLATURA	DESCRIPCION	
VM-1	Válvula motorizada entrada tanque TK-001.	
VM-2	Válvula motorizada salida tanque TK-001.	
VM-3	Válvula motorizada entrada tanque TK-002.	
VM-4	Válvula motorizada salida tanque TK-002.	
VM-5	Válvula motorizada en succión de BP-003.	
VM6	Válvula motorizada en descarga de BP-003.	
VM-7	Válvula motorizada en succión de BP-004.	
VM-8	Válvula motorizada en descarga de BP-004.	
VM9	Válvula motorizada en succión de BP-005.	
VM-10	Válvula motorizada en descarga de BP-005.	
VM-11	Válvula motorizada que conecta I2 con descarga de BP-004.	
VM-12	Válvula motorizada que conecta I1 con descarga de BP-004.	
VM-13	Válvula motorizada de recirculación.	
VM-14	Válvula motorizada de recirculación.	
VM-15	Válvula motorizada principal de recircu- lación.	
BP-003	Bomba centrífuga de producto.	
BP-004	Bomba centrífuga de producto.	
BP-005	Bomba centrífuga de producto.	
SBN-1	Interruptor bajo nivel en tanque TK-001.	
SAN-1	Interruptor alto nivel en tanque TK-001.	
SBN-2	Interruptor bajo nivel en tanque TK-002.	

NOMENCLATURA	DESCRIPCION
SAN-2	Interruptor alto nivel en tanque TK-002.
SF-3	Interruptor de flujo en succión de BP-003
SBP-3	Interruptor baja presión en succión de BP-003.
SAP-3	Interruptor alta presión en descarga de BP-003.
SF-4	Interruptor de flujo en succión de BP-004
SBP-4	Interruptor baja presión en succión de BP-004.
SAP-4	Interruptor alta presión en descarga de BP-004.
SF-5	Interruptor de flujo en succión de BP-005
SBP-5	Interruptor baja presión en succión de BP-005.
SAP-5	Interruptor alta presión en descarga de BP-005.
SDT-3	Detector de temperatura en los devanados del motor de BP-003.
SDT-4	Detector de temperatura en los devanados del motor de BP-004.
SDT-5	Detector de temperatura en los devanados del motor de BP-005.

TABLA X
EQUIPO AUXILIAR EN TERMINAL DEL SALITRAL.

RELE AUXILIAR	EQUIPO ASOCIADO	FUNCION	BLOQUEO
RB-13	BP-003	- Seleccionar BP-003 desde Ii.	- Selección de BP-004 desde II. - Selección de BP-005 desde II. - Selección de BP-003 desde I2.
RB-14	BP-004	- Seleccionar BP-004 desde II.	- Selección de BP-003 desde II. - Selección de BP-005 desde II. - Selección de BP-004 desde I2.
RB-15	BP-005	- Seleccionar BP-005 desde I1.	- Selección de BP-003 desde 11. - Selección de BP-004 desde 11. - Selección de BP-005 desde 12.
RB-23	BP-003	- Seleccionar BP-003 desde I2.	- Selección de BP-004 desde 12. - Selección de BP-005 desde 12. - Selección de BP-003 desde 11.
RB-24	BP-004	- Seleccionar BP-004 desde I2.	- Selección de BP-003 desde I2. - Selección de BP-005 desde I2. - Selección de BP-004 desde I1.
RB-25	BP-005	- Seleccionar BP-005 desde 12.	- Selección de BP-003 desde 12. - Selección de BP-004 desde 12. - Selección de BP-005 desde 11.
BP-3	BP-003	- Arranque de BP-003. - Señalización de arranque de BP-003.	
BP-4	BP-004	- Arranque de BP-004. - Señalización de arranque de BP-004.	
BP-5	BP-005	- Arranque de BP-005. - Señalización de arranque de BP-005.	
TC-1	TK-001	- Seleccionar TK-001 para carga.	- Selección de TK-001 para descarga. - Cierre de VM-1. - Abertura de VM-2.
TC-2	TK-002	- Seleccionar TK-002 para carga.	- Selección de TK-002 para descarga. - Cierre de VM-3. - Abertura de VM-4.

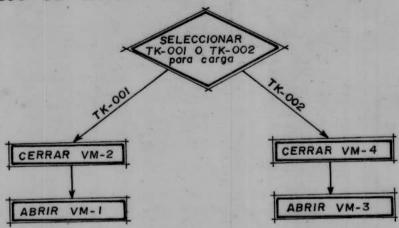
RELE AUXILIAR	EQUIPO ASOCIADO	FUNCION	BLOQUEO
TD-1	TK-001	- Seleccionar TK-001 para descarga.	- Selección de TK-001 para carga - Abertura de VM-1. - Cierre de VM-2. - Arranque de BP-003/004/005.
TD-2	TK-002	- Seleccionar TK-002 para descarga.	- Selección de TK-002 para carga. - Abertura de VN-3. - Cierre de VM-4. - Arranque de BP-003/004/005.
RCIR	TK-001 TK-002	- Seleccionar TK-001 para recircular Seleccionar TK-002 para recircular Permite abrir VM-1 con TK-01 seleccionado para descarga Permite cerrar VM-2 con TK-001 seleccionado para descarga Permite abrir VM-3 con TK-002 seleccionado para descarga Permite cerrar VM-4 con TK-002 seleccionado para descarga.	
NB-1	TK-001	- Señalización nivel bajo en TK-001. - Apaga las bombas BP-003/004/005. - Cierra VM-2.	- Selección de tanque TK-001 para descarga.
NB-2	TK-002	- Señalización nivel bajo en TK-002. - Apaga las bombas BP-003/004/005. - Cierra VM-4.	- Selección de tanque TK-002 para descarga.
NA-1	TK-001 TK-002	- Se%alización sonora y luminosa de nivel alto-bajo en TK-001 o TK-002.	
RNA-1	TK-001 TK-002	- Apagar señal sonora de NA-1. - Resetear la operación de NA-1. - Señalización de que se ha reseteado	
NA1-2	TK-001	- Cierra VM-1 cuando se ha alcanzado nivel alto-alto en TK-001. - Señalización luminosa de nivel alto-alto en TK-001.	
NA2-2	TK-002	- Cierra VM-3 cuando se ha alcanzado nivel alto-alto en TK-002. - Señalización luminosa de nivel alto-alto en TK-002.	

RELE	ASOCIADO	FUNCION	BLOQUEO
RA-1	VM-1	- Señalización de válvula abierta.	
RC-1		- Señalización de válvula cerrada.	
RA-2	VM-2	- Señalización de válvula abierta. - Permite arrancar BP-003/004/005 con TK-001 para descarga.	
RC-2		- Señalización de válvula cerrada.	
RA-3	VM-3	- Señalización de válvula abierta.	
RC-3		- Señalización de válvula cerrada.	
RA-4	VM-4	- Señalización de válvula abierta. - Permite arrancar BP-003/004/005 con TK-002 para descarga.	
RC-4		- Señalización de válvula cerrada.	
RA-5	VM-5	- Señalización de válvula abierta.	- Arranque de BP-003.
RC-5		- Se≋alización de válvula cerrada.	
RA-6	VM-6	- Señalización de válvula abierta.	- Arranque de BP-003.
RC-6		- Sefalización de válvula cerrada.	7.00
RA-7	VM-7	- Señalización de válvula abierta.	- Arranque de BP-004.
RC-7		- Señalización de válvula cerrada.	
RA-B	VM-8	- Señalización de válvula abierta.	- Arranque de BP-004.
RC-8		- Señalización de válvula cerrada.	
RA-9	VM-9	- Seãalización de válvula abierta.	- Arranque de BP-005.
RC-9		- Señalización de válvula cerrada.	
RA-10	VM-10	- Seffalización de válvula abierta.	- Arranque de BP-005.
RC-10		- Señalización de válvula cerrada.	
RA-11	VH-11	- Señalización de válvula abierta.	- Arranque de BP-004.
RC-11		- Señalización de válvula cerrada.	

RELE	ASOCIADO	FUNCION	BLOQUEO
RA-12	VM-12	- Señalización de válvula abierta.	- Arranque de BP-004.
RC-12		- Señalización de válvula cerrada.	
RA-13	VM-13	- Señalización de válvula abierta.	
RC-13		- Señalización de válvula cerrada.	
RA-14	VM-14	- Señalización de válvula abierta.	
RC-14		- Señalización de válvula cerrada.	
RA-15	VM-15	- Señalización de válvula abierta.	
RC-15		- Señalización de válvula cerrada.	
RF-3	SF-3	- Señalización de bajo flujo en suc- ción de BP-003.	- Arranque de BP-003.
RF-4	SF-4	- Señalización de bajo flujo en suc- ción de BP-004.	- Arranque de BP-004.
RF-5	SF-5	- Señalización de bajo flujo en suc- ción de BP-005.	- Arranque de BP-005.
RBP-3	SBP-3	- Semalización de baja presión en succión de BP-003.	- Arranque de BP-003.
RBP-4	SBP-4	- Señalización de baja presión en succión de BP-004.	- Arranque de BP-004.
RBP-5	SBP-5	- Señalización de baja presión en succión de BP-005.	- Arranque de BP-005.
RAP-3	SAP-3	- Señalización de alta presión en descarga de BP-003. - Apaga la bomba BP-003.	
RAP-4	SAP-4	- Señalización de alta presión en descarga de BP-004. - Apaga la bomba BP-004.	
RAP-5	SAP-5	- Señalización de alta presión en descarga de BP-005. - Apaga la bomba BP-005.	BIBLIOTEC

RELE	EQUIPO ASOCIADO	FUNCION	BLOQUEO
RDT-3	SDT-3	- Señalización de alta temperatura en motor de BP-003. - Apaga la bomba BP-003.	
RDT-4	SDT-4	- Señalización de alta temperatura en motor de BP-004. - Apaga la bomba BP-004.	
RDT-5	SDT-5	- Señalización de alta temperatura en motor de BP-005. - Apaga la bomba BP-005.	

4.2.1 NOMENCLATURA Y SIMBOLOGIA.


BP		Bomba de producto.
FA	$-\otimes$	Luz piloto color ambar.
FR	$-\otimes$	Luz piloto color rojo.
FV	$-\otimes$	Luz piloto color verde.
Ii		Isla de carga No. 1.
12		Isla de carga No. 2.
LA	→	Interruptor de límite al abrir. Incorporado en válvula motorizada.
LC .		Interruptor de límite al cerrar. Incorporado en válvula motorizada.
MC	<u></u>	Pulsador de marcha en consola de control.
MS		Pulsador de marcha en sitio.
MT		Pulsador de marcha en tablero.

PC _	ماهـ	Pulsador de paro en consola.	
PS _	واو	Pulsador de paro en sitio.	
PT _	واو	Pulsador de paro en tablero.	
RA	RA	Relè auxiliar asociado con la abertura de una válvula motorizada.	
RC	RC-	Relè auxiliar asociado con el cierre de una válvula motorizada.	
SEL _	-7-	Selector.	
STA -		Interruptor de torque para protección en dirección de abrir la válvula motorizada.	
STC -		Interruptor de torque para protección en dirección de cerrar la válvula motorizada.	
TK-001		Tanque de almacenamiento No. 1.	
TK-002		Tanque de almacenamiento No. 2.	
VM _		Válvula motorizada.	
	<u>A-</u>	Contactor para abrir. Incorporado en válvula motorizada.	
	(c-)	Contactor para cerrar. Incorporado en válvula motorizada.	
С	0	Elemento ubicado en consola de control.	
S	(5)	Elemento ubicado en equipo	
		(existente).	

En la figura 4.1 se presenta la operación de los interruptores de límite de las válvulas motorizadas.

