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Resumen

Se plantea un esquema inteligente que, mediante aprendizaje automatico, reconoce en
milisegundos las fallas de tierra que suelen pasar inadvertidas en redes con neutro aislado; se
persigue reducir el tiempo de despeje y aumentar la continuidad operativa, formulandose la
hipdtesis de que un clasificador liviano puede superar a las logicas fijas sin afadir hardware
costoso. Para comprobarla, se model6 en MATLAB-Simulink un sistema IEEE-14 barras; se
simularon mas de 30 000 escenarios con variaciones de carga y cortocircuitos aleatorios, y las
corrientes primarias fueron escaladas a valores secundarios mediante relaciones tipicas de
transformadores de corriente. Las magnitudes RMS, picos y componentes de secuencia fueron
extraidas y, con ellas, se entrené un bosque aleatorio de 300 arboles; posteriormente el modelo fue
validado con archivos inéditos. Se logré clasificar fallas monofasicas, bifasicas y trifasicas con un
indice de confianza superior al 0,96 y una latencia de 16 a 25 ms, mientras los disparos indebidos
se mantuvieron por debajo del 2 %. Se concluye que la propuesta ofrece una deteccion veloz,

adaptable y econdmicamente ventajosa para redes criticas que operan sin neutro conectado.

Palabras Clave: Sistema aislado, Transitorios, Bosque aleatorio, Simulink, transformadores



Abstract

An intelligent scheme is proposed that uses machine learning to recognize ground faults in
milliseconds, which often go unnoticed in isolated neutral networks. The aim is to reduce
clearance time and increase operational continuity, based on the hypothesis that a lightweight
classifier can outperform fixed logic without adding expensive hardware. To test this hypothesis,
an IEEE 14-bus system was modeled in MATLAB-Simulink. More than 30,000 scenarios were
simulated with load variations and random short circuits, and the primary currents were scaled
to secondary values using typical current transformer ratios. The RMS magnitudes, peaks, and
sequence components were extracted and used to train a random forest of 300 trees,; the model
was then validated with unpublished files. Single-phase, two-phase, and three-phase faults were
classified with a confidence index greater than 0.96 and a latency of 16 to 25 ms, while false trips
remained below 2%. It is concluded that the proposal offers fast, adaptable, and cost-effective

detection for critical networks operating without a connected neutral.

Keywords: Isolated system, Transients, Random Forest, Simulink, Transformers
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1.1 Introduccion

En los sistemas eléctricos con neutro aislado, la deteccion de fallas de una sola fase es un desafio
debido a las bajas corrientes [1], un problema agravado por los sistemas que limitan la corriente.
Para solucionar esto, se ha desarrollado un nuevo método de proteccion. Este sistema utiliza
transformadores de corriente para medir las formas de onda en tiempo real. Luego, por medio de
un algoritmo de inteligencia artificial. En donde el algoritmo extrae caracteristicas clave de la

curva mediante la toma de toma de datos.

Con esta informacion, el modelo de IA buscara detectar fallas en un menor tiempo medido en
milisegundos y enviar una orden de desconexion. Las simulaciones, realizadas por medio de

software de un modelo modificado del ya conocido IEEE-14 barras.

1.2 Descripcion Del Problema

En los sistemas con neutro aislado, una falla monofésica a tierra genera corrientes capacitivas
de baja magnitud, pocos amperios [2], tal que los relés de sobre corriente tradicionales la detecten.

Cuando el sistema de protecciones clasico no detecta el defecto, la aislacion se degrada [3].

La tesis propone una solucion ligera que aprovecha la sefial ya disponible del transformador de
corriente (TC), procesando cada ciclo por medio de 1A, capaz de decidir de forma répida si la
forma de onda corresponde a una falla incipiente y, de ser asi, enviar una orden de apertura al
interruptor (CB). El enfoque se apoya en tres hechos: los TC suministran datos suficientes para
extraer patrones sutiles; los relés digitales modernos pueden ejecutar algoritmos simples de 1A si
se limita el nimero de caracteristicas; y validar el esquema en un modelo IEEE-14 modificado con

registros locales haciendo asi su adaptacion a la realidad.

1.3 Justificacion Del Problema

Los sistemas de proteccion tradicionales de sistemas aislados a tierra utilizan equipos como
relés electromecanicos o digitales con configuraciones estdticas que no se adaptan al
comportamiento dinamico del sistema, siendo esta rigidez operativa lo que limita su capacidad
para detectar fallas en condiciones cambiantes, especialmente en redes con generacion distribuida.
Por eso, la integracion de algoritmos basados en inteligencia artificial en esquemas de proteccion
representa una alternativa adaptable pues aprenden del comportamiento histérico del sistema,
mejoran la clasificacion de eventos y reducen el tiempo de operacion de los relés, incrementando

asi la seguridad y confiabilidad de la red [4]. Al tiempo, un sistema de proteccion que integre 1A,
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conectado a transformadores de corriente y a un interruptor automatico, podria operar con menor
infraestructura fisica ofreciendo mejor relacion costo-beneficio al minimizar el tiempo de despeje
de fallas, pudiendo evitar desconexiones innecesarias y reducir las pérdidas economicas asociadas
a interrupciones no planificadas que inciden directamente en la calidad del servicio eléctrico y en

la continuidad del suministro [5].

1.4 Objetivos
1.4.1 Objetivo General

Desarrollar un disefio de proteccion inteligente en sistemas eléctricos aislados a tierra con
generacion distribuida, mediante la integracion de técnicas de inteligencia artificial, logrando la

deteccion y mitigacion de fallas eléctricas de manera oportuna y eficiente.

1.4.2 Objetivos Especificos

1. Generar una base de datos utilizando el sistema de barras IEEE de 14 barras para que el
algoritmo aprenda patrones caracteristicos de operacion normal y en falla.

2. Simular multiples escenarios de fallas eléctricas mediante programas de simulacion
computacional para el desarrollo de estrategias de proteccion.

3. Crear un algoritmo que detecte anomalias empleando técnicas procesamiento de datos

recopilados para el desarrollo de un modelo que detecte eventos anomalos.
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1.5 Marco Tedrico
1.5.1 Caracteristicas De Las Seiiales De Falla En Sistemas De Potencia

En redes con neutro solidamente aterrizado y generadores sincronos, las fallas entre fases
generan corrientes de cortocircuito de grandes magnitudes, que puede conllevar a caidas abruptas
de tension, en donde las fallas asimétricas inducen componentes de secuencia negativa y cero
facilmente detectables. En contraste, los esquemas en donde el neutro se encuentra aislado limitan

su corriente a unos cuantos amperios donde pueden considerarse como valores normales [6].

Es asi como la ausencia de una referencia a tierra desplaza los voltajes de fase: la fase en falla

desciende a potencial de tierra, mientras las restantes se elevan hacia V;;v/3. La corriente resultante
es la suma de las capacitancias distribuidas y suele estar por debajo de 10 A en redes de media

tension [7].

Figura 1.1

Diagrama de un sistema de tierra aislada y corriente capacitiva a causa de una falla a tierra.
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1.5.2 Protecciones Tradicionales Y Esquemas Adaptativos

Los sistemas de distribucion tradicionales coordinan relés temporizados de sobre corriente
desde el extremo de alimentacion a la carga. Estos dispositivos suponen flujos unidireccionales y
corrientes de falla significativamente mayores que la carga. La red aislada (RA) puede llegar a
modificar la direccionalidad y reduce la corriente de cortocircuito, provocando descoordinacion:

un relé proximo a la subestacion puede captar corriente inversa procedente de la RA y disparar
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incorrectamente. El fendmeno de asignacion a ciegas que se produce cuando las corrientes no

alcanzan los umbrales de disparo establecidos [8].

