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I 

 

Resumen 

Las enfermedades cardiovasculares representan la principal causa de mortalidad a nivel 

mundial. En ellas, las arritmias requieren detección temprana y precisa, siendo el 

electrocardiograma (EKG) la herramienta estándar para su análisis. Sin embargo, la 

interpretación manual demanda tiempo y experiencia clínica, lo que limita su aplicabilidad. 

Tiene como objetivo implementar un sistema de clasificación de latidos cardíacos en señales 

de EKG mediante técnicas de IA, utilizando redes neuronales convolucionales (CNN) y la 

clasificación estandarizada de la AMMI. El proyecto se desarrolló utilizando la base de datos 

MIT-BIH Arrhythmia, procesada mediante técnicas de filtrado pasa eliminación de ruido, 

normalización y segmentación de latidos. Se aplicó balanceo de datos con SMOTE y 

posteriormente se entrenó y validó una CNN en Python, empleando bibliotecas como WFDB, 

TensorFlow y Keras. Los resultados evidenciaron un modelo con capacidad para clasificar 

latidos cardíacos en las cinco categorías definidas por la AAMI, alcanzando métricas de 

precisión y sensibilidad para un diagnóstico confiable. El sistema constituye una herramienta 

complementaria para el personal médico y potencial de integración en dispositivos portátiles, 

telemedicina, contribuyendo a la detección temprana de arritmias y optimización de la 

atención médica. 

 

Palabras Clave: Arritmias, Redes Neuronales, AAMI. 
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Abstract 

English to write the same as described before in the Resumen. Use cursive fonts in this 

section. Cardiovascular diseases are the leading cause of mortality worldwide. Arrthythmias 

require early and accurate detection, with the electrocardiogram (EKG) being the standard 

tool for analysis. However, manual interpretation requires time and clinical expertise, which 

limits its applicability. The project aims to implement a heartbeat classification system in 

EKG signals using artificial intelligence techniques, utilizing convolutional neural networks 

(CNNs) and the standardized AMMI classification. The project was developed using the MIT-

BIH Arrhythmia database, processed using noise removal, normalization, and heartbeat 

segmentation filtering techniques. Data balancing was applied with SMOTE, and a CNN was 

subsequently trained and validated in a Python environment using specialized libraries such 

as WFDB, TensorFlow, and Keras. The results showed a model capable of classifying 

heartbeats into the five categories defined by the AAMI, achieving accuracy and sensitivity 

metrics for a reliable diagnosis. The system constitutes a complementary tool for medical 

personnel and has the potential for integration into portable devices and telemedicine, 

contributing to the early detection of arrhythmias and the optimizing medical care. 

 

Keywords: Arrhythmias, AI, Neural Networks, AAMI. 
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1.1 Introducción 

Según la World Heart Federation, en el año 2021, las enfermedades cardiovasculares 

(ECV) provocaron 20.5 millones de muertes, consolidándose como la principal causa de 

muerte del mundo, tomando en cuenta que, cuatro de cada cinco defunciones por ECV 

ocurrieron en países de ingresos medio y bajo [1]. Dentro de este grupo, las arritmias 

cardíacas requieren una detección temprana y precisa para reducir el riesgo de 

complicaciones graves, por ende, el electrocardiograma (EKG) es la herramienta estándar 

para analizar la actividad eléctrica del corazón y detectar esta clase de anomalías.  

Pues que, la interpretación de los registros EKG demanda una vasta experiencia 

clínica por parte del cardiólogo y tiempo considerable, así que el diagnóstico puede verse 

afectado por errores humanos, lo que limita su aplicabilidad en entornos con recursos 

médicos limitados o escasa disponibilidad de especialistas médicos. 

Frente a esta problemática, el uso de algoritmos de inteligencia artificial (IA) surge 

como una herramienta eficaz para el personal médico frente al análisis de las señales 

fisiológicas del corazón. De esta manera se propone el desarrollo de un sistema para la 

clasificación de los latidos cardíacos en señales de EKG, empleando la base de datos pública 

MIT-BIH Arrhythmia y siguiendo la clasificación estandarizada de la AAMI (Association for 

the Advancement of Medical Instrumentation), que agrupa los latidos en cinco clases 

clínicas: normales (N), supraventriculares (S), ventriculares (V), de fusión (F) y no 

clasificados (Q). 

La implementación se realizará en un entorno de programación accesible y eficiente, 

utilizando de Jupiter Notebook y lenguaje de programación Python junto con bibliotecas 

especializadas como WFDB, TensorFlow y Keras, dentro de la plataforma de Visual Studio 

Code. El proceso comenzará con la descarga y análisis de registros EKG reales, los cuales 

serán preprocesados mediante técnicas como filtrado para eliminación de ruido, 
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segmentación de latidos y normalización. Posteriormente, los latidos serán etiquetados 

conforme al estándar AAMI y utilizados como entrada para entrenar un modelo, cuyo diseño 

permite reconocer patrones de la señal cardíaca y clasificar los latidos con alta precisión. 

