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Resumen

Este estudio propone un marco metodológico para la detección temprana de la enfermedad de Parkinson (EP) mediante

un análisis multimodal basado en tareas de escritura registradas mediante una tableta de dibujo, comparando la eficacia

de modelos de aprendizaje profundo (Deep Learning, DL) y no profundo (Machine Learning tradicional, ML) así cómo la

explicabilidad de modelos de ML. Se utilizaron dos conjuntos de datos provenientes de regiones culturalmente diversas:

PaHaW (República Checa) y una base de datos propietaria recolectada en Ecuador. Estos conjuntos integran señales motoras

tales como presión, azimut, altitud y coordenadas espaciales capturadas durante tareas de dibujo de espirales.

El análisis comparativo reveló que los modelos de aprendizaje automático no profundo, específicamente Extra Trees y Gra-

dient Boosting, obtuvieron precisiones destacables de hasta el 93,27% y 94,20% respectivamente, superando a las redes neu-

ronales convolucionales (CNN) y a las redes neuronales de picos (SNN). Adicionalmente, mediante técnicas de explicabilidad

basadas en SHapley Additive exPlanations (SHAP), se identificaron biomarcadores clave para la detección de la enfermedad,

destacando principalmente la presión máxima ejercida por el lápiz, la repetición angular (azimut) y bajos valores de altitud.

La investigación demuestra la generalización potencial de los biomarcadores identificados a través de poblaciones con ca-

racterísticas lingüísticas diferentes. Además, proporciona herramientas interpretables que facilitan el entendimiento clínico

de los resultados generados por modelos predictivos complejos. Sin embargo, también se identificaron limitaciones relevan-

tes, tales como los altos requerimientos computacionales y limitaciones en escalabilidad asociadas a las SNN, lo cual abre

futuras líneas de investigación hacia la optimización de recursos y mejora en la eficiencia computacional.
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1
Introducción

La enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa progresiva que afecta aproximadamente al 1-2%

de la población mayor de 60 años [1]. Su diagnóstico temprano es crucial, ya que permite tratamientos oportunos que

pueden ralentizar el deterioro motor y mejorar la calidad de vida de los pacientes. No obstante, los métodos diagnósticos

convencionales suelen ser subjetivos y dependen principalmente de evaluaciones clínicas que pueden no detectar cambios

sutiles en etapas tempranas [2, 3].

Una alternativa emergente es el análisis digital de la escritura a mano, que aprovecha características motoras como la

presión, velocidad, dinámica angular y la fluidez del trazo. La escritura es una tarea neuromotora compleja que requiere

control motor fino, planificación cognitiva y retroalimentación sensorial, por lo que pequeñas alteraciones neuromotoras

pueden ser detectadas cuantitativamente a través de análisis [4, 5]. Diversos estudios han reportado que pacientes con EP

presentan cambios específicos en la escritura, como micrografía, irregularidad en perfiles de presión, y variabilidad en la

fluidez del trazo, incluso antes del diagnóstico clínico formal [6, 7].

La creciente disponibilidad y precisión de dispositivos digitales, como tabletas gráficas y bolígrafos inteligentes, ha facilitado

considerablemente la captura de biomarcadores a partir de tareas de dibujo y escritura. Particularmente, pruebas como

la espiral de Arquímedes han mostrado alta sensibilidad en detectar patrones anormales en pacientes con EP, superando

ampliamente las técnicas tradicionales de papel y lápiz [8, 9]. Estos avances tecnológicos han transformado el análisis de

dibujo y escritura manuscrita en una herramienta no invasiva, escalable y objetiva para la detección temprana y monitoreo

continuo de enfermedades neurodegenerativas.

Sin embargo, a pesar del éxito de estos métodos digitales, aún persisten limitaciones significativas relacionadas con la gene-

ralización lingüística. Lamayoría de los estudios previos se han basado en datos recolectados en poblaciones homogéneas, lo

que podría llevar a modelos poco generalizables cuando se aplican en contextos multilingües [10, 11]. Diferencias educativas

y lingüísticas pueden influir notablemente en las características motoras de la escritura, haciendo imperativo el desarrollo

de modelos capaces de normalizar y adaptarse a esta variabilidad para lograr una robustez universal.

Este trabajo aborda estas limitaciones mediante un análisis multimodal y multinacional, utilizando datos provenientes de

dos conjuntos culturalmente diversos: la base pública PaHaW (República Checa) y un conjunto propietario recolectado en

Ecuador. Al integrar técnicas avanzadas de aprendizaje profundo (CNN y SNN) y métodos clásicos de aprendizaje automático,

este estudio evalúa críticamente la capacidad de estos enfoques para detectar patrones neuromotores universales en el con-
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texto del diagnóstico temprano de la EP. Asimismo, se aplican métodos de explicabilidad con SHapley Additive exPlanations

(SHAP), proporcionando transparencia clínica sobre las decisiones de los modelos y facilitando la interpretación médica de

las características identificadas [12, 13].

Además, este estudio investiga explícitamente si modelos de aprendizaje automático poco profundos pueden igualar o su-

perar el rendimiento de las redes neuronales profundas en contextos donde la disponibilidad de datos es limitada, lo cual

es común en entornos clínicos reales. También se realiza un análisis estadístico riguroso para determinar si las variacio-

nes en los patrones motores pueden ser significativamente influenciadas por diferencias culturales o lingüísticas entre los

conjuntos de datos analizados.

La contribución principal de esta investigación es ofrecer un marco metodológico integral, robusto y explicable para la de-

tección temprana de Parkinson mediante tareas digitales de dibujo, por medio de la espiral de Arquímedes, proporcionando

herramientas prácticas para su implementación clínica y facilitando el diagnóstico oportuno en poblaciones diversas.

La estructura del documento es la siguiente: en el capítulo 2 se revisa detalladamente el estado del arte en técnicas digitales

de análisis de escritura para la EP. El capítulo Metodología describe exhaustivamente los procedimientos experimentales,

incluyendo la recolección, integración, preprocesamiento y análisis de los datos, así como el diseño e implementación de

los modelos propuestos. En el capítulo Resultados se presentan análisis cuantitativos y cualitativos de los hallazgos obte-

nidos, destacando los biomarcadores neuromotores más relevantes y las capacidades de generalización intercultural de los

modelos. Finalmente, el capítulo Conclusiones y Recomendaciones resume los aportes fundamentales del estudio y propone

futuras líneas de investigación orientadas amejorar la precisión diagnóstica y la interpretabilidad clínica de las herramientas

desarrolladas.
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La escritura a mano constituye una actividad motora compleja, altamente sensible a alteraciones neurológicas. En la enfer-

medad de Parkinson (EP), las disfunciones en los ganglios basales afectan directamente la motricidad fina, reflejándose en

características específicas de la escritura como la micrografía, patrones de presión irregulares, velocidad errática y mayor

variabilidad en la fluidez del trazo [6, 5]. Diversos estudios han demostrado que estos cambios pueden presentarse incluso

antes de establecerse un diagnóstico clínico formal, consolidando así los biomarcadores digitales extraídos del análisis de

escritura como indicadores tempranos sólidos de la enfermedad [7].

Entre los biomarcadores neuromotores más relevantes se destacan la micrografía (reducción anormal del tamaño de letra),

la disfluencia asociada a variaciones irregulares en la velocidad y la variabilidad en la presión ejercida durante la escritura.

Pacientes con EP generalmente presentan trayectorias del lápiz con menor amplitud, mayor tiempo en el aire (in-air time) y
mayor cantidad de cambios en la velocidad y aceleración del trazo. Mediciones cinemáticas detalladas, incluyendo duración

del trazo, perfiles de presión y variaciones dinámicas en la inclinación del lápiz, han demostrado ser indicadores confiables

del deterioro neuromotor asociado con la EP. Estas características permiten no solo la detección temprana, sino también el

monitoreo de la progresión de la enfermedad y la efectividad de intervenciones terapéuticas [7].

Las evaluaciones tradicionales de escritura se han empleado durante décadas en la práctica clínica para identificar déficits

neuromotores y cognitivos; no obstante, limitaciones como la sensibilidad reducida y la subjetividad inherente hanmotivado

el desarrollo de técnicas digitales avanzadas. Estas técnicas permiten capturar, en tiempo real, características cinemáticas y

dinámicas con gran precisión, facilitadas por el uso de tecnologías digitales como tabletas gráficas y bolígrafos inteligentes.

Estos dispositivos posibilitan la extracción enriquecida de información espacial, temporal y dinámica, consolidándose como

herramientas importantes para evaluar enfermedades neurodegenerativas [14, 15].

Una herramienta ampliamente validada en este contexto es la prueba digital de dibujo de la espiral de Arquímedes. Esta

prueba digital ha reportado mejoras significativas en la sensibilidad diagnóstica en comparación con métodos tradicionales

de papel y lápiz [16], puesto que permite cuantificar parámetros específicos como el número de picos de velocidad, variacio-

nes en la altitud del lápiz, velocidad del dibujo y amplitud del temblor. La alta resolución espacial y temporal proporcionada

por tabletas digitales posibilita detectar variaciones microestructurales, como sutiles cambios en la curvatura y la presión

del trazo, comúnmente desapercibidas en inspecciones visuales clínicas. Estudios indican que los pacientes con EP suelen

mostrar un temblor unidireccional y asimétrico claramente observable en esta prueba [8, 9].

El proceso de escritura también está influido por factores culturales y características inherentes a los distintos sistemas
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de escritura. Por ejemplo, alfabetos como el árabe, cursivos y sensibles al contexto, implican una ejecución motora con-

tinua, mientras que alfabetos latinos presentan caracteres segmentados y discretos. Estas diferencias demandan técnicas

adaptativas para la extracción de características espaciotemporales específicas según el idioma y la cultura [11]. Estudios

en poblaciones bilingües han evidenciado diferencias significativas en características de escritura entre distintas lenguas y

estilos educativos [17, 18, 10]. La normalización adecuada es crítica para corregir estas diferencias culturales y evitar que los

modelos diagnósticos atribuyan incorrectamente patrones motores culturales específicos a síntomas patológicos. Técnicas

recientes de normalización han demostrado mejorar significativamente el rendimiento de los algoritmos diagnósticos [19].

Una estrategia particularmente efectiva ha sido la integración de datos multimodales. Al combinar señales como presión,

azimut, altitud y coordenadas x, y, se logra representar distintos aspectos del deterioro motor. Cascarano et al. [20] de-

mostraron que esta integración mejora la clasificación e incluso permite estimar el grado de severidad de la enfermedad.

Estos enfoques multimodales ofrecen una visión más rica del proceso de escritura [21].

Paralelamente, ha surgido una preocupación creciente sobre la interpretabilidad de losmodelos utilizados. En entornos clíni-

cos, es fundamental comprender las razones detrás de una decisión automatizada. Por ello, técnicas de explicabilidad como

SHAP han sido incorporadas exitosamente. Zemmar et al. [13] identificaron, mediante SHAP, las regiones más influyentes de

una espiral manuscrita en la predicción de EP, mientras que Parziale et al. [22] emplearon modelos evolutivos para generar

reglas de decisión comprensibles sin comprometer el rendimiento. SHAP permite obtener explicaciones globales y locales, y

ha demostrado ser eficaz en aplicaciones médicas, incluyendo el análisis de escritura [12, 23, 24].

Finalmente, las redes neuronales de picos (SNNs) han ganado atención como una alternativa bioinspirada. Estas redes proce-

san información mediante eventos discretos llamados ”spikes”, emulando el comportamiento de las neuronas biológicas. Su

principal ventaja radica en su capacidad para representar de forma eficiente la información temporal y en su bajo consumo

energético, lo que las hace aptas para aplicaciones en hardware neuromórfico [25].

A continuación, se revisan los principales avances y limitaciones existentes en la literatura sobre análisis digital de escritura

para el diagnóstico temprano de la EP, organizados en bloques donde se detallan las contribuciones específicas de esta

investigación.

2.1 Características neuromotoras en escritura manuscrita

Numerosos estudios han identificado características neuromotoras de la escritura como biomarcadores tempranos de la EP.

Por ejemplo, Tai et al. (2021) alcanzaron una sensibilidad del 88% al analizar cambios en la presión y velocidad [5], mientras

que Di Febbo et al. (2023) reportaron una precisión del 91% empleando mediciones cinemáticas detalladas (duración de

trazo, perfiles de presión, dinámica angular) [7]. En la prueba de espiral digital, Danna et al. (2019) y Kamble et al. (2021)

consiguieron sensibilidades cercanas al 90% y 92% respectivamente, gracias a la cuantificación de picos de velocidad y

variaciones en la altitud del lápiz [8, 9].

Limitaciones. Estos trabajos suelen basarse en poblaciones culturalmente homogéneas, lo que puede sesgar los biomarca-

dores al no considerar variaciones lingüísticas y educativas.

Contribución de este estudio. Se integran dos bases de datos de regiones diversas (PaHaW de República Checa y un dataset
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propio de Ecuador) para evaluar la robustez intercultural de estas características neuromotoras y validar su universalidad.

2.2 Modelos clásicos de aprendizaje automático

Modelos como SVM, Random Forest y regresión logística han sido eficazmente aplicados al análisis de escritura. Ali et al.

(2019) y Poon et al. (2019) obtuvieron precisiones del 85–92% utilizando atributos diseñados manualmente (velocidad,

aceleración, presión) [26, 27]. En particular, Poon et al. alcanzaron un 85% de exactitud al emplear picos de aceleración

e irregularidades en la presión como entradas [27].

Limitaciones. La dependencia de características artesanales limita la escalabilidad y adaptación a nuevas poblaciones, ade-

más de requerir expertos en diseño de features.

Contribución de este estudio. Se compara el rendimiento de estos modelos con el de arquitecturas profundas en escenarios

de datos limitados y heterogéneos, determinando si pueden igualar la eficacia de los enfoques más complejos.

2.3 Aprendizaje profundo y multimodalidad

Las CNN y arquitecturas híbridas CNN–LSTM han demostrado una elevada capacidad de extracción automática de caracterís-

ticas. Kamran et al. (2021) reportaron sensibilidades del 95% con una CNN–LSTM en tareas de escritura [28], y Ali et al. (2023)

alcanzaron un 81% de precisión combinando características estáticas y dinámicas extraídas por CNNs [29]. Por su parte, Cas-

carano et al. (2019) y Ríos-Urrego et al. (2020) obtuvieron precisiones de hasta el 97% al integrar señales de presión, azimut

y altitud [20, 21].

Limitaciones. La opacidad de las redes profundas dificulta su aceptación clínica y escasa interpretabilidad de las decisiones.

Contribución de este estudio. Se incorporan técnicas de explicabilidad (SHAP) para generar interpretaciones globales y

locales de las predicciones, facilitando la validación médica de los biomarcadores extraídos.

2.4 Redes neuronales de picos (SNN) y enfoques bioinspirados

Las Spiking Neural Networks (SNN) ofrecen eficiencia energética y representación temporal precisa. El modelo SEFRON de

Das et al. (2024) alcanzó una precisión media del 91% (hasta 100% en ciertos subconjuntos) en detección de EP a partir de

señales de voz codificadas en spikes [30]. AbouHassan et al. (2023) demostraron su aplicabilidad multimodal con resultados

comparables a DNNs tradicionales [31].

Limitaciones. El entrenamiento de SNNs requiere ajustes complejos de hiperparámetros y codificaciones de spike, lo que

dificulta su adopción práctica.

Contribución de este estudio. Se evalúa de forma sistemática el desempeño comparativo de SNNs y CNNs en series tempo-
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rales de escritura, explorando estrategias de codificación (rate vs. latency coding) y optimización de entrenamiento.

2.5 Explicabilidad en contextos clínicos (XAI)

La interpretabilidad de modelos es esencial para la integración en entornos médicos. SHAP ha emergido como técnica de

elección por su consistencia global y local. Zemmar et al. (2024) usaron SHAP para identificar regiones de la espiral más

influyentes, y Ladbury et al. (2022) validaron su aplicabilidad en diagnósticos clínicos con un aumento del 15% en la confianza

del médico [13, 12].

Limitaciones. Aunque SHAP facilita la interpretación, su implementación en modelos de muy alta dimensión puede resultar

costosa en tiempo de cómputo.