Figura 1.2

Relé numerico Sel-751A.

Nota: Usado como proteccion de alimentador (Feeder) en redes de media y alta tension.

Los esquemas adaptativos introducen légicas que ajustan umbrales y retardos conforme al
estado de la red. Algunas soluciones centralizadas recopilan informacion de interruptores y flujos
para actualizar parametros de los relés en tiempo real, mientras otras incluyen inteligencia local
que combina criterios de corriente, subtension rapida y direccion. La estrategia dual corriente mas
tension mejora la deteccion de faltas en redes aisladas y suprime falsas actuaciones al considerar

el hundimiento de tension como disparador adicional.

1.5.3 Dinamica Del Sistema Aislado

En redes eléctricas con neutro aislado, la deteccion de fallas a tierra de alta impedancia o
transitorias es un reto clasico para la proteccion convencional. Los modelos de IA supervisados ya
sean RNA o Arboles de Decision (Random Forest) han surgido como herramientas prometedoras,
pues pueden modelar relaciones no lineales complejas entre variables de sefial (corriente de
secuencia cero, tension residual, dngulo de fase, transitorios, etc.). En particular, arquitecturas
como el Perceptron Multicapa (MLP) han demostrado buena capacidad para clasificar eventos
eléctricos diversos: Distinguen fallas reales de conmutaciones de carga u otros transitorios
benignos mediante vectores de caracteristicas extraidos, por ejemplo, con transformadas wavelet
o analisis espectral. Esta capacidad de aprendizaje no lineal y generalizacion convierte a las RNA

o los RF en candidatas ideales para esquemas de proteccion adaptativa, incluso en entornos
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industriales ruidosos con sensores inteligentes. Por ejemplo, estudios recientes integran la
Transformada Wavelet Discreta (DWT) con redes neuronales para extraer rasgos tempo-espaciales

relevantes de la senal y luego clasificar la falla [9].

Figura 1.3
Comparacion de la respuesta ante una falla: generador convencional vs. inversor rapido vs. inversor

ultrarrapido.

m——— Synchronous Generator Fault current
Fast-Disconnecting Inverter Fault current
“ v Inverter With Ride-Through Fault current
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time (s)

Injected Fault Current (pu)

1.5.4 Aprendizaje Supervisado En Protecciones De Sistemas Con Neutro Aislado A Tierra

El aprendizaje supervisado es el marco mas utilizado para entrenar modelos predictivos en
sistemas de proteccion. Se basa en el uso de datos historicos, donde cada muestra estd asociada a
una salida deseada, como la activacion o no de una funcién de proteccion. En sistemas con neutro
aislado, este enfoque es crucial para clasificar fallas a tierra de alta impedancia, identificar la fase
involucrada o incluso anticipar condiciones peligrosas antes de que se activen los elementos de

corte.

Durante el entrenamiento, el modelo ajusta sus pardmetros para minimizar una funcién de error
entre la salida esperada y la salida real. Algoritmos como retro propagacion del error
(backpropagation) junto con descenso de gradiente permiten que modelos como redes neuronales,

bosques aleatorios o Super Vector Machine (SVM) adquieran una capacidad de decision confiable

[10].
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En el caso especifico de sistemas aislados a tierra, el aprendizaje supervisado permite mejorar
la sensibilidad sin sacrificar la selectividad, ya que puede aprender a distinguir patrones complejos

de corriente y tension que no se observan claramente con umbrales fijos.

1.5.5 Comparativa De Modelos De 1A Para La Detencion De Fallas

La identificacion de fallas en sistemas eléctricos con aislacion a tierra ha experimentado un
avance notable debido a la inclusion de la IA en los ultimos afios. Se han incorporado multiples
modelos que ayuden a optimizar la exactitud, rapidez y fiabilidad de los sistemas de proteccion.
Cada modelo posee distintas caracteristicas que relacionan la capacidad de aprendizaje,
complejidad computacional, interpretabilidad, factores que condicionan la viabilidad de su

implementacion en condiciones operacionales del dia a dia.

En la Tabla 1.1, se presenta una comparativa que evalta los principales modelos de TA
empleados en la clasificacion y diagnostico de fallas eléctricas, resaltando tanto las ventajas como

las limitaciones.
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Tabla 1.1

Comparativa de los modelos empleados para deteccion de fallas en sistemas de potencia.

Enfoque
Arboles de decision/ Bosques

aleatorios

Maiquina de Vector de Soporte
(SVM)

Redes Neuronales (Perceptron

Multicapa-MLP)

Redes Neuronales

Convolucionales (CNN)

Aprendizaje por Refuerzo

Profundo (DRL)

Transformada Wavelet

(DWT/CWT)

Modelos de TIA
Ventaja

Facil de interpretar, robustos y
puede estimar importancia de
variables, mejorando la
precision y evita sobreajuste
[11].
Alta precision para clasificar
fallas y buena discriminacion
con pocos datos.
Capaz de modelar relaciones
no lineales en senales de voltaje
y corriente. También, detecta
patrones sutiles en mediciones
[9].
Extrae automaticamente
caracteristicas relevantes 'y
detecta eventos de falla.
Aprende disparo sin datos
etiquetados, optimiza
estrategias de aislamiento y
reconexion automatica [12].
Excelente preprocesamiento y

permite localizar en tiempo-

frecuencia las fallas a tierra.

Desventaja
Puede ser lento con grandes

datasets.

El modelo resultante no es tan
interpretable, requiero mucho
tiempo y memoria [11].

Requieren una gran base de
datos de fallas etiquetadas para
entrenamiento. Sin embargo,

posee diagnosticos reducidos.

Requieren gran dataset vy
computo. Mayor complejidad
en implementacion y afinacion
para tiempo real.
Entrenamiento complejo,
impredecible fuera de

escenarios simulados.

Sensible a ruido y requiere
seleccion cuidadosa de

Wavelet
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Tabla 1.2

Comparacion del método tradicional para la proteccion de sistemas en eventos de falla vs el método

propuesto.

Proteccion de sistemas aislado: método tradicional vs tradicional

Criterio

Sensibilidad

Selectividad

Rapidez

Confiabilidad

Método Tradicional
Limitada por la baja magnitud de
corriente de falla y como los
umbrales suelen quedar por
encima, la falla pasa inadvertida
[9].

Dificultad para identificar el
alimentador exacto en fallas

monofasicas.

Retardo inherente por el uso de
relés de sobretension o deteccidon

por bobina de alta impedancia.

Afectada por perturbaciones y

condiciones de carga.

Esquema con IA
Alta sensibilidad, detecta
fallas de alta impedancia
incluso bajo niveles bajos de

corriente residual.

Algoritmos de A como redes
neuronales permiten
identificar con precision la
ubicacion de la falla.

Alta velocidad de respuesta
(en ms) gracias a clasificacion
en tiempo real de las sefiales
de corriente por medio de los
TC y su postprocesado.
Algoritmos autoajustables
permiten mantener
rendimiento bajo condiciones

variables.

