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Resumen

Esta investigacion aborda el desafio de la localizacion de dispositivos en espacios abiertos que se comunican de manera
inalambrica a través de redes LoRaWAN. Tradicionalmente, se emplea la tecnologia GPS para la geolocalizacion; sin embargo,
su uso implica la adicion de un recurso adicional, lo cual puede elevar los costes. Por ello, se propone aprovechar la propia
sefal de comunicacion de los dispositivos para fines de geolocalizacion, lo que reduce gastos y, ademas, ofrece versatilidad
al ser una solucion independiente de plataformas externas.

Se desarrollo un modelo de aprendizaje profundo basado en Redes Neuronales de Grafos (GNN) para estimar coordenadas
GPS, utilizando metadatos generados durante la comunicacion LoRaWAN —como RSSI e informacion proporcionada por los
gateways—. La propuesta presenta una metodologia que combina métodos basados en datos—como técnicas de apren-
dizaje automatico—con métodos teoricos fundamentados en los principios de propagacion de ondas. Ademas, integra un
enfoque mixto que reane ambos paradigmas, aprovechando los principios fisicos y las técnicas de aprendizaje automatico
para capturary modelar el ruido. Esto permite equilibrar y ampliar los conjuntos de datos de manera eficiente, seleccionando
y adaptando el método mas adecuado para cada gateway.

El estudio emplea algoritmos de clusterizacion como Clustering Difuso o Fuzzy C-Means (FCM), Clustering Sustractivo y Clus-
tering Subjetivo para analizar y estructurar los datos. Los resultados destacan la efectividad del método hibrido, especial-
mente en gateways con mayor cantidad de datos disponibles para el desarrollo de la metodologia propuesta, logrando un
equilibrio entre precision y eficiencia.

Ademas de ser una solucion para la estimacion de coordenadas GPS en entornos con cobertura LoRaWAN, esta investiga-
cion ofrece un marco para optimizar la caracterizacion de la propagacion de senales en escenarios de exteriores. EL enfoque
planteado aborda de manera eficiente las limitaciones inherentes a datos escasos y desbalanceados. Ademas, ofrece so-
luciones escalables para aplicaciones futuras que demanden una caracterizacion avanzada de la propagacion de sefiales,
incluyendo la geolocalizacion inteligente como una de sus principales aplicaciones, asi como la reduccion de interferencias,
la optimizacion de la calidad del servicio y el disefio eficiente de redes inalambricas.
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Introduccion

EL crecimiento acelerado del internet de las cosas ("Internet of Things”, 10T) ha impulsado el despliegue masivo de dis-
positivos en diversas areas de la tecnologia de la informacion, desde aplicaciones en entornos rurales, como la agricultura
inteligente, hasta entornos urbanos, como las ciudades inteligentes [[I].Sin embargo, estos dispositivos, enfrentan un desafio
crucial: la necesidad de una solucion de posicionamiento eficiente y economica, ya que, debido a sus limitadas capacidades
de energia y computo, no suelen estar equipados con médulos de geolocalizacién como el “Global Positioning System” (GPS),
lo que hace inviable o costoso su uso y compromete la obtencién de su ubicacion exacta. Esta carencia afecta la eficacia de
aplicaciones que dependen de soluciones tecnoldgicas, como el monitoreo ambiental, la gestion de recursos en tiempo real,
la cadena de suministro y la logistica, donde la geolocalizacion es esencial para su correcto funcionamiento [2].

Para resolver este problema se realiza el desarrollo de una solucion que utilice la metadata generada durante la comu-
nicacion de dispositivos inteligentes en redes de baja potencia y area amplia ("Low Power Wide Area Network", LPWAN),
especificamente con la modulacién de largo alcance ("Long Range”, LoRa), para estimar la posicion de estos dispositivos sin
necesidad de un modulo de geolocalizacion fisico [3, 4]. Este planteamiento permitira dotar de capacidad de geolocalizacion
mediante coordenadas de latitud y longitud estimadas a cualquier dispositivo inteligente que utilice estas tecnologias de
largo alcance, reduciendo asi los costos y el consumo de recursos.

Aprovechando la continua expansion de redes LPWAN que utilizan el protocolo "Long Range Wide Area Network” (LoRaWAN) y
la creciente implementacion de la modulacion LoRa en dispositivos |oT para la comunicacién a larga distancia [5], una de las
tendencias mads recientes en la industria es la geolocalizacion sin modulos GPS, conocida como 'Smart Geolocation for [oT'.
Este enfoque permite estimar la posicion utilizando modelos de aprendizaje profundo que emplean la metadata generada
durante la comunicacion en redes LoRaWAN, en particular los valores del indicador de potencia de sefial recibida ("Recei-
ved Signal Strength Indicator”, RSSI), relacion sefial/ruido ("Signal-to-Noise Ratio”, SNR) y la informacion de los gateways
receptores [6].

Empresas como 1663 Solutionsl, TrackpacE y Semtech® ya estan desarrollando soluciones basadas en estos principios, mien-
tras que fabricantes como Semtech estan produciendo dispositivos con capacidades avanzadas para el posicionamiento
inteligente. Sin embargo, la mayoria de las soluciones de geolocalizacion inteligente no son de codigo abierto, a diferencia

1ht’tps://www.]66350[uti0ns.com
®https//www.trackpac.com
3 nhttps://www.semtech.com/
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de LoRaWAN, cuyas especificaciones y plataformas como The Things Network (TTN) son de acceso pablico [[]]. Aunque existen
soluciones de cadigo abierto [8], su precision es limitada . La propuesta presentada en esta tesis aborda esa limitacion me-
diante el desarrollo de un modelo de aprendizaje profundo, mas especificamente una red neuronal de grafos ("Graph Neural
Network”, GNN) especializada para un entorno con cobertura de red LoRaWAN, que estima coordenadas de geolocalizacion
de dispositivos en la red utilizando metadatos generados durante su comunicacion.

Adicionalmente, esta tesis propone una metodologia integral para incrementar y equilibrar conjuntos de datos generados a
partir de la metadata del proceso de comunicacion en redes LoRaWAN. [lj

Adquisicién de
los datos

Clustering
*Difuso
*Sustractivo

Balanceo de datos
para puntos

medidos
*KDE
*VBGMM
*Normal

*Subjetivo

Aumento de datos
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*Método basado en Datos
*Métedo basado en Teoria
*Métado Hibrido

| J
¥
Dataset de
entrenamiento

Figura 1.1: Arquitectura LoRaWAN en la UPV

Esta metodologia incorpora los siguientes componentes:

1.- Balanceo de data para puntos medidos empiricamente: Se emplean modelos que se ajustan a la distribucion sub-
yacente de los datos recopilados empiricamente por punto. Estos incluyen:

« Estimacion de Densidad mediante Kernel (KDE): Un método para ajustar un modelo estadistico no paramé-
trico para estimar la densidad de probabilidad de los datos.

+ Modelos de Mezcla Gaussiana Bayesianos Variante (VBGMM): Modelos estadisticos que combinan varios
componentes gaussianos para representar patrones complejos.

« Distribucion Normal Ajustada: Ajusta una distribucion normal para representar los datos de manera eficiente.

2.- Aumento de data para puntos no medidos: Se emplean modelos para la prediccion de datos en nuevos puntos
establecidos:



1 Introduccion

21- Método "Basado en Data": Modelos que utilizan técnicas de aprendizaje supervisado, como modelos de re-
gresion, para aprender patrones subyacentes y generar muestras adicionales.

2.2.- Método "Basado en Teoria":Implementa modelos basados en principios tedricos para generar datos, como el
modelo de propagacion de intercepto flotante, basado en la propagacion de ondas.

2.3- Método "Mixto": Combina los anteriores enfoques, complementando el modelo de enfoque tedrico con mo-
delos "basados en data” para capturar errores no modelados.

Se emplearon algoritmos de clustering, incluyendo Fuzzy C-Means (FCM) y Subtractive Clustering, para analizar y estructurar
el conjunto de datos previo a la implementacion de los componentes mencionados anteriormente. Se utilizo la distancia de
Wasserstein como métrica para evaluar los modelos propuestos.

En la comunicacion inaldmbrica, particularmente con la propagacion de seiales LoRa, la recoleccion de mediciones empiri-
cas en cada ubicacion es a menudo imprdctica debido a las restricciones de tiempo y distancia. Caracterizar la propagacion
de sefales LoRa es crucial para optimizar sistemas de comunicacion inaldmbrica, especialmente en entornos diversos como
rurales, vegetados y suburbanos, donde la densidad y el tipo de obstaculos varian significativamente. Este desafio enfatiza
la necesidad de metodologias robustas que permitan realizar un aumento de datos que aprovechen mediciones empiricas
limitadas para generar datos sintéticos tiles mediante predicciones de modelos en areas no medidas. Nuestra metodologia
facilita el desarrollo de soluciones practicas, incluyendo la planificacion del despliegue de redes, sistemas de sensores inte-
ligentes optimizados, asignacion inteligente de recursos y implementaciones mas precisas de sistemas de posicionamiento
y seguimiento.

En este estudio, se utilizo una arquitectura de LoRaWAN desplegada en la Universitat Politecnica de Valéncia (UPV) para
habilitar un proceso de comunicacion del cual se recopild metadata destinada a caracterizar el entorno. La tecnologia GPS
se integro en el proceso de comunicacion, generando mediciones que sirvieron como carga Util de las transmisiones y que
nos serviran para poder entrenar nuestro modelo de posicionamiento. Los datos GPS se recopilaron en diversos puntos
dentro de la UPV y, mediante integraciones disponibles en la plataforma de The Things Network, se extrajeron conjuntos
de datos para desarrollar nuestra solucién. No obstante, debido a las limitaciones inherentes a la recoleccién de datos GPS,
como los retrasos en la fijacion de sefial, cada medicion puede estar sujeta a latencias, lo que resulta en conjuntos de datos
desequilibrados. Esto proporciona un escenario optimo para probar enfoques dirigidos a mejorar el equilibrio de dichos
conjuntos de datos en este trabajo.



Trabajos Relacionados

Esta seccion presenta un breve resumen de las propuestas previas mas relevantes relacionadas con la prediccion de coor-
denadas GPS en redes LoRaWAN, el uso de Redes Neuronales basadas en Grafos (GNN), enfoques de aumento de datos, y
la caracterizacion de la propagacion de senales inalambricas en entornos mixtos. Estos trabajos proporcionan el contexto
necesario para las contribuciones de esta tesis, identificando avances existentes y areas que requieren mayor investigacion.

Diversos estudios han explorado metodologias para predecir coordenadas GPS en redes LoRaWAN. Por ejemplo, Moradbeikie
et al. [9] propusieron un enfoque basado en trilateracion utilizando la intensidad de la sefial (RSSI) para estimar posiciones
en entornos industriales. Aunque eficiente, este método mostro alta sensibilidad a la variabilidad del RSSI, especialmente en
entornos urbanos, reportando errores promedio de hasta 50 metros. Liu et al. [10] utilizaron técnicas de aprendizaje profundo
para mejorar la precision del GPS en caiones urbanos, logrando un error promedio de 10 metros. Sin embargo, este enfoque
no considera la estructura dinamica de las redes LoRaWAN, limitando su capacidad para manejar cambios complejos en la
configuracion de la red. A diferencia de estos trabajos, esta tesis propone el uso de modelos basados en GNN, que pueden
capturar relaciones dinamicas y estructurales en redes LoRaWAN, reduciendo la sensibilidad a la variabilidad del RSSI y
mejorando la precision en escenarios mixtos.

Las redes neuronales basadas en grafos (GNN) ofrecen una solucion natural para modelar relaciones estructurales en redes
como LoRaWAN. Aunque las GNN se han aplicado ampliamente en dreas como redes sociales y biologia computacional, su uso
para la estimacion de coordenadas GPS en LoRaWAN es escaso. Zhang et al. [11] demostraron que las redes neuronales graficas
(GNN) son capaces de modelar topologias dinamicas en sistemas de comunicacion inalambrica, destacando su eficacia en
el manejo de datos no euclideanos. Inspirada por estas capacidades, esta tesis propone integrar las GNN para modelar las
topologias dindmicas inherentes a las redes LoRaWAN, mejorando asi la adaptabilidad y eficiencia de la solucidn en entornos
altamente dindmicos.