101

PROCESO DE CARGA

PROCESO DE DESCARGA

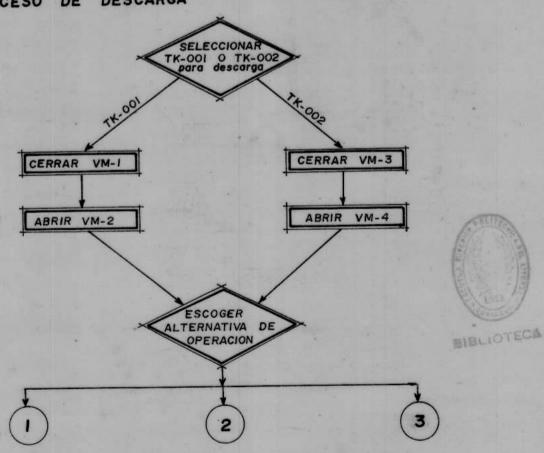
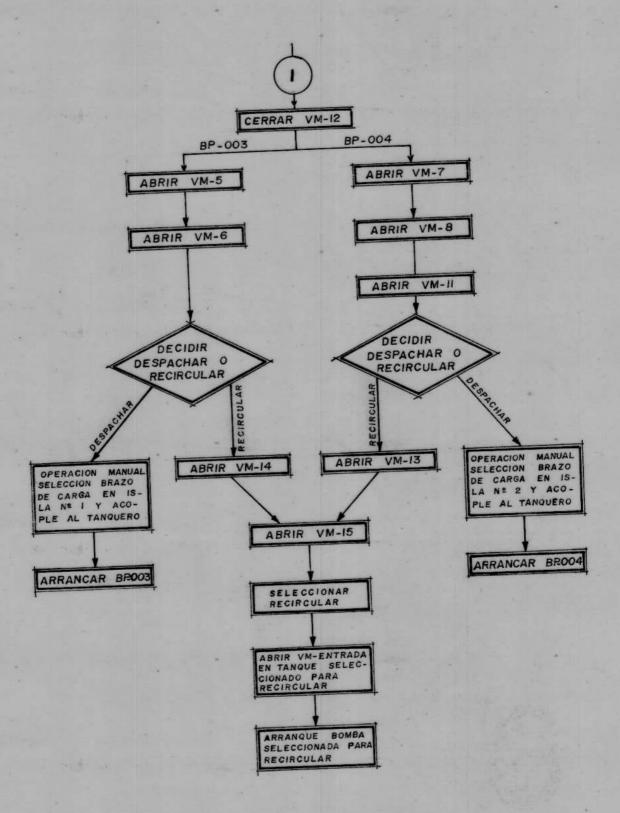
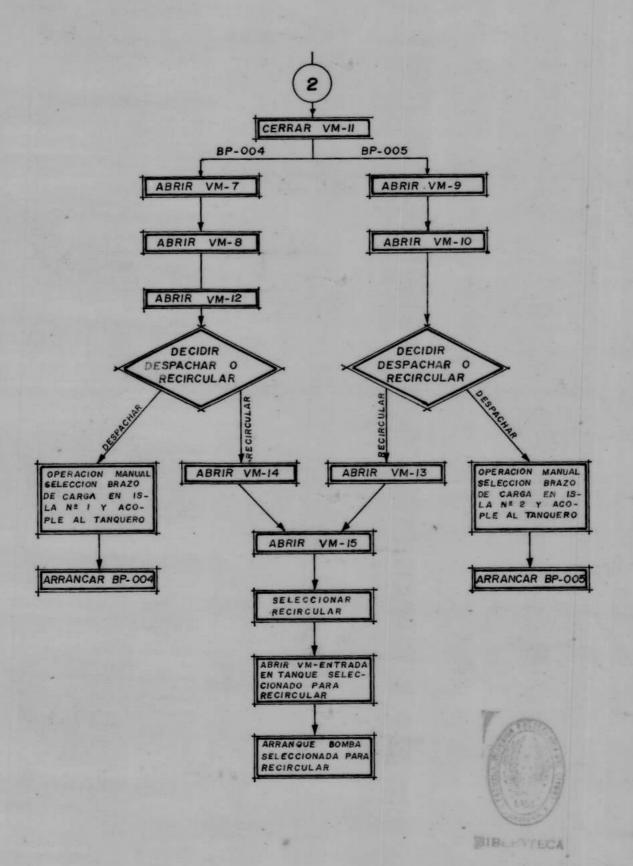





FIGURA Nº 4.4 SECUENCIA DE OPERACION DEL TERMINAL DEL SALITRAL

4.2.2 PLANOS DE CONTROL PARA LA AUTOMATIZACION DEL TERMINAL DE ALMACENAMIENTO Y DISTRIBUCION DE FUEL OIL UBICADO EN SALITRAL.

Los planos de control han sido elaborados en tres secciones que son:

del equipo instalado en sitio
con los puntos de conexión de
los elementos usados para el
control a distancia.

- 2. DIAGRAMA No 4.6: Contiene los planos de la consola de control del Terminal de Salitral en la que existe señalización del estado en que se encuentran los equipos y desde donde se puede comandar todo el sistema.
- 3. DIAGRAMA No 4.7: Presenta los planos de control

 de las bombas de producto

 existentes en el terminal de

 Salitral, cuyos arrancadores

 están ubicados en el tablero

 de la subestación y en los

 que se ha intercalado los

bloqueos necesarios de acuerdo a la secuencia de operación considerada en la automatización.

La figura No. 4.3 muestra un plano típico, en el que se hace una explicación de su nomenclatura que permitirá una mejor comprensión de los planos.

La Tabla XI presenta un listado de los selectores y pulsadores a instalarse en la consola de control del Salitral, indicandose la función que realizarán y la referencia de conexión.

En la Tabla XII se tiene una descripción de las luces de señalización que se tendrán en la consola de control del Salitral, con una explicación de lo que cada una representa y la referencia de ubicación en los planos.

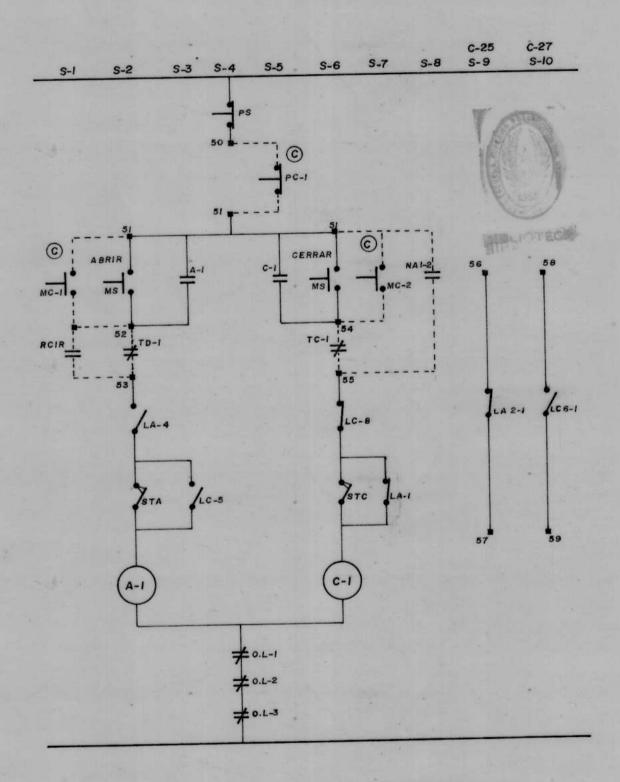


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 1/15
VALVULA MOTORIZADA VM-1

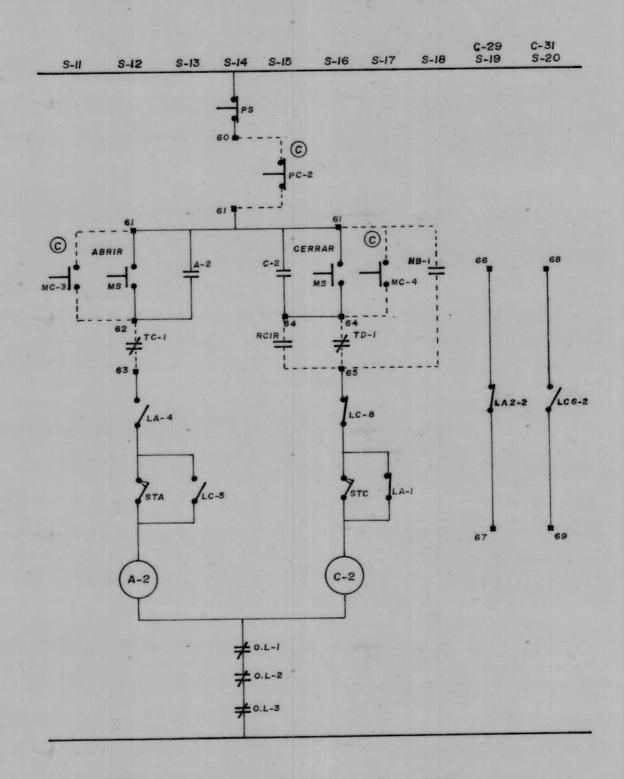


DIAGRAMA Nº 4.5 EQUIPO EN SITIO

PLANO Nº 2/15

VALVULA MOTORIZADA VM-2

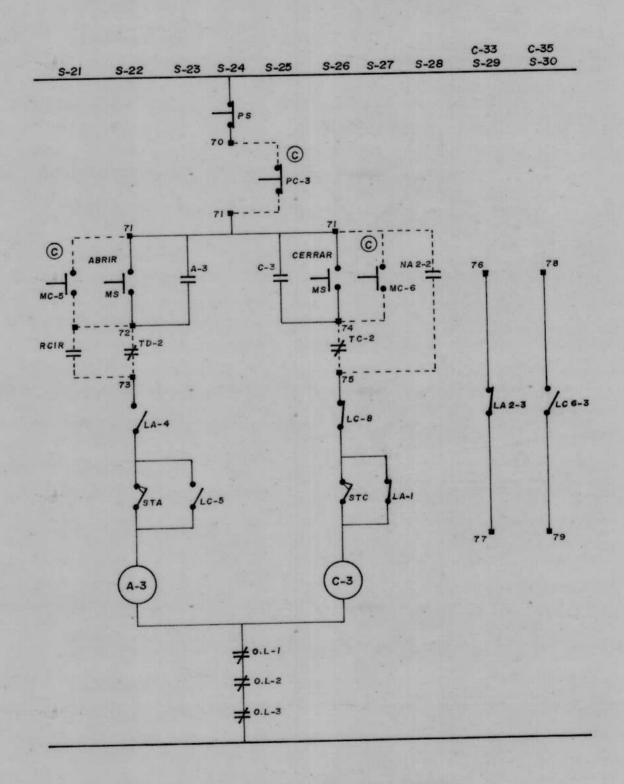


DIAGRAMA Nº 4.5 EQUIPO EN SITIO

PLANO Nº 3/15

VALVULA MOTORIZADA VM-3

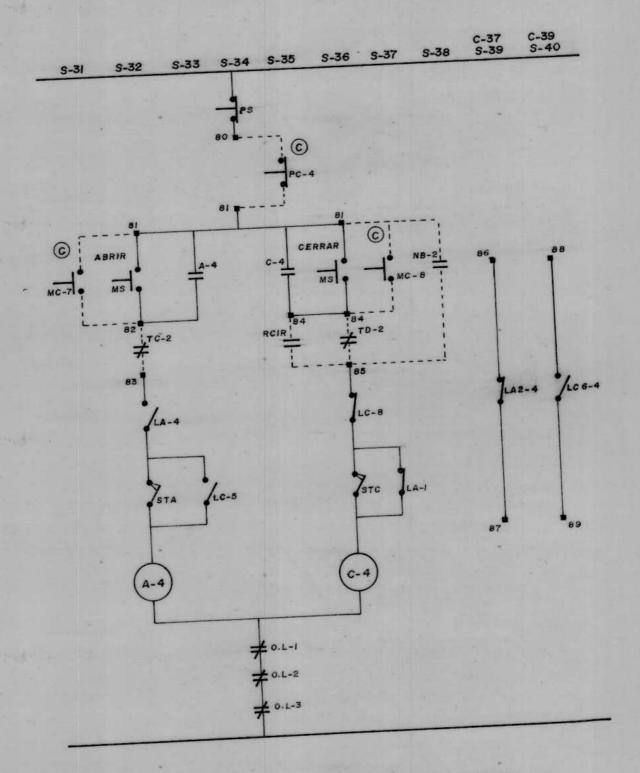


DIAGRAMA Nº 4.5

EQUIPO EN SITIO

VALVULA MOTORIZADA VM-4

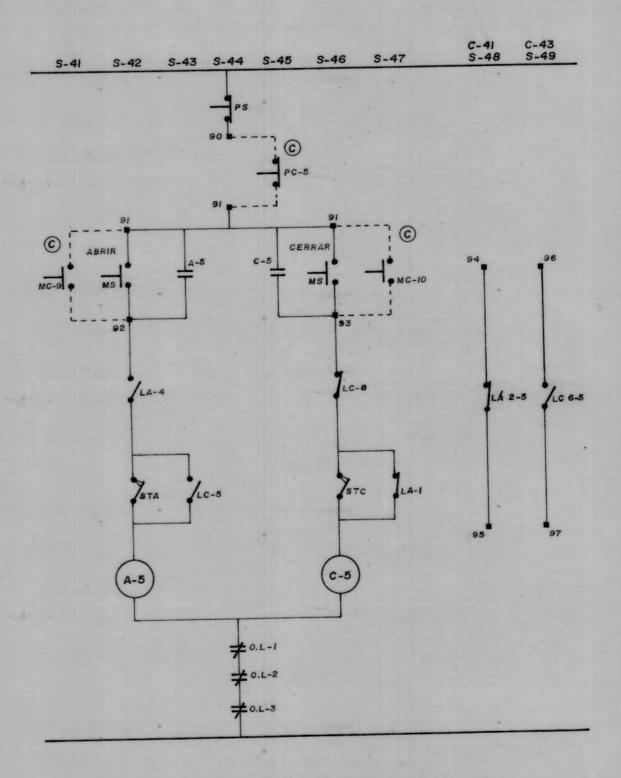


DIAGRAMA Nº 4.5 EQUIPO EN SITIQ
PLANO Nº 5/15
VALVULA MOTORIZADA VM-5

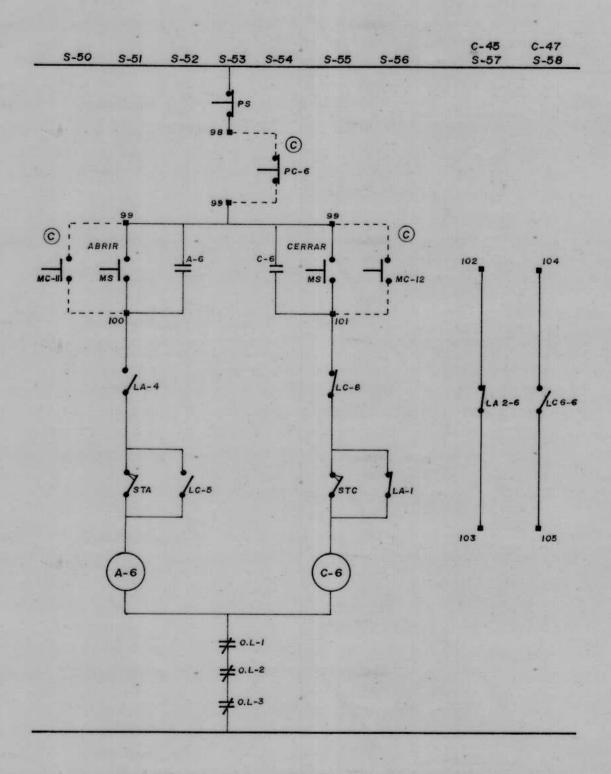


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 6/15
VALVULA MOTORIZADA VM-6

