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Resumen

Este estudio propone un marco metodoldgico para la deteccion temprana de la enfermedad de Parkinson (EP) mediante
un analisis multimodal basado en tareas de escritura registradas mediante una tableta de dibujo, comparando la eficacia
de modelos de aprendizaje profundo (Deep Learning, DL) y no profundo (Machine Learning tradicional, ML) asi como la
explicabilidad de modelos de ML. Se utilizaron dos conjuntos de datos provenientes de regiones culturalmente diversas:
PaHaW (Republica Checa) y una base de datos propietaria recolectada en Ecuador. Estos conjuntos integran seiales motoras
tales como presion, azimut, altitud y coordenadas espaciales capturadas durante tareas de dibujo de espirales.

El analisis comparativo reveld que los modelos de aprendizaje automatico no profundo, especificamente Extra Trees y Gra-
dient Boosting, obtuvieron precisiones destacables de hasta el 93,27% y 94,20% respectivamente, superando a las redes neu-
ronales convolucionales (CNN) y a las redes neuronales de picos (SNN). Adicionalmente, mediante técnicas de explicabilidad
basadas en SHapley Additive exPlanations (SHAP), se identificaron biomarcadores clave para la deteccion de la enfermedad,
destacando principalmente la presion maxima ejercida por el lapiz, la repeticion angular (azimut) y bajos valores de altitud.

La investigacion demuestra la generalizacion potencial de los biomarcadores identificados a través de poblaciones con ca-
racteristicas lingiisticas diferentes. Ademas, proporciona herramientas interpretables que facilitan el entendimiento clinico
de los resultados generados por modelos predictivos complejos. Sin embargo, también se identificaron limitaciones relevan-
tes, tales como los altos requerimientos computacionales y limitaciones en escalabilidad asociadas a las SNN, lo cual abre
futuras lineas de investigacion hacia la optimizacion de recursos y mejora en la eficiencia computacional.



Declaracion expresa

Yo Alisson Asuncion Constantine Macias reconozco que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de graduacion correspondera al
autor o autores, sin perjuicio de lo cual la ESPOL recibe en este acto una licencia gratuita de plazo indefinido para el uso no
comercial y comercial de la obra con facultad de sublicenciar, incluyendo la autorizacion para su divulgacion, asi como para
la creacion y uso de obras derivadas. En el caso de usos comerciales se respetara el porcentaje de participacion en beneficios
que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invencion, modelo de utilidad, diseiio indus-
trial, secreto industrial, software o informacion no divulgada que corresponda o pueda corresponder respecto de cualquier
investigacion, desarrollo tecnoldgico o invencion realizada por mi/nosotros durante el desarrollo del proyecto de graduacion,
perteneceran de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del porcentaje que me/nos corresponda de los
beneficios econdmicos que la ESPOL reciba por la explotacion de mi/nuestra innovacion, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigacion (OTRI) de la ESPOL comunique al/los autor/es
que existe una innovacion potencialmente patentable sobre los resultados del proyecto de graduacion, no se realizara pu-
blicacion o divulgacion alguna, sin la autorizacion expresa y previa de la ESPOL.

Guayaquil, 22 de Mayo del 2025

réni canent e

ASUNCI"ON
CONSTANTI RE MACI AS

Alisson Asuncion Constantine Macias



Indice general

Abstract

indice de figuras
indice de cuadros
Lista de abreviaciones
1 Introduccion

2 Trabajos Relacionados

21  Caracteristicas neuromotoras en escritura manuscrita . . . . . . ... L
2.2  Modelos clasicos de aprendizaje automatico . . . . . . . . ...
2.3 Aprendizaje profundoy multimodalidad . . . . . . . . . ...
2.4  Redes neuronales de picos (SNN) y enfoques bioinspirados . . . . . . . .. ... .. ... .. ... ... ..
25  Explicabilidad en contextos clinicos (XAI) . . . . . . . . . ...
26  Variabilidad culturaly lingliistica . . . . . . . . . . . ..
27 Sintesisdelestadodelarte . . . . . . . . ..

3 Metodologia

31 ConmjuntodeDatos . . . .. . . . ..
31 Descripcion de las Basesde Datos . . . . . . . . . ...
31.2 Seleccion e Integracion de TAareas . . . . . . . . . . . . i e
313 Preprocesamiento . . . . . . . e
34 Segmentacion de las Sefales . . . . . . .. L
32 Modelos Propuestos . . . . . . .
3.21 Modelos de Aprendizaje No Profundo . . . . . . . . . . .. ...
322 Modelos de Aprendizaje Profundo . . . . . . . . . . .. ...
33 Bvaluacion . . ...
331 Métricas de DeSEMPERO . . . . . . . . ..
332 Protocolo Experimental . . . . . . . . . ..
34 PruebasdeSignificancia . . . . . . . ..
35 Explicabilidad . . . . . . . e

vii



351 Técnicas Utilizadas . . . . . . . . o

4 Resultados

41  Diferencias Estadisticas entre Conjuntosde Datos . . . . . . . . . . ...
42  AumentodeDatos . . . . . ..
43 Enfoque de Aprendizaje Poco Profundo . . . . . . . . . ...
431 Rendimiento de los Modelos . . . . . . . . . .
432  Rendimiento con Conjuntos de Datos Combinados . . . . . . .. ... ... .. ... ... ... .. ... .
433 Resultados sobre el Conjunto de Datos Propietario . . . . . . .. .. ... ... ... ... ... . ....
434  Matricesde Confusion . . . . . . . .
435 Mejores Hiperpardmetros . . . . . . . . . e
44  Enfoque de Aprendizaje Profundo . . . . . . . ..
44] Redes Neuronales Convolucionales . . . . . . . . . . .
442 Redes Neuronales de PicOS . . . . . . . . . .
45 Explicabilidad de los ModeloS. . . . . . . . . .
451 Caracteristicas Seleccionadas . . . . . . . . . . . ...
452 Impacto de las caracteristicas especificasdeclase . . . . . . . . . . ... ... ... .
453 Interacciones de caracteristicas y analisis de dependencia . . . . . . . . . . ... ... ... .. ... ..

5 Conclusiones

Referencias

Apéndices
Apéndice A: Visualizacion de la importancia de caracteristicas . . . . . . ... ... L.

26
26
27
27
28
28
29
29
29
29
30
32
36
38
39
41

53

55

60



Indice de figuras

31

32
33
34

35

36

317

38

39

310

4]

42

43
A

Protocolo grafico utilizado para la evaluacion de la escrituraen losgruposPDyHC. . . . ... ... ... ..
Plantilla utilizada en la base de datos propietaria para la evaluacion de la escritura en los grupos PD y HC.
Caracteristicas Dinamicas que capturael Lapiz . . . . . . . . . . . . .
Ejemplo de las imagenes de los grupos PD y HC generadas a partir de las coordenadas x, y, utilizadas como
entrada para los modelos de aprendizaje profundo. Las imdgenes corresponden a ventanas de 400 puntos con
unsolapamiento del75%. . . . . . . . .
Ejemplo de imagenes del conjunto de prueba después del preprocesamiento . . . . . . . ... ... ... ..
Ejemplo de imégenes después de aplicar el aumento de datos de los grupos PD y HC para la ventana de 400
conoverlpaing del75%. . . . . . . . . e
Ejemplo de codificacion en spikes aplicado a sefiales motoras de escritura. Las dos primeras filas muestran los
spikes generados mediante Rafe Coding a partir de las componentes seno y coseno del azimut. Las dos filas
inferiores representan la codificacion mediante Latency Coding para las seiales de altitud y presion, donde la
aparicion temprana de spikes indica mayor intensidad en la sefal original. . . . . . ... ... ... ... ..
Secuencia de imagenes generadas a partir de una espiral manuscrita, correspondiente a una ventana de 400
puntos dividida en 100 fotogramas. Cada imagen muestra el estado progresivo del dibujo al acumular 4 nuevos
puntos por frame, permitiendo representar la dinamica del trazo en el tiempo. EL avance ocurre en sentido
antihorario. Los nimeros indican el indice del fotograma dentro de la secuencia. . . . . . ... ... ... ..
Esquema de arquitectura Early Fusion. Todas las seiales multimodales son concatenadas desde el inicio y
procesadas por una Unica red spiking compuesta por bloques LIFo SLSTM. . . . . . . . ... ... .. ... ..
Esquema de arquitectura Late Fusion. Cada modalidad es procesada por separado a través de bloques spiking
(LIF o SLSTM), y sus salidas se fusionan mediante concatenacion antes de la capa final de clasificacion. . . . . .

Matrices de confusion de los distintos modelos de aprendizaje automatico evaluados con la base de datos
Propietaria. . . . . . .

Matrices de confusion de los distintos modelos de aprendizaje profundo evaluados con la base de datos pro-
DIRtAria. . . . . . e

Matrices de confusion de los distintos modelos de SNNs evaluados con la base de datos propietaria. . . . . . .

Dependence plots de las tres caracteristicas mas relevantes para el modelo SVC. El eje = representa el valor
real de la caracteristica, mientras que el eje y muestra su valor SHAP. El color indica la interaccion con una
segunda caracteristica: azul representa valores bajos y rojo valoresaltos. . . . . . . .. ... ... ... ...

vii

20

21



45  Dependence plots de las tres caracteristicas mds relevantes para el modelo de Regresion Logistica. EL eje
representa el valor real de la caracteristica, mientras que el eje y muestra su valor SHAP. EL color indica la
interaccion con una segunda caracteristica: azul representa valores bajos y rojo valoresaltos. . . . . . . . .. 43

46 Dependence plots de las tres caracteristicas mas relevantes para el modelo Gradient Boosting. El eje « re-
presenta el valor real de la caracteristica, mientras que el eje y muestra su valor SHAP. EL color indica la
interaccion con una segunda caracteristica: azul representa valores bajos y rojo valores altos. . . . . . . . .. 44

47  Dependence plots de las tres caracteristicas mas importantes del modelo Random Forest. Cada punto repre-
senta una observacion, el eje x indica el valor real de la caracteristica, el eje ¢ su contribucion SHAP. El color
representa la interaccién con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos de la
caracteristica de interaccion, mientras que azul indica valores bajos. . . . . . . ... ... ... ... ... . 46

48 Dependence plots de las tres caracteristicas mas relevantes del modelo KNN. Cada punto representa una ob-
servacion; el eje x indica el valor de la caracteristica, el eje  su valor SHAP. EL color representa la interaccion
conotracaracteristica. . . . . . ... 47

49  Dependence plots de las tres caracteristicas mas importantes del modelo Extra Trees. Cada punto represen-
ta una observacion, el eje x indica el valor real de la caracteristica, el eje ¢ su contribucion SHAP. EL color
representa la interaccion con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos de la
caracteristica de interaccion, mientras que azul indica valores bajos. . . . . . ... ... ... ... ... .. 49

410 Dependence plots de las tres caracteristicas mas importantes del modelo Naive Bayes. Cada punto representa
una observacion, el eje  indica el valor real de la caracteristica, el eje y su contribucion SHAP. EL color repre-
senta la interaccion con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos, mientras
que azul representa valores bajos. . . . . . . . . 50

411  Dependence plots de las tres caracteristicas mas importantes del modelo Decision Tree. Cada punto representa
una observacion, el eje  indica el valor real de la caracteristica, el eje y su contribucion SHAP. EL color repre-
senta la interaccion con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos, mientras

que azul representa valores bajos. . . . . . . .. L 52
1 Importancia de caracteristicas determinada por los modelos SVC, Regresion Logistica y Gradient Boosting. . . . 61
2 Importancia de caracteristicas determinada por los modelos Random Forest, KNN, Extra Trees, Naive Bayes y

Arboles de DeCISION. . . . . . o o 62



Indice de cuadros

31

3.2
33
34

35

4]
42
43
44
45
46
4.1
48
49
410
41
4712
413
414
415

Informacion demografica de pacientes con diagnostico de la enfermedad de Parkinson (Parkinson Disease,

PD) y controles sanos (Health Control, HC) de las bases de datos PaHaW y propietaria. . . ... ... ... .. 7
Valores maximos y minimos de las variables en las bases de datos PaHaW y propietaria. . . . ... ... ... 10
Hiperpardmetros ajustados paracadamodelo . . . . . . . . . . . . . . ... 15

Detalles arquitectonicos de cada modelo CNN, incluyendo el nimero de capas, transformaciones internas y la
estructura de as capas de clasificacion. (FC) se refiere a capas totalmente conectadas, (ReLU) a la funcion de
activacion Rectified Linear Unit y las capas Dropout se utilizan para prevenir sobreajuste. . . . . . . . .. .. 16
Detalles arquitectonicos de cada modelo SNN. Se incluyen las dimensiones de entrada, estructura por capas,

tipo de neuronas (LIF 0 SLSTM), y forma de fusion. . . . . . . . . . . . . . . . . . 24
Resultados de las pruebas de Shapiro-Wilk y Mann-Whitney U para las caracteristicas seleccionadas. . . . . . . 26
Cantidad de datos antes del proceso de aumento con ventanas deslizantes. . . . . . ... .. ... ... ... 27
Cantidad de datos después del aumento con ventanas deslizantes. . . . . ... ................ 27
Métricas de precision para diferentes tamafios de ventana y solapamientos en distintos modelos de clasificacion. 28
Métricas de rendimiento utilizando el conjunto combinado (100% PaHaW + 30% Propietario). . . . . . . . . .. 28
Resultados de prueba sobre el conjunto de datos propietario. . . . . . ... ... ... ... ... ... ... 29
Mejores hiperparametros para cada modelo (30% Datos Propietarios + PaHaW). . . . ... .. ... ... .. 30
Métricas de rendimiento de los modelos CNN utilizando el conjunto combinado (100% PaHaW + 30% Propietario) 31
Métricas de rendimiento sobre el conjunto de datos propietario . . . . . .. .. ... ... ... ... ... 31
Hiperparametros optimos seleccionados para cada modeloCNN. . . . . . . .. ... ... ... ... ... . 32

Métricas de rendimiento de los modelos SNNs utilizando el conjunto combinado (100% PaHaW + 30% Propietario). 33

Métricas de rendimiento sobre el conjunto de datos propietario (70% Propietario). . . .. ... ... ... .. 33
Mejores hiperparametros por grupos funcionales para cada arquitecturaSNN. . . . . . . ... ... ... .. 36
Mejores hiperparametros por grupos funcionales para cada arquitectura SNN Recurrente. . . . . .. ... .. 37
Frecuencia de aparicion de caracteristicas en el top 3 de importanciaSHAP. . . . . . . ... .. ... ... .. 40



Lista de abreviaciones

Al Artificial Intelligence.

CNN Convolutional Neural Network.
DL Deep Learning.

EP Enfermedad de Parkinson.

FC Fully Connected.

GNN Graph Neural Network.

GPU Graphics processing unit.
HC Healthy Control.

KNN K-Nearest Neighbors.
LIF Leaky Integrate-and-Fire.
ML Machine Learning.

PD Parkinson Disease.

SD Standard Deviation.

SHAP SHapley Additive exPlanations.
SLSTM Spiking Long Short-Term Memory.
SNN Spiking Neural Network.

SVC Support Vector Classifier.

TSFresh Time Series Feature Extraction Library.



Introduccion

La enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa progresiva que afecta aproximadamente al 1-2%
de la poblacion mayor de 60 afos [1]. Su diagnostico temprano es crucial, ya que permite tratamientos oportunos que
pueden ralentizar el deterioro motor y mejorar la calidad de vida de los pacientes. No obstante, los métodos diagnosticos
convencionales suelen ser subjetivos y dependen principalmente de evaluaciones clinicas que pueden no detectar cambios
sutiles en etapas tempranas [2, 3].

Una alternativa emergente es el andlisis digital de la escritura a mano, que aprovecha caracteristicas motoras como la
presion, velocidad, dindmica angular y la fluidez del trazo. La escritura es una tarea neuromotora compleja que requiere
control motor fino, planificacion cognitiva y retroalimentacion sensorial, por lo que pequeias alteraciones neuromotoras
pueden ser detectadas cuantitativamente a través de analisis [4, 5]. Diversos estudios han reportado que pacientes con EP
presentan cambios especificos en la escritura, como micrografia, irregularidad en perfiles de presion, y variabilidad en la
fluidez del trazo, incluso antes del diagnastico clinico formal [6, 7].

La creciente disponibilidad y precision de dispositivos digitales, como tabletas graficas y boligrafos inteligentes, ha facilitado
considerablemente la captura de biomarcadores a partir de tareas de dibujo y escritura. Particularmente, pruebas como
la espiral de Arquimedes han mostrado alta sensibilidad en detectar patrones anormales en pacientes con EP, superando
ampliamente las técnicas tradicionales de papel y ldpiz [8, 9]. Estos avances tecnologicos han transformado el analisis de
dibujo y escritura manuscrita en una herramienta no invasiva, escalable y objetiva para la deteccion temprana y monitoreo
continuo de enfermedades neurodegenerativas.

Sin embargo, a pesar del éxito de estos métodos digitales, aun persisten limitaciones significativas relacionadas con la gene-
ralizacion lingiiistica. La mayoria de los estudios previos se han basado en datos recolectados en poblaciones homogéneas, lo
que podria llevar a modelos poco generalizables cuando se aplican en contextos multilingiies [10, 11]. Diferencias educativas
y lingliisticas pueden influir notablemente en las caracteristicas motoras de la escritura, haciendo imperativo el desarrollo
de modelos capaces de normalizar y adaptarse a esta variabilidad para lograr una robustez universal.

Este trabajo aborda estas limitaciones mediante un analisis multimodal y multinacional, utilizando datos provenientes de
dos conjuntos culturalmente diversos: la base publica PaHaW (Republica Checa) y un conjunto propietario recolectado en
Ecuador. Alintegrar técnicas avanzadas de aprendizaje profundo (CNN y SNN) y métodos clasicos de aprendizaje automatico,
este estudio evalua criticamente la capacidad de estos enfoques para detectar patrones neuromotores universales en el con-



1 Introduccion

texto del diagnostico temprano de la EP. Asimismo, se aplican métodos de explicabilidad con SHapley Additive exPlanations
(SHAP), proporcionando transparencia clinica sobre las decisiones de los modelos y facilitando la interpretacion médica de
las caracteristicas identificadas [12, 13].