Elaumento de datos es una técnica ampliamente utilizada para mejorar el rendimiento de modelos de aprendizaje supervi-
sado y no supervisado. Técnicas como SMOTE han sido empleadas para balancear clases minoritarias [12], mientras que las
redes generativas adversariales (GANs) han permitido generar datos sintéticos que enriquecen los conjuntos de entrena-
miento [|3].En redes inaldmbricas como LoRaWAN, las soluciones tradicionales se han centrado principalmente en el ambito
de la sequridad, mediante la deteccién de anomalias y de intrusos para proteger la red, logrando resultados prometedores.
No obstante, estas técnicas no se han enfocado en la caracterizacion de las redes, como el modelamiento de la propagacion
de sefales. En este trabajo, se propone implementar un modelo optimizado para predecir metadatos en redes LoRaWAN,
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especificamente los valores de RSSI, considerados una métrica clave en la propagacion de sefales. La metodologia se basa
en un analisis comparativo entre modelos basados en datos, modelos tedricos y enfoques hibridos, con el objetivo de iden-
tificar la solucion mas eficaz y adecuada. Este enfoque mejora significativamente la calidad del conjunto de datos utilizado
para entrenar modelos basados en Redes Neuronales de Grafos (GNN).

En términos de aprendizaje profundo, [10] implementa redes neuronales convolucionales para mejorar la precision del GPS
en entornos urbanos, mientras que otros estudios combinan enfoques supervisados y no supervisados para abordar la com-
plejidad de los datos en |oT. Por ejemplo, Por ejemplo, Garcia et al. [14] aborda sistemas de aprendizaje mavil y ubicuo
sensibles al contexto, destacando como estas técnicas mejoran la adaptabilidad en entornos dinamicos. De manera similar,
Lépez et al. [15] optimiza métodos de agrupamiento no supervisado aplicados al reconocimiento de patrones, lo cual es
crucial para la clasificacion y el analisis de datos heterogéneos en redes loT. Ademas, Arco et al. [16] propone una metodo-
logia basada en caracteristicas locales y globales para datos de medicion inteligente, aplicando técnicas de agrupamiento
no supervisado para capturar la variabilidad inherente de los datos generados en redes loT. Estos enfoques destacan la
importancia de integrar modelos hibridos para mejorar la adaptabilidad y precisién en aplicaciones complejas como el po-
sicionamiento en redes LoRaWAN, sin embargo, no explotan la capacidad de las GNN para modelar relaciones estructurales
en redes dinamicas.

En resumen, esta tesis propone un enfoque hibrido que combina modelos tedricos y basados en datos para mejorar la pre-
cision de soluciones de aprendizaje profundo mediante el aumento de los datos de entrenamiento, especificamente en la
inferencia de coordenadas GPS en entornos mixtos. Mediante el uso de GNNs, se aprovecha la topologia de las redes Lo-
RaWAN para modelar estructuras con diferentes nimeros de gateways y conexiones, proporcionando mayor flexibilidad y
precision en las predicciones. Las aplicaciones de este trabajo se extienden a la localizacion de dispositivos [oT en escenarios
desafiantes, como campus universitarios o areas industriales, donde la combinacion de edificios y espacios abiertos plantea
retos significativos para los modelos tradicionales.
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Este estudio esta fundamentado en la recopilacion, analisis/aumento y uso de una base de datos elaborada por el grupo de
investigacion Smart Network Technologies (TRI) de la Escuela Superior Politécnica del Litoral (ESPOL), en colaboracion con el
Departamento de Informatica de Sistemas y Computadores (DISCA) de la Universidad Politécnica de Valencia (UPV). La base
de datos fue generada a partir de la infraestructura LoRaWAN desplegada en el campus de la UPV, la cual esta integrada con
la plataforma The Things Network (TTN). Esta infraestructura incluye la configuracion y despliegue de multiples gateways
en ubicaciones estratégicas, optimizados para proporcionar cobertura a lo largo del campus y gestionar la transmision y
recepcion de mensajes provenientes de los nodos de la red. La infraestructura LoRaWAN consta de varios componentes clave:
nodos sensores, gateways, un servidor de red y un servidor de aplicaciones. Los nodos sensores y los gateways implementan
la tecnologia LoRa (Long Range), un protocolo de comunicacion inaldmbrica diseiado para redes de baja potencia y largo
alcance. LoRa utiliza una técnica de modulacién de espectro ensanchado basada en "chirps”, una sefial cuya frecuencia cambia
gradualmente con el tiempo. Este protocolo opera a bajas frecuencias para garantizar una alta tolerancia al ruido y codifica
informacion mediante el factor de expansion ajustable (spreading factor). Esta configuracion permite alcanzar rangos de
transmision de hasta 1 km en entornos urbanos y distancias significativamente mayores en areas despejadas. Los datos
recopilados comprenden mensajes transmitidos por los nodos junto con los metadatos asociados, generada durante los
procesos de comunicacion en redes LoRa con el protocolo LoRaWAN. Para garantizar consultas a estos datos, el protocolo
MQTT fue configurado como una integracion en la plataforma TTN, facilitando la extraccion directa de los metadatos desde
su interfaz de usuario.

3.1 Creacion del Dataset

EL desarrollo de esta investigacion requirio la recopilacion de un conjunto de datos diverso y representativo en el campus
de la Universidad Politécnica de Valencia (UPV). El dataset, esta estructurado cuidadosamente para reflejar las condiciones
ambientales heterogéneas del entorno de estudio. Ademas, los datos estan segmentados por gateway receptor, identifican-
do variaciones en la propagacion de sefiales debido a la cobertura especifica de cada dispositivo. Este conjunto de datos
constituye la base para evaluar y optimizar los métodos propuestos, destacando la importancia de abordar desafios como
el desbalance y la falta de datos en ciertas ubicaciones.
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3.1.1 Adquisicion de datos

ELnodo fue ubicado de una manera sistematica en una distribucion tipo malla cubriendo 15 ubicaciones diferentes a lo largo
del campus de la UPV. Cada punto de medicion fue seleccionado estratégicamente para representar diversas condiciones
ambientales y garantizar una cobertura completa del area de estudio.

Tecnologias y Plataformas Empleadas

EL campus de la UPV cuenta con tres gateways, dos del tipo RAK7248 ("main-gtw-grc” y "rak7248-grc") B1(a), disefiados
para uso en interiores, y uno del tipo RAK7289 ("itaca-upv-022") B(b], adecuado para exteriores. Estos gateways, ubicados
estratégicamente en los limites del campus, recibieron los mensajes transmitidos por los nodos Heltec LoRa WiFi V3 ,
basados en el microcontrolador ESP32, que opera bajo el plan de frecuencia europeo de 868 MHz. Los nodos estaban equi-
pados con un madulo GPS NEO6M configurado mediante el protocolo de comunicacién UART, que capturaba coordenadas
geograficas y las transmitia como carga Gtil mediante modulacion LoRa B1(d].

(@) Gateway de interiores (b) Gateway de exteriores
RAK7248 RAK7289 (c) Modulo Wifi LoRa v3 (d) Modulo GPS NEO6M

Figura 3.1: Componentes de la arquitectura para la recoleccion de datos LoRaWAN.

Las coordenadas capturadas originalmente estaban en formato NMEA (National Marine Electronics Association), un estandar
para datos de GPS. Estas coordenadas, por ejemplo:

$GPGGA,110617.00,41XX . XXXXX,N,00831.54761,W,1,05,2.68,129.0,M,50.1,M, ,*42

Contiene informacion codificada en un formato estandar para datos de GPS. Cada campo tiene un significado especifico
detallado a continuacion:

+ $GPGGA: Indica el tipo de mensaje NMEA. En este caso, GGA representa un mensaje de Global Positioning System
Fix Data, que proporciona datos basicos de posicion, como latitud, longitud, altura y calidad de la senal.

* 110617.00: Es la hora UTC en formato HHMMSS.ss. Aqui, 11 : 06:17 .00 indica que los datos fueron capturados
a las 11 horas, 6 minutos y 17 sequndos UTC.

+ 41XX.XXXXX: Representa la latitud en grados y minutos. El valor 41XX . XXXXX es desglosado en 41grados y una
fraccion de minutos (XX . XXXXX).

« N:Indica el hemisferio. Para este caso, N denota que la latitud se encuentra en el hemisferio norte.
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+ 00831.54761: Representa la longitud en grados y minutos. ELl valor 00831 .54761 es desglosado en 8 grados
y 31.54761 minutos.

« W:Indica el hemisferio. Aqui, W denota que la longitud se encuentra en el hemisferio oeste.

+ 1:Es elindicador de calidad de la seiial GPS. Un valor de 1 significa que se obtuvo una solucion de posicion valida
(7ix).

+ 05: Indica el nimero de satélites utilizados para calcular la posicién. En el ejemplo 5 satélites son utilizados.

« 2.68: Representa la dilucion de precision horizontal (HDOR Horizontal Dilution of Precision). Este valor mide la
calidad de la sefal; valores mas bajos indican mayor precision.

+ 129.0: Es la altitud sobre el nivel del mar, expresada en metros. Aqui, 129. 0 metros.

+ M: Indica que la unidad de medida para la altitud es metros.

« 50.1:Representa la altura del geoide (separacion entre el geoide y el nivel del mar) en metros.

» M:Indica que la unidad de medida para la altura del geoide es metros.

+ ,: Este campo normalmente es dejado vacio, pero es utilizado para datos de correccion DGPS (Differential GPS), que
no estan presentes en este mensaje.

» *42: Es el valor de comprobacion (checksum), que permite verificar la integridad del mensaje NMEA. Es calculado
como un XOR de todos los caracteres entre $ y *.

EL formato codificado contiene todos los datos esenciales para determinar la posicion geografica y otras caracteristicas del
fix obtenido, que luego son procesados y transmitidos a través de la red LoRaWAN.

Las coordenadas son procesadas mediante una libreria en el dispositivo embebido para extraer las coordenadas de lati-
tud y longitud del nodo. Posteriormente, las coordenadas son codificadas y transmitidas utilizando la red LoRaWAN. En el
lado receptor, los gateways decodificaron los datos transmitidos en formato Base64 y los reenviaron al servidor de red,
implementado a través de la plataforma gratuita The Things Network (TTN).

La plataforma TTN permite el acceso a la informacion recibida mediante varias integraciones, se opto por utilizar MQTT.
Un cliente MQTT, implementado en Python, se suscribe al topico correspondiente, y es configurado para recibir los datos
captados por los gateways en formato JSON. Por ejemplo, el topico puede tener el siguiente formato:

v3/rssi-measurements-/devices/eui—***x**x**x*xx/up

En este contexto, un topico es una direccion jerdrquica que organiza y categoriza los mensajes, permitiendo al cliente recibir
anicamente los datos relevantes. Estos datos incluyen las coordenadas GPS de los nodos transmisores como carga Qtil y
los metadatos del envio, que contiene parametros fundamentales como el indicador de potencia de sefal recibida (RSSI),
la Relacion sedal-ruido (SNR), la identificacion de los gateways receptores y las marcas temporales de las transmisiones
generadas con cada mensaje.

Escenario de estudio

En total, se obtuvieron 2,335 puntos de datos, distribuidos entre las 15 ubicaciones correspondiente a recepciones de los
gateways presentes en el entorno como se muestra en la Fig.@.

Dado que multiples gateways recibieron los mensajes transmitidos por la naturaleza de LoRaWAN, los datos recopilados
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Figura 3.2: Arquitectura LoRaWAN en la UPV

fueron segmentados segun el gateway receptor para garantizar coherencia en el analisis. Por ejemplo, los datos capturados
por los gateways "itaca-upv-022" y "main-gtw-grc” fueron analizados de forma independiente, lo que permitio identificar
variaciones en la propagacion de la sefial en funcion de la ubicacion y cobertura especifica de cada gateway. Adicionalmente,
al segmentar los datos se observo que para el gateway "main-gtw-grc” no existia cobertura suficiente en algunos puntos
de la red LoRaWAN, dejando sin datos ciertos de los 15 puntos donde se tomaron las mediciones. La cobertura de ambos
gateways se puede apreciar en las imagenes . Esto destaca la importancia de considerar la cobertura variable de
cada gateway. La estructura general del dataset y un ejemplo de los datos recopilados se presentan en la Tabla .

Adicionalmente, para los propasitos del estudio, se modificaron los conjuntos de datos por gateway seleccionando variables
especificas, las cuales podrian generarse utilizando los métodos propuestos. Los conjuntos de datos organizados por gateway,
estructurados ahora como se muestra en la Tabla 8.2, se encontraron desequilibrados, con un nimero variable de mediciones
en ciertos puntos, lo que se presentard con mayor detalle en el siguiente capitulo. Esto conlleva una representacion desigual
de diferentes ubicaciones, destacando la necesidad de aplicar técnicas de aumento de datos.
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Cobertura de la sefial
Gateway "itaca-upv-022"

—

(a) Visualizacion de la cobertura de la red LoRaWAN para el gateway 'itaca-upv-022'.

Cobertura de la sefial
Gateway "main-gha-gre”
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/
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(b) Visualizacion de la cobertura de la red LoRaWAN para el gateway 'main-gtw-grc’.

Figura 3.3: Coberturas de los gateways LoRaWAN en la UPV.

