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RESUMEN 

 

Las personas que residen en áreas rurales son desatendidas enfrentando desafíos 

significativos para acceder a servicios médicos especializados. Esta situación se debe 

a varios factores como la falta de infraestructura tecnológica médica, escases de 

personal de la salud en zonas rurales, afectando directamente a la calidad del 

diagnóstico y tratamiento de los pacientes [1].  

Por lo que se propone el desarrollo y la implementación de un sistema para el análisis 

de imágenes médicas, que permita realizar diagnósticos remotos asistidos por 

inteligencia artificial. Buscando mejorar la cobertura de salud en áreas rurales o de 

difícil acceso, para asistir a los médicos generales en la toma de decisiones clínicas. 

La arquitectura del sistema es modular, implementada con tecnologías Open Source 

como Flask para el backend, PostgreSQL para la administración de la base de datos, 

Fernet para la encriptación simétrica utilizada en la protección de datos sensibles del 

paciente, Docker para el almacenamiento de información de los servicios, CheXNet 

es el algoritmo de Inteligencia Artificial capaz de determinar hasta 14 patologías 

pulmonares a partir de radiografías de tórax y NGROK que permite exponer el sistema 

local a través de una IP pública para simular el acceso remoto. Esta configuración 

brinda portabilidad al sistema para su posterior migración en la nube, garantizando 

escalabilidad y eficiencia en despliegues futuros.   

Con las pruebas realizadas se pudo evidenciar el correcto funcionamiento del sistema 

de forma local y de acceso remoto a través de un dispositivo móvil con acceso a datos 

móviles evidenciando que es una solución efectiva y escalable para apoyar en el 

diagnóstico médico en áreas desatendidas.



8 
 

ÍNDICE GENERAL 
 

AGRADECIMIENTOS .....................................................................................2 

DEDICATORIA ...............................................................................................3 

COMITÉ DE EVALUACIÓN ............................................................................4 

DECLARACIÓN EXPRESA ............................................................................5 

RESUMEN......................................................................................................7 

INTRODUCCIÓN ..........................................................................................10 

CAPÍTULO 1 .................................................................................................12 

1. PLANTEAMIENTO DEL PROBLEMA Y MARCO TEORICO ...............12 

1.1 Descripción del Problema ...........................................................12 

1.2 Justificación del Problema...........................................................13 

1.3 Solución Propuesta .....................................................................14 

1.4 Objetivos .....................................................................................15 

1.4.1 Objetivo General ............................................................. 15 

1.4.2 Objetivos Específicos ...................................................... 15 

1.5 Alcance e Impacto ......................................................................15 

1.5.1 Alcance ........................................................................... 15 

1.5.2 Impacto ........................................................................... 16 

1.6 Marco Teórico .............................................................................16 

1.6.1 Telemedicina ................................................................... 16 

1.6.2 Imágenes médicas .......................................................... 18 

1.6.3 Procesamiento y Análisis de Imágenes Medicas ............. 19 

1.6.4 Estándares ...................................................................... 20 

1.6.5 Inteligencia Artificial ......................................................... 22 

CAPÍTULO 2 .................................................................................................25 

2. METODOLOGÍA .................................................................................25 

2.1 Diseño del Sistema de comunicación. .........................................25 

2.1.1 Arquitectura del Sistema de Comunicación ..................... 26 

2.1.2 Usuarios .......................................................................... 26 



9 
 

2.1.3 Políticas de Uso .............................................................. 27 

2.2 Infraestructura Tecnológica .........................................................28 

2.2.1 Arquitectura del Sistema de Comunicación Contenedor 

Backend (Flask – Python) ..................................................................... 29 

2.2.2 Contenedor del modelo de inteligencia artificial (CheXNet – 

TensorFlow Lite).................................................................................... 30 

2.2.3 Contenedor de Base de Datos (PostgreSQL) .................. 30 

2.3 Interfaz web del sistema .............................................................31 

2.3.1 Integración de la interfaz web con el backend ................. 32 

2.3.2 Funcionalidades de la interfaz web ................................. 32 

2.3.3 Creación de usuario automático - perfil paciente ............. 32 

2.4 Implementación del módulo de IA para el análisis de imágenes 

médicas. 33 

2.4.1 Proceso de análisis con IA .............................................. 34 

2.4.2 Integración técnica del modelo CheXNet en el sistema ... 34 

2.5 Encriptación de datos sensibles. .................................................35 

2.6 Validación remota del sistema. ...................................................36 

CAPÍTULO 3 .................................................................................................37 

3. RESULTADOS....................................................................................37 

3.1 Funcionamiento del sistema de comunicación ............................37 

3.2 Verificación de conexión entre Backend y Base de Datos ...........37 

3.3 Validación de la encriptación y desencriptación de los datos 

sensibles. ..................................................................................................44 

3.4 Validación remota del Sistema ....................................................46 

3.5 Validación Funcional de Sistemas ...............................................48 

3.6 Métricas básicas de desempeño. ................................................48 

CONCLUSIONES Y RECOMENDACIONES ................................................50 

BIBLIOGRAFÍA .............................................................................................52 

ANEXOS ......................................................................................................55 

 



10 
 

INTRODUCCIÓN 

 

En la actualidad, el acceso oportuno y preciso a servicios de diagnóstico 

médico es un pilar fundamental en la atención médica de calidad [2]. Sin 

embargo, en muchas áreas rurales o desatendidas, hay una escasez de 

recursos médicos especializados, lo que impide la detección temprana de 

enfermedades y disminuye la calidad de vida de los pacientes. En este sentido, 

tecnologías emergentes como la inteligencia artificial, la computación en la 

nube y la telemedicina ofrecen soluciones innovadoras a las brechas de 

acceso al diagnóstico clínico especializado [3]. 

El presente componente práctico tiene como objetivo diseñar e implementar 

un sistema para el análisis de imágenes de RX de tórax para diagnósticos 

remotos. Su principal propósito es asistir a los médicos generales en la toma 

de decisiones clínicas, permite a los especialistas confirmar los resultados 

desde cualquier lugar a través de una interfaz segura, escalable y fácil de usar. 

El sistema desarrollado incorpora tecnologías basadas en inteligencia artificial 

entrenadas para diagnosticar patologías a partir de imágenes médicas. Cuenta 

con una base de datos que permite almacenar registros médicos, usuarios y 

resultados diagnósticos de forma segura, incluye un sistema de autentificación 

de usuarios con distintos niveles de privilegios según sus roles, y garantiza la 

seguridad mediante la encriptación de imágenes médicas y datos sensibles de 

los pacientes. Todos estos componentes fueron implementados en 

contenedores Docker, lo que asegura portabilidad, modularidad y facilidad de 

mantenimiento en entornos locales o en la nube. 