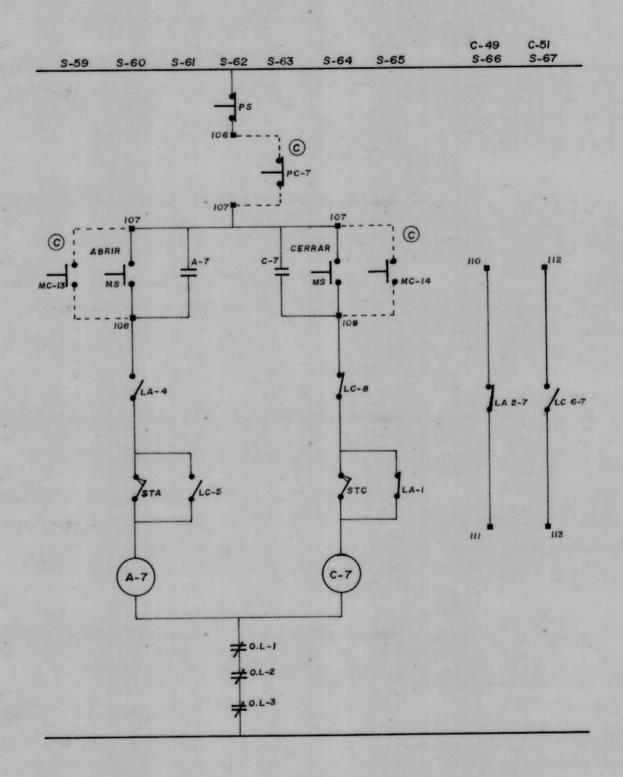


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 7/15
VALVULA MOTORIZADA VM-7

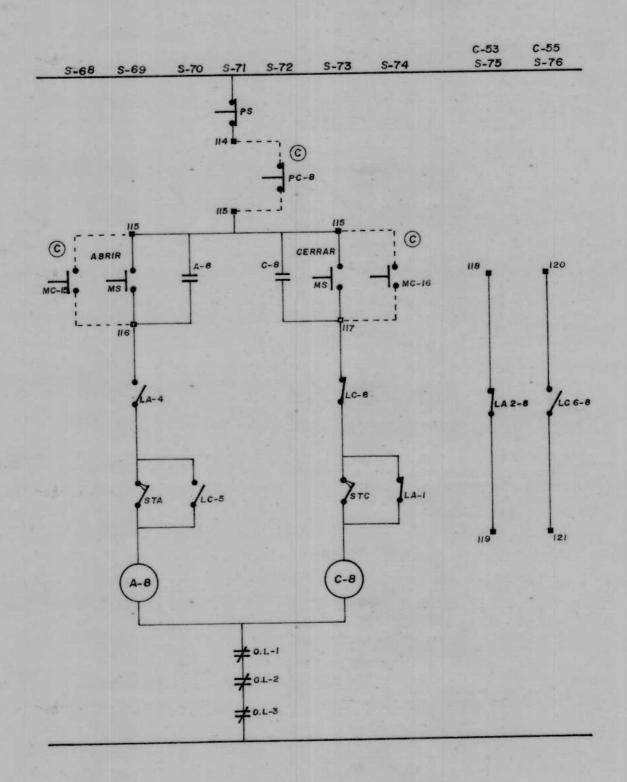


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 8/15
VALVULA MOTORIZADA VM-8

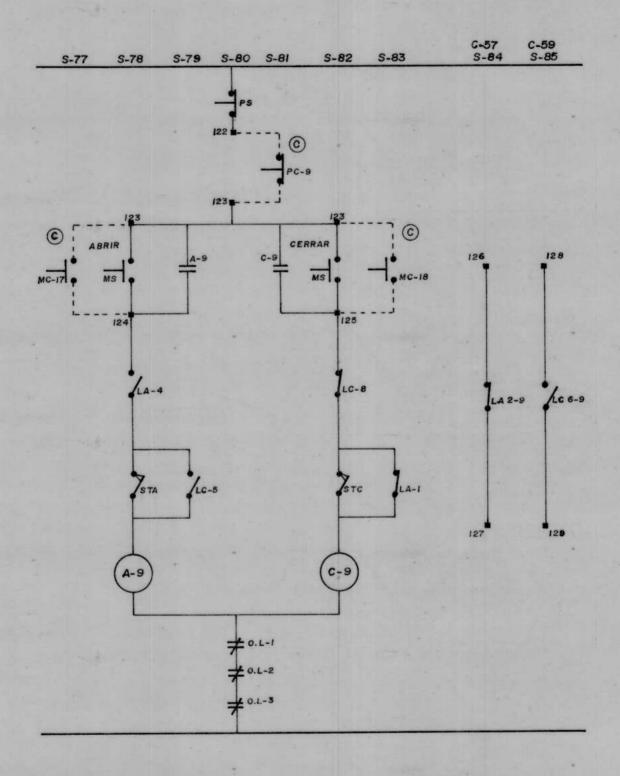


DIAGRAMA Nº 4.5 EQUIPO EN SITIO

PLANO Nº 9/15

VALVULA MOTORIZADA VM-9

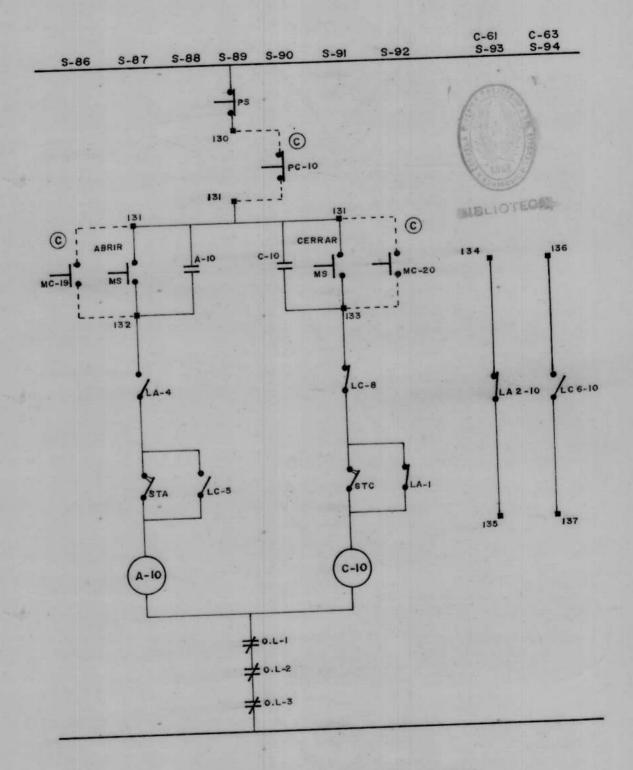


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 10/15
VALVULA MOTORIZADA VM-10

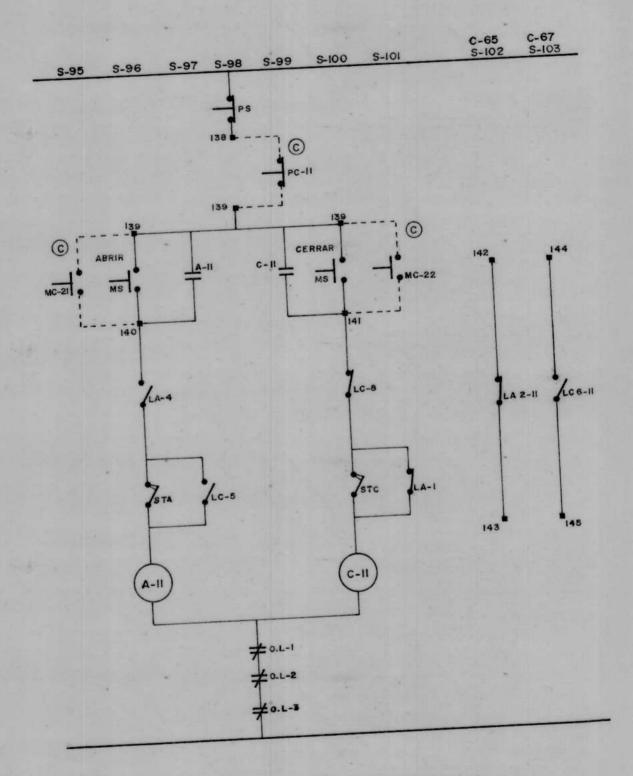


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 11/15
VALVULA MOTORIZADA VM-II

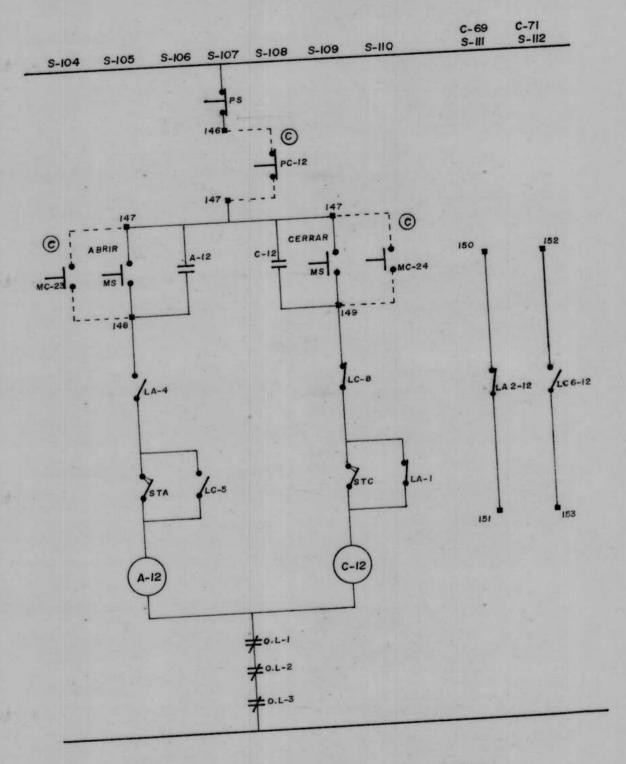


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 12/15
VALVULA MOTORIZADA VM-12

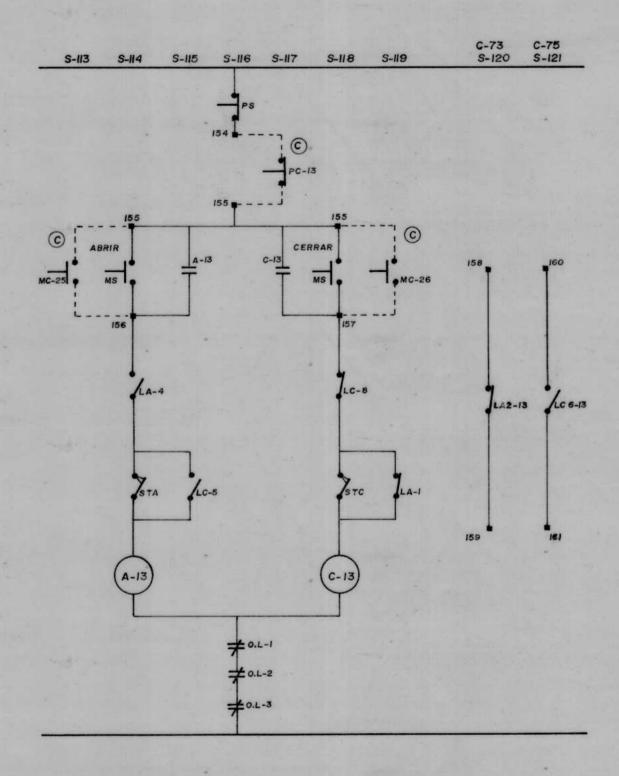


DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 13/15
VALVULA MOTORIZADA VM-13

