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Resumen

En Ecuador, la escasez de datos etiquetados sobre cultivos agricolas representa una barrera significativa para la planifica-
cion territorial, la gestion de recursos y el desarrollo de politicas publicas a largo plazo. Esta falta de informacion dificulta la
generacion de mapas confiables de uso del suelo, especialmente en un contexto donde se requiere conocer la distribucion y
evolucion de los principales cultivos del pais. Esta tesis aborda dicho problema mediante la evaluacion de distintas estrate-
gias de clasificacion de cultivos a partir de imagenes satelitales, considerando escenarios con datos limitados. Se comparan
tres enfoques: modelos tradicionales (como Random Forest), redes neuronales convolucionales (CNN) y el modelo Transfor-
mador de teledeteccion preentrenado (Presto por sus siglas en inglés), recientemente propuesto en la literatura. Se utilizan
diferentes combinaciones de entradas espectrales (RGB, 10 bandas e indices) y tipos de clasificacion (binaria y multiclase),
evaluando su desempeiio mediante meétricas como el F1-score macro. Los resultados muestran que, en contextos de escasez
de datos, los modelos tradicionales siguen siendo una alternativa solida, mientras que las CNN aportan mejoras moderadas.
ELl modelo Presto ofrece un balance prometedor entre precision y eficiencia computacional, generando mapas utiles para
el monitoreo agricola. Este trabajo demuestra que, incluso en paises con recursos limitados, es posible adaptar estrategias
de aprendizaje automatico para mejorar la representacion espacial de cultivos y apoyar la toma de decisiones en el sector
agricola.
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Abstract

In Ecuador, the lack of labeled agricultural data is a major obstacle to long-term planning, land management, and the de-
velopment of evidence-based public policies. This data scarcity hinders the generation of reliable land use maps, especially
when aiming to understand the spatial distribution and temporal dynamics of key crops. This thesis tackles this challenge
by evaluating different crop classification strategies using satellite imagery, with a focus on low-data scenarios. Three main
approaches are compared: traditional models (e.g, Random Forest), Convolutional Neural Networks (CNNs), and Presto, a
recent model in the literature. Various combinations of spectral inputs (RGB, 10 bands, and indices) and classification types
(binary and multiclass) are tested and evaluated using metrics such as the macro F1-score. The results show that traditional
models remain robust in low-resource settings, while CNNs offer modest improvements. Presto demonstrates a promising
trade-off between accuracy and computational efficiency, enabling the generation of informative maps for agricultural mo-
nitoring. This work highlights that even in data-constrained environments, it is possible to adapt machine learning methods
to improve crop mapping and support decision-making in the agricultural sector.
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Introduccion

La productividad agricola es vital para la seguridad alimentaria y la estabilidad econdmica, especialmente en paises de
Latinoamérica, donde el comercio depende de productos agricolas como materia prima [[l]. Por ello, una clasificacion precisa
de cultivos mejora significativamente la toma de decisiones en la agricultura, lo que conduce a una gestion mas eficiente de
recursos, aumento de rendimiento agricola y beneficios economicos [2].

En Ecuador, la estimacion de cultivos se realiza principalmente mediante métodos manuales como los empleados por el
Ministerio de Agricultura y Ganaderia (MAG) [3], que se basan en interpretaciones visuales de imagenes satelitales. Este
enfoque, aungue valioso, requiere una considerable inversion de tiempo y recursos, generando apenas uno a dos mapas
anuales con limitada capacidad de respuesta ante cambios estacionales o emergencias agricolas.

Si bien técnicas de aprendizaje automatico (ML) como Random Forest se usan globalmente para la clasificacion de cultivos
[4], suadopcion en Ecuador enfrenta una limitante critica: la escasez de datos etiquetados [2]. Estos datos son esenciales para
entrenar modelos v, i son escasos, esto restringe su aplicacion a zonas geograficas especificas y pequenas, imposibilitando
clasificaciones a nivel nacional. Este mismo desafio afecta a técnicas mds avanzadas como el aprendizaje profundo (DL), que
requiere volimenes alin mayores de datos para alcanzar buenos rendimientos [5].

ELDL emerge como solucidn para generar mapas generalizados y de alta frecuencia, mejorando practicas agricolas mediante
optimizacion de recursos y prediccion de rendimientos [S]. EL DL permite incorporar estrategias como la transferencia de
aprendizaje (TL) -reutilizar modelos preentrenados en regiones con datos abundantes- mitigando parcialmente la escasez
de datos etiquetados. Sin embargo, persisten obstaculos clave: los datos del MAG, pese a su calidad, son limitados y se
actualizan anualmente [2], mientras que la variabilidad en cultivos, suelos y climas exige modelos altamente adaptativos.

Otra alternativa reside en el uso directo de imagenes satelitales, pero aqui surge una limitante: aunque se tiene acceso a
estas imagenes para el territorio ecuatoriano, la falta de grandes conjuntos etiquetados dificulta entrenar modelos robustos
[6]. Ademas, la variabilidad en Los tipos de cultivos, las condiciones ambientales y las practicas agricolas complica alin mas
la creacion de modelos universales adecuados para diversos escenarios agricolas [/].

En este trabajo se plantea una metodologia para generar mapas de estimacion de cultivos a nivel nacional con mayor pe-
riodicidad, haciendo uso de modelos de DL. Para abordar la problematica de la falta de datos etiquetados en el territorio
ecuatoriano, se proponen diferentes enfoques, como utilizar datos de zonas geograficas similares a las ecuatorianas y el uso



1 Introduccion

de modelos entrenados para tareas similares, con el fin de mejorar la generacion de mapas de estimacion agricola.

11 Antecedentes

Actualmente, el MAG ha realizado un arduo trabajo para generar mapas anuales de Ecuador que contienen informacion sobre
la coberturay el uso de la tierra, asi como los sistemas productivos agropecuarios a nivel nacional [3]. Estos mapas incluyen
datos sobre el tipo de suelo, la zonificacion de la tierra y la estimacion de cultivos anuales. Sin embargo, la elaboracion
de estos productos es un proceso laborioso que puede tomar entre uno y dos aios desde la recoleccion de datos hasta la
publicacion del mapa final, y requiere la intervencion de un gran numero de técnicos para la obtencion, validacion y registro
de los diferentes usos de la tierra. Por esta razon, estos mapas solo se generan después de largos periodos, siendo el altimo
de este tipo producido en 2021 [3].

La falta de actualizacion temporal de estos mapas los hace ineficientes para la toma de decisiones que requieren analizar la
evolucion de los cultivos agricolas a lo largo del tiempo, incluyendo su crecimiento y las distintas cosechas que se producen
anualmente.

1.2 Justificacion

EL proyecto busca resolver el problema de la escasez de datos etiquetados en Ecuador mediante la aplicacion de técnicas
avanzadas de aprendizaje profundo que permiten la clasificacion precisa de cultivos con conjuntos de datos limitados. Uti-
lizando enfoques como el TL y el aumento de datos, se puede mitigar la falta de datos y generar modelos robustos que
mejoren la capacidad de decision en la gestion agricola. De esta manera, se espera contribuir a mejorar los rendimientos y
la gestion de recursos en la agricultura ecuatoriana, optimizando practicas locales a través de la innovacion tecnoldgica.

1.3 Objetivos

1.3.1 Objetivo general

Desarrollar un modelo de clasificacion de cultivos para Ecuador utilizando técnicas de aprendizaje profundo para la mejora
de la toma de decisiones agricolas que supere la limitante de grandes cantidades de datos etiquetados.

1.3.2 Objetivos especificos

« Investigar técnicas de aumento de datos y transferencia de aprendizaje que puedan aplicarse a conjuntos de datos
limitados.

« Desarrollar un modelo de clasificacion de cultivos adaptado a las condiciones locales de Ecuador.
« Evaluar la precision y efectividad del modelo en diferentes escenarios agricolas con datos heterogéneos.

« Desarrollar una aplicacion que clasifique cultivos en Ecuador a partir de imagenes satelitales, utilizando modelos de
aprendizaje profundo desarrollados.



Datos

En este capitulo, se describe a profundidad la problematica de los datos, estrategias y demas limitaciones que podemos
encontrar al momento de proponer una metodologia para la clasificacion de cultivos y generacion de mapas para tipos de
cultivos.

La teledeteccion (Remote Sensing, RS) se utiliza ampliamente para la clasificacion y monitoreo de cultivos, asi como para el
analisis del uso y la cobertura del suelo (Land Cover Land Use, LCLU) en general [8, 9]. Este campo se centra en la recolec-
cion, andlisis y obtencidn de informacion a partir de imagenes capturadas por satélites, drones y otras plataformas aéreas,
permitiendo observar y monitorear la superficie terrestre y su entorno [8]. Las imagenes espectrales y de alta resolucion
generadas por estos sistemas se emplean en la clasificacion y categorizacion de diferentes coberturas y usos del suelo,
abordando problemas en agricultura, gestion de recursos y observacion ambiental.

Antes de profundizar en la problematica de clasificacién de cultivos, es fundamental entender qué datos tenemos disponibles
y qué se puede hacer con ellos. Al buscar datos que puedan ser Gtiles para resolver un problema, es necesario indagar en
las diversas fuentes y formatos que podamos encontrar. En el caso de problemas relacionados con LCLU, se requieren dos
grandes grupos de datos: informacion sobre el suelo y las etiquetas correspondientes.

La informacion del suelo se refiere a los datos visuales 0 sensoriales que se pueden registrar del drea que se desea estudiar.
Estos datos pueden incluir desde una imagen a color (0 RGB) hasta informacion mas compleja, como lecturas de radar,
topografia, datos meteoroldgicos, entre otros.

La mayoria de estos datos suelen almacenarse en formato raster, es decir, en mapas de bits 0 matrices, donde cada celda (o0
pixel) representa un valor correspondiente a una ubicacion geografica especifica. La dimension de cada celda dependera de
la resolucion espacial de la imagen, que puede variar desde varios kilometros (baja resolucion) hasta pocos metros o incluso
centimetros en imagenes de alta resolucion.

EL formato de archivo TIFF es cominmente utilizado para almacenar mapas de bits de imagenes satelitales, ya que permite
almacenar informacion adicional como la resolucion, el sistema de coordenadas y las dimensiones del archivo, necesarios
para ubicar geograficamente la imagen. En estos archivos, es posible encontrar matrices de hasta cuatro dimensiones. Las
dos primeras dimensiones corresponden a la latitud y longitud de los datos. La tercera dimensién depende de la cantidad
de tipos de datos disponibles. Por ejemplo, al contar con una imagen RGB, podemos tener tres matrices diferentes, una
para cada color. De esta manera, a medida que se agregan mas capas de informacion de una imagen, estas pueden apilarse.



2 Datos

Estas matrices de informacién se conocen como “bandas” La ultima dimension corresponde a la temporalidad. Una vez que
tenemos un blogue de datos para una zona (latitud y longitud) con diferentes caracteristicas (bandas), también podemos
almacenarlos en diferentes momentos en el tiempo. Esto permite organizar la informacion de manera estructurada sin
necesidad de varios archivos.

Elotro tipo de datos es la etiqueta. Estos datos son necesarios dependiendo del tipo de tarea que se desea realizar. Por ejem-
plo, la tarea de clasificacion (desde la perspectiva del aprendizaje automatico) requiere principalmente datos etiquetados.
Dado que la necesidad de datos etiquetados varia segun la tarea, este aspecto se discutira en la seccion Q. Una vez que
tenemos los grupos de informacién, es fundamental definir qué queremos clasificar. Las etiquetas o clases dependeran del
tipo de problema que se busque resolver, pudiendo abarcar desde la clasificacion de tipos de cultivos hasta la identificacion
de tipos de suelo, entre otros.

Las zonas etiquetadas suelen estar delimitadas por poligonos, aunque también pueden representarse mediante puntos o
lineas, dependiendo de la entidad geografica que se desea estudiar. Un formato comanmente utilizado para almacenar
estos datos geoespaciales es el shapefile [], en el cual se registran las coordenadas de uno o varios puntos (ubicaciones
especificas), lineas (trayectorias o limites lineales) o poligonos (areas cerradas que representan superficies). La complejidad
y tamafio de estas formas dependen de la cantidad de coordenadas que contengan.

Una opcion para mapear estas etiquetas en forma de poligonos con los datos de mapas de bits es mediante mascaras. Una
mascara es simplemente una matriz con la misma dimension en latitud y longitud que el mapa de bits. Al utilizar mascaras,
Los poligonos se transforman en una matriz de bits donde se asignan valores numeéricos a las etiquetas correspondientes.
Si se trabaja con una sola clase (por ejemplo, identificar si una zona pertenece 0 no a una categoria especifica), se emplean
mascaras binarias, donde el valor 1 indica la presencia de la clase y el valor O su ausencia. En caso de querer identificar
maltiples clases, se utilizan mascaras multiclase, asignando un numero distinto a cada clase.

Figura 2.1: Tipos de Datos Satelitales: (a) Imagen RGB satelital, (b) etiquetas en forma de polignonos, (c) etiquetas en forma
de mapa de bits.

En la Figura E se pueden observar los diferentes tipos de formatos y la informacion obtenida de cada uno. La Fig. E.a
muestra como una imagen puede representarse en mapas de bits utilizando las bandas RGB (rojo, verde y azul). La Fig. E].b
es un ejemplo de una clase de poligonos, en este caso, correspondiente a cultivos de maiz en el territorio ecuatoriano. Por
ultimo, la Fig. P.J.c presenta la mascara binaria generada tras procesar la etiqueta de cultivo de maiz como un mapa de bits.

En las siguientes secciones se presentan ejemplos de datos y se analiza como la necesidad de cada tipo de dato varia en
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funcion de la tarea a realizar y la disponibilidad de informacion.

2.1 Datasets

En esta seccion se describen los diferentes tipos de datos utilizados en problemas relacionados con la teledeteccion, como
datos satelitales, indices espectrales y datos etiquetados.

2.11 Datos Satelitales

Podemos encontrar diferentes tipos de datos satelitales. Los satélites tienen diferentes sensores para capturar diferentes
frecuencias del espectro electromagnético. Dependiendo de la cantidad de sensores, frecuencia de recorrido y resolucion
del sensor, tendremos diferentes datos con diferentes resoluciones y temporalidad. Entre los diferentes datos abiertos sa-
telitales tenemos el dataset Sentinel 1y 2, imagenes satelitales obtenidas del programa Copernicus [[1], impulsado por la
Agencia Espacial Europea, ESA en sus siglas en inglés. EL dataset Sentinel 1se trata de datos obtenidos por radar, y Sentinel
2 tiene una coleccion de bandas multiespectrales. Ambos datasets han sido ampliamente usados en diferentes proyectos
relacionados con RS. En este proyecto, nos centraremos en el dataset de Sentinel 2.

Los datos satelitales adquiridos fueron mejorados mediante un proceso de preprocesamiento, ya que las imagenes originales
obtenidas directamente del satélite requieren correcciones antes de ser usadas. El dataset Sentinel 2-2A ha sido procesado
mediante algoritmos de correccion atmosférica y procesos de correccion para reducir los errores en la recoleccion de datos
desde el satélite [[2].

EL conjunto de datos cuenta con 13 bandas espectrales, incluyendo las bandas RGB. Entre las bandas comunmente utilizadas
se encuentran: azul (B2), verde (B3), rojo (B4), borde rojo 1 (B5), borde rojo 2 (B6), borde rojo 3 (B7), infrarrojo cercano NIR
(B8), borde rojo 4 (B8A), infrarrojo de longitud de onda corta SWIR 1 (B11), y SWIR 2 (B12). Estas bandas pueden encontrarse
en diferentes satélites y en diferentes resoluciones. En el caso de Sentinel 2-2A, a resolucion de las bandas varia entre 10
m,20 my 60 m.

2.1.2 indices Espectrales

Otra forma de obtener datos adicionales es mediante indices espectrales. Estos indices se utilizan para realzar caracteristicas
especificas de la superficie terrestre a partir de las bandas espectrales de las imagenes de satélite [13]. Los indices mas
comunmente usados son los siguientes:

indice de Vegetacion de Diferencia Normalizada (NDVI), el cual resalta las zonas de vegetacion usando la siguiente ecua-
cion:

NIR—Red

Donde VI R corresponde a la reflectancia en la banda del infrarrojo cercano (banda B8 de Sentinel-2) y Red a la reflec-
tancia en la banda del rojo (banda B4).
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indice de Vegetacion Ajustado al Suelo (SAVI), se utiliza para minimizar la influencia del suelo en &reas con baja densidad
vegetal. Se calcula utilizando la siguiente ecuacion:

NIR—Red)x(1+L
SAVI =1 (N1R+R)e§5rL) : (2.2)

Donde L es un factor de correccion, cominmente establecido en L = 0.5.

indice de Agua de Diferencia Normalizada (NDWI), el cual resalta los cuerpos de agua usando las bandas NIR (B8) y SWIRT
(B11),ya que la reflectancia del agua es baja en el infrarrojo cercano y alta en SWIR. Se calcula utilizando la siguiente ecuacion:

_ (NIR—-SWIR1)
NDWI = (NTrvswrirn (23)

indice de Suelo Desnudo (BSI), para identificar partes del suelo que se encuentren [lanos o en construccion. De esta forma
se pueden distinguir las dreas urbanas y suelos de lugares con mayor vegetacion o cuerpos de agua.

_ (SWIR1+Red)—(NIR+Blue)
BSI = (GWIRT Red) ¥ (NTRF Blue) (24)

1.0

0.0

(a) Imagen original

(e) BSI

Figura 2.2: Tipos de indices Espectrales: (a) Imagen RGB satelital, (b) NDVI, () SAVI, (d) NDWI y (e) BSI.