Ademas, este estudio investiga explicitamente si modelos de aprendizaje automatico poco profundos pueden igualar o su-
perar el rendimiento de las redes neuronales profundas en contextos donde la disponibilidad de datos es limitada, lo cual
es comun en entornos clinicos reales. También se realiza un analisis estadistico riguroso para determinar si las variacio-
nes en los patrones motores pueden ser significativamente influenciadas por diferencias culturales o lingdisticas entre los
conjuntos de datos analizados.

La contribucion principal de esta investigacion es ofrecer un marco metodoldgico integral, robusto y explicable para la de-
teccion temprana de Parkinson mediante tareas digitales de dibujo, por medio de la espiral de Arquimedes, proporcionando
herramientas practicas para su implementacion clinica y facilitando el diagnostico oportuno en poblaciones diversas.

La estructura del documento es la siguiente: en el capitulo 2 se revisa detalladamente el estado del arte en técnicas digitales
de andlisis de escritura para la EP. El capitulo Mefodologia describe exhaustivamente los procedimientos experimentales,
incluyendo la recoleccion, integracion, preprocesamiento y analisis de los datos, asi como el disefio e implementacion de
los modelos propuestos. En el capitulo Resultados se presentan analisis cuantitativos y cualitativos de los hallazgos obte-
nidos, destacando los biomarcadores neuromotores mas relevantes y las capacidades de generalizacion intercultural de los
modelos. Finalmente, el capitulo Conclusiones y Recomendaciones resume los aportes fundamentales del estudio y propone
futuras lineas de investigacion orientadas a mejorar la precision diagndstica y la interpretabilidad clinica de las herramientas
desarrolladas.



Trabajos Relacionados

La escritura a mano constituye una actividad motora compleja, altamente sensible a alteraciones neurolégicas. En la enfer-
medad de Parkinson (EP), las disfunciones en los ganglios basales afectan directamente la motricidad fina, reflejandose en
caracteristicas especificas de la escritura como la micrografia, patrones de presion irregulares, velocidad erratica y mayor
variabilidad en la fluidez del trazo [6, 5]. Diversos estudios han demostrado que estos cambios pueden presentarse incluso
antes de establecerse un diagnostico clinico formal, consolidando asi los biomarcadores digitales extraidos del analisis de
escritura como indicadores tempranos solidos de la enfermedad [7].

Entre los biomarcadores neuromotores mas relevantes se destacan la micrografia (reduccion anormal del tamaio de letra),
la disfluencia asociada a variaciones irregulares en la velocidad y la variabilidad en la presion ejercida durante la escritura.
Pacientes con EP generalmente presentan trayectorias del [apiz con menor amplitud, mayor tiempo en el aire (/n-air time) y
mayor cantidad de cambios en la velocidad y aceleracion del trazo. Mediciones cinematicas detalladas, incluyendo duracion
del trazo, perfiles de presion y variaciones dindmicas en la inclinacion del lapiz, han demostrado ser indicadores confiables
del deterioro neuromotor asociado con la EP. Estas caracteristicas permiten no solo la deteccion temprana, sino también el
monitoreo de la progresion de la enfermedad y la efectividad de intervenciones terapéuticas [7].

Las evaluaciones tradicionales de escritura se han empleado durante décadas en la practica clinica para identificar déficits
neuromotores y cognitivos; no obstante, limitaciones como la sensibilidad reducida y la subjetividad inherente han motivado
el desarrollo de técnicas digitales avanzadas. Estas técnicas permiten capturar, en tiempo real, caracteristicas cinematicas y
dinamicas con gran precision, facilitadas por el uso de tecnologias digitales como tabletas graficas y boligrafos inteligentes.
Estos dispositivos posibilitan la extraccion enriquecida de informacion espacial, temporal y dinamica, consolidandose como
herramientas importantes para evaluar enfermedades neurodegenerativas [14, 15].

Una herramienta ampliamente validada en este contexto es la prueba digital de dibujo de la espiral de Arquimedes. Esta
prueba digital ha reportado mejoras significativas en la sensibilidad diagndstica en comparacién con métodos tradicionales
de papel y ldpiz [16], puesto que permite cuantificar pardmetros especificos como el numero de picos de velocidad, variacio-
nes en la altitud del lapiz, velocidad del dibujo y amplitud del temblor. La alta resolucion espacial y temporal proporcionada
por tabletas digitales posibilita detectar variaciones microestructurales, como sutiles cambios en la curvatura y la presion
del trazo, comunmente desapercibidas en inspecciones visuales clinicas. Estudios indican que los pacientes con EP suelen
mostrar un temblor unidireccional y asimétrico claramente observable en esta prueba [8, 9].

El proceso de escritura también esta influido por factores culturales y caracteristicas inherentes a los distintos sistemas
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de escritura. Por ejemplo, alfabetos como el drabe, cursivos y sensibles al contexto, implican una ejecucion motora con-
tinua, mientras que alfabetos latinos presentan caracteres segmentados y discretos. Estas diferencias demandan técnicas
adaptativas para la extraccion de caracteristicas espaciotemporales especificas segun el idioma y la cultura [11]. Estudios
en poblaciones bilingiies han evidenciado diferencias significativas en caracteristicas de escritura entre distintas lenguasy
estilos educativos [17,18,10]. La normalizacion adecuada es critica para corregir estas diferencias culturales y evitar que los
modelos diagnésticos atribuyan incorrectamente patrones motores culturales especificos a sintomas patoldgicos. Técnicas
recientes de normalizacion han demostrado mejorar significativamente el rendimiento de los algoritmos diagnésticos [19].

Una estrategia particularmente efectiva ha sido la integracion de datos multimodales. Al combinar sefiales como presion,
azimut, altitud y coordenadas x, y, se logra representar distintos aspectos del deterioro motor. Cascarano et al. [20] de-
mostraron que esta integracion mejora la clasificacion e incluso permite estimar el grado de severidad de la enfermedad.
Estos enfoques multimodales ofrecen una vision mas rica del proceso de escritura [21].

Paralelamente, ha surgido una preocupacion creciente sobre la interpretabilidad de los modelos utilizados. En entornos clini-
cos, es fundamental comprender as razones detras de una decision automatizada. Por ello, técnicas de explicabilidad como
SHAP han sido incorporadas exitosamente. Zemmar et al. [13] identificaron, mediante SHAP, las regiones mas influyentes de
una espiral manuscrita en la prediccion de EP, mientras que Parziale et al. [22] emplearon modelos evolutivos para generar
reglas de decision comprensibles sin comprometer el rendimiento. SHAP permite obtener explicaciones globales y locales, y
ha demostrado ser eficaz en aplicaciones médicas, incluyendo el analisis de escritura [12, 23, 24].

Finalmente, las redes neuronales de picos (SNNs) han ganado atencidn como una alternativa bioinspirada. Estas redes proce-
san informacion mediante eventos discretos llamados "spikes”, emulando el comportamiento de las neuronas bioldgicas. Su
principal ventaja radica en su capacidad para representar de forma eficiente la informacion temporal y en su bajo consumo
energetico, lo que las hace aptas para aplicaciones en hardware neuromarfico [25].

A continuacion, se revisan los principales avances y limitaciones existentes en la literatura sobre analisis digital de escritura
para el diagndstico temprano de la EP, organizados en bloques donde se detallan las contribuciones especificas de esta
investigacion.

2.1 Caracteristicas neuromotoras en escritura manuscrita

Numerosos estudios han identificado caracteristicas neuromotoras de la escritura como biomarcadores tempranos de la EP.
Por ejemplo, Tai et al. (2021) alcanzaron una sensibilidad del 88% al analizar cambios en la presion y velocidad [5], mientras
que Di Febbo et al. (2023) reportaron una precision del 91% empleando mediciones cinematicas detalladas (duracion de
trazo, perfiles de presion, dinamica angular) [7]. En la prueba de espiral digital, Danna et al. (2019) y Kamble et al. (2021)
consiguieron sensibilidades cercanas al 90% y 92% respectivamente, gracias a la cuantificacion de picos de velocidad y
variaciones en la altitud del lapiz [8, 9].

Limitaciones. Estos trabajos suelen basarse en poblaciones culturalmente homogéneas, lo que puede sesgar los biomarca-
dores al no considerar variaciones lingiiisticas y educativas.

Contribucion de este estudio. Se integran dos bases de datos de regiones diversas (PaHaW de Republica Checa y un dataset
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propio de Ecuador) para evaluar la robustez intercultural de estas caracteristicas neuromotoras y validar su universalidad.

2.2 Modelos clasicos de aprendizaje automatico

Modelos como SVM, Random Forest y regresion logistica han sido eficazmente aplicados al andlisis de escritura. Ali et al.
(2019) y Poon et al. (2019) obtuvieron precisiones del 85-92% utilizando atributos disefiados manualmente (velocidad,
aceleracion, presion) [26, 27]. En particular, Poon et al. alcanzaron un 85% de exactitud al emplear picos de aceleracion
e irreqularidades en la presion como entradas [27].

Limitaciones. La dependencia de caracteristicas artesanales limita la escalabilidad y adaptacion a nuevas poblaciones, ade-
mas de requerir expertos en diseno de features.

Contribucidn de este estudio. Se compara el rendimiento de estos modelos con el de arquitecturas profundas en escenarios
de datos limitados y heterogéneos, determinando si pueden igualar la eficacia de los enfoques mas complejos.

2.3 Aprendizaje profundo y multimodalidad

Las CNN y arquitecturas hibridas CNN-LSTM han demostrado una elevada capacidad de extraccion automética de caracteris-
ticas. Kamran et al. (2021) reportaron sensibilidades del 95% con una CNN-LSTM en tareas de escritura [28], y Ali et al. (2023)
alcanzaron un 81% de precision combinando caracteristicas estaticas y dinamicas extraidas por CNNs [29]. Por su parte, Cas-
carano et al. (2019) y Rios-Urrego et al. (2020) obtuvieron precisiones de hasta el 97% al integrar seales de presion, azimut
y altitud [20, 21].

Limitaciones. La opacidad de las redes profundas dificulta su aceptacion clinica y escasa interpretabilidad de las decisiones.

Contribucién de este estudio. Se incorporan técnicas de explicabilidad (SHAP) para generar interpretaciones globales y
locales de las predicciones, facilitando la validacion médica de los biomarcadores extraidos.

2.4 Redes neuronales de picos (SNN) y enfoques bioinspirados

Las Spiking Neural Networks (SNN) ofrecen eficiencia energética y representacion temporal precisa. EL modelo SEFRON de
Das et al. (2024) alcanz6 una precision media del 91% (hasta 100% en ciertos subconjuntos) en deteccion de EP a partir de
sefales de voz codificadas en spikes [30]. AbouHassan et al. (2023) demostraron su aplicabilidad multimodal con resultados
comparables a DNNs tradicionales [31].

Limitaciones. EL entrenamiento de SNNs requiere ajustes complejos de hiperparametros y codificaciones de spike, lo que
dificulta su adopcion practica.

Contribucion de este estudio. Se evalua de forma sistematica el desempefio comparativo de SNNs y CNNs en series tempo-
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rales de escritura, explorando estrategias de codificacion (rate vs. latency coding) y optimizacion de entrenamiento.

2.5 Explicabilidad en contextos clinicos (XAl)

La interpretabilidad de modelos es esencial para la integracion en entornos médicos. SHAP ha emergido como técnica de
eleccion por su consistencia global y local. Zemmar et al. (2024) usaron SHAP para identificar regiones de la espiral mas
influyentes, y Ladbury et al. (2022) validaron su aplicabilidad en diagnésticos clinicos con un aumento del 15% en la confianza
del médico [13,12].

Limitaciones. Aunque SHAP facilita la interpretacion, su implementacion en modelos de muy alta dimension puede resultar
costosa en tiempo de computo.

Contribucion de este estudio. Se aplica SHAP tanto sobre modelos de arbol como profundos, generando visualizaciones
(summary y dependence plots) que correlacionan clinicamente cada biomarcador con la probabilidad de EP.

2.6 Variabilidad cultural y lingiiistica

Estudios comparativos de escritura arabe y latina han mostrado diferencias de hasta 15% en métricas de fluidez y continui-
dad, afectando la precision diagnostica cuando no se normaliza adecuadamente [11, 19, 10]. Estas variaciones provienen de
diferencias en la segmentacion de trazos y en la pedagogia de enseiianza de la escritura.

Limitaciones. La mayoria de modelos no incorpora estrategias de normalizacion cultural, exponiéndolos a errores sistema-
ticos en poblaciones diversas.

Contribucion de este estudio. Se prueba un protocolo de normalizacion basado en ajustes de escala (min-max) y compen-
saciones por estilo de escritura, evaluando su impacto en la robustez de los modelos.

2.7 Sintesis del estado del arte

A pesar de los avances en el analisis digital de la escritura para la enfermedad de Parkinson (EP), persisten desafios en la
generalizacion intercultural, la interpretabilidad clinica y la eficiencia con datos limitados. Aungue los biomarcadores neuro-
motores en la escritura muestran gran potencial para el diagnostico temprano no invasivo de la EP, existen retos significa-
tivos, especialmente relacionados con la diversidad culturaly lingiiistica. La expansion de conjuntos de datos multilingiies y
culturalmente diversos es fundamental para desarrollar modelos diagnosticos robustos y generalizables, capaces de captar
plenamente la variabilidad natural de la escritura en contextos demograficos y lingiiisticos diversos [32]. Esta investigacion
aporta un enfoque integral que combina modelos multimodales, técnicas de explicabilidad y normalizacion cultural, crean-
do un marco robusto y clinicamente interpretable para la deteccion temprana de Parkinson en entornos multiculturales,
fortaleciendo asi la aplicabilidad clinica de los modelos desarrollados.
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Este capitulo describe el enfoque metodoldgico adoptado en el estudio, abarcando desde la recoleccion y normalizacion de
los datos hasta la evaluacion e interpretacion de los resultados. Se detallan Los procesos de integracion y preprocesamiento
aplicados a los conjuntos de datos multiculturales, asi como la segmentacion temporal de as sefales. Posteriormente, se
exploran distintos enfoques de clasificacion: modelos de machine learning tradicionales, redes profundas (deep learning) y
arquitecturas bioinspiradas basadas en redes neuronales de picos (SNN). Finalmente, se presentan las estrategias de eva-
luacién y las técnicas de explicabilidad utilizadas para interpretar los modelos.

3.1 Conjunto de Datos

3.1.1 Descripcion de las Bases de Datos

Dos conjuntos de datos recopilados de manera independiente se emplearon, los cuales se estandarizaron y consolidaron en
una base unificada para su analisis integral. EL conjunto de datos esta compuesto por variables digitalizadas mediante dis-
positivos electronicos, que registran las dindmicas cinematicas en la tarea de dibujo de espirales. Los detalles demograficos
de ambos conjuntos de datos se resumen en la tabla 3.1.

Cuadro 3.1: Informacion demografica de pacientes con diagnostico de la enfermedad de Parkinson (Parkinson Disease, PD) y
controles sanos (Health Control, HC) de las bases de datos PaHaW y propietaria.

PaHaW PD PaHaW HC Propietaria PD  Propietaria HC
(n=37) (n=38) (n=9) (n=7)

Media £+ SD Media £+ SD Media = SD Media £ SD

Edad, Afos 65.83 +11.64 693 £574 649411354 61.56 - 5.88
Duracion de la enfermedad, afios 838 £4.80 - 979 £+ 8.29 -

Dosis diaria equivalente de Levodopa (mg) 143219 = 704.78 - 44777 + 28392 -
Genero (Masculino/Femenino) 19/18 20/18 1/8 1/6
Lateralidad (Diestro/Zurdo) 37/0 38/0 8/1 7/0

Valores son media == desviacion estandar (SD) excepto para genero y lateralidad.
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Base de Datos PaHaW La base de datos "Parkinson’s Disease Handwriting” contiene los trazos de 37 pacientes diagnos-
ticados con PD -19 hombres y 18 mujeres- y 38 personas de control sanos HC -20 hombres y 18 mujeres-, equiparados por
edady género. Los datos fueron recolectados mediante colaboracion entre el Centro de Trastornos del Movimiento del primer
departamento de Neurologia de la Universidad Masaryk y el Hospital Universitario St. Anne's en Brno, Republica Checa.

Para el registro de los datos se utiliz6 una tableta Wacom Intuos 4M con una frecuencia de muestreo de 150 Hz. Con el fin de
mantener condiciones naturales de escritura durante la digitalizacion, se emple6 un boligrafo de tinta convencional.

Las tareas de trazado se ilustran en la Figura 3.1, que muestra el protocolo estandarizado utilizado para la evaluacion com-
parativa entre los grupos PD y HC.
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Figura 3.1: Protocolo grafico utilizado para la evaluacion de la escritura en los grupos PDy HC.

Base de Datos Propietaria La base de datos propietaria fue recolectada por el equipo de investigacion A/ in Healthde la
Universidad Escuela Superior Politécnica del Litoral (ESPOL) en Guayaquil, Ecuador. EL conjunto de datos consiste en trazados
de 9 pacientes diagnosticados con enfermedad de Parkinson y 7 sujetos de control, obtenidos en el Hospital IESS Los Ceibos.
EL estudio conto con la aprobacion del Comité de Etica de la Universidad Técnica de Manabi (UTM).

Para la captura de parametros digitales se empleo la tableta Wacom Pro PTH-660, equipada con un sensor de presion de
8192 niveles, resolucion espacial de 5080 Ipi y un lapiz digital Wacom Pro Pen 2.

Se solicitd a cada participante realizar tareas de escritura mediante una plantilla predefinida como se muestra en la Figu-
ra 3.2. En este conjunto de datos, la tarea 5 consiste en replicar el patron de la tarea 4, trazando sobre la linea y comenzando
desde el simbolo "+". La tarea 7 requiere replicar el patron de la tarea 6, comenzando y terminando en el simbolo "+". Por
ultimo, la tarea 8 solicita a los participantes dibujar un reloj con las manecillas marcando 10 minutos antes de las 11.