Contribución de este estudio. Se aplica SHAP tanto sobre modelos de árbol como profundos, generando visualizaciones

(summary y dependence plots) que correlacionan clínicamente cada biomarcador con la probabilidad de EP.

2.6 Variabilidad cultural y lingüística

Estudios comparativos de escritura árabe y latina han mostrado diferencias de hasta 15% en métricas de fluidez y continui-

dad, afectando la precisión diagnóstica cuando no se normaliza adecuadamente [11, 19, 10]. Estas variaciones provienen de

diferencias en la segmentación de trazos y en la pedagogía de enseñanza de la escritura.

Limitaciones. La mayoría de modelos no incorpora estrategias de normalización cultural, exponiéndolos a errores sistemá-

ticos en poblaciones diversas.

Contribución de este estudio. Se prueba un protocolo de normalización basado en ajustes de escala (min–max) y compen-

saciones por estilo de escritura, evaluando su impacto en la robustez de los modelos.

2.7 Síntesis del estado del arte

A pesar de los avances en el análisis digital de la escritura para la enfermedad de Parkinson (EP), persisten desafíos en la

generalización intercultural, la interpretabilidad clínica y la eficiencia con datos limitados. Aunque los biomarcadores neuro-

motores en la escritura muestran gran potencial para el diagnóstico temprano no invasivo de la EP, existen retos significa-

tivos, especialmente relacionados con la diversidad cultural y lingüística. La expansión de conjuntos de datos multilingües y

culturalmente diversos es fundamental para desarrollar modelos diagnósticos robustos y generalizables, capaces de captar

plenamente la variabilidad natural de la escritura en contextos demográficos y lingüísticos diversos [32]. Esta investigación

aporta un enfoque integral que combina modelos multimodales, técnicas de explicabilidad y normalización cultural, crean-

do un marco robusto y clínicamente interpretable para la detección temprana de Parkinson en entornos multiculturales,

fortaleciendo así la aplicabilidad clínica de los modelos desarrollados.
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Este capítulo describe el enfoque metodológico adoptado en el estudio, abarcando desde la recolección y normalización de

los datos hasta la evaluación e interpretación de los resultados. Se detallan los procesos de integración y preprocesamiento

aplicados a los conjuntos de datos multiculturales, así como la segmentación temporal de las señales. Posteriormente, se

exploran distintos enfoques de clasificación: modelos demachine learning tradicionales, redes profundas (deep learning) y
arquitecturas bioinspiradas basadas en redes neuronales de picos (SNN). Finalmente, se presentan las estrategias de eva-

luación y las técnicas de explicabilidad utilizadas para interpretar los modelos.

3.1 Conjunto de Datos

3.1.1 Descripción de las Bases de Datos

Dos conjuntos de datos recopilados de manera independiente se emplearon, los cuales se estandarizaron y consolidaron en

una base unificada para su análisis integral. El conjunto de datos está compuesto por variables digitalizadas mediante dis-

positivos electrónicos, que registran las dinámicas cinemáticas en la tarea de dibujo de espirales. Los detalles demográficos

de ambos conjuntos de datos se resumen en la tabla 3.1.

Cuadro 3.1: Información demográfica de pacientes con diagnostico de la enfermedad de Parkinson (Parkinson Disease, PD) y

controles sanos (Health Control, HC) de las bases de datos PaHaW y propietaria.

PaHaW PD PaHaW HC Propietaria PD Propietaria HC

(n=37) (n=38) (n=9) (n=7)

Media± SD Media± SD Media± SD Media± SD

Edad, Años 65.83± 11.64 69.3± 5.74 64.94± 13.54 61.56± 5.88

Duración de la enfermedad, años 8.38± 4.80 - 9.79± 8.29 -

Dosis diaria equivalente de Levodopa (mg) 1432.19± 704.78 - 447.77± 283.92 -

Genero (Masculino/Femenino) 19/18 20/18 1/8 1/6

Lateralidad (Diestro/Zurdo) 37/0 38/0 8/1 7/0

Valores son media± desviacion estandar (SD) excepto para genero y lateralidad.
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Base de Datos PaHaW La base de datos ”Parkinson’s Disease Handwriting” contiene los trazos de 37 pacientes diagnos-

ticados con PD -19 hombres y 18 mujeres- y 38 personas de control sanos HC -20 hombres y 18 mujeres-, equiparados por

edad y género. Los datos fueron recolectadosmediante colaboración entre el Centro de Trastornos del Movimiento del primer

departamento de Neurología de la Universidad Masaryk y el Hospital Universitario St. Anne’s en Brno, República Checa.

Para el registro de los datos se utilizó una tableta Wacom Intuos 4M con una frecuencia de muestreo de 150 Hz. Con el fin de

mantener condiciones naturales de escritura durante la digitalización, se empleó un bolígrafo de tinta convencional.

Las tareas de trazado se ilustran en la Figura 3.1, que muestra el protocolo estandarizado utilizado para la evaluación com-

parativa entre los grupos PD y HC.

Figura 3.1: Protocolo gráfico utilizado para la evaluación de la escritura en los grupos PD y HC.

Base de Datos Propietaria La base de datos propietaria fue recolectada por el equipo de investigación AI in Health de la

Universidad Escuela Superior Politécnica del Litoral (ESPOL) en Guayaquil, Ecuador. El conjunto de datos consiste en trazados

de 9 pacientes diagnosticados con enfermedad de Parkinson y 7 sujetos de control, obtenidos en el Hospital IESS Los Ceibos.

El estudio contó con la aprobación del Comité de Ética de la Universidad Técnica de Manabí (UTM).

Para la captura de parámetros digitales se empleó la tableta Wacom Pro PTH-660, equipada con un sensor de presión de

8192 niveles, resolución espacial de 5080 lpi y un lápiz digital Wacom Pro Pen 2.

Se solicitó a cada participante realizar tareas de escritura mediante una plantilla predefinida como se muestra en la Figu-

ra 3.2. En este conjunto de datos, la tarea 5 consiste en replicar el patrón de la tarea 4, trazando sobre la línea y comenzando

desde el símbolo ”+”. La tarea 7 requiere replicar el patrón de la tarea 6, comenzando y terminando en el símbolo ”+”. Por

último, la tarea 8 solicita a los participantes dibujar un reloj con las manecillas marcando 10 minutos antes de las 11.

Para ambas bases de datos, las pruebas fueron ejecutadas a velocidad natural sin restricciones en repeticiones de sílabas,

palabras o altura de trazos. La captura de datos inició cuando el lápiz óptico estableció contacto con la tableta y finalizó al

completarse la actividad.
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Figura 3.2: Plantilla utilizada en la base de datos propietaria para la evaluación de la escritura en los grupos PD y HC.

Por cada tarea, se capturaron los siguientes parámetros en forma de secuencias/señales temporales:

• Coordenada x: posición horizontal del bolígrafo.

• Coordenada y: posición vertical del bolígrafo.

• Marca de tiempo: registro temporal de cada punto capturado.

• Estado del botón: indicador binario, donde 0 representa el bolígrafo levantado (movimiento en el aire) y 1 el bolígrafo

sobre la superficie (movimiento sobre la superficie).

• Presión perpendicular: mide la fuerza aplicada por el bolígrafo, brindando información sobre el control motor y la

fuerza de agarre.

• Azimut: captura los cambios direccionales en la orientación del bolígrafo con respecto al eje horizontal de la tableta.

• Altitud: representa la inclinación del bolígrafo con respecto al eje vertical durante las tareas de escritura.

3.1.2 Selección e Integración de Tareas

La tarea #1 (Espirales de Arquímedes), común en ambos conjuntos de experimentos 3.1.1 (PaHaW) y 3.1.1 (Propietaria), ha sido

seleccionada para el análisis y desarrollo de este estudio por su relevancia en la evaluación del control motor. Las caracterís-

ticas consideradas incluyen: [Coordenada X, Coordenada Y, Altitud, Azimut, Presión] como se ilustra en la Figura 3.3. Estas

variables permiten analizar la dinámica del movimiento de escritura y diferenciar los patrones motores entre pacientes con

Parkinson y controles sanos.
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Figura 3.3: Características Dinámicas que captura el Lápiz

3.1.3 Preprocesamiento

Dado que las tabletas utilizadas en este estudio generan valores en rangos numéricos marcadamente diferentes, se adoptó

un esquema de normalización en dos etapas con el fin de garantizar la comparabilidad entre dispositivos y evitar que los

modelos aprendan patrones específicos del hardware.

1. Reescalado específico por dispositivo (etapa de calibración). Cada variable del conjunto de datos propietario fue lineal-

mente transformada para corresponder al rango físico utilizado por la tableta PaHaW, siguiendo la fórmula:

x̃ = x · (xmax,PaHaW − xmin,PaHaW) + xmin,PaHaW,

dondex representa un valor crudo de la tableta propietaria yxmin,PaHaW, xmax,PaHaW son los límites mínimo y máximo físicos

observados en el dispositivo PaHaW. Este paso garantiza que, por ejemplo, un valor de presión de 0.5 corresponda al mismo

nivel de fuerza en ambas tabletas, eliminando así los sesgos inducidos por el hardware. En la Tabla 3.2 se presentan los

valores mínimos y máximos de cada variable utilizados en la etapa de calibración por dispositivo.

Cuadro 3.2: Valores máximos y mínimos de las variables en las bases de datos PaHaW y propietaria.

Variable PaHaW Propietaria

Mínimo Máximo Mínimo Máximo

Coordenada X (xcoord) -9079.0 9079.0 0.102235 0.389202

Coordenada Y (ycoord) -9079.0 9079.0 -0.014404 0.234685

Azimut (azimuthY) 0.0 3589.0 -1.94 3.14

Altitud (altitudeY) 300.0 892.0 0.39 1.44

Presión (pressureY) 0.0 2048.0 0.0 1.00
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2. Normalización min–max global. Una vez combinados ambos conjuntos de datos (PaHaW y propietario ya reescalado), se

aplicó una normalización min–max por variable:

x′ =
x̃− x̃min

x̃max − x̃min
,

donde x̃min y x̃max son los valoresmínimos ymáximos observados globalmente en la variable correspondiente. Este segundo

paso asegura que todas las variables estén contenidas en el intervalo [0, 1] al momento del entrenamiento, favoreciendo

la estabilidad numérica de los modelos y evitando que características con mayor escala dominen el aprendizaje.

Este proceso doble de calibración y normalización mejora significativamente la comparabilidad de las muestras, previene el

sesgo por dispositivo y garantiza que los valores numéricos reflejen significados físicos consistentes entre cohortes.

3.1.4 Segmentación de las Señales

El aumento de datos se llevó a cabo con el objetivo de ampliar y equilibrar las muestras de señales disponibles, mejorando

así la robustez y la capacidad de generalización del modelo frente a la variabilidad inherente a los datos. Este proceso fue

crucial debido al tamaño limitado de las bases de datos utilizadas.

Para implementar el aumento de datos, se emplearon ventanas deslizantes con solapamiento (overlap), lo que permitió

segmentar las señales medidas en intervalos de diferentes tamaños. La longitud promedio de cada señal medida fue de

2301.40 puntos para la clase HC y 2709.05 puntos para la clase PD. Las configuraciones de ventanas utilizadas fueron las

siguientes:

• 100 puntos (50% overlap)

• 200 puntos (25%, 50% y 75% overlap)

• 250 puntos (50% overlap)

• 400 puntos (12.5%, 25%, 50% y 75% overlap)

• 500 puntos (50% overlap)

Cada ventana generada representa un subconjunto de la señal original, permitiendo capturar información localizada y espe-

cífica delmovimiento de escritura. Para garantizar que cada ventana tuviera una longitud uniforme, se realizó una imputación

de datos basada en la media de la ventana correspondiente. Esto asegura la consistencia en las secuencias generadas y evita

la pérdida de información en los bordes de las señales segmentadas.

3.2 Modelos Propuestos

Para la detección temprana de la enfermedad de Parkinson mediante la tarea de clasificación supervisada, se seleccionaron

diversos modelos de aprendizaje automático y aprendizaje profundo, considerando sus distintas fortalezas y capacidades de

generalización.Este trabajo se enmarca dentro de un enfoque netamentemultimodal, ya que, aunque todas las señales pro-
vienen de una misma fuente cada una representa aspectos distintos del comportamiento motor del sujeto: las coordenadas

trazan el movimiento, la presión indica la fuerza aplicada, mientras que los ángulos capturan la orientación del dispositivo

de entrada. Esta riqueza semántica justifica un tratamiento multimodal, con el objetivo de explotar la complementariedad

entre las distintas modalidades.
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Los experimentos se llevaron a cabo en un sistema de computación de alto rendimiento (HPC) que cuenta con cuatro GPU

NVIDIA TESLA A100, cada una equipada con 40 GB de memoria VRAM. Estos recursos computacionales fueron proporcionados

por la Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA). Para la implementación, se

emplearon PyTorch 2.0.11 y Python 3.82 .

El conjunto de datos fue procesado mediante dos representaciones complementarias:

1. Imágenes generadas a partir de las coordenadasx, y: Esta representación permite capturar patrones espaciales y

morfológicos del trazo mediante imágenes bidimensionales, las cuales fueron posteriormente analizadas utilizando

modelos de aprendizaje profundo basados en redes neuronales convolucionales. Para generar estas imágenes, se

empleó la librería Matplotlib de Python, configurando cada imagen con un tamaño estándar de 224x224 píxeles,

fondo blanco, líneas negras con grosor 3, y formato de almacenamiento JPG. Un ejemplo ilustrativo se presenta en

la Figura 3.4.

2. Series temporales de presión, azimut y altitud: Esta representación permite capturar las propiedades dinámicas y

temporales finas asociadas al movimiento del trazo, como la variación de la presión aplicada y los cambios en los

ángulos del lápiz durante la escritura.

La integración de estas dos representaciones complementarias, junto con sus respectivos modelos, permite realizar un análi-

sis integral delmovimiento desdemúltiples perspectivas, incrementando así la capacidad de detección temprana de patrones

asociados a la enfermedad de Parkinson.

(a) HC (b) HC (c) PD (d) PD

Figura 3.4: Ejemplo de las imágenes de los grupos PD y HC generadas a partir de las coordenadas x, y, utilizadas como

entrada para los modelos de aprendizaje profundo. Las imágenes corresponden a ventanas de 400 puntos con un solapa-

miento del 75%.

3.2.1 Modelos de Aprendizaje No Profundo

Utilizando el conjunto de datos integrado, se entrenaron los siguientes modelos de aprendizaje no profundo para procesar

las señales temporales de presión, azimuth y altitud. La elección de cada uno de los modelos se describe a continuación:

• Regresion Logística La regresión logística es un modelo lineal ampliamente utilizado en clasificación binaria por

su simplicidad y robustez. Su principal ventaja radica en su interpretación directa, ya que estima probabilidades

1https://pytorch.org/get-started/previous-versions/#v201
2https://www.python.org/downloads/release/python-380/
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basadas en una función sigmoide. En este caso, se ajustaron el parámetro de regularización C y el solucionador

(solver) liblinear, diseñado específicamente para problemas de alta dimensionalidad [33].

• Support Vector Classifier (SVC) El clasificador SVC es un modelo ampliamente utilizado en tareas de clasificación

debido a su capacidad para encontrar un hiperplano óptimo que maximice la separación entre clases en el espacio

de características. Su principal ventaja radica en su efectividad para trabajar con datos de alta dimensionalidad y

manejar problemas linealmente no separables mediante el uso de núcleos (kernels) como el lineal, el radial base

(RBF) o el polinómico. En este modelo, se ajustaron parámetros clave comoC , que controla la regularización, el tipo

de kernel y el coeficiente γ , que define la influencia de los puntos de datos en la decisión del modelo [34].

• Decision Trees Los árboles de decisión dividen iterativamente el espacio de características maximizando la ganancia

de información en cada división. Este modelo es fácil de interpretar y comprender, siendo ideal para identificar pa-

trones en datos complejos. Se ajustaron parámetros como la profundidad máxima del árbol (max_depth), el criterio
para medir la calidad de las divisiones (criterion) y el número mínimo de muestras necesarias para dividir un nodo

(min_samples_split) [35].