La razón de este proyecto es aportar una solución tecnológica desde la perspectiva de 

la ingeniería electrónica y la inteligencia artificial al campo de la salud, facilitando 

herramientas que puedan ser integradas en dispositivos portátiles, plataformas de 

telemedicina o centros de salud. Se espera que el sistema propuesto contribuya a mejorar la 

eficiencia del diagnóstico, reducir la carga de trabajo del personal médico y extender la 

cobertura del monitoreo cardíaco a regiones. En conjunto, el proyecto se alinea con los 

objetivos de innovación tecnológica y salud preventiva, respondiendo a una necesidad clínica 

real mediante el aprovechamiento de los avances actuales en IA y procesamiento de señales 

biomédicas. 

1.2 Descripción del Problema  

En la actualidad, hay muchos electrocardiógrafos que, mediante software arroja una 

interpretación y diagnóstico automático de electrocardiogramas, que sirve como soporte para 

médicos. En un estudio realizado, se evaluó el rendimiento de siete programas de 

interpretación automática de EKG en más de 2,000 EKG digitales obtenidos de hospitales y 

bases de datos en Europa, EE. UU. y Australia, el cual arrojo en la detección en ritmos 

anormales una precisión promedio de 84.9% y una fiabilidad clínica, que es la concordancia 

del diagnóstico automático y realizado por profesional de salud, de 54%, descrito por De Bie 

et Al [2].  

Ante esta problemática, se propone implementar un sistema automatizado que 

clasifique latidos cardíacos a partir de registros públicos de EKG, siguiendo el estándar de la 

Asociación para el Avance de Instrumentación Médica (AAMI). En el cual, con el uso de 
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redes neuronales convolucionales (CNN), se busca obtener una clasificación precisa y 

confiable que apoye el diagnóstico oportuno y reduzca la carga del personal médico. 

Este proyecto, es desarrollado en conjunto con el cardiólogo Dr. Rafael Castilla, de la 

corporación médica InterHospital, que busca profundizar el alcance de los algoritmos de 

inteligencia artificial (IA) en detección de arritmias a partir de una clasificación de latidos de 

electrocardiogramas. 

La restricción de nuestro proyecto es enlazar nuestro sistema asistido por IA con el 

software predeterminado de un equipo de EKG. Puesto que, los resultados obtenidos por el 

equipo de EKG deben de exportarse a formatos compatible con el sistema entrenado. 

1.3 Justificación del Problema 

En los últimos años la tecnología en el sector de la salud ha avanzado de manera 

significativa para la detección de enfermedades con un alto índice de mortalidad y las 

enfermedades cardíacas son unos de los problemas que afectan a una significativa proporción 

de la población, por lo que, se requiere métodos confiables para su temprana detección. 

El uso de datos reales como los del MIT-BIH Arrhythmia Database y técnicas de IA 

modernas, son métodos que permiten obtener un sistema capaz de detectar una afección 

cardíaca, mediante la identificación del latido. Un sistema de clasificación de latidos puede 

identificar alteraciones cardíacas que pasan desapercibidas en evaluaciones médicas. Esta 

tecnología puede mejorar la eficiencia diagnóstica en hospitales, centros de salud rurales y 

dispositivos de monitoreo personal. Además, facilita el análisis de grandes volúmenes de 

datos EKG sin sobrecargar al personal médico, y puede integrarse en herramientas 

preventivas para la reducción de eventos cardiovasculares graves[3]. 
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1.4 Objetivos  

1.4.1 Objetivo general  

Implementar un sistema de clasificación de latidos cardíacos a partir de registros 

públicos de EKG, utilizando redes neuronales y la clasificación AAMI como 

referencia para el diagnóstico. 

1.4.2 Objetivos específicos  

1. Preprocesar señales cardíacas de la base pública para entrenamiento del sistema. 

2. Aplicar la clasificación de los latidos según el estándar AAMI. 

3. Entrenar una CNN para reconocer la clasificación de latidos de pacientes usando 

electrocardiogramas. 

4. Evaluar el modelo en términos de precisión, sensibilidad y especificidad. 

5. Examinar el diagnóstico que ofrece el sistema entrenado por IA. 

1.5 Marco teórico 

El corazón es un órgano muscular que constituye el núcleo del sistema circulatorio, 

impulsando la sangre a través de una red vascular. La sangre sin oxígeno se dirige a la 

aurícula derecha por las venas cavas hacia el ventrículo derecho. El ventrículo derecho se 

contrae y envía la sangre a la arteria pulmonar, que se bifurca en dos arterias, uno para el 

pulmón derecho e izquierdo respectivamente. Una vez que, en los pulmones se oxigena la 

sangre, esta se dirige a la aurícula izquierda que se contrae y pasa al ventrículo izquierdo. Al 

contraerse bombea la sangre a través de la aorta hacia el cuerpo [4]. 