Para ambas bases de datos, las pruebas fueron ejecutadas a velocidad natural sin restricciones en repeticiones de silabas,
palabras o altura de trazos. La captura de datos inici6 cuando el lapiz optico establecio contacto con la tableta y finalizo al
completarse la actividad.
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Figura 3.2: Plantilla utilizada en la base de datos propietaria para la evaluacion de la escritura en los grupos PD y HC.

Por cada tarea, se capturaron los siguientes parametros en forma de secuencias/sefales temporales:

+ Coordenada x: posicion horizontal del boligrafo.

Coordenada y: posicion vertical del boligrafo.

Marca de tiempo: registro temporal de cada punto capturado.

- Estado del botdn: indicador binario, donde O representa el boligrafo levantado (movimiento en el aire) y 1el boligrafo
sobre la superficie (movimiento sobre la superficie).

« Presion perpendicular: mide la fuerza aplicada por el boligrafo, brindando informacion sobre el control motor y la
fuerza de agarre.

« Azimut: captura los cambios direccionales en la orientacion del boligrafo con respecto al eje horizontal de la tableta.

« Altitud: representa la inclinacion del boligrafo con respecto al eje vertical durante las tareas de escritura.

3.1.2 Seleccion e Integracion de Tareas

La tarea ##1 (Espirales de Arquimedes), comun en ambos conjuntos de experimentos 3.1.1 (PaHaW) y 3.1.1 (Propietaria), ha sido
seleccionada para el analisis y desarrollo de este estudio por su relevancia en la evaluacion del control motor. Las caracteris-
ticas consideradas incluyen: [Coordenada X, Coordenada Y, Altitud, Azimut, Presion] como se ilustra en la Figura 3.3. Estas
variables permiten analizar la dinamica del movimiento de escritura y diferenciar los patrones motores entre pacientes con
Parkinson y controles sanos.
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Figura 3.3: Caracteristicas Dinamicas que captura el Lapiz

31.3 Preprocesamiento

Dado que las tabletas utilizadas en este estudio generan valores en rangos numeéricos marcadamente diferentes, se adopto
un esquema de normalizacion en dos etapas con el fin de garantizar la comparabilidad entre dispositivos y evitar que los
modelos aprendan patrones especificos del hardware.

1. Reescalado especifico por dispositivo (etapa de calibracion). Cada variable del conjunto de datos propietario fue lineal-
mente transformada para corresponder al rango fisico utilizado por la tableta PaHaW, siguiendo la formula:

T=u- (l'max,PaHaW - 1'min,PaHaW) + ZminpaHaW,

donde x representa un valor crudo de la tableta propietaria y & min paHaw; ZmaxpaHaw SON L0S limites minimo y maximo fisicos
observados en el dispositivo PaHaW. Este paso garantiza que, por ejemplo, un valor de presion de 0.5 corresponda al mismo
nivel de fuerza en ambas tabletas, eliminando asi los sesgos inducidos por el hardware. En la Tabla 3.2 se presentan los
valores minimos y maximos de cada variable utilizados en la etapa de calibracidn por dispositivo.

Cuadro 3.2: Valores maximos y minimos de las variables en las bases de datos PaHaW y propietaria.

Variable PaHaW Propietaria
Minimo Maximo  Minimo Maximo

Coordenada X (xcoord) -90790 90790 0102235 0.389202

Coordenada Y (ycoord) -90790 90790 -0.014404 0.234685

Azimut (azimuthY) 0.0 3589.0 -194 314
Altitud (altitudeY) 300.0 892.0 0.39 144
Presion (pressureY) 0.0 20480 0.0 1.00
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2. Normalizacién min-max global. Una vez combinados ambos conjuntos de datos (PaHaW y propietario ya reescalado), se
aplico una normalizacion min-max por variable:
/ T — jmin
r = ———=,
Lmax — Lmin
donde Zmin Y Tmax SON L0S valores minimos y maximos observados globalmente en la variable correspondiente. Este segundo
paso asegura que todas las variables estén contenidas en el intervalo [0, 1] al momento del entrenamiento, favoreciendo

la estabilidad numérica de los modelos y evitando que caracteristicas con mayor escala dominen el aprendizaje.

Este proceso doble de calibracion y normalizacion mejora significativamente la comparabilidad de las muestras, previene el
sesgo por dispositivo y garantiza que los valores numeéricos reflejen significados fisicos consistentes entre cohortes.

3.1.4 Segmentacion de las Seiales

El aumento de datos se llevo a cabo con el objetivo de ampliar y equilibrar las muestras de sefiales disponibles, mejorando
asi la robustez y la capacidad de generalizacion del modelo frente a la variabilidad inherente a los datos. Este proceso fue
crucial debido al tamafio limitado de las bases de datos utilizadas.

Para implementar el aumento de datos, se emplearon ventanas deslizantes con solapamiento (overlap), lo que permitio
segmentar las sefiales medidas en intervalos de diferentes tamanos. La longitud promedio de cada seial medida fue de
2301.40 puntos para la clase HC y 2709.05 puntos para la clase PD. Las configuraciones de ventanas utilizadas fueron las
siguientes:

« 100 puntos (50% overlap)

« 200 puntos (25%, 50% y 75% overlap)

+ 250 puntos (50% overlap)

+ 400 puntos (12.5%, 25%, 50% y 75% overlap)
« 500 puntos (50% overlap)

Cada ventana generada representa un subconjunto de la sefal original, permitiendo capturar informacion localizada y espe-
cifica del movimiento de escritura. Para garantizar que cada ventana tuviera una longitud uniforme, se realiz6 una imputacion
de datos basada en la media de la ventana correspondiente. Esto asegura la consistencia en las secuencias generadas y evita
la pérdida de informacion en los bordes de las senales segmentadas.

3.2 Modelos Propuestos

Para la deteccion temprana de la enfermedad de Parkinson mediante la tarea de clasificacion supervisada, se seleccionaron
diversos modelos de aprendizaje automatico y aprendizaje profundo, considerando sus distintas fortalezas y capacidades de
generalizacion.Este trabajo se enmarca dentro de un enfoque netamente mu(timodal, ya que, aunque todas las senales pro-
vienen de una misma fuente cada una representa aspectos distintos del comportamiento motor del sujeto: las coordenadas
trazan el movimiento, la presion indica la fuerza aplicada, mientras que los angulos capturan la orientacion del dispositivo
de entrada. Esta riqueza semantica justifica un tratamiento multimodal, con el objetivo de explotar la complementariedad
entre las distintas modalidades.

1
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Los experimentos se llevaron a cabo en un sistema de computacion de alto rendimiento (HPC) que cuenta con cuatro GPU
NVIDIATESLA A100, cada una equipada con 40 GB de memoria VRAM. Estos recursos computacionales fueron proporcionados
por la Corporacion Ecuatoriana para el Desarrollo de la Investigacion y la Academia (CEDIA). Para la implementacion, se
emplearon PyTorch 2.01" y Python 3.8%.

EL conjunto de datos fue procesado mediante dos representaciones complementarias:

1. Imagenes generadas a partir de las coordenadas x, y: Esta representacion permite capturar patrones espaciales y
morfoldgicos del trazo mediante imdagenes bidimensionales, las cuales fueron posteriormente analizadas utilizando
modelos de aprendizaje profundo basados en redes neuronales convolucionales. Para generar estas imagenes, se
empleo la libreria Matplotlib de Python, configurando cada imagen con un tamano estandar de 224x224 pixeles,
fondo blanco, lineas negras con grosor 3, y formato de almacenamiento JPG. Un ejemplo ilustrativo se presenta en
la Figura 3.4.

2. Series temporales de presion, azimut y altitud: Esta representacion permite capturar las propiedades dinamicas y
temporales finas asociadas al movimiento del trazo, como la variacion de la presion aplicada y los cambios en los
angulos del lapiz durante la escritura.

La integracion de estas dos representaciones complementarias, junto con sus respectivos modelos, permite realizar un anali-
sisintegral del movimiento desde maltiples perspectivas, incrementando asi la capacidad de deteccion temprana de patrones
asociados a la enfermedad de Parkinson.

Q00O

(@) HC (b) HC (QPD (d) PD

Figura 3.4: Ejemplo de las imagenes de los grupos PD y HC generadas a partir de las coordenadas x, y, utilizadas como
entrada para los modelos de aprendizaje profundo. Las imagenes corresponden a ventanas de 400 puntos con un solapa-
miento del 75%.

3.21 Modelos de Aprendizaje No Profundo

Utilizando el conjunto de datos integrado, se entrenaron Los siguientes modelos de aprendizaje no profundo para procesar
las senales temporales de presion, azimuth y altitud. La eleccion de cada uno de los modelos se describe a continuacion:

+ Regresion Logistica La regresion logistica es un modelo lineal ampliamente utilizado en clasificacion binaria por
su simplicidad y robustez. Su principal ventaja radica en su interpretacion directa, ya que estima probabilidades

1https://pytorch.org/get-started/previous-versions/htvzm
2ht'rps://www.python.org/downloads/release/python-380/
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basadas en una funcion sigmoide. En este caso, se ajustaron el parametro de reqularizacién C'y el solucionador
(solven) liblinear, disefado especificamente para problemas de alta dimensionalidad [33].

Support Vector Classifier (SVC) El clasificador SVC es un modelo ampliamente utilizado en tareas de clasificacion
debido a su capacidad para encontrar un hiperplano optimo que maximice la separacion entre clases en el espacio
de caracteristicas. Su principal ventaja radica en su efectividad para trabajar con datos de alta dimensionalidad y
manejar problemas linealmente no separables mediante el uso de nucleos (kernels) como el lineal, el radial base
(RBF) 0 el polinémico. En este modelo, se ajustaron parametros clave como C, que controla la regularizacién, el tipo
de kernely el coeficiente ~, que define la influencia de los puntos de datos en la decision del modelo [34].

Decision Trees Los arboles de decision dividen iterativamente el espacio de caracteristicas maximizando la ganancia
de informacion en cada division. Este modelo es facil de interpretar y comprender, siendo ideal para identificar pa-
trones en datos complejos. Se ajustaron pardmetros como la profundidad maxima del arbol (/max_depth), el criterio
para medir la calidad de las divisiones (criterion) y el nimero minimo de muestras necesarias para dividir un nodo
(min_samples_splif) [35].

Random Forest El modelo Random Forest es un algoritmo basado en ensamblajes que combina multiples arboles de
decision para mejorar la precision y reducir el riesgo de sobreajuste. Su ventaja principal es su capacidad para manejar
conjuntos de datos con ruido y variables no lineales, proporcionando predicciones robustas y generalizables. En este
estudio, se optimizaron pardmetros como el nimero de arboles (71_estimators), la profundidad méxima de los arboles
(max_depth) y el nimero minimo de muestras requeridas para dividir un nodo (m/in_samples_splif) [36].

Naive Bayes El clasificador Naive Bayes Gaussiano es eficiente y simple, ya que asume una distribucion normal para
cada caracteristica. Su ventaja principal es su capacidad para trabajar bien con conjuntos de datos pequefosy de alta
dimensionalidad. En este caso, se ajusto el parametro de suavizado (var_smoothing) para mejorar la estabilidad de
las predicciones [37].

Grading Boosting Gradient Boosting es un modelo de ensamblaje que combina érboles de decision de manera se-
cuencial, corrigiendo los errores cometidos por modelos previos. Su ventaja principal es su alta precision en problemas
complejos, ya que optimiza una funcion de pérdida utilizando gradientes. Se ajustaron parametros como la tasa de
aprendizaje (learning rate), la profundidad de los arboles (/max_deptf) y el nimero de estimadores (/7_estimators)
[38].

Extra Trees Extra Trees (Extremely Randomized Trees) es una variacion de Random Forest que introduce una mayor
aleatoriedad en el proceso de division de Los arboles, lo que mejora su robustez frente a datos ruidosos. Su ventaja
principal radica en su eficiencia computacional y en su capacidad para manejar grandes volimenes de datos. Se
ajustaron parametros como el namero de arboles (n_estimators) y la profundidad maxima (/max_depth) [39].

K-Nearest Neighbors El algoritmo KNN clasifica nuevas instancias en funcion de la distancia a sus vecinos mas
cercanos en el espacio de caracteristicas. Es especialmente util en escenarios donde los datos tienen distribuciones
no lineales. Su principal ventaja es su simplicidad y ausencia de supuestos sobre la distribucion de los datos. En este
estudio, se ajustaron parametros como el nimero de vecinos &, la métrica de distancia (euclideano manhattan) y el
peso asignado a los vecinos (vniform o distance) [40].
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Ingenieria de Caracteristicas

A partir de cada segmento extraido de las ventanas deslizantes, se generaron caracteristicas adicionales de series de datos
temporales utilizando la libreria TS-Fresh v0.21.0 3[41]. TSFresh es una herramienta especializada en la extraccién automa-
tizada de caracteristicas a partir de series temporales. Se optd por esta implementacidn debido a su capacidad para ofrecer
explicabilidad de las caracteristicas en tareas de regresion y clasificacion, aprovechando los métodos que esta provee (F(-
ComprehensiveParameters).

Las caracteristicas generadas se pueden agrupar en categorias como:

« Estadisticas basicas: media, desviacion estandar, minimo, maximo, y percentiles.

+ Transformaciones basadas en Fourier: coeficientes de la transformada de Fourier y analisis de frecuencias.

+ Medidas de correlacion: caracteristicas relacionadas con correlaciones entre segmentos de la sefal.

« Autocorrelaciones y pruebas estadisticas: coeficientes de autocorrelacion y resultados de pruebas como la prueba
de Augmented Dickey-Fuller.

« Caracteristicas derivadas de la dinamica de los datos: informacion sobre la tendencia, curtosis y asimetria.

De las caracteristicas extraidas, se seleccionaron aquellas que fueran ortogonales entre si, es decir, con baja redundancia,
y que tuvieran una correlacion significativa con la salida. Para esto, se analizaron tanto las correlaciones lineales como no
lineales, utilizando un umbral de correlacion del 70%.

Posteriormente, se utilizd la funcion SelectkBest [42] de la libreria scikit-learn v1.6.1 4 para seleccionar las 10 mejores ca-
racteristicas que representan los datos considerando un umbral de correlation mayor a 40%. La funcion SelectkBest evalla
cada caracteristica individualmente en funcion de su relacion con la variable objetivo, utilizando pruebas estadisticas como
el estadistico chi-cuadrado o ANOVA segun el tipo de datos procesados.

Entrenamiento

Todos los modelos fueron optimizados utilizando una basqueda en rejilla (grid search) para ajustar sus hiperparametros. Para
cada modelo, se seleccionaron hiperparametros especificos en funcion de su impacto en el rendimiento, como se muestra
en la Tabla 3.3.

Estos hiperparametros fueron elegidos debido a su influencia significativa en el rendimiento y la capacidad de generalizacion
de sus respectivos modelos.

Adicionalmente, se aplic6 validacion cruzada con & = 5 particiones utilizando StratifiedkFold de scikit-learn para todos los
modelos, con el fin de asegurar la robustez de los resultados y mejorar su capacidad de generalizacion.

3.2.2 Modelos de Aprendizaje Profundo

En este estudio se consideraron dos enfoques principales de aprendizaje profundo, cada uno orientado al analisis de dife-
rentes representaciones de los datos recolectados durante la tarea de dibujo de espirales.

*https;//tsfresh.readthedocs.io/en/v0.21.0/
"https://scikit-learn.org/stable/index.html
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Cuadro 3.3: Hiperparametros ajustados para cada modelo

Modelo Hiperparametros

Support Vector Classifier (SVC)  Regularization (C), Kernel Type, Polynomial Degree , Kernel Coefficient

Random Forest Number of Trees, Maximum Depth, Minimum Samples Split, Minimum Samples Leaf
Logistic Regression Reqularization Strength , Penalty Type, Solver
Gradient Boosting Learning Rate, Maximum Depth, Number of Estimators

K-Nearest Neighbors (KNN) Number of Neighbors, Distance Metric, Weighting

Decision Tree Criterion, Maximum Depth, Minimum Samples Split
Naive Bayes Variance Smoothing Factor
Extra Trees Number of Trees, Maximum Depth, Minimum Samples Split

El primer enfoque se basa en el uso de Redes Neuronales Convolucionales (Convolutional Neural NetworksCNN) para pro-
cesar imagenes generadas a partir de las coordenadas x e y, capturando asi patrones espaciales y morfoldgicos del trazo.
Este tipo de arquitectura ha demostrado ser eficaz en tareas de clasificacion de imagenes biomédicas, permitiendo extraer
caracteristicas relevantes asociadas a la reqularidad, simetria y fluidez del dibujo.

Elsegundo enfoque corresponde al uso de Redes Neuronales de Picos (Spiking Neural Networks, SNN), una clase de modelos
bioinspirados que simulan de manera mas realista la dinamica de disparo de las neuronas bioldgicas. Estas redes fueron uti-
lizadas para la clasificacion tanto de las series temporales (presion, azimut y altitud) como de las representaciones visuales
derivadas de las coordenadas espaciales. Las SNN presentan ventajas en el modelado de sefiales temporales complejas y
pueden ofrecer un marco mas interpretativo al estar alineadas con principios neurofisioldgicos.

Ambos enfoques permiten comparar el desempeo y la interpretabilidad de arquitecturas profundas tradicionales y bioins-
piradas, en el contexto de un analisis multimodal para la deteccion temprana de la enfermedad de Parkinson.

Redes Neuronales Convolucionales (CNN)

Utilizando el conjunto de datos integrado por las imagenes generadas a partir de las coordenadas x, , Se entrenaron cinco
arquitecturas de Redes Neuronales Convolucionales (CNN) para la tarea de clasificacion entre pacientes con PD y HC. En todos
los modelos, la capa de salida fue modificada para incluir un perceptron multicapa (Multilayer Perceptron, MLP) totalmente
conectada, adaptado especificamente para clasificacion binaria.