Este componente práctico proporciona una solución tecnológica innovadora 

que promueve a la transformación equitativa en el sector de la salud. El 

sistema desarrollado cumple con las normativas internacionales sobre 
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Ciberseguridad y Protección de Datos 

En los siguientes capítulos se detalla la fundamentación teórica que sustenta 

el proyecto, su metodología y los resultados obtenidos tras su implementación, 

seguidos de una evaluación final donde se justifica su relevancia del sistema 

en escenarios de telemedicina. 
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CAPÍTULO 1 

 

1. PLANTEAMIENTO DEL PROBLEMA Y MARCO 

TEORICO  

1.1 Descripción del Problema 

El análisis de imágenes médicas como radiografías, Tomografías Computarizadas 

(TC) y Resonancias Magnéticas es fundamental para el diagnóstico y tratamiento de 

diversas enfermedades. Sus análisis se realizan de manera local o regional en 

hospitales o clínicas. Esto puede restringir significativamente el acceso a diagnósticos 

especializados en regiones remotas o desatendidas. 

Los sistemas basados en la nube para el análisis de imágenes médicas permiten 

diagnósticos remotos utilizando recursos de computación en la nube. Sin embargo, 

este enfoque presenta muchas dificultades: 

• Seguridad y Privacidad de los Datos: La información sensible, como imágenes 

contenidas en el archivo médico de un paciente, requiere una protección 

adecuada. Su transmisión y almacenamiento en sistemas en la nube deben 

proteger la confidencialidad, integridad y disponibilidad de los datos de acuerdo 

con las regulaciones de: la Ley de Portabilidad y Responsabilidad de Seguros de 

Salud (siglas en Ingles HIPAA), y el Reglamento General de Protección de Datos 

(GDPR) [4], [5]. 

• Fiabilidad y Precisión del Diagnóstico: El análisis automatizado de imágenes 

médicas debe ser lo más preciso y fiable posible. Los algoritmos de Inteligencia 

Artificial (IA) y Aprendizaje Automático (siglas en Ingles ML) empleados deben ser 

entrenados y validados adecuadamente para prevenir diagnósticos erróneos. 

• Latencia y Accesibilidad: En lugares remotos con mala conectividad, adjuntar 

grandes conjuntos de datos puede llevar mucho tiempo. Es importante asegurarse 

de que el sistema sea accesible y funcione de manera óptima en tiempo real. 

• Interoperabilidad: El sistema debe ser compatible con varios formatos de 

imágenes médicas y sistemas de información hospitalaria para garantizar la 
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facilidad integración y el uso de entornos clínicos múltiples 

 

1.2 Justificación del Problema 

Las personas que residen en áreas rurales son desatendidas enfrentando desafíos 

significativos para acceder a servicios médicos especializados. Esta situación se debe 

a varios factores. 

Las instalaciones médicas en áreas rurales son generalmente limitadas debido a que 

cuentan con menor infraestructura tecnológica médica, el acceso oportuno a atención 

médica especializada es escasa afectando directamente a la calidad del diagnóstico 

y tratamiento de los pacientes [1]. Debido al poco número de profesionales de la salud 

en estas zonas, llevando a tiempos prolongados de espera y atención menos 

personalizada. 

La telemedicina emerge como una solución prometedora para abordar estas 

limitaciones geográficas, permitiendo a profesionales médicos compartir diagnósticos, 

opciones de tratamiento y estrategias preventivas a través de tecnologías de la 

información y comunicación [6]. Dentro de la telemedicina, el análisis de imágenes 

médicas es crucial, pues facilita la identificación precisa de enfermedades que no 

siempre son detectables mediante síntomas o exámenes clínicos convencionales. 

Sin embargo, el proceso tradicional de análisis de imágenes médicas es complejo y 

demanda una gran experiencia, resultando en procedimientos lentos que retrasan 

diagnósticos críticos. La integración de inteligencia artificial (IA) representa una 

alternativa eficiente para este desafío, permitiendo automatizar la identificación de 

patrones e irregularidades en las imágenes médicas, mejorando significativamente la 

precisión y rapidez del diagnóstico [7]. 

Actualmente existen diversas aplicaciones clínicas de IA en productos aprobados por 

organismos regulatorios, como la Administración de Alimentos y Medicamentos de los 

Estados Unidos (FDA), lo que demuestra su confiabilidad en entornos clínicos reales. 

Ejemplos claros de estas soluciones son IDx-DE, un sistema autónomo aprobado 

para detectar retinopatía diabética mediante imágenes del fondo ocular, y Aidoc, un 

software especializado en la detección de patologías críticas como hemorragias 
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intracraneales y embolias pulmonares mediante tomografías computarizadas. 

Por otra parte, la creciente afluencia de pacientes en instituciones médicas genera 

cuellos de botella que disminuyen la eficiencia del servicio, lo que deriva en retrasos 

en la detección de enfermedades. Este retardo en el diagnóstico afecta 

negativamente la salud de los pacientes, al complicarse en las enfermedades que 

podrían haberse tratado fácilmente en etapas iniciales. 

Finalmente, dado que la privacidad y la confidencialidad de los datos de salud es 

esencial en cualquier sistema de telemedicina, existen regulaciones internacionales 

estrictas para asegurar la protección adecuada a la información médica sensible. 

Normativas como el Reglamento General de Protección de Datos (GDPR) en Europa 

y la Ley de Portabilidad y Responsabilidad del Seguro Médico (HIPAA) en Estados 

Unidos establecen estándares claros y obligatorias para proteger la privacidad y 

confidencialidad de los datos de los pacientes. 

1.3 Solución Propuesta  

Se propone la implementación de un sistema de análisis de imágenes de RX de tórax, 

orientado a facilitar diagnósticos remotos de manera segura, eficiente y precisa. Este 

sistema permitirá procesar radiografías desde cualquier ubicación geográfica 

mejorando el acceso al diagnóstico especializado en zonas rurales o desatendidas. 

La seguridad de la información constituye un eje fundamental en el diseño del sistema 

se integrará protocolos de cifrado para garantizar la confidencialidad, integridad y 

disponibilidad de los datos. 

El sistema integrará un algoritmo de inteligencia artificial entrenado para el análisis de 

imágenes de Rx de tórax. Este algoritmo permitirá detectar patologías como: 

neumonía, neumotórax, fibrosis facilitando un diagnóstico temprano y confiable 

incluso con ausencia de especialistas médicos en el punto de atención. De esta 

manera se busca reducir los tiempos de atención para así mejorar la toma de 

decisiones clínicas y contribuir a la equidad en el acceso de servicios de salud. 
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1.4 Objetivos 

1.4.1 Objetivo General 

Implementar un sistema de análisis de imágenes médicas en la nube utilizando 

software libre que permita realizar diagnósticos remotos de manera segura, precisa y 

eficiente, mejorando el acceso a servicios de diagnóstico especializado en áreas 

remotas o desatendidas. 

1.4.2 Objetivos Específicos  

• Aplicar un protocolo de seguridad que asegure la transferencia y almacenamiento 

de imágenes médicas en la nube, garantizando la confidencialidad, integridad y 

cumplimiento con normativas internacionales de protección de datos. 