El sistema de conducción cardíaca controla la frecuencia y el ritmo de latidos, por lo 

que cada latido es una señal eléctrica. El nodo sinoauricular (SA) genera un impulso 

eléctrico, que viaja hacia el marcapasos nódulo auriculoventricular (AV), haciendo que la 

señal se retrase por un breve instante y que las aurículas se contraigan una fracción de 

segundo, dándole tiempo que fluya la sangre a los ventrículos. La señal eléctrica continua 
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hacia el haz de His para que se contraigan los ventrículos derecho e izquierdo y bombear la 

sangre fuera del corazón, volviendo de nuevo el proceso [5]. 

 

Fig 1.1. Sistema eléctrico del corazón [5]. 

 

Las alteraciones en esta dinámica eléctrica pueden desencadenar arritmias o 

anomalías, cuya detección rigurosa y oportuna resulta imperativa para prevenir eventos 

cardiovasculares, de consecuencias devastadoras. 

Los electrocardiogramas (EKG) registra la actividad eléctrica cardíaca mediante 

electrodos cutáneos, generando una señal definida por componentes específicos: la onda P 

(despolarización/contracción auricular), el complejo QRS (despolarización /contracción 

ventricular) en el cual la onda Q indica la despolarización inicial del tabique interventricular, 

onda R despolarización de la masa de los ventrículos y la onda S la despolarización final de 

los ventrículos y la onda T (repolarización ventricular) [6]. 

Los intervalos y segmentos son relevantes para la interpretación de un EKG: el 

intervalo PR, tiempo que tarda la señal eléctrica en viajar desde la aurícula hasta los 

ventrículos, intervalo QT, tiempo total de la actividad eléctrica ventricular desde la 

despolarización hasta la repolarización, intervalo RR, tiempo entre dos complejos QRS 

consecutivos para calcular la frecuencia cardíaca, segmento ST, línea isoeléctrica. 



 

7 

 

Desde una perspectiva técnica, un electrocardiógrafo tiene varias etapas para el 

procesamiento de la señal: 

1. Conexión equipo al paciente: Se conecta los electrodos al paciente, 

generalmente están compuesto de Cloruro de Plata (AgCl). 

2. La señal del EKG de baja amplitud: Se recibe a través de un amplificador 

buffer de alta impedancia, evitando que el contacto piel-electrodo se vea 

cargado por el circuito y mantiene estable la señal. 

3. Amplificación diferencia: Se usa un amplificador de instrumentación, capaz de 

rechazar el ruido de modo común y resaltar pequeñas diferencias de voltaje 

entre los electrodos, amplificando la señal sin distorsiones significativas. 

4. Filtrado analógico previo: Señal pasa por filtros analógicos que eliminan 

artefactos antes de digitalizarse. El filtro pasa alto (HPF) atenúa la deriva de la 

línea base (baseline wander), oscilación señal lenta de la línea isoeléctrica. El 

filtro pasa bajo (LPF) reduce interferencias musculares y de alta frecuencia. El 

filtro notch, elimina el ruido de la red eléctrica de 50/60 Hz. El filtro anti-

aliasing para evitar distorsiones durante la conversión digital 

5. Conversión analógico-digital (ADC): Toma muestras de la señal a frecuencias 

típicas de 250 a 1000Hz con resoluciones de 16 bits o más. Transforma la 

señal continua en datos digitales, para ser procesados por software. 

6. Procesamiento digital: Elimina los artefactos digitales mediante filtros 

software, el cual se corrige la deriva de la línea base, aplica filtrado de 

50/60Hz, reducir ruidos musculares o movimiento. 

7. Detección y segmentación de latidos: El sistema identifica automáticamente 

los picos R, para calcular intervalos y frecuencias cardíacas. 

Así, segmenta los intervalos y facilita el análisis clínico de alteraciones cardíacas [7]. 
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La clasificación automatizada de latidos cardíacos se rige estrictamente por el 

estándar de la AAMI, que los categoriza en cinco clases distintivas: N (normal), S 

(supraventricular), V (ventricular), F (fusión) y Q (no clasificado). Este marco normativo 

resulta crucial para el entrenamiento supervisado de algoritmos de inteligencia artificial. 

La inteligencia artificial, en particular las redes neuronales profundas como las redes 

convolucionales (CNN), ha transformado radicalmente el análisis de señales EKG. Estas 

redes extraen de manera autónoma patrones morfológicos complejos directamente desde la 

señal cruda, eliminando la dependencia de la ingeniería manual de características. Los 

modelos basados en deep learning han demostrado precisiones superiores al 98% en la 

clasificación de arritmias, reduciendo el tiempo de procesamiento en hasta un 70% frente a 

métodos tradicionales. Además, exhiben una capacidad sobresaliente para detectar anomalías 

sutiles, incluyendo: 

• Alteraciones en el intervalo PR 

• Cambios en la morfología del QRS 

• Indicadores de fibrilación auricular, taquicardias o bloqueos [8]. 