1.5.6 Extraccion De Caracteristicas Y Construccion Del Dataset Supervisado

La extraccion de caracteristicas es el proceso de transformar datos brutos en informacion
significativa que pueda ser empleada por modelos de IA [13]. Esto implica seleccionar o calcular
atributos relevantes (llamados caracteristicas o features) a partir de las sefales o datos originales,
de modo que se reduzca la complejidad de los datos sin perder la informacion esencial. Una buena
extraccion de caracteristicas permite aislar la informaciéon mas importante y descartar el ruido o

datos redundantes, facilitando asi el entrenamiento del modelo con mejores resultados. [13]
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En el contexto de deteccion de fallas eléctricas (como en sistemas de potencia), la extraccion
de caracteristicas presenta retos adicionales debido a la gran cantidad de informacion involucrada
y a la variabilidad de las condiciones de falla. Se requiere analizar multiples parametros y sefiales,
lo cual hace compleja la identificacion de los atributos mas relevantes [14]. Por ello, suele ser
necesario aplicar criterios de ingenieria de caracteristicas basados en conocimiento del dominio
eléctrico, para resumir cada evento de falla en un conjunto de métricas representativas. Entre las
métricas mas comunes empleadas como caracteristicas en sefales eléctricas se encuentran, por
ejemplo, el valor eficaz (RMS), el valor pico y el valor medio de la corriente o voltaje en el

intervalo de analisis.

Una vez extraidas las caracteristicas pertinentes, se procede a la construccion del dataset
supervisado. En un aprendizaje supervisado tipico, el conjunto de datos (dataset) se organiza como
una tabla donde cada fila corresponde a un ejemplo o instancia (por ejemplo, una simulacion de
cierta condicion de falla), con columnas para cada caracteristica calculada y para la etiqueta o clase
asignada [15]. Durante la preparacion del dataset, es comUn realizar también tareas de
preprocesamiento adicionales, como la normalizacion o escalado de las caracteristicas (para que
todas tengan rangos comparables) y la segmentacion del dataset en subconjuntos de entrenamiento,

validacion y prueba [15].

1.5.7 Arbol De Decision (Random Forest)

El arbol de decision es un modelo de aprendizaje supervisado en forma de estructura jerarquica
de decisiones, donde se realizan preguntas o comprobaciones 1dgicas sobre las caracteristicas de
entrada para subdividir iterativamente los datos [16]. Cada nodo interno del arbol representa una
pregunta (por ejemplo, ";La corriente RMS supera cierto umbral?") y las ramas corresponden a
las posibles respuestas (ej. si 0 no), dividiendo el conjunto de datos seglin dicha condicién. Este
proceso de particionado contintia hasta llegar a nodos hoja, que representan la decision o
clasificacion final. Los arboles de decision se entrenan eligiendo en cada paso la division que mejor
separa los datos de acuerdo con alguna métrica de pureza (como la ganancia de informacion o el
indice Gini), construyendo asi un modelo que aprende reglas de decision a partir de los datos
etiquetados [16]. Su resultado es facil de interpretar, dado que se visualiza como un conjunto de
reglas if-then anidadas. Sin embargo, un solo arbol de decision puede ser inestable y propenso al
sobreajuste (overfitting), ya que tiende a ajustarse muy especificamente los datos de
entrenamiento, perdiendo capacidad de generalizacion, para mitigar estos efectos Breiman y Cutler

propusieron el algoritmo Random Forest (Bosque Aleatorio) [16].
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Figura 1.4

Representacion visual del algoritmo de bosque aleatorio y su modo de operacion.

o—_
o

®

Resultado Final

Nota: Obtenida del portal IBM.

La idea central es entrenar muchos arboles, cada uno ligeramente diferente, y combinar sus
resultados para obtener una respuesta mas robusta. En el método clasico de Random Forest, a cada
arbol se le asigna un subconjunto aleatorio de instancias de entrenamiento (mediante Bootstrap
sampling, es decir, muestreo con reemplazo) y, adicionalmente, en cada nodo de cada arbol se
selecciona aleatoriamente solo un subconjunto de caracteristicas para evaluar posibles divisiones
[16]. Estas dos fuentes de aleatoriedad (en los datos y en las variables) aseguran que los arboles
individuales sean poco correlacionados entre si. Como consecuencia, cuando se combinan las
predicciones de muchos arboles, los errores tienden a promediarse y cancelarse, logrando un
resultado final mas preciso y generalizable [17]. En problemas de clasificacion, la combinacion se
realiza tipicamente por votacion mayoritaria: cada arbol emite un voto por la clase predicha, y la
clase con mas votos es la salida del bosque [17]. En problemas de regresion, se suele promediar el
valor numérico estimado por cada arbol. Gracias a este esquema, el Random Forest aprovecha la
fuerza conjunta de modelos débiles para conformar un modelo de alto rendimiento, capaz de

manejar tanto tareas de clasificacion como de regresion con buenos resultados.
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1.5.8 Criterios Matematicos del Arbol De Decisién (Random Forest)

Impureza Gini (criterio de clasificacion): En un arbol de decision de clasificacion, la calidad de
una division se mide con indices de impureza como el indice de Gini. Matemdaticamente, la

impureza de Gini de un nodo con “c” - clases se define como:

C
Gini =1 — Z p%
K=1

(1.1)

Donde:
- Pk: es la proporcion de instancias pertenecientes a la clase “k” en ese nodo

Si se tiene un valor de Gini = 0 indica un nodo puro (todas las instancias son de la misma clase)

mientras que valores mayores indican mezcla de clases (impureza)

El Error Cuadratico Medio (criterio de regresion), es donde la variable objetivo es continua, se
utiliza un criterio basado en la variabilidad de los valores numéricos. El mas comun es la suma de
cuadrados residuales (RSS), equivalente al error cuadratico, que calcula la dispersion de los

valores respecto a la media del nodo.

RSS= ) (1 ve,)

ieR;
(12)

Donde:

2
- (yl - yR]) . es la proporcion de instancias pertenecientes a la clase “k” en ese nodo

Este criterio penaliza la heterogeneidad dentro del nodo (desviaciones grandes aumentan el
RSS). Al construir el arbol de regresion, en cada posible division se calcula la suma de RSS de los
nodos hijo, y se escoge la particion que minimiza el RSS total (es decir, la que produce los nodos

mas homogéneos en términos de $y$)
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Una vez entrenado el bosque aleatorio, las predicciones de los multiples arboles se combinan
para dar el resultado final mas robusto. En clasificacion, esto se realiza mediante votacion por
mayoria: cada arbol emite un voto por la clase predicha, y la clase que recibe mas votos entre los

“T” arboles es la prediccion final del Random Forest
T
YRF® = argmaxcz I(y®x) =c)
t=1

(1.3)

Donde:

y®(x): es la clase predicha por el arbol “t” para la instancia “x”

P4

- I =C: es la funcién indicadora (que vale 1 si el arbol “t” predice la clase “c”, y 0 en caso

contrario)

En regresion, la combinacion es mediante promedio: la prediccion final YRF® es la media de

las salidas numéricas de todos los arboles individuales, entonces:

1 T
YRF® = —Z ®(x)
72, (060)

(1.4)

lo cual tiende a reducir la varianza del modelo combinado en comparacion con cualquier arbol
individual. En ambos casos (votacion mayoritaria o promedio), este esquema de agregacion es la
clave que le da al Random Forest su mayor precision y generalizacion respecto a un solo arbol,
aprovechando la sabiduria colectiva de multiples modelos débiles para producir una prediccion

final sélida.
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Capitulo 2
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2. Metodologia
2.1 Diagrama De Flujo

La Figura 2.1, describe el diagrama del flujo metodoldgico para la deteccion de fallas.