Tabla 3.1: Formato de datos recopilada original

folder_name| coord_gps | gateway_id | timestamp | rssi | toa latitude longitude | altitude
Medicion 39.48411560, | itaca-upv- | 3327095719 | -100 | 0.045 | 39.48411560 | -0.34499866 | 30.5
punto 1 -0.34499866 022

Medicién 39.48415756, | main-gtw- | 3464207824 | -101 | 0.046 | 39.48415756 | -0.34522617 305
punto1 -0.34522617 grc 10

Medicion | 39.48418808, | rak7248- | 3574094099| -97 | 0.050 | 39.48418808| -0.34534454 305
punto 2 -0.34534454 grc-pmes

Medicion 39.48415375, | itaca-upv- | 3589100156 | -101 | 0.048 | 39.48415375 | -0.34535646 305
punto 3 -0.34535646 022




Tabla 3.2: Formato de datos recopilados por el gateway
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folder_name coord_gps latitud longitud altitude rssi
Medicion punto1 | 39.48411560,-0.34499866 | 39.48411560 | -0.34499866 15 -100
Medicién punto 1 39.48415756,-0.34522617 | 39.48415756 | -0.34522617 15 -101
Medicion punto 2 | 39.48418808,-0.34534454 | 39.48418808 | -0.34534454 15 -97
Medicion punto 3 | 39.48415375,-0.34535646 | 39.48415375 | -0.34535646 15 -101

31.2 Clustering

Previo a la implementacion los métodos propuestos, se graficaron los datos recopilados para analizar sus distribuciones. Se
observaron ciertos puntos mostrando similitudes en sus graficas, por Lo que también se aplicaron técnicas de clustering so-
bre los datos. ELagrupar los datos segun las caracteristicas de sus distribuciones permite mejorar la implementacion de cada
uno de los métodos propuestos, al trabajar con datos que comparten caracteristicas. Esto beneficia especialmente a aquellos
métodos que, debido a su simplicidad, no tienen inherentemente una gran capacidad de ajuste sobre los datos, permitien-
do realizar una mejor prediccion. Se utilizan tanto métodos de clustering supervisados (subjetivos) como no supervisados
("Fuzzy C-Means" y "Substractive Clustering”).

Representacion Estadistica

Para aplicar las técnicas de clustering no supervisadas, se representaron los datos utilizando medidas estadisticas para
reducir el impacto de valores atipicos y ruido, ademas de mantener la agrupacion natural de los distintos datos, permitiendo
asi una clusterizacion que preserve las agrupaciones originales. Este enfoque asegura que el clustering se realice basado en
el comportamiento de las caracteristicas estadisticas representativas de los datos en diferentes puntos. Este paso es esencial
para mejorar la robustez del proceso de clustering [, 18]. Las medidas estadisticas clave utilizadas fueron:

» Media: Representa el valor promedio del conjunto de datos, proporcionando una medida de tendencia central [I9].

+ Curtosis: Evalla la forma de las colas de la distribucion, indicando si los datos tienen colas pesadas o ligeras en
comparacion con una distribucion normal [20].

+ Desviacidn Estandar: Indica la dispersidn o variabilidad del conjunto de datos alrededor de la media [[8].

+ Asimetria: Mide la asimetria de la distribucion, proporcionando informacion sobre la direccion de la concentracion
de los datos [20].

La Tabla B.3 muestra qué métodos de clustering utilizan representaciones estadisticas para el clustering y cuales no.

Tabla 3.3: Métodos utilizando representaciones estadisticas

Tipo de Clustering Representacion Estadistica Representacion Individual
Clustering Subjetivo X v’
Clustering Difuso v’ X
Clustering Sustractivo v’ X

1
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Clustering Difuso

Método de clustering no supervisado que permite que los puntos de datos pertenezcan a multiples clisteres segun un grado
de membresia difusa, lo que lo hace ideal para capturar caracteristicas ambientales superpuestas. FCM asigna grados de
pertenencia a cada punto de datos, reflejando la incertidumbre en la asignacion de clusteres. Este método es especialmen-
te atil en entornos donde la propagacion de la sefal varia significativamente en distancias cortas [21] y es ampliamente
empleado en escenarios que requieren flexibilidad para modelar datos con solapamientos [22].

Inicialmente, el algoritmo comienza con una estimacion de los centros de clusteres, que representan la ubicacién media de
cada grupo. Luego, asigna a cada punto de datos un grado de pertenencia a cada claster y, de manera iterativa, actualiza los
centros de clusteres y los grados de pertenencia para optimizar la funcion objetivo B, que minimiza la distancia euclidiana
ponderada entre puntos y centros. Este proceso mueve gradualmente los centros de los clusteres hacia sus ubicaciones
optimas dentro del conjunto de datos.

La funcion objetivo minimizada por FCM es:

C N
Jm =Y _> D}, &)

i=1 j=1

Donde:

IN:Numero de puntos de datos.

C' Numero de clusters.

m. Exponente de particion difusa, que controla el grado de difuminacion en los clusters (m > 1).

;- Grado de pertenencia del punto de datos j al cluster <.

D;;: Distancia entre el punto de datos j y el centro del cluster 2.

Para aplicar esta técnica de clusterizacion a los datos, una vez calculadas las representaciones estadisticas por punto, se
procede a normalizar los valores. Posteriormente, se utiliza la funcion fcm de MATLAB para realizar la clusterizacion, con-
figurando el numero de cldsteres en "auto". Esto implica que la funcion ejecuta 10 iteraciones, evaluando diferentes
cantidades de clusteres desde 2 hasta 11, para determinar el numero dptimo de centroides.

La configuraciénincluye un exponente para la matriz de particion difusa de 1, que es el valor minimo posible con el parametro
Exponent. Esto limita la cantidad de interseccion difusa durante el proceso de clustering, considerando que los valores
de RSSI, por su naturaleza logaritmica, tienden a ser cercanos entre si. Ademas, se establece un maximo de 100 iteraciones
MaxNumIterationyuna mejora minima MinImprovement de Te-5 como criterio de convergencia.

Una vez determinados los centroides, el algoritmo calcula para cada punto su grado de pertenencia a cada uno de los cen-
troides. Finalmente, se asigna cada punto de datos al cluster con el mayor valor de pertenencia, completando asi el proceso
de clusterizacion.

12
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Finalmente se itera sobre todos los datos y se va agrupando de acuerdo a los grupos formados sobre sus representaciones
estadisticas.

Clustering Sustractivo

Método basado en densidad que identifica centros de clusteres en regiones con alta concentracion de puntos de datos. Su
principal ventaja es que no requiere especificar previamente el numero de clisteres, lo que lo hace especialmente adecuado
para el analisis exploratorio de datos, en particular para conjuntos de datos grandes [23]. Este algoritmo permite una iden-
tificacion eficiente de los centros de clasteres al basarse en la densidad de los puntos circundantes. EL clustering sustractivo
asume que cada punto de datos es un potencial centro de clister y basado en esa asuncionc el algoritmo Q realiza los
siguientes pasos:

1. Calcular la probabilidad de cada punto sea un centro de clister basado
en la densidad de puntos circundantes.

2. Seleccionar el punto con el mayor potencial como el primer centro de
clister.

3. Eliminar puntos cercanos basé&ndonos en un rango de influencia
especificado.

4. Seleccionar el siguiente punto restante con el mayor potencial de ser el

siguiente centro.

5. Repetir hasta que todos los puntos estén dentro del rango de influencia

de un centro de cluster.

Algoritmo 3.1: Clustering Sustractivo

Este método es ampliamente utilizado en sistemas de modelado y control difuso debido a su eficiencia en la identificacion
de estructuras de datos en espacios multidimensionales [24].

Para aplicar esta técnica de clusterizacion a los datos, una vez calculadas las representaciones estadisticas por punto, se
procede a normalizar los valores y se utiliza la funcion sublcust de MATLAB para realizar la clusterizacion. Se configura el
parametro clusterInfluenceRange con un valor maximo de 1, considerando la cercania inherente de los valores de
RSSI debido a su escala logaritmica, lo que permite garantizar la mayor cantidad posible de clasteres.

Se emplea el valor predeterminado del factor Squash de 1.25, que ajusta el rango de influencia de los centros de clusteres.
Este valor reduce la posibilidad de que puntos atipicos sean considerados parte de un cluster, generando asi una mayor
cantidad de clusteres. Se establecen un radio de aceptacidén de 0.5yunradio de rechazo de 0.5 ambos
valores relativos al primer centro de claster identificado. Estos parametros definen el umbral para determinar si un punto
de datos es aceptado como un nuevo centro de cluster o rechazado como candidato.

Clustering Subjetivo

Este método se apoya en el juicio de expertos en lugar de métodos algoritmicos para definir los clusteres, permitiendo la
clasificacion de los datos en categorias predefinidas que se alinean con caracteristicas ambientales especificas [25, 26].

13
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El clustering subjetivo es particularmente util cuando el conocimiento del dominio puede mejorar significativamente la
interpretacion de los resultados, como en aplicaciones de clasificacion geografica o analisis ambiental [25]. En este estudio,
definimos dos clusteres principales:

« Area Urbana: Regiones con edificios y estructuras.
« Area de Vegetacion: Areas con follaje significativo y arboles.

Se selecciono un radio de 50 metros basado en estudios previos sobre modelos de propagacion, donde el parametro d
tipicamente varia entre 1y 100 metros, dependiendo del entorno.[2/] Este rango es representativo de distancias que abarcan
tanto efectos locales como transiciones entre entornos heterogéneos, como zonas de vegetacion y urbanas. Optar por un
radio intermedio de 50 metros garantiza un equilibrio entre capturar informacion local y reflejar variaciones espaciales
relevantes en el area analizada.

Utilizando un cddigo en Python, se generaron mapas estaticos con la libreria Folium a partir de las coordenadas GPS (lati-
tudy longitud) de los puntos de medicion. En cada mapa, se dibuja un circulo de 50 metros alrededor del punto para delimitar
el area de influenciaB4. Posteriormente, cada imagen se convierte a escala de grises, donde se genera un histograma que
agrupa los niveles de intensidad por pixel. A partir del analisis del histograma, se define un rango dinamico de intensidades
ajustado a la desviacion estandar de los valores detectados, centrado en las intensidades correspondientes a los pixeles de
color verde en escala de grisesB.9. Este rango permite identificar los pixeles que representan vegetacion, los cuales suelen
acumularse en forma de un pico en el histograma cuando hay una alta presencia de areas verdes.

H

'-g"

== | eaflet | © OpenStreetMap contributors

Figura 3.4: Visualizacion de punto graficado con Folium a partir de coordenadas.

Finalmente, se calculo el porcentaje de pixeles clasificados como vegetacion, es decir, aquellos que caen dentro del rango
definido, y se comparo con el total de pixeles dentro del circulo. Segun este analisis, clasificamos el punto como vegetacion

14



3 Metodologia

0 urbano dependiendo de si el porcentaje de vegetacion supera un umbral del 25%.

Histograma de Intensidades - Escala de Grises
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Figura 3.5: Histograma de intensidades para ROI a clasificar.

Adicionalmente, se reforzo la clasificacion utilizando imagenes de Google Earth, ya que los mapas generados con
Folium no permiten visualizar claramente la presencia de arboles. Esto es crucial, ya que en algunos casos los arboles
pueden no ser suficientes en cantidad para clasificar un area como zona verde, aunque tengan un impacto significativo en la
propagacion de sefiales. Si en Google Earth se detecta la presencia de drboles con alturas superiores a 2 metros dentro
del rango definido, se clasifica el punto como vegetacion, dado que estos arboles afectan directamente la propagacion de

las senales 3.8

15
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Google Earth

Figura 3.6: Verificacion de obstaculos mediante visualizacion en Google earth.

3.1.3 Balanceo de datos para puntos medidos

Este estudio, se enfoca en los valores de RSSI medidos en cada punto. Debido a la naturaleza desequilibrada del conjunto
de datos recopilado se propone usar tres modelos que se ajustan a la distribucion de los datos subyacente por punto. Los
modelos propuestos son:

+ Estimacion de Densidad mediante Kernel (KDE): Modelo no paramétrico que permite estimar la densidad de pro-
babilidad de los valores de una variable objetivo. Se ajusta una distribucion sintética utilizando kernels predefinidos
sobre la distribucion de los datos reales, proporcionando una representacion continua y suavizada de los datos origi-
nales. Se utilizo la regla de Silverman para calcular el ancho de banda 6ptimo, un parametro necesario para equilibrar
la precision y la suavidad del ajuste. Esto evita que la estimacion sea demasiado sensible al ruido o excesivamente
suavizada, preservando asi las caracteristicas clave de los datoslfj

+ Modelos de Mezcla Gaussiana Bayesianos Variante (VBGMM): Modelo estadistico que asume que los datos se gene-
ran a partir de una combinacion de varias distribuciones gaussianas, cada una con sus propios parametros de mediay
covarianza. Este método permite modelar distribuciones complejas al considerar que los datos pueden representarse
como una mezcla de diferentes distribuciones gaussianas. La version bayesiana de los GMM mejora el manejo de los
parametros del modelo al incorporar informacion previa sobre ellos, lo que facilita una estimacion mas robusta y
flexiblef]

« Distribucion Normal Ajustada: Basada en una media y una desviacion estandar calculadas a partir de los datos en
un punto especifico, el proceso de ajuste de una distribucion normal implica determinar como se distribuyen Los
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valores de los datos observados alrededor del promedio. La media representa el valor central de los datos, mientras
que la desviacion estandar mide la variabilidad o dispersidn de los datos respecto a esa media. Al calcular estos dos
parametros, se puede trazar una curva de distribucion normal que refleja la forma y el grado de dispersion de los
datos reales. Este ajuste permite modelar los datos de manera mas sencilla, facilitando predicciones basadas en la
suposicion de que los datos siguen una distribucion normalJj

Después del ajuste de estos modelos, se emplearon dos métricas (la métrica de Wasserstein y la Divergencia de Kullback-
Leibler) para evaluar las diferencias entre la distribucion real de los datos por punto y las distribuciones predichas por
los modelos. EL modelo que mostrd el mejor ajuste segun la métrica de Wasserstein fue seleccionado para generar datos
sintéticos.