La MIT-BIH Arrhythmia Database, un repositorio de prestigio internacional 

proporciona registros EKG anotados provenientes de pacientes reales, muestreados a 360 Hz 

y acompañados de etiquetas clínicas en formato atr [8]. Su disponibilidad abierta a través de 

PhysioNet ha impulsado significativamente la investigación en clasificación de arritmias 

mediante inteligencia artificial. El desarrollo y la implementación de modelos se benefician 

de herramientas computacionales de código abierto, tales como Python, TensorFlow, Keras y 

la librería WFDB, las cuales permiten la carga, preprocesamiento, entrenamiento y validación 

de redes neuronales en plataformas como Google Colab [9]. 

Investigaciones clínicas han revelado tasas de error de hasta el 25% en la 

interpretación manual de EKG, atribuidas a la variabilidad, la presencia de ruido y la fatiga 
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del personal médico. En contraste, los sistemas automatizados impulsados por inteligencia 

artificial ofrecen una mejora sustancial en precisión, reducen significativamente los falsos 

positivos y negativos, y aseguran resultados reproducibles, incluso en entornos clínicos de 

alta demanda o aplicaciones de telemedicina [10]. 
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2.1 Metodología. 

En este capítulo se describe la metodología usada para la implementación del sistema de 

clasificación de latidos usando algoritmos de inteligencia artificial. Tomando como referencia el 

equipo de EKG del cardiólogo Dr. Rafael Castilla, GE cardiosoft cam-usb A/T, con su adaptador 

de electrodos, el cual se encarga del procesamiento digital de señales de EKG de manera precisa 

y segura. Toda su electrónica se encuentra integrada en una única placa, dividida en tres bloques 

funcionales: procesamiento de EKG, controlador y puerto de PC. 

 

Fig 2.1. GE cardiosoft cam-usb A/T. 

En la etapa de procesamiento de EKG, las señales bioeléctricas captadas por hasta 11 

electrodos pasan por un circuito de protección y un preamplificador de alta impedancia, que evita 

cargar al paciente y mejora la sensibilidad. Luego, estas señales son acondicionadas, 

amplificadas y convertidas a digital mediante ASICs dedicados. Esta sección también realiza 

funciones como detección de marcapasos, verificación de señal y medición de voltaje de CC. 

Los datos digitalizados se transfieren al controlador mediante una interfaz serial QSPI. 

 

Fig 2.2. Procesamiento EKG. 
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El controlador, basado en el microcontrolador, gestiona toda la lógica del sistema. 

Controla la comunicación entre el procesador de EKG, el PC y módulos opcionales como el 

CORINA. Integra memoria FLASH programable, temporizadores, manejo de interrupciones y 

buses internos.  

El módulo CORINA del sistema GE CardioSoft se encarga de procesar electrónicamente 

la señal de EKG captada desde el paciente. El proceso inicia con la captación de señales 

bioeléctricas a través de los electrodos que detectan mV generados por la actividad eléctrica del 

corazón, normalmente en el rango de mV. 

 

Fig 2.3. Controlador 

Estas señales pasan primero por un amplificador diferencial de alta impedancia (>50 

MΩ), lo que asegura que no se genere carga sobre el paciente y se mantenga una buena 

sensibilidad. Luego, se aplica un rechazo de modo común (CMRR) para eliminar interferencias 

típicas del entorno, como el ruido de 50 o 60 Hz. 

Una etapa clave es la supresión de los pulsos de marcapasos, que podrían distorsionar el 

trazado del EKG. Esta función se realiza mediante el canal F. Por ejemplo, una señal de entrada 

de 1 mV en una salida de 1 V.  

Posteriormente, se aplicó un filtrado pasa bandas, que elimina las frecuencias no 

deseadas: un filtro pasa bajo que corta a 150 Hz (evita interferencias musculares) y un pasa alto a 

0,08 Hz (corrige la línea base). 
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Fig 2.4. Transferencia de señal a PC. 

La seguridad del paciente está garantizada con un diseño de aislamiento galvánico, 

corriente de fuga limitada (<10 μA). Finalmente, la señal acondicionada se envía como salida 

analógica aislada, con 1 V por cada 1 mV de entrada. 

Finalmente, el puerto de PC permite la alimentación eléctrica del sistema a través de un 

transductor DC/DC y protege la comunicación mediante circuitos contra descargas 

electrostáticas. La transmisión de datos al software CardioSoft se realiza mediante una memoria 

FIFO, que garantiza una transferencia ordenada y sin pérdidas. El electrocardiógrafo genera el 

examen EKG en formato pdf, que posteriormente se lo imprime en una impresora convencional 

usando papel bond. 