Figura 2.1
Flujo general del proceso metodologico implementado para la deteccion de fallas en el sistema aislado de

tierra.

Simulacion en condiciones
normal y anémala

Extraccion de
caracteristicas
Entrenamiento

Modelo

h 4

Prueba

En la figura 2.1, se aprecian las etapas de simulacion, procesamiento de datos, modelado con

IA y validacion que se emplearon para el desarrollo del algoritmo.

2.2 Diseno Del Sistema De Simulacion

El sistema de potencia se modelé6 en MATLAB/Simulink usando Simscape Electrical. Se
adopto el caso de prueba estandar IEEE 14-barras desarrollado por Joshua Armah Dantuo, de la
Universidad de Energia y Recursos Naturales de Ghana (14 barras, 5 generadores y 11 cargas), el

sistema ampliamente conocido y utilizado en el analisis de sistemas de potencia.

A dicho modelo se incluyeron bloques de generador, lineas de transmision y cargas para
reproducir condiciones reales, y se acondiciond en base a nuestras necesidades de un sistema
aislado; siendo asi, se cambid su configuraciéon en Y a una en delta en los transformadores
elevadores; en las Tablas 2.1 y 2.2, se describen tanto los parametros de carga como las

configuraciones de los generadores.
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Figura 2.2

Imagen representativa del modelo de 14 barras propuesto por la IEEE.

Nota: Obtenida de Research Gate.

Tabla 2.1

Parametros de potencia empleados para la carga conectada en cada barra, valores en Mega.

LOAD/ Potencia Potencia Potencia
BARRA  Activa (P) Reactiva (QL) Reactiva (QC)
[MW] [MVAR] [MVAR]
Load 2 26.04 15.24 0
Load 3 113.04 22.86 0
Load 4 57.36 0 4.64
Load 5 9.12 1.92 0
Load 6 13.44 9 0
Load 9 354 19.92 0
Load 10 10.8 6.96 0
Load 11 4.2 2.16 0
Load 12 7.32 1.92 0
Load 13 16.2 6.96 0
Load 14 17.88 6 0



Tabla 2.2
Valores seteados en los generadores ubicados en el sistema de potencia de la IEEE 14 Bus.

Generador Voltaje Fase Angulo de Resistencia Inductancia
(VLL)-kV Generacion del Gen (Q) del Gen (H)
(8°)
GEN'1 150,7723 37,7080 0,8929 0,0166
GEN 2 146,5967 -15,8323 0,8929 0,0166
GEN 140,9648 -34,4800 0,8929 0,0166
SINCRONO 1
GEN 145,3426 -36,2022 0,8929 0,0166
SINCRONO 2
GEN 149,6863 -36,1424 0,8929 0,0166
SINCRONO 3

Nota: Datos extraidos de la simulacion dada por Joshua Armah Dantuo, de la Universidad de Energia y

Recursos Naturales de Ghana.

Para simular fallas a tierra, se usaron bloques de falla trifasica de Simulink, que permiten activar
cierres programados entre fases y de fases a tierra. En cada simulacion se programo una falla con
una resistencia de tierra variable como se ve en la Figura 2.3. De forma aleatoria se generaron
parametros de simulacion en cada ejecucion: resistencia de puesta a tierra (Rg), resistencia entre
lineas (Ron) y tiempo de inicio y fin de la falla (aleatorizados en rangos predefinidos), se variaron

las cargas activas y reactivas dentro de limites para representar distintos escenarios operativos.

Figura 2.3

Bloque Three-Phase Fault usado como catalizador de falla para el estudio.

o A
oB
oC

Three-Phase Fault?
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Figura 2.4
Representacion del sistema Three-Phase Fault usado para una determinar las fallas en el sistema.

Ron Rg

Durante la ejecucion del modelo, se adquirieron las sefiales de corriente por fase en puntos
clave: corriente de falla (Ifault), corrientes en lineas y generadores seleccionados (p. ej. IG2A,
ILINE1 2A, ILINE2 3A, etc.). Estas sefales se almacenaron en archivos CSV junto con la marca
de tiempo. Paralelamente, se guardaron en otro archivo los pardmetros de cada simulacién
(resistencia de tierra, tiempos de falla, valores de carga), para documentar las condiciones de cada
caso. Este proceso se lleva a cabo para obtener la generacion de caracteristicas especificas
(features) con el que se entrend la IA. Cabe resaltar que la eleccion del entorno Simulink ofrecio
bloques especializados para fallas y mediciones en sistemas eléctricos, facilitando una simulacion

realista.

2.3 Generacion De La Base De Datos

Para entrenar el modelo basado en inteligencia artificial (IA), se utiliz6 MATLAB con
Simulink, tomando como base el modelo estandar libre IEEE 14 barras, adaptado con
modificaciones para cumplir los objetivos del estudio. La generacion de datos se llevd a cabo
mediante simulaciones controladas por un script conectado a MATLAB, el cual permitia

configurar diversas condiciones.

Se busco una estructura clara para el operador y la IA en el manejo de archivos; con esto se

generaron en formato CSV con la siguiente nomenclatura:
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2.3.1 Corrientes_(Normal/Load)(NumeroDeBarra) (Falla)

Esta convencion facilita la interpretacion de los eventos simulados. En donde el nombre del
archivo indica si el sistema opera en condiciones normales (sin variaciones de carga) o con carga
variable ("Load"), asi mismo describe la barra en que se esta simulando, ademas del tipo de falla
registrada. Por ejemplo, “AG” representa una falla de la fase A a tierra; “AB”, una falla entre fases;
y combinaciones como “BGAC”, una falla simultanea de fase B a tierra y entre fases A y C. Los

datos detallados de este archivo se describen en la Tabla 2.3.

Tabla 2.3

Valores de fallas presente en los CSV de corrientes.

TIEMPO Ifault A Ifault B Ifault C IG2A IG2B IG2C ... Simulacién
0 111.287 -36.901 -74.386 332.753 531.117 531.11 ... 1

2.3.2 Datos_Corrientes_(Normal/Load)(NumeroDeBarra) (Falla)

Este caso sigue la misma logica del ejemplo anterior, donde la estructura del nombre del archivo
es similar, sin embargo, con una diferenciacion relacionada a los datos incluidos. Estos datos
conforman la base principal utilizada para el entrenamiento del modelo de inteligencia artificial
(IA). Cada archivo contiene informacion relevante como el nimero especifico de la simulacion,
los valores de resistencia entre fases y resistencia a tierra. Es importante decir que, en caso de que
una falla especifica no involucre resistencia de fase o tierra, la simulacion se realiza igualmente,
aunque la TA omite dichos valores en su andlisis gracias a su filtrado a través del nombre del

archivo.

Ademas, el archivo contiene datos cruciales como el Tiempo Antes de la Falla (TAF) y el
Tiempo de Finalizacion de la Falla (TPF). Asi mismo, se registran valores de potencia aparente,

activa y reactiva, los cuales se detallan en la Tabla 2.4.
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Tabla 2.4

Datos de cada simulacion acorde a la falla.