La métrica de Wasserstein, también conocida como Distancia del Transportador de Tierra (Earth Mover's Distance), s una
medida utilizada para cuantificar la diferencia entre dos distribuciones de probabilidad. La distancia de Wasserstein mide el
minimo "costo” necesario para transformar una distribucion en la otra. Esta métrica es particularmente Gtil porque conside-
ra no solo las diferencias en las probabilidades individuales, sino también la "forma” y la "estructura” de las distribuciones.
La Divergencia de Kullback-Leibler es una medida utilizada para cuantificar la diferencia entre dos distribuciones de proba-
bilidad. Especificamente, mide cuanto se pierde al aproximar una distribucion verdadera por una distribucion aproximada.

La validacion cruzada de tipo "K-Fold” fue empleada para evaluar la capacidad de generalizacion de los modelos. Este proceso
dividio el conjunto de datos en maltiples particiones o "folds" y, en cada iteracion, uno de los folds se utilizé como conjunto
de prueba mientras los restantes sirvieron para el entrenamiento. Al finalizar las iteraciones del entrenamiento, se calculo
el promedio de cada métrica (Divergencia KL, Distancia de Wasserstein) para cada modelo, realizando una comparacion
detallada del rendimiento en la representacion y prediccion de los valores RSSI para un punto en especifico. Una semilla
aleatoria fija es establecida para garantizar la reproducibilidad de los resultados, asegurando que las divisiones y otros

procesos aleatorios sean consistentes entre ejecuciones.

Los 3 modelos mencionados se entrenaron por cada punto, siguiendo un método de validacién cruzada como se muestra en
el algoritmo B.2

1. Definir funcién para cédlculo del ancho de banda (Silverman):
def silverman_bandwidth(data):
return 0.9 * min(std(data), iqr(data) / 1.34) * len(data) *x (-1 /
5)

2. Cargar y preprocesar datos:
- Leer datos desde archivo CSV.
- Filtrar valores donde distancia > O.

- Dividir datos en "X" (distancia) e "y" (RSSI).

3. Configurar validacidén cruzada:
- Usar K-Fold con 5 divisiones.

- Inicializar estructuras para almacenar métricas de cada modelo.

4. Proceso de validacidén cruzada:
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for fold in kfold:

Dividir datos en entrenamiento y prueba (train/test).

# Modelo 1: Distribucién Normal
Calcular media y desviacidén estandar de y_train.
Generar datos simulados (distribucién normal).

Calcular métricas: KL, Wasserstein.

# Modelo 2: KDE
Configurar busqueda en malla:
kernels = ["gaussian", "tophat", "epanechnikov"]
bandwidths = rango calculado por Silverman.
Realizar GridSearch para ajustar mejor modelo KDE.
Generar datos simulados.

Calcular métricas: KL, Wasserstein.

# Modelo 3: VBGMM
Configurar busqueda en malla:

n_components = [1, 2, 3]

covariance_types = ["full", "tied", "diag", "spherical"]
Realizar GridSearch para ajustar mejor modelo VBGMM.
Generar datos simulados.

Calcular métricas: KL, Wasserstein.

5. Reportar resultados promedio:
- Calcular promedio de métricas (KL, Wasserstein) para cada modelo.

- Imprimir resultados para comparar desempefio.

Algoritmo 3.2: Entrenamiento de modelos para balancear los datos

Estos modelos permitieron generar puntos de datos sintéticos para los 15 puntos donde se realizaron las mediciones, re-
flejando con precision la variabilidad inherente observada. La implementacion se realizo con un script en Python 3.11.3',
utilizando GridSearchCV de Scikit-learn 1.2.28 para una busqueda en malla y empleando validacion cruzada para evaluar el
desempeiio de cada propuesta. Para KDE, se optimizaron los hiperparametros de ancho de banda, calculados mediante la
regla de Silverman, y el tipo de kernel («gaussian», «tophat», «epanechnikov»), determinando asi la mejor combinacion para
generar valores sintéticos representativos mediante este método. En el modelo VBGMM, se establecié automaticamente la
configuracion de un nimero maximo de componentes adecuado a la cantidad de valores unicos presentes en los datos que
corresponden a la particion de entrenamiento durante el proceso de ajuste del método y también se probaron diferentes
tipos de covarianzas («full», «tied», «diag», «spherical») a través de "Grid Search". Este proceso asegur6é que los datos ge-
nerados reflejaran las propiedades estadisticas originales y mejoraran la representacion de dreas con datos insuficientes,
equilibrando el conjunto para su posterior uso.

Thttps;//www.python.org/downloads/release/python-3113
2https://scikit-learn.org/].Z/install.htnﬂ
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3.1.4 Aumento de datos para puntos no medidos

Se comparan tres métodos diferentes para generar informacion correspondiente a puntos no conocidos: basado en datos,
basado en teoria e hibrido. Se determina el mejor durante el entrenamiento y la inferencia.

Método Basado en Datos Este método recibe su nombre debido a los modelos que utiliza con capacidad de aprender, de
manera supervisada, la informacion subyacente en los datos al ser entrenados con ellos. Su éxito radica en la complejidad
y capacidad de ajuste de sus estructuras. Los modelos entrenados con el conjunto de datos seleccionado se utilizan para
predecir valores de RSSI en funcion de las distancias al gateway. Este método permite generar predicciones basadas Unica-
mente en el valor de la distancia, haciendo posible la estimacion de valores de RSSI para otras distancias calculadas a partir
de cualquier punto con coordenadas de latitud y longitud conocidas hasta las coordenadas del gateway.

La herramienta Regression Learner de MATLAB R2024af se selecciono por su facilidad de implementacion y su capacidad
para probar varios modelos de regresion. De entre los modelos entrenados, se utilizo y seleccion6 aquel que obtuvo el mejor
desempeiio en el conjunto de datos empiricos. Para los entrenamientos realizados con la herramienta, se aplicé una técnica
de validacion cruzada con una configuracion de 5 pliegues preconfigurada en MATLAB, reservando el 10 % de los datos para
probar el modelo mejor ajustado.

Una vez que se entrenan los diversos modelos ofrecidos por la herramienta y se selecciona el mejor basado en la métrica
de RMSE, se procede con la siguiente etapa. Dado que la herramienta no implementa validacion cruzada por grupos, se
exporta la funcion del mejor modelo, la cual puede ser utilizada posteriormente para realizar un reentrenamiento "manual”
en MATLAB. Este reentrenamiento permite definir reglas especificas en un codigo personalizado, asegurando que se respeten
las agrupaciones naturales de los datos. Esto significa que las mediciones pertenecientes a un mismo grupo no se mezclen
durante los procesos de entrenamiento y prueba.

Este enfoque combina la facilidad de entrenamiento de maltiples modelos que ofrece MATLAB con un reentrenamiento
personalizado, garantizando que se respete a estructura inherente de los datos. En los casos en Los que no existan multiples
grupos en los datos de entrenamiento, se opta por la validacion cruzada tradicional K-Fold para evaluar el rendimiento del
modelo. A continuacion, se describen los modelos de regresion utilizados brevemente:

Método Basado en Teoria (Intercepto Flotante) Se fundamenta en reglas inherentes de la fisica como el comportamien-
to de la propagacion de ondas en la naturaleza. Los modelos que utiliza , tradicionalmente se ajustan sobre mediciones
empiricas. EL modelo escogido para la representacion del método es "Intercepto Flotante”.

Este modelo es una variante del modelo de pérdida de trayectoria de log-distancia, se selecciono de un proceso de explora-
cion del panorama del estado del arte de modelos de propagacion que respaldan las redes LoRa, especificamente modelos
de propagacion empiricos cominmente utilizados en sistemas de comunicacion y cuyo desempeno se evalud en diversos en-
tornos como exteriores, interiores y en vegetacion. Este modelo destaca la prevalencia del decaimiento logaritmico presente
en la naturaleza de la propagacion de sefales, el cual también esta presente en la mayoria de los modelos de propagacion
explorados.

3 https://la.mathworks.com/products/new_products/release2024a.html
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Tabla 3.4: Modelos de Regresién y sus Descripciones

Modelo de Regresion Descripcion

Support Vector Machines (SVM) Encuentra un hiperplano que maximice el margen tolerado de error en los
datos. Se utiliza por su capacidad para manejar datos de alta dimensionalidad
y su flexibilidad al incorporar kernels [28].

Gaussian Process Regression Models  Modelos no paramétricos que definen una distribucion sobre funciones y son
Gtiles para la prediccion con incertidumbre cuantificada. Se utilizan en proble-
mas complejos debido a su flexibilidad [29].

Kernel Approximation Regression Emplean técnicas como las caracteristicas de Fourier aleatorias para aproxi-

Models mar funciones kernel complejas[30].

Ensemble of Trees Combinan multiples arboles de decision para mejorar la precision y reducir el
riesgo de sobreajuste. Son robustos frente a datos ruidosos [31].

Regression Trees Dividen iterativamente los datos en subconjuntos homogéneos segtn las ca-
racteristicas, lo que los hace intuitivos y efectivos para capturar relaciones no
lineales [32].

Neural Networks Modelos de aprendizaje profundo que pueden capturar relaciones complejas
entre variables mediante arquitecturas jerarquicas. Son utiles para datos de
gran escala y patrones altamente no lineales [33].

El modelo esta conformado por un término de intercepto ajustable «, un término correspondiente a la pendiente 3 de la
linea y un componente de decaimiento logaritmico, que representa el comportamiento de la fuerza de la seiial promedio
medida a medida que aumenta la distancia entre el receptor y el transmisor. Ademas, incorpora una distribucion log-normal
cerca de la media para capturar el ruido, lo que mejora su capacidad para ajustarse a datos empiricos, como se representa
en la ecuacién B.2

PL(d) = a + 10810g,0(d) + X, (32)

Utilizando un proceso de validacion cruzada por grupos, GroupKFold, que mantiene la estructura subyacente de agrupacion
de los diversos datos tomados en cada punto, se dividieron los datos en los pliegues correspondientes de entrenamiento
y prueba, asegurando que las mediciones del mismo grupo no se mezclaran y evitando asi la fuga de informacion. En los
casos donde los datos de entrenamiento no presentan multiples grupos o agrupaciones naturales, se emplea la validacion
cruzada tradicional K-Fold.

Posteriormente, se calculan los residuales basados en la diferencia entre la prediccion del segmento de modelo ajustadoy
los datos reales del "fold", y sobre estos se calculd la desviacion estandar. Luego, se introduce una distribucion gaussiana
ajustada con media cero y la desviacion estandar de los residuales calculados; se procede a generar ruido aleatoriamente
siguiendo dicha distribucion y agregarlo a la prediccion del segmento ajustado, completando asi la prediccion del modelo.
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Alincorporar esta distribucion de ruido modelada, el modelo busca simular condiciones del mundo real de manera mas pre-
cisa, capturando aspectos que los términos y componentes logaritmicos no pudieron. Finalmente, se calcularon las métricas
comparando con los datos de prueba de cada iteracion, se promediaron las métricas a lo largo de todos los "folds” para eva-
luar la eficacia general del metodo, y se identifico y guardd los parametros del modelo con la mejor distancia de Wasserstein
para su futura implementacion. EL proceso se muestra en el Algoritmo B.3.

1. Importar bibliotecas y definir funciones clave:
- Definir PDF de distribucién normal.
- Definir modelo de RSSI como: RSSI = alpha + 10 * beta * loglO(Distance
) o

2. Cargar y preprocesar datos:
- Leer archivo CSV.
- Filtrar filas con distancia > O.

- Dividir en "X" (distancia), "y" (RSSI) y "groups".

3. Configurar validacién cruzada por grupos (GroupKFold):

- Dividir en n pliegues respetando los grupos definidos.