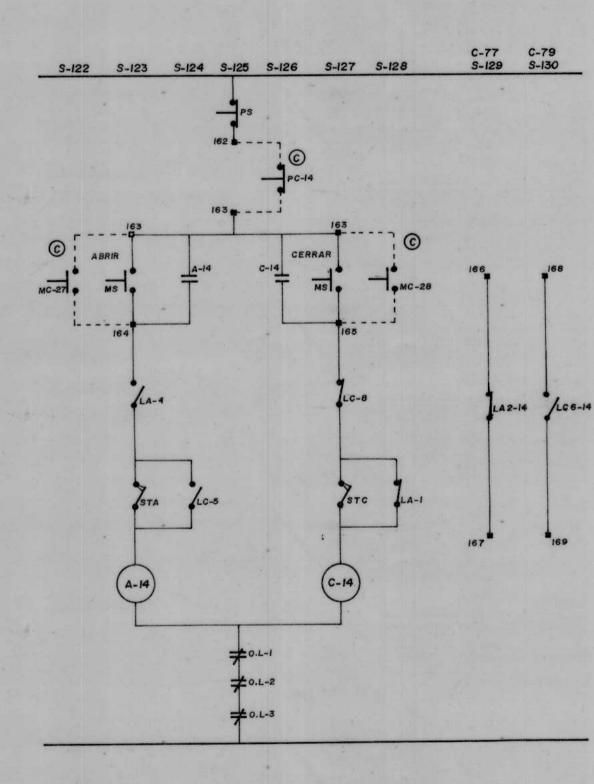
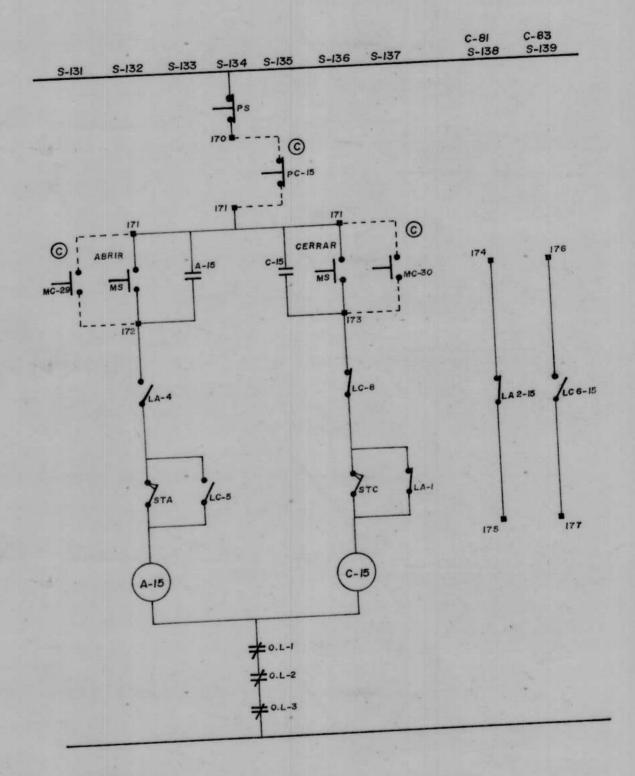
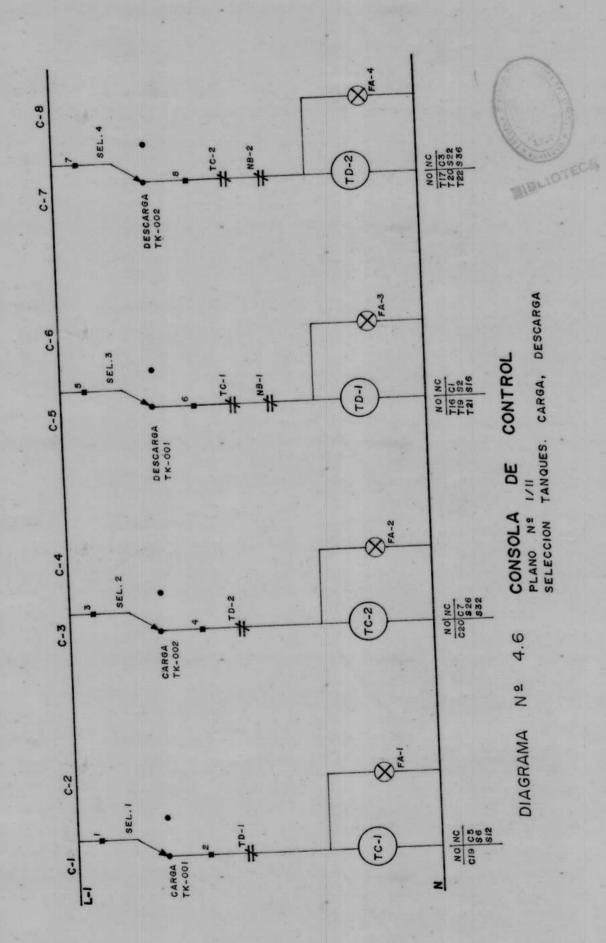
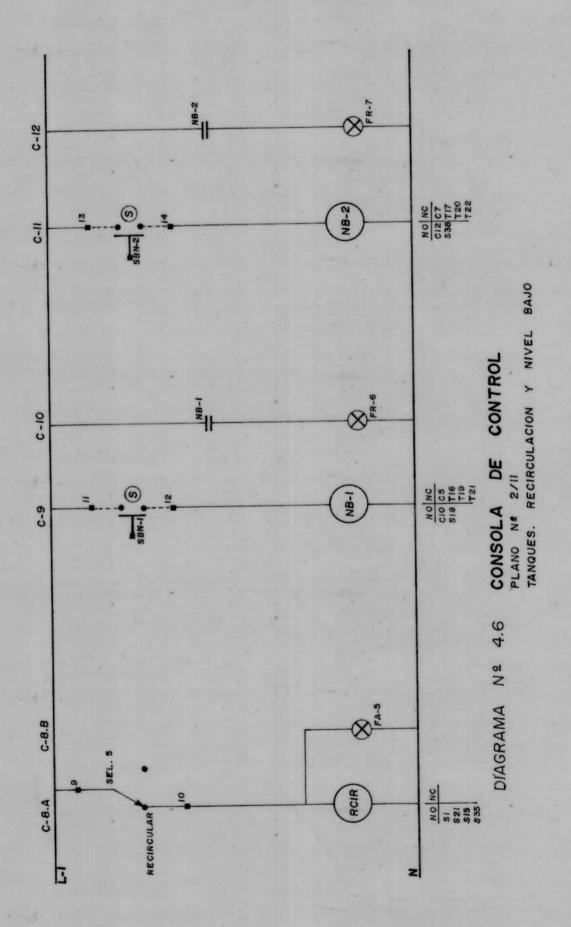
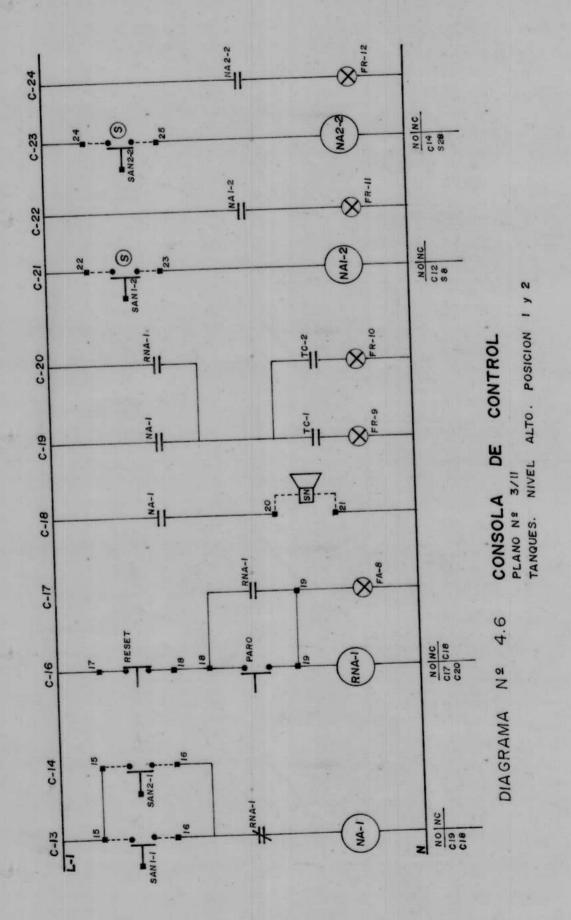
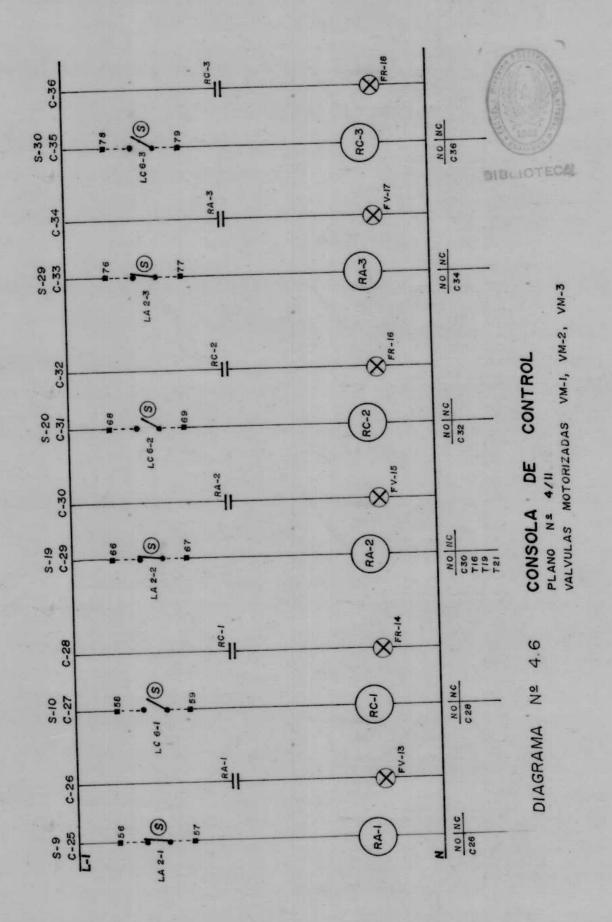
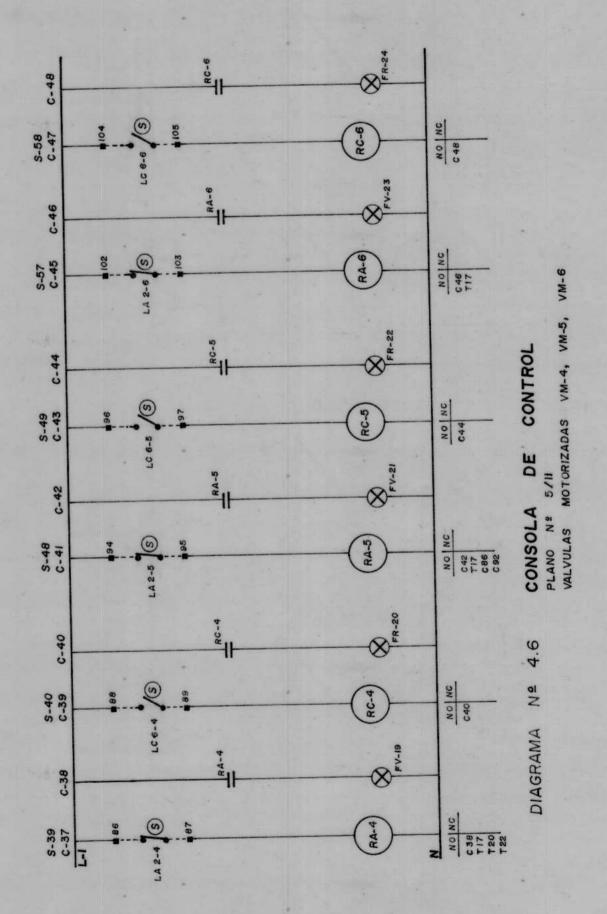
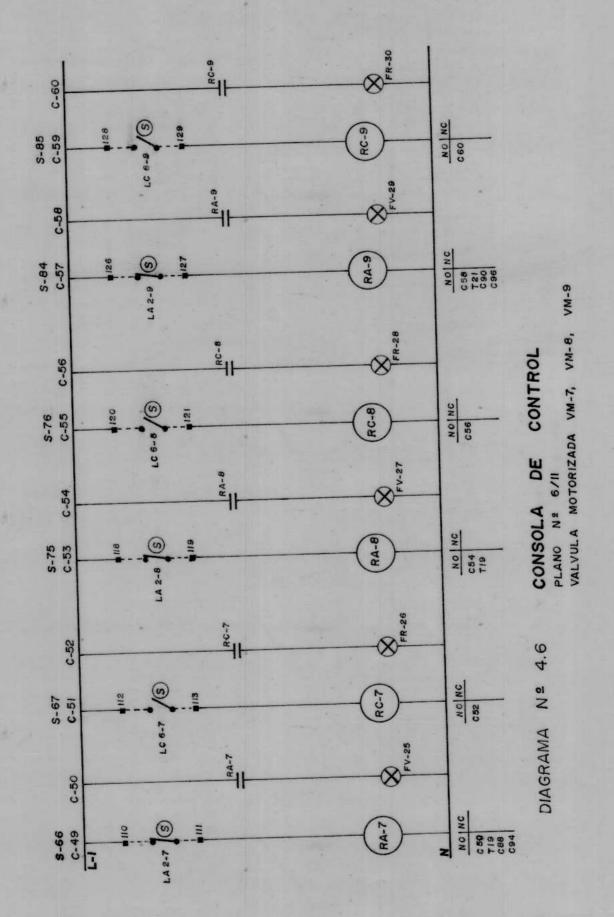
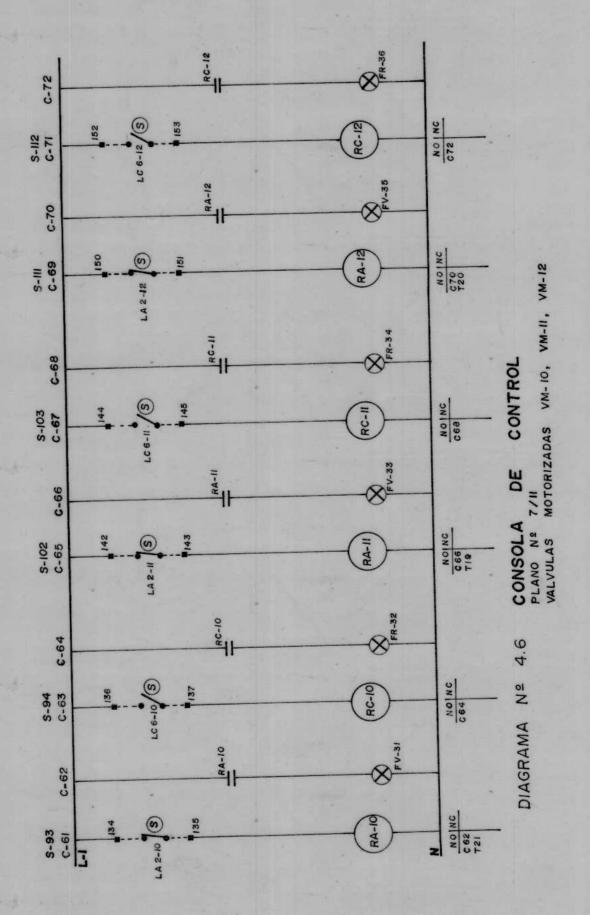