• Ejecutar algoritmos de inteligencia artificial y aprendizaje automático para el 

análisis automatizado de imágenes médicas, asegurando alta precisión y 

fiabilidad en los diagnósticos remotos. 

• Optimizar la transferencia de datos y la accesibilidad del sistema asegurando que 

funcione de manera eficiente en tiempo real, incluso en entornos con baja calidad 

de conectividad, y que sea compatible con diversos formatos y sistemas de 

información hospitalaria. 

1.5 Alcance e Impacto 

1.5.1 Alcance  

• Implementación de un sistema de análisis de imágenes médicas en la nube, 

empleando software libre, contenedores Docker y tecnologías de inteligencia 

artificial para facilitar diagnósticos remotos. 

• Desarrollo de una interfaz web intuitiva que permita la interacción de distintos tipos 

de usuarios (administrador, médico general, médico especialista y paciente), con 

acceso personalizado según el asignado. 

• Aplicación de Mecanismos de seguridad que garanticen la confidencialidad, 

integridad y trazabilidad de los datos médicos mediante autentificación por roles, 

control de acceso y gestión segura de la información en entornos aislados. 

• Integración de algoritmos de inteligencia artificial especializados en el análisis 
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automatizado de imágenes médicas, como radiografías de tórax, permitiendo 

generar diagnósticos preliminares con alta precisión que puedan ser validadas por 

profesionales de salud. 

 

1.5.2 Impacto  

• El sistema propuesto tiene un impacto significativo en el ámbito social al contribuir 

directamente a la mejora de la equidad en el acceso a servicios de salud de 

calidad. Permitiendo reducir la brecha existente entre áreas urbanas y rurales en 

cuanto a diagnósticos especializados. 

• Identificación temprana de enfermedades, mejorando las tasas de tratamiento 

efectivo y disminuyendo la progresión de patologías.  

 

1.6 Marco Teórico  

1.6.1 Telemedicina 

La Organización Mundial de la Salud (OMS), define la telemedicina como el conjunto 

de servicios de atención sanitaria que se brinda cuando la distancia entre el paciente 

y el proveedor de salud es un factor determinante. Esta modalidad usa tecnologías 

de la información y comunicación (TIC) para facilitar el intercambio de datos clínicos 

con el objetivo de apoyar el diagnóstico y la prevención de enfermedades [8]. 

En el transcurso de la evolución tanto de la medicina como de las tecnologías de la 

información y comunicación, se han desarrollo diversos tipos de telemedicina los 

cuales definen su alcance actual. A continuación, se describirán los 4 tipos más 

importantes. 
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Figura 1.1. Tipos de Telemedicina 

• Teleconsulta. - es la indagación de información médica o sugerencia por parte 

del personal médico, mediante tecnologías de la información y comunicación. Se 

desarrolla entre el paciente y el profesional de la salud. La comunicación se 

establece mediante dos formas como son de forma directa o por intermediarios 

siendo su interacción sincrónica o asincrónica. 

Las teleconsultas asíncronas se caracterizan por el envío de información clínica 

por parte del paciente o del personal de salud permitiendo que el profesional 

médico revise y responda en un momento posterior. En cambio, las teleconsultas 

sincrónicas se llevan a cabo en tiempo real entre el paciente y el profesional de 

salud facilitando una comunicación directa [9]. 

• Teleeducación. – Es la utilización de las tecnologías de la información y 

comunicación para la práctica educativa médica a distancia. Existen distintos, 

estudios que indican la utilización de tecnologías de la información una de ellas la 

videoconferencia, son los más utilizados por los profesionales en salud mejorando 

sus conocimientos [9]. 

• Telemonitoreo. - Se manipula tecnologías de información y comunicación para 

obtener datos de rutina con respecto a la condición de los pacientes. Este tipo 

permite a los profesionales en salud obtener y monitorear las variables 

fisiológicas, resultados de exámenes e imágenes [8][9]. 

• Telecirugía. Es la aplicación de cirugías en donde el cirujano no participa con el 

paciente, de tal manera, la visualización y manipulación es ejecutada a distancia 

mediante dispositivos tele-electrónicos y alta tecnología en telecomunicaciones.  

 

Telemedicina

Teleconsulta

Sincrónica

Asincrónica

Teleeducación Telemonitoreo Telecirugía
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1.6.2 Imágenes médicas  

Es el conjunto de técnicas y procesos usados para crear imágenes del cuerpo 

humano, o una fracción de él, con propósitos clínicos, procedimientos médicos que 

buscan diagnosticar enfermedades, de igual manera para propósitos científicos como 

el estudio de la anatomía física y metabólica [10]. 

Tipo de Imágenes Médicas 

• Radiografía 

Es una técnica de imagenología que se maneja radiaciones ionizantes para obtener 

imágenes del interior del cuerpo humano, ayudando a los profesionales de la salud a 

examinar y diagnosticar diversas afecciones, desde fracturas óseas hasta 

enfermedades pulmonares y tumores. 

El principio esencial de la radiografía es la capacidad de ciertos tipos de energía para 

traspasar el cuerpo humano y crear imágenes en una placa o detector [11]. 

• Tomografía  

Es la obtención de imágenes por secciones o en cortes de distintas partes internas 

del cuerpo humano. Mediante el uso de distintas tecnologías la tomografía permite 

visualizar a detalle la anatomía y la composición de los órganos tejidos y huesos, 

facilitando el diagnóstico y tratamiento de una extensa lista de enfermedades y 

trastornos [12]. 

Las tomografías tienen distintas tecnologías y aplicaciones clínicas las más utilizadas 

son la computarizada y por emisión de positrones [12]. 

La tomografía por emisión de positrones conocida como (PET) es un método de 

diagnóstico en el campo de la medicina nuclear que emplea radiotrazadores con 

isótopos que emiten positrones, como el flúor-18, para adquirir imágenes del 

metabolismo y la función del organismo. El paciente recibe el radiotrazador, y las 

emisiones de positrones son detectadas por un equipo conocido como tomocámara o 

cámara gamma. Esta técnica se utiliza principalmente para diagnosticar 

enfermedades oncológicas, neurológicas y cardíacas, al brindar información sobre el 
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metabolismo celular y la circulación en los tejidos. 

• Resonancia Magnética   

Es una técnica de imagen no invasiva que se manipula un campo magnético y ondas 

de radiofrecuencia para conseguir imágenes de distintas superficies del cuerpo 

humano. 

Se obtiene imágenes de alta resolución para observar las alteraciones del cuerpo sin 

utilizar radiaciones ionizantes (rayos X). No poseen efectos perjudiciales para su 

organismo [13]. 

• Ecografía  

Es un examen de diagnóstico rápido permitiéndonos obtener imágenes de nuestros 

órganos y estructuras internas del cuerpo a través de ondas de ultra frecuencia [14]. 

1.6.3 Procesamiento y Análisis de Imágenes Medicas  

El procesamiento de imágenes médicas hace referencia a técnicas computacionales 

para mejorar, analizar y visualizar imágenes mediante diferentes modalidades, como 

resonancia magnética (RM), tomografía computarizada (TC), ultrasonido, y 

radiografía [15]. 