Simulacion R_Ground Res Row taf tpf Load  Active Reactive
1 409.214 9.14 0.07705 0.08631
n

Todo lo anteriormente descrito fue generado por medio de MATLAB. Posteriormente, se lleva
a cabo un segundo proceso mediante un codigo desarrollado en Python, cuya funcién principal es
transformar los valores primarios de corriente en valores secundarios. Para identificar claramente
esta transformacion en los archivos resultantes, se anade el prefijo "TC " al nombre. Es importante
decir que los valores secundarios obtenidos tras la conversion son los datos utilizados

especificamente para el entrenamiento del modelo de inteligencia artificial (IA).

Tabla 2.5

Valores de la simulacion con la corriente reflejada como si proviene de un TC.

TIEMPO Ifault A Ifault B Ifault C 1IG2A IG2B 1IG2C .... Simulaciéon
0 2.782 -0.922 -1.859  -1.662  2.655 e |1

2.4 Conversion De Corrientes Primarias A Valores Secundarios De Tc¢

En realidad, las corrientes de la linea nunca se miden de forma directa, sino que pasan por un
TC, que reducen el valor primario a un nivel convencional usado como protecciéon o medicion
(tipicamente 1/5 A secundarios). Por lo que, asemejando a dicha practica, se desarrollé un script
en Python que toma los archivos CSV generados por el Simulink y aplica las relaciones de

transformacion de cada lectura, en base a la Tabla 2.6.

Estos valores fueron elegidos basandonos en la corriente base del sistema y la carga de cada
linea. El script divide cada medicion primaria por la relacidon correspondiente, generando la sefial
secundaria esperada en el lado de proteccion. Tras la conversion, los nuevos datos se guardaron
en archivos intermedios para su analisis posterior. Este paso permitio tener dos archivos unos con

los datos de corriente reales y otro como si fueran obtenidos por un TC.
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Tabla 2.6

Relacion de los transformadores de corriente (Tc) empleados en el estudio de fallas, que conectan a la

barra 2.
Medida Relacion CT (Ip/Is)
Corriente de falla (Ifault) 200:5
Corriente en generador G2 (1G2) 1000:5
Corriente en linea 1-2 (IL1_2) 800:5
Corrientes en lineas 2—4 y 2-5 (IL2 4, IL2 5) 700:5
Corriente en linea 23 (IL2 3) 500:5

2.5 Extraccion De Caracteristicas Y Construccion Del Dataset Supervisado

Con estos datos se agregan un valor que superan las 30,000 simulaciones entre todas las fallas
que se pueden construir con las limitaciones técnicas de simulink. Entre las caracteristicas
calculadas figuraron el valor RMS, el valor pico (peak) y la media de cada sefial en el intervalo de
analisis. Ademas, se identificaron los instantes de inicio y fin de cada falla, obteniendo los cambios
de la senal (por ejemplo, umbrales o diferencias sucesivas). De esta manera, cada simulacion
generd una caracteristica unica (“features”) con los valores RMS, pico y otros parametros del
segmento de falla, junto con etiquetas de salida como lo son: la magnitud de corriente de falla, el

porcentaje de confianza y el tiempo de ocurrencia.

Como sintesis de las caracteristicas empleadas, la Tabla 2.7 muestra las principales métricas

extraidas de la sefial de corriente.

Tabla 2.7

Meétricas usadas como caracteristicas (features) del sistema con el que se entreno la IA.

Caracteristica Descripcion/Formulacion
RMS Raiz cuadratica media: %Zli\il o
Valor pico (Peak) Valor maximo de la sefial (max;x;)
Valor medio (Media)  promedio aritmético: % N x;.
Duracion de falla Tiempo entre deteccion de inicio y fin de la falla.
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También se consideraron otras métricas estadisticas, (como desviacion estandar o factor de
forma), usadas en la IA. Sin embargo, para fines del modelo supervisado se enfatizaron los datos
RMS, pico y media por su sencillez e interpretabilidad. El conjunto de datos resultante fue una
tabla donde cada fila corresponde a una simulacién con sus caracteristicas calculadas y dos

etiquetas: la magnitud de corriente maxima de falla y el instante de inicio de la misma.

2.6 Entrenamiento
2.6.1 Registro Sin Falla

En la figura 2.5 de la prueba 1 no se detectd sobrecorrientes, por lo que corresponde a una

operacion normal con variaciones de carga dentro de los limites admisibles.

Figura 2.5

Comando para identificar falla en pruebal

PS C:\Users\IzzieSani\Desktop\TESIS> python codigoprueba.py predict pruebal.csv

Archivo: pruebal.csv
prediccion

Nominal 3183

Name: count, dtype: int64

Resultado detallado guardado en resultado gruebal.csv

35



Figura 2.6

Resultado de pruebal.

1
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@ codigoprueba.py X

resultado_pruebal.csv X

resultado_pruebal.csv > [ data

ventana,prediccion,confianza

@,Nominal, 1.

2}

1,Nominal,1.0

2,Nominal, 1.
3,Nominal,l.
4,Nominal,1.
5,Nominal,1.
6,Nominal,l.
7,Nominal,l.
8,Nominal,l.
9,Nominal, 1.

O 00 ® ©O OO

1@,Nominal, 1.
11,Nominal,1.
12,Nominal, 1.
13,Nominal, 1.
14 ,Nominal, 1.
15,Nominal, 1.
16,Nominal,l.
17,Nominal, 1.
18,Nominal, 1.
19,Nominal, 1.
20,Nominal,1.
21,Nominal, 1.
22,Nominal, 1.
23,Nominal, 1.
24 ,Nominal,1.
25,Nominal, 1.
26,Nominal, 1.
27 ,Nominal,1.
28,Nominal, 1.
29,Nominal,l.
30,Nominal, 1.
31,Nominal, 1.
32,Nominal,l.

® 0 0 00 0 000 90900000000 E®O

Se observa en la Figura 2.6, el algoritmo evalué 3183 ventanas de 20ms y les asigno etiquetas

de “nominal” con un alto nivel de confianza, lo cual indica que las corrientes de fase no superaron

en ninguna ventana el umbral de 3 veces la corriente nominal y tampoco mostraron componentes

destacables en la secuencia 0, por lo que se encuentra dentro del rango de operacion normal.
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2.6.2 Registro Con Falla

A diferencia de la Figura 2.5, en la prueba 2 de la Figura 2.7, se observa que en cada ventana
se superd los umbrales de sobrecorriente tanto en la secuencia 0 y 2 que caracterizan al

cortocircuito. Cabe destacar que la prediccion fue realizada por el algoritmo codigo prueba.py.

Figura 2.7

Comando para identificar falla en prueba?.