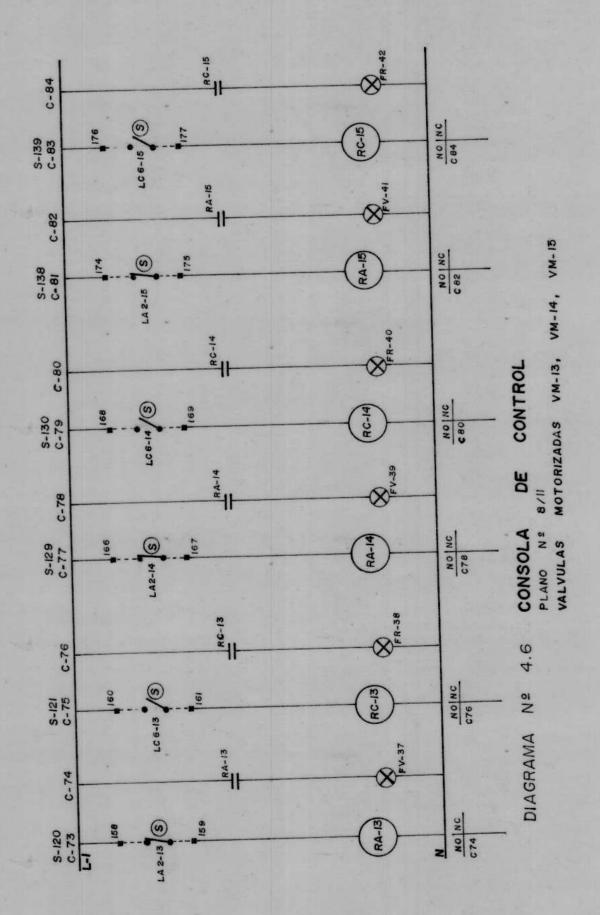
DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 14/15
VALVULA MOTORIZADA VM-14

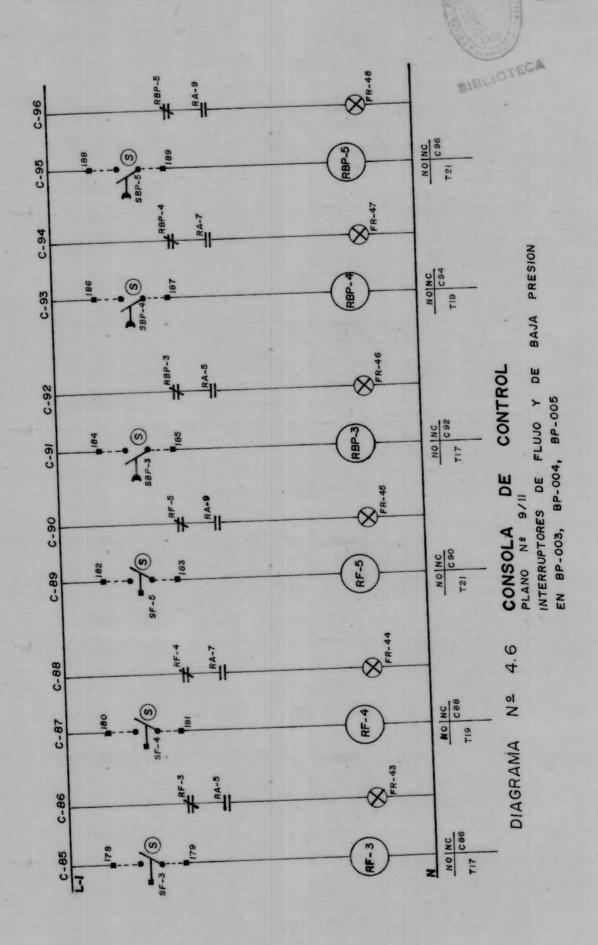






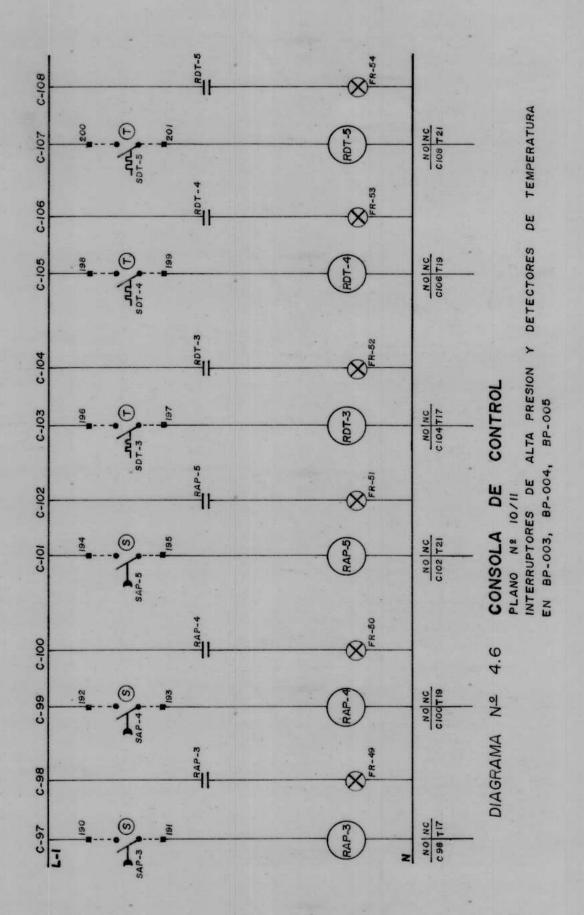

DIAGRAMA Nº 4.5 EQUIPO EN SITIO
PLANO Nº 15/15
VALVULA MOTORIZADA VM-15











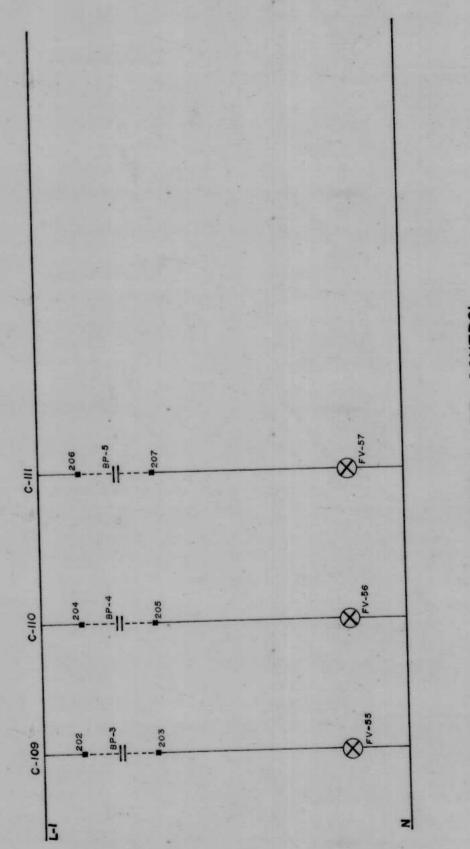


DIAGRAMA Nº 4.6

CONSOLA DE CONTROL
PLANO Nº 11/11
SEÑALIZACION DE BOMBA OPERANDO: BP-003, BP-004, BP-005

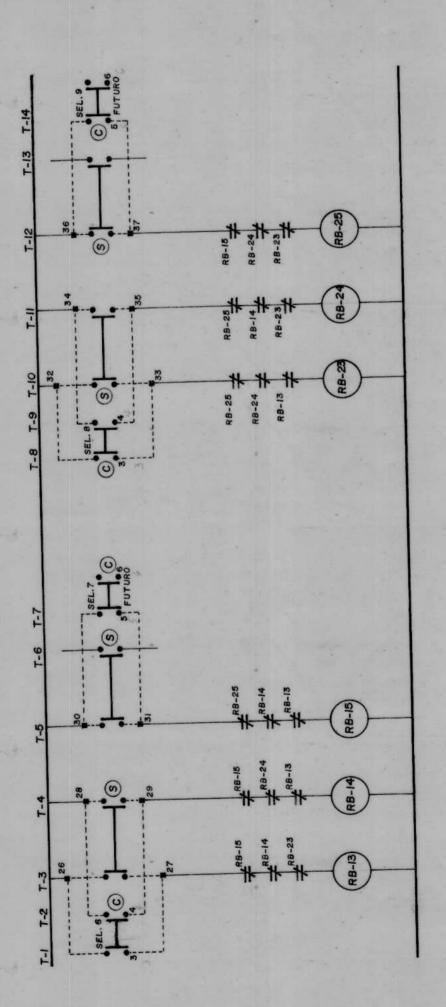


DIAGRAMA Nº 4.7

TABLERO EN SUB-ESTACION
PLANO Nº 1/4
SELECCION DE BOMBAS, BP-003, BP-004, BP-005

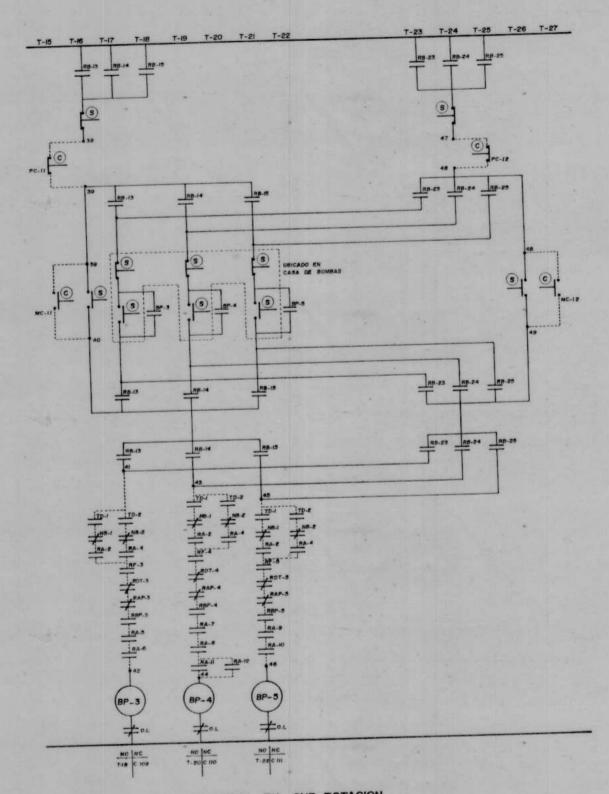


DIAGRAMA Nº 4.7 TABLERO EN SUB-ESTACION
PLANO Nº 2/2
BOMBAS DE PRODUCTO BP-003, BP-004, BP-005

A continuación se presenta el cálculo del transformador de voltaje que alimentará a los dispositivos de control a instalarse en la consola del terminal de almacenamiento y distribución del Salitral y que serán los siguientes:

- 36 relès auxiliares de control 120 V, 60 Hz, con un consumo de bobina de 45 VA al atraer y 7.3 VA al retener.
- 17 relès para señalización 120 V, 60 Hz con un consumo de bobina de 3.5 VA al atraer y 1.2 VA al retener.
- 57 Luces pilotos 120 V, 2.5 W.

Primeramente se determina la carga instalada:

Relès de control 639 VA Relès de señalización 32 VA Luces 142 VA

813 VA

Siendo la demanda máxima:

Relès de control 372 VA
Relès de señalización 32 VA
Luces 97 VA
501 VA

Considerando una reserva del 20% resulta que el transformador que deberá utilizarse será de 600 VA, 480/120 V, al que se protegerá con fusibles de 2 Amperios en el primario y 6 Amperios en el secundario.