Las técnicas más conocidas de procesamiento de imágenes se encuentra el filtrado 

espacial, la segmentación, la reconstrucción tridimensional y registro de imágenes 

estas útiles herramientas permiten a los profesionales de la salud a descifrar 

imágenes médicas con mayor precisión, facilitando la toma de decisiones clínicas. 

• Filtrado Espacial:  Es utilizado para mejorar la calidad de la imagen eliminando 

ruido y resaltando características relevantes. 

• Segmentación de Imágenes: Se utiliza para dividir una imagen en regiones off o 

segmentos que representan diferentes estructuras anatómicas 

• El registro de imágenes: es una técnica que alinea imágenes de diferentes 

modalidades o tiempos así permitiendo una comparación y un análisis más 

efectivo 
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• Reconstrucción 3D: es una conversión de imágenes bidimensionales en 

modelos tridimensionales así facilitando la visualización de estructuras 

anatómicas complejas 

La inteligencia artificial (IA) ha mejorado el procesamiento de imágenes médicas, 

ayudando a desarrollar algoritmos que permitan procesar grandes volúmenes de 

datos con rapidez y precisión. La enseñanza ha demostrado ser eficaz en la 

codificación de imágenes y detección de patrones médicos que son desapercibidos 

por los humanos entre los algoritmos más comunes de IA son: 

• Redes Neuronales Convolucionales (CNN): Utilizadas para la clasificación y 

segmentación de imágenes médicas, siendo especialmente útiles en el 

diagnóstico de cáncer y enfermedades oculares [16]. 

• Máquinas de Soporte Vectorial (SVM): Aplicadas en el análisis de señales ECG 

para la detección de arritmias y otras anomalías cardíacas.  

• Redes Recurrentes (RNN): Empleadas en el análisis de series temporales de 

señales médicas, como el EEG, para la predicción de convulsiones. 

 

1.6.4 Estándares  

Los estándares para manejar y compartir información de datos médicos garantizan la 

coherencia y la eficiencia en todos los sistemas de salud. HL7 y DICOM son claves 

para que gestionen estos datos complejos [17]. 

Imágenes Digitales y Comunicaciones en Medicina (DICOM) 

DICOM ha sido creado específicamente para gestionar, almacenar, imprimir y enviar 

datos en imágenes médicas. Incorpora un conjunto de protocolos para manejar los 

datos de imágenes y los metadatos asociados a los dispositivos de diagnóstico por 

imágenes médicas, tales como radiografías, resonancias magnéticas y tomografías 

computarizadas. 

• Estructura de imagen y datos: DICOM estandariza el tipo de archivo y el 

protocolo de comunicaciones de red que se emplea en las imágenes. Esto 

asegura el acceso a las imágenes y a la información relacionada utilizando en 
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distintos sistemas y dispositivos, sin importar el fabricante. 

• Metadatos: además de los datos de imagen, los archivos DICOM incluyen 

metadatos detallados, como la identificación del paciente, el tipo de escaneo, las 

dimensiones de la imagen y la información específica del dispositivo, que son 

esenciales para el diagnóstico. 

Nivel de Salud Siete Internacional (HL7) 

Health Level Seven (HL7) es un estándar diseñado para el intercambio de información 

médica entre los proveedores de atención médica. Su ámbito de aplicación engloba 

la entrada de diversos tipos de órdenes, la emisión de informes de resultados de 

pruebas, recetas, así como los procesos de admisión, alta y transferencia de 

pacientes, etc. Es uno de los estándares médicos más destacados. 

HL7 se ocupa del intercambio, la integración y la obtención de información médica en 

formato electrónico. Los estándares definen y ofrecen una estructura para el 

intercambio de información relacionado con los pacientes entre distintos sistemas de 

salud [17]. 

• Protocolos de intercambio de datos: HL7 establece los estándares de 

comunicación para el intercambio de información entre los sistemas de atención 

médica. Estos mensajes pueden incluir los registros de los pacientes, los informes 

de laboratorio y los datos de facturación. 

• Flexibilidad y extensibilidad: los mensajes HL7 son personalizables, lo que 

permite él envió de distintos datos médicos y administrativos. Es compatible con 

diversas necesidades y flujos de trabajo en un contexto de atención médica. 
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Diferencias: DICOM vs HL7 

 

Tabla 1.1. Diferencias DICOM vs HL7 [17]. 

Aspecto DICOM HL7 

Enfoque principal 

Estandarizar el manejo, el 

almacenamiento y la 

transmisión de los datos de 

imágenes médicas. 

Estandarizar el intercambio de 

una amplia gama de datos 

administrativos y clínicos. 

Tipo de datos 

Archivos binarios grandes 

(imágenes) junto con los 

metadatos asociados. 

Datos de texto estructurados, 

incluidos los registros de los 

pacientes, los resultados de 

laboratorio y la información de 

facturación. 

Casos de uso 

Se usa principalmente en 

departamentos de imágenes 

médicas como radiología, 

cardiología e imágenes 

dentales. 

Amplia aplicación en varios 

espacios de la atención médica 

más allá del diagnóstico por 

imágenes, como laboratorios, 

facturación, registros de 

pacientes, etc. 

Interoperabilidad 

Garantiza la compatibilidad e 

interoperabilidad de los equipos 

y sistemas de imágenes entre 

distintos proveedores. 

Facilita el intercambio integral 

de datos entre diferentes 

sistemas y aplicaciones, 

ayudando a las operaciones de 

atención médica más amplias. 

Características principales  

Formatos de archivo 

estandarizados para imágenes 

y protocolos, integrando 

dispositivos de imágenes y 

sistemas PACS. Incluye 

metadatos para la información 

del paciente, el tipo de escaneo 

y los detalles del dispositivo. 

Estándares de mensajería 

personalizables ha 

adaptándose a diversas 

necesidades de intercambio de 

información de atención 

médica.  

Flexibilidad  

Más técnico para las 

necesidades de procedimientos 

y equipos de diagnóstico por 

imágenes. 

Altamente flexible y adaptable a 

las diferentes necesidades de 

intercambio de información 

hacia la atención médica.  

Alcance técnico  

Gestiona los datos basados en 

imágenes y se concentra en 

almacenar, recuperar y archivar 

archivos de imágenes 

complejos. 

Gestiona el intercambio de 

información basado en texto en 

una extensa lista de servicios 

de salud.  

 

1.6.5 Inteligencia Artificial  

Machine Learning (ML) 

El aprendizaje de máquina es una subdisciplina de inteligencia artificial que permite 
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el desarrollo de algoritmos y modelos donde las máquinas aprenden y mejoran 

automáticamente a partir de los datos proporcionados, sin ser programados para una 

tarea en específico. Este aprendizaje se logra a través de identificación de patrones 

en los datos con la creación de reglas predictivas [18]. 