Siendo este, un ejemplo de un electrocardiógrafo y analizando electrónicamente el 

proceso de adquisición del EKG, se procedió con la carga de datos a nuestro sistema, utilizando 

un conjunto de 48 registros de electrocardiogramas tomadas a una frecuencia de muestreo de 360 

Hz por cada canal, la escala de la amplitud de la señal está en el rango de los mV, provienen de 

la base de datos pública del MIT.  

El desarrollo del proyecto siguió un diseño con una secuencia lógica y cronológica, este 

enfoque permitió establecer cada etapa del proyecto de manera ordenada, desde la carga de datos 

de las señales eléctricas del corazón de los respectivos pacientes hasta la evaluación del modelo 

entrenado con el respectivo diagnóstico de la clase de latido que posee el paciente. 

A continuación, se describe en detalle los pasos realizados para la elaboración del 

proyecto (figura 2.5): 
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▪ Carga de base de datos MIT Arrhythmia. 

▪ Aplicación del filtro pasa banda (eliminación de ruido). 

▪ Normalización de la señal EKG. 

▪ Segmentación de latidos. 

▪ Balanceo de datos usando SMOTE. 

▪ Entrenamiento del modelo. 

▪ Validación con nuevos datos de EKG. 

▪ Evaluación del modelo entrenado. 

▪ Diagnóstico. 

 

Fig 2.5. Metodología para implementación del sistema. 

Para facilitar la explicación de la metodología propuesta, resumimos la estructura en carga 

de la base de datos, preprocesamiento de la señal, entrenamiento del modelo y evaluación del 

modelo. 

2.2 Carga de la base de datos 

En esta primera sección procedemos con la carga de la base datos MIT-Arrhythmia y 

existen 2 maneras de realizarlo: descargando directamente el archivo desde el sitio web 

PhysioNet o mediante comando en Visual Studio Code usando la librería wfdb. 
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Para este caso hemos importado mediante código de la librería wfdb, ya que con este 

método es posible obtener de manera clara y precisa los archivos EKG de los pacientes. El otro 

método en cambio posee directorios html, archivos xws y otros archivos que son en este caso 

poco relevantes para el desarrollo del modelo. 

Una vez se obtuvo la carpeta con los archivos a usar se procede a convertir los archivos 

dat, hea y atr, en archivos csv para facilitar la visualización de los datos EKG y su respectivo 

procesamiento en la siguiente etapa de desarrollo, esto se lo realiza con la función presente en la 

figura 2.6. 

 

Fig 2.6. Función de guardado para EKG en formato CSV. 

2.3 Preprocesamiento de la señal 

En esta sección después de la obtención de los archivos CSV se requiere eliminar el ruido 

presente en las señales EKG, en electrónica se usan los filtros pasa banda para la obtención de la 

señal eléctricas del corazón y los filtros notch se usan para eliminar el ruido presente en la señal 

por efecto de las señales electromagnéticas de otros equipos, sus propios componentes o por 

problemas de diseño y su efectividad dependerá del orden del filtro, generalmente para equipos 

EKG se usan de orden 4 en adelante. 
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De esta manera se empleó un equivalente de los filtros notch y esta es la transformada de 

wavelet, que funciona como un filtro base para el análisis de la señal y dependiendo de su 

configuración puede eliminar la mayoría de las variaciones que tiene la señal EKG, la figura 2.7 

muestra la implementación de la transformada de wavelet en una función para eliminar el ruido 

de la señal cardíaca. 

 

Fig 2.7. Función para eliminar ruido de una señal. 

Una vez limpia la señal, se guardaron los datos en variables y se procedió con la con la 

segmentación de los latidos del EKG de cada paciente, para este paso se requiere definir una 

ventana de datos que es lo que define al latido como tal. 

En la figura 2.8 se muestra cómo se realizó la segmentación de latidos que depende de 

definir una ventana_antes y una ventana_despues, este será el segmento de datos que representa 

el latido. 

 

Fig 2.8. Segmentación de latidos. 

Para estar seguros de que hemos segmentado bien los latidos graficamos cada grupo de 

latidos, pero antes hemos normalizado los latidos para que tengan una escala estandarizada como 

se muestra en la figura 2.9. 

 

Fig 2.9. Normalización de latidos. 
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Ahora observamos si los latidos fueron correctamente segmentados y normalizados, para 

este paso graficamos los latidos de acuerdo con el grupo perteneciente (figura 2.10), guiándonos 

por las anotaciones de las señales cardíacas presente en el archivo CSV o en el caso que se use la 

librería wfdb, en los archivos atr. 

 

Fig 2.10. Gráficas de latidos por clase. 