SELECTORES Y PULSADORES EN CONSOLA DE CONTROL DEL TERMINAL EN SALITRAL.

PUNTOS DE CONEXION	FUNCION	REFERENCIA DE CONEXION
I_SEL.I	Selector para carga TK-001. Proporciona señalización.	C-1
3_SEL.2 *	Selector para carga TK-002. Proporciona señalización.	C-3
17RESET_I8	Pulsador reset de señal nivel alto-bajo en TK-001/002.	C-16
18	Pulsador para apagar la señal sonora emitida cuando el nivel es alto-bajo en TK-001/002.	C-16
5 SEL. 3	Selector para descarga TK-001. Proporciona señalización.	C-5
7_SEL.4	Selector para descarga TK-002. Proporciona señalización.	C-7
9 SEL.5	Selector para recircular a TK-001/002. Proporciona señalización.	C-8-A
50- PC-I 51	Pulsador paro VM-1.	S-5
51 <u>IMC-I</u> 52	Pulsador abrir VM-1.	S-1
5154	Pulsador cerrar VM-1.	S-7
606I	Pulsador paro VM-2.	S-15
6162	Pulsador abrir VM-2.	S-11
61 MC-4	Pulsador cerrar VM-2.	S-17

PUNTOS DE CONEXION	FUNCION	REFERENCIA DE CONEXION
70 PC-3 71	Pulsador paro VM-3.	S-25
7172	Pulsador abrir VM-3.	S-21
7174	Pulsador cerrar VM-3.	S-27
80 PC-4 8I	Pulsador paro VM-4.	8-35
81 <u>IMC-7</u> 82	Pulsador abrir VM-4.	S-31
8184	Pulsador cerrar VM-4.	S-37
138 PC-II 139	Pulsador paro VM-11.	S-99
139 140	Pulsador abrir VM-11.	S-95
139 IMC-22	Pulsador cerrar VM-11.	5-101
146 PC-12 147	Pulsador paro VM-12.	S-108
147 IMC-23	Pulsador abrir VM-12.	S-104
147 IMC-24	Pulsador cerrar VM-12.	S-110
90 PC-5 91	Pulsador paro VM-5.	S-45
91 <u>IMC-9</u> 92	Pulsador abrir VM-5.	5-41
9I93	Pulsador cerrar VM-5.	8-47
98 PC-6 98	Pulsador paro VM-6.	5-54
99 <u>IMC-II</u>	Pulsador abrir VM-6.	S-50
99 IMC-12	Pulsador cerrar VM-6.	S-56
106 PC-7 10	Pulsador paro VM-7.	S-63
107 IMC-13		S-59
107 <u>IMC-14</u>	9 Pulsador cerrar VM-7.	S-65

PUNTOS DE CONEXION		FUNCION	REFERENCIA DE CONEXION
114115	Pulsador	paro VM-8.	S-72
11516	Pulsador	abrir VM-8.	S-68
115 1MC-16	Pulsador	cerrar VM-8.	5-74
122 PC-9 123	Pulsador	paro VM-9.	S-81
123 IMC-17	Pulsador	abrir VM-9.	S-77
123 <u>IMC-18</u> 125	Pulsador	cerrar VM-9.	8-83
130 PC-10 131	Pulsador	paro VM-10.	5-90
131 <u>IMC-19</u> 132	Pulsador	abrir VM-10.	S-86
131 <u>1MC-20</u> 133	Pulsador	cerrar VM-10.	S-92
26 SEL. 6 3	Posición	3: Seleccionar BP-003 desde I1.	T-1
27 29	Posición	4: Selectionar BP-004 desde I1.	T-2
30SEL7		5: Selectionar BP-005 desde I1. 6: Reserva.	T-7
32 34 SEL. 8	Posición	3: Seleccionar BP-003	T-8
33 - 35	Posición	desde I2. 4: Seleccionar BP-004 desde I2.	T-9
36 SEL.9		5: Seleccionar BP-005 desde I2.	T-14
37	Posición	6: Reserva.	
38 PC-11 39	Pulsador nada en 1	paro bomba seleccio-	T-15
39 IMC-11 40	Pulsador cionada e	marcha bomba selec-	T-15

English States	OS DE EXION	FUNCION	REFERENCIA DE CONEXION
47	IPC-12 48	Pulsador paro bomba seleccio- nada en I2.	T-25
48		Pulsador marcha bomba selec- cionada en I2.	T-27
154	PC-13 155	Pulsador paro VM-13.	S-117
155		Pulsador abrir VM-13.	S-113
155	IMC-26	Pulsador cerrar VM-13.	S-119
SHALL	PC-14 163	Pulsador paro VM-14.	S-126
163		Pulsador abrir VM-14.	S-122
163	IMC-28	Pulsador cerrar VM-14.	S-128
100	PC-15 171	Pulsador paro VM-15.	S-135
171	IMC-29 172	Pulsador abrir VM-15.	5-131
171	MC-30	Pulsador cerrar VM-15.	S-137

TABLA XII

LUCES PILOTO EN CONSOLA DE CONTROL DEL TERMINAL EN SALITRAL

IDENTIFI- CACION	SEMAL QUE PROPORCIONA	REFERENCIA DE UBICACION
FA-1	Tanque TK-001 seleccionado pa- ra carga.	C-2
FA-2	Tanque TK-002 seleccionado pa- ra carga.	C-4
FA-3	Tanque TK-001 seleccionado pa- ra descarga.	C-6
FA-4	Tanque TK-002 seleccionado pa- ra descarga.	C-8
FA-5	Operación de Recircular.	C-8-B
FR-6	Nivel bajo en tanque TK-001.	C-10
FR-7	Nivel bajo en tanque Tk-002.	C-12
FR-8	Señal sonora de nivel alto-bajo cancelada.	C-17
FR-9	Nivel alto-bajo en TK-001.	C-19
FR-10	Nivel alto-bajo en TK-002.	C-20
FR-11	Nivel alto-alto en TK-001.	C-22
FR-12	Nivel alto-alto en TK-002.	C-24
FV-13	Abertura de VM-1.	C-26
FR-14	Cierre de VM-1.	C-28
FV-15	Abertura de VM-2.	C-30
FR-16	Cierre de VM-2.	C-32

IDENTIFI- CACION	SEÑAL QUE PROPORCIONA	REFERENCIA DE UBICACION
FV-17	Abertura de VM-3.	C-34
FR-18	Cierre de VM-3.	C-36
FV-19	Abertura de VM-4.	C-38
FR-20	Cierre de VM-4.	C-40
FV-21	Abertura de VM-5.	C-42
FR-22	Cierre de VM-5.	C-44
FV-23	Abertura de VM-6.	C-46
FR-24	Cierre de VM-6.	C-48
FV-25	Abertura de VM-7.	C-50
FR-26	Cierre de VM-7.	C-52
FV-27	Abertura de VM-8.	C-54
FR-28	Cierre de VM-8.	C-56
FV-29	Abertura de VM-9.	C-58
FR-30	Cierre de VM-9.	C-60
FV-31	Abertura de VM-10.	C-62
FR-32	Cierre de VM-10.	C-64
FV-33	Abertura de VM-11.	C-66
FR-34	Cierre de VM-11.	C-48
FV-35	Abertura de VM-12.	C-70
FR-36	Cierre de VM-12.	C-72

IDENTIFI- CACION	SEMAL QUE PROPORCIONA	REFERENCIA DE UBICACION
FV-37	Abertura de VM-13.	C-74
FR-38	Cierre de VM-13.	C-76
FV-39	Abertura de VM-14.	C-78
FR-40	Cierre de VM-14.	C-80
FV-41	Abertura de VM-15.	C-82
FR-42	Cierre de VM-15.	C-84
FR-43	Bajo flujo en succión de BP-003.	C-86
FR-44	Bajo flujo en succión de BP-004.	C-88
FR-45	Bajo flujo en succión de BP-005.	C-90
FR-46	Baja presión succión BP-003.	C-92
FR-47	Baja presión succión BP-004.	C-94
FR-48	Baja presión succión BP-005.	C-96
FR-49	Alta presión en descarga de BP-003.	C-98
FR-50	Alta presión en descarga de BP-004.	C-100
FR-51	Alta presión en descarga de BP-005.	C-102
FR-52	Calentamiento en motor BP-003.	C-104
FR-53	Calentamiento en motor BP-004.	C-106
FR-54	Calentamiento en motor BP-005.	C-108

IDENTIFI- CACION	SEMAL QUE PROPORCIONA	REFERENCIA DE UBICACION	
FV-55	Bomba BP-003 en funcionamiento	C-109	
FV-56	Bomba BP-004 en funcionamiento	C-110	
FV-57	Bomba BP-005 en funcionamiento	C-111	

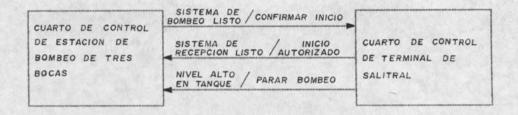
4.3 FACILIDADES DE TRANSPORTE DEL PRODUCTO.

Partiendo del hecho de que existe planificación para la entrega de fuel oil al terminal de almacenamiento, los operadores conocerán el día y la hora en que se realizará dicha entrega.

Es importante resaltar que los dos terminales están provistos de equipo de radio para su intercomunicación.

Existen maniobras y estados especiales en los equipos elèctricos del terminal de Salitral que deberán ser informados a Tres Bocas y viceversa, así se tiene:

- En Tres Bocas se debe realizar el acople del buquetanque, el alineamiento de válvulas y luego pedir autorización al Salitral para iniciar el Bombeo.


- En Salitral el operador deberá seleccionar el tanque donde se recibirá el producto, proceder a abrir la válvula de entrada y cerrar la válvula de salida, con lo cual es sistema está listo y se puede autorizar el bombeo.
- For otro lado cuando el fuel oil, que se está enviando, alcanza la capacidad máxima en el tanque, la operación de bombeo debe detenerse, para lo cual el operador se comunica por radio con Tres Bocas, indicando que la bomba debe ser apagada.

Se hace evidente que son tres las señales más importantes que deben transmitirse entre los dos terminales, pero no ameritan la instalación de un mêtodo de comunicación a distancia ya que se puede aprovechar el sistema de radio instalado para pedir y dar la autorización; en cuanto a la señal de nivel alto del tanque, el interruptor de nivel considerado en la automatización proveerá de señalización visual y sonora al operador del Salitral indicando que se ha alcanzado el nivel antes mencionado; procediendo el operador a comunicarse por radio con Tres Bocas para que se apague la bomba. En caso de que esto no suceda una segunda posición en el interruptor de nivel cerrará automáticamente la válvula de entrada tanque, lo que producirá una sobrepresión en la del

línea que hará actuar el interruptor de alta presión instalado en la descarga de la bomba, apagándola.

FIGURA No. 4.5

INTERCOMUNICACION NECESARIA PARA LA OPERACION.

A continuación se dará una explicación con caracter informativo de como se podría hacer la transmisión de estas señales a distancia. La telemetría se define como el método por el cual la información es enviada desde un lugar a otro. Esto incluye equipos de transmisión que convierten señales reales tales como estado de arranque, paro, flujo, presión, nivel, etc. en impulsos elèctricos adecuados para el envío a través de líneas de datos y equipos en la recepción que convierten la señal elèctrica a una forma entendible como es la señalización por pantalla.

Existen muchas clases de medios para la transmisión de datos, el tipo más común es la línea telefónica, pero son también otras opciones usadas, las transmisiones por radio y microondas.

Se puede mencionar el envío de una señal mediante:

- La transmisión de un voltaje D.C. a través de una línea telefónica.
- Transmisores y receptores de tonos, que se encuentran disponibles en dos tipos: amplitud modulada y frecuencia modulada.
- Transmisores y receptores de pulsos de longitud variable.

CAPITULO V

RECOMENDACIONES E INDICACIONES PARA LA INSTALACION Y MANIPULEO DEL EQUIPO.

5.1 CRITERIOS PARA LA INSTALACION DE EQUIPOS.

Debido a que en este sistema se maneja fuel oil que es un combustible que se almacena en tanques cerrados, cuya temperatura de desprendimiento de gases explosivos está en un rango de 110-336 °F, mientras que su punto de encendido varía entre 410-765 °F (estos valores abarcan a toda la gama de fuel oils), estas instalaciones se consideran como un lugar peligroso.

Se conoce como lugar peligroso un local o parte de un local en el cual substancias inflamables en condiciones normales o no normales de operación pueden encontrarse presentes en cantidades suficientes capaces de formar mezclas explosivas o inflamables.

La importancia de la determinación de un lugar peligroso radica fundamentalmente en la seguridad que debe prestar una instalación, con la utilización de equipos y materiales apropiados para dichos lugares. En la realización de instalaciones elèctricas para lugares peligrosos es a menudo posible situar gran parte del equipo en áreas de menor o nulo peligro, disminuyendo así la cantidad de equipo especial requerido.