Un modelo de aprendizaje de máquina se logra mediante un proceso de 

entrenamiento donde el conjunto de datos de entrada es expresado como (features) 

y sus resultados esperados, son expresados como etiquetas (labels) son utilizados 

para ajustar los parámetros internos del modelo. Dependiendo de la naturaleza del 

problema, el aprendizaje de la máquina puede clasificarse en tres categorías 

principales: 

• Supervisado: El modelo se entrena con datos etiquetados, aprendiendo a asociar 

entradas con salidas específicas. Ejemplo: Clasificación de imágenes. 

• No supervisado: El modelo trabaja con datos no etiquetados y busca patrones o 

agrupamientos en los datos. Ejemplo: agrupación. 

• Por refuerzo: El modelo interactúa en un entorno dinámico donde aprender 

mediante sistemas de recompensa y penalización. 

Los algoritmos más comunes en el aprendizaje de máquina incluyen regresión lineal, 

árboles de decisión, máquinas de soporte vectorial (por sus siglas en inglés, SVM), y 

métodos de conjunto como Random Forest y Gradient Boosting. Durante el 

entrenamiento, los algoritmos optimizan los parámetros del modelo utilizando 

métricas de error y técnicas como el descenso de gradiente, con el objetivo de mejorar 

la precisión en las predicciones [18]. 

Deep Learning 

El aprendizaje profundo, (en inglés Deep Learning, es un tipo de machine learning 

enfocado en redes neuronales artificiales multicapa que le permiten aprender y 

extraer características sobre los datos. A diferencia del aprendizaje automático que 

solo tiene algoritmos basados en reglas manuales definidas, hoy el deep learning se 

servirá de la capacidad de los modelos para aprender automáticamente a partir de 

datos sin procesar [19]. 
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Las redes neuronales artificiales aplicadas al aprendizaje profundo se estructuran 

como una sucesión de capas de neuronas conectadas. Cada capa recibe 

parcialmente -vamos a decir así- los datos y las características obtenidas serán 

utilizadas en capas posteriores para identificar patrones progresivamente más 

complejos. Este procedimiento continuará hasta que se logren las características más 

generales del conjunto de datos [20]. 

Deep learning puede ser aplicada en múltiples áreas tales como computación visual, 

procesamiento automático del lenguaje llano, traducción automática, detección 

avanzada y también clasificación del fraude y reconocimiento avanzado. Ya es 

conocido por su relación con la inteligencia artificial gracias a su habilidad autónoma 

del aprendizaje y precisión en patrones avanzados ha extendido su uso 

fundamentalmente tanto dentro del global deep learning como una herramienta 

valiosa dentro del machine learning. 

Redes Neuronales  

Las redes neuronales artificiales (ANN por su nombre en inglés) son un modelo 

computacional que imita la función y la estructura de un cerebro humano. Consiste en 

una red de nodos interconectados conocidos como neuronas artificiales donde se 

procesa la información de entrada y genera una salida. 

En una red neuronal artificial, cada neurona recibe una o varias entradas las cuales 

procesa con una función de activación que determina el resultado de aquella neurona. 

La salida a estas neuronas se comunica a otras mediante conexiones ponderadas 

usadas para ajustar la contribución de cada neurona emisora. 

En el entrenamiento de una red neuronal artificial los sistemas ajustan los pesos en 

las conexiones entre neuronas con el fin de minimizar las diferencias entre la deseada 

y real. Se utilizan algoritmos del tipo optimización tales como el “gradiente”. 

El uso más frecuente incluye tareas dentro del aprendizaje automático en 

clasificación, visión por computadora, comprensión del lenguaje natural y análisis 

predictivo en series temporales [21].  
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CAPÍTULO 2 

 

2. METODOLOGÍA  

2.1 Diseño del Sistema de comunicación.  

Para la implementación y el desarrollo del sistema de análisis de imágenes de RX de 

tórax se empleó contenedores para optimizar recursos computacionales y de esta 

manera facilitar la portabilidad y la escalabilidad del sistema. 

Los contenedores son entornos virtualizados que permite encapsular la aplicación con 

sus dependencias, permitiendo una ejecución de forma aislada. Estas características 

facilitan una mayor eficiencia en relación con las máquinas virtuales tradicionales, los 

contenedores comparten recursos sin necesidad de replicar un sistema operativo. 

Para la gestión de los contenedores se utilizó Docker, es una plataforma de código 

abierto utilizado en el ámbito de desarrollo. Docker permite garantizar la consistencia 

del entorno de ejecución entre distintos sistemas así evitando conflictos de 

dependencia entre versiones de software, facilitando la migración y el despliegue en 

distintas infraestructuras. 

En la parte interna de los contenedores se ejecutan diferentes servicios necesarios 

para el funcionamiento del sistema. El backend se encuentra desarrollado en el 

lenguaje de programación Python utilizando un Microframework Flask, se encarga de 

gestionar la lógica, el sistema de autentificación de roles, la comunicación con la base 

de datos y el llamado del modelo de inteligencia artificial. Se utilizo el modelo Chexnet 

implementado con TensorFlow Lite, permitiendo el análisis automático de imágenes 

médicas. 

La base de datos utilizada PostgreSQL es relacional, esta se ejecuta dentro de un 

contenedor independiente así formando un entorno aislado y controlado para el 

almacenamiento de los datos. Este contenedor almacena la información de los 

usuarios (administrador, médico general, médico especialista y paciente), el historial 

clínico de cada paciente y los resultados de las predicciones de imágenes de RX de 
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tórax. 

2.1.1 Arquitectura del Sistema de Comunicación 

En la Figura 2.1 se observa la arquitectura implementada para desarrollar el Sistema 

de Análisis de Imágenes de RX de tórax para Diagnósticos Remotos. Esta 

arquitectura está compuesta por contenedores Docker que encapsulan cada uno de 

los módulos funcionales del sistema, incluyendo el backend desarrollado en Flask, el 

modelo de inteligencia artificial CheXNet, el módulo de cifrado simétrico – Fernet y la 

base de datos PostgreSQL. Adicionalmente se presenta la comunicación entre los 

diferentes componentes, con los puertos utilizados para cada servicio interno.  

 

Figura 2.1 Arquitectura del sistema de comunicación 

2.1.2 Usuarios 

Los usuarios que interactúan con el sistema de análisis de imágenes médicas son: 

• Administrador: Es el usuario responsable de gestionar el correcto 

funcionamiento de la plataforma, el acceso de los distintos usuarios. Sus 

funciones son la creación, modificación y eliminación de cuentas de médicos y 

pacientes. 
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• Médico especialista: Su rol es validar los diagnósticos generados por el modelo 

de CheXNet en caso de ser erróneos puede realizar correcciones en dicho 

diagnóstico para así garantizar la precisión del resultado. 

• Médico: El médico general puede crear, editar historias clínicas, subir imágenes 

médicas, visualizar el diagnóstico generado por el modelo de CheXNet y observar 

si el diagnóstico fue validado por un médico especialista. 