• Random Forest El modelo Random Forest es un algoritmo basado en ensamblajes que combina múltiples árboles de

decisión paramejorar la precisión y reducir el riesgo de sobreajuste. Su ventaja principal es su capacidad paramanejar

conjuntos de datos con ruido y variables no lineales, proporcionando predicciones robustas y generalizables. En este

estudio, se optimizaron parámetros como el número de árboles (n_estimators), la profundidadmáxima de los árboles

(max_depth) y el número mínimo de muestras requeridas para dividir un nodo (min_samples_split) [36].

• Naive Bayes El clasificador Naive Bayes Gaussiano es eficiente y simple, ya que asume una distribución normal para

cada característica. Su ventaja principal es su capacidad para trabajar bien con conjuntos de datos pequeños y de alta

dimensionalidad. En este caso, se ajustó el parámetro de suavizado (var_smoothing) para mejorar la estabilidad de

las predicciones [37].

• Grading Boosting Gradient Boosting es un modelo de ensamblaje que combina árboles de decisión de manera se-

cuencial, corrigiendo los errores cometidos pormodelos previos. Su ventaja principal es su alta precisión en problemas

complejos, ya que optimiza una función de pérdida utilizando gradientes. Se ajustaron parámetros como la tasa de

aprendizaje (learning rate), la profundidad de los árboles (max_depth) y el número de estimadores (n_estimators)
[38].

• Extra Trees Extra Trees (Extremely Randomized Trees) es una variación de Random Forest que introduce una mayor

aleatoriedad en el proceso de división de los árboles, lo que mejora su robustez frente a datos ruidosos. Su ventaja

principal radica en su eficiencia computacional y en su capacidad para manejar grandes volúmenes de datos. Se

ajustaron parámetros como el número de árboles (n_estimators) y la profundidad máxima (max_depth) [39].

• K-Nearest Neighbors El algoritmo KNN clasifica nuevas instancias en función de la distancia a sus vecinos más

cercanos en el espacio de características. Es especialmente útil en escenarios donde los datos tienen distribuciones

no lineales. Su principal ventaja es su simplicidad y ausencia de supuestos sobre la distribución de los datos. En este

estudio, se ajustaron parámetros como el número de vecinos k, la métrica de distancia (euclidean omanhattan) y el
peso asignado a los vecinos (uniform o distance) [40].
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Ingeniería de Características

A partir de cada segmento extraído de las ventanas deslizantes, se generaron características adicionales de series de datos

temporales utilizando la librería TS-Fresh v0.21.0 3[41]. TSFresh es una herramienta especializada en la extracción automa-

tizada de características a partir de series temporales. Se optó por esta implementación debido a su capacidad para ofrecer

explicabilidad de las características en tareas de regresión y clasificación, aprovechando los métodos que esta provee (FC-
ComprehensiveParameters).

Las características generadas se pueden agrupar en categorías como:

• Estadísticas básicas:media, desviación estándar, mínimo, máximo, y percentiles.

• Transformaciones basadas en Fourier: coeficientes de la transformada de Fourier y análisis de frecuencias.

• Medidas de correlación: características relacionadas con correlaciones entre segmentos de la señal.

• Autocorrelaciones y pruebas estadísticas: coeficientes de autocorrelación y resultados de pruebas como la prueba

de Augmented Dickey-Fuller.

• Características derivadas de la dinámica de los datos: información sobre la tendencia, curtosis y asimetría.

De las características extraídas, se seleccionaron aquellas que fueran ortogonales entre sí, es decir, con baja redundancia,

y que tuvieran una correlación significativa con la salida. Para esto, se analizaron tanto las correlaciones lineales como no

lineales, utilizando un umbral de correlación del 70%.

Posteriormente, se utilizó la función SelectKBest [42] de la librería scikit-learn v1.6.1 4 para seleccionar las 10 mejores ca-

racterísticas que representan los datos considerando un umbral de correlation mayor a 40%. La función SelectKBest evalúa
cada característica individualmente en función de su relación con la variable objetivo, utilizando pruebas estadísticas como

el estadístico chi-cuadrado o ANOVA según el tipo de datos procesados.

Entrenamiento

Todos losmodelos fueron optimizados utilizando una búsqueda en rejilla (grid search) para ajustar sus hiperparámetros. Para

cada modelo, se seleccionaron hiperparámetros específicos en función de su impacto en el rendimiento, como se muestra

en la Tabla 3.3.

Estos hiperparámetros fueron elegidos debido a su influencia significativa en el rendimiento y la capacidad de generalización

de sus respectivos modelos.

Adicionalmente, se aplicó validación cruzada con k = 5 particiones utilizando StratifiedKFold de scikit-learn para todos los

modelos, con el fin de asegurar la robustez de los resultados y mejorar su capacidad de generalización.

3.2.2 Modelos de Aprendizaje Profundo

En este estudio se consideraron dos enfoques principales de aprendizaje profundo, cada uno orientado al análisis de dife-

rentes representaciones de los datos recolectados durante la tarea de dibujo de espirales.

3https://tsfresh.readthedocs.io/en/v0.21.0/
4https://scikit-learn.org/stable/index.html
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Cuadro 3.3: Hiperparámetros ajustados para cada modelo

Modelo Hiperparámetros

Support Vector Classifier (SVC) Regularization (C), Kernel Type, Polynomial Degree , Kernel Coefficient

Random Forest Number of Trees, Maximum Depth, Minimum Samples Split , Minimum Samples Leaf

Logistic Regression Regularization Strength , Penalty Type , Solver

Gradient Boosting Learning Rate, Maximum Depth, Number of Estimators

K-Nearest Neighbors (KNN) Number of Neighbors, Distance Metric, Weighting

Decision Tree Criterion, Maximum Depth, Minimum Samples Split

Naive Bayes Variance Smoothing Factor

Extra Trees Number of Trees, Maximum Depth, Minimum Samples Split

El primer enfoque se basa en el uso de Redes Neuronales Convolucionales (Convolutional Neural Networks,CNN) para pro-

cesar imágenes generadas a partir de las coordenadas x e y, capturando así patrones espaciales y morfológicos del trazo.

Este tipo de arquitectura ha demostrado ser eficaz en tareas de clasificación de imágenes biomédicas, permitiendo extraer

características relevantes asociadas a la regularidad, simetría y fluidez del dibujo.

El segundo enfoque corresponde al uso de Redes Neuronales de Picos (Spiking Neural Networks, SNN), una clase de modelos

bioinspirados que simulan de manera más realista la dinámica de disparo de las neuronas biológicas. Estas redes fueron uti-

lizadas para la clasificación tanto de las series temporales (presión, azimut y altitud) como de las representaciones visuales

derivadas de las coordenadas espaciales. Las SNN presentan ventajas en el modelado de señales temporales complejas y

pueden ofrecer un marco más interpretativo al estar alineadas con principios neurofisiológicos.

Ambos enfoques permiten comparar el desempeño y la interpretabilidad de arquitecturas profundas tradicionales y bioins-

piradas, en el contexto de un análisis multimodal para la detección temprana de la enfermedad de Parkinson.

Redes Neuronales Convolucionales (CNN)

Utilizando el conjunto de datos integrado por las imágenes generadas a partir de las coordenadas x, y, se entrenaron cinco

arquitecturas de Redes Neuronales Convolucionales (CNN) para la tarea de clasificación entre pacientes con PD y HC. En todos

los modelos, la capa de salida fue modificada para incluir un perceptrón multicapa (Multilayer Perceptron, MLP) totalmente

conectada, adaptado específicamente para clasificación binaria.

Las arquitecturas seleccionadas fueron elegidas en función de su rendimiento comprobado tanto en estudios previos del

grupo de investigación como en la literatura científica reciente [43, 44, 45], donde han demostrado una alta precisión y

eficiencia en tareas de clasificación similares, especialmente en el contexto de imágenes biomédicas. Cada modelo fue opti-

mizado específicamente para las imágenes de escritura a mano utilizadas en este estudio. La Tabla 3.4 presenta un resumen

de las especificaciones arquitectónicas, incluyendo el número de capas, las transformaciones aplicadas y las capas finales

de clasificación.

A continuación, se describen brevemente las arquitecturas utilizadas:
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• ResNet50: Red residual profunda con 50 capas que resuelve el problema del desvanecimiento del gradiente me-

diante bloques residuales, permitiendo el entrenamiento eficiente de redes muy profundas. Fue seleccionada por su

capacidad para extraer características ricas y por su amplio uso exitoso en aplicaciones médicas [46, 47].

• EfficientNet-B0: Esta arquitectura destaca por su escalabilidad eficiente en profundidad, anchura y resolución, lo

que le permite alcanzar alta precisión con un número reducido de parámetros. Fue seleccionada por su balance entre

eficiencia computacional y rendimiento [48].

• DenseNet-121: Conecta cada capa con todas las capas posteriores de forma directa, lo que mejora el flujo del gra-

diente, reduce la redundancia y fomenta la reutilización de características. Fue elegida por su capacidad de mitigar

el desvanecimiento del gradiente y su eficacia comprobada en tareas de clasificación médica [49, 50].

• MobileNetV2: Diseñada para dispositivos con recursos limitados, emplea convoluciones separables en profundidad y

bloques residuales tipo bottleneck. Fue seleccionada por su eficiencia y aplicabilidad en contextos donde se requiere

bajo consumo computacional [51].

• Ensamble deModelos: Se construyó unmodelo de ensamble combinando las predicciones de ResNet50, EfficientNet-

B0, DenseNet-121 y MobileNetV2. El ensamble se realizó mediante la técnica de bagging (Bootstrap Aggregating),

entrenando cada modelo individualmente sobre subconjuntos aleatorios del conjunto de entrenamiento generados

con reemplazo. Esta estrategia permite reducir el sobreajuste y la varianza del modelo, mejorando su capacidad de

generalización. Las predicciones finales se obtuvieron promediando las salidas de cada modelo individual, lo cual

resultó en un clasificador más robusto y preciso [52].

Cuadro 3.4: Detalles arquitectónicos de cada modelo CNN, incluyendo el número de capas, transformaciones internas y la

estructura de las capas de clasificación. (FC) se refiere a capas totalmente conectadas, (ReLU) a la función de activación

Rectified Linear Unit y las capas Dropout se utilizan para prevenir sobreajuste.

Modelo Arquitectura

ResNet50 50 capas: 49 convolucionales, 1 totalmente conectada. Conexiones residuales. Salida:

FC(2048)→ FC(512)→ ReLU→ Dropout→ FC(1)

EfficientNet-B0 16 capas: bloques Conv-BN-ReLU, convoluciones separables en profundidad. Salida:

FC(1280)→ Dropout→ FC(1)

DenseNet-121 121 capas: bloques densos, convoluciones 1x1 y 3x3. Salida: FC(1024)→ FC(512)→ ReLU

→ Dropout→ FC(1)

MobileNetV2 53 capas: convoluciones separables en profundidad, bloques residuales tipo bottleneck.

Salida: FC(1280)→ Dropout→ FC(1)

Ensamble Combinación de ResNet50, EfficientNet-B0, DenseNet-121 y MobileNetV2. Predicciones

promedio entre los modelos individuales.
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Preprocesamiento

Todas las imágenes fueron normalizadas utilizando los valores de media y desviación estándar de [0.0287, 0.0285, 0.0285]

y [0.0071, 0.0070, 0.0070] respectivamente, ejemplos de estas se pueden observar en la Figura 3.5. Estos valores correspon-

den a la distribución de intensidades de píxeles en las imágenes del dataset, y fueron adoptados para alinear los datos con

los requisitos de entrada de las arquitecturas convolucionales utilizadas. La normalización es un paso esencial en el entre-

namiento eficiente de modelos de aprendizaje profundo, ya que permite estabilizar el proceso de aprendizaje al centrar los

valores de píxel alrededor de cero y escalarlos dentro de un rango consistente. En concreto, durante el preprocesamiento se

resta la media a cada canal de color y se divide por su respectiva desviación estándar, evitando problemas como la explosión

o desaparición del gradiente durante la retropropagación.

Figura 3.5: Ejemplo de imágenes del conjunto de prueba después del preprocesamiento

Aumento de Datos

Con el objetivo de aumentar la diversidad del conjunto de entrenamiento y mejorar la capacidad de generalización de los

modelos, se aplicaron diversas técnicas de aumento de datos exclusivamente sobre las imágenes de entrenamiento. Estas

transformaciones fueron clave para mitigar el sobreajuste, ya que proporcionaron múltiples variaciones del mismo trazo sin

alterar la información esencial de los patrones de escritura de los sujetos. Las transformaciones se diseñaron para preservar

la estructura del trazo mientras se introducían variaciones visuales que simulan diferentes condiciones de adquisición.

Las transformaciones se agruparon en dos categorías: (1) aquellas aplicadas a todas las imágenes, y (2) transformaciones

aleatorias, en las cuales se seleccionó una de cada grupo con una probabilidad determinada. Tras el aumento, el conjunto de

datos se incrementó a un total de 1200 imágenes, permitiendo una mayor variabilidad durante el entrenamiento.

Las transformaciones aplicadas a todas las imágenes fueron:

• Rotación aleatoria: Gira la imagen aleatoriamente entre ángulos de 90° y -90°.

• Flip: Aplica volteos aleatorios horizontales y verticales.
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• Transposición: Transpone la imagen aleatoriamente.

• Ruido gaussiano: Agrega ruido gaussiano con una probabilidad del 20%, simulando ruido en la adquisición de imá-

genes.

Las siguientes transformaciones se aplicaron seleccionando aleatoriamente una opción dentro de cada grupo, con una pro-

babilidad del 30%:

• Desenfoque: Aplica una de las siguientes transformaciones: MotionBlur, MedianBlur o Blur, simulando variaciones

en el enfoque.

• Distorsiones geométricas: Aplica una de las siguientes: Optical Distortion, Grid Distortion o Piecewise Affine, intro-
duciendo deformaciones geométricas.

• Mejoras de imagen: Aplica una de las siguientes: CLAHE, Sharpen, Emboss o Random Brightness Contrast, mejorando

el contraste o la nitidez para simular condiciones de iluminación variadas.

Estas transformaciones se aplicaron con una probabilidad del 20–30%, logrando un balance entre variabilidad e integridad

del dato. El aumento de datos se realizó demanera dinámica durante el entrenamiento (on-the-fly), lo cual evitó la necesidad
de almacenamiento adicional y proporcionó una mayor variabilidad en tiempo real.

La Figura 3.6 presenta ejemplos de imágenes aumentadas utilizadas durante el entrenamiento lo que evidencia la diversidad

introducida en el entrenamiento y la consistencia mantenida en la evaluación.

Figura 3.6: Ejemplo de imágenes después de aplicar el aumento de datos de los grupos PD y HC para la ventana de 400 con

overlpaing del 75%.

Entrenamiento

Todos los modelos fueron optimizados mediante una búsqueda en rejilla (grid search) para ajustar hiperparámetros clave:

el valor de dropout, la tasa de aprendizaje (learning rate) y el weight decay. Estos parámetros fueron seleccionados por su
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influencia directa en la capacidad del modelo para aprender de manera eficiente sin sobreajustarse.

Además, se empleó validación cruzada estratificada con k = 5 particiones utilizando la clase StratifiedKFold de la librería

scikit-learn, lo que permitió garantizar la robustez del entrenamiento y una mejor capacidad de generalización. Esta técnica

asegura que cada subconjunto preserve la proporción de clases original, lo cual es especialmente importante en conjuntos

de datos con clases desbalanceadas o limitadas.

Spiking Neural Networks

Las Redes Neuronales de Picos (Spiking Neural Networks, SNNs) son un tipo de red neuronal inspirada en el funcionamiento

del cerebro humano. A diferencia de las redes neuronales tradicionales, donde la información se transmite de manera conti-

nua, en las SNNs las neuronas se comunican enviando señales discretas llamadas spikes (picos), que ocurren en momentos

específicos del tiempo.

Estas redes se basan en un modelo llamado Leaky Integrate-and-Fire (LIF), donde cada neurona acumula señales de entrada

a lo largo del tiempo. Cuando la señal acumulada supera un cierto umbral, la neurona genera un pico y transmite esa señal a

otras neuronas. Si el umbral no se alcanza, parte de la señal se pierde con el tiempo a través de un ”canal de fuga”, simulando

cómo las neuronas reales dejan de responder si no reciben suficiente estimulación.