En la Figura P.4 se presentan los distintos indices mencionados anteriormente. La Fig. P.4.a muestra la imagen satelital en
RGB; las Figuras E.b y E.c ilustran indices de vegetacion que realzan las areas con cobertura vegetal y atentan las zonas
aridas y los cuerpos de agua. En este caso, el SAVI evidencia con mayor precision las diferencias entre diversas densidades
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de vegetacion, mientras que el NDVI resalta de manera general la presencia de vegetacion. La Fig. P.4.d destaca los cuerpos
de agua, y a Fig. P.2e pone de relieve el suelo desnudo, abarcando tanto dreas de cultivos recogidos como suelos aridos.

2.1.3 Datos Etiquetados

En relacion a datos etiquetados, es fundamental definir el tipo de etiquetas necesarias para abordar el problema que se
desea solucionar. En el ambito agricola, especialmente en regiones tropicales, podemos encontrar datasets de etiquetado
de poligonos correspondientes a cultivos como banano, arroz y soya [3].

Existen diversos datasets etiquetados que facilitan el estudio y monitoreo de cultivos. Por ejemplo, en [14] se genera una co-
leccion de datos, tanto datos satelitales como etiquetados, de cultivos en Africa. Estos datos se obtuvieron especificamente
en sectores de Sudan y Ghana, abarcando etiquetas de 23 tipos diferentes de cultivos. Asimismo, iniciativas como el Experi-
mento Conjunto para Evaluacion y Monitoreo de Cultivos [[15], o en sus siglas en inglés JECAM, proporcionan colecciones de
poligonos etiquetados de varios paises, incluyendo paises de América Latina como Brasil y Argentina.

Estos datasets suelen centrarse en proporcionar etiquetas o mascaras, requiriendo la recoleccion e integracion con datos
adicionales, con imagenes satelitales, con informacion detallada del suelo. Programas como Sentinel-2 ofrecen imagenes
que complementan estos conjuntos de datos etiquetados.

Por otro lado, iniciativas como CropHarvest [6] han desarrollado conjuntos de datos que integran etiquetas de cultivos de
diferentes fuentes, resultando en un total de 95,186 puntos de datos estandarizados. Cada punto de datos incluye etiquetas
georreferenciadas considerando latitud, longitud, elevacion del suelo, etiquetas de tipo de cultivo y temporalidad. El tipo
de etiqueta varia segun el pais, incluyendo etiquetas binarias (cultivo y no cultivo) en paises como Kenia y Brasil, asi como
conjuntos de datos multiclase con etiquetas para cultivos especificos —como maiz— y caracteristicas del tipo de suelo, por
ejemplo, pastizales y cuerpos de agua.

Ademds, alrededor del 74% de estas etiquetas estan emparejadas con datos de teledeteccion y datos meteoroldgicos, in-
cluyendo datos satelitales como Sentinel-2 (imégenes opticas multiespectrales), Sentinel-1 (radar), el Modelo Digital de
Elevacion SRTM y datos climaticos ERAS. Estos conjuntos de datos reducen el tiempo de procesamiento al integrar diferentes
tipos de datos, permitiendo enfocarse en el desarrollo de modelos especializados para diversas regiones geograficas.

2.2 Datosy Tareas de Teledeteccion para la Agricultura

En el ambito de la teledeteccidn, se distinguen tres grandes tareas: deteccion, clasificacion y segmentacion.

+ Deteccion: se refiere a la identificacion de la presencia y localizacion de caracteristicas especificas, objetos o cambios
en la superficie terrestre a o largo del tiempo [16, 17].

- Clasificacion: consiste en asignar etiquetas a imagenes para identificar diferentes tipos de coberturas, como areas
urbanas, vegetacian, cuerpos de agua y cultivos [9].

- Segmentacion: implica dividir las imagenes en regiones homogéneas de pixeles con caracteristicas similares, agru-
pando dreas de interés [18]. Ademas, la segmentacion también puede usarse como un paso previo a la asignacion de
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etiquetas a las areas que agrupa cuando no se dispone de datos etiquetados o estos son insuficientes.

La problematica abordada en este proyecto se centra en la clasificacion del uso y cobertura del suelo (LCLU), enfocada en
etiquetas de agricultura. Para realizar una clasificacion precisa en el ambito agricola, es esencial disponer de datos multi-
espectrales con alta resolucion temporal y espacial. La seleccion de estos datos depende del tipo de cultivo que se desea
identificar, ya que cada uno posee diferentes patrones de crecimiento, con variaciones en los periodos de siembra, cosecha
y rotacion [19]. Por lo tanto, la informacion sobre los cultivos influye directamente en los requisitos temporales y espaciales
de los datos. Ademas, la incorporacion de indices espectrales, como el NDVI, y datos medidos en campo, como la calidad del
sueloy la temperatura, enriquece el andlisis y contribuye a una clasificacién mas precisa [20]. Por ello, la adecuada seleccién
de datos y la frecuencia de su recoleccion son fundamentales para una clasificacion eficaz.

La segmentacion en teledeteccion de cultivos es fundamental para mapear y monitorear parcelas agricolas a nivel de campo.
Este proceso implica la agrupacion de pixeles en imdgenes de alta resolucion, permitiendo distinguir claramente los limites
entre diferentes grupos, en este caso, parcelas y tipos de cultivo [21]. A diferencia de la clasificacion, la segmentacion puede
no requerir etiquetas, ya que su objetivo es agrupar caracteristicas similares en la imagen. Posteriormente, estos grupos
pueden ser clasificados utilizando un menor volumen de datos etiquetados en comparacion con la clasificacion directa, lo
que optimiza el proceso y reduce la necesidad de grandes conjuntos de datos etiquetados [19].

Sin embargo, aunque la segmentacion puede facilitar la reduccion de datos etiquetados necesarios, no resuelve comple-
tamente el problema, ya que la calidad y representatividad de los datos de entrenamiento siguen siendo factores criticos.
Ademds, ciertas técnicas de segmentacion requieren imagenes previamente segmentadas para el entrenamiento de mode-
los avanzados, lo que puede limitar su aplicabilidad en escenarios con escasez de datos anotados. Por lo tanto, persisten
desafios importantes en la obtencion y uso eficiente de datos para la segmentacion y clasificacion en teledeteccion agricola.

2.3 Limitaciones de Adquisicion de Datos

Los datos requeridos para un estudio especifico dependen de la zona que se pretende clasificar. Estas zonas, denominadas
“dreas de estudio”, pueden categorizarse segun su extension.

« Estudios por sectores: Estos se centran generalmente en asentamientos puntuales. Requieren imagenes de alta
resolucion, habitualmente obtenidas mediante drones o vehiculos aéreos no tripulados (UAV, por sus siglas en inglés).
Estos dispositivos permiten capturar imagenes detalladas a baja altitud [22].

« Estudios por ciudad: Estas clasificaciones establecen su area de estudio a una ciudad o dreas especificas. Esto per-
mite un analisis de cultivos en una zona con similitudes en clima y propiedades de suelo, aumentando el drea de
clasificacion sin perder exactitud. La resolucion requerida de las imagenes espectrales y la complejidad de los mo-
delos de clasificacion pueden disminuir debido a la homogeneidad de las zonas [23, P4].

« Estudios por pais: Mientras aumenta el area que se desea clasificar, surgen mas problemas. Un drea mayor requiere
imdgenes nitidas. En varios estudios [R5], se han encontrado dificultades para obtener imégenes sin nubes y falta de
datos etiquetados. En paises europeos, donde existe un mayor acceso a datos, el problema radica en la heterogeneidad
de los mismos. Para solucionar esto, se han creado conjuntos de datos como Eurocrops [26] y CropHarvest [6], que
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buscan ofrecer alternativas estandarizadas para encontrar datos etiquetados.

Para Ecuador, el MAG ha publicado diversos datos del sector agropecuario en el Geoportal del Agro Ecuatoriano [3]. Este geo-
portal proporciona informacion sobre estimaciones de cultivos permanentes como banano, caiia de azlcar y palma africana
desde 2018 hasta 2022; y cultivos anuales como arroz, maiz y soya desde 2020 hasta 2021. Sin embargo, solo se ha podido
recopilar un mapa de etiquetas por ao.

Ademas, en lugares tropicales que presentan diferentes condiciones climaticas, se enfrentan desafios como la dificultad
para obtener datos nitidos sin la presencia de nubes temporales. Esto se debe a que [as nubes pueden ocultar la superficie
terrestre, lo que complica la captura de imagenes satelitales claras [25]. Ambas cuestiones dificultan la obtencion de datos
adecuados para el entrenamiento de clasificadores de cultivos.

2.4 Datos Personalizados para Clasificacion de Cultivos

La clasificacion de cultivos requiere acceso a datos precisos y personalizados, especialmente imagenes satelitales de alta
calidad en el area de estudio requerida. A continuacion, se presentan algunas herramientas que permiten la obtencion y
procesamiento de estos datos:

+ Sentinel Hub [27]: Proporciona acceso a imagenes espectrales, incluyendo Sentinel-2 y Sentinel-1y herramientas
para obtenerlas de forma facil y personalizada.

« Copernicus Open Access Hub [28]: Similar a Sentinel Hub, ofrece acceso a imagenes de Sentinel-2 y Sentinel-1, pero
a traveés de la plataforma oficial de Copernicus.

+ Geosat [29]: Adicionalmente, existen empresas que se dedican a ofrecer servicios de imagenes satelitales persona-
lizadas a demanda para monitoreo y deteccion.

+ Google Earth Engine (GEE) [30]: GEE brinda acceso a una vasta coleccion de imagenes satelitales historicas y ac-
tuales, incluyendo Landsat y Sentinel-2. Permite procesar grandes volimenes de datos de forma remota en la nube
y es ampliamente utilizado en aplicaciones de teledeteccion y clasificacion de cultivos.

Estas herramientas permiten a los investigadores y agricultores obtener y procesar datos personalizados para mejorar la
precision en la clasificacion de cultivos, lo que a su vez ayuda a optimizar las practicas agricolas y mejorar la productividad.

Sin embargo, aunque plataformas como GEE facilitan el acceso y procesamiento eficiente de grandes conjuntos de datos —
actualizandose diariamente y permitiendo la automatizacion de procesos—, existen limitaciones importantes. Por ejemplo,
la calidad y resolucion espacial de las imagenes pueden no ser suficientes para todas las aplicaciones agricolas, especialmen-
te cuando se requiere identificar cultivos a nivel de parcela. Ademas, la disponibilidad de datos etiquetados y la adaptacién
de los algoritmos a condiciones locales siguen siendo desafios relevantes. Por tanto, la tesis aborda la problematica de
como superar estas limitaciones para lograr una clasificacion de cultivos mas precisa y adaptable a contextos especificos,
aprovechando al maximo las capacidades de las plataformas existentes, pero reconociendo sus restricciones.
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En este capitulo se describen las técnicas de aprendizaje profundo y se analizan las que se emplean con mayor frecuencia en
la problematica de clasificacion de Uso y Cobertura del Suelo (LCLU), con un enfoque particular en la clasificacion de cultivos.
Ademas, se detallan las arquitecturas de los modelos utilizados en el estado del arte, asi como las metodologias propuestas
en estudios realizados en el territorio ecuatoriano.

La clasificacion en LCLU ha sido objeto de mucha investigacion [4, 2, 26, 51,152, 53, 34], debido a la importancia de comprender
las caracteristicas que nos permiten describir la cobertura de la tierra enfocada en las areas de toma de decisiones de la
agricultura. A lo largo de los anos, la clasificacion LCLU ha incorporado tecnologias como el aprendizaje automatico (ML) y
las imagenes satelitales para recopilar datos geoespaciales de areas de interés [31].

Entre los algoritmos de ML empleados para la clasificacion de uso y cobertura del suelo (LCLU), el método Random Forest
(RF), unatécnica supervisada que requiere datos etiquetado, destaca por su capacidad para manejar datos complejos y mul-
tidimensionales de manera eficiente [4]. Este algoritmo construye multiples drboles de decision durante el entrenamiento,
donde cada arbol clasifica individualmente cada pixel en funcion de las caracteristicas proporcionadas usando las etiquetas
reales.

En la Figura Ba se ilustra como RF se compone de diferentes arboles, cada uno de los cuales utiliza umbrales determina-
dos automaticamente por el algoritmo de aprendizaje para dividir los datos y asignar las posibles clases a las que puede
pertenecer una muestra. La clasificacion final de cada pixel se determina mediante una votacion mayoritaria entre todos los
arboles, produciendo asi mapas de segmentacion, como se muestra en la Fig. E].b, donde cada pixel es asignado a la clase
mas votada por el conjunto de arboles.

RF es especialmente efectivo para conjuntos de datos grandes, con ruido o con correlaciones entre caracteristicas, gracias a
sumecanismo de aleatorizacion. En cada division de un arbol, el algoritmo selecciona aleatoriamente un subconjunto de las
caracteristicas disponibles (por ejemplo, los 18 o N atributos espectrales de cada pixel satelital), lo que reduce la correlacion
entre los arboles y mejora la generalizacion del modelo. Esta aleatorizacion, junto con la sumarizacion por medio de voto
mayoritario, permite que RF sea robusto frente a datos complejos y variables.

Sin embargo, a medida que aumenta el area de estudio y la complejidad de las caracteristicas (por ejemplo, informacion
temporal y dreas de estudio por pais), los algoritmos simples como RF pueden volverse menos efectivos. Estas limitaciones,
junto con la naturaleza tanto de los datos satelitales como de la tarea de clasificacion, han impulsado el desarrollo de
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Figura 3.1: Mecanismo de algoritmo Random Forest: (a) Clasificacion de pixeles por votacion mayoritaria. (b) representacion
del mapa de la clasificacion de pixeles.

modelos capaces de manejar grandes volimenes de informacion y extraer caracteristicas mds complejas para mejorar la
precision en LCLU.

El aprendizaje profundo (DL), una subarea del ML, se basa en el uso de redes neuronales artificiales. La unidad basica de
estas redes es la neurona, como se ilustra en la Figura B2, Cada neurona recibe informacion de maltiples unidades de la capa
anterior o directamente de los datos de entrada del modelo. Esta informacién se combina mediante una suma ponderada,
donde cada entrada x; se multiplica por un peso individual w;, y se afiade un sesgo b:

N
z= Z wiz; + b 31
=1

Posteriormente, el valor resultante z se transforma mediante una funcién de activacion f(z), que introduce no linealidad
al modelo y permite a la red aprender patrones complejos. De esta forma, la salida de la neurona es a, la cual se transmite
a las neuronas de la siguiente capa [35]. Este mecanismo permite a las redes neuronales aprender patrones complejos y
realizar tareas avanzadas como clasificacion, prediccion y reconocimiento.

b

f@ —7Y

Figura 3.2: Mecanismo de una neurona.

Una red neuronal consta de tres partes principales: la capa de entrada, las capas ocultas y la capa de salida, como se muestra

1
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en la Figura B.3 EL nimero de neuronas y las conexiones entre capas se estableceran segun la complejidad del problema
que se busca resolver. Cada capa de la red esta representada por un vector o matriz. Cada elemento de este vector puede
interpretarse como una unidad que desempena el papel de una neurona [35].

Capade Entrada Capade Salida

Figura 3.3: Capas de red neuronal: Capa de entrada, oculta y salida.

En la clasificacion de LCLU, se utilizan imagenes espectrales como datos de entrada para redes neuronales. Estas imdgenes se
representan como matrices tridimensionales que contienen informacion sobre latitud, longitud y bandas espectrales. Las re-
des neuronales especializadas en el procesamiento de datos matriciales se conocen como redes neuronales convolucionales
(CNN, por sus siglas en inglés) [35]. A diferencia de las redes tradicionales, las CNN emplean la operacion de convolucion.

Las configuraciones de las capas de convolucion y las dimensiones de las matrices pueden variar, lo que permite disefar
redes mas eficientes segun la naturaleza de los datos. Las redes convolucionales surgieron en el campo del DL como una
herramienta especializada para el andlisis de datos matriciales, destacando particularmente en la identificacion y extraccion
de patrones complejos en imagenes [35].

En la Figura @ se ilustra el funcionamiento de las redes convolucionales. Cada capa de convolucion, seguida de una funcion
de activacion como ReLU (Rectified Linear Unit), acttia en conjunto como un filtro no lineal que permite extraer caracteristicas
relevantes de la imagen. Es importante destacar que no es unicamente la funcion de activacion la que opera como filtro, sino
la combinacion de la operacion de convolucion y la activacion la que posibilita la deteccion de patrones complejos vy la
representacion jerarquica de las caracteristicas.

Posteriormente, una capa de pooling reduce la cantidad de parametros y el tamafio espacial de la representacion generada
por la capa de convolucion, disminuyendo asi la dimensionalidad y mejorando la eficiencia computacional. Finalmente, se
incluye una capa completamente conectada (fully connected) o una capa especifica de salida, encargada de clasificar las
caracteristicas extraidas en las etapas anteriores.

Las CNN suelen enfocarse en clasificar imagenes completas, asignando una clase o0 categoria a toda la imagen. Sin em-
bargo, en tareas como la identificacion o segmentacion de cultivos a gran escala, es necesario clasificar cada pixel de una
imagen para generar un mapa detallado de segmentacion. Para lograr esto, se emplea una arquitectura especializada lla-
mada encoder-decoder (ver Figura B.9). Esta arquitectura esta disefada para transformar una entrada, como una imagen,
en una salida estructurada, como un mapa de segmentacion donde cada pixel tiene asignada una clase [57]. Consta de dos
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Figura 3.4: Arquitectura de red neuronal convolucional. Obtenido de [36].

componentes principales:

Las CNN suelen enfocarse en clasificar imagenes completas, asignando una clase o categoria a toda la imagen. Sin embargo,
en tareas como la identificacion o segmentacién de cultivos a gran escala, es necesario clasificar cada pixel de una ima-
gen para generar un mapa detallado de segmentacidn. Para lograr esto, se emplea una arquitectura especializada llamada
encoder-decoder (ver Figura E]. La arquitectura encoder-decoder esta disefiada para transformar una entrada, como una
imagen, en una salida estructurada, como un mapa de segmentacion donde cada pixel estd etiquetado con su clase corres-
pondiente [37]. Esta arquitectura consta de dos componentes principales:

 Encoder (Codificador): El encoder toma la imagen de entrada y la convierte en una representacion comprimida,
extrayendo caracteristicas relevantes mientras reduce la resolucion espacial.