• Paciente: Su acceso es restringido, puede visualizar sus diagnósticos generados 

por el sistema y su historial clínico. 

2.1.3 Políticas de Uso  

En el sistema de análisis de imágenes médicas para accesos remotos, se consideró 

la seguridad, la confidencialidad de los datos sensibles qué contienen las historias 

clínicas. Se describen sus políticas de uso. 

• Solo pueden acceder los usuarios que fueron registrados y autentificados, la 

autentificación se gestiona a través del backend, utilizando credenciales 

suministradas por el administrador según el rol asignado. 

• Cada usuario es responsable de mantener la confidencialidad de sus credenciales 

incluyendo el nombre de usuario y su contraseña en caso de pérdida deberá 

notificar al administrador del sistema 

• Las historias clínicas, las imágenes analizadas, los usuarios y permisos están 

almacenados en la base de datos PostgreSQL que se encuentra aislada del 

contenedor Docker estos son accesibles desde los servicios internos de la red 

Docker Bridge. 

• El sistema permite acceder a distintas funcionalidades en referencia al tipo de 

usuario 

o El médico general puede crear o editar historias clínicas, subir imágenes 

médicas y visualizarlas.  

o El médico especialista validará y/o modificará los diagnósticos generados por 

el sistema. 

o El paciente puede visualizar su historial médico y los resultados procesados 

por el sistema. 
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o El administrador supervisa el funcionamiento adecuado del sistema y gestiona 

los usuarios. 

Estas políticas permiten que el sistema cumpla con los criterios éticos y normativos 

en el manejo de información médica, promoviendo un entorno seguro en el 

diagnóstico remoto asistido por inteligencia artificial. 

2.2 Infraestructura Tecnológica  

La infraestructura utilizada en el sistema de análisis de imágenes de RX de tórax se 

basa en el uso de contenedores Docker y tecnologías de código abierto esto permite 

garantizar características claves como la escalabilidad, portabilidad, tolerancia a fallos 

y facilidad de despliegue en distintos entornos tanto locales como en la nube 

El uso de Docker Compose como herramienta de orquestación facilita la configuración 

y ejecución conjunta de los servicios necesarios, lo cual asegura una interacción fluida 

entre los módulos que conforman el sistema: backend, base de datos y modelo de 

inteligencia artificial. Se visualiza en el Código 2.1 la configuración de los servicios 

mediante docker-compose.yml 

 

Código 2.1 Configuración de Servicios 

version: '3.8' 

 

services: 

  backend: 

    build: . 

    ports: 

      - "5000:5000" 

    depends_on: 

      - postgres 

      - modelo_ia 

    networks: 

      - tesisnet 

 

  postgres: 

    image: postgres:13 

    environment: 

      POSTGRES_DB: tesis_db 

      POSTGRES_USER: tesis_user 

      POSTGRES_PASSWORD: tesis123 

    ports: 
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2.2.1 Arquitectura del Sistema de Comunicación Contenedor Backend (Flask 

– Python) 

 

El backend fue desarrollado en Python utilizando el Microframework Flask, y se 

encuentra encapsulado en un contenedor Docker. Este componente actúa como 

núcleo del sistema, permitiendo gestionar: 

• El flujo de autenticación de usuarios. 

• Las solicitudes del frontend (interfaz web). 

• La comunicación con el modelo de inteligencia artificial para el análisis de 

imágenes médicas. 

• La conexión con la base de datos PostgreSQL. 

• La aplicación del cifrado simétrico Fernet sobre los resultados generados y los 

datos sensibles. 

El contenedor expone el puerto 5000 para la recepción de peticiones externas desde 

la interfaz web. Se visualiza en el Código 2.2 un fragmento del Backend (Flask – 

Python)

 

Código 2.2 Fragmento de Backend (Flask – Python). 

@app.route('/subir_imagen', methods=['POST']) 

def subir_imagen(): 

    imagen = request.files['imagen'] 

    nombre_archivo = secure_filename(imagen.filename) 

    ruta_imagen = os.path.join("imagenes", nombre_archivo) 

    imagen.save(ruta_imagen) 

 

    # Realiza análisis con IA 

    resultado = chexnet_predict(ruta_imagen) 

 

    # Aplica cifrado homomórfico (simplificado para la tesis) 

    resultado_cifrado = cifrar_resultado(resultado) 

 

    # Guarda en PostgreSQL 

    conn = conectar_db() 

    cursor = conn.cursor() 

    cursor.execute(""" 

        INSERT INTO diagnosticos (usuario_id, imagen, resultado) 

        VALUES (%s, %s, %s) 

    """, (session['usuario_id'], nombre_archivo, resultado_cifrado)) 



30 
 

2.2.2 Contenedor del modelo de inteligencia artificial (CheXNet – TensorFlow 

Lite) 

El modelo de inteligencia artificial utilizado es una adaptación de CheXNet, entrenado 

para el análisis de imágenes de RX de tórax se, implementado con TensorFlow Lite 

para garantizar eficiencia y bajo consumo de recursos. Este módulo se encuentra 

desplegado como un contenedor independiente que se comunica con el backend a 

través del puerto 5001. 

Cuando el médico sube una imagen de RX de tórax, el backend envía la imagen al 

modelo CheXNet, recibe el diagnóstico y posteriormente aplica las medidas de cifrado 

antes de almacenar los resultados. Se visualiza en el Código 2.3 un fragmento del 

modelo CheXNet. 

 

Código 2.3 Fragmento modelo CheXNet 
 

2.2.3 Contenedor de Base de Datos (PostgreSQL) 

El sistema utiliza PostgreSQL como motor de base de datos relacional, ejecutándose 

en un contenedor separado expuesto internamente en el puerto 5432. Donde se 

almacenan: 

• Los datos de los usuarios y sus roles. 

• Las Historias Clínicas Electrónicas (HCE). 

• Los resultados diagnósticos cifrados. 

• La trazabilidad del acceso a la información médica. 

La conexión con la base de datos es gestionada exclusivamente por el backend, 

import tenseal as ts 

 

def cifrar_resultado(vector): 

    ctx = ts.context(ts.SCHEME_TYPE.CKKS, poly_modulus_de-

gree=8192, coeff_mod_bit_sizes=[40, 21, 21, 40]) 

    ctx.global_scale = 2**21 

    ctx.generate_galois_keys() 

    encrypted_vector = ts.ckks_vector(ctx, vector) 

    return encrypted_vector.serialize() 
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manteniéndose dentro de una red interna segura (Docker Bridge Network). 

Controlado para el diagnóstico remoto asistido por inteligencia artificial. 

 

Figura 2.3 Contenedor de base de datos 

2.3 Interfaz web del sistema 

Se desarrolló una interfaz web funcional que permite a los diferentes usuarios 

(administrador, médicos y pacientes) interactuar con los módulos del sistema de 

análisis de imágenes de RX de tórax. La interfaz fue implementada utilizando 

tecnologías estándar del lado del cliente: HTML5, CSS3 y JavaScript, sin Frameworks 

externos, con el objetivo de mantener una estructura ligera, portable. 