Las arquitecturas seleccionadas fueron elegidas en funcion de su rendimiento comprobado tanto en estudios previos del
grupo de investigacion como en la literatura cientifica reciente [43, 44, 45], donde han demostrado una alta precision y
eficiencia en tareas de clasificacion similares, especialmente en el contexto de imagenes biomédicas. Cada modelo fue opti-
mizado especificamente para las imagenes de escritura a mano utilizadas en este estudio. La Tabla 3.4 presenta un resumen
de las especificaciones arquitectdnicas, incluyendo el nimero de capas, las transformaciones aplicadas y las capas finales
de clasificacion.

A continuacion, se describen brevemente las arquitecturas utilizadas:
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+ ResNet50: Red residual profunda con 50 capas que resuelve el problema del desvanecimiento del gradiente me-
diante bloques residuales, permitiendo el entrenamiento eficiente de redes muy profundas. Fue seleccionada por su
capacidad para extraer caracteristicas ricas y por su amplio uso exitoso en aplicaciones médicas [46, 47].

- EfficientNet-BO: Esta arquitectura destaca por su escalabilidad eficiente en profundidad, anchura y resolucion, lo
que le permite alcanzar alta precision con un nimero reducido de parametros. Fue seleccionada por su balance entre
eficiencia computacional y rendimiento [48].

+ DenseNet-121: Conecta cada capa con todas las capas posteriores de forma directa, lo que mejora el flujo del gra-
diente, reduce la redundancia y fomenta la reutilizacion de caracteristicas. Fue elegida por su capacidad de mitigar
el desvanecimiento del gradiente y su eficacia comprobada en tareas de clasificacion médica [49, 50].

+ MobileNetV2: Disenada para dispositivos con recursos limitados, emplea convoluciones separables en profundidad y
bloques residuales tipo bottleneck. Fue seleccionada por su eficiencia y aplicabilidad en contextos donde se requiere
bajo consumo computacional [51].

+ Ensamble de Modelos: Se construy6 un modelo de ensamble combinando las predicciones de ResNet50, EfficientNet-
BO, DenseNet-121 y MobileNetV2. El ensamble se realizo mediante la técnica de hagging (Bootstrap Aggregating),
entrenando cada modelo individualmente sobre subconjuntos aleatorios del conjunto de entrenamiento generados
con reemplazo. Esta estrategia permite reducir el sobreajuste y la varianza del modelo, mejorando su capacidad de
generalizacion. Las predicciones finales se obtuvieron promediando las salidas de cada modelo individual, lo cual
resulté en un clasificador mas robusto y preciso [52].

Cuadro 3.4: Detalles arquitectonicos de cada modelo CNN, incluyendo el numero de capas, transformaciones internas y la
estructura de las capas de clasificacion. (FC) se refiere a capas totalmente conectadas, (ReLU) a la funcion de activacion
Rectified Linear Unit y las capas Dropout se utilizan para prevenir sobreajuste.

Modelo Arquitectura

ResNet50 50 capas: 49 convolucionales, 1 totalmente conectada. Conexiones residuales. Salida:
FC(2048) — FC(512) — ReLU — Dropout — FC(1)

EfficientNet-BO 16 capas: bloques Conv-BN-ReLU, convoluciones separables en profundidad. Salida:
FC(1280) — Dropout — FC(1)

DenseNet-121 121 capas: bloques densos, convoluciones 1x1y 3x3. Salida: FC(1024) — FC(512) — RelLU
— Dropout — FC(1)

MobileNetVv2 53 capas: convoluciones separables en profundidad, bloques residuales tipo bottleneck.
Salida: FC(1280) — Dropout — FC(1)

Ensamble Combinacion de ResNet50, EfficientNet-B0, DenseNet-121y MobileNetV2. Predicciones

promedio entre los modelos individuales.
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Preprocesamiento

Todas las imagenes fueron normalizadas utilizando los valores de media y desviacion estandar de [0.0287, 0.0285, 0.0285]
y [0.0071,0.0070, 0.0070] respectivamente, ejemplos de estas se pueden observar en la Figura 3.5. Estos valores correspon-
den a la distribucion de intensidades de pixeles en las imagenes del dataset, y fueron adoptados para alinear los datos con
los requisitos de entrada de las arquitecturas convolucionales utilizadas. La normalizacion es un paso esencial en el entre-
namiento eficiente de modelos de aprendizaje profundo, ya que permite estabilizar el proceso de aprendizaje al centrar los
valores de pixel alrededor de cero y escalarlos dentro de un rango consistente. En concreto, durante el preprocesamiento se
resta la media a cada canal de color y se divide por su respectiva desviacion estandar, evitando problemas como la explosion
0 desaparicion del gradiente durante la retropropagacion.

CONVOVGEAO
200R00CN

Figura 3.5: Ejemplo de imagenes del conjunto de prueba después del preprocesamiento

Aumento de Datos

Con el objetivo de aumentar la diversidad del conjunto de entrenamiento y mejorar la capacidad de generalizacion de los
modelos, se aplicaron diversas técnicas de aumento de datos exclusivamente sobre las imagenes de entrenamiento. Estas
transformaciones fueron clave para mitigar el sobreajuste, ya que proporcionaron maltiples variaciones del mismo trazo sin
alterar la informacion esencial de los patrones de escritura de Los sujetos. Las transformaciones se diseiaron para preservar
la estructura del trazo mientras se introducian variaciones visuales que simulan diferentes condiciones de adquisicion.

Las transformaciones se agruparon en dos categorias: (1) aquellas aplicadas a todas las imagenes, y (2) transformaciones
aleatorias, en las cuales se seleccion6 una de cada grupo con una probabilidad determinada. Tras el aumento, el conjunto de
datos se incremento a un total de 1200 imagenes, permitiendo una mayor variabilidad durante el entrenamiento.

Las transformaciones aplicadas a todas las imagenes fueron:
- Rotacion aleatoria: Gira la imagen aleatoriamente entre angulos de 90° y -90°.

« Flip: Aplica volteos aleatorios horizontales y verticales.
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+ Transposicién: Transpone la imagen aleatoriamente.

+ Ruido gaussiano: Agrega ruido gaussiano con una probabilidad del 20%, simulando ruido en la adquisicion de ima-
genes.

Las siguientes transformaciones se aplicaron seleccionando aleatoriamente una opcion dentro de cada grupo, con una pro-
babilidad del 30%:

» Desenfoque: Aplica una de las siguientes transformaciones: MotionBlur, MedianBluro Blur, simulando variaciones
en el enfoque.

« Distorsiones geométricas: Aplica una de las siguientes: Optical Distortion, Grid Distortion o Piecewise Affine, intro-
duciendo deformaciones geométricas.

+ Mejoras de imagen: Aplica una de las siguientes: CLAHE, Sharpen, Emboss o Random Brightness Contrast, mejorando
el contraste o la nitidez para simular condiciones de iluminacion variadas.

Estas transformaciones se aplicaron con una probabilidad del 20-30%, logrando un balance entre variabilidad e integridad
del dato. ELaumento de datos se realizo de manera dindmica durante el entrenamiento (on-the-fly), lo cual evitd la necesidad
de almacenamiento adicional y proporcion6 una mayor variabilidad en tiempo real.

La Figura 3.6 presenta ejemplos de imdgenes aumentadas utilizadas durante el entrenamiento lo que evidencia la diversidad
introducida en el entrenamiento y la consistencia mantenida en la evaluacion.

\ 7\
66 LEOGO0
5 \\\—//.\ [ \@/\ /4

Figura 3.6: Ejemplo de imagenes después de aplicar el aumento de datos de los grupos PD y HC para la ventana de 400 con

HC PD

overlpaing del 75%.

Entrenamiento

Todos los modelos fueron optimizados mediante una busqueda en rejilla (grid search) para ajustar hiperparametros clave:
el valor de dropout, |a tasa de aprendizaje (learning rate) y el weight decay. Estos pardmetros fueron seleccionados por su
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influencia directa en la capacidad del modelo para aprender de manera eficiente sin sobreajustarse.

Ademas, se empled validacion cruzada estratificada con & = 5 particiones utilizando la clase StratifiedkFold de la libreria
scikit-learn, 10 que permitio garantizar la robustez del entrenamiento y una mejor capacidad de generalizacion. Esta técnica
asegura que cada subconjunto preserve la proporcion de clases original, lo cual es especialmente importante en conjuntos
de datos con clases desbalanceadas o limitadas.

Spiking Neural Networks

Las Redes Neuronales de Picos (Spiking Neural Networks, SNNs) son un tipo de red neuronal inspirada en el funcionamiento
del cerebro humanao. A diferencia de las redes neuronales tradicionales, donde la informacion se transmite de manera conti-
nua, en las SNNs las neuronas se comunican enviando sefales discretas llamadas spikes (picos), que ocurren en momentos
especificos del tiempo.

Estas redes se basan en un modelo llamado Leaky Integrate-and-Fire (LIF), donde cada neurona acumula sefiales de entrada
a lo largo del tiempo. Cuando la sefial acumulada supera un cierto umbral, la neurona genera un pico y transmite esa sefial a
otras neuronas. Si el umbral no se alcanza, parte de la sefial se pierde con el tiempo a través de un "canal de fuga”, simulando
cémo las neuronas reales dejan de responder si no reciben suficiente estimulacion.

Este tipo de codificacion permite que las SNNs procesen informacion no solo por la cantidad de sefial, sino también por el
momento en que ocurre. Gracias a esto, las SNNs son especialmente atiles para detectar patrones en sefales temporales,
como las que se producen al escribir a mano, ya que pueden capturar mejor la dindmica del movimiento y los cambios sutiles
en el tiempo.

Preprocesamiento de Datos

Para entrenar la red neuronal de picos (SNN), se procesaron tanto las series de tiempo como las imagenes generadas a
partir de los datos de escritura. En esta seccion se detalla el preprocesamiento aplicado a las seiales temporales de presion,
azimut y altitud.

Seriesde Tiempo  Las Spiking Neural Networks requieren que los datos de entrada se representen en forma de secuencias
de spikes (picos). Para lograr esto, se aplicaron dos estrategias de codificacion:

+ Rate Coding: La informacion se codifica mediante la frecuencia de disparo de una neurona dentro de un intervalo de
tiempo. Cuanto mayor es la magnitud del estimulo, mas frecuente sera la emision de spikes. En la implementacion,
cada valor de la seial se normaliza al rango [0, 1] y se asocia a una distribucién de Bernoulli con esa probabilidad.
Durante un numero fijo de pasos temporales (num_steps), se realiza un muestreo en cada paso; si el resultado es un
"@xito", se genera un spike, en caso contrario no.

« Temporal Coding (Latency Coding): En esta estrategia, la informacion se representa a través del momento en que
ocurre el primer spike dentro de la ventana temporal. Un valor alto provoca un spike temprano, mientras que un valor
bajo Lo retrasa. Esta codificacion permite capturar relaciones temporales de manera mas precisa.
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Las tres variables de entrada fueron transformadas en secuencias de spikes utilizando las siguientes configuraciones:

« Altitud y presion: Codificadas mediante Lafency Coding, dado que su dindamica temporal puede reflejar cambios
sutiles en el control motor.

 Azimut: Debido a su naturaleza ciclica (0-360°), se descompuso en sus componentes Seno y C0OSeno para preservar
la continuidad angular. Luego, ambas componentes fueron codificadas utilizando Rafe Coding.

La Figura 3.7 muestra un ejemplo visual de las sefiales de altitud, azimut y presion codificadas en formato spike, correspon-
diente a una ventana de 400 puntos con un solapamiento del 75%, utilizando 50 pasos temporales, un umbral (¢Areshold)
de 0.5y una constante de tiempo (7) de 10.
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Figura 3.7: Ejemplo de codificacion en spikes aplicado a sefiales motoras de escritura. Las dos primeras filas muestran los
spikes generados mediante Rate Coding a partir de las componentes seno y coseno del azimut. Las dos filas inferiores
representan la codificacion mediante Lafency Coding para las sefiales de altitud y presidn, donde la aparicién temprana de
spikes indica mayor intensidad en la sefial original.

En este contexto:

« Pasos temporales (#ime steps). representan las unidades discretas de tiempo en las que se simula la propagacion
de los spikes. A mayor numero de pasos, mayor resolucion temporal tiene la codificacion.

« Umbral (¢hreshold). valor minimo que debe alcanzar la sefial para que se genere un spike. Un valor de 0.5 implica
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que solo los estimulos de media o alta intensidad desencadenan actividad neuronal.

+ Constante de tiempo (7): parametro que regula la rapidez con la que decae la probabilidad de disparo en la codifi-
cacion por latencia. Valores bajos generan spikes mas tempranos para estimulos intensos, mientras que valores mas
altos permiten una codificacion mas dispersa en el tiempo.

Imagenes Para el procesamiento de las imagenes en el contexto de las redes neuronales de picos (SNNs), se emplearon
dos estrategias distintas de representacion visual de las coordenadas x, y. A diferencia de las seiales temporales, en las
imagenes no es necesario realizar una codificacion explicita en spikes, ya que la red puede inferir directamente la informacion
a partir de los valores de intensidad de los pixeles durante el entrenamiento. Es decir, la codificacion de la informacion esta
implicita en la variacion espacial del trazo.

Las estrategias utilizadas fueron las siguientes:

+ Secuencia completa: Se generaron imagenes a partir de la totalidad de la secuencia de coordenadas x, y, trazando
el dibujo completo con lineas negras sobre fondo blanco. Esta representacion estatica proporciona informacion mor-
foldgica global del trazo. Esta técnica fue también utilizada en el entrenamiento de las CNN, como se describe en la
seccion anterior. Ejemplos de estas imagenes pueden observarse en la Figura 3.4.

- Secuencia por fotogramas (frames): En esta modalidad, el trazo se construye de forma progresiva, aiiadiendo cuatro
nuevos puntos por cada fotograma, lo que genera una secuencia visual que simula el proceso temporal del dibujo. De
esta forma, se obtiene una representacion visual dindmica de la escritura, tratandola como una serie de tiempo de
imdagenes. Esta estrategia permite a la red capturar la evolucion temporal del trazo a través de la progresion espacial
de los pixeles. Un ejemplo de esta representacion puede verse en la Figura 3.8.

(b) 16 (28 (d) 40 (e) 52 (f) 64 (@) 76

(a) 4 (h) 88

Figura 3.8: Secuencia de imdgenes generadas a partir de una espiral manuscrita, correspondiente a una ventana de 400
puntos dividida en 100 fotogramas. Cada imagen muestra el estado progresivo del dibujo al acumular 4 nuevos puntos por
frame, permitiendo representar la dinamica del trazo en el tiempo. El avance ocurre en sentido antihorario. Los nimeros
indican el indice del fotograma dentro de la secuencia.

Arquitecturas propuestas

En este estudio se emplearon distintas arquitecturas de SNNs ajustadas especificamente para procesar informacion mul-
timodal derivada de tareas de escritura a mano. Estas arquitecturas fueron seleccionadas con base en su respaldo en la
literatura y su capacidad para capturar tanto patrones espaciales como dinamicas temporales complejas, caracteristicas
inherentes a las senales biomotoras involucradas en la deteccion temprana de la enfermedad de Parkinson.
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Se exploraron seis configuraciones principales de modelos SNN, diferenciadas por el tipo de entrada (series de tiempo o
imagenes), el tipo de fusion multimodal (temprana o tardia), y el uso de bloques spiking simples (LIF) o recurrentes (SLSTM):

« Early Fusion (LIF y SLSTM): Todas las sefales multimodales (presion, azimut y altitud) son concatenadas desde el
inicio (Figura 3.9) y procesadas por una anica red. Esta variante es (til cuando existe una fuerte correlacién entre
las sefales. EL uso de neuronas LIF permite entrenamientos mas rapidos, mientras que los bloques SLSTM agregan
memoria temporal, mejorando la modelacion de relaciones de largo plazo.

« Late Fusion (LIF y SLSTM): Las senales se procesan por separado a través de bloques independientes de capas spiking
como se muestra en la Figura 3.10. Esto permite explotar la especificidad de cada modalidad. Finalmente, las salidas
son fusionadas mediante concatenacion antes de la clasificacion. La inclusion de SLSTM en cada rama mejora la
capacidad para extraer dependencias temporales particulares en cada sefial, algo clave en variables como presion o
altitud.

+ Convolutional SNN: Utilizada para procesar imagenes completas generadas a partir del trazo =, y del paciente.
Emplea capas convolucionales seguidas de neuronas spiking y una capa totalmente conectada. La entrada se replica a
lo largo de varios pasos temporales para adaptarse al paradigma spiking. Esta arquitectura permite capturar patrones
morfologicos relevantes en los trazos.

+ Convolutional + SLSTM SNN: Procesa secuencias de imagenes construidas a partir de fotogramas del trazo (frames de
coordenadas). Combina convoluciones espaciales con bloques SConv2dLSTM, permitiendo modelar simultaneamente
tanto la variacion intra-imagen como la evolucion temporal entre imagenes. Esta arquitectura resulta especialmente
adecuada para representar el proceso de escritura como una serie de micro-movimientos.

« Ensamble: Dada la naturaleza complementaria de las arquitecturas anteriores, se implementd un modelo de ensam-
ble que combina las predicciones de los modelos Late Fusion SLSTM, Early Fusion SLSTM y Convolutional+SLSTM SNN.
Este enfoque busca aumentar la robustez del sistema y mejorar la capacidad de generalizacion al mitigar los sesgos
de cada arquitectura individual.

Presion + Azimut (sin+cos) + Altitud
(Concatenacion de senales codificadas)

l

Bloques
LIF/SLSTM

Capa FC + salida

Figura 3.9: Esquema de arquitectura Early Fusion. Todas las seiales multimodales son concatenadas desde el inicio y pro-

cesadas por una Gnica red spiking compuesta por blogues LIF o SLSTM.