+ Decoder (Decodificador): A partir de esta representacion comprimida, el decoder reconstruye un mapa a la resolucion
original de la imagen, prediciendo una distribucion de probabilidad por clase para cada pixel. La clase final se asigna
seleccionando aquella con la mayor probabilidad.

Encoder

Figura 3.5: Arquitectura encoder-decoder.

La flexibilidad de esta arquitectura permite que tanto el encoder como el decoder utilicen diferentes mecanismos para
procesar los datos. Por ejemplo, las capas convolucionales son cominmente empleadas para reducir la dimensionalidad y
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extraer caracteristicas de las imagenes. Ademas, esta arquitectura puede incorporar informacion adicional, como metadatos
0 semantica contextual, para mejorar la precision de la clasificacion.

Una arquitectura variante que utiliza capas convolucionales es U-Net [38]. Como se muestra en la Figura B.§, U-Net se aseme-
ja al mecanismo encoder-decoder, donde la primera parte (encoder) reduce la resolucion espacial mediante convoluciones
y pooling, mientras que la segunda (decoder) la expande mediante capas convolucionales transpuestas (también conocidas
como deconvoluciones), que permiten aumentar la resolucion espacial. Sin embargo, U-Net introduce una mejora: durante la
expansion, concatena los mapas de caracteristicas de las capas correspondientes del encoder con las del decoder mediante
conexiones de salto (skip connections). Esto explica su forma simétrica en “U/”y su nombre.

Imagen Mapa de
de I > = > Segmentacion
Entrada resultante
. >
W . M P conv 3x3, ReLU
’:_:\} copiar y recorta

* max pool 2x2

4
N
[»DD B D}Dl:l 4 up-conv 2x2
* ‘ . conv 1x1
[ CE— —

Figura 3.6: Arquitectura U-net.

Estas conexiones permiten recuperar informacion espacial detallada, como bordes y texturas, que se pierden durante la re-
duccion de resolucion en el encoder. Por ejemplo, en imagenes de cultivos, esto es necesario principalmente para segmentar
con precision los limites entre cultivos o tipos de suelo. En la parte del encoder, U-Net puede incorporar configuraciones de
modelos CNN. Algunos ejemplos especificos aplicados a la clasificacion de cultivos se detallaran en secciones posteriores.

Tanto las arquitecturas basadas en CNN y U-Net han demostrado un gran potencial para la clasificacion y segmentacion de
cultivos en imagenes de teledeteccion; sin embargo, presentan limitaciones importantes. Entre las principales restricciones
destaca la necesidad de grandes volumenes de datos etiquetados de alta calidad, los cuales suelen ser escasos 0 costosos
de obtener en el ambito agricola. Ademas, estos modelos pueden tener dificultades para generalizar a nuevas regiones o
condiciones distintas a las vistas durante el entrenamiento, lo que limita su transferibilidad y utilidad practica [5, B].

Asimismo, las CNN y U-Net son sensibles a la variabilidad espectral y espacial de las imdgenes satelitales, asi como a la
presencia de ruido y artefactos, lo que puede afectar la precision de la segmentacion y clasificacion. Por ello, es fundamen-
tal explorar técnicas complementarias como el aprendizaje transferido, el aprendizaje semi-supervisado o el uso de datos
sintéticos para mitigar estos desafios y mejorar la generalizacion de los modelos en contextos de datos limitados [5].
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3 Técnicas de Aprendizaje Profundo

A continuacion, se presentan modelos y técnicas de DL utilizados en la clasificacion de cultivos, los cuales implementan
diversas estrategias de aprendizaje basadas en redes neuronales.

3.1 C(Clasificacion Mediante Aprendizaje por Transferencia

La clasificacion de uso y cobertura del suelo, incluyendo cultivos, se realiza comiunmente mediante arquitecturas de DL,
especialmente redes neuronales convolucionales (CNN) como ResNet-50, Inception-V3 y VGG-19 [31, B9, 40]. Estos modelos
han demostrado una precision superior frente a otros métodos tradicionales, gracias a su capacidad para extraer y aprender
representaciones complejas de las imagenes satelitales.

Sin embargo, el entrenamiento de estas arquitecturas desde cero requiere grandes volimenes de datos etiquetados y un
considerable poder computacional. Aqui es donde el aprendizaje por transferencia (TL) cobra relevancia: esta técnica permite
reutilizar el conocimiento adquirido por modelos preentrenados en tareas relacionadas, reduciendo significativamente el
tiempo de entrenamiento y la complejidad computacional, especialmente en contextos con datos geoespaciales y temporales
de gran volumen. EL TL ha permitido obtener modelos generalizables con menos datos y menor tiempo de entrenamiento,
aunque aun se requiere mas investigacion para explotar su potencial en teledeteccion [31].

Estudios recientes [531, 41, 39] han reportado altos niveles de exactitud al aplicar TL en tareas de clasificacion de uso de
suelo. Utilizando pesos preentrenados en grandes conjuntos de imagenes, como ImageNet, y ajustando los modelos a tareas
especificas de uso de suelo, se han alcanzado precisiones del 97,29% para ResNet-50, 97,57% para Inception-V3 y 96,86%
para VGG-19.

ImageNet, aunque no estd centrado en LCLU, contiene alrededor de 1000 clases variadas y ha demostrado ser atil para la
identificacion de uso de suelo y cultivos [41]. En [31], se empled TL con pesos preentrenados en ImageNet para clasificar
imagenes satelitales de baja altura de cultivos. EL conjunto de datos UCM, utilizado para el ajuste fino (fine-tuning), contiene
21 clases de LCLU con 100 imagenes por clase, incluyendo categorias como bosque, agricultura y rios. Con este enfoque, se
lograron las precisiones mencionadas anteriormente.

En la FiguraB7 se ilustra la diversidad de imagenes de ImageNet (Fig. B.4.a) y ejemplos del conjunto de datos UCM (Fig. B7.b),
mostrando las diferencias y similitudes entre las imagenes de preentrenamiento y las de ajuste fino empleadas en la tarea
de LCLU.

Otro enfoque utilizado en DL que aprovecha el aprendizaje por transferencia son las redes neuronales convolucionales pro-
fundas (DCNN), caracterizadas por su gran numero de capas y complejidad. Ejemplos destacados incluyen CaffeNet, Google-
Net y EfficientNet. En el estudio de Scott et al. [39], se explora la aplicacion de TL usando estas DCNN, analizando como el
aumento de datos y el ajuste en la extraccion de caracteristicas afectan el rendimiento. Para evaluar los modelos, utilizaron
dos conjuntos de datos de referencia ampliamente empleados en estudios de clasificacion: UCM [42], que contiene imagenes
de uso de suelo de alta resolucion, y RSD [43], enfocado en imdagenes de teledeteccion. Los resultados mostraron que el au-
mento de datos mejora significativamente la exactitud, con ResNet-50 alcanzando un 98,5 +1,4% en UCMy un 97,8 £ 2,7% en
RSD. Ademas, estas arquitecturas fueron usadas para clasificar imagenes completas, por lo que esto nos puede proporcionar
unaidea de los modelos que pueden usarse como base en la parte de codificacion si se desea realizar segmentacion.
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Agricultura

Charrapal

Bosques

(a) Conjunto de imagenes - ImageNet (b) Conjunto de imagenes - UCM

Figura 3.7: Ejemplo de Trasferencia de aprendizaje usando dos conjuntos de datos: (a) Conjunto de imagenes ImageNet (+14
millones de imdagenes), (b) Conjunto de imagenes UCM (2 100 imagenes).

ELTL también se ha utilizado para desarrollar nuevos modelos que requieren mecanismos para reducir el tiempo de procesa-
miento, ya sea debido a su complejidad o a la falta de datos necesarios en los modelos preentrenados. En [40], se introduce
un innovador modelo llamado TIML (Task-Informed Meta-Learning), basado en el metaaprendizaje agnostico de modelos
(MAML) [44], disenado para aprovechar los metadatos en aplicaciones agricolas. Este estudio subraya la importancia de que
las areas de preentrenamiento y las areas objetivo compartan caracteristicas y tareas similares para una transferencia efec-
tiva del aprendizaje. Un hallazgo significativo fue que, en los puntos de datos de Brasil, el rendimiento del modelo empeoro
al aplicar TL. Esto resalta la necesidad de seleccionar cuidadosamente los conjuntos de datos preentrenados para garantizar
una transferencia de conocimiento efectiva entre diferentes regiones agricolas. Esto significa que al usar TL en segmentacion
de cultivos es primordial que los datos usados para preentrenar sean lo mas similares a los datos objetivo.

Por otro lado, el modelo mas avanzado para la clasificacion de cultivos se presenta en [45]. Este modelo utiliza un Trans-
formador de Teledeteccion Preentrenado (Presto) y ha demostrado un alto rendimiento en diversos escenarios de imagenes
satelitales. La arquitectura facilita la adaptacion a diferentes dimensiones de entrada y admite predicciones de series tem-
porales. Como se ilustra en la Figura B8, el modelo selecciona un pixel, que incluye las diferentes bandas espectrales, y Lo
codifica para obtener caracteristicas de dicho pixel. Posteriormente, extrae mas estadisticos para luego realizar un algoritmo
de clasificacion como Random Forest para clasificar el pixel. Este proceso se repite en toda la imagen hasta conseguir un
mapa de segmentacion completo.

A pesar de su aparente simplicidad, el modelo ha mostrado resultados prometedores con una exactitud del 95,3%, reducien-
do significativamente el tiempo y la memoria requeridos para el entrenamiento y ejecucion de los modelos usados para
la segmentacion. Sin embargo, al ser un desarrollo reciente, requiere mayor andlisis para comprender sus capacidades y
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Figura 3.8: Arquitectura de Presto. Obtenido de [45].

limitaciones en diferentes contextos agricolas.

3.2 LCLU en Ecuador

En Ecuador, la falta de datos detallados sobre el usoy cobertura del suelo representa un desafio significativo para los estudios
ambientales y la toma de decisiones en el sector agricola [46]. Ante esta carencia, los trabajos de monitoreo y deteccion de
uso de suelo suelen apoyarse en fuentes publicas, principalmente imagenes satelitales [46, 4/, 2].

Un ejemplo de este enfoque se aprecia en [4/], que utilizo imagenes satelitales para identificar patrones de deforestacion y
cultivos ilegales de coca en la Amazonia ecuatoriana y colombiana. En este caso, se emplearon algoritmos de clasificacion no
supervisada, como métodos de agrupamiento (clustering), para categorizar areas forestales, agricolas, hidricas y urbanizadas
a lo largo de varios anos, sin necesidad de etiquetas previas. Este tipo de analisis permitio calcular indices de deforestacion
y detectar posibles zonas de cultivos ilegales.

En la region costera, Cevallos et al. [46] aplicaron imdgenes Sentinel-2 para identificar cultivos de cafa de azlcar, enfren-
tando como principal limitacion la escasa disponibilidad de imagenes libres de nubosidad, lo que dificulto la obtencion de
clasificaciones precisas.

En contextos urbanos, los métodos de aprendizaje automético basados en agrupamiento han demostrado ser eficaces para
areas geograficas reducidas. Por ejemplo, en el cantén Quero, provincia de Tungurahua, la clasificacion del uso del suelo
mediante imagenes satelitales alcanzo una precision del 83,29% con técnicas tradicionales de ML, y mejoro hasta un 87,43%
al aplicar modelos de DL [2].

Sin embargo, a pesar de estos avances, el desarrollo de tecnologias robustas para la deteccion y monitoreo de la cobertura
agricola en Ecuador sigue viéndose limitado por la escasez de datos detallados y etiquetados. Aunque se han alcanzado
altos niveles de precision en estudios puntuales, como el mencionado, estos resultados no son facilmente generalizables a
regiones agricolas mas amplias y diversas.

Frente a estas limitaciones, el presente proyecto se diferencia al centrarse en el desarrollo y evaluacion de metodologias
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de aprendizaje profundo orientadas a la generacion precisa de mapas de cultivos en distintas zonas agricolas del pais,
priorizando la superacidn de los desafios asociados a la adquisicion y el etiquetado manual de datos en escenarios donde
estos recursos son escasos. De este modo, lainvestigacion busca avanzar en la aplicacion de técnicas de teledeteccion agricola
adaptadas a la realidad ecuatoriana, ampliando el alcance y la robustez de las soluciones existentes para el monitoreo y
gestion eficiente del sector agricola.

3.3 (Criterios de Evaluacion y Optimizacion en DL

Los criterios de evaluacion y optimizacion en modelos de Deep Learning son fundamentales para garantizar la eficacia y
generalizacion de los modelos. Se probaron y evaluaron varias funciones de pérdida para optimizar el entrenamiento de los
modelos CNN, y se utilizaron diversas métricas para comparar la eficiencia de los modelos propuestos.

3.31 Funcion de Pérdida

La funcion de pérdida (loss function) cumple un rol central al cuantificar la discrepancia entre las predicciones del modelo
y los valores reales, guiando asi el proceso de optimizacion durante el entrenamiento. La eleccion de esta funcion depende
directamente del tipo de problema abordado. Para casos de clasificacion, se emplean cominmente las siguientes funciones
de pérdida:

Entropia cruzada (Cross-entropy) [48] es una funcion usada para medir la discrepancia entre distribuciones de probabilidad
reales (P) y predicciones (Q). La entropia cruzada se define generalmente de la siguiente forma:

H(P,Q)= - _ P(x)log(Q(z)) (32)

rzeX

donde P(x) representa la distribucion real, es decir, las etiquetas verdaderas, y )(z) representa la distribucion de las
predicciones del modelo.

La entropia puede usarse para la clasificacion binaria y a clasificacion categorica, como se emplea en [31, 49] de la siguiente
forma:

Binary cross-entropy [48], usadas en clasificaciones binarias, es decir, dos clases (0,1), la cual se define como:

L = —[y log(p) + (1 — y) log(1 — p)] (33)

Donde y representa la etiqueta verdadera (0 0 1),y p, la probabilidad de que el valor predicho sea de la clase 1.

Categorical cross-entropy [48], es usada para clasificaciones multiclase (C' > 2 clases), la cual se define:

c
L=- Z yi 0g(p:) (34)
=1
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Donde y; representa la etiqueta real en formato one-hot encoding (1 para la clase verdadera, O para las demas), este formato
se explica en profundidad en la subseccion [ La variable p; es la probabilidad predicha por el modelo para la clase 4. En
este caso, cada pixel tendra un conjunto de probabilidades de pertenecer a las diferentes clases.

Binary focal loss [50] es una adaptacion de la entropia cruzada binaria para manejar desbalanceo de clases, enfocandose
en ejemplos dificiles de clasificar. Esta funcion de pérdida se define como:

Binary focal loss(p;) = —ay(1 — py)7 log(py)

D siy =1 (3.5)
donde: p; = Y
1—p siy=0
Donde -y (gamma) controla el enfoque en ejemplos dificiles (con valores tipicos entre 2y 5) y av; es el peso para balancear
clases (por ejemplo: o« = 0.25 para una clase minoritaria).

Categorical focal loss [50] es una extension multiclase que generaliza el concepto de binary focal loss.

K
Categorical focal loss(p, y) = — Z a;(1 — p;)"y; log(p;)
i=1
’ (36)
1 silaclasez es verdadera
donde: y; =
0 paraelresto

Otras funciones de pérdidas usadas para problemas de segmentacion tratan de evaluar la superposicion entre la mdscara
real y la mascara predicha de las diferentes clases. Entre dichas funciones, probaremos usar las siguientes:

Dice loss [50], o funcion de pérdida Sorensen-Dice mide la superposicion entre mdascaras de segmentacion predichas por el
modelo (?’] y las reales (Y):

. 2lyny
Piee (V1) = \Y|!+IY|| 37)

Dice loss =1 — Dice

Donde un resultado de O muestra una superposicion perfecta. Este tipo de funciones ha demostrado robustez ante desba-
lanceo de clases.

Jaccard loss [50], o funcion Jaccard de pérdida viene delindice loU (interseccion sobre la union), la cual penaliza mayormente
los errores en bordes y objetos pequefios en comparacion con la funcion Dice. Esta funcion se define a continuacion:

. Yny
foU(Y,Y) = }YUY7 (3.8)

Jaccard loss =1 — IoU
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Por ultimo, también se pueden proponer funciones de pérdida que combinan funciones previamente mencionadas [50]:

Crossentropy Dice loss, el cual combina la funcion de entropia cruzaday la funcion Dice. Segun el caso, puede usar la entropia
cruzada binaria (BCE) o la entropia cruzada categorica (CCE).

BCE Diceloss = binary crossentropy + Dice loss

(39)
CCFE Dice loss = categorical crossentropy + Dice loss
Crossentropy Jaccard loss, el cual combina la funcion de entropia cruzada y la funcion Jaccard.
BCE diceloss = binary crossentropy + Jaccard loss &10)

CCE diceloss = categorical crossentropy + Jaccard loss

Focal Dice loss, combina la Dice loss (sensibilidad a la superposicion de regiones) con la filosofia de focal loss (énfasis en
ejemplos dificiles). Es atil cuando hay desbalanceo de clases y necesitas buena superposicion de regiones.