 

Figura 2.4 Interfaz principal de Diagnóstico de Imágenes Médicas  
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2.3.1 Integración de la interfaz web con el backend 

La interfaz no se encuentra en un contenedor independiente, sus archivos están 

alojados directamente en el contenedor backend (Flask – Python), dentro de la 

carpeta static/, lo que permite mostrar directamente al usuario el contenido web sin 

necesidad de un servidor externo. Flask se encarga de exponer las rutas y renderizar 

las vistas HTML según el rol del usuario autenticado, lo cual permite una lógica 

dinámica del lado del servidor. 

2.3.2 Funcionalidades de la interfaz web 

La interfaz web del sistema ha sido diseñada para ofrecer una experiencia intuitiva, 

accesible y multiplataforma desde cualquier navegador moderno. Cada formulario o 

vista está conectado con rutas definidas en Flask (@app.route), las cuales procesan 

y gestionan la información ingresada por el usuario. 

Las funcionalidades clave disponibles desde la interfaz web son: 

• Carga de imagen médica: A través de un formulario con el campo input 

type="file", permite seleccionar una imagen de RX de tórax y enviarla al backend 

para su análisis mediante el modelo CheXNet. 

• Visualización del resultado diagnóstico: Después que el modelo de inteligencia 

artificial ha procesado la imagen, el resultado se muestra de forma directa y clara 

al usuario autorizado. 

• Registro de historia clínica: Incluye campos como nombres, número de cédula, 

género, fecha de nacimiento, antecedentes y otros datos clínicos. Esta 

información es almacenada de forma segura en la base de datos PostgreSQL. 

• Autenticación y control de sesión: Mediante formularios de inicio de sesión que 

verifican las credenciales y redirigen al usuario al panel correspondiente según su 

rol (médico, paciente o administrador). 

2.3.3 Creación de usuario automático - perfil paciente 

Cuando el médico general procede a crear una nueva historia clínica en el sistema se 

crea de forma automática la creación del usuario tipo paciente 
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Este usuario se genera a partir de los datos ingresados, utilizando la cédula como 

nombre de usuario y una contraseña predeterminada que antepone el prefijo SYS 

seguido del número de cédula del paciente. 

 

Figura 2.3 Diagrama de creación del perfil paciente 

 

Este proceso facilita a que cada paciente, tenga acceso inmediato a su perfil donde 

podrá consultar su historial clínico los resultados del análisis de las imágenes por 

inteligencia artificial y la información relevante. 

2.4 Implementación del módulo de IA para el análisis de imágenes médicas.  

El sistema propuesto utiliza un módulo de inteligencia artificial basado en el modelo 

CheXNet, es un algoritmo de aprendizaje profundo especializado en el análisis de 

radiografías de tórax. Este modelo fue desarrollado por Rajpurkar [22], y utiliza una 

arquitectura de red neuronal convolucional. El algoritmo ha demostrado resultados 

comparables con los diagnósticos realizados por radiólogos en la detección de 

enfermedades pulmonares más comunes, como la neumonía. 

En la implementación del sistema se utiliza el modelo de CheXNet de libre acceso, el 

cual fue integrado en contenedores Docker. El modelo se ejecuta como un servicio 

autónomo dentro de un contenedor separado, lo que permite su escalabilidad, facilita 

su mantenimiento y evita comprometer la estabilidad del backend principal. 
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2.4.1 Proceso de análisis con IA 

El proceso de análisis de imágenes de RX de tórax se desarrolla de la siguiente forma. 

1) El médico general accede a la plataforma web e ingresa al formulario de carga de 

imágenes de RX de tórax. 

2) Una vez seleccionada la imagen de Rx de tórax, esta se envía al backend en 

Flask, donde es preprocesada y posteriormente dirigida al módulo de inteligencia 

artificial. 

3) El modelo CheXNet recibe imágenes de Rx de tórax en formato digital (DICOM, 

JPG, PNG), realiza el proceso de inferencia, y retorna un vector con 14 

probabilidades asociadas a las posibles patologías detectadas por el algoritmo 

CheXNet. 

4) El resultado es almacenado en la base de datos PostgreSQL, asociado a la 

historia clínica del paciente. 

5) El médico especialista accede a este resultado para su validación y, en caso de 

ser aprobado, queda disponible para visualización por el paciente en su perfil. 

 

2.4.2 Integración técnica del modelo CheXNet en el sistema 

El modelo está implementado en PyTorch y ejecutado dentro de un entorno virtual 

controlado, lo que garantiza compatibilidad con las dependencias necesarias. Para 

facilitar su integración con el backend, se ha desarrollado un script llamado 

chexnet_predict() que permite: 

• Cargar los pesos del modelo pre entrenado, 

• Preprocesar la imagen entrante, 

• Realizar la predicción y devolver el diagnóstico con las probabilidades asociadas. 

A partir del vector resultante, el sistema identifica la clase con mayor probabilidad 

como diagnóstico preliminar. Esta predicción no reemplaza la validación clínica, sino 

que actúa como soporte para la toma de decisiones del médico especialista, quien 

puede confirmar o ajustar el resultado. 
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2.5 Encriptación de datos sensibles. 

Se implemento el Código 2.4 para garantizar la seguridad de los datos médicos 

sensibles del sistema de análisis de imágenes de Rx de tórax, se optó por el uso de 

la biblioteca cryptography en Python, la que permite encriptar los datos antes de ser 

almacenados en la base de datos y desencriptados temporalmente antes de ser 

visualizados por el usuario según sus roles. Los datos del paciente considerados 

sensibles son: cedula, nombres, apellidos, genero dirección, correo electrónico, 

antecedentes médicos, imágenes médicas. 

 

Código 2.4 Fragmento de encriptación y desencriptación – Fernet 
 

En la Figura 2.4 se muestra el esquema de funcionamiento del algoritmo de 

encriptación. 

 

Figura 2.4 Encriptación simétrica Fernet 

from cryptography.fernet import Fernet 

import os 

 

CLAVE_PATH = "clave_secreta.key" 

 

def generar_o_cargar_clave(): 

    if not os.path.exists(CLAVE_PATH): 

        clave = Fernet.generate_key() 

        with open(CLAVE_PATH, 'wb') as archivo_clave: 

            archivo_clave.write(clave) 
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2.6 Validación remota del sistema. 

Para simular un entorno en la nube, se utilizó el software Ngrok el cual permite 

exponer nuestro servidor local a través de una dirección IP pública en nuestro caso 

es la siguiente https://ca5d-191-99-66-57.ngrok-free.app/, la misma que nos permitió 

realizar pruebas de accesibilidad mediante datos móviles así evaluando el 

rendimiento de la carga de imágenes médicas, respuesta del sistema en tiempo real. 

En la Figura 2.5 visualizamos la simulación de acceso remoto mediante Ngrok. 