4. Loop principal sobre cada pliegue:
for cada fold in GroupKFold:
a) Dividir datos en entrenamiento y prueba (train/test).
b) Ajustar modelo logaritmico al conjunto de entrenamiento:
- Estimar parametros alpha y beta.
c) Calcular residuos en entrenamiento y desviacidén esténdar.
d) Generar predicciones finales en prueba:
- Modelo logaritmico + ruido basado en desviacidén estéandar.
e) Calcular distancia de Wasserstein:
- Comparar distribuciones reales y generadas.
f) Comparar la distancia de Wasserstein con la mejor registrada:

- Si mejora, guardar pardmetros alpha, beta y desviacidén estéandar

5. Almacenar resultados:
- Guardar parametros o6ptimos segun distancia de Wasserstein.

- Calcular promedio de distancia de Wasserstein sobre todos los pliegues

### Configuraciones del modelo:
- Ajuste del modelo logaritmico: alpha, beta.
- Métrica utilizada:
- Distancia de Wasserstein: Comparar distribuciones reales y generadas.

Algoritmo 3.3: Entrenamiento de modelos del metodo basado en teoria.

21



3 Metodologia

Método Hibrido (Intercepto Flotante + KDE/VBGMM) Combina las capacidades del método basado en teoria con el méto-
do basado en datos, al emplear modelos de ambos, como se muestra en el Algoritmo B.4. Se combina el modelo de "Intercepto
Flotante” junto con el modelo de "Estimacion de densidad de kernel (KDE)" o "Modelos de mezcla Gaussiana Bayesia-
nos (VBGMM)". Este método aprovecha las fortalezas de ambos modelos, aprendiendo la distribucion subyacente de los
residuales con un modelo distinto al de una variable normal, caracteristico del modelo tradicional "Intercepto Flotante”.

Para probar este método se realiza un proceso de validacion cruzada por grupos, GroupKFold. En las iteraciones de este
proceso, se ajusta el segmento del modelo de intercepto flotante, pero con la diferencia en la forma de ajustar un modelo
sobre los residuales, proponiéndose utilizar dos modelos: KDE y VBGMM. En los casos donde los datos de entrenamiento no
presentan maltiples grupos o agrupaciones naturales, se emplea la validacion cruzada tradicional K-Fold.

En el caso de KDE, se utiliza el ancho de banda de Silverman para obtener un valor 6ptimo y una configuracion de busqueda
de hiperparametros (ancho de banda y tipo de kernel) mediante una busqueda en malla. Por otro lado, en el caso de VBGMM,
se determina el nimero maximo de componentes basado en la cantidad de valores de residuales nicos y, de igual manera,
mediante una basqueda en malla, se optimizan los hiperparametros (nimero de componentes y tipo de covarianza).

Finalmente, para ambos casos, se realizan las predicciones de los modelos y se suman a las predicciones del segmento del
modelo logaritmico ajustado. Se calculan las métricas correspondientes para evaluar el rendimiento del modelo en cada
"fold"” y se identifica el "fold” con la mejor distancia de Wasserstein como métrica para guardar sus parametros y exportar
el modelo para su implementacion. Los procesos se muestran en el Algoritmo @.

1. Importar bibliotecas y definir funciones:
- Funcién logaritmica: RSSI = alfa + 10 * beta * loglO(Distance).

- Funcién de ancho de banda Silverman para KDE (opcional).

2. Cargar y preprocesar datos:
- Leer archivo CSV.

- Filtrar distancias <= 0.

n n

- Dividir en "X" (distancia), "y" (RSSI) y "groups".

3. Configurar validacidén cruzada por grupos (GroupKFold) con 15 pliegues.

4. Loop principal sobre cada pliegue:
for cada fold in GroupKFold:
a) Dividir en conjuntos de entrenamiento (train) y prueba (test).
b) Ajustar modelo logaritmico en conjunto de entrenamiento:
- Optimizar parametros alfa y beta con ajuste de curvas.

c) Calcular residuos (ruido) del modelo logaritmico.

d) Modelar residuos con KDE o VBGMM:
- Opcidén 1: KDE
- Usar GridSearchCV para optimizar:
- Kernels: 'gaussian', 'tophat', 'epanechnikov'.

- Bandwidth ajustado con Silverman.
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- Generar ruido basado en KDE ajustado.
- Opcidén 2: VBGMM
- Usar GridSearchCV para optimizar:
- Namero de componentes: 1 a méximo Unico en residuos.
- Tipos de covarianza: 'full', 'tied', 'diag', 'spherical'.

- Generar ruido basado en VBGMM ajustado.

e) Predecir en conjunto de prueba:
- Sumar ruido generado a predicciones logaritmicas para obtener
predicciones finales.
f) Evaluar métricas:
- RMSE: precisidén de predicciones.
- Distancia de Wasserstein: similitud de distribuciones.
g) Actualizar mejor modelo si distancia de Wasserstein mejora:
- Guardar alfa, beta, modelo de residuos (KDE o VBGMM) y métricas

asociadas.

5. Guardar resultados:
- Parametros promedio: Wasserstein.

- Mejor modelo y configuraciones guardados para uso futuro.

Algoritmo 3.4: Entrenamiento de modelos del metodo hibrido.

Implementacién de aumento de datos para puntos no medidos

Para implementar el aumento de datos en puntos no medidos mediante la prediccion del modelo correspondiente al mejor
de los métodos propuestos, se desarrollo un codigo en Python que genera puntos alrededor de coordenadas establecidas.
Estas coordenadas se definen como el centro de un circulo en un plano bidimensional con un radio inicial de 50 metros. A
partir de este centro, se calculan nuevas coordenadas mediante incrementos de 10 grados alrededor del circulo, completando
una rotacion completa de 360 grados. Posteriormente, el radio del circulo se reduce en 10 metros, manteniendo el mismo
centro, y el proceso se repite, formando circulos concéntricos anidados. B2

Este método tiene como objetivo generar datos adicionales en dreas cercanas a las coordenadas establecidas, que seran
utilizados para entrenar el modelo de aprendizaje profundo destinado a la prediccion de coordenadas de latitud y longitud.
Las nuevas coordenadas generadas se utilizan para calcular la distancia al gateway mas cercano mediante la biblioteca
geopy (funcién geodesic). Estas distancias sirven como entradas para aplicar el método que demostrd el mejor desempefio
durante las pruebas, permitiendo realizar una prediccion para las nuevas ubicaciones de valores RSSI.

En el caso del gateway "itaca-upv-022", se selecciona como modelo optimo para la prediccion y aumento de datos el método
mixto que combina el modelo de Intercepto Flotante con VBGMM (Variational Bayesian Gaussian Mixture Models) para mode-
lar el ruido. Este modelo se entreno utilizando datos clusterizados mediante el método de clusterizacion sustractiva, debido
a su consistencia al mejorar las métricas de desemperio en los tres métodos propuestos. Aungue este mismo método mixto
también muestra un buen desempeiio en las métricas para los datos clusterizados mediante "Fuzzy C-Means”, se prioriza el
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Figura 3.7: Coordenadas circundantes anidadas a un punto objetivo para implementacion de la técnica de aumento de datos.

uso de la clusterizacion sustractiva por su superioridad consistente al equilibrar los datos en multiples experimentos.

Por otro lado, para el gateway "main-gtw-grc”, se opta por el modelo basado en datos, especificamente el modelo de regre-

sion, debido a que su estructura le permite desempefarse de manera adecuada con la cantidad limitada de datos disponibles.

Aligual que en el caso del gateway anterior, el criterio de seleccion esta basado en la consistencia al mejorar las métricas
cuando se utilizo el método de clusterizacion sustractiva. Este enfoque permite aprovechar de manera mas eficiente los

datos recolectados, asegurando resultados mas fiables en entornos de datos escasos.

31.5 Dataset Balanceado y Aumentado
Una vez realizada la comparacion de los tres métodos propuestos para la prediccion de valores RSSI en puntos no conocidos,

tanto para los datos sin clusterizar como para los clusterizados con los algoritmos mencionados anteriormente, asi como la

comparacion entre el mejor de los tres métodos propuestos para balancear los datos en puntos conocidos, se crean conjuntos
de datos para desarrollar la solucion de prediccion de coordenadas de latitud y longitud mediante un modelo de aprendizaje
profundo basado en redes neuronales de grafos (GNN), y se analiza como los métodos propuestos afectan el entrenamiento

del mismo.
Los conjuntos de datos se describen de la siguiente manera:

1. Datos originales recolectados en os 15 puntos, los cuales presentan un desbalance.
2. Datos balanceados en los 15 puntos, utilizando el método propuesto para el balanceo de datos en puntos medidos

(ver seccion B1.3).
3. Datos del conjunto 1, complementados con valores de RSSI generados mediante el método propuesto para elaumento

de datos en puntos no medidos (ver seccién B1.4), considerando ambos gateways.
4. Datos del conjunto 1, complementados con valores de RSSI generados mediante el método propuesto para el aumento

de datos en puntos no medidos (ver seccion ], considerando unicamente el gafeway con mayor cobertura y, por
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ende, mayor cantidad de datos (main-gtw-grc).

3.2 Arquitectura Basada en Grafos

Un grafo es una estructura matematica que se utiliza para modelar relaciones entre entidades. Estd compuesto por un
conjunto de nodos (también llamados vértices) y un conjunto de aristas (0 conexiones) que describen como los nodos estan
relacionados entre si. Los grafos son ampliamente utilizados en una variedad de dominios, como redes sociales, sistemas de
comunicacion y biologia computacional [34].

Las Redes Neuronales Basadas en Grafos (Graph Neural Networks, GNN) son modelos de aprendizaje profundo disefiados
para operar directamente sobre datos estructurados en forma de grafos. Estos modelos combinan la informacion incrustada
de los nodos y sus aristas, propagandola en iteraciones denominadas capas sobre la red, mediante un mecanismo conocido
como "message passing” B.9. Este proceso permite que la informacion se intercambie entre los nodos de un grafo, facilitando
el aprendizaje de representaciones enriquecidas que capturen tanto las propiedades individuales de los nodos como las
relaciones entre ellos. Esto hace posible que las GNN aprendan representaciones utiles para tareas como la clasificacion
de nodos, la prediccion de enlaces y la regresion [35, 36]. Las GNN son particularmente efectivas en problemas donde las
relaciones entre las entidades son tan importantes como las caracteristicas individuales de estas [37]. Gracias a la capacidad
de generalizacion de las GNN a topologias variables de grafos durante el entrenamiento y la inferencia (siempre que las
dimensiones de los atributos sean consistentes), estas se integran de manera eficiente con la arquitectura LoRaWAN vy su

naturaleza de recepcion de mensajes variante.

1. Importar bibliotecas y definir funciones clave:
- Definir la funcién "AGGREGATE":
* Toma como entrada las representaciones de los nodos vecinos.
* Retorna un mensaje agregado para el nodo objetivo.
- Definir la funcidén "UPDATE":
* Toma como entrada la representacidén previa del nodo y el mensaje agregado.

* Devuelve la nueva representacién para el nodo.

2. Cargar e inicializar datos:
- Definir el grafo G = (V,E) con nodos V y aristas FE.
- Asignar las representaciones iniciales: {A\" :veV}.

- Especificar el nimero de iteraciones K.

3. Bucle principal de propagacidén de mensajes (Message Passing):
for k in range(1l, K+1):
for v in V:
m® = AGGREGATE({ AL & uw in N(v) D)
h = uPDATE (b ™Y, m®)

4. Almacenar y devolver resultados:

- Guardar o retornar las representaciones finales: {h\") :veV}.

Algoritmo 3.5: "Message Passing” en una GNN.
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A continuacion, se describe el proceso de creacion de una red neuronal basada en grafos (GNN) para predecir las coordenadas

de latitud y longitud de un nodo transmisor en la red LoRaWAN. Esta metodologia, inspirada en los conceptos de redes

convolucionales en grafos [35] y aprendizaje representacional en grafos de gran escala [37], permite modelar las relaciones

entre un nodo transmisor y dos gateways receptores.

Modelado de grafos

Los metadatos de un proceso de comunicacion de un dispositivo en una red LoRaWAN fue reestructurada mediante un codigo

en Python y los datos que seran de entrada para la red estaran organizados en archivos JSON. Cada archivo contiene infor-

macién necesaria para representar un grafo, incluyendo nodos, aristas y etiquetas. A continuacion, se describe cada elemento

clave:

+ Nodos: Representan los dispositivos transmisores (devices) y los gateways. Los gateways tienen atributos conocidos

de latitud y longitud, mientras que los dispositivos tienen estos valores vacios, ya que seran predichos por la red.
Cada nodo incluye los siguientes campos:

id: Identificador anico del nodo.

type: Tipo del nodo, que puede ser gateway o device.

latitude y longitude: Coordenadas geograficas (solo para gateways).

latitude_label y longitude_label: Coordenadas reales del dispositivo transmisor (solo para devices, usadas
como etiquetas en el entrenamiento).