Binary focal Dice loss = binary focal loss + Dice loss

(3m
Categorical focal Diceloss = categorical focal loss + Dice loss
Focal Jaccard loss, es una extension del Jaccard loss (loU) con parametro focal para priorizar errores criticos.
Binary focal Jaccardloss = binary focal loss + Jaccard loss 1)

Categorical focal Jaccardloss = categorical focal loss + Jaccard loss

3.3.2 Maétricas

Ademas de la funcion de pérdida, el rendimiento de los modelos se evallia mediante métricas especificas, calculadas me-
diante la matriz de confusion (ver Figura @]. Usaremos las siguientes métricas:

Accuracy, o exactitud que calcula el porcentaje de los pixeles que fueron identificados correctamente en su respectiva clase:

accuracy = TP+IN (313)
Y“TP+FN TN+t FP '

Recall, el cual calcula la proporcion de los pixeles que fueron correctamente asignados a su categoria.

=" (314)
recatt = TPJrFN X

Precision, la cual representa la proporcion de pixeles que fueron identificados correctamente en la clase de cultivos.
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1S e (315)
recitsion = ———— .
b TP+ FP

F1-score, el cual es la media armonica de precision y recall.

2 X precision X recall
(316)

Fl-score = —
precision + recall

Estas métricas, combinadas con analisis cualitativos de los mapas generados, proporcionan una vision del desempeiio del
modelo en escenarios reales, donde factores como la resolucion espacial, presencia de nubes y la variabilidad de los cultivos
introducen desafios adicionales. En este tipo de tareas, la evaluacion se realiza a nivel de pixel: cada pixel de la imagen
clasificada se compara con su etiqueta real, y asi se calculan métricas como accuracy, precision, recall y F1-score, lo que
permite cuantificar de manera precisa el rendimiento del modelo en la identificacion de las distintas coberturas o tipos de
cultivo presentes en la imagen.

3.4 Preprocesamiento de imagenes satelitales

EL preprocesamiento de imagenes satelitales constituye una etapa critica en la teledeteccion moderna, especialmente en
aplicaciones agricolas donde la precision y consistencia de los datos espectrales son fundamentales para el éxito de modelos
de aprendizaje profundo [8]. La literatura reciente destaca que los principales desafios en este contexto son la presencia de
nubes y la heterogeneidad espectral derivada de diferentes sensores, condiciones atmosféricas o regiones geograficas [4].

3.4.1 Manejo de nubes

En la seccion P.3 se mencionan diferentes limitaciones en los datos, entre ellas la presencia de nubes en zonas tropicales
y clima variado como el de Ecuador. La gestion de la presencia de nubes es uno de los problemas mas recurrentes, debido
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a su impacto directo sobre la calidad y continuidad de las series temporales [8]. Diversos trabajos recomiendan la utiliza-
cion de técnicas de composicion temporal, como la mediana, para generar imagenes libres de nubes a partir de maltiples
observaciones dentro de una ventana temporal definida [14].

Adicionalmente, se destaca la importancia de emplear bandas de calidad con menor presencia de nubes, para Lo cual herra-
mientas como GEE permiten seleccionar imdgenes mas limpias [30]. La combinacién de técnicas de filtrado y composicion
temporal constituye un procedimiento habitual para asegurar la integridad de los datos de entrada y mitigar los efectos de
la nubosidad en estudios de clasificacion y segmentacion agricola.

3.4.2 Normalizacion espectral

La normalizacion espectral es otro problema que debe tratarse durante el preprocesamiento de imdagenes satelitales, espe-
cialmente relevante cuando se integran datos de diferentes sensores, fechas o regiones [51]. Para este propasito, se reco-
mienda usar el escalado Min-Max, definido en la ecuacion B17%

T — Tmin
Tscaled = ———————— (317)
Tmazxr — Tmin

Donde «x representa cada valor individual, x,,,;,, €s el valor minimo de la banda y x4, €l valor maximo. Tanto el valor
minimo como el maximo deben determinarse por banda, y posteriormente se aplica la Ecuacion a cada pixel de formain-
dependiente. Este procedimiento asegura que todas las bandas tengan valores de O a1, lo que ayuda a evitar que los modelos
otorguen un peso excesivo a aquellas bandas con valores numéricos mas altos por naturaleza. Ademds, esta normalizacion
es fundamental para facilitar la transferencia de aprendizaje entre dominios geograficos y garantizar la comparabilidad de
los resultados.
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Este capitulo se centra en describir el desarrollo de una metodologia robusta para la clasificacion y segmentacion de cultivos
en regiones con disponibilidad limitada de datos, utilizando a Ecuador como caso de estudio. Se emplea un enfoque de
aprendizaje por transferencia, utilizando un conjunto de datos de mayor volumen y geograficamente similar a Ecuador, para
garantizar una transferencia generalizada de conocimiento. Este enfoque busca abordar los desafios especificos de la region,
aprovechando la similitud geografica para mejorar la precision en la identificacion de patrones agricolas locales.

A continuacion, en la Figura &1 se describe la metodologia propuesta para el desarrollo de un clasificador de cultivos.

I (. I

1. Seleccion de Datos 2. Procesamiento de Datos 4. Ajuste de Hiperparametros
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3. Definir Casos de Estudio

. Modelos de clasificacion
Seleccionar bandas
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Filtrar por ubicacion, hora y
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Tipos de Clasificacion |:| Procesamiento en GEE

Procesamiento local

Figura 4.1: Diagrama de Flujo de Metodologia.

La metodologia esta estructurada en cinco etapas clave:
1. Seleccidn de datos, tanto de imagenes satelitales mediante la herramienta de GEE como datos etiquetados,

2. Procesamiento de datos que incluye procesamiento de imagenes como el calculo de indices espectrales,
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3. Definir de casos de estudio, que incluye la comparacion entre modelos de clasificacion, datos de entrada y tipos de
clasificacion,

4. Ajustes de hiperparametros, que contemplan la seleccion de hiperparametros de los modelos y estrategias evalua-
das, y la eleccion de una funcion de pérdida adecuada.

5. Evaluar mejor combinacion de las opciones proporcionadas en los casos de estudio y ajuste de hiperparametros.

En las secciones siguientes se profundiza en cada paso de la metodologia.

4.1 Seleccion de Datos

En Ecuador, las etiquetas utilizadas para este estudio fueron obtenidas del Ministerio de Agricultura y Ganaderia (MAG),
correspondiendo especificamente a los cultivos de maiz, arroz y soya. Al explorar la base de datos del MAG, se identifico que
anicamente existian registros etiquetados para estos cultivos en los afios 2020 y 2021, hasta la fecha de la revision. Debido
a esta limitacion temporal, a recopilacion de imagenes satelitales se enfocd exclusivamente en ese periodo y en las zonas
agricolas donde se disponia de etiquetas confiables para maiz, arroz y soya.

Las etiquetas fueron descargadas a través de la plataforma de Datos Abiertos de Ecuador [52], la cual permite el acceso a
informacion georreferenciada de diversos tipos. En este caso, se obtuvieron colecciones de poligonos en formato shapefile,
que almacenan tanto las coordenadas como la etiqueta correspondiente a cada cultivo. Los datos etiquetados utilizados
corresponden especificamente al sequndo periodo de siembra, que abarca los meses de mayo a agosto.

La Figura .2 muestra un ejemplo de como se visualizan las etiquetas de los cultivos de maiz, arroz y soya para el afio 2020
en la totalidad del territorio ecuatoriano. Se observa una alta presencia de poligonos de maiz (41,386), sequidos por arroz
(1,559), mientras que la clase minoritaria corresponde a soya (801 poligonos). Esto evidencia un claro desbalance en las
clases.
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Figura 4.2: Ejemplo de etiquetas de cultivos de maiz, arroz y soya del 2020. Obtenido de MAG [3]

Para obtener los datos espectrales de las zonas de cultivo, se recurrié a imagenes satelitales Sentinel-2 mediante la apli-
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cacion GEE, cargando los poligonos etiquetados a esta plataforma. Posteriormente, se seleccionaron tres zonas del mapa
ecuatoriano con mayor cantidad de cultivos etiquetados y menor presencia de nubes, como se muestra en la Figura 3. Se
extrajeron 10 bandas espectrales disponibles en Sentinel-2: azul, verde, rojo, cuatro bandas de borde rojo, infrarrojo cercano
(NIR) y dos bandas de infrarrojo de onda corta (SWIR1y SWIR2), lo que permite una representacion espectral detallada de la
superficie agricola.

Figura 4.3: Zonas de datos escogidas del mapa de Ecuador, donde la etiqueta amarilla corresponde a los cultivos unificados
de maiz, arroz y soya.

Como se explicd en secciones anteriores, la limitada cantidad de datos etiquetados disponibles en Ecuador dificulta el entre-
namiento de modelos de aprendizaje profundo realmente robustos. Para superar esta restriccion, se opto por incorporar un
conjunto de datos internacional que presentara cultivos similares a los de interés local y asi aplicar técnicas de TL. En este
contexto, EL conjunto de datos propuesto por Rustowicz et al.[J4] de Ghana fue seleccionado como fuente complementaria,
ya que su base de datos satelital incluye maiz, arroz y soya, junto con series temporales extensas y etiquetas validadas
en campo. Para mantener [a coherencia entre ambos contextos, inicamente se seleccionaron del conjunto de Ghana aque-
llas muestras correspondientes a los mismos cultivos presentes en las etiquetas ecuatorianas, lo que permite transferir el
conocimiento adquirido y adaptar los modelos a las condiciones agricolas locales.

Este conjunto de datos principal esta compuesto por 4,040 series temporales de imagenes Sentinel-2 capturadas en Ghana
durante 2016 y 2017, aflos que corresponden al periodo en el que se realizo el etiquetado de los cultivos en esa region y
representan la informacion disponible y validada. Cada serie temporal corresponde a una ubicacion especifica y contiene
entre 45y 213 imdgenes tomadas en diferentes momentos del ciclo agricola, variando segun la frecuencia de adquisicion de
Sentinel-2, la presencia de nubes y la disponibilidad de datos validos en cada sitio.

Las imagenes tienen un tamano de 64x64 pixeles, con una resolucion espacial de 10 metros por pixel. En términos de for-
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mato, cada imagen es un mapa de bits donde cada pixel representa informacion espectral de una ubicacion concreta dentro
del recorte regular correspondiente a la zona de interés. Estas imagenes contienen las mismas 10 bandas espectrales que
las obtenidas para Ecuador. En la Figura se muestran ejemplos del conjunto de imagenes satelitales de Ghana: cada
columna corresponde a una ubicacion diferente, mientras que las dos primeras filas presentan imagenes de una misma par-
cela tomadas en distintos momentos del ciclo agricola. La dltima fila muestra las etiquetas asociadas a cada parcela, que
permanecen constantes para todos los tiempos correspondientes a la misma ubicacion.

Parcela 0002 Parcela 0004 Parcela 0006 Parcela 0008 Parcela 0010
e ameas IR { 3 Tl
'-r 5 ll i [ ~ - . b o
(1) . 7 '
Imagenes
Sentinel-2
(2)
B No cultivo
Maiz
Etiquetas I Arroz
B soya
‘ M Cuttivos varios

Figura 4.4: Imagenes del conjunto de datos Ghana: Imagenes pertenecientes al satélite Sentinel-2 (52) de diferentes fechas,
con sus respectivas etiquetas.

4.2 Procesamientos de Datos

En la subseccion anterior se identificaron algunos desafios en la aplicacion de modelos de aprendizaje supervisado, como la
diferencia entre las etiquetas del conjunto de datos de Ghana y los cultivos objetivo en las imégenes ecuatorianas, asi como
la presencia de nubes en ambos conjuntos. Para abordar estos problemas, se realiz6 un proceso de preprocesamiento con el
fin de adecuar, limpiar y estandarizar los distintos conjuntos de datos propuestos.

4.2.1 Manejo de nubes

Para reducir la presencia de nubes en las imagenes satelitales, se aplicaron estrategias diferenciadas segln el conjunto de
datos utilizado. En el caso de Ghana, el propio dataset incluia mascaras de nubes, lo que permitio identificar y descartar
directamente las zonas afectadas. Se establecio un umbral de calidad y aquellas imagenes que presentaban mas del 25%
de cobertura nubosa fueron excluidas del analisis, siguiendo practicas habituales en estudios agricolas donde se busca un
equilibrio entre calidad y disponibilidad de datos. Para las imagenes que cumplieron con el umbral establecido, se utilizaron
las mascaras correspondientes para descartar los pixeles nublados antes del entrenamiento, evitando asi que estos afectaran
el proceso de aprendizaje.
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Para datos ecuatorianos, se empled el filtro de GEE para obtener imagenes con menos del 25% de presencia de nubes. Una vez
obtenidas las imagenes con menor presencia, se realizo un proceso de composicion temporal por mes, para reducir ain mas
los espacios en blanco por nubes. Debido al clima humedo del segundo periodo de siembra, los meses que se encontraron
imagenes con el requerimiento de presencia de nubes fueron minimos.

4.2.2 Preparaciony formateo de datos

Luego de la seleccion, filtrado y composicion de las imagenes ecuatorianas , se definieron tres zonas agricolas dentro del
pais (ver Figura [¢.3). Estas zonas fueron seleccionadas por su alta densidad de etiquetas de cultivos y una menor presencia
de nubes. Cada imagen obtenida de las diferentes zonas corresponden a un mapa de bits tridimensional de dimensiones
(X, Y, 10), donde X y Y representan las dimensiones espaciales de la zona (en nimeros de pixeles), y 10 corresponde a
las bandas espectrales seleccionadas.

Se intentd obtener una imagen mensual por zona para los afios 2020 y 2021 (es decir, hasta ocho imagenes por zona). Sin
embargo, debido a las restricciones impuestas por la presencia de nubes (ver seccion ], solo se obtuvieron entre 2y 3
imdagenes luego del proceso de filtrado y composicion mediante mediana temporal.

Las dimensiones espaciales finales de las imagenes compuestas por zona, asi como la cantidad de sub-imagenes extraidas
a partir de cada una, se detallan en la Tabla Q. Las dimensiones indicadas corresponden al ancho, largo y nimero de bandas
(10),y fueron luego divididas en fragmentos de (64, 64,10) pixeles. Solo se conservaron aquellas sub-imdgenes que contenian
al menos un pixel etiquetado como cultivo, descartando las que representaban Gnicamente dreas sin cultivo para reducir el
deshalance de clases. Al finalizar este proceso, se obtuvieron 3,944 matrices de dimension (64, 64, 10), combinando las tres
zonas y todos los aios en los que se dispuso de datos.

Tabla 4.1: Cantidad de imagenes obtenidas por zona.

Zonas escogidas Dimensiones (ancho, largo, bandas) imdgenes totales por zona (64x64x10)
Zonal (2036, 2736,10) 2,080

Zona 2 (1201, 1105, 10) 988

Zona 3l (1939,1709, 10) 876

Total ‘ 3,944

Enla Figura @.a se muestran las tres zonas seleccionadas sobre el mapa de Ecuador. La subfigura @.b muestra un ejemplo
del area correspondiente a la zona 2, donde se visualizan las etiquetas de cultivo resaltadas. Finalmente, en la subfigura
B.5.c se presenta una subimagen procesada con el formato final de (64, 64, 10) utilizada como entrada al modelo.

Para generar la mdscara correspondiente a cada sub-imagen o matriz de bits, se utilizo el conjunto ecuatoriano de poligonos
etiquetados. Estos poligonos contienen informacion georreferenciada, incluyendo el nombre del cultivo (en la etiqguetancu)
y su geometria espacial.

EL primer paso consistio en estandarizar el sistema de referencia espacial. En el ambito de la geodeteccidn, existen distintos
sistemas de referencia de coordenadas (CRS en inglés), los cuales constituyen marcos utilizados para medir con precision
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Figura 4.5: Procesamiento de datos de Ecuador: (a) Zonas escogidas del mapa de Ecuador con menor presencia de nubes, (b)
Ejemplo de la zona 2 seleccionada, (c) Ejemplo de imagen (64, 64, 10) resultante del procesamiento.

ubicaciones sobre la superficie terrestre y garantizar que diferentes archivos geoespaciales se alineen correctamente. Se
adopto el sistema de referencia EPSG:3857 utilizado por GEE, lo que permitio estandarizar y alinear la georreferenciacion
entre imagenes y poligonos.

Posteriormente, una vez transformados, los poligonos fueron recortados para que coincidieran con las tres zonas selec-
cionadas, y posteriormente rasterizados para generar mascaras con las mismas dimensiones espaciales que las imagenes
compuestas. En estas mascaras, cada pixel fue codificado con un valor entero segun la clasificacion. En la seccion se
describe a mayor profundidad las mascaras obtenidas de los poligonos.

De forma analoga, las imagenes del conjunto de Ghana fueron procesadas utilizando los mismos criterios de bandas, formato
espacial y clases seleccionadas. Este conjunto resulté en 203,102 sub-imagenes con sus respectivas mascaras, todas en el
mismo formato de entrada (64, 64,10). En contraste, el conjunto ecuatoriano logré generar Gnicamente 3,944 sub-imagenes,
reflejando una notable desigualdad en la disponibilidad de datos geoespaciales entre ambos paises.

Ademas de la diferencia en cantidad de muestras, existe una diferencia significativa en el area geografica cubierta. Mientras
que las tres zonas seleccionadas en Ecuador abarcan un total aproximado de 1,021.5 km?, el conjunto de Ghana cubre una
region estimada en mas de 7000 kmz2, segtn las dimensiones del dataset publico utilizado [J4]. Esta diferencia no solo
afecta la cantidad de datos generados, sino también la diversidad espacial y espectral disponible para el entrenamiento de
modelos.