La exploracion sistematica de estas configuraciones permite comparar sus capacidades de representacion y discriminacion
bajo un enfoque netamente multimodal. En la tabla 3.5 se muestra en detalle la arquitectura de cada una de las redes
utilizadas.
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Presion Azimut (sin+cos) Altitud
(Latency Coding) (Rate Coding) (Latency Coding)
Bloques Bloques Bloques
LIF/SLSTM LIF/SLSTM LIF/SLSTM

Concatenacion

Capa FC + salida

Figura 3.10: Esquema de arquitectura Late Fusion. Cada modalidad es procesada por separado a través de bloques spiking
(LIF o SLSTM), y sus salidas se fusionan mediante concatenacion antes de la capa final de clasificacion.

Aumento de Datos

El aumento de datos aplicado en los modelos spiking sobre imagenes se realizo utilizando las mismas configuraciones
descritas previamente en la seccion de las CNNs. Tanto las imagenes completas generadas a partir de las coordenadas
x,y como las secuencias de fotogramas (frames) de las espirales fueron procesadas con técnicas de aumento de datos
consistentes.

Para asegurar la coherencia temporal y preservar la integridad de los trazos, se aplico la misma configuracion de trans-
formaciones a todas las imagenes pertenecientes a una misma secuencia de espiral. Sin embargo, cada secuencia recibio
un conjunto de transformaciones distinto, con el objetivo de incrementar la diversidad del conjunto de entrenamiento sin
comprometer la continuidad interna de los frames.

3.3 Evaluacion

3.31 Métricas de Desempeiio

EL desempefio de los modelos fue evaluado utilizando métricas ampliamente aceptadas en tareas de clasificacion binaria:
exactitud (accuracy), precision, sensibilidad (recall) y puntaje F1. Estas métricas permiten obtener una vision integral sobre
la capacidad de los modelos para distinguir entre sujetos sanos (HC) y pacientes con enfermedad de Parkinson (PD) [53, 54].
En particular, el puntaje F1 resulta especialmente atil en escenarios con posibles desbalances entre clases, al combinar en
una sola medida la precision y la sensibilidad del modelo.

3.3.2 Protocolo Experimental

El protocolo de evaluacion se desarrolld en varias fases, garantizando tanto la comparabilidad como la capacidad de gene-
ralizacion de los modelos:

« Inicialmente, el conjunto de datos PaHal fue dividido en un 80% para entrenamiento y validacion, y un 20% para
prueba.
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Cuadro 3.5: Detalles arquitectonicos de cada modelo SNN. Se incluyen las dimensiones de entrada, estructura por capas, tipo
de neuronas (LIF o SLSTM), y forma de fusion.

Modelo Arquitectura detallada

Late Fusion (LIF) 3 ramas paralelas:

« Presion y Altitud: entrada de 400.

 Azimut (sin + cos): entrada de 800.

 (ada rama: FC — LIF — Dropout — FC — LIF — Dropout — FC — LIF.
Fusion por concatenacion: FC(3x128) — LIF — FC(1).

Early Fusion (LIF) Entrada fusionada de 1600 (azimut sin/cos, presion, altitud). Arquitectura MLP se-
cuencial: FC(1600) — LIF — Dropout — FC — LIF — Dropout — FC — LIF —
FC(1).

Late Fusion SLSTM 3 ramas paralelas con proyeccion inicial:

* Presion y Altitud: Proyeccion FC(400 — 200).

« Azimut (sin/cos): FC(800 — 400).

Cada rama: SLSTM(2 bloques). Fusion por concatenacion — SLSTM combinado —
FC().

Early Fusion SLSTM Entrada fusionada (1600). Procesamiento por: SLSTM — Dropout — SLSTM —

Promedio temporal — FC(1). Ideal para capturar dinamicas globales de las sefa-
les codificadas.

Convolutional SNN Imdgenes RGB (1 canal) de tamaio 224x224 replicadas durante 50 pasos tempo-
rales. Procesamiento: Conv2D(3 bloques) + LIF (stride=2, sin pooling) — Flatten
— FC — LIF — Dropout — FC(1).

Convolutional + SLSTM | Secuenciadeimagenesframe por frame (cada unarepresenta el trazo progresivo).
SNN 2 capas SConv2dLSTM + Dropout + Pooling adaptativo (8x8) — FC(1). Promedio
temporal aplicado antes de la clasificacion final.

Ensamble Fusion de predicciones de: Late Fusion (SLSTM), Early Fusion (SLSTM), y Convolu-
tional SNN.

+ Para la etapa preliminar de seleccion de ventanas deslizantes, se utilizé un subconjunto de 200 muestras por clase
(HCy PD) a fin de acelerar el proceso de extraccion de caracteristicas mediante la herramienta TSFRESH.

« Una vez identificada la configuracion optima de ventana (longitud de 400 y solapamiento del 75%), se utilizo el
conjunto completo de datos PaHalW para entrenamiento.

 Para mejorar la capacidad de generalizacion del modelo, se incorporo aleatoriamente el 30% del conjunto de datos
propietario tanto en el entrenamiento como en la prueba.

« Finalmente, el 70% restante del conjunto de datos propietario fue reservado exclusivamente para pruebas sobre
datos no vistos.
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Durante todo el proceso, se empleo validacion cruzada estratificada (Stratified K-Fold) para asegurar una distribucion ba-
lanceada de las clases en cada particion y evitar sesgos en la evaluacion.

Comparacion de enfoques: Todos los modelos de aprendizaje automatico (ML) y aprendizaje profundo (DL y SNN) fueron
evaluados bajo los mismos conjuntos de prueba, lo cual permitio realizar comparaciones directas entre enfoques tradicio-
nales y arquitecturas mas complejas de manera justa y controlada.

3.4 Pruebas de Significancia

Dado que este estudio busca desarrollar modelos de deteccion temprana de la enfermedad de Parkinson que sean robus-
tos y generalizables, independientemente del origen geografico o cultural de los sujetos, se planteé como paso inicial la
evaluacion estadistica de las diferencias entre los conjuntos de datos empleados. En particular, se analizo si existian di-
ferencias significativas entre el conjunto PaHalW/ (Republica Cheza) y el conjunto propietario (Ecuador), considerando que
posteriormente seran integrados en un Unico dataset para el entrenamiento y validacion de los modelos.

Esta comparacion es especialmente relevante debido a que los datos provienen de poblaciones que utilizan alfabetos dis-
tintos, y cuyas dinamicas motoras y habitos de escritura pueden diferir notablemente por factores lingiisticos, educativos
0 culturales. EL objetivo final es construir un modelo agndstico, capaz de generalizar entre poblaciones sin depender del
contexto especifico de escritura.

Para ello, se realizaron pruebas de significancia sobre tres variables de gran relevancia biomotriz: la presion perpendicular,
elangulo de azimuty el angulo de altitud del lapiz. Estas caracteristicas fueron seleccionadas debido a que, si bien el patron
de dibujo (una espiral) es el mismo para ambos grupos, dichas sefales reflejan aspectos individuales del control motor que
pueden variar entre poblaciones, incluso bajo tareas graficas idénticas.

En primer lugar, se aplico la prueba de Shapiro-Wilk para evaluar la normalidad de cada variable. Dado que todas las variables
presentaron valores p < 0.05, se rechazo la hipdtesis de normalidad y se procedi6 con la prueba no paramétrica de Mann-
Whitney U para comparar las distribuciones entre los dos conjuntos de datos.

3.5 Explicabilidad

3.51 Técnicas Utilizadas

La interpretabilidad de los modelos desarrollados en este estudio fue una prioridad fundamental, especialmente conside-
rando su relevancia en el uso clinico.

Para ello, en los modelos clasicos de aprendizaje automatico basados en caracteristicas extraidas (como presion maxima,
altitud promedio, etc.), se utilizo SHAP (Shapley Additive Explanations) [55]. Esta técnica se basa en teoria de juegos y
permite cuantificar la contribucion individual de cada caracteristica en una prediccion especifica. SHAP asigna un valor de
Shapley a cada variable de entrada, facilitando asi la interpretacidn de decisiones del modelo, la identificacion de las variables
mas relevantes y la deteccion de posibles sesgos o relaciones inesperadas.
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En este capitulo se presentan los resultados obtenidos a partir de los diferentes experimentos realizados. Se incluyen analisis
estadisticos para evaluar la compatibilidad entre los conjuntos de datos utilizados, asi como los desempeiios alcanzados por
los distintos modelos de clasificacion. También se exploran las salidas de las técnicas de explicabilidad del mejor grupo de
modelos para una mejor interpretacion de los resultados.

4.1 Diferencias Estadisticas entre Conjuntos de Datos

La Tabla 4.1 resume los resultados obtenidos al aplicar la prueba de normalidad de Shapiro-Wilk y la prueba no parameétrica
de Mann-Whitney U. Como se observa, todas las variables presentaron distribuciones no normales, Lo cual justifico el uso de
la prueba de Mann-Whitney U para comparar los grupos.

Cuadro 4.1: Resultados de las pruebas de Shapiro-Wilk y Mann-Whitney U para las caracteristicas seleccionadas.

Caracteristica  Conjunto de Datos Shapiro-Wilk (p) Mann-Whitney U (p)
) _ Propietario 09733 (3.81 x 1079)
Altitud (Media) 15 0.4378
PaHaWw 09814 (3.27 x 10™*°)
) ) Propietario 0.9056 (4.66 x 10~19) o
Azimut (Media) 50 4.29 x 10
PaHaW 06943 (1.42 x 107°Y)
3 , Propietario 0.8737 (6.55 x 10722
Presion (Media) o 0.0293
PaHaW 0.9915 (3.33 x 10™7)

Los resultados muestran que existen diferencias significativas en dos de las tres variables analizadas: la presion perpendi-
cular (p = 0.0293) y el azimut del lapiz (p = 4.29 x 10724). No se observaron diferencias significativas en la altitud
del lapiz (p = 0.4378), lo que sugiere cierta estabilidad de este parametro entre poblaciones.

Estas diferencias confirman que los patrones de escritura varian entre los dos grupos, probablemente influenciados por
factores culturales, biomecanicos o de estilo de escritura. Esta observacion justifica el uso de técnicas de normalizaciony el
disefio de modelos multimodales, robustos a este tipo de variabilidad intergrupal. Asi, se busca garantizar que el sistema de
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deteccién propuesto no dependa del origen del participante, sino de las seiiales biomotoras asociadas al Parkinson.

4.2 Aumento de Datos

La Tabla 4.2 presenta la cantidad inicial de muestras disponibles por grupo (sanos y pacientes con EP) antes de aplicar el
aumento de datos con ventanas deslizantes.

Cuadro 4.2: Cantidad de datos antes del proceso de aumento con ventanas deslizantes.

PaHaW  Propietaria
HC PD HC PD
2 3 9 12

La Tabla 4.3 resume la cantidad total de muestras obtenidas después del aumento. Cabe destacar que las diferencias en el
numero de muestras por sujeto se deben a la duracion variable que cada participante requeria para completar la tarea de
dibujo, lo cual afectaba el nimero total de puntos capturados por la tableta digitalizadora.

Cuadro 4.3: Cantidad de datos después del aumento con ventanas deslizantes.

Ventana Paso PaHaW Propietaria
HC PD HC PD

100 50 1653 2156 306 435
200 50 1534 2092 288 41
200 100 15t 1071 151 217
200 150 563 726 105 149
250 125 650 851 120 169
400 50 1461 1964 252 363
400 100 754 1007 133 193
400 200 403 525 133 193
400 300 284 368 53 77
500 250 316 418 58 81

4.3 Enfoque de Aprendizaje Poco Profundo

Esta seccion presenta los resultados experimentales obtenidos al aplicar técnicas de aprendizaje no profundo para la clasi-
ficacion de la EP a partir del analisis de escritura. Se incluyen los resultados de rendimiento de los modelos, el proceso de
optimizacion de hiperparametros, las evaluaciones sobre ambos conjuntos de datos utilizados, y los hallazgos derivados de
la aplicacion de técnicas de inteligencia artificial explicable.
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4.31 Rendimiento de los Modelos

La Tabla 4.4 resume las métricas de precision alcanzadas por ocho modelos de clasificacion, evaluados con distintas confi-
guraciones de ventanas deslizantes y tamanos de paso (overlap). Estos resultados permiten observar el impacto que tienen
la longitud de la ventana y el grado de solapamiento en el rendimiento de los modelos.

Cuadro 4.4: Métricas de precision para diferentes tamaios de ventana y solapamientos en distintos modelos de clasificacion.

Tamaiio de ventana  Paso SvC Random Forest Regresion Logistica Gradient Boosting KNN Arbol de Decision  Naive Bayes Extra Trees

100 50 07333 0.8333 0.7500 0.8000 07000 0.7333 0.8333 0.8000
200 50 08500 0.8667 0.8667 0.8333 0.9167 0.8833 0.8500 0.8833
200 100 08167 0.8667 0.7667 0.9167 0.8833 0.8500 07500 0.8833
200 150  0.8500 0.8167 0.8500 0.8500 0.8500 0.8167 0.8167 0.8333
250 125 0.9000 0.9000 0.9000 0.9167 0.9000 0.8000 0.8667 0.9167
400 50 09833 0.9667 0.9333 0.9167 0.9833 0.9500 0.9000 0.9833
400 100  0.9667 0.9333 0.8833 0.9333 0.9500 0.8167 0.8500 0.9667
400 200 07500 0.7667 07833 0.7667 07500 06333 0.8000 0.7833
400 300 07500 0.7500 0.7667 0.7167 0.7167 0.7333 0.7500 0.7333
500 250 07667 07000 0.7500 07500 07833 06833 0.7833 0.8167

Los resultados muestran que el mejor desempeiio se alcanzo utilizando una ventana deslizante de 400 puntos y un paso
de 50 puntos, configuracion con la cual todos los modelos superaron el 90% de precision. Esta configuracion fue, por tanto,
seleccionada para los experimentos posteriores con modelos de aprendizaje profundo.

4.3.2 Rendimiento con Conjuntos de Datos Combinados

Una vez identificada la configuracion dptima de ventana y solapamiento, los modelos fueron reentrenados utilizando un
conjunto de datos combinado que incluyd el 100% del conjunto PaHaW y el 30% del conjunto de datos propietario. Los
resultados obtenidos se resumen en la Tabla 4.5.

Cuadro 4.5: Métricas de rendimiento utilizando el conjunto combinado (100% PaHaW + 30% Propietario).

Modelo Acc Precision  Recall F1-Score
svC 08826 08826 08826 0.8826
Random Forest 0.9155 0.9157 0.9155 09154
Logistic Regression  0.6737 0.6731 0.6737 0.6728
Gradient Boosting  0.9554  0.9555  0.9554 0.9554
KNN 0.9413 09413 09413  0.9413
Decision Tree 0.8732 0.8733 0.8732 0.8731
Naive Bayes 0.6761 06778 0.6761 0.6720
Extra Trees 0.9507 0.9508 0.9507 0.9507

Los modelos Gradient Boosting, KNN y Extra Trees obtuvieron los mejores resultados de forma consistente, destacandose
Gradient Boosting como el modelo con mayor precision (95.54%).
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4.3.3 Resultados sobre el Conjunto de Datos Propietario

La prueba final se realizo utilizando el 70% restante del conjunto de datos propietario, el cual contenia 177 muestras de
sujetos sanos (HC) y 255 muestras de pacientes con Parkinson (PD), tras aplicar la técnica de segmentacion por ventanas
(window slicing). Los resultados obtenidos se resumen en la Tabla 4.6.

Cuadro 4.6: Resultados de prueba sobre el conjunto de datos propietario.

Modelo Accuracy Precision  Recall F1-Score

svC 09072 09084 09072 09075
Random Forest 0.9026 09038 09026 09029
Logistic Regression ~ 0.6961 0.6922 06961 06924
Gradient Boosting  0.9327 0.9328 0.9327 0.9325

KNN 0.9258 0.9265 0.9258  0.9259
Decision Tree 0.7819 0.7815 0.7819 0.7817
Naive Bayes 0.5545 0.5236 0.5545 05221
Extra Trees 0.9420 0.9420 0.9420 0.9420

El modelo Extra Trees obtuvo el mejor desempeno en esta etapa de prueba, alcanzando una precision del 94.20%, seguido por
Gradient Boosting con 93.27% y KNN con 92.58%. Estos resultados confirman la capacidad de generalizacion de los modelos
entrenados, incluso al enfrentarse a datos no vistos provenientes de otra poblacion.

4.3.4 Matrices de Confusion

La Figura 4.3 presenta las matrices de confusion correspondientes a todos los modelos. Estas matrices permiten analizar
con mayor detalle el comportamiento de clasificacion de cada modelo, mostrando la distribucion de verdaderos positivos,
verdaderos negativos, falsos positivos y falsos negativos. Los altos valores en la diagonal principal reflejan una alta precision
en la clasificacion de ambas clases.

435 Mejores Hiperparametros

La Tabla 4.7 presenta los mejores hiperparametros encontrados para cada modelo después del proceso de ajuste, utilizando
el conjunto de datos combinado. Estos hiperpardmetros fueron seleccionados para maximizar el rendimiento y garantizar
predicciones confiables.

4.4 Enfoque de Aprendizaje Profundo

A continuacion, se presentan los resultados de los experimentos realizados con redes neuronales convolucionales (CNNs)
y redes neuronales de picos (SNNs), entrenadas con el conjunto de datos combinado (100% del conjunto PaHaW y 30%
del conjunto propietario). Posteriormente, se evaluaron los modelos utilizando el 70% restante del conjunto propietario,
correspondiente exclusivamente a participantes de Ecuador.

29



4 Resultados

T
o
T
o

HC HC-

89.77 10.23

o o
o o
© ©
S S
° °
@ @
& L
= =
k=1 k=1
9 o
a T

Predicted Label
Predicted Label

PD PD PD 95.69
HC PD HC PD HC PD HC PD
True Label True Label True Label True Label
(a) SvC (b) Random Forest (c) Regresion Logistica (d) Gradient Boosting
o] o] ] 76.14 ]
G ? ? ?
g f: f: 3
H 3 3 3
I I o 77.25 & PD
HC PD HC PD HC PD HC PD
True Label True Label True Label True Label
(e) KNN (f) Arboles de Decision (g) Naive Bayes (h) Extra Trees

Figura 4.1: Matrices de confusion de los distintos modelos de aprendizaje automatico evaluados con la base de datos propie-
taria.