Este tipo de codificación permite que las SNNs procesen información no solo por la cantidad de señal, sino también por el

momento en que ocurre. Gracias a esto, las SNNs son especialmente útiles para detectar patrones en señales temporales,

como las que se producen al escribir a mano, ya que pueden capturar mejor la dinámica del movimiento y los cambios sutiles

en el tiempo.

Preprocesamiento de Datos

Para entrenar la red neuronal de picos (SNN), se procesaron tanto las series de tiempo como las imágenes generadas a

partir de los datos de escritura. En esta sección se detalla el preprocesamiento aplicado a las señales temporales de presión,

azimut y altitud.

Series de Tiempo Las Spiking Neural Networks requieren que los datos de entrada se representen en forma de secuencias

de spikes (picos). Para lograr esto, se aplicaron dos estrategias de codificación:

• Rate Coding: La información se codifica mediante la frecuencia de disparo de una neurona dentro de un intervalo de

tiempo. Cuanto mayor es la magnitud del estímulo, más frecuente será la emisión de spikes. En la implementación,

cada valor de la señal se normaliza al rango [0, 1] y se asocia a una distribución de Bernoulli con esa probabilidad.

Durante un número fijo de pasos temporales (num_steps), se realiza un muestreo en cada paso; si el resultado es un

”éxito”, se genera un spike, en caso contrario no.

• Temporal Coding (Latency Coding): En esta estrategia, la información se representa a través del momento en que

ocurre el primer spike dentro de la ventana temporal. Un valor alto provoca un spike temprano, mientras que un valor

bajo lo retrasa. Esta codificación permite capturar relaciones temporales de manera más precisa.
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Las tres variables de entrada fueron transformadas en secuencias de spikes utilizando las siguientes configuraciones:

• Altitud y presión: Codificadas mediante Latency Coding, dado que su dinámica temporal puede reflejar cambios

sutiles en el control motor.

• Azimut: Debido a su naturaleza cíclica (0–360°), se descompuso en sus componentes seno y coseno para preservar

la continuidad angular. Luego, ambas componentes fueron codificadas utilizando Rate Coding.

La Figura 3.7 muestra un ejemplo visual de las señales de altitud, azimut y presión codificadas en formato spike, correspon-

diente a una ventana de 400 puntos con un solapamiento del 75%, utilizando 50 pasos temporales, un umbral (threshold)
de 0.5 y una constante de tiempo (τ ) de 10.

Figura 3.7: Ejemplo de codificación en spikes aplicado a señales motoras de escritura. Las dos primeras filas muestran los

spikes generados mediante Rate Coding a partir de las componentes seno y coseno del azimut. Las dos filas inferiores

representan la codificación mediante Latency Coding para las señales de altitud y presión, donde la aparición temprana de

spikes indica mayor intensidad en la señal original.

En este contexto:

• Pasos temporales (time steps): representan las unidades discretas de tiempo en las que se simula la propagación

de los spikes. A mayor número de pasos, mayor resolución temporal tiene la codificación.

• Umbral (threshold): valor mínimo que debe alcanzar la señal para que se genere un spike. Un valor de 0.5 implica
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que solo los estímulos de media o alta intensidad desencadenan actividad neuronal.

• Constante de tiempo (τ ): parámetro que regula la rapidez con la que decae la probabilidad de disparo en la codifi-

cación por latencia. Valores bajos generan spikes más tempranos para estímulos intensos, mientras que valores más

altos permiten una codificación más dispersa en el tiempo.

Imágenes Para el procesamiento de las imágenes en el contexto de las redes neuronales de picos (SNNs), se emplearon

dos estrategias distintas de representación visual de las coordenadas x, y. A diferencia de las señales temporales, en las

imágenes no es necesario realizar una codificación explícita en spikes, ya que la red puede inferir directamente la información

a partir de los valores de intensidad de los píxeles durante el entrenamiento. Es decir, la codificación de la información está

implícita en la variación espacial del trazo.

Las estrategias utilizadas fueron las siguientes:

• Secuencia completa: Se generaron imágenes a partir de la totalidad de la secuencia de coordenadas x, y, trazando

el dibujo completo con líneas negras sobre fondo blanco. Esta representación estática proporciona información mor-

fológica global del trazo. Esta técnica fue también utilizada en el entrenamiento de las CNN, como se describe en la

sección anterior. Ejemplos de estas imágenes pueden observarse en la Figura 3.4.

• Secuencia por fotogramas (frames): En estamodalidad, el trazo se construye de forma progresiva, añadiendo cuatro

nuevos puntos por cada fotograma, lo que genera una secuencia visual que simula el proceso temporal del dibujo. De

esta forma, se obtiene una representación visual dinámica de la escritura, tratándola como una serie de tiempo de

imágenes. Esta estrategia permite a la red capturar la evolución temporal del trazo a través de la progresión espacial

de los píxeles. Un ejemplo de esta representación puede verse en la Figura 3.8.

(a) 4 (b) 16 (c) 28 (d) 40 (e) 52 (f) 64 (g) 76 (h) 88

Figura 3.8: Secuencia de imágenes generadas a partir de una espiral manuscrita, correspondiente a una ventana de 400

puntos dividida en 100 fotogramas. Cada imagen muestra el estado progresivo del dibujo al acumular 4 nuevos puntos por

frame, permitiendo representar la dinámica del trazo en el tiempo. El avance ocurre en sentido antihorario. Los números

indican el índice del fotograma dentro de la secuencia.

Arquitecturas propuestas

En este estudio se emplearon distintas arquitecturas de SNNs ajustadas específicamente para procesar información mul-

timodal derivada de tareas de escritura a mano. Estas arquitecturas fueron seleccionadas con base en su respaldo en la

literatura y su capacidad para capturar tanto patrones espaciales como dinámicas temporales complejas, características

inherentes a las señales biomotoras involucradas en la detección temprana de la enfermedad de Parkinson.
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Se exploraron seis configuraciones principales de modelos SNN, diferenciadas por el tipo de entrada (series de tiempo o

imágenes), el tipo de fusión multimodal (temprana o tardía), y el uso de bloques spiking simples (LIF) o recurrentes (SLSTM):

• Early Fusion (LIF y SLSTM): Todas las señales multimodales (presión, azimut y altitud) son concatenadas desde el

inicio (Figura 3.9) y procesadas por una única red. Esta variante es útil cuando existe una fuerte correlación entre

las señales. El uso de neuronas LIF permite entrenamientos más rápidos, mientras que los bloques SLSTM agregan

memoria temporal, mejorando la modelación de relaciones de largo plazo.

• Late Fusion (LIF y SLSTM): Las señales se procesan por separado a través de bloques independientes de capas spiking

como se muestra en la Figura 3.10. Esto permite explotar la especificidad de cada modalidad. Finalmente, las salidas

son fusionadas mediante concatenación antes de la clasificación. La inclusión de SLSTM en cada rama mejora la

capacidad para extraer dependencias temporales particulares en cada señal, algo clave en variables como presión o

altitud.

• Convolutional SNN: Utilizada para procesar imágenes completas generadas a partir del trazo x, y del paciente.

Emplea capas convolucionales seguidas de neuronas spiking y una capa totalmente conectada. La entrada se replica a

lo largo de varios pasos temporales para adaptarse al paradigma spiking. Esta arquitectura permite capturar patrones

morfológicos relevantes en los trazos.

• Convolutional + SLSTMSNN: Procesa secuencias de imágenes construidas a partir de fotogramas del trazo (frames de

coordenadas). Combina convoluciones espaciales con bloques SConv2dLSTM, permitiendo modelar simultáneamente

tanto la variación intra-imagen como la evolución temporal entre imágenes. Esta arquitectura resulta especialmente

adecuada para representar el proceso de escritura como una serie de micro-movimientos.

• Ensamble: Dada la naturaleza complementaria de las arquitecturas anteriores, se implementó unmodelo de ensam-

ble que combina las predicciones de los modelos Late Fusion SLSTM, Early Fusion SLSTM y Convolutional+SLSTM SNN.

Este enfoque busca aumentar la robustez del sistema y mejorar la capacidad de generalización al mitigar los sesgos

de cada arquitectura individual.

Presión + Azimut (sin+cos) + Altitud
(Concatenación de señales codificadas)

Bloques
LIF/SLSTM

Capa FC + salida

Figura 3.9: Esquema de arquitectura Early Fusion. Todas las señales multimodales son concatenadas desde el inicio y pro-

cesadas por una única red spiking compuesta por bloques LIF o SLSTM.

La exploración sistemática de estas configuraciones permite comparar sus capacidades de representación y discriminación

bajo un enfoque netamente multimodal. En la tabla 3.5 se muestra en detalle la arquitectura de cada una de las redes

utilizadas.
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Presión
(Latency Coding)

Azimut (sin+cos)
(Rate Coding)

Altitud
(Latency Coding)

Bloques
LIF/SLSTM

Bloques
LIF/SLSTM

Bloques
LIF/SLSTM

Concatenación

Capa FC + salida

Figura 3.10: Esquema de arquitectura Late Fusion. Cada modalidad es procesada por separado a través de bloques spiking

(LIF o SLSTM), y sus salidas se fusionan mediante concatenación antes de la capa final de clasificación.

Aumento de Datos

El aumento de datos aplicado en los modelos spiking sobre imágenes se realizó utilizando las mismas configuraciones

descritas previamente en la sección de las CNNs. Tanto las imágenes completas generadas a partir de las coordenadas

x, y como las secuencias de fotogramas (frames) de las espirales fueron procesadas con técnicas de aumento de datos

consistentes.

Para asegurar la coherencia temporal y preservar la integridad de los trazos, se aplicó la misma configuración de trans-

formaciones a todas las imágenes pertenecientes a una misma secuencia de espiral. Sin embargo, cada secuencia recibió

un conjunto de transformaciones distinto, con el objetivo de incrementar la diversidad del conjunto de entrenamiento sin

comprometer la continuidad interna de los frames.

3.3 Evaluación

3.3.1 Métricas de Desempeño

El desempeño de los modelos fue evaluado utilizando métricas ampliamente aceptadas en tareas de clasificación binaria:

exactitud (accuracy), precisión, sensibilidad (recall) y puntaje F1. Estas métricas permiten obtener una visión integral sobre

la capacidad de los modelos para distinguir entre sujetos sanos (HC) y pacientes con enfermedad de Parkinson (PD) [53, 54].

En particular, el puntaje F1 resulta especialmente útil en escenarios con posibles desbalances entre clases, al combinar en

una sola medida la precisión y la sensibilidad del modelo.

3.3.2 Protocolo Experimental

El protocolo de evaluación se desarrolló en varias fases, garantizando tanto la comparabilidad como la capacidad de gene-

ralización de los modelos:

• Inicialmente, el conjunto de datos PaHaW fue dividido en un 80% para entrenamiento y validación, y un 20% para

prueba.
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Cuadro 3.5: Detalles arquitectónicos de cada modelo SNN. Se incluyen las dimensiones de entrada, estructura por capas, tipo

de neuronas (LIF o SLSTM), y forma de fusión.

Modelo Arquitectura detallada

Late Fusion (LIF) 3 ramas paralelas:

• Presión y Altitud: entrada de 400.

• Azimut (sin + cos): entrada de 800.

• Cada rama: FC→ LIF→ Dropout→ FC→ LIF→ Dropout→ FC→ LIF.

Fusión por concatenación: FC(3×128)→ LIF→ FC(1).

Early Fusion (LIF) Entrada fusionada de 1600 (azimut sin/cos, presión, altitud). Arquitectura MLP se-

cuencial: FC(1600)→ LIF→ Dropout→ FC→ LIF→ Dropout→ FC→ LIF→
FC(1).

Late Fusion SLSTM 3 ramas paralelas con proyección inicial:

• Presión y Altitud: Proyección FC(400→ 200).

• Azimut (sin/cos): FC(800→ 400).

Cada rama: SLSTM(2 bloques). Fusión por concatenación→ SLSTM combinado→
FC(1).

Early Fusion SLSTM Entrada fusionada (1600). Procesamiento por: SLSTM → Dropout → SLSTM →
Promedio temporal→ FC(1). Ideal para capturar dinámicas globales de las seña-

les codificadas.

Convolutional SNN Imágenes RGB (1 canal) de tamaño 224×224 replicadas durante 50 pasos tempo-

rales. Procesamiento: Conv2D(3 bloques) + LIF (stride=2, sin pooling)→ Flatten

→ FC→ LIF→ Dropout→ FC(1).

Convolutional + SLSTM

SNN

Secuencia de imágenes frame por frame (cada una representa el trazo progresivo).

2 capas SConv2dLSTM + Dropout + Pooling adaptativo (8×8) → FC(1). Promedio

temporal aplicado antes de la clasificación final.

Ensamble Fusión de predicciones de: Late Fusion (SLSTM), Early Fusion (SLSTM), y Convolu-

tional SNN.

• Para la etapa preliminar de selección de ventanas deslizantes, se utilizó un subconjunto de 200 muestras por clase

(HC y PD) a fin de acelerar el proceso de extracción de características mediante la herramienta TSFRESH.

• Una vez identificada la configuración óptima de ventana (longitud de 400 y solapamiento del 75%), se utilizó el

conjunto completo de datos PaHaW para entrenamiento.

• Para mejorar la capacidad de generalización del modelo, se incorporó aleatoriamente el 30% del conjunto de datos

propietario tanto en el entrenamiento como en la prueba.

• Finalmente, el 70% restante del conjunto de datos propietario fue reservado exclusivamente para pruebas sobre

datos no vistos.
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Durante todo el proceso, se empleó validación cruzada estratificada (Stratified K-Fold) para asegurar una distribución ba-

lanceada de las clases en cada partición y evitar sesgos en la evaluación.

Comparación de enfoques: Todos los modelos de aprendizaje automático (ML) y aprendizaje profundo (DL y SNN) fueron

evaluados bajo los mismos conjuntos de prueba, lo cual permitió realizar comparaciones directas entre enfoques tradicio-

nales y arquitecturas más complejas de manera justa y controlada.

3.4 Pruebas de Significancia

Dado que este estudio busca desarrollar modelos de detección temprana de la enfermedad de Parkinson que sean robus-

tos y generalizables, independientemente del origen geográfico o cultural de los sujetos, se planteó como paso inicial la

evaluación estadística de las diferencias entre los conjuntos de datos empleados. En particular, se analizó si existían di-

ferencias significativas entre el conjunto PaHaW (República Cheza) y el conjunto propietario (Ecuador), considerando que

posteriormente serán integrados en un único dataset para el entrenamiento y validación de los modelos.

Esta comparación es especialmente relevante debido a que los datos provienen de poblaciones que utilizan alfabetos dis-

tintos, y cuyas dinámicas motoras y hábitos de escritura pueden diferir notablemente por factores lingüísticos, educativos

o culturales. El objetivo final es construir un modelo agnóstico, capaz de generalizar entre poblaciones sin depender del

contexto específico de escritura.

Para ello, se realizaron pruebas de significancia sobre tres variables de gran relevancia biomotriz: la presión perpendicular,

el ángulo de azimut y el ángulo de altitud del lápiz. Estas características fueron seleccionadas debido a que, si bien el patrón

de dibujo (una espiral) es el mismo para ambos grupos, dichas señales reflejan aspectos individuales del control motor que

pueden variar entre poblaciones, incluso bajo tareas gráficas idénticas.

En primer lugar, se aplicó la prueba de Shapiro-Wilk para evaluar la normalidad de cada variable. Dado que todas las variables

presentaron valores p < 0.05, se rechazó la hipótesis de normalidad y se procedió con la prueba no paramétrica de Mann-

Whitney U para comparar las distribuciones entre los dos conjuntos de datos.

3.5 Explicabilidad

3.5.1 Técnicas Utilizadas

La interpretabilidad de los modelos desarrollados en este estudio fue una prioridad fundamental, especialmente conside-

rando su relevancia en el uso clinico.