Nuestro siguiente paso fue clasificar los latidos en 5 tipos fundamentales: Normal (N), 

Supraventricular (S), Ventricular (V), Fusión (F) y Desconocidos (Q). Estas serán las clases que 

se usarán para el entrenamiento del modelo, la cantidad de datos por cada de estas clases se 

presentan en la figura 2.11. 



 

18 

 

 

Fig 2.11. Distribución de datos por clase 

Como se muestra en la figura anterior la distribución por clases fue muy desbalanceada, 

tal que la clase normal supera los 80000 datos, si entrenamos el modelo con esta distribución 

existirán sesgos durante el entrenamiento, afectando el diagnóstico por predicciones equivocadas 

del modelo. 

Por esto se requirió de la creación de un dataframe para balancear los latidos a 20000 

muestras por clase (figura 2.12) usando SMOTE, este número puede variar dependiendo de los 

requerimientos del modelo a entrenar, cuando los datos se guardaron procedimos con el 

almacenamiento de los datos balanceados en formatos csv y npz, esto facilitará su uso para el 

entrenamiento del modelo. 
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Fig 2.12. Balance con SMOTE y ajuste de datos al número deseado. 

Con los datos cuya distribución fue balanceada, son los óptimos que sirven para 

finalmente proceder con el entrenamiento del modelo. 

 

2.4 Entrenamiento del modelo 

Se procedió con la división de los datos para entrenamiento y validación, un 80% para 

entrenamiento y 20% para validación es un valor típico para el aprendizaje del modelo. 

 

Fig 2.13. División de datos para entrenamiento y validación 

Usando tensorflow se emplea como método de entrenamiento del modelo una red 

neuronal convolucionada (CNN) de una dimensión (1D) implementada en Keras, este método es 

ideal para el procesamiento de señales temporales 1D como lo son los EKG ya que consta de 
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varias capas diseñadas para extraer las características más importantes de los latidos del corazón, 

usando el comando Sequential hemos definido la arquitectura del modelo: 

- Convid1D: Estas capas se encargan de la extracción de características de la señal 

EKG, se definen la cantidad de filtros a usar para cada capa, el tamaño del kernel y si usa la 

función ReLU para la mejora de convergencia del modelo. 

- Batch Normalization: Para acelerar y estabilizar el proceso de entrenamiento se 

aplica la normalización de lotes después de cada capa. 

- MaxPooling1D: Para reducir el tiempo de entrenamiento y el riesgo de sobreajuste 

se empleó un maxpooling para reducir la dimensionalidad de las características extraídas del 

EKG, para este caso se dejó una ventana de 2. 

- Flatten: Las capas densas requieren entradas de una sola dimensión así que se 

requiere aplanar características 3D obtenidas de las capas convolucionadas anteriores.  

- Dense: Son capas densas que se incluyen después de las capas convolucionales, 

para este entrenamiento se aplicó una capa de 128 neuronas, esto permite capturar patrones 

complejos de las señales.    

- Dropout: Previene el sobreajuste del modelo al desactivar aleatoriamente un 

porcentaje de las neuronas de la capa densa anterior por cada iteración durante el entrenamiento, 

en la arquitectura se define un 0.3 (30%) de estas neuronas para su desactivación. 
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Fig 2.14. Arquitectura del modelo. 

Para empezar con el entrenamiento se empleó la función fit(), definimos una cantidad de 

10 épocas para el entrenamiento, podemos reducir o aumentar el número épocas si verificamos 

que el modelo no sufra de un sobreajuste y tengamos los recursos computacionales necesarios 

para dicho entrenamiento, además aquí se define el argumento validation_split con un valor de 

0.2 que corresponde al 20% para validación del modelo y por ende un 80% será para el 

entrenamiento. 

 

Fig 2.15. Entrenamiento del modelo. 

 

Fig 2.16. Guardado del modelo 
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2.5 Evaluación y prueba del modelo 

Para evaluar la fiabilidad del modelo se visualizó los resultados de este mediante gráficos 

que muestran la evolución de la precisión y pérdidas a lo largo de las épocas durante el 

entramiento, en la figura 2.17 se muestra el método para visualizar la precisión y perdidas del 

modelo durante su entrenamiento. Se evalúa si el modelo tiene problemas de sobreajuste o si no 

cumple con los estándares de precisión deseados para el sistema de clasificación de latidos 

mediante algoritmos de inteligencia artificial. 

 

Fig 2.17. Método para obtención de precisión y pérdidas del modelo. 

Para tener más resultados del modelo se requirió emplear métodos para obtener la matriz 

de confusión del modelo y las métricas promedio que mostraran precisión, sensibilidad y 

eficacia. 

 

Fig 2.18. Implementación de la matriz de confusión 

 

Fig 2.19. Obtención del reporte de métricas del modelo por clase. 