Cuadro 4.7: Mejores hiperparametros para cada modelo (30% Datos Propietarios + PaHaW).

Modelo Mejores Hiperparametros
SVC (100, Degree: 2, Gamma: Auto, Kernel: RBF
Random Forest Max Depth: None, Min Samples Leaf: 1, Min Samples Split: 2, Number of Estimators: 100

Logistic Regression  Regularization (C): 0.01, Penalty: L2, Solver: Liblinear

Gradient Boosting Learning Rate: 0.2, Max Depth: 7, Number of Estimators: 200

KNN Distance Metric: Manhattan, Number of Neighbors (k): 3, Weights: Distance
Decision Tree Criterion: Gini, Max Depth: 15, Min Samples Split: 2

Naive Bayes Variance Smoothing: 1 x 10~

Extra Trees Max Depth: None, Min Samples Split: 2, Number of Estimators: 200

4.41 Redes Neuronales Convolucionales

La Tabla 4.8 presenta las métricas de rendimiento para los cuatro modelos de CNN entrenados (ResNet50, EfficientNet-BO,
DenseNet121y MobileNetV2), asi como para el modelo ensemble construido a partir de ellos.

En esta evaluacion inicial, el modelo EfficientNet-BO se destaco por su capacidad de balancear precision y recall, lo cual
sugiere que puede detectar casos de Parkinson con menor ndmero de falsos negativos. Sin embargo, el modelo ensemble,
aunque logra una mayor precision (0.8573), presenta un leve descenso en el recall, lo que indica una mayor tasa de falsos ne-
gativos. Este comportamiento sugiere que la combinacién ponderada de modelos mejora la confiabilidad general pero puede
ser mas conservadora al predecir la clase minoritaria. ResNet50 mostro el peor rendimiento con un recall extremadamente
bajo, lo cual indica un sesgo significativo hacia la clase sana.
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Cuadro 4.8: Métricas de rendimiento de los modelos CNN utilizando el conjunto combinado (100% PaHaW + 30% Propietario)

Modelo Acc Precision  Recall  F1-Score
ResNet50 06140 0.8187 01927 03180
EfficientNet 07968 08410  0.6825  0.7512
DenseNet 06838 0.7974 04125 05460
MobileNet 07624 07896 06582 07145
Ensemble 07968 0.8573 06637  0.7451

La Tabla 4.9 muestra los resultados sobre el conjunto de datos propietario donde los modelos EfficientNet y el ensemble

siguen mostrando un desempeno competitivo.

Cuadro 4.9: Métricas de rendimiento sobre el conjunto de datos propietario

Modelo Acc Precision  Recall  F1-Score
ResNet50 05960 07949 01890  0.3054
EfficientNet 07736 08195 06646  0.7340
DenseNet 06648 0.7765 04024 05301
MobileNet 0.7421 07721 06402 07000
Ensemble  0.7736  0.8346 06463  0.7285

Matrices de Confusion

La Figura 4.2 muestra las matrices de confusion para los cinco modelos CNN, revelando patrones consistentes con las métricas

previamente discutidas. En particular:

- Elmodelo ResNet50 presenta un comportamiento claramente sesgado hacia la clase HC, con una baja capacidad de

deteccion de casos PD.

« EfficientNety MobileNetV2 logran un mayor balance entre clases, aunque aun se evidencia una tendencia a clasificar

erroneamente algunos sujetos con Parkinson como sanos.

+ DenseNet121 muestra un desempefio intermedio con un nimero importante de falsos negativos.

» El ensemble refuerza la robustez al combinar fortalezas de los modelos base, aunque aln existe una brecha en la

sensibilidad para la clase PD.

En términos biomecanicos, Los resultados obtenidos con las redes neuronales convolucionales sugieren que las representa-

ciones visuales derivadas de la escritura capturan patrones motores relevantes para la clasificacion de la enfermedad de

Parkinson. Modelos como EfficientNet y MobileNet lograron detectar con mayor eficacia a Los sujetos con deterioro motor.

A pesar de que algunos modelos presentaron un sesgo hacia la clase sana, los resultados indican que el enfoque basado

en imagenes tiene potencial clinico, especialmente cuando se combina con técnicas de ensamblado que integran fortalezas
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Figura 4.2: Matrices de confusion de los distintos modelos de aprendizaje profundo evaluados con la base de datos propie-

taria.

individuales de maltiples arquitecturas. Esta capacidad de discriminacion basada en trazos escritos posiciona a las CNNs
como una herramienta prometedora para el desarrollo de biomarcadores digitales no invasivos en contextos de cribado

temprano o0 monitoreo remoto de sintomas motores.

Mejores Hiperparametros

La Tabla 4.10 resume los mejores hiperparametros encontrados para cada arquitectura, utilizando basqueda en rejilla y

validacion cruzada estratificada. Cabe destacar que todos los modelos fueron entrenados con la funcion de pérdida BCE

with logits loss, que permitio una mayor estabilidad numérica al tratarse de una tarea de clasificacion binaria con prediccion

basada en logits.

Cuadro 4.10: Hiperparametros dptimos seleccionados para cada modelo CNN.

Modelo Dropout Rate Learning Rate Weight Decay
ResNet50 03 0.001 0.001
EfficientNet-BO 03 0.001 0.0001
DenseNet121 0.5 0.001 0.001
MobileNetV2 05 0.001 0.0001

4.4.2 Redes Neuronales de Picos

La Tabla 4.11 resume el rendimiento de los modelos SNN evaluados sobre el conjunto de validacion (100% PaHaW + 30%

Propietario), incluyendo un ensemble basado en las tres mejores arquitecturas: Late Fusion SLSTM, Early Fusion SLSTM y
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Convolutional + SLSTM SNN.

Cuadro 4.11: Métricas de rendimiento de los modelos SNNs utilizando el conjunto combinado (100% PaHaW +30% Propietario).

Modelo Acc Precision  Recall  F1-Score
Late Fusion (LIF) 07357 071823 07182 07182
Early Fusion (LIF) 07049 06894 06768  0.6831
Late Fusion SLSTM 0.7564 07257 07744 07493
Early Fusion SLSTM 0.7116 07211  0.8346  0.7737
Convolutional SNN 06524 06145 0.6037 06055
Convolutional + SLSTM SNN  0.5337 0.5017 08122 06203
Ensamble 0.6931 06468 0.7631 0.7001

Por su parte, la Tabla 4.12 muestra el rendimiento sobre el conjunto de prueba (70% del dataset propietario).

Cuadro 4.12: Métricas de rendimiento sobre el conjunto de datos propietario (70% Propietario).

Modelo Acc Precision  Recall F1-Score
Late Fusion (LIF) 0.7163 07019 06890 0.6954
Early Fusion (LIF) 06877 06687 06646 06667
Late Fusion SLSTM 0.7507 07278 07500 07387
Early Fusion SLSTM 0.7070 0.7162 0.8346 0.7709
Convolutional SNN 06493 06256 06218 06237
Convolutional + SLSTM SNN  0.4721 05398 07205 06172
Ensamble 06775 06323 07459 06844

Los resultados sobre el conjunto de validacion muestran que el modelo Early Fusion SLSTM alcanza el mejor desempeno
general, con un F7-Score de 0.7737 y un recall de 0.8346. Esto sugiere que la fusion temprana de sefales spiking, en combi-
nacion con una arquitectura recurrente, permite capturar eficazmente los patrones temporales asociados a la enfermedad
de Parkinson.

Le sigue el modelo Late Fusion SLSTM, que también presenta un rendimiento destacado (F1-Score: 0.7493), manteniendo un
buen equilibrio entre precision y sensibilidad. Por otro lado, los modelos LIF sin recurrencia obtienen resultados aceptables,
aunque inferiores, evidenciando las ventajas de incorporar mecanismos de memoria temporal.

El modelo Convolutional + SLSTM SNN, a pesar de haber sido entrenado solo durante tres épocas debido a sus altas exigen-
cias computacionales, logra un notable recall (0.8122), aunque con baja precision (0.5017). Esto indica una fuerte tendencia
a identificar correctamente los casos positivos, aunque a costa de un mayor namero de falsos positivos. Aun asi, demuestra
el potencial de combinar informacion espacial y temporal proveniente de imagenes derivadas de las seiales originales.

En el conjunto de prueba, se observa una tendencia similar. EL modelo Early Fusion SLSTM mantiene el mejor desempefo
(F1-Score: 0.7709, Recall: 0.8346), lo que demuestra su capacidad de generalizacion. El modelo Convolutional + SLSTM SNN
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incrementa levemente su precision (0.5398), manteniendo una alta sensibilidad, lo que refuerza su utilidad en escenarios
donde los falsos negativos son criticos.

En general, los modelos basados en SLSTM destacan por su capacidad para modelar secuencias complejas, mientras que las
variantes convolucionales abren nuevas posibilidades en el uso de representaciones visuales. Estos resultados reflejan el alto
potencial de las redes neuronales de picos en aplicaciones biomédicas, particularmente cuando se integran componentes
recurrentes o convolucionales.

Matrices de Confusién

La Figura 4.3 muestra las matrices de confusion de los modelos SNN sobre el conjunto de prueba. EL modelo Early Fusion
SLSTM no solo alcanza el mayor recal/ sino también una clara capacidad de identificar correctamente sujetos con Parkinson.
En contraste, el modelo CNN + SLSTM, a pesar de su baja precision, logra una notable sensibilidad, lo cual puede ser util en
tareas donde los falsos negativos deben minimizarse.
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Figura 4.3: Matrices de confusion de los distintos modelos de SNNs evaluados con la base de datos propietaria.

Los resultados obtenidos con las SNNs reflejan el gran potencial de esta tecnologia para capturar patrones temporales com-
plejos en tareas multimodales, como el analisis de escritura para la deteccion de la EP. Entre las distintas variantes explora-
das, los modelos basados en SLSTM destacaron por su mayor capacidad para modelar secuencias temporales prolongadas y
dindmicas neuronales complejas.

Uno de los hallazgos mas interesantes se obtuvo con el modelo Convolutional + SLSTM, que, aunque presento un rendimiento
general mas bajo debido a su alto costo computacional, permitié explorar la representacion temporal de secuencias de
imagenes derivadas de las sefiales originales. Este modelo fue entrenado durante 3 épocas, sin aplicar técnicas de reduccion
de resolucidn, Lo que refleja tanto sus elevadas exigencias como su prometedor potencial.

EL nimero de épocas se fijo tras aplicar un criterio de parada temprana, ya que experimentos preliminares mostraron que
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la pérdida de validacion se estabilizaba antes de la cuarta época. Ademas, dado que cada época en una red de tipo SNN con
50 pasos temporales equivale a unas 10 épocas en una red convencional, entrenar mas alla de este punto incrementaba
considerablemente el costo computacional sin aportar mejoras significativas en el rendimiento, y aumentaba el riesgo de
sobreajuste debido al tamano limitado del conjunto de datos. La arquitectura de este modelo permite aprovechar simul-
taneamente la informacion espacial y temporal, lo que lo convierte en una herramienta valiosa para futuros desarrollos,
especialmente en contextos con mayor capacidad de cémputo.

En general, si bien los modelos tradicionales como LIF mostraron un rendimiento competitivo, el uso de estructuras recu-
rrentes y convolucionales dentro del marco de las SNNs permite modelar de manera mas realista el procesamiento cerebral.
Esto se refleja en el mejor desempefio de los modelos SLSTM frente a las arquitecturas puramente feedforward.

Cabe destacar que el entrenamiento de estos modelos fue computacionalmente intensivo, requiriendo el uso de técnicas de
optimizacion avanzadas asi como mdaltiples rondas de ajuste de hiperparametros por grupo funcional. Esta limitacion impidio
explorar entrenamientos mas prolongados, especialmente en arquitecturas hibridas (CNN+SNN), pero no compromete su
validez conceptual ni su aplicabilidad futura en sistemas con recursos especializados.

Mejores Hiperparametros

A continuacion, se presentan los criterios que guiaron la definicion de los rangos de basqueda y la metodologia utilizada
para el ajuste de hiperparametros, con el objetivo de garantizar configuraciones optimas, reproducibles y acordes a las
caracteristicas de cada arquitectura evaluada.

+ Busqueda jerarquica mixta (coarse - fine). Se combino random search (50 iteraciones) para explorar rangos am-
plios para cada hiperpardmetro, por ejemplo, LR € [10~2, 10~2], hidden size € [64,1600], 7 € [5,25]—con
una fase posterior de grid search fina (=20 % alrededor de los mejores valores) guiada por la métrica balanced
accuracy.

- Validacion estratificada 4=5 + parada temprana. Cada configuracion se evalué con £ = 5 particiones estratificadas
y early stopping (paciencia = 8 épocas) para evitar sobreajuste y reducir tiempo de computo.

+ Optimizacion y regularizacion. Agam se prefirio sobre Adam clasico por su desacoplamiento explicito del weight
decay, crucial para SNNs con muchos parametros latentes [56]; los valores de weight decayse barrieron log-uniformemente
en [1076,1073).

- Parametros de disparo (7, threshold, beta). Los intervalos se fijaron a partir de estudios previos sobre estabilidad de
gradiente en neuronas LIF/SLSTM y se ajustaron en funcion de la longitud de secuencia (num steps); T altos favorecen
la integracion temporal en secuencias largas, mientras que threshold/ beta controlan la esparsidad de Los spikes vy,
por ende, el consumo de memoria [57, 58, 59].

 Funciones de gradiente diferenciable. Se probaron aproximaciones STE (Straight-Through Estimaton [60], atan,
sigmoid, fast_sigmoidy triangular, la seleccion final se basd en la combinacion que maximizo la estabilidad del
entrenamiento (varianza del gradiente < 0.15) y la puntuacion de validacién.

- Dropout y tamafios de batch. Los coeficientes de dropout se ajustaron de forma inversa al tamafio de batch para
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mantener constante la tasa efectiva de regularizacion; en arquitecturas “Early Fusion” el bafch size se redujo (8-16)

para acomodar secuencias mas largas, compensandolo con mayores valores de dropout

Este procedimiento permitié identificar configuraciones que equilibran rendimiento, estabilidad numeérica y coste compu-

tacional; los hiperparametros resultantes se sintetizan en las Tablas 4.13 y 4.14.

Cuadro 4.13: Mejores hiperparametros por grupos funcionales para cada arquitectura SNN.

Modelo

Hiperparametros Agrupados

Late Fusion LIF

Optimizacion: AdamW, LR: 2.03 x 104, Weight Decay: 3.78 x 104

Arquitectura: Hidden Size: 716, Num Steps: 66, Batch Size: 64

Spiking: Tau: 19, Threshold: 0.821, Learn Threshold: False, Learn Beta: False

Codificacion Neuronal: Gradientes por variable: Altitud (atan), Azimut (sigmoid), Presion
(fast_sigmoid)

Dropout: Altitud [0.81, 0.77, 0.75], Azimut [0.26, 0.51, 0.71], Presion [0.53, 0.78, 0.10]

Betas: Altitud [0.98, 0.61, 0.64], Azimut [0.82, 0.28, 0.33], Presidn [0.77, 0.96, 0.68]

Umbrales por Variable: Altitud [0.007, 0.056, 0.033], Azimut [0.476, 0.025, 0.255], Presion [0.274,
0.026, 0.005]

Early Fusion LIF

Optimizacion: AdamW, LR: 4.68 x 10~%, Weight Decay: 6.46 x 10~
Arquitectura: Hidden Size: 1200, Num Steps: 182, Batch Size: 8

Spiking: Tau: 7, Threshold: 0.959, Learn Beta: True, Learn Threshold: False
Dropout: [0.27, 0.20, 0.06]

Betas: [0.77,0.23, 0.08]

Gradientes: [STE, atan, atan]

Umbrales: [0.0071, 0.7506, 0.2049]

CNN + SNN

Optimizacion: AdamW, LR: 3.76 x 10~*, Weight Decay: 2.66 x 106
Arquitectura: Hidden Size: 143, Num Steps: 22, Batch Size: 32
Convoluciones: Convl: [Canales=8, Kernel=4], Conv2: [64, 6], Conv3: [40, 4]
Spiking: Thresholds: [0.0033, 0.0264, 0.0173, 0.0172]

Betas: [0.91, 0.62, 0.59, 0.50], Learn Beta: True (except Beta4)

Gradientes: [fast_sigmoid, triangular, triangular, fast_sigmoid]

Dropout: 0.049

4.5 Explicabilidad de los Modelos

La explicabilidad en modelos de aprendizaje automatico es fundamental para interpretar los patrones detectados por los

algoritmos, especialmente en aplicaciones clinicas donde las decisiones deben ser comprensibles y confiables para profe-

sionales de la salud.

En este estudio, las técnicas de explicabilidad se aplicaron exclusivamente a los modelos de aprendizaje no profundo (ML

clasico), debido a su rendimiento superior, su interpretacion directa y la madurez de las herramientas disponibles. Esta
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decision se sustenta en dos consideraciones técnicas principales:

- Rendimiento y estabilidad. Los modelos clasicos (como Fxtra Trees, Gradient Boostingy SV() obtuvieron las mejores

métricas de precision (= 94 %) durante la validacién cruzada, superando a las arquitecturas profundas (CNN) y

bioinspiradas (SNN). Esta estabilidad los posiciona como los candidatos mas adecuados para su interpretacion clinica.

« Interpretabilidad clinica y adecuacion de herramientas XAl. Los modelos clasicos utilizados en este estudio operan

sobre un conjunto reducido de variables con significado fisioldgico claro (como presién maxima, entropia de altitud,

cuantil bajo de azimut), lo que permite aplicar técnicas como SHAP para generar explicaciones directamente vincu-

ladas con biomarcadores interpretables para expertos médicos [61, 62]. En contraste, aunque existen métodos de

explicabilidad para modelos profundos—como Grad-CAM, DeepSHAP [63] e Integrated Gradients [64] para CNN, o

métricas basadas en gradientes para SNN [65]—estos suelen producir salidas complejas y de dificil interpretacion

clinica.