La Figura [.§ presenta una comparacion visual entre las regiones utilizadas en Ecuador y Ghana, evidenciando el alcance
territorial y el volumen de datos disponibles en cada caso. Este contraste subraya uno de los principales desafios de apli-
car aprendizaje profundo en paises con escasez de datos satelitales, datos etiquetados y libres de nubes, que restringe el
desarrollo de modelos generalizables.

4.2.3 Division de datos

Para garantizar una evaluacion rigurosa de los modelos de clasificacion, los datos se dividieron en tres conjuntos: entrena-
miento (70%), validacion (10%) y prueba (20%). Esta particion asegura que la evaluacion se realice con informacion no vista
durante el entrenamiento, siguiendo mejores practicas en aprendizaje automatico.

En el caso de los datos de Ecuador, la particion se realizo utilizando un criterio espacial estricto. Las zonas 1y 3 se destinaron
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Figura 4.6: Comparacion de etiquetas de cultivo: (a) Etiquetas de cultivos en Ecuador, (b) Etiquetas de cultivos en Ghana.
Adaptado de [[4].

a los conjuntos de entrenamiento y validacion, respectivamente, mientras que la zona 2, que contenia una menor cantidad
de datos y correspondia a una region geograficamente distinta, se reservo exclusivamente para el conjunto de prueba. De
este modo, se asegura que las imagenes del conjunto de prueba provengan de una zona espacialmente independiente, lo
que permite evaluar la capacidad de generalizacion del modelo ante regiones no vistas durante su entrenamiento. En total,
el conjunto ecuatoriano quedo conformado por 2.770 imagenes para entrenamiento, 394 para validacion y 780 para prueba.

En suma, si consideramos cada pixel como una etiqueta, la cantidad de etiquetas por clase se muestra en la Tabla Q,
donde se aprecia claramente el desbalance de clases presente en el conjunto de imagenes de Ecuador. La clase mayoritaria
corresponde a “no cultivo”, mientras que entre Los cultivos objetivo, el maiz es el que cuenta con mayor representacion. Esta
distribucion desigual de etiquetas resalta la importancia de considerar estrategias especificas para abordar el desbalance
durante el entrenamiento y evaluacion de los modelos de clasificacion.

Por otro lado, los datos de Ghana fueron utilizados Gnicamente para Transferencia de Aprendizaje, por lo que el conjunto fue
dividido en entrenamiento y validacion en proporciones del 80% y 20%, respectivamente, resultando en 162.482 y 40.620
imagenes.

4.2.4 0Obtencion de indices espectrales

En la subseccion P.1.3, se mencionaron cuatro indices espectrales cominmente utilizados en tareas de clasificacion de culti-
vos, debido a su capacidad para resaltar caracteristicas especificas de la vegetacion, el contenido de humedad y las propie-
dades del suelo. Como parte del proceso de preprocesamiento de datos, se calcularon y afiadieron cuatro bandas adicionales
a cada matriz de entrada, correspondientes a los indices NDVI, SAVI, NDWI y BSI.

Estas nuevas bandas se integraron a las 10 bandas originales provenientes de Sentinel-2, generando asiimagenes de tamafo
(64, 64,14) para ambos conjuntos de datos: Ghana y Ecuador. Esta ampliacion del espacio espectral busca mejorar la capaci-
dad de los modelos para distinguir entre distintos tipos de cultivos, al proporcionar informacion derivada que complementa
las bandas originales.
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Tabla 4.2: Distribucion de etiquetas en los conjuntos de entrenamiento, validacion y prueba para cada escenario de

clasificacion.

Tipo de Clasificacion Train Valid Test
(1) Binario

Clase 0 (no cultivo) 6,285,063 534,214 2,902,236
Clase 1 (cultivo) 5,060,857 1079610 292,644
(2) Categorica 1 cultivo (maiz)

Clase 0 (no cultivo) 6,285,063 534,214 2,902,236
Clase 1(maiz) 4,352,536 961,898 184,484
Clase 2 (cultivos varios) 708,321 n7712 108,160
(3] Categdrica 1 cultivo (arroz)

Clase 0 (no cultivo) 6,285,063 534,214 2,902,236
(Clase 1 (arroz) 609,768 110,468 101,992
Clase 2 (cultivos varios) 4,451,089 969,142 190,652
(4] Categorica 1 cultivo (soya)

Clase 0 (no cultivo) 6,285,063 534,214 2,902,236
Clase 1 (soya) 98,553 1244 6,168
Clase 2 (cultivos varios) 4,962,304 1,072,366 286,476
(5] Categorica completa

Clase 0 (no cultivo) 6,285,063 534,214 2,902,236
Clase 1(maiz) 4,352,536 961,898 184,484
Clase 2 (arroz) 609,768 110,468 101,992
(Clase 3 (soya) 98,553 1244 6,168

4.2.5 Escalado de datos

Mediante el proceso de preprocesamiento descrito en la subseccion anterior, se obtuvieron matrices compuestas por 14

bandas diferentes. Dado que estas bandas provienen de distintos sensores y ademas incluyen indices espectrales derivados,

es probable que presenten rangos de valores distintos. Por Lo tanto, es necesario aplicar una funcion de escalado que ajuste

los rangos de las bandas, con el fin de evitar sesgos en el entrenamiento del modelo.

Para solventar esto, las matrices obtenidas fueron escaladas usando la ecuacion de escalado Min-Max, obteniendo

bandas sin pesos excesivos. Dado que los datos de Ghana se planean usar para transferencia de aprendizaje (TL), el escalado

se realizo considerando los valores minimos y maximos de dicho conjunto de datos. Es por esto que se aplica un escalado

por dominio, donde los datos de Ecuador son transformados utilizando los valores extremos de Ghana para cada banda. Esta

30



4 Metodologia

estrategia busca asegurar la compatibilidad entre ambos conjuntos en cuanto a rango de entrada para el modelo sin filtrar
informacién sobre el rea de interés con bajos recursos de datos.

La Figura e.] muestra los diagramas de caja de las bandas espectrales e indices del conjunto de datos de Ghana, que sirvio
como base para el modelo principal. En esta figura se observan las distribuciones originales de cada variable, las cuales
reflejan el comportamiento tipico del ambiente y la vegetacion en esa region.
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Figura 4.7: Diagrama de cajas de datos de Ghana. Se presentan las 14 bandas: RGB (azul), adicionales (verde), indices (rojo).

Tras aplicar este escalado por dominio, las variables del conjunto de Ecuador comparten el mismo rango de valores que las de
Ghana. La Figura .8 muestra los diagramas de cajas resultantes de este escalado para Ecuador. Aunque ahora las variables
estan dentro del mismo rango, se evidencian diferencias relevantes en sus distribuciones. Estas diferencias pueden deberse
a variaciones en la cobertura vegetal, el uso del suelo o condiciones atmosféricas distintas entre ambos paises.

En términos ecoldgicos, tanto Ecuador como Ghana comparten la presencia de bosques tropicales himedos, Lo que justifica
parcialmente el uso de técnicas de escalado entre dominios. Sin embargo, estudios recientes muestran que Ghana presenta
también transiciones hacia sabanas y bosques [53], mientras que en Ecuador se encuentran zonas de bosques Secos y varia-
ciones altitudinales marcadas [54]. Estas diferencias en estructura vegetal, estacionalidad y cobertura pueden explicar las
discrepancias observadas en las distribuciones espectrales, incluso tras normalizar las variables al mismo rango.

En general, Ecuador muestra menor variabilidad en las bandas RGB y SWIR en comparacion con Ghana. Las distribuciones de
bandas como Rojo, Verde y Azul estan mds concentradas en valores bajos, lo que podria reflejar diferencias en las condiciones
atmosféricas, el tipo de vegetacion o la composicion del suelo. En el caso de los indices espectrales, como NDVIy SAVI, Ecuador
tiende a mostrar valores mas altos y mas variables, lo que puede estar asociado a una mayor densidad vegetal. Por otro
lado, NDWI muestra valores mas bajos en Ecuador, lo que sugiere diferente presencia de cuerpos de agua en las imagenes

31



4 Metodologia

Azul Verde Rojo Near Red 1 Near Red 2 Near Red 3 NIR
012~ s 012~ K . . . 0.14
0104 : 0.06 - 0.08- 0064
0.107 . ' : 0.10- : 0,054 0127
i 0.08 - : ' : 0.06 - 0.05- : 0.10-
0.08 : 0.08- : 0.04- ; . ! .
. : . - 0.04 - 008 -
0.06 - : 0.06 - T 0.06 - : . i
i . i 003- 0.04 - 003 - 0.06 - E
0.04 - 0.04 - 0.04 - 0.02-
- . 0.02- -
0.02 0024 -
002 - .02 - 0.02- 0.01- y 001 - 0.02-
% —— I
0.00 - . 0.00 - . 000- - 0.00- . 0.00- . 0.00- . 0.00- '
Near Red 4 SWIR 1 SWIR 2 NDVI SAVI NDWI BSI
0.08 - . i . . i R
: 0.08 0.10- 0.9 0.70- [
. : 06- i
) : i i 08~ 0.65- o8
0.06 - 0.06 - t 0.08 i 05
i H - 0.60- 57
i ! 0.06 - [ o7 06-
0.04 - 0.04 - 06- 0.55- 04-
0.04 - ’
05 0.50- 03 04-
002 - 002 - -2 =7
002- 0.45-
04- 02- 02-
—— i
0.00- - 0.00- 0.00- ' 040 .
! | ! ! | |
RGB Bandas espectrales indices espectrales

Figura 4.8: Diagrama de cajas de datos de Ecuador. Se presentan las 14 bandas: RGB (azul), adicionales (verde), indices (rojo).

escogidas. BSI, en cambio, mantiene una dispersion similar, aungue con ligeros desplazamientos en los valores centrales.

Estas diferencias indican que, a pesar del escalado por dominio, los datos de Ecuador no son completamente equivalentes en
distribucion a los de Ghana. Por ello, se implementd una estrategia de fine-tuning, en la que el modelo previamente entre-
nado con datos de Ghana fue ajustado utilizando un pequefo conjunto de datos ecuatorianos. En particular, se reutilizaron
los pesos del encoder entrenado sobre Ghana y se refinaron con las muestras locales, permitiendo que el modelo se adapte
a las particularidades espectrales y espaciales de Ecuador sin necesidad de ser entrenado desde cero. Esta técnica ayuda a
que el modelo generalice mejor a un nuevo dominio, mitigando el impacto de los desajustes en las distribuciones, incluso si
ambos paises comparten ciertas condiciones climaticas o ecoldgicas.

4.2.6 Representacion de mascaras

Una vez realizado el escalado, los datos de las imagenes estan listos para ser utilizados en los modelos. No obstante, las
mascaras de las imagenes requieren un cambio en su forma de representacion. Actualmente, estas mascaras contienen
valores enteros entre 0 a 4, donde cada nimero representa una clase: O para ausencia de cultivo, 1 para maiz, 2 para arroz, 3
para soya Yy 4 para cultivos varios. Sin embargo, estas etiquetas no se usan directamente, ya que su representacion depende
del tipo de tarea de clasificacion.

”

En el caso de clasificacion binaria, las mascaras se codifican usando solo dos valores: O para “no cultivo”y 1 para “cultivo”,
sin distinguir entre tipos especificos. En la Figura .9 se muestra un ejemplo: una pequefa seccion de la mascara original
(Fig. E9.) es transformada en una mascara binaria (Fig. £.9.b), donde todos los pixeles correspondientes a cultivos (maiz,
arroz, soyay cultivos varios) se agrupan en una sola clase.

Por otro lado, para tareas de clasificacion multiclase, se utiliza una codificacion one-hot (one-hot encoding). Esta codificacion
transforma cada clase original (0, 1, 2, 3, 4) en un vector binario. Por ejemplo:
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Dado que no estamos trabajando con valores individuales, sino con matrices completas, cada clase puede representarse como
una mascara independiente. De esta manera, el conjunto de etiquetas puede expresarse como un tensor de dimensiones (64,
64, C), donde (C = 5) es el nimero de clases. En la Figura @.c se muestra como una seccion de la mascara original se
transforma en cinco mascaras binarias, correspondientes a las clases: no cultivo, maiz, arroz, soya y cultivos varios.

En algunos casos especificos, por ejemplo, si se desea realizar una clasificacion focalizada en un solo tipo de cultivo, se puede
simplificar la codificacion usando unicamente tres mascaras: una para “no cultivo” otra para el “cultivo seleccionado” y una
tercera para “cultivos varios” Por ejemplo, si el modelo estd enfocado Gnicamente en la deteccion de maiz, las tres mascaras
resultantes representarian: “no cultivo”, “maiz’,y “cultivos varios” Esta representacion se muestra en la Figura ¢.9.d, donde
se reorganiza la mascara original para facilitar la clasificacion focalizada.

Esta Gltima representacion (Figura @.d) enfocada en un solo cultivo permite reorganizar las clases de forma que el mo-
delo distinga claramente entre tres categorias: el cultivo de interés, otros cultivos y ausencia de cultivo. Esta simplificacion
facilita la especializacion del modelo para tareas de deteccion especificas, como monitoreo de maiz o arroz, sin descartar
completamente la informacién de los demas cultivos, agrupéndolos bajo una Unica categoria denominada “cultivos varios”
Ademas, reduce la complejidad del problema manteniendo una representacion multiclase mas manejable.

0 1 1 0 0 0 0 1 1 ‘ 0 0 0
0 1 1 1 0 0 0 1 1 1 0 0
4 4 4 ‘ 0 0 0 1 i 1 ‘ 0 0 0
0 4 4 0 0 0 0 1 1 0 0 0
1011
o 4 | o0 | 4 0|3 o | 1o | 1] 0|1 o Bl o A
2 0 0 0 3 3 1 0 0 0 1 1 i R
(a) Mascara original (b) Mascara binaria (c) Méscara categdrica (d) Mascara categérica
cultivo / no cultivo todos los cultivos por cultivo (maiz)

Figura 4.9: Codificacion de mascaras. (@) Mascara original con valores de (0 a 4); (b) Codificacion binaria de cultivo/ no cultivo;
(c) Codificacion one-hot para todos los cultivos a la vez, las matrices corresponden a (no cultivo, maiz, arroz, soya y cultivos
varios); (d) Codificacion one-hot por cultivo, las matrices corresponden a (no cultivo, maiz, cultivos varios).

4.3 (aso de Estudios

Con el objetivo de abordar el problema de clasificacion de cultivos en Ecuador en condiciones de escasez de datos, se desarro-
llaron y evaluaron maltiples casos de estudio que combinaron distintos modelos de clasificacion, configuraciones de datos
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de entrada y tipos de clasificacién. Estas combinaciones permitieron explorar como cada decision influia en el desempeiio

de los modelos, asi como identificar las estrategias més eficaces para mitigar las limitaciones propias del contexto.

431

Modelos de Clasificacion

Se establecieron tres grupos de modelos de clasificacion con distintos niveles de complejidad:

(a)

(b)

©

432

Modelos tradicionales: Se selecciond el algoritmo Random Forest, ampliamente utilizado en aplicaciones de tele-
deteccion debido a su robustez ante ruido, facilidad de interpretacion y buen rendimiento en tareas de clasificacion
con conjuntos de datos limitados. Este modelo sirve como linea base para comparar el desempeiio de arquitecturas
mas complejas.

Modelos basados en CNN: Se utilizo la arquitectura U-Net, la cual fue explicada en el Capitulo B. Para aumentar
la capacidad de representacion, se exploraron diferentes backbones en la parte codificadora de la red: ResNet-50,
Inception-V3 y EfficientNet-b3. Estos modelos permiten capturar patrones espaciales y espectrales de forma mas
profunda y son capaces de generalizar mejor en presencia de ruido o escasez de datos, especialmente al aplicar
técnicas de transferencia de aprendizaje.

Modelos complejos especificos: Se implementd el modelo Presto, una arquitectura basada en Transformers recien-
temente propuesta para tareas generales de percepcion remota. Presto no se limita unicamente a la clasificacion de
cultivos, sino que es un modelo preentrenado que puede adaptarse a diferentes tareas como segmentacion, deteccion
o clasificacion, mediante el ajuste del decodificador correspondiente. En este trabajo, se empleo especificamente para
una tarea de clasificacion multiclase, aprovechando su capacidad para capturar variaciones espectrales y espaciales
presentes en las imdagenes satelitales.

Caracteristicas de los datos

El tipo de entrada del modelo representa una de las variables mas criticas en la tarea de clasificacion. Por ello, se probaron

distintas configuraciones para entender como cada banda e indices espectrales impactaron en la capacidad del modelo de

discriminar clases. Las configuraciones probadas fueron las siguientes:

(a)

(b)

Q

Bandas Rojo, Verde, Azul (RGB): Este escenario simula la informacion minima disponible, correspondiente a imdage-
nes opticas estandar. Permite evaluar el desempefo cuando se dispone tinicamente de informacion visual superficial.

Bandas espectrales completas (10): Se incluyen todas las bandas disponibles en los conjuntos de datos (en total, 10
bandas espectrales), con el objetivo de determinar si la inclusion de bandas adicionales (como el infrarrojo cercano,
SWIR y red edge) mejora la capacidad discriminativa del modelo.

indices espectrales (index): Se expandieron los conjuntos de datos calculando indices cominmente utilizados en
teledeteccion, como NDVI, SAVI, NDWI y BSI, que resaltan informacion espectral relacionada con la vegetacion, la hu-
medady la estructura del suelo. Esta configuracion permite evaluar si una representacion compacta de la informacion
espectral es suficiente o incluso preferible frente a las bandas originales.
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(d) Combinacion de todas las bandas e indices (all): Se concatenaron todas las fuentes de informacion anteriores en
una sola entrada, para analizar si una representacion completay rica en variables mejora los resultados o siintroduce
redundancia y ruido que afecta el entrenamiento.