La prueba final del modelo se realizó con datos EKG de pacientes de fuentes externas, 

esta señal debe pasar por el proceso de preprocesamiento que hemos realizado para el 

entrenamiento, ya que el modelo entrenado requiere entradas de datos cuya dimensión sea 

iguales a los datos con los que realizo el aprendizaje. 

Definimos los parámetros para interpretar los resultados arrojados por el sistema de 

clasificación ya que las clases de latidos son interpretadas por el modelo como clase 0 (N), clase 
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1 (S), clase 2 (V), clase 3 (F) y clase 4 (Q), con el modelo cargado que ya fue guardado 

previamente como ekg_cnn_model.h5 hacemos uso de este, el resultado es la señal EKG del 

paciente con el diagnóstico del latido en su pico R. 

 

Fig 2.20. Parámetros para interpretación de resultados del modelo. 

 

Fig 2.21. Carga de modelo 
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3. Resultados y análisis 

3.1 Precisión y pérdida del entrenamiento 

Se obtuvo el comportamiento de los datos de entrenamiento en comparación con los 

datos de validación durante las 10 épocas que dura el aprendizaje del modelo como se muestra 

en la figura 3.1.  

 

Fig 3.1. Gráfica de precisión y pérdida durante el entrenamiento. 

El comportamiento de los datos se puede evaluar en términos de precisión y pérdida, la 

precisión muestra una proporción de predicciones correctas sobre las realizadas por el modelo, 

esto quiere decir que el modelo identificó el 98.64% de los datos como correctos. 

La pérdida muestra el error que se obtuvieron entre los datos reales y las predicciones del 

modelo, en este caso la perdida fue inferior al 10%. 

 

3.2 Matriz de confusión 

La matriz de confusión es una herramienta utilizada en estadística y aprendizaje 

automático para evaluar el rendimiento de un modelo de clasificación. Se representa como una 

tabla que muestra la relación entre las predicciones realizadas por el modelo y las clases reales 

de los datos. Cada fila de la matriz corresponde a la clase real, mientras que cada columna 

representa la clase predicha, permitiendo visualizar los aciertos y errores del modelo.  
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El total de datos utilizados para el entrenamiento es de 16.000 por cada clase, de esta 

manera se empleó 4000 datos por cada clase para la validación del modelo durante el aprendizaje 

y pueden ser interpretadas de la siguiente manera de acuerdo con la figura 3.2: 

- Para la clase 0 que corresponde a los latidos normales (N), se está prediciendo de 

manera correcta 3912 datos. 

- Para la clase 1 que corresponde a los latidos supraventriculares (S), se está 

prediciendo de manera correcta 3926 datos. 

- Para la clase 2 que corresponde a los latidos ventriculares (V), se está prediciendo 

de manera correcta 3941 datos. 

- Para la clase 3 que corresponde a los latidos fusión (F), se está prediciendo de 

manera correcta 3983 datos. 

- Para la clase 4 que corresponde a los latidos desconocidos (Q), se está prediciendo 

de manera correcta 3965 datos. 

 

Fig 3.2. Matriz de confusión 
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Para una mayor comprensión de la matriz de confusión se observó en porcentajes la 

cantidad de aciertos del modelo durante el entrenamiento. En la figura 3.3 se visualiza dichos 

resultados de la siguiente manera: 

- 97.8% de manera correcta está prediciendo la clase N. 

- 98.2% de manera correcta está prediciendo la clase S. 

- 98.5% de manera correcta está prediciendo la clase V. 

- 99.6% de manera correcta está prediciendo la clase F. 

- 99.1% de manera correcta está prediciendo la clase Q. 

 

Fig 3.3. Matriz de confusión porcentual 

 

3.3 Métricas generales 

En la tabla 1, se muestra la evaluación promedio obtenida del modelo después del 

entrenamiento que define su rendimiento para la clasificación de latidos.  
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Tabla 3.1 Métricas de modelo 

Métricas promedio del modelo 

Precisión  98.64 % 

Recall 98.63% 

F1-Score 98.64% 

 

El modelo evaluado mostró una precisión del 98.64%, lo que indica que el 98.64% de las 

instancias clasificadas como verdaderos positivos fueron correctas. El recall muestra la 

sensibilidad del modelo para identificar casos positivos que fue del 98.63%. Por último, el F1-

Score refleja la eficacia del modelo para detectar los verdaderos positivos mientras minimiza los 

falsos positivos, su valor fue del 98.64%. 

3.4 Prueba con EKG de otros pacientes 

En esta sección se muestran los resultados obtenidos durante la prueba del sistema de 

clasificación de EKG entrenado con la base de datos pública del MIT-BIH Arrhythmia Database. 

El modelo fue probado con varios EKG que no fueron usados durante el entrenamiento del 

modelo con el objetivo de validar la capacidad de clasificación de los diferentes latidos 

cardíacos. 