Los factores que habrán que tener en consideración al determinar la clasificación y extensión de cada área peligrosa son:

- La cantidad y tipo de material peligroso que pueda escapar en caso de accidente.
- Tipo de local o área: abierto o cerrado.
- Lo adecuado del sistema de ventilación.
- Ubicación de la fuente o materiales inflamables.
- Temperatura ambiental y temperatura superficial de los equipos. En forma general se recomienda que la temperatura superficial de los equipos no exceda el 80% del límite de ignición de la atmósfera que lo rodea.

Las tuberías sin válvulas, cheques, aparatos de medida y dispositivos análogos no se considerará de ordinario que introduzcan condición de peligro aun cuando se empleen para gases o líquidos peligrosos.

Tanto en las instalaciones de la estación de bombeo como en las del terminal de almacenamiento se tiene lugares peligrosos Clase I. División 2, Grupo D, que según el Código Elèctrico Nacional responden a la siguiente definición:

Un lugar Clase I, División 2 es aquel donde se manejan, procesan o usan líquidos volatiles inflamables o gases inflamables, pero en los cuales los líquidos, gases o vapores peligrosos se hallan normalmente contenidos en recipientes cerrados o en sistemas cerrados de los cuales pueden escapar solamente en caso de ruptura accidental, avería en dichos recipientes o sistemas o en caso de condición no normal del equipo.

La instalación para este tipo de lugar peligroso deberá hacerse con tubería rigida metálica.

Para impedir el paso de gases, vapores o flamas de una porción del sistema eléctrico a otra las ubicarán en todo conducto que penetre a travês de una cubierta para interruptores, disyuntores, fusibles, relès u otros aparatos que puedan producir arcos, chispas o temperaturas elevadas, además en todo conducto que pase de la área peligrosa Clase I, División 2, a otra área no peligrosa, el ajuste hermètico podrá colocarse a uno u otro lado del límite de dicha área peligrosa.

La instalación de equipos como válvulas motorizadas e instrumentos de control que se ubican en la línea de producto deberá hacerse con los accesorios para tubería adecuados, como sellos, uniones universales, cajas de conexión a prueba de explosión y funda flexible sellada, aprobados para la instalación en área Clase I, División 2, Grupo D. Además deberá tenerse cuidado de realizar la conexión de puesta tierra de todos los equipos elèctricos.

En la figura 5.1 se muestran gráficamente detalles de instalación de estos equipos.

La ubicación de los cuartos de control donde se instalarán las consolas deberá hacerse en áreas no peligrosas siendo aconsejable que sea en lugares desde donde se tenga facilidades para visualizar

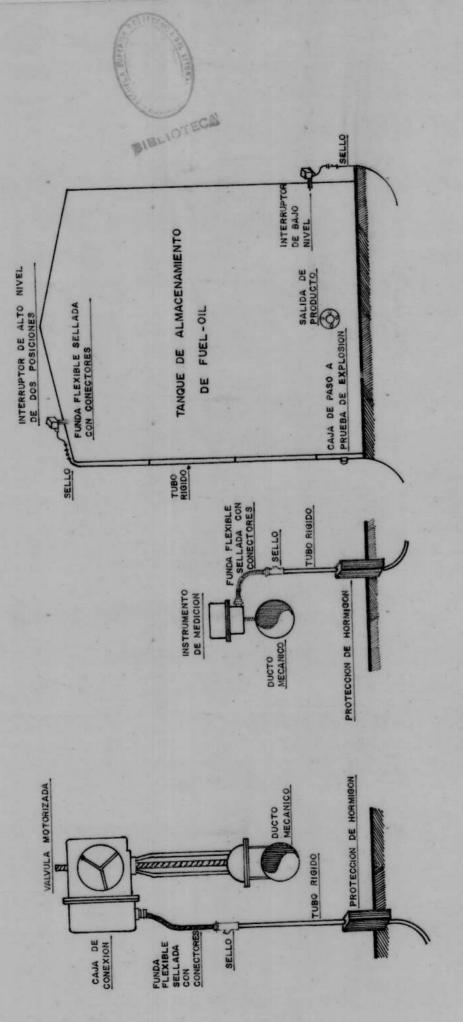
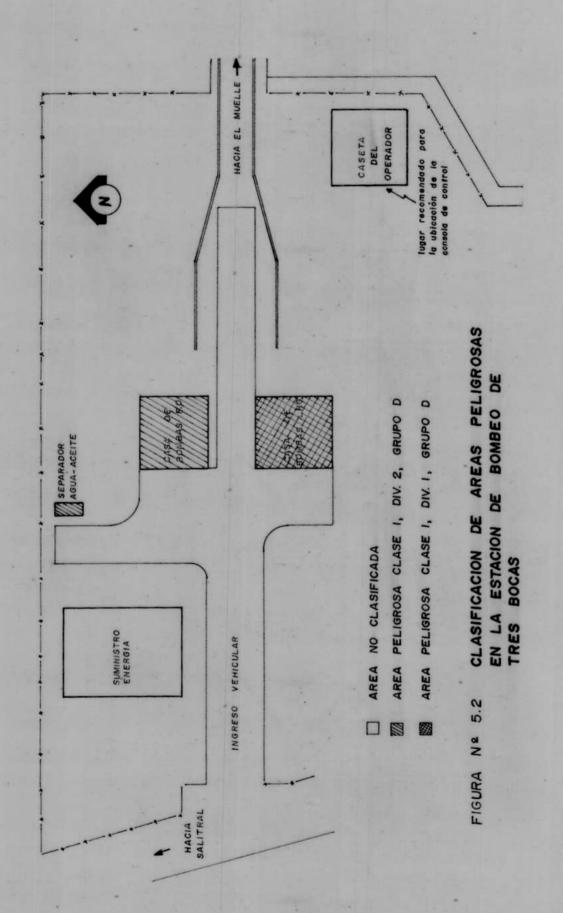
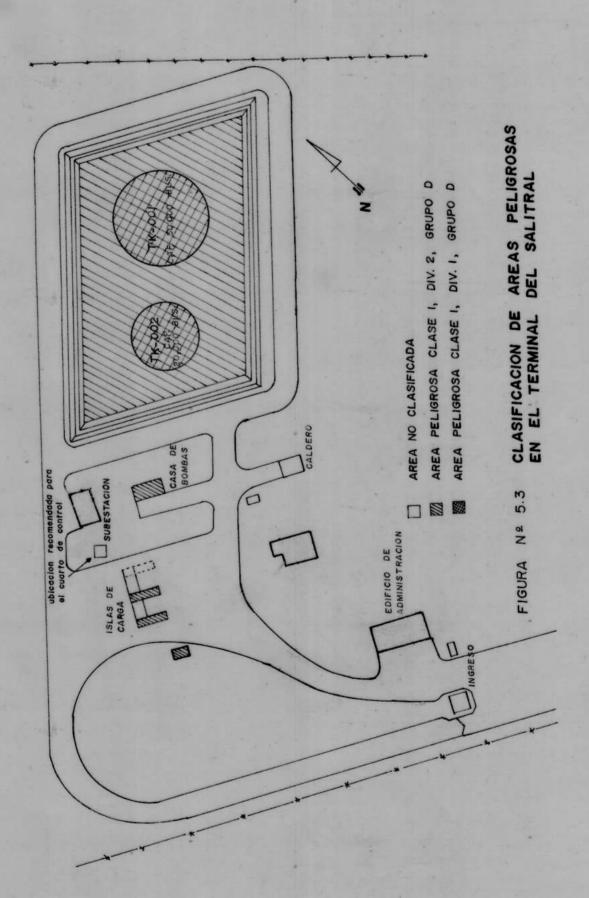




FIGURA Nº 5.1 DETALLES DE INSTALACION DE EQUIPOS

las áreas donde se efectúan las maniobras con lo cual el sistema será más seguro y resultará menos costoso.

Tales ubicaciones se muestran en la Fig. 5.2 para la estación de Tres Bocas y en la Fig. 5.3 para el terminal del Salitral.

5.2 MANUAL DE OPERACION GENERAL.

5.2.1 MANUAL DE OPERACION DE LA ESTACION DE BOMBEO DE TRES BOCAS.

El personal encargado de esta estación de bombeo debe conocer la planificación de mantenimiento para de acuerdo con ésta determinar cuales serán los equipos que operarán.

Las acciones de abrir, cerrar y parar válvulas motorizadas, así como arrancar y parar bombas se hará por medio de los pulsadores ubicados en la consola de control cuya descripción se hace en la Tabla VII, existiendo señalización para cada maniobra según se indica en la Tabla VIII.

- El procedimiento a seguir será el siguiente:
- 1.- Asegurarse de que el fuel oil que será bombeado está a una temperatura mínima de 100 °F.
- 2.- Acoplar la manguera del buque-tanque que entregará el producto a la válvula motorizada VM-1, ubicada en el muelle.
- 3.- Abrir la válvula motorizada VM-1 (MC-1,S1).
- 4.- Para el funcionamiento de la bomba de engranajes según el programa de mantenimiento existirán 2 alternativas:
 - a) Si se opera con la bomba de engranajes BE-01. (T-2).
 - Abrir la válvula motorizada VM-6 instalada en la succión de BE-01 (MC-11,S-46).
 - Abrir la válvula motorizada VM-7 instalada en la descarga de BE-01 (MC-13, S-55).
 - b) Si se opera con la bomba de engranajes BE-02. (T-8).

- Abrir la válvula motorizada VM-8 instalada en la succión de BE-02 (MC-15, S-64).
- Abrir la válvula motorizada VM-9 instalada en la descarga de BE-02 (MC-17, S-73).
- 5.- Pedir autorización al terminal de almacenamiento del Salitral, para iniciar el bombeo.
- 6. Autorizar al buque para que inicie el bombeo con lo cual se tendrá un valor de presión adecuado en la succión de la bomba de engranajes que permitirá arrancarla. (C-39)
- 7.- Arrancar la bomba de engranajes seleccionada.
 - a) Arrancar BE-01. (MC-19, T-1)
 - b) Arrancar BE-02. (MC-20, T-7)
- 8.- Cuando el taco frío ha sido desplazado la bomba de engranajes se apaga automáticamente (C-43), y se encenderá un foco (FA-21,C-46) que indicará que se

puede arrancar la bomba centrifuga de producto.

- 9.- Cerrar las válvulas de la succión y descarga de la bomba que estaba en funcionamiento.
 - a) Si estaba operando BE-01
 - Cerrar la válvula VM-6 (MC-12,S-52)
 - Cerrar la válvula VM-7 (MC-14,8-61)
 - b) Si estaba operando BE-02
 - Cerrar la válvula VM-8 (MC-16,S-70)
 - Cerrar la válvula VM-9 (MC-18,S-79)
- 10.- Alinear el sistema para operar con la bomba centrífuga de turno según el programa de mantenimiento, existen dos alternativas:
 - a) Si se opera con la bomba de producto BP-001 (T-14).
 - Abrir la válvula motorizada VM-2 instalada en la succión de BP-001 (MC-3,S-10)
 - Abrir la válvula motorizada VM-3 instalada en la descarga de BP-001

(MC-5, S-19)

- b) Si se opera con la bomba de producto BP-002 (T-20)
 - Abrir la válvula motorizada VM-4
 instalada en la succión de BP-002
 (MC-7,5-28)
 - Abrir la válvula motorizada VM-5 instalada en la descarga de BP-002 (MC-9, S-37)
- 11.- Verificar que el flujo y la presión en la succión de la bomba de producto escogida son los adecuados, lo cual se notará cuando las luces de señalización de bajo flujo y baja presión en la consola se apaguen.
- 12.- Arrancar la bomba de producto escogida.
 - a) Arrancar la bomba BP-001 (MC-21, T-13)
 - b) Arrancar la bomba BP-002 (MC-22, T-19)
- 13.- El bombeo durará hasta que el operador del terminal en Salitral indique que se ha alcanzado nivel alto en el tanque en que se está recibiendo el producto.

- 14.- Apagar la bomba de producto que está operando.
 - a) Apagar la bomba BP-001 (PC-21, T-16)
 - b) Apagar la bomba BP-002 (PC-22, T-22)
 - 15.- Comunicar al buque-tanque que ha terminado el bombeo.
 - 16.- Cerrar las válvulas de la succión y descarga de la bomba de producto que estaba funcionando.
 - a) Si estaba operando BP-001
 - Cerrar la válvula VM-2 (MC-4,8-16)
 - Cerrar la válvula VM-3 (MC-6,S-25)
 - b) Si estaba operando BP-002
 - Cerrar la válvula VM-4 (MC-8,S-34)
 - Cerrar la válvula VM-5 (MC-10,8-43)
 - 17. Cerrar la válvula motorizada VM-1 (MC-2,S-7)
 - 18. Desconectar la manguera de descarga del buque.

CONDICIONES ESPECIALES.

- Si la presión en la descarga de la bomba de producto es superior a ciertos valores prefijados, la bomba se apagará automáticamente (C-47,C-49) y en la consola se dará señalización de alta presión en la bomba que está operando.
- Si la bomba que está funcionando vibra demasiado será detenida automáticamente por el interruptor de vibración (C-55, C-57), señalizandose esta acción en la consola.
- Si los devanados del motor de la bomba de producto se calientan excesivamente actuará la protección desconectándolo automaticamente (C-59,C-61) y se indicará esta acción en la consola.

Cuando un instrumento de protección ha actuado apagando la bomba, en la consola existe señalización que indica cual es la causa; después de tomar las medidas correctivas se deberá resetear el instrumento que se disparó para poder reiniciar el bombeo.