4.3.3 Tipos de Clasificacion

La forma de clasificar los cultivos también fue extendida para analizar como influye el enfoque de clasificacion en el ren-
dimiento general y la utilidad practica de los mapas generados. Se realizo clasificacion binaria y categorica en diferentes
niveles de complejidad:

(a) Clasificacion binaria: Donde el modelo debe distinguir anicamente entre etiquetas de “no cultivo”y “cultivo” Esta
tarea simplificada puede ser util para generar mascaras de cultivo, detectar tierras productivas o filtrar areas de
interés.

(b) Clasificacion categdrica enfocada: Donde se selecciona un cultivo de interés (por ejemplo, maiz), y el modelo debe
distinguir entre “no cultivo’, “maiz”y “cultivos varios” Este enfoque permite especializar el modelo en un cultivo a
la vez para fines de monitoreo y planificacion agricola especifica.

”

() Clasificacion categérica completa: Donde el modelo diferencia entre cinco clases: “no cultivo’, “maiz’, “arroz’, “soya
y “cultivos varios” Este escenario busca obtener un mapa detallado y multifuncional de los cultivos previamente
seleccionados.

En suma, se probaron diversas combinaciones entre las configuraciones de los casos de estudio. En la Tabla .3 se presentan
dichas combinaciones. Cada X representa los cinco escenarios de tipos de clasificacion:

1. Clasificacion binaria,

2. (Clasificacion categorica enfocada en maiz,
3. Clasificacion categorica enfocada en arroz,
4. (lasificacion categorica enfocada en soya, y
5. Clasificacion categorica completa.

En el caso del modelo Presto, su uso se limito a escenarios que emplean Unicamente bandas espectrales (RGB y las 10 bandas
de Sentinel-2). Aunque el modelo admite la incorporacion del indice NDVI como banda adicional [45], no permite la inclusion
de otros indices espectrales. En este estudio se utilizaron cuatro indices (NDVI, SAVI, NDWI y BSI), cuya combinacion con las
bandas espectrales daba lugar a un total de 14 bandas de entrada. Dado que Presto no esta disefiado para procesar este tipo
de configuraciones extendidas, se excluyo de los escenarios que requerian exclusivamente indices o la combinacion completa
de bandas e indices.
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Tabla 4.3: Combinacion de casos de estudio.

Modelos de Clasificacion \ RGB 10b index all \ NO Casos
Random Forest \ X X X X \ 20
U-Net + ResNet-50 X 20
U-Net + Inception-V3 X 20
U-Net + EfficientNet-b3 X X X X 20
Presto \ X X \ 10
Total | 25 25 20 20 | 90

4.4 Estrategias de entrenamiento

EL proceso de entrenamiento de los modelos requiere de diferentes decisiones para garantizar la capacidad de genera-
lizacion y el desempeio en la clasificacion de cultivos a partir de imagenes satelitales. En esta seccion se describen las
estrategias adoptadas para el entrenamiento de los diferentes modelos empleados en el estudio, haciendo especial énfasis
en la transferencia de aprendizaje y el ajuste de hiperparametros.

4.41 Transferencia de aprendizaje

Dada la limitada disponibilidad de datos etiquetados en Ecuador, se implementd una estrategia de transferencia de apren-
dizaje para aprovechar el conocimiento adquirido a partir de un dominio fuente con mayor cantidad de datos (Ghana).

En primer lugar, se preentreno los modelos base utilizando el conjunto de datos de Ghana, el cual cuenta con mds de 200,000
imagenes etiquetadas de cultivos relevantes. Durante este preentrenamiento, el modelo aprendio a identificar patrones
espectrales y espaciales generales asociados a la clasificacion de cultivos en imagenes satelitales.

Posteriormente, se aplicd una fase de ajuste (fine-tuning) en el dominio objetivo ecuatoriano. Para ello, se reutilizaron los
pesos preentrenados en Ghanay se reentrenaron las capas del modelo utilizando exclusivamente los datos ecuatorianos. Este
ajuste se realizd con una tasa de aprendizaje reducida, lo que permitio adaptar el modelo a las particularidades fenologicas
y espectrales de los cultivos locales, manteniendo al mismo tiempo la informacion relevante aprendida en el dominio fuente.

4.42 Ajuste de Hiperparametros

Durante el proceso experimental se llevo a cabo un ajuste de hiperparametros especifico para cada uno de los modelos
considerados, con el objetivo de mejorar su rendimiento. Si bien se exploraron distintos parametros como profundidad de
red, tasa de aprendizaje y tamafio de lote, se puso especial énfasis en la eleccion de la funcion de pérdida, dado su impacto
directo en la calidad de la segmentacion, especialmente en presencia de clases desbalanceadas o cultivos minoritarios.
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Random Forest

Para el modelo de Random Forest, se ajustaron hiperparametros como el nimero de arboles (n_estimators)y la
profundidad maxima del drbol (max depth).

Modelos U-Net con backbones CNN

Para los modelos de tipo U-Net con distintas arquitecturas de backbone (ResNet-50, Inception V3, EfficientNet-B3), se realizd
una basqueda controlada sobre distintos hiperparametros: la tasa de aprendizaje (learning rate), el tamafio del
lote (batch size)yelnumerode épocas.Sin embargo, el aspecto mas exhaustivo de la exploracion fue la seleccion de
la funcion de pérdida, considerada como un hiperparametro critico para tareas de segmentacion con clases desbalanceadas.

Se plante6 una prueba general para seleccionar una configuracion y un backbone base con el fin de comparar las funciones
de pérdida propuestas. Una vez seleccionado el mejor backbone, se procedio a evaluar ocho funciones de pérdida diferentes
tanto para clasificacion binaria como para clasificacion categorica.

Las funciones evaluadas para clasificacion binaria fueron: binary crossentropy, dice loss, jaccard loss, binary focal loss, bce
jaccard loss, bce dice loss, binary focal dice loss y binary focal jaccard Loss.

Para clasificacion categorica se evaluaron: categorical crossentropy, dice loss, jaccard loss, categorical focal loss, cce jaccard
loss, cce dice loss, categorical focal dice loss y categorical focal jaccard Loss.

Los resultados de la comparacion de las funciones de pérdida se presentan mas adelante en la seccion E, y las configura-
ciones seleccionadas para los modelos se detallan en la seccion 5.2,
Modelo Presto

El modelo Presto, adaptado de su implementacion original propuesta en [45], fue configurado con sus hiperparametros
recomendados y ajustado usando datos ecuatorianos.

4.5 Ambiente de Implementacion

La etapa de preprocesamiento, asi como los procedimientos de entrenamiento, se llevaron a cabo utilizando las siguientes
librerias para Python 3.8.20:

« Tifffile [55]: Esta biblioteca especializada en la lectura y escritura de archivos TIFF fue utilizada para cargary manejar
las imagenes multiespectrales en formato geoespacial.

+ TensorFlow [56]: Un framework de aprendizaje profundo desarrollado por Google, se utiliz6 como base para construir
y entrenar los modelos de redes neuronales convolucionales.

« Pytorch [57]: Un framework de cddigo abierto para DL desarrollado por Meta Al. Fue utilizado en este trabajo para
implementar modelos avanzados basados en Transformers, como Presto, debido a su flexibilidad, soporte dinamico
de grafos computacionales y amplia compatibilidad con bibliotecas modernas de vision por computadora.
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- Segmentation models [58]: Esta libreria, basada en Keras y TensorFlow, fue empleada para implementar arquitec-
turas modernas de segmentacién semantica, como U-Net.

« Scikit-learn [59]: Se utiliz6 para tareas de evaluacion de desempeiio, validacion cruzada, y procesamiento adicional,
como el escalado de variables y la seleccion de métricas. Ademas, incluye modelos de aprendizaje automatico como
random forest.

Para implementar las diferentes arquitecturas y gestionar el procesamiento de datos, se utilizé un servidor con sistema
operativo Ubuntu. ELservidor cuenta con un procesador Intel(R) Xeon(R) CPU E5-2650 @ 2.30GHz, con 10 nacleos habilitados
y 8 modulos de memoria DDR4 de 8 GB cada uno.
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En este capitulo se presentan los resultados obtenidos a partir de los experimentos realizados con los distintos modelos
y configuraciones evaluadas. Se analizan los experimentos para seleccionar la mejor funcion de pérdida para nuestro caso
especifico de clasificacion de cultivos en Ecuador. Ademas, se evaluo el desempenio de diferentes modelos mediante métricas
estandar de clasificacion y a través de mapas de prediccion generados por los modelos.

Por ultimo, se discute el impacto de las diferentes configuraciones de los casos de estudio, tipos de clasificacion y el uso de
estrategias como el transfer learning. Los resultados permitieron identificar las combinaciones mds efectivas y comprender
como varia el desemperio del modelo en funcion de la clase objetivo y sus limitaciones.

5.1 Seleccion de la funcion de pérdida

Como se explico en la seccion [¢.4.3, se propuso una prueba general para seleccionar una configuracion y un backbone base. En
este caso, la prueba mostré que el backbone EfficientNet-B3 proporciond los mejores resultados. Por Lo tanto, se utilizo dicho
backbone en la U-Net para comparar y seleccionar las mejores funciones de pérdida para clasificacion binaria y categorica.
A continuacion, se detallan los resultados obtenidos.

511 Clasificacion binaria

En la Tabla E se presentan Los resultados obtenidos al comparar distintas funciones de pérdida para la tarea binaria, deta-
lladas previamente en la Subseccion B.3.. Para cada funcion, se reportan el nimero de épocas de entrenamiento (con early
stopping activado), los valores de lossy FI-scoretanto en el conjunto de entrenamiento como en el de validacion, asi como
las diferencias absolutas entre ambos conjuntos (Aloss y AF1-score).

Los resultados muestran que varias funciones de pérdida combinadas (filas 5 a 8) tienden a presentar mayores discrepancias
entre entrenamiento y validacion, especialmente en el f1-score. Esto sugiere que estas funciones pueden inducir sobreajuste,
como se evidencia en el caso de bce + dice loss (5), que alcanza el f1-score mas alto en entrenamiento (0.2352), pero cae
drasticamente en validacion (0.0851), con una diferencia de 01501 puntos.

Por otro lado, si bien la binary crossentropy (1) presenta la menor diferencia absoluta de f1-score (0.0008), su desempefo
general es bajo, con valores de f1 menores a 0.09 en ambos conjuntos. De forma similar, jaccard loss (3) presenta buena
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Tabla 5.1: Resultados de experimentos binarios de funcion de pérdida.

Funciones de pérdida épocas train loss train fl-score valid loss valid f1-score Aloss AF1-score
(1) binary crossentropy 61 0.2836 0.0859 0.2922 0.0867 0.0086 0.0008
(2) dice loss 43 0.8297 01703 0.8329 0.1671 0.0032 0.0032
(3) jaccard loss 43 0.9046 01678 0.9062 0.1637 0.0016 0.0041
(4) binary focal loss 34 0.0217 01572 0.0305 01110 0.0088 0.0462
(5) bce + dice loss 39 1.0399 0.2352 12733 0.0851 0.2334 01501
(6) bce + jaccard loss 65 12291 01070 1.2423 01033 0.0132 0.0037
(7) binary focal + dice loss 69 0.8856 01522 09078 01297 0.0222 0.0225
(8) binary focal + jaccard loss 42 0.9099 0.2305 10045 0.0951 0.0946 01354

estabilidad, pero su f1-score es inferior al de otras funciones.

La funcion que mejor balance ofrece es dice loss (2). Esta opcion no solo logra uno de los f1-score mas altos en validacion
(0.1671), sino que ademas mantiene una diferencia minima con respecto al entrenamiento, tanto en la pérdida (Aloss =
0.0032) como en el fl-score (AF1=0.0032). Este resultado indica que el modelo generaliza bien y no sufre de sobreajuste,
incluso bajo condiciones de datos limitados. La Figura E muestra la evolucion de Los valores de pérdida y fl-score durante
el entrenamiento con esta funcion.
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Figura 5.1: Pérdida y F1-score de funcion de pérdida dice loss para clasificacion binaria.

51.2 C(lasificacion categorica

En la Tabla 5.4 se presentan los resultados obtenidos al comparar diferentes funciones de pérdida categoricas, descritas
previamente en la Subseccion . Aligual que en los experimentos binarios, el objetivo fue identificar la funcion de pérdi-
da con mejor capacidad de generalizacion, es decir, aquella que presentara resultados consistentes entre entrenamiento y
validacion, minimizando el sobreajuste incluso con una cantidad limitada de datos.

Se observa que muchas funciones de pérdida combinadas (filas 5 a 8) presentan una diferencia considerable entre los con-
juntos de entrenamiento y validacion, en especial en el f1-score, lo que puede indicar una menor capacidad de generalizacion.
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Tabla 5.2: Resultados de experimentos categéricos de funcion de pérdida.

Funciones de pérdida épocas train loss train fi-score valid loss valid f1-score Aloss AFl-score
(1) categorical crossentropy 90 0n82 0.3324 01119 0.3319 0.0063 0.0005
(2) dice loss 48 0.5056 0.4944 06674 0.3326 01618 01618
(3) jaccard loss 42 06932 0.3288 0.6997 0.3256 0.0065 0.0032
(4) categorical focal loss 48 0.0m 0.3146 0.0115 0.3079 0.0004 0.0067
(5) cce + dice loss 48 0.6524 0.4722 0.8127 0.3355 0.1603 0.1367
(6) cce + jaccard loss 61 0.8188 0.3388 0.8146 0.3346 0.0042 0.0042
(7) cat. focal + dice loss 39 0.5795 0.4577 0.7058 0.3349 0.1263 01228
(8) cat. focal + jaccard loss 39 0.6907 0.3976 0.7278 0.3355 0.0371 0.0621

Por ejemplo, cce + dice loss(5) alcanza un fl1-score de entrenamiento elevado (0.4722), pero este cae en validacion a 0.3355
(A F1-score = 01367).

Algo similar ocurre con dice loss (2), que si bien logra el fl1-score mas alto en entrenamiento (0.4944), presenta una caida
considerable en validacion (0.3326), lo que sugiere cierto grado de sobreajuste. Sin embargo, ambas funciones siguen mos-
trando resultados competitivos en validacion, por lo que podrian ser Gtiles en contextos con mayor disponibilidad de datos
0 con regularizacion adicional.

La funcion que destaca por su estabilidad y buen desempefio general es categorical crossentropy (1). Esta mantiene los
valores de pérdida y f1-score practicamente constantes entre entrenamiento y validacion, con diferencias minimas de solo
0.0063 en loss y 0.0005 en f1-score. Este comportamiento evidencia una excelente capacidad de generalizacion del mo-
delo, incluso con el mayor numero de épocas evaluadas (90). A pesar de no ser una funcion especializada, su rendimiento
competitivo demuestra que no siempre es necesario recurrir a funciones mas complejas para obtener buenos resultados.

En la Figura b.J se presenta la evolucién de la pérdida y el f1-score durante el entrenamiento con categorical crossentropy.
Como se puede observar, la funcion muestra un aprendizaje progresivo sin signos de sobreajuste.

F1-score del modelo Categorico Pérdida del modelo Categorico
0.1300

—— Train —— Train
0.332 Valid /,_-—‘ Valid
0.1275 |
A
03301 / 0.1250 1 \
0.1225
0.328 1

0.1200 4

fl-score
Loss

0.326 7 [ 0.1175

‘ 0.1150 |
0.324

0.1125 A

, T T T . , T T T :
o 20 40 60 80 ) 20 40 60 80
Epoca Epoca

Figura 5.2: Pérdida y F1-score de funcion de pérdida categorical crossentropy loss para clasificacion categorica.
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5.2 Configuracion de modelos

En esta subseccion se detallan las diferentes configuraciones seleccionadas luego de las pruebas iniciales, la seleccion de
funcion de pérdida y el estado del arte. La Tabla @ presenta la configuracion de los hiperparametros utilizados tanto para
el modelo de Random Forest como para los modelos basados en redes neuronales convolucionales (CNN).

Tabla 5.3: Configuracion de hiperparametros de los modelos base.

Hiperparametro Valor asignado

Random Forest

Nimero de arboles (n_estimators) 150

Ajuste de pesos de clase (class_weight) balanced

Profundidad maxima (max_depth) 20

Minimo de muestras por hoja (min samples leaf) 2

Minimo namero de muestras para division (nin_samples split) 2

Modelos basados en CNN

Optimizador (optimizer) Adam

Funcion de activacion (activation) ReLU (capas ocultas) y softmax (capa de salida)
Funcion de pérdida (Loss) dice loss (binaria) y crossentropy (categérica)
Tamano de batch (oatch size) 64

Namero maximo de épocas (epochs) 100 (con early stopping a 30)

Tasa de aprendizaje (1) 0.0001

La seleccion de los hiperparametros listados en la Tabla @ se baso en una combinacion de revision de literatura y pruebas
exploratorias iniciales. En el caso del modelo Random Forest, el nimero de arboles (150) y la profundidad maxima (20)
se eligieron tras evaluar distintos valores en experimentos preliminares con datos reducidos, observando una mejora en la
estabilidad del modelo y una reduccion del sobreajuste. Estos valores también se encuentran dentro de rangos comdinmente
reportados en trabajos similares en clasificacion de cultivos.

Por otro lado, para los modelos basados en CNN, se optd por una tasa de aprendizaje baja (0.0001) y el uso del optimi-
zador Adam, dado su buen desempeiio en tareas con conjuntos de datos ruidosos y no balanceados. Estas configuraciones
fueron validadas empiricamente mediante experimentacion iterativa, con el objetivo de asegurar una convergencia estable
sin sacrificar capacidad de generalizacion. Aunque no se realizd una basqueda exhaustiva de hiperparametros, los valores
elegidos ofrecieron un buen compromiso entre rendimiento y costo computacional, permitiendo comparaciones justas entre
los distintos modelos evaluados.