La figura 3.4 representa una señal de EKG de un paciente con la clasificación de los 20 

primeros latidos con la respectiva clasificación de cada latido del EKG de acuerdo con la 

clasificación AAMI como diagnóstico. Se empleó marcadores en el pico R de los latidos que 

señala que clase de latido tiene el paciente, de color verde para la clase normal (N) y de color 

naranja para la clase supraventricular (S), en este caso 19 de 20 latidos son de clase normal. 



 

29 

 

 

Fig 3.4. Señal EKG de paciente sano. 

La figura 3.5 muestra una señal EKG con mayor variabilidad de clase como verde para 

normales, rojo para ventriculares y morado para fusión. En esta señal hay una mayor cantidad de 

anomalías que la mostrada en la figura 3.4, pero muestra la capacidad del sistema para detectar 

más clases de latidos. 

 

Fig 3.5. Señal EKG de paciente con anomalías cardíacas. 

 

3.5 Análisis de resultados 

En base a la matriz de confusión porcentual obtenida se puede observar un excelente 

desempeño del modelo de clasificación de EKG, la clase N alcanza el 97.8% con un nivel de 

confusión relativamente bajo, alrededor del 1.5% de confusión con la clase S y menos del 1% 

para las clases V,F y Q. 
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La clase S muestra una precisión del 98.2%, con una confusión del 1.8% para la clase N, 

para las otras clases no muestra confusiones y este resultado muestra que el modelo distingue 

con un buen índice de aciertos los latidos supraventriculares que las otras clases, reduciendo en 

gran medida que se pase por alto arritmias por latidos supraventriculares. 

La clase V alcanzo un porcentaje del 98.5% de aciertos, con confusiones pequeñas del 

0.4% con la clase N, 0.9% con la clase F y 0.1% con la clase Q, este nivel de aciertos es óptimo 

para la detección temprana de alteraciones ventriculares. 

La clase F alcanzo un porcentaje del 99.6% de aciertos con confusiones del 0.1% con la 

clase N y 0.3% para la clase V, esto muestra que la clase F es la que tiene mayor nivel de 

precisión por lo que se sugiere que el modelo clasifica mejor esta clase de latidos. 

La clase Q obtuvo una precisión del 99.1% con confusiones del 0.6% con la clase N y del 

0.3% con la clase V, esto confirma la capacidad del modelo para detectar latidos atípicos que 

están fuera de las categorías principales. 

Los resultados gráficos de los EKG clasificados refuerzan los resultados obtenidos en la 

matriz de confusión, en la figura 3.4 que corresponde a un paciente relativamente sano, se 

observó que la mayoría de los latidos fueron categorizados como normales (N), validando de esta 

manera que no existen falsos positivos significativos. 

En la figura 3.5 corresponde a un paciente con anomalías cardíacas, pues el modelo 

identifico varios tipos de latidos (N, S, V, F) en la misma señal, esta clasificación demuestra que 

el sistema es consistente con la detección de cada latido. 

Finalmente, se puede concluir que tanto la matriz de confusión como los resultados de la 

clasificación de EKG validan el sistema de clasificación como una herramienta de diagnóstico 

asistido para el personal médico capacitado, integración en entonos clínicos y de telemedicina 

para el monitoreo de señales cardíacas. 
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4. CONCLUSIONES Y RECOMENDACIONES 

4.1 Conclusiones 

• El sistema implementado basado en redes neuronales convoluciones (CNN) 

alcanzó, en la clasificación de latidos cardíacos, una precisión promedio equivalente al 98.64%, 

en las clases evaluadas. Confirmando la viabilidad de la IA como herramienta confiable para la 

detección de arritmias en electrocardiogramas. 

• La baja confusión porcentual entre las clases confirma que el proceso de: filtrado, 

normalización, segmentación y balanceo de datos mediante SMOTE, optimizó la calidad de las 

señales y permitió al modelo distinguir patrones con alta precisión. 

• Los resultados obtenidos evidencia que el sistema puede integrarse como una 

herramienta de soporte en entornos hospitalarios, de telemedicina o en dispositivos portátiles de 

monitoreo cardíaco. 

• El sistema contribuye a disminuir el tiempo de interpretación de registros EKG y 

reducir el riesgo de errores humanos, lo cual aumenta eficiencia diagnóstica en centros de salud. 

 

4.2 Recomendaciones 

• Se recomienda obtener más datos de EKG externos para validación y prueba del 

modelo, pues es posible que valores tan altos de precisión se deban a que la etapa de validación 

se la realice con la misma base de datos. 

• Se debe evaluar el uso del sistema de clasificación en conjunto con los programas 

de los electrocardiógrafos, de esta manera puede ser posible un diagnóstico en tiempo real. 

• El modelo puede ser embebido en una Raspberry o una FPGA, de esta manera se 

puede analizar su uso comercial como una herramienta portátil para el personal médico y 

aplicaciones de telemedicina. 
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