[noitemsep, topsep=0pt]

« Aristas: Representan las conexiones entre dispositivos y gateways. Cada arista incluye:

- source y target: Nodos conectados por la arista.

- rssi: Indicador de fuerza de la senal recibida entre el dispositivo y el gateway.

Un ejemplo de un archivo JSON se muestra a continuacion B.6.

{
"nodes": [
{"igq": "G1", "type": "gateway", "latitude": 39.4787, "longitude":
-0.3338},
{"id": "D1", "type": "device", "latitude_label": 39.4841, "
longitude_label": -0.3455}
1,
"edges": [
{"source": "D1", "target": "G1", "rssi": -122.0}
]
}

Algoritmo 3.6: Ejemplo de archivo JSON para la representacion de un grafo.
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En este contexto, cada gafeway puede representarse como un nodo, mientras que un dispositivo (device) dentro del drea
de cobertura de la red que envia un mensaje modulado serd recibido por varios gafeways circundantes. Esto hace que la
cantidad de nodos (gafeways que receptaron el mensaje) sea variable, con cada uno aportando valores de RSSI, latitud y
longitud. Esta flexibilidad se traduce en una estructura de grafo adaptable, donde el nimero de nodos gafeways depende
de cuantos escucharon el mensaje. Estos nodos variables pueden ingresar a la red GNN y participar en la prediccion de la
latitud y longitud de un dispositivo que ha transmitido un mensaje, mejorando la capacidad de inferencia de la arquitectura.
Un grafo G = (V, E) se define formalmente como:

« V: Conjunto de nodos, donde cada nodo v € V representa un device o un gateway.

- E: Conjunto de aristas, donde cada arista e;; € E conecta un nodo v; con un nodo v;. Cada arista esta asociada a
un atributo rssi;;, que representa la fuerza de la sefial entre el dispositivo y el gateway.

Esta definicion permite incorporar informacion espacial y relacional entre dispositivos y gateways, lo cual es fundamental
para la tarea de prediccion de coordenadas geograficas.

Para transformar los datos provenientes de archivos JSON en grafos compatibles con PyTorch Geometric, se sigue un proceso
organizado en tres etapas principales:

1. Procesamiento de nodos:
+ Los nodos de tipo gatewaytienen como atributos iniciales sus coordenadas geograficas de latitud y longitud.

« Los nodos de tipo deviceinician con atributos vacios representados como (0, 0), ya que sus coordenadas seran
predichas por el modelo durante el entrenamiento.

2. Procesamiento de aristas:

« (ada arista conecta un nodo de tipo devicecon un nodo gateway, utilizando como atributo el valor del Indicador
de Fuerza de la Seiial Recibida (RSSI, por sus siglas en inglés).

3. Creacion de etiquetas (labels):

« Los nodos de tipo device tienen como etiquetas las coordenadas reales de latitud y longitud definidas en el
archivo JSON, las cuales son utilizadas como el objetivo durante el entrenamiento.

Este proceso modela grafos con estructuras flexibles y adaptables a distintas configuraciones de datos, ya que varian en
numero de nodos y aristas. Un ejemplo se muestra en la Figura @.
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Atributo de Nodo
(Dispositivo):
(Latitud , Longitud)

Atributo de

Arista: RSSI

Figura 3.8: Grafo generado a partir de datos JSON. Los nodos morados representan dispositivos (device) con atributos vacios,
mientras que los nodos amarillos representan gafeways con coordenadas conocidas. Las aristas indican conexiones con
valores de RSSI como atributos.

3.21 Red GNN Propuesta

La solucidn propuesta se basa en una arquitectura de red que emplea dos mddulos principales: Una capa del mecanismo de
propagacion de mensajes (/message-passing) @ y un modulo de prediccion de coordenadas, juntos permiten la prediccion
de latitud y longitud a nivel de nodo. El modulo de propagacion de mensajes describe coémo se intercambia la informacion
entre los nodos a través de las aristas para actualizar sus representaciones de acuerdo al siguiente esquema:

mij = ReLU(Wo, - (; + ei5 + x5)), (33)
hp = RelU(Wy - > myj), (34)
JEN(D)

donde:

* ;. Mensaje propagado desde el nodo j al nodo <.

h;: Representacion actualizada del nodo <.

* x;,x;: Representaciones iniciales de los nodos z y .

* e;;: Representacion del atributo de la arista entre ¢ y 7.
« W, y W,,: Matrices de pesos aprendibles.
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Una vez que el mddulo de propagacion de mensajes obtiene la representacion final del dispositivo, proceso llevado a cabo
por las capas de la red GNN, la representacion se alimenta a un perceptron multicapa (MLP) que predice los valores :

(1at, lon) = MLP(hgeice), (35)

donde lét, lon son las coordenadas estimadas. Durante el entrenamiento, a partir de esta representacion final se calcula el
error y se aplica el descenso de gradiente en el espacio del error especifico. Posteriormente, mediante retropropagacion, se
actualizan los pesos correspondientes de las neuronas presentes en la arquitectura de la red.

3.2.2 Entrenamiento de la GNN

Los experimentos se llevaron a cabo en un sistema de computacion de alto rendimiento (High-Performance Computing, HP()
equipado con cuatro GPUs NVIDIA TESLA A100, cada una con 40 GB de memoria VRAM. Los recursos computacionales fueron
proporcionados por la Corporacion Ecuatoriana para el Desarrollo de la Investigacion y la Academia (CEDIA). La implemen-
tacion del modelo se realizo utilizando PyTorch 2.018 y Python 3.88.

Division de Datos

La particion de los datos se realizo asignando el 80% de las muestras para el entrenamiento y el 20% para las pruebas.
Adicionalmente, se empleo validacion cruzada estratificada (Stratified K-Fold Cross Validation) con 5 grupos, garantizando
que la distribucion de las clases se mantuviera uniforme en cada pliegue [38].

Métricas de Evaluacion

Para evaluar el desempeiio del modelo, se utilizaron las siguientes métricas:

+ Error cuadratico medio (RMSE): Esta métrica mide la desviacion promedio de las predicciones respecto a los valores
reales, penalizando errores grandes. Su formula es:

1< X
RMSE = 52(% —4;)%, (36)
=1

donde g; representa el valor real, g; la prediccion y »n el nimero total de muestras.

- Distancia Euclidiana Promedio: Esta métrica mide la distancia promedio entre las coordenadas reales y las predi-
chas, calculada como:

1 n
d=—2 V(@i — &)+ (v — 5% B7)
=1

donde (z;, y;) son las coordenadas reales y (Z;, ¥;) son las predicciones del modelo.

4https://pytorch.org/get-started/pvtorch-Z.O/
5 https://www.python.org/downloads/release/python-380,
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Tunning de Hiperparametros

Para el entrenamiento de la red GNN, se Llevé a cabo un proceso iterativo de busqueda de hiperpardmetros, en el cual se
modifico el rango de busqueda para el nimero de neuronas en las capas ocultas y la tasa de aprendizaje (/earning rate).
Cada vez que se ejecutaba dicho proceso, se realizaba una busqueda de hiperparametros utilizando las bibliotecas Optuna
B y RayTuneﬂ. En concreto, Optuna se encarga de llevar a cabo el muestreo bayesiano en el rango de hiperparametros
definido, mientras que RayTune implementa el entrenamiento de los diversos experimentos con las configuraciones co-
rrespondientes. Asi, Optuna trabaja con el rango establecido en RayTune e implementa el muestreo bayesiano de dichos
hiperparametros. Por su parte, RayTune se encarga del entrenamiento del modelo en cada experimento, del calculo y
reporte de métricas, y de la finalizacion de aquellos experimentos que no resultan prometedores. Para ello, se configurd
un experimento con 50 pruebas, cada una limitada a un maximo de 100 épocas, habilitando la detencién temprana (early
stopping).

Una vez finalizado este procedimiento y entrenadas las épocas necesarias, el proceso se repitio ajustando el centro del rango
especificado en Optuna para refinar aun mas la busqueda de dichos hiperparametros y, de este modo, explorar con mayor
detalle el espacio de valores potenciales que pudieran mejorar el entrenamiento del modelo.

Al concluir los experimentos, se selecciono la configuracion con el mejor desempefio y se establecié como la configuracion
predeterminada para el aprendizaje de la red. A partir de ella, se incremento la cantidad de épocas de entrenamiento con el
fin de examinar si una mayor duracion del proceso mejoraba Los resultados.

Este procedimiento se aplico a cuatro propuestas del conjunto de datos: Balanceado, no balanceado, aumentado para ambos
gateways y aumentado dnicamentepara el gateway itaca-upv—022. Finalmente, tras identificar la mejor configuracion,
se fijaron los hiperparametros 0ptimos y se aumento el nimero de épocas de entrenamiento.

EL optimizador elegido para el entrenamiento de los experimentos fue AdamW, debido a su amplia utilizacion en trabajos
relacionados con el estado del arte. Este proceso permitio optimizar el modelo, mejorando su precision en la prediccion de
las coordenadas objetivo.

®https;//optuna.org)
7ht'rps://d0cs.ray.io/en/latest/tune/index.html
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Resultados

Una vez implementados los diferentes procesos descritos en la metodologia para realizar el balanceo de datos en puntos
medidos y el aumento de datos en puntos no medidos, asi como también el desarrollo de la red GNN y su entrenamiento, se
presentan a continuacion los resultados obtenidos, los cuales reflejan el impacto de la solucion propuesta.

41 Clustering

A continuacion, se presentan los resultados obtenidos al aplicar distintos métodos de clustering a los puntos de datos, con
el fin de agruparlos segun sus caracteristicas y ubicacion. Se muestra como cada método identifica patrones y distribuciones
relevantes en el entorno analizado.

411 Clustering Fuzzy C-Means

El algoritmo Fuzzy C-Means (FCM) agrupa los datos asignando a cada punto un grado de pertenencia a multiples clusteres,
permitiendo una representacion mas flexible del entorno. Como se muestra en las Figuras .1y ., para el gateway "itaca-
upv-022" se formaron dos clusteres: el primero incluye los puntos del 1al 7, mientras que el segundo abarca del 8 al 15,
posiblemente influenciados por la distancia al gateway. Por otro lado, para el gateway "main-gtw-grc”, se formaron cuatro
closteres: uno para el punto 1, otro para el punto 2, otro para el punto 3,y un cuarto que incluye los puntos del 4 al 6. Estas
divisiones reflejan como el algoritmo captura patrones espaciales y distribuciones de los datos en funcion de su proximidad
a los gateways.
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{ Clustering Fuzzy C-Means
Gateway "itaca-upv-022"

.@gotlgle Eaf

A

Figura 4.2: Puntos de Datos Agrupados por Fuzzy C-Means.

412 Clustering Substractivo

EL clustering sustractivo identifica regiones de alta densidad en los datos y asigna los centros de los clisteres de manera
eficiente, minimizando la necesidad de ajustes manuales y adapténdose de forma robusta a tamafios de clusteres variables.
Como se observa en las Figuras .3 y o4, este método produce agrupaciones que reflejan la distribucion espacial de los datos.
Para el gateway "main-gtw-grc", se formaron cuatro clusteres: los puntos 4, 5y 6 se agruparon en un cluster, mientras que
los puntos 1, 2 y 3 formaron clusteres individuales. En el caso del gateway "itaca-upv-022", se generaron cuatro clasteres:
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el primero incluyod los puntos 2, 5, 7, 8, 9 y 10; el sequndo agrupo los puntos 1, 3 y 6; el tercero abarco los puntos del 11 al
15, mientras que el punto 4 se asigno a un claster independiente. Estas agrupaciones reflejan como este enfoque captura
eficientemente las concentraciones de datos, adaptandose a la complejidad del entorno y la distribucion de los puntos.

Clustering Substractivo g/
Gateway "itaca-upy-022"
/ T

Figura 4.4: Puntos de Datos Agrupados por Clustering Substractivo.
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413 Clustering Subjetivo

EL clustering subjetivo propuesto agrupa los puntos de datos en clasteres predefinidos centrandose en una region alrededor
del punto de interés y analizando las caracteristicas de la imagen como el nivel de intensidad de los pixeles y presencia de
obstaculos mediante una verificacion visual. Como se ilustra en las Figuras .3 y .6, este enfoque categoriza los puntos en
funcion de su ubicacion relativa a entornos urbanos o de vegetacion. Para el gateway "itaca-upv-022", los puntos 1al 7, 9,
10,12, 14 y 15 fueron clasificados como parte del claster urbano, mientras que los puntos 6, 8 y 11 se agruparon en el cluster
de vegetacion. En el caso del gateway "main-gtw-grc”, los puntos 1al 6 fueron categorizados como urbanos, con el punto 6
también incluido en el cluster de vegetacion.

o ve— .
Clustering Substractivo
Gateway "main-ghw-gre"

Figura 4.6: Puntos de Datos Agrupados Subjetivamente.
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4.2 Balanceo de datos

En esta seccion se presentan los resultados obtenidos al implementar la metodologia de balanceo de datos para los gateways
“itaca-upv-022" y “main-gtw-grc".