Finalmente, el modelo Presto se compuso de diferentes estrategias. La parte de decodificacion, encargada de extraer in-
formacion de las imagenes Sentinel-2, se mantuvo sin modificaciones, dado que fue preentrenada utilizando millones de
imagenes provenientes de diversas fuentes, lo que garantizaba su capacidad para obtener caracteristicas relevantes. La uni-
ca parte que se pudo ajustar fue el clasificador Random Forest, el cual utilizo los datos resultantes de la codificacion para
realizar la clasificacion o prediccion.
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Como se trataba de un Random Forest, se emplearon los mismos hiperparametros previamente definidos para asegurar una
comparacion justa y evaluar si esta configuracion mejoraba o empeoraba el desempeiio de la clasificacion buscada.

5.3 Resultados de los experimentos

En esta seccion se presentan los resultados obtenidos mediante el entrenamiento y evaluacion de los modelos en los dife-
rentes escenarios de clasificacion detallados en secciones previas.

Los analisis se organizan en tres subsecciones: en la Subseccion se detallan los resultados del modelo Random Forest,
incluyendo su desempeiio en las configuraciones binarias y categdricas; la Subseccion aborda los modelos Unet con
transferencia de aprendizaje implementados como una mejora a los modelos tradicionales; y la Subseccion expone los
resultados del modelo Presto, el cual ha sido reportado en la literatura como una de las arquitecturas mas prometedoras
para problemas de teledeteccion.

Las métricas reportadas incluyen el accuracy y el F1-score, priorizando el F1-score macro. Este dltimo se calcula como el
promedio aritmético del F1-score de cada clase, tal como se especifica en la Ecuacion b1

oy Fl-score;

F1-scoremamo = (51

n

donde n representa el nimero de clases del modelo. Esta métrica garantiza una evaluacion equitativa entre clases, ya que
asigna igual importancia al rendimiento del modelo en cada una de ellas, independientemente del nimero de muestras
disponibles por clase. De esta forma, el F1-score macro permite evaluar si los modelos clasifican correctamente todas las
clases, incluso aquellas con menor representacion en el conjunto de datos.

5.31 Modelos Tradicionales

En esta subseccion se detallan los resultados obtenidos al aplicar el modelo Random Forest (RF) para la clasificacion de
cultivos. La Tabla 5.4 muestra los valores de exactitud (accuracy) alcanzados en los distintos escenarios de clasificacion,
utilizando diferentes tipos de datos de entrada: bandas RGB, 10 bandas espectrales (10b), indices espectrales (index) y la
combinacion de todos ellos (all).

Tabla 5.4: Resultados de escenarios de modelo Random Forest (accuracy).

Tipos de Clasificacion RGB 10b index all
(1) Binario 0.66 0.82 0.81 067
(2) Categorica 1 cultivo (maiz) 0.65 082 0.81 0.67
(3) Categorica 1 cultivo (arroz) 0.65 0.82 0.81 0.66
(4) Categérica 1 cultivo (soya) 0.65 0.80 0.81 0.66
(5) Categoérica completa 0.65 0.82 067 067

Aunque los valores de accuracy parecen elevados —especialmente al usar datos 10b e index— esta métrica puede resultar
enganosa en presencia de clases desbalanceadas, como ocurre en nuestros datos. En estos casos, el modelo tiende a favorecer
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la clase mayoritaria (ausencia de cultivo), enmascarando un bajo desempefio en la identificacion de cultivos minoritarios.
Por ello, se recurrio al uso del F1-score macro como métrica principal, ya que pondera equitativamente todas las clases sin
importar su frecuencia.

Este enfoque esta respaldado por trabajos como [J4], donde se advierte que la métrica de accuracy puede estar sesgada
hacia los cultivos dominantes en conjuntos de datos agricolas desbalanceados. Al comparar las Tablas b.4 y B.5, se observa
que, aunque los valores de accuracy son altos y consistentes en escenarios que utilizan indices espectrales (index) y todas
las bandas (all), el F1-score macro ofrece una vision mas realista del rendimiento del modelo: muestra un buen desempeio
en la clasificacion binaria, pero un rendimiento deficiente en clasificaciones mas especificas, particularmente en aquellas
que incluyen clases minoritarias, como las configuraciones categdricas.

Tabla 5.5: Resultados de escenarios de modelo Random Forest (F1-score macro).

Tipos de Clasificacion RGB 10b index all
(1) Binario 0.64 0.79 0.78 0.40
(2) Categérica 1 cultivo (maiz) 0.42 0.55 054 032
(3) Categorica 1 cultivo (arroz) 0.42 0.55 0.54 0.32
(4) Categorica 1 cultivo (soya) 0.40 0.53 0.52 0.30
(5) Categoérica completa 0.32 0.41 020 0.20

La Tabla 5.8 presenta el desglose detallado por clase del F1-score en los escenarios donde la precision (accuracy) fue mas
alta segun la Tabla Q. Se observa que el modelo RF logra un buen desempeio en la clase no cultivo, pero falla completa-
mente al identificar cultivos como arroz o soya (F1 = 0.00 en varios escenarios). Incluso en configuraciones donde el maiz
es parcialmente reconocido, el rendimiento global sigue siendo limitado. EL escenario mas desafiante —la clasificacion ca-
tegorica completa— evidencia un F1-score macro tan bajo como 0.20 al solo usar indices espectrales (index), lo cual indica
una incapacidad del modelo para discriminar entre clases especificas.

En suma, estos resultados evidencian las limitaciones del modelo Random Forest ante clases desbalanceadas y multiples
categorias. Si bien el uso de bandas espectrales (10b) mejora levemente el rendimiento en algunas clases, persisten di-
ficultades notorias para distinguir cultivos minoritarios. Esto pone de manifiesto que, para este tipo de tarea, pueden ser
necesarias estrategias adicionales o enfoques distintos para mejorar la discriminacion entre clases poco representadas.

5.3.2 Modelos basados en CNN

En esta subseccion se presentan Los resultados de los modelos propuestos basados en U-net. Primero, se intentd entrenar
los modelos U-net solo con datos de Ecuador, los cuales muestran un rendimiento moderado en la tarea de clasificacion de
cultivos, evaluados mediante el F1-score macro (ver Tabla 5.7). En general, los valores obtenidos para la clasificacion binaria
son bajos, oscilando entre 010 y 0.15, independientemente del backbone empleado (EfficientNet B3, Inception V3 o ResNet
50) y del tipo de datos de entrada (RGB, 10 bandas, indices espectrales y todas las bandas combinadas). Esto indica que la
cantidad de datos usados en el entrenamiento no es suficiente para que los modelos puedan distinguir correctamente entre
presencia y ausencia de cultivos.

En el caso de la clasificacion categorica para un solo cultivo, los resultados mejoran notablemente, alcanzando F1-scores
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Tabla 5.6: Comparacién de F1-score por escenario de modelo Random Forest.

Tipo de Clasificacion 10b index
(1) Binario

Clase 0 (no cultivo) 0.88 0.86
Clase 1 (cultivo) 077 070
f1-score macro global 0.79 0.78

(2) Categdrica 1 cultivo (maiz)

Clase 0 (no cultivo) 0.88 0.86
Clase 1(maiz) 0.76 0.75
Clase 2 (cultivos varios) 0.00 0.00
f1-score macro global 0.55 0.54

(3) Categdrica I cultivo (arroz)

Clase 0 (no cultivo) 0.88 0.86
Clase 1 (arroz) 0.00 0.00
Clase 2 (cultivos varios) 0.76 0.76
f1-score macro global 0.55 0.54

(4] Categdrica 1 cultivo (soya)

Clase 0 (no cultivo) 0.88 0.86
Clase 1 (soya) 0.00 0.00
Clase 2 (cultivos varios) 0n 0.70
f1-score macro global 0.53 0.52

(5) Categdrica completa

Clase 0 (no cultivo) 0.88 0.80
(Clase 1(maiz) 076 0.00
Clase 2 (arroz) 0.00 0.00
Clase 3 (soya) 0.00 0.00
f1-score macro global 0.41 0.20

entre 0.29 y 0.35. EL rendimiento es similar entre los distintos backbones, aunque se observa una ligera ventaja al utilizar
EfficientNet B3 y ResNet 50, especialmente para la soya, donde se logra el mayor F1-score (0.35). Para la clasificacion cate-
gorica completa, los valores de F1-score macro disminuyen nuevamente, situandose entre 0.17 y 0.20, lo que sugiere que la
complejidad de la tarea afecta negativamente el desempefio del modelo.

En cuanto al uso de diferentes datos de entrada, el uso de las 10 bandas espectrales o la combinacion de todas las bandas
tiende a mejorar ligeramente los resultados respecto al uso exclusivo de las bandas RGB, aunque las diferencias no son
destacables. Esto indica que la informacion espectral adicional aporta valor, pero no es suficiente por si sola para superar
las limitaciones impuestas por los datos de entrenamiento o la arquitectura del modelo.

Una de las estrategias propuestas en la metodologia fue emplear la transferencia de aprendizaje (TL) para mejorar el ren-
dimiento de los modelos utilizando un conjunto de datos de mayor volumen. En este caso, primero se entren6 el modelo con
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Tabla 5.7: Resultados de los escenarios con modelos U-net entrenados en Ecuador (F1-score macro).

Tipos de Clasificacion RGB 10b index all
U-net + Efficientnet b3

(1) Binario 015 013 010 on
(2) Categorica 1 cultivo (maiz) 0.30 033 033 0.33
(3) Categorica 1 cultivo (arroz) 0.30 0.33 0.33 0.33
(4) Categorica 1 cultivo (soya) 0.31 035 0.34 0.35
(5) Categorica completa 017 0.20 0.20 0.20

U-net + Inception V3

(1) Binario 014 010 010 on
(2) Categorica 1 cultivo (maiz) 0.29 0.34 0.34 033
(3) Categodrica 1 cultivo (arroz) 0.29 0.33 0.33 0.33
(4) Categorica 1 cultivo (soya) 0.32 035 034 0.34
(5) Categorica completa 018 0.20 0.20 0.20
U-net + Resnet 50

(1) Binario 014 on 010 010
(2) Categorica 1 cultivo (maiz) 0.30 0.34 0.33 0.33
(3) Categorica 1 cultivo (arroz) 030 033 033 0.33
(4) Categorica 1 cultivo (soya) 0.32 0.34 0.34 0.34
(5) Categorica completa 018 0.20 0.20 0.20

el conjunto de Ghana y, posteriormente, se realiz6 un ajuste fino (fine-tuning) usando el conjunto ecuatoriano, que es de
menor tamaiio. En este proceso, no se congelaron los pesos de ninguna capa ni se modificd la arquitectura de la red; todo
el modelo fue ajustado con los datos de Ecuador tal como estaba originalmente. Los resultados de esta estrategia de TL se
muestran en la Tabla B.8, donde se observa una tendencia general ligera de mejora en los F1-scores para la mayoria de las
tareas de clasificacion, en comparacion con entrenar unicamente con datos ecuatorianos.

En el caso de la clasificacion binaria, se observa un leve incremento en los valores, alcanzando hasta 0.17, particularmente
al utilizar EfficientNet B3 en combinacion con todas las bandas (all) como entrada. Este comportamiento sugiere que el
preentrenamiento en un dominio distinto puede aportar cierto grado de generalizacion y robustez al modelo. No obstante,
los resultados obtenidos adn no son Lo suficientemente solidos como para ser aplicados en una clasificacion a gran escala.

En la clasificacion categorica de un solo cultivo, los F1-scores se mantienen estables o ligeramente superiores en comparacion
con los modelos entrenados exclusivamente con datos de Ecuador, situandose entre 0.31y 0.34. La diferencia mas notable
se observa en la clasificacion categdrica completa, donde los valores de F1-score macro alcanzan hasta 0.20.

Al comparar ambos escenarios, se evidencia que el preentrenamiento con datos de Ghana aporta beneficios modestos, pero
consistentes en el desempefio de los modelos, particularmente en tareas de mayor complejidad como la clasificacion ca-
tegorica completa. No obstante, los F1-scores macro obtenidos en todas las configuraciones siguen siendo relativamente
bajos. Esto sugiere que, aunque la técnica de transfer learning permitié una mejora, esta no fue significativa. Una posible
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Tabla 5.8: Resultados de escenarios de modelos U-net preentrenados con datos de Ghana (F1-score macro).

Tipos de Clasificacion RGB 10b index all
U-net + Efficientnet b3

(1) Binario 0.16 014 016 017
(2) Categorica 1 cultivo (maiz) 0.33 033 0.32 0.33
(3) Categorica 1 cultivo (arroz) 0.32 0.32 0.33 0.32
(4) Categorica 1 cultivo (soya) 033 033 032 0.32
(5) Categorica completa 019 0.20 0.20 0.20

U-net + Inception V3

(1) Binario 014 017 016 016
(2) Categorica 1 cultivo (maiz) 0.32 0.32 031 032
(3) Categorica 1 cultivo (arroz) 0.33 0.33 0.32 0.33
(4) Categorica 1 cultivo (soya) 0.32 0.32 0.32 033
(5) Categorica completa 0.20 0.20 0.20 0.20
U-net + Resnet 50

(1) Binario 015 014 on 0.16
(2) Categorica 1 cultivo (maiz) 0.32 0.33 0.32 0.32
(3) Categorica 1 cultivo (arroz) 0.32 033 033 033
(4) Categorica 1 cultivo (soya) 0.32 0.34 0.32 0.33
(5) Categorica completa 019 0.20 0.20 0.20

explicacion radica en las diferencias entre los datos de Ghana y Ecuador, que, pese a compartir cultivos y climas similares,
presentan variabilidad espectral considerable.

Tal como se detalla en la subseccion sobre el escalado de datos, incluso al aplicar una normalizacion min-max, se ob-
servaron diferencias de tendencia entre dominios. Ademas, el uso de escalado por dominio (empleando los valores maximos
y minimos de Ghana para normalizar datos de Ecuador) no logré compensar dichas diferencias. A esto se suma la limitada
cantidad de datos disponibles para entrenar los modelos U-Net con Los backbones propuestos, Lo cual afecta su rendimiento.

En el estado actual de los experimentos, el modelo Random Forest (RF) ha demostrado ser claramente superior frente a las
arquitecturas U-Net con transferencia de aprendizaje, al menos bajo las condiciones y volimenes de datos disponibles. Aun-
que seimplemento una estrategia de transferencia de aprendizaje entrenando primero con datos de Ghanay luego ajustando
con muestras de Ecuador, las mejoras observadas en los F1-scores fueron apenas marginales y, en general, insuficientes para
aplicaciones practicas exigentes.

En tareas de clasificacion binaria, los modelos U-Net apenas alcanzan F1-scores macro de 0.16 a 0.17, mientras que RF logra
valores mucho mas altos (por ejemplo, 0.79 usando 10 bandas espectrales). Incluso en escenarios categoricos, los U-Net
solo Llegan a 0.33-0.34, y en la clasificacion multiclase completa el F1-score se estanca alrededor de 0.20. Esto sugiere que,
bajo condiciones de datos limitados y alta variabilidad espectral entre dominios, los modelos tradicionales como RF siguen
siendo mas robustos y confiables para la clasificacion de cultivos en Ecuador.
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5.3.3 Modelos complejos especificos

A diferencia de las arquitecturas tradicionales basadas en convoluciones (como ResNet, Inception o EfficientNet), Presto
introduce el uso de transformers al procesamiento de series temporales en teledeteccion. Los transformers, originalmente
disefiados para tareas de lenguaje natural, destacan por su capacidad para modelar dependencias a largo plazo y relacio-
nes complejas en secuencias de datos. Presto adapta estos principios al contexto de imagenes satelitales multitempora-
les, permitiendo capturar patrones temporales y espaciales relevantes para la clasificacion de cultivos. Ademas, su diseio
ligero y preentrenado facilita la transferencia a nuevos dominios con pocos datos etiquetados, manteniendo una alta efi-
ciencia computacional y tiempos de entrenamiento reducidos. Esta combinacién de ventajas lo diferencia de los modelos
convolucionales, que suelen requerir mayor cantidad de datos y recursos para alcanzar desempeios comparables en tareas
multitemporales y multiclase.

Los resultados presentados en la Tabla 5.9 evidencian que el modelo Presto supera significativamente el desempefio de Los
modelos tradicionales en términos de F1-score macro, especialmente cuando se utilizan datos espectrales de 10 bandas.
Por ejemplo, en la clasificacion binaria, el modelo alcanza un F1-score macro de 0.84 con 10b, un valor que representa una
mejora notable frente a los métodos previos. Esta tendencia se mantiene en escenarios mas complejos, como la clasificacion
categorica completa, donde Presto logra un 0.59 con 10 bandas, superando ampliamente los 0.41 0 menos que obtuvieron
los modelos Random Forest.

Tabla 5.9: Resultados de escenarios de modelo Presto (F1-score macro).

Tipos de Clasificacion ‘ RGB 10b
(1) Binario 0.74 0.84
(2) Categodrica 1 cultivo (maiz) 0.43 0.61
(3) Categorica 1 cultivo (arroz) 0.55 0.65
(4) Categorica 1 cultivo (soya) 0.55 0.58
(5) Categorica completa 034 0.59

La Tabla , que desglosa el F1-score por clase en cada escenario, revela ciertos patrones sobre el comportamiento del
modelo Presto segun los cultivos clasificados. En la clasificacion binaria, el uso de 10 bandas espectrales no solo mejora la
deteccion de cultivos en general (F1-score de 0.82 para la clase “cultivo”), sino que también mantiene una alta precision en
la clase “no cultivo”(0.86), demostrando una mejora significativa en detectar los cultivos clave seleccionados.