PS C:\Users\IzzieSani\Desktop\TESIS> python codigoprueba.py predict prueba2.csv

Archivo: prueba2.csv

prediccion

Falla 3000

Name: count, dtype: int64

Resultado detallado ﬁuardadc en resultadO-PruebaZ.csv

Figura 2.8
Resultado de prueba?.
—
@ codigoprueba.py X resultado_prueba2.csv X

resultado_prueba2.csv > [ data

1 ventana,prediccion,confianza
2 0,Falla,1.0

3 1,Falla,1.®

4 2,Falla,l1.0

5 3,Falla,1.0

6 4,Falla,1.0

7 5,Falla,1.0

8 6,Falla,l1.0

9 7,Falla,0.9966666666666667
10 8,Falla,1.0

11 9,Falla,0.98

12 10,Falla,8.9933333333333333
13 11,Falla,®.9966666666666667
14 12,Falla,8.9933333333333333
15 13,Falla,l1.0
16 14,Falla,1.0
17 15,Falla,1.0
18  16,Falla,1.0
19  17,Falla,1.0
20 18,Falla,1.0
21 19,Falla,1.0
22 20,Falla,1.0
23 21,Falla,1.0
24 22,Falla,1.0
25  23,Falla,1.0
26  24,Falla,1.0
27 25,Falla,1.0
28 26,Falla,®.9966666666666667
29  27,Falla,1.0
30 28,Falla,1.0
31 29,Falla,1.0
32 30,Falla,1.0
33 31,Falla,1.0
34 32.Falla, 1.0
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La continuidad de la etiqueta de falla en todo el archivo indica que la falla persiste durante el

intervalo analizado, ademas que refleja el grado de confianza varia entre 0.98 y 1 esto se debe a

que existe un patron de sobrecorrientes que se encuentra fuera de los rangos de operacidon normal.

2.6 Prueba

2.6.1 Archivos Con Fallas En Barras Distintas

Se realizaron simulaciones en distintas barras, las cuales fueron utilizadas para afinar el modelo.

En la Figura 2.9, fueron representadas las barras 9 y 14 para la obtencion de datos, al estar estas

alejadas de la generacion principal serdn util para conocer su comportamiento y flujo. El total de

barras empleadas para la simulacion, tanto para el entrenamiento como para pequeias pruebas,

fueron las siguientes: Barra 2 (Principal), Barra 3,4, 5, 6,9y 14.

Figura 2.9

Obtencion de datos de la barra 9 y 14.

—
‘
qc
:
J £
A ‘."abo_|—> [ILoad_14]] c
fobe Load_14
B a -
c
us_14
J [—“ c Discrete
b 52055
a B
o vl re—{iabo pamera
vabe &
-
25 MVar Shunt | s
Capacitor Bank - < I
TT
- J—u [vmau,91|
T—‘I Vabe
Load_10 tabe < Losd o]

Nota: Simulacion creada y subida en la pdagina de Matlab, hecha por Joshua Armah Dantuo, de la

Universidad de Energia y Recursos Naturales de Ghana.
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2.6.2 Validacion

En la Figura 2.10 se observo se clasifico como falla bifasica debido a que la fase b y fase c, que
presentaron corrientes elevadas. Por tanto, es correcta la etiqueta proporcionada por el algoritmo
entrenado, el cual colocd como falla con alta probabilidad, respaldando asi el modelo. Por otro

lado, el algoritmo determind el tiempo de duracion de falla, en menos de 2 ciclos.
Figura 2.10

Resultado del tipo de falla.

PS C:\Users\IzzieSani\Desktop\TESIS> & C:\Users\IzzieSani\AppData\Local\Programs\Python\Python313\python.exe c:/Users/IzzieSani/Desktop/TESIS/valida_falla.p
% Iniciando analisis de fallas eléctricas...

# Instrucciones:
Escriba los nombres de archive separados por espacio. Ejemplo:
fallal.csv falla2.xlsx

& Para salir, simplemente presione Enter sin escribir nada.

& Archivos a analizar: Corrientes IEEE14 BC.csv

Archivo: Corrientes_IEEE14_BC.csv
Q Estado: Falla
Tipo de falla: Bifdsica
@i Duracién: 29870.0 ms, de ©.8500s a 29.9200s
+ Corrientes: IA=53.68, IB=-4683.26, IC=4629.55
Il Componentes: I@=0.01, I1=2688.51, I2=2688.51
F"Ventanas con falla: 1049 / 30600
Resultados guardados en: resultados_Corrientes_IEEE14_BC.csv

Presiona Enter para salih.ﬂ

2.6.3 Tiempo De Duracion De La Falla

Ahora se muestra de forma grafica como el sistema lograria despejar una falla. En la Figura
2.11, se tiene una curva, en la cual a los 52ms ocurre una falla entre fases (AG) que hace que su

corriente se eleve a valores fuera de 1o normal.
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Figura 2.11

Simulacion de una falla trifasica y el pick up de la corriente, obtenido por Matlab y Simulink en la carga

2 del sistema conectada a la barra 2.

2 BB kB o8 o

Pick up de

corriente de falla

la

Una vez generados los datos de corriente en valores primarios, se procede a procesarlos

mediante el programa que simula el funcionamiento de un transformador de corriente (TC). Este

paso previo convierte las magnitudes primarias en valores secundarios mas manejables y

adecuados para el entrenamiento de la TA.

Posteriormente, estos datos transformados se anexan al conjunto de entrenamiento, haciendo

que la IA analice tanto la magnitud de la corriente como el instante temporal en que ocurre. Asi se

buscd que la identificacion y clasificacion de eventos, tal como se muestra en la Figura 2.12,

detecten el valor de corriente censado y la estimacion aproximada del tiempo en que ocurre dicha

falla.
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Figura 2.12

Datos obtenidos por la 1A, de su corriente de falla (valores secundarios) y tiempo de ocurrencia.

>> TC_Corrientes_Load2N_AG.csv
Tipo de falla estimada: ABCG
Corriente de falla: -7.7263
Tiempo de ocurrencia: 0.024

El tiempo estimado para la deteccion de una falla se encuentra en un rango de entre 1 y 1.5
ciclos de la onda de 60 Hz, lo que equivale aproximadamente a 16 a 25 milisegundos. Este es el
lapso que inicia el evento hasta que se genera y transmite la sefial de disparo. Tal como se muestra
en Figura 2.14, el sistema busca minimizar el tiempo de respuesta, permitiendo una actuacion casi

instantanea ante este tipo de contingencias.
Figura 2.13

Diferencias de los tiempos de donde inicia la falla y el tiempo en el cual la IA detecta dicha eventualidad

como falla, con un tiempo menor a los 10ms.

Diferencias de la
corriente acordes a

la falla.

Diferencias del tiempo en

donde se detecto la corriente de

P cortocircuito
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Figura 2.14

Serial de disparo que simularia el valor enviado por el relé hacia un interruptor ideal que despejaria la

falla.

Sefial de disparo que

simularia el despeje del

interruptor enviada por el

relé.

el

F ¥ Trace Selection ax
Comene o =
7 ¥ Cursor Measurements ax
» Settings:

¥ Measuraments
Time Value
11 0062 4857606
21 0o: 8 5180501
AT 3801ms  AY 851801

1187 25634 Hz
AY 1T 2.183 {fms)
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3. Resultados
3.1 Tablas De Porcentajes de confianza

Son los resultados de pruebas sobre eventos de fallos en un sistema eléctrico, expresados en
porcentaje de confianza que el modelo logr6 clasificar. Estas métricas permiten medir la capacidad
del algoritmo para distinguir entre los distintos aciertos al identificar un tipo de falla o estado de

operacion normal. La comparacion entre ambas tablas permite identificar la solidez del modelo.

Tabla 3.1

Prueba con el archivo Corrientes Load2 BG.

Clase Ventanas Conf_media Conf_min Conf_max
Monofasica 12655 0,964 0,339 1
Bifésica 3926 0,497 0,339 0,871
Trifasica 87 0,421 0,339 0,628

Para este caso, se coloco un archivo con el que ya fue entrenado el modelo, la cual fue una falla
monofasica en la barra 2, para poder determinar el porcentaje de confianza del modelo, en el cual
podemos observar en la Tabla 3.1 que el modelo tiene una elevada confianza media en fallas
monofésicas con un 0.964, esto indica que posee una alta sensibilidad. La variabilidad entre los
valores minimos y maximos sugiere que, aunque existan momentos con baja confiabilidad, en la

mayoria de los eventos la clasificacion en precisa.