Para ello, en los modelos clásicos de aprendizaje automático basados en características extraídas (como presión máxima,

altitud promedio, etc.), se utilizó SHAP (Shapley Additive Explanations) [55]. Esta técnica se basa en teoría de juegos y

permite cuantificar la contribución individual de cada característica en una predicción específica. SHAP asigna un valor de

Shapley a cada variable de entrada, facilitando así la interpretación de decisiones delmodelo, la identificación de las variables

más relevantes y la detección de posibles sesgos o relaciones inesperadas.
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En este capítulo se presentan los resultados obtenidos a partir de los diferentes experimentos realizados. Se incluyen análisis

estadísticos para evaluar la compatibilidad entre los conjuntos de datos utilizados, así como los desempeños alcanzados por

los distintos modelos de clasificación. También se exploran las salidas de las técnicas de explicabilidad del mejor grupo de

modelos para una mejor interpretación de los resultados.

4.1 Diferencias Estadísticas entre Conjuntos de Datos

La Tabla 4.1 resume los resultados obtenidos al aplicar la prueba de normalidad de Shapiro-Wilk y la prueba no paramétrica

de Mann-Whitney U. Como se observa, todas las variables presentaron distribuciones no normales, lo cual justificó el uso de

la prueba de Mann-Whitney U para comparar los grupos.

Cuadro 4.1: Resultados de las pruebas de Shapiro-Wilk y Mann-Whitney U para las características seleccionadas.

Característica Conjunto de Datos Shapiro-Wilk (p) Mann-Whitney U (p)

Altitud (Media)
Propietario 0.9733 (3.81× 10−9)

0.4378
PaHaW 0.9814 (3.27× 10−15)

Azimut (Media)
Propietario 0.9056 (4.66× 10−19)

4.29× 10−24

PaHaW 0.6943 (1.42× 10−50)

Presión (Media)
Propietario 0.8737 (6.55× 10−22)

0.0293
PaHaW 0.9915 (3.33× 10−9)

Los resultados muestran que existen diferencias significativas en dos de las tres variables analizadas: la presión perpendi-

cular (p = 0.0293) y el azimut del lápiz (p = 4.29× 10−24). No se observaron diferencias significativas en la altitud

del lápiz (p = 0.4378), lo que sugiere cierta estabilidad de este parámetro entre poblaciones.

Estas diferencias confirman que los patrones de escritura varían entre los dos grupos, probablemente influenciados por

factores culturales, biomecánicos o de estilo de escritura. Esta observación justifica el uso de técnicas de normalización y el

diseño de modelos multimodales, robustos a este tipo de variabilidad intergrupal. Así, se busca garantizar que el sistema de
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detección propuesto no dependa del origen del participante, sino de las señales biomotoras asociadas al Parkinson.

4.2 Aumento de Datos

La Tabla 4.2 presenta la cantidad inicial de muestras disponibles por grupo (sanos y pacientes con EP) antes de aplicar el

aumento de datos con ventanas deslizantes.

Cuadro 4.2: Cantidad de datos antes del proceso de aumento con ventanas deslizantes.

PaHaW Propietaria

HC PD HC PD

32 32 9 12

La Tabla 4.3 resume la cantidad total de muestras obtenidas después del aumento. Cabe destacar que las diferencias en el

número de muestras por sujeto se deben a la duración variable que cada participante requería para completar la tarea de

dibujo, lo cual afectaba el número total de puntos capturados por la tableta digitalizadora.

Cuadro 4.3: Cantidad de datos después del aumento con ventanas deslizantes.

Ventana Paso PaHaW Propietaria

HC PD HC PD

100 50 1653 2156 306 435

200 50 1534 2092 288 411

200 100 1151 1071 151 217

200 150 563 726 105 149

250 125 650 851 120 169

400 50 1461 1964 252 363

400 100 754 1007 133 193

400 200 403 525 133 193

400 300 284 368 53 77

500 250 316 418 58 81

4.3 Enfoque de Aprendizaje Poco Profundo

Esta sección presenta los resultados experimentales obtenidos al aplicar técnicas de aprendizaje no profundo para la clasi-

ficación de la EP a partir del análisis de escritura. Se incluyen los resultados de rendimiento de los modelos, el proceso de

optimización de hiperparámetros, las evaluaciones sobre ambos conjuntos de datos utilizados, y los hallazgos derivados de

la aplicación de técnicas de inteligencia artificial explicable.
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4.3.1 Rendimiento de los Modelos

La Tabla 4.4 resume las métricas de precisión alcanzadas por ocho modelos de clasificación, evaluados con distintas confi-

guraciones de ventanas deslizantes y tamaños de paso (overlap). Estos resultados permiten observar el impacto que tienen

la longitud de la ventana y el grado de solapamiento en el rendimiento de los modelos.

Cuadro 4.4: Métricas de precisión para diferentes tamaños de ventana y solapamientos en distintos modelos de clasificación.

Tamaño de ventana Paso SVC Random Forest Regresión Logística Gradient Boosting KNN Árbol de Decisión Naive Bayes Extra Trees

100 50 0.7333 0.8333 0.7500 0.8000 0.7000 0.7333 0.8333 0.8000

200 50 0.8500 0.8667 0.8667 0.8333 0.9167 0.8833 0.8500 0.8833

200 100 0.8167 0.8667 0.7667 0.9167 0.8833 0.8500 0.7500 0.8833

200 150 0.8500 0.8167 0.8500 0.8500 0.8500 0.8167 0.8167 0.8333

250 125 0.9000 0.9000 0.9000 0.9167 0.9000 0.8000 0.8667 0.9167

400 50 0.9833 0.9667 0.9333 0.9167 0.9833 0.9500 0.9000 0.9833

400 100 0.9667 0.9333 0.8833 0.9333 0.9500 0.8167 0.8500 0.9667

400 200 0.7500 0.7667 0.7833 0.7667 0.7500 0.6333 0.8000 0.7833

400 300 0.7500 0.7500 0.7667 0.7167 0.7167 0.7333 0.7500 0.7333

500 250 0.7667 0.7000 0.7500 0.7500 0.7833 0.6833 0.7833 0.8167

Los resultados muestran que el mejor desempeño se alcanzó utilizando una ventana deslizante de 400 puntos y un paso

de 50 puntos, configuración con la cual todos los modelos superaron el 90% de precisión. Esta configuración fue, por tanto,

seleccionada para los experimentos posteriores con modelos de aprendizaje profundo.

4.3.2 Rendimiento con Conjuntos de Datos Combinados

Una vez identificada la configuración óptima de ventana y solapamiento, los modelos fueron reentrenados utilizando un

conjunto de datos combinado que incluyó el 100% del conjunto PaHaW y el 30% del conjunto de datos propietario. Los

resultados obtenidos se resumen en la Tabla 4.5.

Cuadro 4.5: Métricas de rendimiento utilizando el conjunto combinado (100% PaHaW + 30% Propietario).

Modelo Acc Precision Recall F1-Score

SVC 0.8826 0.8826 0.8826 0.8826

Random Forest 0.9155 0.9157 0.9155 0.9154

Logistic Regression 0.6737 0.6731 0.6737 0.6728

Gradient Boosting 0.9554 0.9555 0.9554 0.9554

KNN 0.9413 0.9413 0.9413 0.9413

Decision Tree 0.8732 0.8733 0.8732 0.8731

Naive Bayes 0.6761 0.6778 0.6761 0.6720

Extra Trees 0.9507 0.9508 0.9507 0.9507

Los modelos Gradient Boosting, KNN y Extra Trees obtuvieron los mejores resultados de forma consistente, destacándose

Gradient Boosting como el modelo con mayor precisión (95.54%).
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4.3.3 Resultados sobre el Conjunto de Datos Propietario

La prueba final se realizó utilizando el 70% restante del conjunto de datos propietario, el cual contenía 177 muestras de

sujetos sanos (HC) y 255 muestras de pacientes con Parkinson (PD), tras aplicar la técnica de segmentación por ventanas

(window slicing). Los resultados obtenidos se resumen en la Tabla 4.6.

Cuadro 4.6: Resultados de prueba sobre el conjunto de datos propietario.

Modelo Accuracy Precision Recall F1-Score

SVC 0.9072 0.9084 0.9072 0.9075

Random Forest 0.9026 0.9038 0.9026 0.9029

Logistic Regression 0.6961 0.6922 0.6961 0.6924

Gradient Boosting 0.9327 0.9328 0.9327 0.9325

KNN 0.9258 0.9265 0.9258 0.9259

Decision Tree 0.7819 0.7815 0.7819 0.7817

Naive Bayes 0.5545 0.5236 0.5545 0.5221

Extra Trees 0.9420 0.9420 0.9420 0.9420

Elmodelo Extra Trees obtuvo elmejor desempeño en esta etapa de prueba, alcanzando una precisión del 94.20%, seguido por

Gradient Boosting con 93.27% y KNN con 92.58%. Estos resultados confirman la capacidad de generalización de los modelos

entrenados, incluso al enfrentarse a datos no vistos provenientes de otra población.

4.3.4 Matrices de Confusión

La Figura 4.3 presenta las matrices de confusión correspondientes a todos los modelos. Estas matrices permiten analizar

con mayor detalle el comportamiento de clasificación de cada modelo, mostrando la distribución de verdaderos positivos,

verdaderos negativos, falsos positivos y falsos negativos. Los altos valores en la diagonal principal reflejan una alta precisión

en la clasificación de ambas clases.

4.3.5 Mejores Hiperparámetros

La Tabla 4.7 presenta los mejores hiperparámetros encontrados para cada modelo después del proceso de ajuste, utilizando

el conjunto de datos combinado. Estos hiperparámetros fueron seleccionados para maximizar el rendimiento y garantizar

predicciones confiables.

4.4 Enfoque de Aprendizaje Profundo

A continuación, se presentan los resultados de los experimentos realizados con redes neuronales convolucionales (CNNs)

y redes neuronales de picos (SNNs), entrenadas con el conjunto de datos combinado (100% del conjunto PaHaW y 30%

del conjunto propietario). Posteriormente, se evaluaron los modelos utilizando el 70% restante del conjunto propietario,

correspondiente exclusivamente a participantes de Ecuador.
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(a) SVC (b) Random Forest (c) Regresión Logística (d) Gradient Boosting

(e) KNN (f) Árboles de Decisión (g) Naïve Bayes (h) Extra Trees

Figura 4.1: Matrices de confusión de los distintos modelos de aprendizaje automático evaluados con la base de datos propie-

taria.

Cuadro 4.7: Mejores hiperparámetros para cada modelo (30% Datos Propietarios + PaHaW).

Modelo Mejores Hiperparámetros

SVC C : 100, Degree: 2, Gamma: Auto, Kernel: RBF

Random Forest Max Depth: None, Min Samples Leaf: 1, Min Samples Split: 2, Number of Estimators: 100

Logistic Regression Regularization (C): 0.01, Penalty: L2, Solver: Liblinear

Gradient Boosting Learning Rate: 0.2, Max Depth: 7, Number of Estimators: 200

KNN Distance Metric: Manhattan, Number of Neighbors (k): 3, Weights: Distance

Decision Tree Criterion: Gini, Max Depth: 15, Min Samples Split: 2

Naive Bayes Variance Smoothing: 1× 10−9

Extra Trees Max Depth: None, Min Samples Split: 2, Number of Estimators: 200

4.4.1 Redes Neuronales Convolucionales

La Tabla 4.8 presenta las métricas de rendimiento para los cuatro modelos de CNN entrenados (ResNet50, EfficientNet-B0,

DenseNet121 y MobileNetV2), así como para el modelo ensemble construido a partir de ellos.

En esta evaluación inicial, el modelo EfficientNet-B0 se destacó por su capacidad de balancear precisión y recall, lo cual

sugiere que puede detectar casos de Parkinson con menor número de falsos negativos. Sin embargo, el modelo ensemble,

aunque logra unamayor precisión (0.8573), presenta un leve descenso en el recall, lo que indica unamayor tasa de falsos ne-

gativos. Este comportamiento sugiere que la combinación ponderada demodelosmejora la confiabilidad general pero puede

ser más conservadora al predecir la clase minoritaria. ResNet50 mostró el peor rendimiento con un recall extremadamente

bajo, lo cual indica un sesgo significativo hacia la clase sana.
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Cuadro 4.8: Métricas de rendimiento de los modelos CNN utilizando el conjunto combinado (100% PaHaW + 30% Propietario)

Modelo Acc Precisión Recall F1-Score

ResNet50 0.6140 0.8187 0.1927 0.3180

EfficientNet 0.7968 0.8410 0.6825 0.7512

DenseNet 0.6838 0.7974 0.4125 0.5460

MobileNet 0.7624 0.7896 0.6582 0.7145

Ensemble 0.7968 0.8573 0.6637 0.7451

La Tabla 4.9 muestra los resultados sobre el conjunto de datos propietario donde los modelos EfficientNet y el ensemble

siguen mostrando un desempeño competitivo.

Cuadro 4.9: Métricas de rendimiento sobre el conjunto de datos propietario

Modelo Acc Precisión Recall F1-Score

ResNet50 0.5960 0.7949 0.1890 0.3054

EfficientNet 0.7736 0.8195 0.6646 0.7340

DenseNet 0.6648 0.7765 0.4024 0.5301

MobileNet 0.7421 0.7721 0.6402 0.7000

Ensemble 0.7736 0.8346 0.6463 0.7285

Matrices de Confusión

La Figura 4.2muestra lasmatrices de confusión para los cincomodelos CNN, revelando patrones consistentes con lasmétricas

previamente discutidas. En particular:

• El modelo ResNet50 presenta un comportamiento claramente sesgado hacia la clase HC, con una baja capacidad de

detección de casos PD.

• EfficientNet yMobileNetV2 logran unmayor balance entre clases, aunque aún se evidencia una tendencia a clasificar

erróneamente algunos sujetos con Parkinson como sanos.

• DenseNet121muestra un desempeño intermedio con un número importante de falsos negativos.

• El ensemble refuerza la robustez al combinar fortalezas de los modelos base, aunque aún existe una brecha en la

sensibilidad para la clase PD.

En términos biomecánicos, los resultados obtenidos con las redes neuronales convolucionales sugieren que las representa-

ciones visuales derivadas de la escritura capturan patrones motores relevantes para la clasificación de la enfermedad de

Parkinson. Modelos como EfficientNet y MobileNet lograron detectar con mayor eficacia a los sujetos con deterioro motor.

A pesar de que algunos modelos presentaron un sesgo hacia la clase sana, los resultados indican que el enfoque basado

en imágenes tiene potencial clínico, especialmente cuando se combina con técnicas de ensamblado que integran fortalezas
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(a) ResNet50 (b) EfficientNet (c) DenseNet (d) MobileNet

(e) Ensemble

Figura 4.2: Matrices de confusión de los distintos modelos de aprendizaje profundo evaluados con la base de datos propie-

taria.

individuales de múltiples arquitecturas. Esta capacidad de discriminación basada en trazos escritos posiciona a las CNNs

como una herramienta prometedora para el desarrollo de biomarcadores digitales no invasivos en contextos de cribado

temprano o monitoreo remoto de síntomas motores.

Mejores Hiperparámetros

La Tabla 4.10 resume los mejores hiperparámetros encontrados para cada arquitectura, utilizando búsqueda en rejilla y

validación cruzada estratificada. Cabe destacar que todos los modelos fueron entrenados con la función de pérdida BCE

with logits loss, que permitió unamayor estabilidad numérica al tratarse de una tarea de clasificación binaria con predicción

basada en logits.

Cuadro 4.10: Hiperparámetros óptimos seleccionados para cada modelo CNN.

Modelo Dropout Rate Learning Rate Weight Decay

ResNet50 0.3 0.001 0.001

EfficientNet-B0 0.3 0.001 0.0001

DenseNet121 0.5 0.001 0.001

MobileNetV2 0.5 0.001 0.0001

4.4.2 Redes Neuronales de Picos

La Tabla 4.11 resume el rendimiento de los modelos SNN evaluados sobre el conjunto de validación (100% PaHaW + 30%

Propietario), incluyendo un ensemble basado en las tres mejores arquitecturas: Late Fusion SLSTM, Early Fusion SLSTM y
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Convolutional + SLSTM SNN.

Cuadro 4.11: Métricas de rendimiento de losmodelos SNNs utilizando el conjunto combinado (100%PaHaW+ 30%Propietario).