Sin embargo, al analizar escenarios categoricos especificos, existen diferencias criticas. Por ejemplo, en la clasificacion de
arroz (3), aunque el F1-score global alcanza 0.65 con 10b, la clase objetivo “arroz”solo logra 0.28, mientras que la categoria
“cultivos varios”|lega a 0.82. Esta diferencia sugiere que el modelo prioriza la agrupacion de cultivos no objetivos bajo eti-
quetas genéricas, posiblemente debido a la baja representatividad del arroz en el conjunto de entrenamiento o a la similitud
espectral con otras especies.

En el caso del maiz (2), el modelo muestra un comportamiento mas equilibrado: la clase objetivo alcanza 0.82 con 10b, pero
la categoria “cultivos varios” cae a 0.16, indicando una especializacion efectiva para este cultivo cuando existe suficiente
diferenciacion espectral. No obstante, el escenario donde solo clasifica soya (4) presenta un escenario diferente: con 10b, la
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Tabla 5.10: Comparacién de F1-score por escenario de modelo Presto.

5 Resultados

Tipo de Clasificacion RGB 10b
(1) Binario

Clase 0 (no cultivo) 0382 0.86
Clase 1 (cultivo) 067 0.82
f1-score macro global 0.74 0.84
(2) Categdrica 1 cultivo (maiz)

Clase 0 (no cultivo) 0.68 0.86
Clase 1(maiz) 060 0.82
Clase 2 (cultivos varios) 0.03 016
f1-score macro global 0.43 0.61
(3) Categdrica I cultivo (arroz)

Clase 0 (no cultivo) 068 0.86
Clase 1 (arroz) 0.37 0.28
Clase 2 (cultivos varios) 0.60 0.82
f1-score macro global 0.55 0.65
(4] Categdrica 1 cultivo (soya)

Clase 0 (no cultivo) 0.68 0.86
Clase 1 (soya) 0.36 0.07
(lase 2 (cultivos varios) 060 0.82
f1-score macro global 0.55 0.58
(5) Categdrica completa

Clase 0 (no cultivo) 0.69 064
(Clase 1(maiz) 061 0.55
Clase 2 (arroz) 0.06 0.56
Clase 3 (soya) 0.01 0.59
f1-score macro global 0.34 0.59

clase objetivo obtiene un F1-score de apenas 0.07, mientras que “cultivos varios"mantiene 0.82. Este resultado podria deberse

a una superposicion espectral entre la soya y otros cultivos en las bandas seleccionadas, 0 a una distribucion geografica

particular de este cultivo en los datos de entrenamiento.

La clasificacion completa (5) sintetiza estos desafios: aunque el F1-score macro global mejora a 0.59 con 10b, los resultados

por clase son heterogéneos. Mientras el maiz y la soya logran 0.55 y 0.59 respectivamente, el arroz se mantiene en 0.56, y

la clase “no cultivo” muestra una caida inesperada a 0.64 (frente a 0.69 en RGB). Esta variabilidad subraya la sensibilidad

del modelo a la composicion espectral de cada cultivo y sugiere que, aungque Presto maneja mejor la complejidad que los

métodos tradicionales, su eficacia depende criticamente de la calidad y representatividad de los datos de entrada. Ademas,

la mejora consistente con 10 bandas refuerza la hipotesis de que la informacion espectral adicional permite al modelo

discriminar contextos agricolas gue serian un reto identificar usando solo bandas RGB.
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La capacidad de Presto para generar mapas de clasificacion precisos se puede ver en la Figura b.3, donde se muestran los
resultados de una clasificacion binaria aplicada a una zona de Ecuador. AL comparar la imagen satelital original (Figura5.3:a)
con las etiquetas reales de presencia de cultivo obtenidas de la rasterizacion de las etiquetas de MAG (Figura E.b] y las
etiquetas predichas por Presto usando datos de 10 bandas (Figura B.c), se aprecia una alta coincidencia visual, especial-
mente en la identificacion de areas cultivadas, consistente con el rendimiento del clasificador binario que alcanza hasta
84% de macro F1 score. Este resultado muestra que Presto puede detectar de manera efectiva las zonas agricolas a partir
de imagenes satelitales, lo que lo hace muy util para tareas como el monitoreo y la gestion del uso del suelo en el sector

agricola.

(a) Imagen Satelital (b) Etiquetas reales de (c) Etiquetas predichas de
cultivo cultivo

Figura 5.3: Clasificacion de cultivos usando el modelo Presto: (a) Imagen Satelital de territorio ecuatoriano, (b) etiquetas
reales de clase cultivo, () etiquetas predichas usando la clasificacion binaria usando 10b.

Aungue el analisis cuantitativo, basado en el F1-score macro, evidencio desafios en la clasificacion de ciertos cultivos, la
representacion visual resalta la utilidad de Presto como herramienta para la deteccion general de dreas cultivadas. La cla-
sificacion logra identificar correctamente los cultivos, e incluso se observa como puede delimitar con mayor precision las
zZonas agricolas en comparacion con las etiquetas manuales. Se nota que los cultivos de menor tamafio son Los que presentan
mayor dificultad para el modelo, mientras que las areas mas extensas son bien identificadas. Por ello, este modelo puede
ser til a nivel general para visualizar la distribucion de los asentamientos agricolas ecuatorianos de estos tres cultivos.

5.4 Comparativa de modelos y limitaciones

Los resultados obtenidos permiten comparar el rendimiento de los distintos modelos aplicados a la clasificacion de cultivos,
considerando tanto escenarios binarios como categaoricos, asi como sus requerimientos computacionales.

En primer lugar, el modelo Random Forest alcanza sus mejores desempefios en escenarios de clasificacion binaria utilizando
datos de 10 bandas e indices espectrales, con F1-score macro de 0.79 y 0.78 respectivamente. Sin embargo, su rendimien-
to disminuye considerablemente al aumentar la complejidad de la tarea, como ocurre en las clasificaciones categoricas,
evidenciando limitaciones para diferenciar entre cultivos especificos.

En contraste, los modelos basados en U-Net no lograron mejorar ninguna tarea de clasificacion, incluso al implementar
técnicas de DL como la tranferencia de aprendizaje. Esta ultima técnica solo logré mejorar ligeramente las tareas de clasi-
ficacion categorica respecto al caso binario sin pre-entrenado usando datos de Ghana, aunque los resultados siguen siendo
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poco satisfactorios en términos generales. Dentro de este grupo, el modelo con mejor rendimiento relativo fue aquel que
utilizo EfficientNet-B3 como backbone, si bien las diferencias no fueron sustanciales y en ningtin caso superaron a Random
Forest.

Elmodelo Presto destaca poralcanzar los F1-score macro mads altos entre todos los modelos evaluados, con valores entre 0.74
y 0.84. Este rendimiento es particularmente relevante al compararlo con resultados reportados en Ecuador usando métodos
tradicionales y de deep learning: por ejemplo, estudios en la ciudad de Tungurahua reportan precisiones del 83,29% con
técnicas de ML tradicionales y mejoras hasta 87,43% al aplicar modelos de DL [2]. Es importante resaltar que, en este trabajo,
se observa un patrony performance similar, pero en areas mucho mas extensas que las reportadas en dichos estudios previos.

Con respecto a los valores y modelo esperado, la literatura indica que valores de F1-score 0 accuracy superiores al 90% suelen
alcanzarse unicamente en contextos con grandes volimenes de datos balanceados y altamente representativos [32, b, 41].
En escenarios de datos limitados o deshbalanceados, como es comun en Ecuador y en muchos paises en desarrollo, los valores
reportados para tareas multiclase suelen situarse entre 70% y 85% [5, 14, 7]. Por tanto, tanto los resultados de Presto como
los de Random Forest pueden considerarse competitivos y alineados con la linea base internacional para este tipo de tarea.

En cuanto a la transferencia de aprendizaje (TL), se observa que el uso de modelos preentrenados no solo con miles, sino
con millones de imagenes (como ocurre con modelos entrenados en ImageNet [41, 31]), permite una mayor capacidad de
generalizacion. Este es precisamente el caso de Presto, que aprovecha un preentrenamiento masivo y logra adaptarse de
forma eficiente a nuevos dominios con cantidades limitadas de datos etiquetados, superando el rendimiento de arquitecturas
entrenadas desde cero o con menos datos de base.

En cuanto al uso de recursos, los modelos U-Net requieren una considerable capacidad computacional, tanto en tiempo de
entrenamiento como en espacio de memoria, debido a que procesan imagenes como matrices completas. En contraste, los
modelos RF y Presto trabajan a nivel de pixel, lo que facilita la particion de los datos en bloques y permite su procesamiento
sin necesidad de cargar todo el conjunto en memoria. No obstante, esta estrategia genera un mayor nimero de muestras, lo
que implica mas iteraciones durante el entrenamiento.

Desde el punto de vista del tiempo de entrenamiento (ver Tabla B11), el modelo Random Forest (RF) resulta ser el mas ligero
y rapido, lo que se refleja en sus tiempos de entrenamiento que oscilan entre 14.6 minutos para la clasificacion binaria con
imagenes RGB y 45.6 minutos en el caso de la clasificacion categorica completa utilizando todas las bandas. Este comporta-
miento evidencia que, aunque RF es eficiente, el tiempo de procesamiento aumenta proporcionalmente con la complejidad
de la tarea y la cantidad de datos de entrada.

Por su parte, el modelo Presto, que incorpora un paso adicional de extraccion de caracteristicas mediante un codificador pre-
entrenado antes de entrenar el Random Forest, presenta tiempos de entrenamiento ligeramente superiores. Por ejemplo,
para la tarea binaria con imagenes RGB, Presto requiere 18.56 minutos, mientras que para la categodrica completa con 10
bandas el tiempo asciende a 43.21 minutos. Este incremento se debe al procesamiento extra que implica la extraccion de
caracteristicas, que en promedio afiade alrededor de 4 minutos al tiempo total respecto al uso exclusivo de RF.

En contraste, los modelos basados en U-Net requieren tiempos de entrenamiento considerablemente mayores. Entre las
variantes evaluadas, U-Net con Inception V3 destaca como la arquitectura mas eficiente para la clasificacion binaria con
imagenes RGB, con un tiempo de 34.65 minutos. Sin embargo, a medida que aumenta la complejidad de la clasificacion y
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Tabla 5.11: Tiempo de entrenamiento por modelo (minutos).

5 Resultados

Tipos de Clasificacion RGB 10b index all
Random Forest

(1) Binario 146 300 15.5 409
(2) Categorica 1 cultivo 147 366 208 419
(3) Categorica completa 15.2 421 36.3 456
U-net + Efficientnet b3

(1) Binario 3895 4498 35.95 4702
(2) Categorica 1 cultivo 451 4957 4439 53.71
(3) Categorica completa 5152 5362 50.44 8154
U-net + Inception V3

(1) Binario 3465 4351 3792 79.23
(2) Categorica 1 cultivo 4896 4832 39.78 82.76
(3) Categorica completa 4469 66.82 3814 10211
U-net + Resnet 50

(1) Binario 38.08 36.22 3561 58.22
(2) Categorica 1 cultivo 40,05 4449 3894 6191
(3) Categorica completa 4156 56.99 4519 76.95
Presto

(1) Binario 18.56 22.74 - -
(2) Categorica 1 cultivo 186 31.76 - -
(3) Categorica completa 195 4321 - -

la cantidad de bandas utilizadas, los tiempos pueden superar facilmente los 80 minutos, como ocurre en la categorizacion

completa con todas las bandas. Aunque los modelos U-Net ofrecen ventajas en precision y capacidad de generalizacion, su

mayor demanda computacional es un factor a considerar en aplicaciones a gran escala.

En resumen, Presto ofrece el mejor rendimiento general, especialmente en tareas binarias. Sin embargo, su desempefo

decrece al abordar clasificaciones mas detalladas, como las categoricas por cultivo. A pesar de haber sido preentrenado con

millones de muestras de pixeles de tareas de teledeteccion, el modelo presenta restricciones relevantes: su arquitectura

limita el uso de ciertos indices y bandas personalizadas.
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Conclusion

El andlisis exhaustivo de los resultados obtenidos con modelos tradicionales, arquitecturas CNN y el modelo Presto para la
clasificacion de cultivos en Ecuador permite extraer varios hallazgos:

1. La métrica de F1-score macro evidencio que la precision global (accuracy) de estos modelos enmascara deficiencias
criticas en la clasificacion usando conjuntos de datos con clases desbalanceadas como entrenamiento. Si bien esto
es conocido en tareas de ML de forma general, en el caso de datos escasos se vuelve un desafio mas critico.

2. Los métodos tradicionales como Random Forest muestran un desempefo aceptable en escenarios binarios y cuando
se utilizan datos espectrales (10b), pero presentan limitaciones importantes en escenarios multiclase y en la identi-
ficacion de cultivos minoritarios.

3. Las arquitecturas CNN, aunque aportan mejoras en la capacidad de modelar patrones espaciales y espectrales, re-
quieren recursos computacionales elevados y su rendimiento no siempre compensa este costo, especialmente en
contextos con datos limitados o alta variabilidad espectral, el cual fue el caso en este proyecto.

4. El modelo Presto emerge como una alternativa eficiente y competitiva, logrando F1-scores macro superiores en to-
dos los escenarios, en particular cuando se emplean datos de 10 bandas espectrales. Presto demuestra una notable
capacidad para mejorar la discriminacion entre cultivos y reducir la dependencia de infraestructura computacional
avanzada, lo que lo posiciona como una herramienta viable para aplicaciones operativas en agricultura de precision.
Sin embargo, incluso con este modelo, persisten desafios en la clasificacion de cultivos minoritarios y en escenarios
categoricos completos, donde la heterogeneidad de los datos y la similitud espectral entre clases afectan la precision
alcanzable.

Estos resultados evidencian que la incorporacion de informacion espectral adicional (mas alla de las bandas RGB) es fun-
damental para mejorar la capacidad de discriminacion de los modelos de clasificacidn, tanto tradicionales como avanzados.
Desde una perspectiva practica, la adopcion de modelos eficientes como Presto puede facilitar la implementacion de solu-
ciones de monitoreo agricola en regiones con recursos computacionales limitados, permitiendo una mayor escalabilidad y
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6 Conclusion

acceso a tecnologias de agricultura de precision.

6.1 Trabajo futuro

A partir de estos hallazgos, se identificaron varias lineas de trabajo para investigaciones futuras. En primer lugar, la amplia-
ciony diversificacion de Los conjuntos de datos de entrenamiento son cruciales para mejorar la generalizacion y la capacidad
de los modelos para identificar cultivos minoritarios. La integracion de técnicas de aumento de datos, muestreo balanceado
Y generacion sintética puede contribuir significativamente a mitigar el desbalance de clases y mejorar la robustez de los
modelos.

En particular, el desarrollo de estrategias avanzadas de data augmentation, como transformaciones geométricas y enfoques
de aprendizaje auto-supervisado[34], ha mostrado ser efectivo en la literatura reciente para incrementar la variabilidad del
entrenamiento y reducir el sesgo hacia clases mayoritarias. Asimismo, el uso de modelos hibridos y arquitecturas especiali-
zadas continua siendo una via prometedora para abordar los desafios inherentes a escenarios con datos desbalanceados y
limitados [6Q].

Por otro lado, el desarrollo e incorporacion de técnicas de explicabilidad e interpretabilidad de modelos (por ejemplo, vi-
sualizacion de mapas de atencion o analisis de importancia de variables) permitira comprender mejor las decisiones de los
algoritmos y facilitar su adopcion por usuarios finales y lograr mejorar la planificacion y toma de decisiones en el sector
agricola.
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Anexo A

Para automatizar la ejecucion de los experimentos con los distintos modelos (Random Forest, CNNs y Presto), se disefiaron
scripts en Bash que coordinan la llamada a Los scripts de Python responsables del entrenamiento, evaluacion y generacion
de resultados. A continuacion, se describe el uso de cada uno de estos scripts dentro del flujo de ejecucion por lotes.

model exp rf.py (modelos tradicionales): Script dedicado a la experimentacion con el modelo Random Forest.
Permite configurar los siguientes parametros mediante argumentos por linea de comandos:

» —- dataType : Tipo de datos de entrada (ej: rgb, 10b, index,all)
« —— cropType : Tipo de clasificacion (ej: binary,maize, rice, soybean,all)

Durante la ejecucion por lotes, este script se invoca repetidamente con distintas combinaciones de parametros. Por ejemplo:

python model exp rf.py --dataType rgb --cropType binary

model exp cnn.py (modelos CNN): Utilizado para entrenar redes convolucionales, este script permite mayor per-
sonalizacion a través de los siguientes argumentos:

» ——modelType: Arquitecturadered (e efficientnetb3, inceptionv3, resnet50)
+ -- dataType : Tipo de datos de entrada

+ —= lossFunc : Funcion de pérdida (ej; dice loss,categorical crossentropy)

« —— cropType : Tipo de clasificacion

Aligual que el anterior, este script se ejecuta multiples veces variando los parametros. Ejemplo de uso:

python model exp cnn.py --modelType efficientnetb3 --dataType rgb --

lossFunc dice_loss --cropType binary

model exp presto.py (modelo Presto): Pensado para probar el modelo Presto, este script emplea los siguientes
parametros:

+ —- dataType : Tipo de entrada (ej: rgb, 10b)
« —— cropType : Tipo de clasificacion (ej: binary,maize, rice, soybean,all)
Su ejecucion también forma parte del flujo por lotes. Ejemplo:

python model exp presto.py --dataType rgb --cropType binary

En total se ejecutaron 90 escenarios diferentes, combinando tanto las estrategias propuestas (Random Forest, tres CNN y
Presto), los diferentes tipos de entrada de los modelos (RGB, 10b, index y all) y el tipo de clasificacion.
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