Por otro lado, las fallas bifasicas y trifasicas muestran valores promedios de confianza menores,

esto significa que el modelo posee mayor dificultad para identificarlas de forma consistente.

Tabla 3.2

Prueba con el archivo Corrientes Loadl4_AG.

Clase Ventanas Conf_media Conf_min Conf_max
Nominal 7148 0,782 0,28 1
Monofasica 8604 0,54 0,26 0,907
Bifésica 14107 0,41 0,263 0,753
Trifasica 4613 0,423 0,263 0,91
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En el caso de la Tabla 3.2, se colocd un archivo nuevo para determinar el porcentaje de
confianza del modelo frente a distintas condiciones de simulacion que no se habian realizado
anteriormente como lo fue la simulacion de una falla monofésica en la barra 14. El cual obtuvimos
que la confiabilidad fue de 0.54, El comportamiento evidencia que el modelo logra identificar las
fallas monofasicas, pero con un nivel de confianza moderado y una alta dispersion en los
resultados. La reduccion de la confianza respecto a pruebas sin operacion nominal se explica por
el solapamiento entre condiciones nominales desbalanceadas y fallas reales, lo que obliga al

clasificador a redistribuir su sensibilidad.

3.2 Graficas De Corriente

Las siguientes figuras ilustran la huella temporal de las corrientes de falla registradas durante
dos escenarios representativos del conjunto de pruebas. En cada grafica se muestran, muestra a
muestra, las amplitudes instantaneas de las fases A (azul), B (naranja) y C (verde) tal y como
fueron obtenidas del sistema IEEE-14 barras después de afiadirse la perturbacion programada. La
Figura 3.1, corresponde a un evento “AG” de alta energia, por lo que la rama de la fase A exhibe
excursiones de cientos a miles de amperios, mientras que las fases restantes apenas se alteran. En
contraste, la segunda figura representa un caso “Load2” con multiples disturbios superpuestos: las
tres fases presentan dispersion de picos de magnitud similar, lo que genera firmas menos
diferenciadas y, en consecuencia, promedios de confianza mas bajos —especialmente para las

categorias bifasica y trifasica reportadas en la Tabla 3.2.
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Figura 3.1

Grdficas de corrientes del Archivo: Corrientes IEEE14.csv.

Figura 3.2

Corriente

Curvas de corriente (muestra representativa)

2000 4

1000 4

—1000 1

— Ifault_A
—— Ifault_B
— Ifault_C

1000 2000 3000 4000 5000
Muestra

Grdficas de corrientes del Archivo: Corrientes_Load?2.csv.

Corriente

Curvas de corriente (muestra representativa)
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500 4
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—=1000 4
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0
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3.3 Analisis

En los informes generados fueron reflejados dos indicadores clave, el primero da la proporcién
de ventanas a las que la etiqueta dominante fue asignada; un 100 % de ventanas clasificadas como
“Nominal” significo que indicios de sobrecorriente ni de secuencia cero anémala no fueron
detectados. El segundo indicador, denominado confianza media, midid el grado de seguridad con
que cada prediccion fue emitida dentro de la clase ganadora, valores cercanos a uno implicaron
firmas de corriente muy claras, mientras que medias inferiores a 0,6 revelaron que el patron fue

contaminado.

Conforme a la Tabla 3.1, correspondiente a la evaluacion con el archivo Corrientes Load2 BG
que incorpora una falla monofasica en la barra 2 utilizada en el proceso de entrenamiento, el
algoritmo alcanz6 un indice de confiabilidad promedio del 96,4% en la clasificacion de este
evento. Este alto porcentaje refleja una sensibilidad y robustez elevadas en la identificacion de
fallas monofasicas a tierra, las normativas IEEE Std C37.230 e IEC 60909 reportan que entre el
65% y el 80% de las fallas en sistemas de potencia corresponden a esta categoria. Segiin la norma
IEC 60255-151, los sistemas de proteccion deben garantizar deteccion rapida y segura de estas

contingencias, requisito que el modelo cumple.

No obstante, el analisis de la misma tabla para fallas bifasicas y trifasicas indica una reduccion
significativa en los indices de confiabilidad, con valores promedio de 49,7% y 42,1%
respectivamente. Esto evidencia limitaciones del modelo en la discriminacién de fallas mas
complejas, atribuidas a un menor volumen de datos de entrenamiento representativos para estas
categorias y a la similitud entre las firmas de corriente de estas fallas y perturbaciones nominales
complejas. Conforme a la normativa IEEE C37.110 para la aplicacion de transformadores de
corriente, este comportamiento también podria estar influenciado por fenomenos de saturacion y

la presencia de contenido armodnico en las corrientes durante eventos de cortocircuito.

En el anélisis de la Tabla 3.2, relacionada con el archivo Corrientes Loadl4 AG, se evalu6 el
modelo en un escenario no incluido en el conjunto de entrenamiento, permitiendo medir su
capacidad de generalizacion. Si bien el clasificador identificé las fallas monofasicas, la
confiabilidad promedio disminuy6 a un 54%, con variabilidad marcada con valores minimos del
26% y maximos cercanos al 91%. Esta disminucién indica que, bajo condiciones nominales con
cierto grado de desbalance, la superposicion de corrientes normales y fallas a tierra induce

incertidumbre en la clasificacion. Esto recalca la necesidad de establecer umbrales de sensibilidad
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ajustados al desbalance de carga, tal como recomiendan la norma IEEE 1159 sobre calidad de
potencia y la IEC 60255 para evitar disparos intempestivos por corrientes residuales en
condiciones normales. Las graficas de corriente complementan estos hallazgos, en la Figura 3.1
muestra un evento tipo “AG” con una disrupcion clara en la fase A, con magnitudes de corriente
que van de cientos a miles de amperios, mientras que las fases B y C permanecen practicamente
inalteradas, en concordancia con la teoria clasica de fallas monofésicas a tierra y justificando la
alta confiabilidad en su deteccion. En contraste, la Figura 3.2 presenta un escenario “Load2” con
perturbaciones superpuestas y picos de corriente en las tres fases, generando patrones menos
diferenciados que explican la disminucion de la confiabilidad en la deteccion de fallas bifasicas y
trifasicas. Esto enfatiza la necesidad de enriquecer el modelo con variables adicionales, tales como
componentes de secuencia, fasores angulares y criterios temporales de persistencia, conforme a

los lineamientos de la IEC 60255-121 sobre protecciones direccionales y de distancia.

Por ende, el analisis confirma que el modelo cumple eficazmente la funcion primaria de
deteccion de fallas monofésicas, con indices de confiabilidad alineados con los requerimientos de
las normas IEEE e IEC para contingencias criticas. No obstante, persisten desafios en la
clasificacion de fallas biféasicas y trifasicas, sugiriendo la integracion de estrategias de balance de
datos, mejora en la extraccion de caracteristicas y validacion bajo distintos escenarios de
cortocircuito, para garantizar un desempefio uniforme y conforme a los estandares internacionales

en proteccion de sistemas eléctricos.
3.4 Comparativa A Otra IA (SVM)
El sistema fue evaluado con un modelo distinto para identificar la base de conversidn mas

eficiente, siendo el modelo de Maquinas de Vectores de Soporte (SVM) el seleccionado.