En las Tablas E y @, se presenta la distribucion inicial de las mediciones por gateway antes de aplicar el proceso de
balanceo, destacando en la columna "Cantidad” el desequilibrio existente. EL balanceo se realizd utilizando el mejor modelo
ajustado para cada punto de medicion, segan la distribucién de los datos evaluada. Este proceso permitié generar datos
adicionales que equilibran las distribuciones de datos por punto, optimizando asi las condiciones del conjunto de datos para
el posterior entrenamiento del modelo GNN. A continuacion, se describen los detalles de las métricas de evaluacion y el
impacto del balanceo en las caracteristicas de los datos.

La Tabla f&.] muestra los resultados previos al balanceo para el gateway “itaca-upv-022”, incluyendo la cantidad de datos
disponibles por punto y las métricas de evaluacion:

« KL (Divergencia de Kullback-Leibler): Cuantifica la diferencia entre la distribucion de los datos en cada punto y una
distribucion objetivo, evaluando su similitud.

+ WS (Distancia de Wasserstein): Mide la discrepancia entre las distribuciones de datos, proporcionando una métrica
de proximidad.

» Normal, KDE (Kernel Density Estimation) y VBGMM (Variational Bayesian Gaussian Mixture Model): Representan
los enfoques aplicados para modelar las distribuciones.

(Cada fila de la tabla corresponde a un punto de medicion, destacando en la columna Enfoque el modelo con mejor desem-
pefo segln las métricas. Las celdas resaltadas en verde indican los mejores resultados en KL, mientras que las celdas rojas
corresponden a los mejores valores en WS.

De manera similar, la Tabla [ presenta los resultados del gateway “main-gtc-grc”. Se incluyen las métricas KLy WS junto
con los enfoques aplicados, identificando el modelo 6ptimo para cada punto de medicion. Estas tablas ofrecen una base cuan-
titativa para seleccionar las distribuciones mas representativas y garantizar un balanceo de datos adecuado, fortaleciendo
el conjunto de datos para el entrenamiento del modelo GNN.
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Tabla 4.1: Cantidad de data y Evaluacion de métricas previo al balanceo para Gateway “itaca-upv-022". Abreviaciones: WS =

Wasserstein, KL = Divergencia de Kullback-Leibler, KDE = Kernel Density Estimation, VBGMM = Variational Bayesian Gaussian

Mixture Model.
Puntos Cantidad Normal KDE VBGMH Enfoque
KL ws KL WS KL Wws
Punto 1 10 117203 085 8.9461 06 9.3831 06 KDE
Punto 2 43 61928 09279 | 63253 10168 | 61317 08473 | VBGMM
Punto 3 58 58369 07828 | 59425 09054 | 58369 06816 | VBGMM
Punto 4 43 10203 16923 | 98592 24106 | 10.4464  1.4612 KDE
Punto 5 98 79875 15995 | 91098 12536 | 91587 1784 | Normal
Punto 6 63 92143 24035 | 81798 16493 | 92143 24035 | VBGMM
Punto 7 59 85456 14075 | 5288 08197 | 5288 08197 KDE
Punto 8 99 32912 2493 | 35718 09413 | 35718 073 VBGMM
Punto 9 79 39112 2493 | 73653 16439 | 73653 16439 | Normal
Punto 10 92 42724 10267 | 41758 0.95 42724 10267 KDE
Punto 11 100 4601 0.975 494 0925 | 27085 0715 | VBGMM
Punto 12 100 6192 1835 | 62038 1275 | 62038 1275 KDE
Punto 13 98 6.4534 13984 | 77107 15732 | 73515 15199 | Normal
Punto 14 69 1.0038 25218 | 101009 21014 | 106431 21014 | VBGMM
Punto 15 97 77756 1557 | 63288 10784 | 6.4151 13441 KDE

Tabla 4.2: Cantidad de data y Evaluacion de métricas previo al balanceo para Gateway “main-gtw-grc”. Abreviaciones: WS =

Wasserstein, KL = Divergencia de Kullback-Leibler, KDE = Kernel Density Estimation, VBGMM = Variational Bayesian Gaussian

Mixture Model.
Puntos | Cantidad Normal KDE VBGMM Enfoque
KL WS KL WS KL WS
Punto1 90 18146 051 | 15895 0611 | 23274 0.4833 | VBGMM
Punto 2 92 2.3959 04533 | 26035 05243 | 09711 0.5565 KDE
Punto 3 81 32408 11997 | 1802 09425 | 29197 05273 | VBGMM
Punto 4 54 2.3145 05538 | 28968 06719 | 24615 05631 | Normal
Punto 5 53 16987 04305 | 16391 0.2892 | 15349 0.2892 | VBGMM
Punto 6 84 14107 03586 | 09566 03683 | 1.0026 0.2416 | VBGMM

4.3 Aumento de datos

En esta seccion, se presentan los resultados obtenidos al aplicar los métodos propuestos para generar datos adicionales en

puntos no medidos. Las métricas se analizan por separado para cada gateway, y los valores correspondientes se muestran
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en las Tablas .3 y fi4, permitiendo comparar el desempeiio de los diferentes métodos y su efectividad en el proceso de
aumento de datos.

431 Gateway “itaca-upv-022"

La Tabla f.3 presenta una comparacién de los métodos propuestos para el gateway "itaca-upv-022", utilizando la métrica
de distancia de Wasserstein (Promedio Wasserstein) como indicador del desempeiio. Las columnas presentan los métodos
evaluados y las filas estan organizadas segun el método de clusterizacion empleado.

Los valores reportados en la tabla corresponden al desempeiio durante el entrenamiento (utilizando datos del dispositi-
vo Heltec LoRa V3 + GPS) y en pruebas independientes (utilizando datos de un dispositivo arbitrario Rak2270). Las celdas
resaltadas en verde indican el mejor desempeio en cada fila, lo que permite identificar las configuraciones mas efectivas
para este gateway en particular. La tabla evidencia que los enfoques mixtos (especialmente con VBGMM) y el clustering
sustractivo obtienen mejores resultados en términos de la métrica evaluada.

Tabla 4.3: Comparacion de Métodos Utilizando Métricas Wasserstein [Promedio Wasserstein] para Gateway “itaca-upv-022".
Las celdas resaltadas en verde indican el mejor desempefio para cada fila.

Enfoque Data Driven (Regresion) | Theory Driven (Interceptos | Enfoque Mixto (Theory + Data Driven)
Flotantes + Normal para
Residuos)
KDE VBGMM
Sin Clustering
Entrenamiento (LoRa + GPS) 8.782303235 1.344776354 7.296920126 7585732852
Prueba (Sticker) 5483880645 5.451616129 6.774193516 6.064516129
Clustering Subjetivo
Entrenamiento (LoRa + GPS) 10.25878258 7.827831588 8.250962906 8.042963989
Prueba (Sticker) 8.258074194 5.580641935 6.533405018 5.401430466
Clustering FCM
Entrenamiento (LoRa + GPS) 8324019043 7.288801715 739350352 7629694982
Prueba (Sticker) 3.870977419 5193548387 4806441935 3.387106452
Clustering Substractivo
Entrenamiento (LoRa + GPS) 5480710605 5086002076 56417963 5.885922202
Prueba (Sticker) 5.3225741946 3483864516 3483874194 3.451625806

432 Gateway "main-gtw-grc"

La Tabla @ muestra el desempeno de los métodos propuestos para el gateway "main-gtw-grc” evaluados con la métrica
de distancia de Wasserstein. La clusterizacion tuvo un impacto positivo en las métricas durante el entrenamiento, pero su
efectividad en las pruebas depende de la cantidad y distribucién de datos disponibles. EL clustering sustractivo demostrd
ser el mas consistente en el entrenamiento. En este gateway, la limitada cantidad de datos llevo a que algunos clisteres
incluyeran solo un punto, lo que afectd negativamente a modelos rigidos como el de intercepto flotante. Esto resultd en
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predicciones poco precisas para distancias desconocidas, especialmente en métodos como los basados en teoria y mixtos
que hacen uso de este modelo.

Tabla 4.4: Comparacion de Métodos Utilizando Métricas Wasserstein [Promedio Wasserstein] para Gateway “main-gtw-grc”.
Las celdas resaltadas en verde indican el mejor desemperio para cada fila.

Enfoque Data Driven (Regresion) | Theory Driven (Interceptos | Enfoque Mixto (Theory + Data Driven)
Flotantes + Normal para
Residuos)
KDE VBGMM
Sin Clustering
Entrenamiento (LoRa + GPS) 6.384718261 2.757970652 2.895651087 2.654354783
Prueba (Sticker) 91 815 175 785
Clustering Subjetivo
Entrenamiento (LoRa + GPS) 6.38261087 2.31958587 2.53287587 2.413343696
Prueba (Sticker) 17 1272 127.85205 127.05
Clustering FCM
Entrenamiento (LoRa + GPS) 1213028043 0.925595 0.715049783 0.827107826
Prueba (Sticker) 13 460.00395 460.5 159.55
Clustering Substractivo
Entrenamiento (LoRa + GPS) 1.213028043 0.767676957 0.689180843 0.827107826
Prueba (Sticker) 13 460 4601155 159.55

4.4 Prediccion de Latitud y Longitud

En esta seccion se presentan los resultados obtenidos para la prediccion de latitud y longitud utilizando una red GNN. La Tabla
@ resume los mejores hiperparametros y las métricas de error asociadas a cada uno de los enfoques de datos utilizados:
No Balanceada, Balanceada, Aumentada, y Aumentada Gateway "itaca-upv-022". Estas métricas incluyen el Promedio
de Distancia (distancia euclidiana promedio), RMSE (Root Mean Square Error) y MAE (Mean Absolute Error), que cuantifican
la precision de las predicciones realizadas.

Para evaluar como la calidad y cantidad de los datos influyen en el desempefio de la red GNN, el modelo fue entrenado
utilizando diferentes versiones de los datos recopilados. Inicialmente, se emplearon los datos originales recolectados en los
15 puntos de medicion. Estos datos incluyen informacion del gateway de interiores "main-gtw-grc”, con cobertura en los
puntos 1al 6 debido a su alcance limitado, y del gateway de exteriores "itaca-upv-022", cuya cobertura abarca los puntos 1
al15y cubre la totalidad del drea de interés. Posteriormente, se aplicé la metodologia de balanceo de datos en los 15 puntos
medidos, utilizando para cada punto el mejor modelo ajustado a la distribucion especifica de los datos segun el gateway
correspondiente, y se procedio con el entrenamiento de esta data.

En una tercera etapa, se combinaron los datos originales desbalanceados de los 15 puntos con los datos generados mediante
la metodologia de aumento de datos propuesta para puntos no medidos. Para este propasito, se emple6 el mejor enfoque
identificado para cada gateway: un modelo mixto (Intercepto Flotante + VBGMM) para "itaca-upv-022" y un modelo basado
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en datos (regresion) para "main-gtw-grc”. Finalmente, se realizo un experimento adicional en el que solo se incluyeron los
datos aumentados para puntos no medidos correspondientes al gateway "itaca-upv-022", aprovechando su mayor cantidad
de datos recolectados para el desarrollo de su método de aumento de datos. Esta decision busco evitar la introduccion de
ruido al incluir predicciones para "main-gtw-grc”, que cuenta con una menor cantidad de datos disponibles en el desarrollo
de su método.

Se puede observar que el enfoque Aumentada Gateway "itaca-upv-022", presenta el menor error en términos de las tres
métricas evaluadas. Este modelo logré un Promedio de Distancia de 0.004379, un RMSE de 0.004810 y un MAE de 0.002692,
lo que evidencia su mayor capacidad para predecir con precision las coordenadas de latitud y longitud. Esto puede atribuirse
ala configuracion optima de hiperparametros, donde se utilizaron finalmente 20 épocas de entrenamiento y un learning rate
fino (0.000202), lo que sugiere que este enfoque es menos propenso al sobreajuste. Adicionalmente, el modelo se entrend
con una dimension oculta (hidden dim) de 413 neuronas.