5.2.2 MANUAL DE OPERACION DEL TERMINAL DE ALMACENAMIENTO Y DISTRIBUCION DEL SALITRAL.

El personal encargado del terminal de almacenamiento y distribución del Salitral debe conocer la planificación de mantenimiento para de acuerdo con esto determinar cuales serán los equipos que operarán.

Las acciones de abrir, cerrar y parar válvulas motorizadas, así como arrancar y parar bombas se hará por medio de los pulsadores ubicados en la consola de control cuya descripción se hace en la Tabla XI, existiendo señalización para cada maniobra según se indica en la Tabla XII.

Basicamente existen tres procesos que se pueden realizar, que son:

PROCESO DE CARGA DE TANQUES.

- 1) Escoger el tanque que se va a cargar.
- 2) Si se selecciona tanque TK-001 (SEL-1, C-1)

- Cerrar la válvula motorizada VM-2 de salida de TK-001 (MC-4,S-17).
 - Abrir la válvula motorizada VM-1 de entrada a TK-001 (MC-1,S-1).
- 3) Si se selecciona tanque TK-002 (SEL-2, C-3)
 - Cerrar la válvula motorizada VM-4 de salida de TK-002 (MC-8,S-37).
 - Abrir la válvula motorizada VM-3 de entrada a TK-002 (MC-5, S-21).
- 4) Informar a la estación de bombeo de Tres Bocas que puede iniciar el envío.
- 5) El bombeo durará hasta que se envie un volumen de fuel oil establecido o hasta que se alcance el nivel alto en el tanque, el mismo que estará controlado por un interruptor de dos posiciones; la posición más baja (nivel alto-bajo) proporcionará señal sonora y visual (C-13) ante las cuales el operador debe comunicarse con Tres Bocas para que cese el bombeo.

CONDICION ESPECIAL.

La posición más alta del interruptor de alto nivel (nivel alto-alto) (C-21,C-23) cerrará automaticamente la válvula de entrada al tanque que estaba cargandose:

- Si es el tanque TK-001 se cerrará VM-1 (5-8).
- Si es el tanque TK-002 se cerrará VM-3 (S-28).

Esto hará que la línea se sobrepresione y actúe el interruptor de alta presión de la bomba de producto que está funcionando deteniendose automáticamente el envío.

PROCESO DE DESCARGA DE TANQUES Y CARGA DE CAMIONES.

- 1) Verificar que la temperatura del fuel oil en el tanque no sea inferior a 100 °F.
- Seleccionar el tanque que se va a descargar.

- 3) Si se selecciona tanque TK-001 (SEL-3,C-5)
 - Cerrar la válvula VM-1 de entrada a TK-001 (MC-2,S-7).
 - Abrir la válvula VM-2 de salida de TK-001 (MC-3,S-11).
- 4) Si se selecciona tanque TK-002 (SEL-4,C-7)
 - Cerrar la válvula VM-3 de entrada a TK-002 (MC-6,S-27).
 - Abrir la válvula VM-4 de salida de TK-002 (MC-7,S-31).
- 5) Escoger las bombas que operarán con cada isla de carga de acuerdo al programa de mantenimiento.
 - a) Si se opera con BP-003 para isla de carga No. 1 (T-1), o si se opera con BP-003 para isla de carga No. 2 (T-8)
 - Abrir la válvula VM-5 en la succión de BP-003. (MC-9,S-41)
 - Abrir la válvula VM-6 en la descarga de BP-003. (MC-11,S-50).
 - b1) Si se opera con BP-004 para isla de

carga No. 1 (T-2)

- Abrir la válvula VM-7 en la succión de BP-004. (MC-13,8-59).
- Abrir la válvula VM-8 en la descarga de BP-004. (MC-15,S-68)
- Abrir la válvula VM-12 de direccionamiento. (MC-23, S-104)
- b2) Si se opera con BP-004 para isla de carga No.2. (T-9).
 - Abrir la válvula VM-7 en la succión de BP-004. (MC-13,S-59)
 - Abrir la válvula VM-8 en la descarga de BP-004. (MC-15, S-68)
 - Abrir la válvula VM-11 de direccionamiento. (MC-21,8-95)
 - c) Si se opera con BP-005 para isla de carga No. 2 (T-14), o si se opera con BP-005 para isla de carga No.1 (T-5).
 - Abrir la válvula VM-9 en la succión de BP-005. (MC-17,S-77)
 - Abrir la válvula VM-10 en la descarga de BP-005. (MC-19,5-86)

- 6) Para que una bomba pueda arrancarse debe cumplirse lo siguiente:
 - Haber sido seleccionada desde la isla de carga respectiva o desde la consola (T-1,T-6,T-8,T-14).
 - El nivel en el tanque seleccionado no debe ser bajo (C-9,C-11).
- 7) Verificar que el flujo y la presión en la succión de la bomba de producto escogida son los adecuados, lo cual se notará cuando las luces de señalización de bajo flujo y baja presión en la consola se apaguen. (C-85,C-91)
- 8) El operador de la isla de carga deberá escoger y alinear el brazo de carga que va a usar, acoplarlo al tanquero, el cual debe estar adecuadamente aterrizado y calibrar el medidor registrador al volumen de despacho que se desee entregar.
- 9) La bomba de producto escogida podrá ser arrancada desde la isla de carga y desde la consola.
 - a) Arrancar la bomba que operará con isla

No. 1. (T-15, T-16)

- b) Arrancar la bomba que operará con islaNo. 2. (T-26,T-27)
- 10) Cuando se ha alcanzado el volumen de producto fijado en el medidor, actuará la válvula de cierre rápido, cortando el flujo hacia el tanquero. Deberá entonces apagarse la bomba de producto (T-15, T-16, T-24, T-25) hasta que un nuevo tanquero haya sido acoplado; en caso de que no se vaya a continuar con la entrega se procederá a cerrar la válvula motorizada respectiva.

PROCESO DE RECIRCULACION.

- 1) Seleccionar la opción recircular (SEL-5 C-8-A) con lo cual se podrá abrir o cerrar las válvulas de entrada y salida de los tanques, pudiendose realizar la recirculación del producto en un mismo tanque o desde un tanque a otro.
- Seleccionar el tanque que entregará producto y el tanque que lo recibirá

- a) Si entrega TK-001 y recibe TK-001
 - Abrir la válvula VM-2 en la salida de TK-001. (MC-3,S-11)
 - Abrir la válvula VM-1 en la entrada de TK-001. (MC-1,S-1)
- b) Si entrega TK-002 y recibe TK-002
 - Abrir la válvula VM-4 en la salida de TK-002. (MC-7,5-31)
 - Abrir la válvula VM-3 en la entrada de TK-002. (MC-5,S-21)
- c) Si entrega TK-001 y recibe TK-002
 - Abrir la válvula VM-2. (MC-3,S-11)
 - Abrir la válvula VM-3. (MC-5, S-21)
- d) Si entrega TK-002 y recibe TK-001
 - Abrir la válvula VM-4. (MC-7,S-31)
 - Abrir la válvula VM-1. (MC-1,S-1)
- 3) Seleccionar la bomba que operará
 - a) Recircular usando BP-003 (T-17)
 - Abrir las válvulas de la succión y descarga de la bomba BP-003.

(S-41, S-50)

- Abrir la válvula VM-14 de recirculación. (MC-27,S-122)
- Abrir la válvula VM-15 principal de recirculación. (MC-29,8-131)

b1) Recircular usando BP-004 (T-19)

- Abrir las válvulas de la succión y descarga de la bomba BP-004. (S-59, S-68).
- Abrir la válvula VM-11 de direccionamiento. (MC-21,S-95)
- Abrir la válvula VM-14 de recirculación. (MC-27,S-122)
- Abrir la válvula VM-15 principal de recirculación. (MC-29,S-131)

b2) Recircular usando BP-004 (T-19)

- Abrir las válvulas de la succión y descarga de la bomba BP-004. (S-59 S-68)
- Abrir la válvula VM-12 de direccionamiento. (MC-23, S-104)
- Abrir la válvula VM-13 de recirculación. (MC-25,S-113)
- Abrir la válvula VM-15 principal

de recirculación. (MC-29, S-131)

- c) Recircular usando BP-005 (T-21)
 - Abrir las válvulas de la succión y descarga de la bomba BP-005. (S-77 S-86)
 - Abrir la válvula VM-13 de recirculación. (MC-25,8-113)
 - Abrir la válvula VM-15 principal de recirculación. (MC-29,8-131)
- 4) Para que una bomba pueda arrancar debe cumplirse lo siguiente:
 - Haber sido seleccionada para operar (T-1,T-6,T-8,T-14).
 - El nivel en el tanque que entrega el producto no debe ser bajo. (C-9.C-11)
 - El nivel en el tanque que recibe el producto no debe ser alto. (C-13)
- 5) Los valores de flujo y presión de la bomba escogida deben estar en los rangos adecuados. (C-85,C-91)
- 6) Arrancar la bomba que operará. (T-15, T-27)

7) El proceso de recirculación podrá llevarse a cabo según las necesidades o hasta que se alcance el nivel alto en el tanque que recibe el producto. (C-13)

CONDICIONES ESPECIALES.

- Si la presión en la descarga de la bomba de producto en funcionamiento es superior a ciertos valores prefijados, êsta será apagada automáticamente (C-97) apareciendo en la consola señalización de alta presión.
- Si los devanados del motor de la bomba de producto que está en operación se calientan excesivamente, actuará la protección apagándolo automáticamente (C-103) e indicando esta acción en la consola.
- Cuando una bomba está en funcionamiento y se alcanza el nivel bajo en el tanque que se está descargando la bomba será apagada y la válvula de salida del

tanque cerrada (C-9,C-11), automáticamente; existe señalización de estos cambios de estado en la consola.

Cuando un instrumento de protección ha actuado apagando una bomba, en la consola existe señalización que indica cual es la causa; después de tomar las medidas correctivas se deberá reseterar el instrumento que se disparò, para poder reiniciar el proceso.

CONCLUSIONES Y RECOMENDACIONES.

De la presente tesis se puede llegar a las siguientes conclusiones y recomendaciones:

- 1) Debido a la ubicación del sistema de abastecimiento de fuel oil en la cual se ha previsto toda interferencia presente y futura, èste servirà para el aprovisionamiento de la zona centro y sur del país por muchos años, lo cual justifica la centralización y automatización del mando, según como se ha detallado en esta tesis.
- 2) Al llevar a cabo la centralización del mando será menor el personal encargado de operar los equipos, disminuyendo la probabilidad de errores en el manipuleo, optimizando el funcionamiento.
- 3) La señalización del estado en que se encuentran los equipos, permitirá al operador conocer cual es la actividad que se está realizando en cualquier secuencia del proceso.
- 4) La señalización de la causa que produce una falla le permitirá al operador tomar las medidas correctivas de

forma inmediata.

- 5) Ya que existen alternativas de operación, es importante que se realice una correcta planificación de trabajo del equipo, para poder dar un mantenimiento adecuado, lo que prolongará la vida útil de las instalaciones.
- 6) Los cuartos de mando donde serán instaladas las consolas de control deberán situarse en áreas no peligrosas con lo cual se logra mayor seguridad y menor costo.
- 7) Se deberá controlar la temperatura del fuel oil a la que se efectuará el bombeo, para que las bombas centrífugas no tengan que transportar un líquido muy viscoso, para lo cual no están diseñadas.
- 8) Las instalaciones de los equipos que se han tenido que modificar se deberá hacer con los accesorios aprobados para las instalaciones en este tipo de locación que es Clase I. División 2. Grupo D.
- 9) Sería recomendable hacer la instalación de los interruptores de nivel en los tanques aunque no se realice la centralización del mando, para evitar el derrame de producto debido a un bombeo excesivo y

evitar también que las bombas puedan operar en vacío.

10) El personal que laborará en estas instalaciones deberá estar familiarizado con el Manual de Operaciones elaborado en esta tesis, en el cual se describen las secuencias y mètodos de operación.

BIBLIOGRAFIA.

- ALERICH W., Control de Motores Elèctricos, Diana, Mêxico, 1974.
- 2) CELLERI C., Control Industrial, Escuela Politécnica Nacional, 1984.
- 3) POLGAR C., Automatización y Técnica de los Reles, Paraninfo, Madrid, 1970.
 - 4) SCHMELCHER T., Manual de Baja Tensión, SIEMENS, 1984.
 - 5) AMERICAN PETROLEUM INSTITUTE, Classification of Locations for Electrical Installations at Pipeline Transportation Facilities, July 1984.
 - 6) APPLETON NEC, Guide for use of Electrical Products in Hazardous Locations, Appleton, Chicago, 1987.
 - 7) ESCUELA SUPERIOR POLITECNICA DEL LITORAL, Como Diseñar Sistemas Elèctricos, 1987.
 - 8) SUBGERENCIA DE PLANIFICACION DE CEPE, Boletín Estadístico de Movimiento de Productos, 1987.

9) SUBGERENCIA DE ALMACENAMIENTO DE CEPE, Diseños Electro-mecánicos de Instalaciones existentes del proyecto emergente para abastecimiento de fuel oil, 1987.