Tabla 3.3
Comparacion del modelo usado con otra IA.

Bosques Aleatorios SVM

Cantidad de datos Presentaron mejores El SVM necesita casi el
valores de confianzaa  doble de los datos que se
menor cantidad de datos. uso en bosques

aleatorios.
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Ejecucion

Uso de datos de apoyo

Confiabilidad

Tiempos de detencion

de falla

Tipos de falla

El tiempo de aprendizaje

es mayor.

El sistema necesita una
referencia externa de los
datos a simular.

Su confianza llega al
80%, para los casos de
estudios
Menores a los 2 ciclos
de onda (<32 ms) y
siempre detecta un
tiempo
Mayor acierto en el tipo

de falla del sistema.

SVM su tiempo de
aprendizaje es un 25%
menor.

No es necesario esa
cantidad de datos
externos.

La confiabilidad del

sistema oscila un 40%.

Sus tiempos llegaron a
los 3 ciclos, no siempre

determina un tiempo

No determina el tipo de

falla presente.

Acorde a la Tabla 3.3, para una rapida deteccion con una elevada robustez frente a ruido con

una probabilidad confiable que trabaje con conjunto de datos limitados, el método de aprendizaje
supervisado, bosques aleatorios, es la mejor opcidn. Por otro lado, SVM, es capaz de alcanzar un
rendimiento similar en escenarios altamente controlados que dispongan de un ajuste exhaustivo y

requiere mayor cantidad de datos.

3.5 Presupuesto

Dentro del presupuesto para el proyecto se estima un precio de $4,185, los cuales seran

desarrollados en la Tabla 3.4.
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Tabla 3.4

Presupuesto general.

Presupuesto
Desarrollo, prueba y validacion del algoritmmo
# Concepto Entregables concretos Horas Tarifa

trabajadas referencial

(h)

1 Simulacién en Matlab Disefio de fallas en 35 22,5

sistema de 14 barras
IEEE
2 Levantamiento y Matriz de requisitos, 15 22,5
analisis de archivos especificacion de
formato de datos y
cronograma

3 Pre-procesamiento y Manejo de valores 15 22,5
limpieza de datasets nulos, normalizacion

4 Ingenieria de Calculos de RMS, 20 22.5
caracteristicas secuencias, ventanas

deslizantes.

5 Implementacion del Moédulo rf detector.py 35 22,5
clasificador (Random con entrenamiento,
Forest)+pipeline CLI persistencia y modo

predict

6 Generador de datos Sintesis del codigo de 14 22,5
sintéticos para pruebas fallas con cabeceras
idénticas a plantilla

7 Pruebas unitarias y Reporte con métricas de 30 22,5

validacion cruzada precision, recall, matriz

Sub-
total

787,5

337,5

337,5

450

787,5

315

675
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10

Optimizacion y tuning

(n arboles)

Soporte de integracion
para transferencia de

conocimiento

Contigencia

Busqueda automatizada
de la red, exportacion de
hiper parametros

optimos

Sesion online y entrega

de cédigo y modelos

Cobertuta de ajustes
menores y
retroalimentacion de

iteraciones

10

22,5 225
22,5 90

22,5 180
Total 4185

51



Capitulo 4

52



4.1 Conclusiones y recomendaciones

4.1.1 Conclusiones

Luego de la ejecucion secuencial de las fases planteadas en la propuesta, se logro las siguientes
conclusiones que evidencian la eficacia del disefio y su aplicacion en la industria para la proteccion
de redes con neutro aislado integrando la deteccion inteligente de fallas mediante inteligencia

artificial.

e La generacion de la base de datos a partir del sistema de IEEE de 14 barras permitid
estructurar un conjunto de registros eléctricos con patrones caracteristicos de operacion
normal y de eventos de falla en distintas condiciones de carga y generacion. La base se
conformo6 de valores de corrientes de secuencia y corriente eficaz lo que permiti6 una
mayor discriminacion por parte del algoritmo. En la identificacion de corrientes de falla
y nominal se obtuvo una confianza por encima del 0.99 sin falsos positivos lo que
evidencia la consistencia estadistica del patrén de normalidad. Disponer de una base de
datos estructurada facilitd el entrenamiento del algoritmo y se convirtié en un recurso
vital para la implementacion de protecciones predictivas en sistemas de generacion

distribuida.

e La simulacion de multiples escenarios de fallas mediante programas de analisis
computacionales permiti6 validar estrategias de proteccion adaptadas a sistemas con
neutro aislado. Se simuld sobrecorrientes monofasicas, bifasicas y trifasicas, asi como
fallas de distinta duracion. El algoritmo detect6 sobrecorriente en las fases B y C con
valores que superaron el umbral de operacion normal, clasificando el evento como falla
a tierra con una probabilidad de 0,996. Solo dos ventanas en la transicion de pre fallan
y falla descendieron a valores entre 0,980 y 0,993 lo que corrobora la estabilidad incluso

en intervalos de cambio abrupto.

e El desarrollo de algoritmo de deteccion basado en técnicas de procesamiento de datos,
implementando mediante un modelo de clasificaciéon de bosques aleatorios con 300
arboles demostrd una precision elevada en la identificacion de fallas a tierra. En la
prueba de deteccion de fallas de corta duracioén, el algoritmo no solo respondié en un
tiempo minimo, sino que también diferencid entre perturbaciones transitorias y fallas

sostenidas, evitando disparos innecesarios. Esta capacidad de respuesta rapida
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combinada con una alta selectividad y sensibilidad propone una metodologia escalable

facilitando la transicion hacia esquemas de proteccion mas inteligentes que van

alineados a los requerimientos de continuidad y seguridad de operacion para sistemas

aislados a neutro.

4.1.2 Recomendaciones

Después de culminar, se establecen las siguientes recomendaciones que estan orientadas en

ampliar el alcance del presente trabajo y abordan aspectos como limitaciones de factibilidad que

no fueron tratados en profundidad pero que resultan relevantes para la optimizacion y robustez de

la proteccion en sistemas aislados de tierra mediante inteligencia artificial.

Ampliar la base de datos por medio de registros reales de campo, si bien la base de
datos ha demostrado ser representativa para el entrenamiento del algoritmo, su
naturaleza sintética se ve limitada frente a las variaciones y perturbaciones
presentes en un sistema real por lo que se recomienda recopilar datos que incluyan
eventos transitorios, armonicos y condiciones de carga no linea para robustecer y
minimizar posibles sesgos de simulacion.

Optimizar el modelo para reducir la carga computacional, pues el algoritmo basado
en 300 arboles presentd un buen desempeiio frente a precision, sin embargo, su
carga de procesamiento podria ser alta para dispositivos con recursos limitados por
lo que una linea de trabajos futuros seria explorar técnicas para reducir el consumo
de recursos y sea mas sencillo su implementacion.

Integrar funciones de aprendizaje continuo, debi6 a que el modelo opera de forma
estatica tras el entrenamiento inicial, implementar la capacidad de actualizarse
automaticamente con nuevos datos y patrones es clave para mantener su precision
a largo plazo. Se sugiere desarrollar una version de aprendizaje incremental que
permita recalibrar el algoritmo ante cambios en la red sin requerir un

reentrenamiento completo lo que reduciria tiempo de ejecucion.
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