Tabla 4.5: Mejores Hiperparametros y Métricas por para Cada Aproximacion de Data

Métrica No Balanceada | Balanceada | Aumentada | Aumentada Gateway
Hidden Dim 483 355 288 413
Learning Rate 0.001878 0.009841 0.000262 0.000202
Epochs 100 100 100 20
Promedio Distancia 0.01062 0.004547 0.004830 0.004379
RMSE 0.01m45 0.004908 0.005639 0.004810

MAE 0.006467 0.002798 0.002916 0.002692

Tabla 4.6: Mejores Hiperparametros y Métricas por para Cada Aproximacion de Data red 2 capas

Métrica No Balanceada | Balanceada | Aumentada | Aumentada Gateway
Hidden Dim 403 427 445 386
Learning Rate 0.000540 0.000572 0.000199 0.000300
Epochs 20 20 20 100
Promedio Distancia 0.026063 0.031767 0.004354 0.004358
RMSE 0.026159 0.032047 0.004793 0.004763

MAE 0.018156 0.017260 0.002690 0.002691

Las Tablas @ y @ muestra una comparacion detallada entre las coordenadas reales y las predicciones realizadas por cada
modelo GNN con 1y 2 capas respectivamente. Para el enfoque Aumentada Gateway "itaca-upv-022", las predicciones se
alinean mejor con los valores reales en comparacion con Los otros enfoques. Las predicciones correspondientes a los enfoques
No Balanceada y Balanceada presentan desviaciones significativas de las coordenadas reales. Las tablas .9y .10 muestra
en metros la distancia del error entre las coordenadas reales y los puntos inferidos por cada uno de los modelos de GNN.
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Tabla 4.7: Coordenadas Reales y Comparacion de Predicciones para Cada Aproximacion de Data,Red GNN con 1 capa

Reales No Balanceada Balanceada Aumentada Aumentada Gateway
Latitud Longitud Latitud Longitud Latitud Longitud Latitud Longitud Latitud Longitud
39.48266983 | -0.34633100 | 39.48001862 | -0.33449104 | 39.48103333 | -0.34017596 | 39.48056030 | -0.34051976 | 39.48065567 | -0.34353796
39.48075104 | -0.34716401 | 39.48001862 | -0.33449104 | 39.48103333 | -0.34017608 | 39.48056030 | -0.34051973 | 39.48065567 | -0.34353796
39.48308563 | -0.34297001 | 39.48002243 | -0.33449027 | 39.48102951 | -0.34017608 | 39.48055649 | -0.34051976 | 39.48065567 | -0.34353796
3948170090 | -0.34356800 | 39.48001862 | -0.33449057 | 39.48103333 | -0.34017608 | 39.48056030 | -0.34051988 | 39.48065567 | -0.34353796
3948006058 | -0.34491000 | 39.48001862 | -0.33449045 | 39.48103333 | -0.34017596 | 39.48056030 | -0.34051976 | 39.48065567 | -0.34353796

Tabla 4.8: Coordenadas Reales y Comparacion de Predicciones para Cada Aproximacion de Data, Red GNN con 2 capas

Reales No Balanceada Balanceada Aumentada Aumentada Gateway
Latitud Longitud Latitud Longitud Latitud Longitud Latitud Longitud Latitud Longitud
39.48266983 | -0.34633100 | 39.50023270 | -0.32465118 | 39.48384476 | -0.30975023 | 39.48056793 | -0.34074286 | 39.48064423 | -0.34017739
39.48075104 | -0.34716401 | 39.50023270 | -0.32465148 | 39.48384094 | -0.30975023 | 39.48056793 | -0.34074286 | 39.48064423 | -0.34017742
39.48308563 | -0.34297001 | 39.50023270 | -0.32465184 | 39.48384094 | -0.3097501 | 39.48056793 | -0.34074286 | 39.48064423 | -0.34017739
39.48170090 | -0.34356800 | 39.50023270 | -0.32465130 | 39.48384476 | -0.30975047 | 39.48056412 | -0.34074280 | 39.48064423 | -0.34017715
3948006058 | -0.34491000 | 39.50023270 | -0.32465178 | 39.48384476 | -0.30975023 | 39.48056793 | -0.34074286 | 39.48064423 | -0.34017739

Tabla 4.9: Errores en metros entre puntos reales y predicciones para cada aproximacion de datos en metros con Red GNN de
1capa

Punto | No Balanceada | Balanceada | Aumentada | Aumentada Gateway
1 1058.00 558.77 55110 328.05
2 1090.70 600.60 570.60 31.40
3 803.50 331.30 35116 274.56
4 798.70 493,60 290.70 116.25
5 894.30 420.45 380.90 135.07

Tabla 4.10: Errores en metros entre puntos reales y predicciones para cada aproximacion de datos en metros con Red GNN
de 2 capas

Punto | No Balanceada | Balanceada | Aumentada | Aumentada Gateway
1 268715 3146.80 534.20 575.30
2 272090 3189.45 55375 558.40
3 251560 2987.20 52110 540.85
4 2598.30 305590 499,65 526.70
5 2642.45 310215 512.80 56210

La Figura [¢.7 muestra la inferencia de los diferentes modelos para un solo punto, donde puede observar que el enfoque
Aumentada Gateway "itaca-upv-022" presenta una mejor aproximacion respecto al punto real, mientras que los otros
enfoques tienden a dispersarse mas.
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Figura 4.7: Inferencias de coordenadas de latitud y longitud de las diferentes redes de los diferentes métodos de Aproxima-
cion de Data.

Los resultados obtenidos en este estudio mostraron que el mejor desempefio en la prediccién de coordenadas para puntos
no vistos se obtuvo al utilizar el cuarto enfoque, que integra la metodologia de aumento de datos para el gateway "itaca-
upv-022" unicamente. Este resultado destaca el potencial de mejora del modelo a medida que se incrementan los datos
utilizados para entrenar la metodologia propuesta, evidenciando que una mayor cantidad de datos en el desarrollo de la
metodologia mejora las predicciones de tal manera que permite una adecuada generacion y balanceo de datos para optimizar
el desemperio del modelo GNN.

Ademas demuestran que una Red Neuronal Basada en Grafos (GNN) con una sola capa es mas efectiva para la prediccion de
coordenadas geograficas a partir de metadatos de RSSI en redes LoRaWAN, en comparacion con una arquitectura de mayor
profundidad. Se observo que la GNN de 1 capa logro errores significativamente menores, con valores que oscilan entre 116.25
m en la aproximacion Aumentada Gateway y 1090.70 m en la No Balanceada. En contraste, la GNN de 2 capas mostro un
incremento considerable en los errores, alcanzando hasta 3189.45 m en la aproximacion Balanceada, lo que sugiere una
pérdida de capacidad de generalizacion.

EL analisis sugiere que al aumentar la cantidad de capas en la arquitectura de la GNN, el modelo introduce ruido en lugar
de mejorar la captura de relaciones espaciales relevantes. En particular, las aproximaciones No Balanceada y Balanceada
experimentaron un incremento del error en un factor de 2.5 a 7.5 veces, indicando que la mayor profundidad de la red
podria estar capturando patrones irrelevantes en los datos de entrenamiento, Lo que perjudica la precision de a inferencia.
Esto es coherente con la naturaleza del problema, ya que la relacién entre RSSI y coordenadas geograficas no requiere una
representacion espacial altamente compleja, por lo que una arquitectura mas simple es suficiente para modelar la relacion
sefal-posicion sin incurrir en sobreajuste.
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Conclusion

El enfoque basado en teoria y el enfoque mixto superaron a los modelos basados Gnicamente en datos, a pesar de que estos
altimos cuentan con una mayor complejidad estructural. Si bien esta complejidad les permite adaptarse mejor a los datos
y obtener buenos resultados durante el entrenamiento, su rendimiento disminuy6 considerablemente al ser evaluados en
puntos no conocidos. Por el contrario, los enfoques tedricos y mixtos, que integran en su estructura el conocimiento fisico
del decaimiento logaritmico de las ondas durante su propagacion, demostraron un mejor desempefio en la prediccion de
valores en puntos no observados, aprovechando este conocimiento adicional para una generalizacion mas precisa.

No obstante, el rendimiento del enfoque basado unicamente en datos en escenarios con una cantidad limitada de informa-
cion puede ser aprovechado, ya que su estructura es mas adecuada para situaciones donde la variable de interés tiene un
caracter mas determinista y menos aleatorio, como podria ser en contextos diferentes a la prediccion de valores RSSI.

En este sentido, en escenarios donde los datos son escasos, los modelos basados en teoria tienden a ofrecer un desempefo
mas consistente, ya que dependen menos de las caracteristicas estadisticas de los datos y mds de principios matematicos o
fisicos bien fundamentados. Por otro lado, los enfoques mixtos, como los basados en KDE y VBGMM, destacan al combinar
los beneficios de los modelos tedricos con la capacidad de los modelos basados en datos para capturar patrones especificos.
Estas mejoras son especialmente evidentes cuando los datos son agrupados mediante procesos de *clusterizacion*, ya que
los modelos mixtos logran adaptarse mejor a escenarios con ruido o datos residuales, integrando informacion estructurada
y variabilidad inherente de manera efectiva. Esto refuerza su utilidad en contextos donde las caracteristicas de Los datos son
mas complejas 0 menos deterministas, como en la prediccion de valores RSSI.

La clusterizacion mostrd una influencia positiva en la prediccion final al considerar todos los enfoques propuestos para
ambos gateways. Suimplementacion reveld un patron de mejora en las métricas evaluadas tanto durante el entrenamiento
como en las pruebas. Sin embargo, esta influencia puede tornarse negativa dependiendo de la cantidad y distribucion de
los datos utilizados, tanto en el entrenamiento como en la prueba en puntos no conocidos. Esto se debe a la limitada y
deshalanceada cantidad de datos disponibles por punto al momento de realizar la agrupacion, lo que lleva a que algunos
algoritmos generen clasteres compuestos por datos de un unico punto. Esta situacion afecta negativamente a modelos
de estructura no flexible, como el de intercepto flotante, que requieren informacion de mdaltiples puntos para un mejor
desempeiio, perjudicando enfoques como el basado en teoria y el mixto que dependen de este modelo.

En particular, en los modelos basados en teoria, la métrica de Wasserstein mostro mejoras en los tres tipos de clustering
propuestos para el entrenamiento. Sin embargo, con los datos de prueba del gateway "main-gtw-grc”, el desempefio no fue
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satisfactorio debido a la escasa cantidad de informacién disponible tras la clusterizacién. En estos casos, el proceso de ajuste
de curvas (curve fitting) del modelo de intercepto flotante se realiza sobre clisteres que a menudo contienen un tnico punto,
equivalente a un solo valor de distancia. Esto provoca que el modelo aprenda a realizar el ajuste de curvas exclusivamente
sobre ese (nico dato, lo que, al predecir valores no conocidos del gateway, como en los datos de prueba, genera predicciones
para distancias desconocidas con errores muy altos en la métrica de Wasserstein.

Elenfoque de clustering subjetivo propuesto, aunque incluye un procedimiento cuantificable para la categorizacion, como el
conteo de pixeles en imdagenes y la verificacion de la presencia de elementos como arboles u otras estructuras que interfie-
ren en la transmision de sefiales, no logra un desempeo destacado. Aunque este método muestra algunas mejoras en las
métricas de ciertos enfoques planteados, su efectividad es inferior a la de algoritmos no supervisados que trabajan directa-
mente sobre los datos sin restricciones predefinidas de categorias. Estos algoritmos aprovechan caracteristicas subyacentes
mas complejas en los datos, lo que permite una agrupacion mas precisa y enriquecida en comparacion con clasificaciones
simples como "urbano” o "vegetacion”.

En relacion al desemperio de la red GNN, que es nuestra solucion para la prediccion de latitud y longitud, se demostré que
su rendimiento mejora significativamente al implementar la metodologia propuesta para el aumento de datos durante el
entrenamiento. Un mayor volumen de datos iniciales recolectados refuerza los modelos desarrollados dentro de la metodo-
logia, permitiendo obtener inferencias mas precisas. EL mejor desempefio se alcanzo al aplicar la metodologia de aumento
de datos exclusivamente al gateway "itaca-upv-022", cuyo modelo inicial contaba con una mayor cantidad de datos, optimi-
zando la generacion y el balanceo de datos. En contraste, la incorporacion de modelos asociados al gateway "main-gtw-grc”,
con datos limitados, introdujo ruido en el entrenamiento, lo que afecté negativamente el desempeiio de la red. Estos hallaz-
gos subrayan la importancia de una base de datos robusta y balanceada para maximizar la efectividad de la solucidn basada
en GNN.

Los resultados muestran que una GNN de 1capa es mas efectiva que una de 2 capas para predecir coordenadas geograficas a
partir de datos de RSSI en redes LoRaWAN. La GNN de 1 capa alcanzo errores entre 116.25 m (Aumentada Gateway) y 1090.70
m (No Balanceada), mientras que la de 2 capas mostrd errores significativamente mayores, llegando hasta 3189.45 m (Ba-
lanceada), lo que sugiere una pérdida de generalizacion al aumentar la profundidad. Esto indica que la relacion entre RSSI y
posicion no requiere una arquitectura mas compleja de GNN, y que agregar mas capas introduce ruido en lugar de mejorar
el rendimiento. En este contexto, la GNN de 1 capa equilibra simplicidad y precision, evitando el sobreajuste observado en
redes mas profundas.
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