Modelo Acc Precisión Recall F1-Score

Late Fusion (LIF) 0.7357 0.71823 0.7182 0.7182

Early Fusion (LIF) 0.7049 0.6894 0.6768 0.6831

Late Fusion SLSTM 0.7564 0.7257 0.7744 0.7493

Early Fusion SLSTM 0.7116 0.7211 0.8346 0.7737

Convolutional SNN 0.6524 0.6145 0.6037 0.6055

Convolutional + SLSTM SNN 0.5337 0.5017 0.8122 0.6203

Ensamble 0.6931 0.6468 0.7631 0.7001

Por su parte, la Tabla 4.12 muestra el rendimiento sobre el conjunto de prueba (70% del dataset propietario).

Cuadro 4.12: Métricas de rendimiento sobre el conjunto de datos propietario (70% Propietario).

Modelo Acc Precisión Recall F1-Score

Late Fusion (LIF) 0.7163 0.7019 0.6890 0.6954

Early Fusion (LIF) 0.6877 0.6687 0.6646 0.6667

Late Fusion SLSTM 0.7507 0.7278 0.7500 0.7387

Early Fusion SLSTM 0.7070 0.7162 0.8346 0.7709

Convolutional SNN 0.6493 0.6256 0.6218 0.6237

Convolutional + SLSTM SNN 0.4721 0.5398 0.7205 0.6172

Ensamble 0.6775 0.6323 0.7459 0.6844

Los resultados sobre el conjunto de validación muestran que el modelo Early Fusion SLSTM alcanza el mejor desempeño

general, con un F1-Score de 0.7737 y un recall de 0.8346. Esto sugiere que la fusión temprana de señales spiking, en combi-

nación con una arquitectura recurrente, permite capturar eficazmente los patrones temporales asociados a la enfermedad

de Parkinson.

Le sigue el modelo Late Fusion SLSTM, que también presenta un rendimiento destacado (F1-Score: 0.7493), manteniendo un

buen equilibrio entre precisión y sensibilidad. Por otro lado, los modelos LIF sin recurrencia obtienen resultados aceptables,

aunque inferiores, evidenciando las ventajas de incorporar mecanismos de memoria temporal.

El modelo Convolutional + SLSTM SNN, a pesar de haber sido entrenado solo durante tres épocas debido a sus altas exigen-

cias computacionales, logra un notable recall (0.8122), aunque con baja precisión (0.5017). Esto indica una fuerte tendencia

a identificar correctamente los casos positivos, aunque a costa de un mayor número de falsos positivos. Aun así, demuestra

el potencial de combinar información espacial y temporal proveniente de imágenes derivadas de las señales originales.

En el conjunto de prueba, se observa una tendencia similar. El modelo Early Fusion SLSTM mantiene el mejor desempeño

(F1-Score: 0.7709, Recall: 0.8346), lo que demuestra su capacidad de generalización. El modelo Convolutional + SLSTM SNN
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incrementa levemente su precisión (0.5398), manteniendo una alta sensibilidad, lo que refuerza su utilidad en escenarios

donde los falsos negativos son críticos.

En general, los modelos basados en SLSTM destacan por su capacidad para modelar secuencias complejas, mientras que las

variantes convolucionales abren nuevas posibilidades en el uso de representaciones visuales. Estos resultados reflejan el alto

potencial de las redes neuronales de picos en aplicaciones biomédicas, particularmente cuando se integran componentes

recurrentes o convolucionales.

Matrices de Confusión

La Figura 4.3 muestra las matrices de confusión de los modelos SNN sobre el conjunto de prueba. El modelo Early Fusion

SLSTM no solo alcanza el mayor recall, sino también una clara capacidad de identificar correctamente sujetos con Parkinson.

En contraste, el modelo CNN + SLSTM, a pesar de su baja precisión, logra una notable sensibilidad, lo cual puede ser útil en

tareas donde los falsos negativos deben minimizarse.

(a) LF LIF (b) EF LIF (c) LF SLSTM (d) EF SLSTM

(e) Conv. SNN (f) Conv + SLSTM (g) Ensemble

Figura 4.3: Matrices de confusión de los distintos modelos de SNNs evaluados con la base de datos propietaria.

Los resultados obtenidos con las SNNs reflejan el gran potencial de esta tecnología para capturar patrones temporales com-

plejos en tareas multimodales, como el análisis de escritura para la detección de la EP. Entre las distintas variantes explora-

das, los modelos basados en SLSTM destacaron por su mayor capacidad para modelar secuencias temporales prolongadas y

dinámicas neuronales complejas.

Uno de los hallazgosmás interesantes se obtuvo con elmodelo Convolutional + SLSTM, que, aunque presentó un rendimiento

general más bajo debido a su alto costo computacional, permitió explorar la representación temporal de secuencias de

imágenes derivadas de las señales originales. Este modelo fue entrenado durante 3 épocas, sin aplicar técnicas de reducción

de resolución, lo que refleja tanto sus elevadas exigencias como su prometedor potencial.

El número de épocas se fijó tras aplicar un criterio de parada temprana, ya que experimentos preliminares mostraron que
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la pérdida de validación se estabilizaba antes de la cuarta época. Además, dado que cada época en una red de tipo SNN con

50 pasos temporales equivale a unas 10 épocas en una red convencional, entrenar más allá de este punto incrementaba

considerablemente el costo computacional sin aportar mejoras significativas en el rendimiento, y aumentaba el riesgo de

sobreajuste debido al tamaño limitado del conjunto de datos. La arquitectura de este modelo permite aprovechar simul-

táneamente la información espacial y temporal, lo que lo convierte en una herramienta valiosa para futuros desarrollos,

especialmente en contextos con mayor capacidad de cómputo.

En general, si bien los modelos tradicionales como LIF mostraron un rendimiento competitivo, el uso de estructuras recu-

rrentes y convolucionales dentro del marco de las SNNs permite modelar de manera más realista el procesamiento cerebral.

Esto se refleja en el mejor desempeño de los modelos SLSTM frente a las arquitecturas puramente feedforward.

Cabe destacar que el entrenamiento de estos modelos fue computacionalmente intensivo, requiriendo el uso de técnicas de

optimización avanzadas así comomúltiples rondas de ajuste de hiperparámetros por grupo funcional. Esta limitación impidió

explorar entrenamientos más prolongados, especialmente en arquitecturas híbridas (CNN+SNN), pero no compromete su

validez conceptual ni su aplicabilidad futura en sistemas con recursos especializados.

Mejores Hiperparámetros

A continuación, se presentan los criterios que guiaron la definición de los rangos de búsqueda y la metodología utilizada

para el ajuste de hiperparámetros, con el objetivo de garantizar configuraciones óptimas, reproducibles y acordes a las

características de cada arquitectura evaluada.

• Búsqueda jerárquica mixta (coarse – fine). Se combinó random search (50 iteraciones) para explorar rangos am-

plios para cada hiperparámetro, por ejemplo, LR ∈ [10−5, 10−2], hidden size ∈ [64, 1 600], τ ∈ [5, 25]—con

una fase posterior de grid search fina (±20 % alrededor de los mejores valores) guiada por la métrica balanced
accuracy.

• Validación estratificada k=5+parada temprana. Cada configuración se evaluó conk = 5 particiones estratificadas

y early stopping (paciencia = 8 épocas) para evitar sobreajuste y reducir tiempo de cómputo.

• Optimización y regularización. AdamW se prefirió sobre Adam clásico por su desacoplamiento explícito del weight
decay, crucial para SNNs conmuchos parámetros latentes [56]; los valores deweight decay se barrieron log-uniformemente

en [10−6, 10−3].

• Parámetros de disparo (τ , threshold, beta). Los intervalos se fijaron a partir de estudios previos sobre estabilidad de
gradiente en neuronas LIF/SLSTM y se ajustaron en función de la longitud de secuencia (num steps); τ altos favorecen

la integración temporal en secuencias largas, mientras que threshold/beta controlan la esparsidad de los spikes y,

por ende, el consumo de memoria [57, 58, 59].

• Funciones de gradiente diferenciable. Se probaron aproximaciones STE (Straight-Through Estimator) [60], atan,
sigmoid, fast_sigmoid y triangular; la selección final se basó en la combinación que maximizó la estabilidad del

entrenamiento (varianza del gradiente< 0.15) y la puntuación de validación.

• Dropout y tamaños de batch. Los coeficientes de dropout se ajustaron de forma inversa al tamaño de batch para
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mantener constante la tasa efectiva de regularización; en arquitecturas “Early Fusion” el batch size se redujo (8–16)

para acomodar secuencias más largas, compensándolo con mayores valores de dropout.

Este procedimiento permitió identificar configuraciones que equilibran rendimiento, estabilidad numérica y coste compu-

tacional; los hiperparámetros resultantes se sintetizan en las Tablas 4.13 y 4.14.

Cuadro 4.13: Mejores hiperparámetros por grupos funcionales para cada arquitectura SNN.

Modelo Hiperparámetros Agrupados

Late Fusion LIF Optimización: AdamW, LR: 2.03× 10−4 , Weight Decay: 3.78× 10−4

Arquitectura: Hidden Size: 716, Num Steps: 66, Batch Size: 64

Spiking: Tau: 19, Threshold: 0.821, Learn Threshold: False, Learn Beta: False

Codificación Neuronal: Gradientes por variable: Altitud (atan), Azimut (sigmoid), Presión

(fast_sigmoid)

Dropout: Altitud [0.81, 0.77, 0.75], Azimut [0.26, 0.51, 0.71], Presión [0.53, 0.78, 0.10]

Betas: Altitud [0.98, 0.61, 0.64], Azimut [0.82, 0.28, 0.33], Presión [0.77, 0.96, 0.68]

Umbrales por Variable: Altitud [0.007, 0.056, 0.033], Azimut [0.476, 0.025, 0.255], Presión [0.274,

0.026, 0.005]

Early Fusion LIF Optimización: AdamW, LR: 4.68× 10−4 , Weight Decay: 6.46× 10−5

Arquitectura: Hidden Size: 1200, Num Steps: 182, Batch Size: 8

Spiking: Tau: 7, Threshold: 0.959, Learn Beta: True, Learn Threshold: False

Dropout: [0.27, 0.20, 0.06]

Betas: [0.77, 0.23, 0.08]

Gradientes: [STE, atan, atan]

Umbrales: [0.0071, 0.7506, 0.2049]

CNN + SNN Optimización: AdamW, LR: 3.76× 10−4 , Weight Decay: 2.66× 10−6

Arquitectura: Hidden Size: 143, Num Steps: 22, Batch Size: 32

Convoluciones: Conv1: [Canales=8, Kernel=4], Conv2: [64, 6], Conv3: [40, 4]

Spiking: Thresholds: [0.0033, 0.0264, 0.0173, 0.0172]

Betas: [0.91, 0.62, 0.59, 0.50], Learn Beta: True (except Beta4)

Gradientes: [fast_sigmoid, triangular, triangular, fast_sigmoid]

Dropout: 0.049

4.5 Explicabilidad de los Modelos

La explicabilidad en modelos de aprendizaje automático es fundamental para interpretar los patrones detectados por los

algoritmos, especialmente en aplicaciones clínicas donde las decisiones deben ser comprensibles y confiables para profe-

sionales de la salud.

En este estudio, las técnicas de explicabilidad se aplicaron exclusivamente a los modelos de aprendizaje no profundo (ML

clásico), debido a su rendimiento superior, su interpretación directa y la madurez de las herramientas disponibles. Esta
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decisión se sustenta en dos consideraciones técnicas principales:

• Rendimiento y estabilidad. Los modelos clásicos (como Extra Trees, Gradient Boosting y SVC) obtuvieron las mejores

métricas de precisión (≈ 94 %) durante la validación cruzada, superando a las arquitecturas profundas (CNN) y

bioinspiradas (SNN). Esta estabilidad los posiciona como los candidatosmás adecuados para su interpretación clínica.

• Interpretabilidad clínica y adecuación de herramientas XAI. Losmodelos clásicos utilizados en este estudio operan

sobre un conjunto reducido de variables con significado fisiológico claro (como presión máxima, entropía de altitud,

cuantil bajo de azimut), lo que permite aplicar técnicas como SHAP para generar explicaciones directamente vincu-

ladas con biomarcadores interpretables para expertos médicos [61, 62]. En contraste, aunque existen métodos de

explicabilidad para modelos profundos—como Grad-CAM, DeepSHAP [63] e Integrated Gradients [64] para CNN, o

métricas basadas en gradientes para SNN [65]—estos suelen producir salidas complejas y de difícil interpretación

clínica.

Por estas razones, enfocar la explicabilidad en modelos de aprendizaje clásico maximiza la utilidad clínica y la robustez

técnica del presente estudio. A continuación, se detallan los resultados obtenidos.

Cuadro 4.14: Mejores hiperparámetros por grupos funcionales para cada arquitectura SNN Recurrente.

Late Fusion SLSTM Optimización: AdamW, LR: 5.78× 10−5 , Weight Decay: 1.96× 10−5

Arquitectura: Hidden Size: 472, Num Steps: 49, Batch Size: 4

Spiking: Tau: 12, Threshold: 0.493, Learn Beta: False, Learn Threshold: False

Dropout: Altitud [0.15, 0.42], Azimut [0.24, 0.40], Presión [0.28, 0.26]

Gradientes: Altitud (fast_sigmoid), Azimut (triangular), Presión (sigmoid)

Umbrales por Variable: Altitud [0.0089, 0.0368], Azimut [0.0059, 0.0395], Presión [0.224, 0.0049],

Combinado: 0.149

Early Fusion SLSTM Optimización: AdamW, LR: 2.02× 10−4 , Weight Decay: 3.10× 10−4

Arquitectura: Hidden Size: 519, Num Steps: 79, Batch Size: 16

Spiking: Tau: 10, Threshold: 0.535, Learn Threshold1/2: False

Dropout: [0.286, –, –]

Gradientes: [sigmoid, sigmoid]

Umbrales: [0.0478, 0.0279]

CNN + SLSTM Optimización: AdamW, LR: 3.15× 10−3 , Weight Decay: 3.33× 10−4

Arquitectura: Batch Size: 1, Canales: [64, 64]

Spiking: Threshold: 0.0818, Inhibición: True, Reset: subtract

Dropout: 0.143

Otros: Pos Weight: 1.149, Cuantización del estado: False
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4.5.1 Características Seleccionadas

Las diez características más relevantes seleccionadas mediante el método SelectKBest se presentan a continuación, orde-

nadas según su correlación con la variable objetivo. La numeración del 0 al 9 indica su importancia relativa, siendo 0 la

característica con mayor correlación.

0. Altitude Permutation Entropy (Dimension 7, τ = 1)

Entropía por Permutación de la Altitud (Dimensión 7, τ = 1): Esta característica mide la complejidad de la señal de

altitud utilizando entropía por permutación, una técnica utilizada comúnmente para evaluar el grado de aleatoriedad

en series temporales. Valores más altos indican mayor complejidad o irregularidad en los movimientos verticales del

lápiz [66].

1. Pressure Change Quantiles Aggregated Mean (isabs=True, qh=0.6, ql=0.0)

Promedio Agregado de Cambios Absolutos en Presión (cuantil 0.0 a 0.6): Representa el promedio de los cambios

absolutos en la presión dentro del rango definido por los cuantiles inferiores y superiores (ql = 0.0, qh = 0.6).

Esta medida permite capturar fluctuaciones locales en la señal de presión [67].

2. Azimuth Sum of Reoccurring Data Points

Suma de Puntos Recurrentes en el Azimut: Calcula la suma de los valores de azimut que se repiten en la señal, lo cual

puede reflejar patrones angulares repetitivos durante el trazado. Este tipo de repetición es relevante en el análisis

de escritura, especialmente en el contexto de trastornos motores [68].

3. Pressure Change Quantiles Aggregated Mean (isabs=True, qh=0.4, ql=0.2)

Promedio Agregado de Cambios Absolutos en Presión (cuantil 0.2 a 0.4): Similar a la característica anterior, pero

enfocada en un rango de cuantiles más estrecho (ql = 0.2, qh = 0.4), lo que proporciona un análisis más fino de

las variaciones de presión [67].