Por estas razones, enfocar la explicabilidad en modelos de aprendizaje clasico maximiza la utilidad clinica y la robustez

técnica del presente estudio. A continuacion, se detallan los resultados obtenidos.

Cuadro 4.14: Mejores hiperparametros por grupos funcionales para cada arquitectura SNN Recurrente.

Late Fusion SLSTM

Optimizacion: AdamW, LR: 5.78 x 10~°, Weight Decay; 1.96 x 107>

Arquitectura: Hidden Size: 472, Num Steps: 49, Batch Size: 4

Spiking: Tau: 12, Threshold: 0.493, Learn Beta: False, Learn Threshold: False

Dropout: Altitud [0.15, 0.42], Azimut [0.24, 0.40], Presion [0.28, 0.26]

Gradientes: Altitud (fast_sigmoid), Azimut (triangular), Presion (sigmoid)

Umbrales por Variable: Altitud [0.0089, 0.0368], Azimut [0.0059, 0.0395], Presion [0.224, 0.0049],
Combinado: 0.149

Early Fusion SLSTM

Optimizacion: AdamW, LR: 2.02 x 104, Weight Decay: 3.10 x 10~*
Arquitectura: Hidden Size: 519, Num Steps: 79, Batch Size: 16

Spiking: Tau: 10, Threshold: 0.535, Learn Threshold1/2: False

Dropout: [0.286, -, -]

Gradientes: [sigmoid, sigmoid]

Umbrales: [0.0478, 0.0279]

CNN + SLSTM

Optimizacion: AdamW, LR: 3.15 x 103, Weight Decay: 3.33 x 10~*
Arquitectura: Batch Size: 1, Canales: [64, 64]

Spiking: Threshold: 0.0818, Inhibicion: True, Reset: subtract

Dropout: 0.143

Otros: Pos Weight: 1149, Cuantizacion del estado: False
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Caracteristicas Seleccionadas

Las diez caracteristicas mas relevantes seleccionadas mediante el método SelectkBest se presentan a continuacion, orde-

nadas segun su correlacion con la variable objetivo. La numeracion del 0 al 9 indica su importancia relativa, siendo O la

caracteristica con mayor correlacion.

0.

Altitude Permutation Entropy (Dimension7, 7 = 1)

Entropia por Permutacion de la Altitud (Dimension 7 T = 1), Esta caracteristica mide la complejidad de la seial de
altitud utilizando entropia por permutacion, una técnica utilizada comuanmente para evaluar el grado de aleatoriedad
en series temporales. Valores mas altos indican mayor complejidad o irregularidad en los movimientos verticales del
lapiz [66].

Pressure Change Quantiles Aggregated Mean (isabs=True, qh=0.6, ql=0.0)

Promedio Agregado de Cambios Absolutos en Presion (cuantil 0.0 a 0.6} Representa el promedio de los cambios
absolutos en la presion dentro del rango definido por los cuantiles inferiores y superiores (gl = 0.0, ¢gh = 0.6).
Esta medida permite capturar fluctuaciones locales en la sefial de presion [67].

Azimuth Sum of Reoccurring Data Points

Suma de Puntos Recurrentes en el Azimut. Calcula la suma de los valores de azimut que se repiten en la sefial, Lo cual
puede reflejar patrones angulares repetitivos durante el trazado. Este tipo de repeticion es relevante en el analisis
de escritura, especialmente en el contexto de trastornos motores [68].

Pressure Change Quantiles Aggregated Mean (isabs=True, qh=0.4, ql=0.2)

Promedio Agregado de Cambios Absolutos en Presion (cuantil 0.2 a 0.4). Similar a la caracteristica anterior, pero
enfocada en un rango de cuantiles mds estrecho (¢l = 0.2, ¢h = 0.4), lo que proporciona un analisis mas fino de
las variaciones de presion [67].

. Altitude Change Quantiles Aggregated Variance (isabs=True, ¢h=1.0, ql=0.2)

Varianza Agregada de Cambios Absolutos en Altitud (cuantil 0.2 a 1.0}, Mide la variabilidad de los cambios absolutos
en la altitud dentro del rango de cuantiles especificado. Este tipo de caracteristica basada en la varianza permite
capturar dinamicas de la sefial en términos de dispersion [69].

. Azimuth Number of Continuous Wavelet Transform Peaks (n=1)

Numero de Picos mediante Transformada Wavelet Continua en Azimut (n=1} Detecta la cantidad de picos en la se-
fial de azimut utilizando la transformada wavelet continua. Las caracteristicas basadas en wavelets son Utiles para
detectar cambios abruptos o patrones periddicos en sefales temporales [70].

. Altitude FFT Aggregated Kurtosis

Curtosis Agregada del FFT de la Altitud Calcula la curtosis de la seial de altitud después de aplicar la Transformada
Rapida de Fourier (FFT). La curtosis evalua la prominencia de los picos en la distribucion de la sefial en el dominio de
la frecuencia [69].

. Pressure Maximum

Presion Maxima. Valor maximo registrado de la presion ejercida durante el proceso de escritura. Este tipo de carac-
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teristica es relevante para analizar la intensidad del trazo y la fuerza ejercida por el usuario [68].

8. Altitude Sample Entropy
Entropia de Muestra en (a Altitud Evalua la complejidad de la sefial de altitud mediante la entropia de muestra.
Valores elevados indican mayor irregularidad o imprevisibilidad en la sefial, lo cual puede estar relacionado con un
control motor deteriorado [71].

9. Altitude Quantile (q=0.2)
Cuantil del 20% de Altitud: Representa el valor por debajo del cual se encuentra el 20% mas bajo de los valores de
altitud. Las caracteristicas basadas en cuantiles permiten obtener informacion sobre los rangos extremos 0 atipicos
de la senal [67].

4.5.2 Impacto de las caracteristicas especificas de clase

Las Figuras 1y 2 del Aprendice A, muestran la importancia de las 10 caracteristicas seleccionadas por SelectkBest para
distintos clasificadores, diferenciando el impacto medio por clase. Las barras azules representan la clase 0 (HC) y las barras
rojas la clase 1(PD). Cuanto mayor sea el valor absoluto del SHAP, mayor es la contribucion de la caracteristica a la prediccion.

Existen dos tipos de visualizacion en las graficas generadas:

« Las graficas tipo beeswarm (graficos de puntos) permiten visualizar el efecto individual de cada observacion. Los
puntos representan ejemplos individuales, donde el color indica el valor de la caracteristica (de bajo a alto, de azul a
rojo). La dispersion horizontal muestra el rango del impacto SHAP: puntos alejados del centro tienen mayor influencia
en la prediccion, ya sea positiva o negativa.

- Las graficas de barras apiladas muestran el valor promedio absoluto de SHAP por caracteristica y clase. EL color
azul representa la clase 0 (sujetos sanos) y el rojo la clase 1 (pacientes con Parkinson). Cuanto mas larga es la barra,
mayor es el impacto de esa caracteristica en el resultado del modelo.

Para el modelo SVC (Figura 1a): las caracteristicas 1 (cambios en presion en quantiles altos), 2 (suma de puntos recurrentes en
azimut), 7 (presion maxima) y 9 (cuantil bajo de altitud) presentan el mayor impacto en las predicciones. Estas variables estan
relacionadas con la fuerza ejercida en el trazo y la repetitividad angular, aspectos clave para detectar rigidez o temblores
en la escritura.

Por su parte, en el modelo de Regresion Logistica (Figura 1b): se observa un patron similar al de SVC, destacando nueva-
mente las variables 1,2, 7 y 9 como determinantes. Dado que la regresion logistica es mas lineal, estas caracteristicas son
probablemente las mas separables entre clases.

Mientras que en Gradient Boosting (Figura 1c): la caracteristica 9 (cuantil bajo de altitud) domina el ranking, seguida por
la presion maxima (7) y los cambios de presion (1). Este modelo muestra una alta sensibilidad a fluctuaciones finas en el
trazo, lo cual es coherente con su naturaleza basada en arboles optimizados.

En el modelo de Random Forest (Figura 2a): se destaca la caracteristica 2 (repeticiones en azimut), lo que indica que el
patron angular durante la escritura tiene un peso significativo. También sobresale la presion maxima (7), corroborando su
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importancia biomecdnica.

De igual manera, en el modelo KNN (Figura 2b): las caracteristicas mas importantes fueron 2, 7 y 9. Como este modelo
se basa en la proximidad en el espacio de caracteristicas, estas variables probablemente muestran buena discriminacion
espacial entre clases.

Extra Trees (Figura 2c): coincide con Random Forest, situando a caracteristica 2 en primer lugar, sequida por 9 y 1. EL modelo
refuerza la idea de que el patron angular y la elevacion del lapiz contienen informacion diagnostica relevante.

En Naive Bayes (Figura 2d): aunque suposiciones de independencia pueden afectar la interpretacion, destaca la variable 2,
junto con 7 y 1. ELimpacto mas disperso sugiere que este modelo aprovecha maltiples variables con moderado efecto, sin
depender fuertemente de una sola.

Finalmente en el modelo de Arboles de Decision (Figura 2e): se observa un énfasis en las caracteristicas 1y 7, aunque con
menor consistencia general. Su comportamiento mas local puede explicar la variabilidad en la importancia de las variables
segun los nodos.

A partir del andlisis de las ocho graficas, se contabilizd cuantas veces cada caracteristica aparecio en el top 3 de importancia
SHAP. La Tabla 4.15 resume esta informacion:

Cuadro 4.15: Frecuencia de aparicion de caracteristicas en el top 3 de importancia SHAP.

Caracteristica Frecuencia en Top 3 (de 8 modelos)

2. Azimuth sum of reoccurring data points

7: Pressure maximum

9: Altitude quantile (g=0.2)

1. Pressure change quantiles (qgh=0.6, q(=0.0)

W N O O

0: Altitude permutation entropy (d=7, 1=1)

Las variables mas influyentes en el diagnastico de Parkinson en tareas de escritura fueron:

+ Repetitividad angular (Feature 2): Presente en la mayoria de los modelos, lo que destaca la utilidad del analisis de
trayectorias angulares.

 Presion maxima (Feature 7): Indicador clave de la intensidad del trazo, asociada con el control motor fino.

« Altitud en percentil bajo (Feature 9): Refleja sutiles variaciones en la altura del lapiz, relacionadas con temblores
0 pérdida de precision.

Estos hallazgos refuerzan la hipotesis de que los aspectos biomecdanicos de la escritura, como presion, angulaciony elevacion,
contienen sefiales discriminativas Utiles para el diagnéstico temprano y no invasivo de la enfermedad de Parkinson.

40



4 Resultados

4.5.3 Interacciones de caracteristicas y analisis de dependencia

Para comprender con mayor profundidad la interaccion entre caracteristicas y su influencia directa en las predicciones de los
modelos, se analizaron los dependence plots de las tres caracteristicas mas influyentes: la Feature 2, Feature 7, y Feature
9. Estos graficos representan en el eje = el valor real de la caracteristica, mientras que en el eje ¥ se visualiza el valor SHAP,
es decir, la contribucion individual de dicha caracteristica en la prediccion. EL gradiente de color indica la interaccion con una
segunda caracteristica, lo cual permite observar relaciones no lineales entre maltiples variables.

En los modelos Random Forest, Extra Trees, KNN, Naive Bayes, Arboles de Decisién se grafican por separado las clases HCy
PD, lo cual permite analizar el comportamiento especifico de cada caracteristica por clase. Esta separacion es posible porque
el algoritmo de interpretacion SHAP calcula contribuciones diferenciadas por clase en modelos no lineales o no probabilis-
ticos. En cambio, en los modelos SVC, Regresion Logistica y Gradient Boosting utiliza un Gnico grafico por caracteristica,
donde se combina el efecto de ambas clases. Esta diferencia se debe al tipo de implementacion del clasificador y como se
distribuyen los valores SHAP cuando se hace una prediccion en términos de margen de decision en lugar de probabilidad por
clase.

Support Vector Classifier

Feature 2 - Suma de puntos recurrentes del azimut. La Figura 4.4a muestra una tendencia decreciente en los valores
SHAP a medida que aumenta el valor de la caracteristica 2. Esto sugiere que mayores repeticiones angulares reducen la
probabilidad de clasificar un sujeto como enfermo de EP. El color representa la interaccion con la caracteristica 8 (Entropia
de muestra en altitud), y se observa que valores mas altos de entropia (en rojo) tienden a intensificar esta relacion negativa.

Feature 9 - Cuantil del 20% de altitud. En la Figura 4.4b, los valores SHAP disminuyen a medida que disminuye el valor
de la caracteristica 9. Esto indica que valores bajos en el cuantil del 20% de altitud favorecen las predicciones hacia la clase
1(PD), en linea con los patrones observados en modelos previos. La interaccion, en este caso, es nuevamente con la presion
maxima (Feature 7), cuya intensidad modula el impacto de la altitud baja sobre la prediccion.

Feature 7 - Presion maxima. La Figura 4.4c presenta una relacion positiva entre el valor de la presion maxima y el
valor SHAP, implicando que a mayor presion, aumenta la probabilidad de ser clasificado como paciente con EP. Ademas, el
gradiente de color (Feature 4: Varianza de cambios en altitud) muestra que esta interaccion puede amplificar la influencia
de la presion, reforzando la hipdtesis de que trazos mas intensos y variables verticalmente son caracteristicos de sujetos
con deterioro motor.

Regresion Logistica

En el modelo de Regresion Logistica, los dependence plots muestran relaciones completamente lineales entre cada carac-
teristica y su contribucion SHAP, lo cual es coherente con la naturaleza del modelo. Al ser un clasificador lineal, la relacion
entre el valor de entrada y su impacto sobre la prediccion es directa y proporcional.
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Dependence Plot - SVC - Feature 9
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Figura 4.4: Dependence plots de las tres caracteristicas mas relevantes para el modelo SVC. El eje - representa el valor real
de la caracteristica, mientras que el eje y muestra su valor SHAP. EL color indica la interaccion con una segunda caracteristica:

() Feature 7

azul representa valores bajos y rojo valores altos.

Feature 2 - Suma de puntos recurrentes del azimut.
que aumenta la repeticion de patrones en el azimut, el valor SHAP disminuye, lo que indica que esta caracteristica reduce la

La Figura 4.5a evidencia una relacion lineal negativa. A medida

probabilidad de pertenecer a la clase PD. Esto sugiere que una mayor regularidad angular esta asociada a sujetos sanos.

Feature 9 - Cuantil del 20% de altitud.

caracteristica (elevacion minima del lapiz) incrementan el valor SHAP y, por tanto, empujan la prediccion hacia la clase PD.
Estarelacion sugiere que pacientes con Parkinson tienden a mantener el lapiz mas cerca de la superficie durante la escritura.

Feature 7 - Presion maxima.

positiva. A mayor presion, el valor SHAP también se incrementa, indicando una mayor probabilidad de clasificacion como PD.

En la Figura 4.5b, se observa una clara relacion negativa: valores bajos de esta

Contrariamente a las dos caracteristicas anteriores, la Figura 4.5c muestra una relacion

Esto respalda la hipdtesis de que los pacientes con Parkinson ejercen mas presion durante la escritura.

En todos los casos, el gradiente de color refleja la interaccion con una segunda caracteristica. Sin embargo, dado que el
modelo es lineal, estas interacciones tienen un impacto minimo en la variacion de los valores SHAP, lo que se traduce en una
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coloracion relativamente homogénea a Lo largo de las rectas.

Gradient Boosting

Feature 2 - Suma de puntos recurrentes del azimut. En la Figura 4.6a, se observa una relacion inversa entre los valores
de la caracteristica 2 y su valor SHAP: a medida que la recurrencia angular disminuye (valores negativos en el eje x), el
valor SHAP aumenta, indicando un mayor empuje hacia la prediccion de la clase PD. Esto sugiere que los patrones angulares
repetitivos son mas frecuentes en sujetos sanos. La interaccion con la Feature 7 (presion maxima), representada por el
gradiente de color, muestra que niveles altos de presion (tonos rosados) intensifican el impacto de la recurrencia angular

en la prediccion.

Feature 9 - Cuantil del 20% de altitud. Como se muestra en la Figura 4.6b, los valores bajos de la caracteristica 9 estan
asociados con valores SHAP altos, lo que indica una mayor contribucion hacia la clase PD. Esto refuerza la idea de que una
menor elevacion del lapiz (cuantiles bajos de altitud) es un rasgo caracteristico en pacientes con Parkinson. La interaccion
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Figura 4.5: Dependence plots de las tres caracteristicas mas relevantes para el modelo de Regresion Logistica. El eje =
representa el valor real de la caracteristica, mientras que el eje y muestra su valor SHAP. EL color indica la interaccion con
una segunda caracteristica: azul representa valores bajos y rojo valores altos.
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Figura 4.6: Dependence plots de las tres caracteristicas mas relevantes para el modelo Gradient Boosting. El eje & representa
el valor real de la caracteristica, mientras que el eje 4 muestra su valor SHAP. EL color indica la interaccion con una segunda
caracteristica: azul representa valores bajos y rojo valores altos.

con la Feature 5 (nimero de picos en el azimut) se visualiza en Los colores: tonos rojizos (valores altos de picos) amplifican
el efecto de esta caracteristica en la prediccion.

Feature 7 - Presion maxima. En la Figura 4.6¢, se evidencia una correlacion positiva entre la presion maxima y su contri-
bucion SHAP: a mayor presion, mayor impacto hacia la prediccion de la clase PD. Este hallazgo es consistente con estudios
que asocian trazos mds intensos con deterioro motor. La interaccion con la Feature 6 (curtosis del FFT de altitud) es visible
en el gradiente de color, donde valores altos (rosados) aumentan el efecto de la presion sobre la decisién del modelo.