4. Altitude Change Quantiles Aggregated Variance (isabs=True, qh=1.0, ql=0.2)

Varianza Agregada de Cambios Absolutos en Altitud (cuantil 0.2 a 1.0): Mide la variabilidad de los cambios absolutos

en la altitud dentro del rango de cuantiles especificado. Este tipo de característica basada en la varianza permite

capturar dinámicas de la señal en términos de dispersión [69].

5. Azimuth Number of Continuous Wavelet Transform Peaks (n=1)

Número de Picos mediante Transformada Wavelet Continua en Azimut (n=1): Detecta la cantidad de picos en la se-

ñal de azimut utilizando la transformada wavelet continua. Las características basadas en wavelets son útiles para

detectar cambios abruptos o patrones periódicos en señales temporales [70].

6. Altitude FFT Aggregated Kurtosis

Curtosis Agregada del FFT de la Altitud: Calcula la curtosis de la señal de altitud después de aplicar la Transformada

Rápida de Fourier (FFT). La curtosis evalúa la prominencia de los picos en la distribución de la señal en el dominio de

la frecuencia [69].

7. Pressure Maximum

Presión Máxima: Valor máximo registrado de la presión ejercida durante el proceso de escritura. Este tipo de carac-
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terística es relevante para analizar la intensidad del trazo y la fuerza ejercida por el usuario [68].

8. Altitude Sample Entropy

Entropía de Muestra en la Altitud: Evalúa la complejidad de la señal de altitud mediante la entropía de muestra.

Valores elevados indican mayor irregularidad o imprevisibilidad en la señal, lo cual puede estar relacionado con un

control motor deteriorado [71].

9. Altitude Quantile (q=0.2)

Cuantil del 20% de Altitud: Representa el valor por debajo del cual se encuentra el 20% más bajo de los valores de

altitud. Las características basadas en cuantiles permiten obtener información sobre los rangos extremos o atípicos

de la señal [67].

4.5.2 Impacto de las características específicas de clase

Las Figuras 1 y 2 del Aprendice A, muestran la importancia de las 10 características seleccionadas por SelectKBest para
distintos clasificadores, diferenciando el impacto medio por clase. Las barras azules representan la clase 0 (HC) y las barras

rojas la clase 1 (PD). Cuantomayor sea el valor absoluto del SHAP, mayor es la contribución de la característica a la predicción.

Existen dos tipos de visualización en las gráficas generadas:

• Las gráficas tipo beeswarm (gráficos de puntos) permiten visualizar el efecto individual de cada observación. Los

puntos representan ejemplos individuales, donde el color indica el valor de la característica (de bajo a alto, de azul a

rojo). La dispersión horizontal muestra el rango del impacto SHAP: puntos alejados del centro tienenmayor influencia

en la predicción, ya sea positiva o negativa.

• Las gráficas de barras apiladas muestran el valor promedio absoluto de SHAP por característica y clase. El color

azul representa la clase 0 (sujetos sanos) y el rojo la clase 1 (pacientes con Parkinson). Cuanto más larga es la barra,

mayor es el impacto de esa característica en el resultado del modelo.

Para elmodelo SVC (Figura 1a): las características 1 (cambios en presión en quantiles altos), 2 (suma de puntos recurrentes en

azimut), 7 (presiónmáxima) y 9 (cuantil bajo de altitud) presentan elmayor impacto en las predicciones. Estas variables están

relacionadas con la fuerza ejercida en el trazo y la repetitividad angular, aspectos clave para detectar rigidez o temblores

en la escritura.

Por su parte, en el modelo de Regresión Logística (Figura 1b): se observa un patrón similar al de SVC, destacando nueva-

mente las variables 1, 2, 7 y 9 como determinantes. Dado que la regresión logística es más lineal, estas características son

probablemente las más separables entre clases.

Mientras que en Gradient Boosting (Figura 1c): la característica 9 (cuantil bajo de altitud) domina el ranking, seguida por

la presión máxima (7) y los cambios de presión (1). Este modelo muestra una alta sensibilidad a fluctuaciones finas en el

trazo, lo cual es coherente con su naturaleza basada en árboles optimizados.

En el modelo de Random Forest (Figura 2a): se destaca la característica 2 (repeticiones en azimut), lo que indica que el

patrón angular durante la escritura tiene un peso significativo. También sobresale la presión máxima (7), corroborando su
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importancia biomecánica.

De igual manera, en el modelo KNN (Figura 2b): las características más importantes fueron 2, 7 y 9. Como este modelo

se basa en la proximidad en el espacio de características, estas variables probablemente muestran buena discriminación

espacial entre clases.

Extra Trees (Figura 2c): coincide con Random Forest, situando la característica 2 en primer lugar, seguida por 9 y 1. El modelo

refuerza la idea de que el patrón angular y la elevación del lápiz contienen información diagnóstica relevante.

En Naive Bayes (Figura 2d): aunque suposiciones de independencia pueden afectar la interpretación, destaca la variable 2,

junto con 7 y 1. El impacto más disperso sugiere que este modelo aprovecha múltiples variables con moderado efecto, sin

depender fuertemente de una sola.

Finalmente en el modelo de Árboles de Decisión (Figura 2e): se observa un énfasis en las características 1 y 7, aunque con

menor consistencia general. Su comportamiento más local puede explicar la variabilidad en la importancia de las variables

según los nodos.

A partir del análisis de las ocho gráficas, se contabilizó cuántas veces cada característica apareció en el top 3 de importancia

SHAP. La Tabla 4.15 resume esta información:

Cuadro 4.15: Frecuencia de aparición de características en el top 3 de importancia SHAP.

Característica Frecuencia en Top 3 (de 8 modelos)

2: Azimuth sum of reoccurring data points 7

7: Pressure maximum 6

9: Altitude quantile (q=0.2) 6

1: Pressure change quantiles (qh=0.6, ql=0.0) 4

0: Altitude permutation entropy (d=7, τ=1) 3

Las variables más influyentes en el diagnóstico de Parkinson en tareas de escritura fueron:

• Repetitividad angular (Feature 2): Presente en la mayoría de los modelos, lo que destaca la utilidad del análisis de

trayectorias angulares.

• Presión máxima (Feature 7): Indicador clave de la intensidad del trazo, asociada con el control motor fino.

• Altitud en percentil bajo (Feature 9): Refleja sutiles variaciones en la altura del lápiz, relacionadas con temblores

o pérdida de precisión.

Estos hallazgos refuerzan la hipótesis de que los aspectos biomecánicos de la escritura, como presión, angulación y elevación,

contienen señales discriminativas útiles para el diagnóstico temprano y no invasivo de la enfermedad de Parkinson.
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4.5.3 Interacciones de características y análisis de dependencia

Para comprender conmayor profundidad la interacción entre características y su influencia directa en las predicciones de los

modelos, se analizaron los dependence plots de las tres características más influyentes: la Feature 2, Feature 7, y Feature

9. Estos gráficos representan en el eje x el valor real de la característica, mientras que en el eje y se visualiza el valor SHAP,

es decir, la contribución individual de dicha característica en la predicción. El gradiente de color indica la interacción con una

segunda característica, lo cual permite observar relaciones no lineales entre múltiples variables.

En losmodelosRandom Forest, Extra Trees, KNN,Naïve Bayes, Árboles de Decisión se grafican por separado las clases HC y

PD, lo cual permite analizar el comportamiento específico de cada característica por clase. Esta separación es posible porque

el algoritmo de interpretación SHAP calcula contribuciones diferenciadas por clase en modelos no lineales o no probabilís-

ticos. En cambio, en los modelos SVC, Regresión Logística y Gradient Boosting utiliza un único gráfico por característica,

donde se combina el efecto de ambas clases. Esta diferencia se debe al tipo de implementación del clasificador y cómo se

distribuyen los valores SHAP cuando se hace una predicción en términos de margen de decisión en lugar de probabilidad por

clase.

Support Vector Classifier

Feature 2 – Suma de puntos recurrentes del azimut. La Figura 4.4a muestra una tendencia decreciente en los valores

SHAP a medida que aumenta el valor de la característica 2. Esto sugiere que mayores repeticiones angulares reducen la

probabilidad de clasificar un sujeto como enfermo de EP. El color representa la interacción con la característica 8 (Entropía

de muestra en altitud), y se observa que valores más altos de entropía (en rojo) tienden a intensificar esta relación negativa.

Feature 9 – Cuantil del 20% de altitud. En la Figura 4.4b, los valores SHAP disminuyen a medida que disminuye el valor

de la característica 9. Esto indica que valores bajos en el cuantil del 20% de altitud favorecen las predicciones hacia la clase

1 (PD), en línea con los patrones observados en modelos previos. La interacción, en este caso, es nuevamente con la presión

máxima (Feature 7), cuya intensidad modula el impacto de la altitud baja sobre la predicción.

Feature 7 – Presión máxima. La Figura 4.4c presenta una relación positiva entre el valor de la presión máxima y el

valor SHAP, implicando que a mayor presión, aumenta la probabilidad de ser clasificado como paciente con EP. Además, el

gradiente de color (Feature 4: Varianza de cambios en altitud) muestra que esta interacción puede amplificar la influencia

de la presión, reforzando la hipótesis de que trazos más intensos y variables verticalmente son característicos de sujetos

con deterioro motor.

Regresión Logística

En el modelo de Regresión Logística, los dependence plotsmuestran relaciones completamente lineales entre cada carac-

terística y su contribución SHAP, lo cual es coherente con la naturaleza del modelo. Al ser un clasificador lineal, la relación

entre el valor de entrada y su impacto sobre la predicción es directa y proporcional.
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(a) Feature 2 (b) Feature 9

(c) Feature 7

Figura 4.4: Dependence plots de las tres características más relevantes para el modelo SVC. El eje x representa el valor real

de la característica, mientras que el eje ymuestra su valor SHAP. El color indica la interacción con una segunda característica:

azul representa valores bajos y rojo valores altos.

Feature 2 – Suma de puntos recurrentes del azimut. La Figura 4.5a evidencia una relación lineal negativa. A medida

que aumenta la repetición de patrones en el azimut, el valor SHAP disminuye, lo que indica que esta característica reduce la

probabilidad de pertenecer a la clase PD. Esto sugiere que una mayor regularidad angular está asociada a sujetos sanos.

Feature 9 – Cuantil del 20% de altitud. En la Figura 4.5b, se observa una clara relación negativa: valores bajos de esta

característica (elevación mínima del lápiz) incrementan el valor SHAP y, por tanto, empujan la predicción hacia la clase PD.

Esta relación sugiere que pacientes con Parkinson tienden amantener el lápiz más cerca de la superficie durante la escritura.

Feature 7 – Presión máxima. Contrariamente a las dos características anteriores, la Figura 4.5c muestra una relación

positiva. A mayor presión, el valor SHAP también se incrementa, indicando una mayor probabilidad de clasificación como PD.

Esto respalda la hipótesis de que los pacientes con Parkinson ejercen más presión durante la escritura.

En todos los casos, el gradiente de color refleja la interacción con una segunda característica. Sin embargo, dado que el

modelo es lineal, estas interacciones tienen un impacto mínimo en la variación de los valores SHAP, lo que se traduce en una
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coloración relativamente homogénea a lo largo de las rectas.

Gradient Boosting

Feature 2 – Suma de puntos recurrentes del azimut. En la Figura 4.6a, se observa una relación inversa entre los valores

de la característica 2 y su valor SHAP: a medida que la recurrencia angular disminuye (valores negativos en el eje x), el

valor SHAP aumenta, indicando un mayor empuje hacia la predicción de la clase PD. Esto sugiere que los patrones angulares

repetitivos son más frecuentes en sujetos sanos. La interacción con la Feature 7 (presión máxima), representada por el

gradiente de color, muestra que niveles altos de presión (tonos rosados) intensifican el impacto de la recurrencia angular

en la predicción.

Feature 9 – Cuantil del 20% de altitud. Como se muestra en la Figura 4.6b, los valores bajos de la característica 9 están

asociados con valores SHAP altos, lo que indica una mayor contribución hacia la clase PD. Esto refuerza la idea de que una

menor elevación del lápiz (cuantiles bajos de altitud) es un rasgo característico en pacientes con Parkinson. La interacción

(a) Feature 2 (b) Feature 9

(c) Feature 7

Figura 4.5: Dependence plots de las tres características más relevantes para el modelo de Regresión Logística. El eje x

representa el valor real de la característica, mientras que el eje y muestra su valor SHAP. El color indica la interacción con

una segunda característica: azul representa valores bajos y rojo valores altos.
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(a) Feature 2 (b) Feature 9

(c) Feature 7

Figura 4.6: Dependence plots de las tres características más relevantes para el modelo Gradient Boosting. El ejex representa

el valor real de la característica, mientras que el eje y muestra su valor SHAP. El color indica la interacción con una segunda

característica: azul representa valores bajos y rojo valores altos.

con la Feature 5 (número de picos en el azimut) se visualiza en los colores: tonos rojizos (valores altos de picos) amplifican

el efecto de esta característica en la predicción.

Feature 7 – Presión máxima. En la Figura 4.6c, se evidencia una correlación positiva entre la presión máxima y su contri-

bución SHAP: a mayor presión, mayor impacto hacia la predicción de la clase PD. Este hallazgo es consistente con estudios

que asocian trazos más intensos con deterioro motor. La interacción con la Feature 6 (curtosis del FFT de altitud) es visible

en el gradiente de color, donde valores altos (rosados) aumentan el efecto de la presión sobre la decisión del modelo.

Random Forest

El modelo Random Forestmuestra patrones similares a los observados en Extra Trees, destacando nuevamente la relevancia

de las características Feature 2 (repetitividad angular), Feature 7 (presión máxima) y Feature 9 (cuantil de altitud). Este

modelo, al ser basado en árboles y tener capacidad de modelar relaciones no lineales, permite observar contribuciones

diferenciadas por clase.
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Feature 2 – Suma de puntos recurrentes del azimut. En la Figura 4.11a, para la clase HC, se observa una tendencia

creciente en el valor SHAP conforme aumenta la repetitividad angular, indicando que valores altos de esta característica

favorecen la clasificación como sujeto sano. En la Figura 4.11b, correspondiente a la clase PD, se evidencia un patrón opuesto:

los valores altos en la característica 2 tienden a disminuir su contribución a favor de la clase 1. El color refleja la interacción

con la Feature 7 (presión máxima), lo cual sugiere que la fuerza del trazo puede moderar el efecto de la repetición angular.

Feature 9 – Cuantil del 20% de altitud. En la Figura 4.11c, el cuantil bajo de altitud muestra una relación positiva con

los valores SHAP para la clase HC, mientras que en la Figura 4.11d, la relación es inversa para pacientes con Parkinson.

Este comportamiento sugiere que una altitud mínima más baja está más asociada con la clase PD, posiblemente debido a

movimientos verticales reducidos o inestables en la escritura de pacientes.

Feature 7 – Presión máxima. Como se observa en las Figuras 4.11e y 4.11f, la presión máxima tiene un impacto opuesto

según la clase. Para sujetos sanos, valores más altos de presión tienden a disminuir el SHAP, mientras que en pacientes

con Parkinson, una presión elevada refuerza la predicción hacia la clase PD. Esto puede reflejar el esfuerzo compensatorio

o rigidez muscular durante la escritura. Nuevamente, el color representa la interacción con otras variables, particularmente

Feature 6 (kurtosis de la FFT de altitud), que puede amplificar estos efectos.

KNN

Feature 2 – Suma de puntos recurrentes del azimut. En la Figura 4.8a, correspondiente a sujetos sanos, se observa una

ligera tendencia creciente: a mayor valor de la característica 2, el valor SHAP tiende a aumentar, lo que sugiere una mayor

probabilidad de ser clasificado como clase HC. Por el contrario, en pacientes con Parkinson (Figura 4.8b), se evidencia una

tendencia decreciente: valoresmás altos del azimut recurrente reducen el valor SHAP, es decir, tienen una influencia negativa

hacia la clase 1. En ambos casos, el color representa la interacción con la característica 8 (entropía de muestra de altitud), y

se observa que altos niveles de irregularidad vertical pueden modular el efecto del azimut en la clasificación.

Feature 7 – Presión máxima. En la Figura 4.8e, para la clase HC, no se identifica una relación clara entre la presión

máxima y el valor SHAP, lo que indica una influencia neutra o débil de esta característica en sujetos sanos. Sin embargo, en

la Figura 4.8f, correspondiente a sujetos con Parkinson, se evidencia una fuerte relación positiva: a mayor presión ejercida,

mayor es el valor SHAP, incrementando la probabilidad de pertenecer a la clase PD. La interacción con la característica 6

(curtosis FFT de altitud) sugiere que señales con mayor prominencia o agudeza en el dominio de la frecuencia podrían

intensificar el impacto de la presión máxima.

Feature 9 – Cuantil del 20% de altitud. En la Figura 4.8c (clase HC), se aprecia una relación lineal creciente entre el valor

del cuantil y el SHAP, lo que indica que una mayor elevación mínima favorece la clasificación como sano. En cambio, para

la clase PD (Figura 4.8d), la relación es inversa: valores bajos en el cuantil de altitud aumentan el SHAP, fortaleciendo la

predicción hacia Parkinson. El color, que representa la interacción con la característica 8 (entropía de muestra en altitud),

sugiere que sujetos con baja altitud y menor complejidad vertical son más propensos a ser clasificados como pacientes con

deterioro motor.
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(a) Feature 2: HC (b) Feature 2: PD

(c) Feature 9: HC (d) Feature 9: PD

(e) Feature 7: HC (f) Feature 7: PD

Figura 4.7: Dependence plots de las tres características más importantes del modelo Random Forest. Cada punto representa

una observación, el eje x indica el valor real de la característica, el eje y su contribución SHAP. El color representa la in-

teracción con una segunda característica: mayor intensidad (rojo) sugiere valores altos de la característica de interacción,

mientras que azul indica valores bajos.

Extra Trees

Feature 2 – Suma de puntos recurrentes del azimut. En la Figura 4.11a (Clase HC), se observa una correlación positiva:

a medida que el valor de la característica 2 aumenta, el valor SHAP también lo hace, lo que indica una mayor contribución
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hacia la predicción de clase sana. En contraste, la Figura 4.11b muestra que para pacientes con Parkinson, a mayor recurrencia

angular (feature 2), el valor SHAP disminuye, lo que implica una menor probabilidad de ser clasificado como clase 1. El color

(Feature 7) actúa como variable de interacción, mostrando que niveles altos de presión pueden acentuar o reducir el impacto

del azimut.

(a) Feature 2: HC (b) Feature 2: PD

(c) Feature 9: HC (d) Feature 9: PD

(e) Feature 7:HC (f) Feature 7:PD

Figura 4.8: Dependence plots de las tres características más relevantes del modelo KNN. Cada punto representa una ob-

servación; el eje x indica el valor de la característica, el eje y su valor SHAP. El color representa la interacción con otra

característica.
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Feature 9 – Cuantil del 20% de altitud. En sujetos sanos (Figura 4.11c), se evidencia que a mayor altitud baja (valores

más negativos), el valor SHAP decrece, favoreciendo la predicción de la clase HC. Para la clase PD (Figura 4.11d), la relación es

inversa: menores valores en el cuantil de altitud aumentan el SHAP hacia la clase Parkinson, confirmando que movimientos

verticales con valores bajos son más característicos en pacientes con la enfermedad. La variable de interacción es nueva-

mente la presión máxima (Feature 7), evidenciando patrones complejos entre intensidad del trazo y variabilidad vertical.

Feature 7 – Presión máxima. En la Figura 4.11e, para sujetos sanos, se observa una relación negativa: a mayor presión,

menor valor SHAP, lo cual reduce la probabilidad de clasificar como clase HC. Por otro lado, la Figura 4.11f muestra que en

pacientes con Parkinson, la presión alta aumenta significativamente el valor SHAP, reforzando su influencia hacia la clase PD.

Este comportamiento sugiere que una presión intensa es un marcador distintivo en sujetos con deterioro motor. En ambos

casos, la variable de interacción (Feature 6: curtosis FFT de altitud) parece modular el impacto de la presión.

En conjunto, los dependence plots del modelo Extra Trees confirman que las variables relacionadas con patrones angulares

repetitivos (Feature 2), elevación baja del lápiz (Feature 9) y fuerza de presión (Feature 7) son indicadores diferenciadores

robustos entre sujetos sanos y pacientes con Parkinson. Las variaciones de color en los puntos muestran cómo estas carac-

terísticas interactúan entre sí, revelando relaciones no lineales que serían difíciles de detectar con análisis tradicionales.

Naïve Bayes

Feature 2 – Suma de puntos recurrentes del azimut. En la Figura 4.11a (Clase HC), se observa una relación creciente:

valores más altos en la característica 2 se asocian con mayores valores SHAP, lo que implica una mayor contribución hacia

la predicción de sujetos sanos. En contraste, la Figura 4.11b muestra que para la clase PD, el patrón es inverso: valores altos

de la característica disminuyen significativamente la contribución SHAP, lo que favorece la clasificación hacia la clase con

enfermedad. Esta dicotomía refuerza la relevancia de los patrones angulares repetitivos del azimut en la diferenciación entre

clases.

Feature 9 – Cuantil del 20% de altitud. Para los sujetos sanos (Figura 4.11c), a medida que el cuantil de altitud aumen-

ta, también lo hace el valor SHAP, fortaleciendo la predicción hacia HC. En cambio, en la Figura 4.11d, se observa un patrón

decreciente para pacientes con Parkinson, indicando que valores bajos de altitud están fuertemente asociados a la enferme-

dad. Este comportamiento sugiere que la elevación mínima del lápiz durante el trazo es un rasgo característico de deterioro

motor.

Feature 7 – Presión máxima. En la Figura 4.11e (HC), se evidencia una relación negativa: mayor presión reduce el valor

SHAP, disminuyendo la probabilidad de predecir clase sana. En cambio, la Figura 4.11f muestra una relación lineal positiva

entre la presión y la contribución hacia PD. Este hallazgo refuerza el patrón identificado en otros modelos, donde una presión

elevada es un signo distintivo en sujetos con alteraciones motoras. La interacción con la Feature 1 (cuantiles de cambio de

presión) modula este efecto, como se evidencia en la gradiente de color.
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(a) Feature 2: HC (b) Feature 2: PD

(c) Feature 9: HC (d) Feature 9: PD

(e) Feature 7:HC (f) Feature 7:PD

Figura 4.9: Dependence plots de las tres características más importantes del modelo Extra Trees. Cada punto representa una

observación, el eje x indica el valor real de la característica, el eje y su contribución SHAP. El color representa la interacción

con una segunda característica: mayor intensidad (rojo) sugiere valores altos de la característica de interacción, mientras

que azul indica valores bajos.

Decision Tree

El modelo Decision Tree presenta relaciones claramente diferenciadas para las clases HC y PD en las tres características

más influyentes.
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(a) Feature 2: HC (b) Feature 2: PD

(c) Feature 9: HC (d) Feature 9: PD

(e) Feature 7: HC (f) Feature 7: PD

Figura 4.10: Dependence plots de las tres característicasmás importantes delmodelo Naïve Bayes. Cada punto representa una

observación; el eje x indica el valor real de la característica, el eje y su contribución SHAP. El color representa la interacción

con una segunda característica: mayor intensidad (rojo) sugiere valores altos, mientras que azul representa valores bajos.

Feature 2 – Suma de puntos recurrentes del azimut. En la Figura 4.11a, correspondiente a sujetos sanos, se observa una

ligera relación creciente: valores más altos de recurrencia angular tienden a generar valores SHAP más elevados. Para la

clase PD (Figura 4.11b), el patrón es inverso: a mayor recurrencia, menor contribución SHAP. Este patrón refuerza la idea de

que una señal más repetitiva en el ángulo de azimut es característica de la escritura sana.
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Feature 9 – Cuantil del 20% de altitud. En individuos sanos (Figura 4.11c), se identifica una correlación positiva entre el

valor del cuantil bajo de altitud y el SHAP, mientras que en pacientes con Parkinson (Figura 4.11d), esta relación se invierte.

Los valores bajos en la elevación del lápiz son más característicos de los sujetos con deterioro motor, y esto se ve reflejado

en la disminución de SHAP hacia clase PD.

Feature 7 – Presión máxima. El comportamiento de esta característica en la Figura 4.11e para HC es difuso, sin una ten-

dencia clara. Sin embargo, en la Figura 4.11f se muestra que valores altos de presión tienden a incrementar la contribución

SHAP hacia la clase PD. Este hallazgo coincide con los observados en otros modelos: una presión elevada es un marcador

importante para la predicción de enfermedad.

Los resultados obtenidos a partir de los modelos evaluados —tanto los de mejor rendimiento (Extra Trees, Gradient Boos-

ting, KNN) como los modelos adicionales (SVC, Logistic Regression, Naïve Bayes, Decision Tree, Random Forest)— revelan

una consistencia notable en los patrones detectados sobre las tres características más influyentes. Esta convergencia entre

modelos fortalece la validez de los hallazgos desde una perspectiva computacional y clínica.

• Feature 2 (Suma de puntos recurrentes del azimut): En la mayoría de modelos, se observó un patrón dual según la

clase. Valores más altos tienden a asociarse con sujetos sanos (HC), mientras que valores más bajos omenos variados

son más frecuentes en pacientes con Parkinson (PD). Esto puede reflejar una mayor rigidez o pérdida de fluidez en

la orientación angular del lápiz, relacionada con bradicinesia o rigidez motora.

• Feature 7 (Presión máxima): Esta característica mostró una clara separación entre clases. Los modelos coinciden en

que los pacientes con PD tienden a ejercer mayor presión durante la escritura, lo que puede atribuirse al esfuerzo

compensatorio, temblores o alteración del control motor fino. Esta variable se destaca como uno de los indicadores

más sólidos y consistentes del deterioro motor.

• Feature 9 (Cuantil bajo de altitud): Los resultados indican que los pacientes con Parkinson tienden a mantener el

lápiz más cerca de la superficie, especialmente en los tramos más bajos del trazo (percentil 20%). Esto podría estar

relacionado con dificultades para separar el lápiz del papel debido a temblores de reposo, rigidez o lentitud motora.

En modelos basados en árboles, esta característica mostró una clara inversión del impacto SHAP entre clases.

En conjunto, los dependence plots proporcionan evidencia visual y cuantitativa de que los modelos de aprendizaje auto-

mático no solo logran clasificar adecuadamente, sino que lo hacen apoyándose en patrones biomecánicos interpretables y

clínicamente relevantes. La orientación angular, la fuerza de presión y la elevación del lápiz emergen como biomarcadores

digitales robustos para diferenciar sujetos sanos de pacientes con Parkinson, destacando el potencial de estas señales en

aplicaciones de diagnóstico asistido por IA.
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(a) Feature 2: HC (b) Feature 2: PD

(c) Feature 9: HC (d) Feature 9: PD

(e) Feature 7: HC (f) Feature 7: PD

Figura 4.11: Dependence plots de las tres características más importantes del modelo Decision Tree. Cada punto representa

una observación; el eje x indica el valor real de la característica, el eje y su contribución SHAP. El color representa la inter-

acción con una segunda característica: mayor intensidad (rojo) sugiere valores altos, mientras que azul representa valores

bajos.
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Conclusiones

Este estudio confirma el potencial de las dinámicas de escritura digital como biomarcadores para evaluar las disfunciones

motoras en la EP. Se identificaron la presión, la altitud y el azimut como características clave para distinguir a pacientes con

EP de sujetos sanos (HC), aportando información detallada sobre los patrones motores característicos de la enfermedad.

Estos hallazgos sugieren que el análisis digital de la escritura podría integrarse en protocolos clínicos como un método no

invasivo para monitoreo y diagnóstico temprano del Parkinson.

Con únicamente 85 registros de dos cohortes culturalmente distintas—PaHaW (República Checa) y un conjunto propio de

Ecuador—se alcanzaron precisiones de 94,2 % con Gradient Boosting y 93,3 % con Extra Trees. Estos resultados superaron,
en la mayoría de las métricas, a las arquitecturas profundas (CNN) y a las redes neuronales de picos (SNN). La combinación de

señales cinemáticas relativamente directas (presión, azimut, altitud) y modelos poco profundos mostró que la complejidad

algorítmica no siempre es necesaria para capturar rasgos motores distintivos de la EP. No obstante, los modelos profundos

conservan un papel importante cuando se disponga de volúmenes de datos mayores o de tareas con mayor variabilidad

motora.

Las CNN evidenciaron su capacidad para extraer patrones espaciales y morfológicos del trazo cuando las coordenadas x,y se
transforman en imágenes, si bien no superaron de forma consistente a los modelos tradicionales debido al tamaño mues-

tral limitado. De forma análoga, las SNN mostraron ventajas en la codificación temporal, pero requirieron mayor ajuste de

hiperparámetros y más datos para explotar completamente su potencial bioinspirado.

El análisis de explicabilidad basado en SHAP corroboró la relevancia clínica de los biomarcadores identificados. La presión

máxima, la variabilidad angular del azimut y el cuantil bajo de altitud figuraron entre las variables más influyentes en todos

los clasificadores de mejor desempeño, alineándose con la fisiopatología conocida del Parkinson y aumentando la confianza

de los especialistas en la salida del modelo.

Finalmente, la fusión de datos de dos contextos lingüísticos distintos demostró que los biomarcadores subyacentes tras-

cienden particularidades de caligrafía; aun así, sólo puede hablarse de indicios de robustez intercultural, dado el tamaño

limitado de la muestra y la ausencia de otros idiomas o sistemas de escritura.
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5 Conclusiones

Limitaciones

El trabajo presenta cuatro restricciones principales: (i) un tamaño muestral relativamente pequeño y con leve desbalance

de clases, (ii) la concentración en una única tarea gráfica (espiral de Arquímedes) sin seguimiento longitudinal y (iii) la

composición demográfica desigual de las muestras, con posibles sesgos introducidos por diferencias educativas, etarias

o culturales entre las cohortes de Ecuador y la República Checa, que podrían haber influido en los patrones de escritura

observados.

Trabajos futuros

Se propone, en primer lugar, ampliar el estudio a un conjuntomultilingüe y longitudinal que permita validar la generalización

intercultural y estimar progresión clínica. En segundo lugar, se explorará la integración de biomarcadores complementarios

(voz, marcha, oculomotricidad) para crear un sistema multimodal holístico. En tercer lugar, la comparación sistemática de

técnicas de explicabilidad (LIME, Grad-CAM, Integrated Gradients, DeepSHAP, gradient-based spike metrics) enriquecerá la

transparencia del modelo. Por último, se prevé la implementación de SNN optimizadas en hardware neuromórfico de baja

potencia, así como la extensión del enfoque a otras patologías neurológicas (temblor esencial, distonía, Alzheimer).
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Anexo A: Visualización de la importancia de características

Este anexo presenta las visualizaciones de explicabilidad generadas mediante SHAP para los modelos de aprendizaje auto-

mático clásicos utilizados en el estudio. Las figuras muestran la importancia relativa de las características extraídas, dife-

renciando el impacto por clase: sujetos sanos (clase 0) y pacientes con enfermedad de Parkinson (clase 1). Se incluyen tanto

gráficos de tipo beeswarm (puntos) como gráficos de barras agrupadas por clase.

Los números corresponden a las siguientes características: 0: Altitude Permutation entropy dimension 7 tau 1, 1: Pressure

change quantiles f agg ”mean” isabs True qh 0.6 ql 0.0, 2: Azimuth sum of reoccurring data points, 3: Pressure change

quantiles f agg ”mean” isabs True qh 0.4 ql 0.2, 4: Altitude change quantiles f agg ”var” isabs True qh 1.0 ql 0.2, 5: Azimuth

number cwt peaks n 1, 6: Altitude FFT aggregated aggtype ”kurtosis”, 7: Pressure maximum, 8: Altitude sample entropy, 9:

Altitude quantile q 0.2.

(a) SVC (b) Regresión Logística

(c) Gradient Boosting

Figura 1: Importancia de características determinada por los modelos SVC, Regresión Logística y Gradient Boosting.



(a) Random Forest (b) KNN

(c) Extra Trees (d) Naïve Bayes

(e) Árboles de Decisión

Figura 2: Importancia de características determinada por losmodelos Random Forest, KNN, Extra Trees, Naïve Bayes y Árboles

de Decisión.
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