Random Forest

Elmodelo Random Forest muestra patrones similares a los observados en Extra Trees, destacando nuevamente la relevancia
de las caracteristicas Feature 2 (repetitividad angular), Feature 7 (presion maxima) y Feature 9 (cuantil de altitud). Este
modelo, al ser basado en arboles y tener capacidad de modelar relaciones no lineales, permite observar contribuciones

diferenciadas por clase.

bt



4 Resultados

Feature 2 - Suma de puntos recurrentes del azimut. En la Figura 4.11a, para la clase HC, se observa una tendencia
creciente en el valor SHAP conforme aumenta la repetitividad angular, indicando que valores altos de esta caracteristica
favorecen la clasificacion como sujeto sano. En la Figura 4.11b, correspondiente a la clase PD, se evidencia un patron opuesto:
los valores altos en la caracteristica 2 tienden a disminuir su contribucion a favor de la clase 1. El color refleja la interaccion
con la Feature 7 (presion maxima), Lo cual sugiere que la fuerza del trazo puede moderar el efecto de la repeticién angular.

Feature 9 - Cuantil del 20% de altitud. En la Figura 4.11c, el cuantil bajo de altitud muestra una relacion positiva con
los valores SHAP para la clase HC, mientras que en la Figura 4.11d, la relacion es inversa para pacientes con Parkinson.
Este comportamiento sugiere que una altitud minima mas baja estd mds asociada con la clase PD, posiblemente debido a
movimientos verticales reducidos o inestables en la escritura de pacientes.

Feature 7 - Presion maxima. Como se observa en las Figuras 4.11e y 4.11f, [a presion maxima tiene un impacto opuesto
segun la clase. Para sujetos sanos, valores mas altos de presion tienden a disminuir el SHAP, mientras que en pacientes
con Parkinson, una presion elevada refuerza la prediccion hacia la clase PD. Esto puede reflejar el esfuerzo compensatorio
0 rigidez muscular durante la escritura. Nuevamente, el color representa la interaccion con otras variables, particularmente
Feature 6 (kurtosis de la FFT de altitud), que puede amplificar estos efectos.

KNN

Feature 2 - Suma de puntos recurrentes del azimut.  En la Figura 4.83, correspondiente a sujetos sanos, se observa una
ligera tendencia creciente: a mayor valor de la caracteristica 2, el valor SHAP tiende a aumentar, lo que sugiere una mayor
probabilidad de ser clasificado como clase HC. Por el contrario, en pacientes con Parkinson (Figura 4.8b), se evidencia una
tendencia decreciente: valores mas altos del azimut recurrente reducen el valor SHAP, es decir, tienen una influencia negativa
hacia la clase 1. En ambos casos, el color representa la interaccion con la caracteristica 8 (entropia de muestra de altitud), y
se observa que altos niveles de irregularidad vertical pueden modular el efecto del azimut en la clasificacion.

Feature 7 - Presién maxima. En la Figura 4.8e, para la clase HC, no se identifica una relacion clara entre la presion
maxima y el valor SHAP, lo que indica una influencia neutra o débil de esta caracteristica en sujetos sanos. Sin embargo, en
la Figura 4.8f, correspondiente a sujetos con Parkinson, se evidencia una fuerte relacion positiva: a mayor presion ejercida,
mayor es el valor SHAP, incrementando la probabilidad de pertenecer a la clase PD. La interaccion con la caracteristica 6
(curtosis FFT de altitud) sugiere que seiales con mayor prominencia o agudeza en el dominio de la frecuencia podrian
intensificar el impacto de la presion maxima.

Feature 9 - Cuantil del 20% de altitud. Enla Figura 4.8c (clase HC), se aprecia una relacion lineal creciente entre el valor
del cuantil y el SHAP, lo que indica que una mayor elevacion minima favorece la clasificacion como sano. En cambio, para
la clase PD (Figura 4.8d), la relacion es inversa: valores bajos en el cuantil de altitud aumentan el SHAP, fortaleciendo la
prediccion hacia Parkinson. EL color, que representa la interaccion con la caracteristica 8 (entropia de muestra en altitud),
sugiere que sujetos con baja altitud y menor complejidad vertical son mas propensos a ser clasificados como pacientes con
deterioro motor.
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Figura 4.7: Dependence plots de las tres caracteristicas mas importantes del modelo Random Forest. Cada punto representa

una observacion, el eje x indica el valor real de la caracteristica, el eje ¢ su contribucion SHAP. EL color representa la in-

teraccion con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos de la caracteristica de interaccion,

mientras que azul indica valores bajos.

Extra Trees

Feature 2 - Suma de puntos recurrentes del azimut.

En la Figura 4.11a (Clase HQC), se observa una correlacion positiva:

a medida que el valor de la caracteristica 2 aumenta, el valor SHAP también lo hace, lo que indica una mayor contribucion
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hacia la prediccion de clase sana. En contraste, la Figura 4.11b muestra que para pacientes con Parkinson, a mayor recurrencia
angular (feature 2), el valor SHAP disminuye, lo que implica una menor probabilidad de ser clasificado como clase 1. EL color
(Feature 7) actiia como variable de interaccion, mostrando que niveles altos de presion pueden acentuar o reducir el impacto

del azimut.
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Figura 4.8: Dependence plots de las tres caracteristicas mas relevantes del modelo KNN. Cada punto representa una ob-
servacion; el eje x indica el valor de la caracteristica, el eje i su valor SHAP. EL color representa la interaccion con otra

caracteristica.
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Feature 9 - Cuantil del 20% de altitud. En sujetos sanos (Figura 4.11c), se evidencia que a mayor altitud baja (valores
mas negativos), el valor SHAP decrece, favoreciendo la prediccion de la clase HC. Para la clase PD (Figura 4.11d), la relacion es
inversa: menores valores en el cuantil de altitud aumentan el SHAP hacia la clase Parkinson, confirmando que movimientos
verticales con valores bajos son mas caracteristicos en pacientes con la enfermedad. La variable de interaccion es nueva-
mente la presion maxima (Feature 7), evidenciando patrones complejos entre intensidad del trazo y variabilidad vertical.

Feature 7 - Presion maxima. En la Figura 4.11e, para sujetos sanos, se observa una relacion negativa: a mayor presion,
menor valor SHAP, lo cual reduce la probabilidad de clasificar como clase HC. Por otro lado, la Figura 4.11f muestra que en
pacientes con Parkinson, la presion alta aumenta significativamente el valor SHAP, reforzando su influencia hacia la clase PD.
Este comportamiento sugiere que una presién intensa es un marcador distintivo en sujetos con deterioro motor. En ambos
casos, la variable de interaccion (Feature 6: curtosis FFT de altitud) parece modular el impacto de la presion.

En conjunto, los dependence plots del modelo Extra Trees confirman que las variables relacionadas con patrones angulares
repetitivos (Feature 2), elevacion baja del lapiz (Feature 9) y fuerza de presion (Feature 7) son indicadores diferenciadores
robustos entre sujetos sanos y pacientes con Parkinson. Las variaciones de color en los puntos muestran como estas carac-
teristicas interactian entre si, revelando relaciones no lineales que serian dificiles de detectar con analisis tradicionales.

Naive Bayes

Feature 2 - Suma de puntos recurrentes del azimut. En la Figura 4.11a (Clase H(), se observa una relacion creciente:
valores mas altos en la caracteristica 2 se asocian con mayores valores SHAP, lo que implica una mayor contribucién hacia
la prediccion de sujetos sanos. En contraste, la Figura 4.11b muestra que para la clase PD, el patrdn es inverso: valores altos
de la caracteristica disminuyen significativamente la contribucion SHAP, lo que favorece la clasificacion hacia la clase con
enfermedad. Esta dicotomia refuerza la relevancia de los patrones angulares repetitivos del azimut en la diferenciacion entre
clases.

Feature 9 - Cuantil del 20% de altitud. Para los sujetos sanos (Figura 4.11c), a medida que el cuantil de altitud aumen-
ta, también lo hace el valor SHAP, fortaleciendo la prediccion hacia HC. En cambio, en la Figura 4.11d, se observa un patron
decreciente para pacientes con Parkinson, indicando que valores bajos de altitud estan fuertemente asociados a la enferme-
dad. Este comportamiento sugiere que la elevacion minima del lpiz durante el trazo es un rasgo caracteristico de deterioro
motor.

Feature 7 - Presion maxima. En la Figura 4.11e (H(), se evidencia una relacion negativa: mayor presion reduce el valor
SHAP, disminuyendo la probabilidad de predecir clase sana. En cambio, la Figura 4.11f muestra una relacion lineal positiva
entre la presion y la contribucion hacia PD. Este hallazgo refuerza el patron identificado en otros modelos, donde una presion
elevada es un signo distintivo en sujetos con alteraciones motoras. La interaccion con la Feature 1 (cuantiles de cambio de
presion) modula este efecto, como se evidencia en la gradiente de color.
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Figura 4.9: Dependence plots de las tres caracteristicas mas importantes del modelo Extra Trees. Cada punto representa una
observacion, el eje x indica el valor real de la caracteristica, el eje y su contribucion SHAP. EL color representa la interaccion
con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos de la caracteristica de interaccién, mientras
que azul indica valores bajos.

Decision Tree

EL modelo Decision Tree presenta relaciones claramente diferenciadas para las clases HC y PD en las tres caracteristicas
mas influyentes.
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Figura 4.10: Dependence plots de las tres caracteristicas mas importantes del modelo Naive Bayes. Cada punto representa una
observacion; el eje  indica el valor real de la caracteristica, el eje i su contribucion SHAP. EL color representa la interaccion
con una segunda caracteristica: mayor intensidad (rojo) sugiere valores altos, mientras que azul representa valores bajos.

Feature 2 - Suma de puntos recurrentes del azimut. En la Figura 4.11a, correspondiente a sujetos sanos, se observa una
ligera relacion creciente: valores mas altos de recurrencia angular tienden a generar valores SHAP mas elevados. Para la
clase PD (Figura 4.11b), el patron es inverso: a mayor recurrencia, menor contribucion SHAP. Este patron refuerza la idea de

que una senal mas repetitiva en el angulo de azimut es caracteristica de la escritura sana.
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Feature 9 - Cuantil del 20% de altitud. En individuos sanos (Figura 4.11¢), se identifica una correlacion positiva entre el
valor del cuantil bajo de altitud y el SHAP, mientras que en pacientes con Parkinson (Figura 4.11d), esta relacion se invierte.
Los valores bajos en La elevacion del lapiz son mas caracteristicos de los sujetos con deterioro motor, y esto se ve reflejado
en la disminucion de SHAP hacia clase PD.

Feature 7 - Presion maxima. El comportamiento de esta caracteristica en la Figura 4.11e para HC es difuso, sin una ten-
dencia clara. Sin embargo, en la Figura 4.11f se muestra que valores altos de presion tienden a incrementar la contribucion
SHAP hacia la clase PD. Este hallazgo coincide con los observados en otros modelos: una presion elevada es un marcador
importante para la prediccion de enfermedad.

Los resultados obtenidos a partir de los modelos evaluados —tanto los de mejor rendimiento (Extra Trees, Gradient Boos-
ting, KNN) como los modelos adicionales (SVC, Logistic Regression, Naive Bayes, Decision Tree, Random Forest)— revelan
una consistencia notable en los patrones detectados sobre las tres caracteristicas mas influyentes. Esta convergencia entre
modelos fortalece la validez de los hallazgos desde una perspectiva computacional y clinica.

+ Feature 2 (Suma de puntos recurrentes del azimut): En la mayoria de modelos, se observé un patrén dual segun la
clase. Valores mads altos tienden a asociarse con sujetos sanos (HC), mientras que valores mas bajos 0 menos variados
son mas frecuentes en pacientes con Parkinson (PD). Esto puede reflejar una mayor rigidez o pérdida de fluidez en
la orientacion angular del lapiz, relacionada con bradicinesia o rigidez motora.

+ Feature 7 (Presion maxima): Esta caracteristica mostro una clara separacion entre clases. Los modelos coinciden en
que los pacientes con PD tienden a ejercer mayor presion durante la escritura, lo que puede atribuirse al esfuerzo
compensatorio, temblores o alteracion del control motor fino. Esta variable se destaca como uno de los indicadores
mas solidos y consistentes del deterioro motor.

« Feature 9 (Cuantil bajo de altitud): Los resultados indican que los pacientes con Parkinson tienden a mantener el
[apiz mas cerca de la superficie, especialmente en los tramos mas bajos del trazo (percentil 20%). Esto podria estar
relacionado con dificultades para separar el lapiz del papel debido a temblores de reposo, rigidez o lentitud motora.
En modelos basados en arboles, esta caracteristica mostrd una clara inversion del impacto SHAP entre clases.

En conjunto, los dependence plots proporcionan evidencia visual y cuantitativa de que los modelos de aprendizaje auto-
matico no solo logran clasificar adecuadamente, sino que lo hacen apoyandose en patrones biomecanicos interpretables y
clinicamente relevantes. La orientacion angular, la fuerza de presion y la elevacion del lapiz emergen como biomarcadores
digitales robustos para diferenciar sujetos sanos de pacientes con Parkinson, destacando el potencial de estas seiales en
aplicaciones de diagnaostico asistido por IA.
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Conclusiones

Este estudio confirma el potencial de las dinamicas de escritura digital como biomarcadores para evaluar las disfunciones
motoras en la EP. Se identificaron la presion, la altitud y el azimut como caracteristicas clave para distinguir a pacientes con
EP de sujetos sanos (HC), aportando informacion detallada sobre los patrones motores caracteristicos de la enfermedad.
Estos hallazgos sugieren que el analisis digital de la escritura podria integrarse en protocolos clinicos como un método no
invasivo para monitoreo y diagnastico temprano del Parkinson.

Con tnicamente 85 registros de dos cohortes culturalmente distintas—PaHaW (Repablica Checa) y un conjunto propio de
Ecuador—se alcanzaron precisiones de 94,2 % con Gradient Boostingy 93,3 % con Extra Trees. Estos resultados superaron,
en la mayoria de las métricas, a las arquitecturas profundas (CNN) y a las redes neuronales de picos (SNN). La combinacion de
sefales cinematicas relativamente directas (presion, azimut, altitud) y modelos poco profundos mostro que la complejidad
algoritmica no siempre es necesaria para capturar rasgos motores distintivos de la EP. No obstante, los modelos profundos
conservan un papel importante cuando se disponga de volimenes de datos mayores o de tareas con mayor variabilidad
motora.

Las CNN evidenciaron su capacidad para extraer patrones espaciales y morfoldgicos del trazo cuando las coordenadas x,yse
transforman en imagenes, si bien no superaron de forma consistente a los modelos tradicionales debido al tamafio mues-
tral limitado. De forma analoga, las SNN mostraron ventajas en la codificacion temporal, pero requirieron mayor ajuste de
hiperpardmetros y mdas datos para explotar completamente su potencial bioinspirado.

EL analisis de explicabilidad basado en SHAP corrobord la relevancia clinica de los biomarcadores identificados. La presion
maxima, la variabilidad angular del azimut y el cuantil bajo de altitud figuraron entre las variables mas influyentes en todos
los clasificadores de mejor desempefio, alinedndose con la fisiopatologia conocida del Parkinson y aumentando la confianza
de los especialistas en la salida del modelo.

Finalmente, la fusion de datos de dos contextos lingiisticos distintos demostro que los biomarcadores subyacentes tras-
cienden particularidades de caligrafia; aun asi, s6lo puede hablarse de /ndicios de robustez intercultural, dado el tamaiio
limitado de la muestra y la ausencia de otros idiomas 0 sistemas de escritura.
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5 Conclusiones

Limitaciones

El trabajo presenta cuatro restricciones principales: (i) un tamafo muestral relativamente pequefio y con leve desbalance
de clases, (ii) la concentracion en una Unica tarea grafica (espiral de Arquimedes) sin seguimiento longitudinal y (iii) la
composicion demografica desigual de las muestras, con posibles sesgos introducidos por diferencias educativas, etarias
0 culturales entre las cohortes de Ecuador y la Republica Checa, que podrian haber influido en los patrones de escritura
observados.

Trabajos futuros

Se propone, en primer lugar, ampliar el estudio a un conjunto multilingiie y longitudinal que permita validar la generalizacion
intercultural y estimar progresion clinica. En segundo lugar, se explorard la integracion de biomarcadores complementarios
(voz, marcha, oculomotricidad) para crear un sistema multimodal holistico. En tercer lugar, la comparacion sistematica de
técnicas de explicabilidad (LIME, Grad-CAM, Integrated Gradients, DeepSHAP, gradient-based spike metrics) enriquecera la
transparencia del modelo. Por Gltimo, se preveé la implementacion de SNN optimizadas en hardware neuromorfico de baja
potencia, asi como la extension del enfoque a otras patologias neurologicas (temblor esencial, distonia, Alzheimer).
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Anexo A: Visualizacion de la importancia de caracteristicas

Este anexo presenta las visualizaciones de explicabilidad generadas mediante SHAP para los modelos de aprendizaje auto-
matico cldsicos utilizados en el estudio. Las figuras muestran la importancia relativa de las caracteristicas extraidas, dife-
renciando el impacto por clase: sujetos sanos (clase 0) y pacientes con enfermedad de Parkinson (clase 1). Se incluyen tanto
graficos de tipo beeswarm (puntos) como graficos de barras agrupadas por clase.

Los nimeros corresponden a las siguientes caracteristicas: 0: Altitude Permutation entropy dimension 7 tau 1, 1: Pressure
change quantiles f agg "mean” isabs True gh 0.6 ql 0.0, 2: Azimuth sum of reoccurring data points, 3: Pressure change
quantiles f agg "mean” isabs True gh 0.4 ql 0.2, 4: Altitude change quantiles f agg "var” isabs True gh 1.0 ql 0.2, 5: Azimuth
number cwt peaks n 1, 6: Altitude FFT aggregated aggtype "kurtosis”, 7: Pressure maximum, 8: Altitude sample entropy, 9:
Altitude quantile g 0.2.
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(c) Gradient Boosting

Figura 1: Importancia de caracteristicas determinada por los modelos SVC, Regresion Logistica y Gradient Boosting.
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Figura 2: Importancia de caracteristicas determinada por los modelos Random Forest, KNN, Extra Trees, Naive Bayes y Arboles

de Decision.
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