 

Figura 2.5 Acceso remoto al sistema mediante Ngrok 

 

 

  

https://ca5d-191-99-66-57.ngrok-free.app/
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CAPÍTULO 3 

 

3. RESULTADOS  

3.1 Funcionamiento del sistema de comunicación  

Se procedió a verificar la infraestructura del sistema de comunicación validando que 

los contenedores han sido inicializados de forma correcta tal como se muestra en la 

Figura 3.1 

Figura 3.1. Contenedores Docker  

Se comprobó el correcto funcionamiento del contenedor tesis_medica-backend-1 a 

través del URL http://localhost:5000, tal y como se muestra en la Figura 3.2. 

 

Figura 3.2. Contenedores Docker  

3.2 Verificación de conexión entre Backend y Base de Datos  
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Para garantizar que el contenedor que ejecuta PostgreSql se encuentra activo y 

accesible para el backend en Flash, se utilizó el siguiente comando: 

docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' 

postgres_tesis 

mostrándonos como resultado la siguiente dirección IP 172.18.0.2 como se muestra 

en la Figura 3.3. Esta dirección es utilizada en el backend para establecer conexión 

directa con la base de datos PostgreSQL, lo cual valida el correcto funcionamiento de 

la arquitectura basada en contenedores y la red interna Docker. 

 

Figura 3.2. Contenedores Docker  

El sistema fue desarrollado como una aplicación web utilizando tecnologías estándar 

como HTML5, CSS3 y Javascript para ofrecer una experiencia clara y responsiva 

como se muestra en la Figura 3.3   

 

Figura 3.3. Interfaz Web accedida desde el navegador  

Para validar su correcto funcionamiento se puede observar en la Figura 3.4 la interfaz 
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de médico general qué le permite tener distintas funciones entre ellas la creación de 

historia clínicas como muestra en la Figura 3.5, al momento de la creación de la 

historia clínica automáticamente se crea el perfil de paciente siendo su Usuario: 

#cedula y su contraseña: SYS#cedula como se observa en la Figura 3.6. 

 

Figura 3.4. Interfaz médico general 

 

Figura 3.5. Interfaz historia clínica  
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Figura 3.6. Tabla usuarios  

En el perfil de médico general, además cuenta con la función de editar historia clínica 

como muestra en la Figura 3.7. que fue editado el nombre del paciente y en la Figura 

3.8 se puede observar que contenía el nombre erróneo del paciente. 

 

 

Figura 3.7. Editar historia clínica  
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Figura 3.8. Base de datos de historia clínica 

Otra función del médico general le permite adjuntar imágenes médicas para ser 

diagnosticadas como se muestra en la Figura 3.9, se puede observar que se 

almacena la imagen en una dirección que contiene el número de cédula del paciente. 

Después de dar un clic en analizar imagen nos muestra temporalmente el análisis del 

algoritmo de Inteligencia Artificial. 

Para verificar el funcionamiento del algoritmo CheXNet se utilizó imágenes del 

conjunto de datos de radiografías de tórax de los NIH [23], se encuentran en formato 

PNG, sus imágenes están desidentificadas esta información está disponible en: 

https://cloud.google.com/healthcare-api/docs/resources/public-datasets/nih-

chest?hl=es-419 

 

Figura 3.9. Subir imagen médica   
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Su última función es observar las imágenes analizadas por el algoritmo de Inteligencia 

Artificial como se muestra en la Figura 3.10, cumpliendo con el objetivo específico 2 

de ejecutar algoritmos de inteligencia artificial. Además, se puede observar si el 

diagnóstico de la imagen fue validado por un especialista como indica la Figura 3.11. 

 

Figura 3.10. Diagnóstico por validar  

 

Figura 3.11. Diagnóstico validado 

En la Figura 3.12 se observa la tabla de imágenes médicas, donde se 

almacena la información si fue validada la imagen analizada por un 
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especialista conjuntamente con la fecha de validación.  

 

Figura 3.12. Diagnóstico validado 

En la Figura 3.13 se muestra la interfaz del médico especialista dónde se despliega 

las imágenes a validar, mostrándole el mensaje de diagnóstico aún no validado en 

este apartado. El médico puede validar si está correcto o caso contrario puede editarlo 

el diagnóstico. En la Figura 3.14 se puede observar que el diagnóstico fue validado 

correctamente. 

 

Figura 3.13. Imagen por validar 
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Figura 3.14. Imagen validada 

En la Figura 3.15 se puede observar el perfil del paciente donde muestra los 

datos del paciente, la fecha del análisis de la imagen médica realizado por el 

sistema y la imagen analizada. 

 

Figura 3.15. Imagen validada 

3.3 Validación de la encriptación y desencriptación de los datos sensibles. 

En la Figura 3.16 se puede observar la tabla de la historia clínica almacenada en 

PostgreSQL donde se puede evidenciar la encriptación de los datos sensibles de los 

pacientes. 
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Figura 3.16. Encriptación de los datos sensibles en la tabla historia clínica. 

En la Figura 3.17 se puede observar que las imágenes médicas se encuentran 

encriptadas en la tabla de imágenes médicas y en la Figura 3.18 se observa que la 

imagen no puede ser vista con ningún visualizador de imágenes.  

 

Figura 3.17. Encriptación de los datos sensibles en la tabla imágenes médicas. 
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Figura 3.18. Imagen encriptada. 

Para la visualización de la interfaz Web, los datos son descifrados temporalmente así 

garantizando la confidencialidad, integridad y cumplimiento con las normas 

internaciones de protección de datos. 

3.4 Validación remota del Sistema 

En la Figura 3.19 se observa la configuración de Ngrok para exponer el servidor local 

a través de una dirección pública, así facilitando simular el servidor en la nube para 

acceder en tiempo real a la interfaz.  

 

Figura 3.19. Exposición de IP pública con Ngrok 
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En la Figura 3.20 se observa que gracias a la IP proporcionada por Ngrok, se pudo 

validar la accesibilidad remota para realizar pruebas mediante un dispositivo 

utilizando datos móviles, donde la interacción fue fluida permitiendo comprobar que 

el sistema mantiene la funcionalidad en la transferencia de imágenes, el análisis de 

las mismas, la visualización de diagnósticos y el acceso a las historias clínicas en 

tiempo real.  

 

Figura 3.20 Uso del sistema desde un dispositivo móvil  
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3.5 Validación Funcional de Sistemas  

Para validar el correcto funcionamiento del sistema de análisis de imágenes médicas 

se realizaron pruebas funcionales sobre los distintos módulos. Las pruebas se 

enfocaron en verificar la operación esperada, como la autentificación de usuarios 

registro de historia clínica, edición de historia clínica, carga y análisis de imágenes 

médicas, visualización de resultados según el rol asignado. Como se muestra en la 

Tabla 3.1 un resumen de las funcionalidades evaluadas. 

Tabla 3.1: Funcionalidades evaluadas. 

MÓDULO 

EVALUADO 

ACCIÓN 

REALIZADA 

RESULTADO 

ESPERADO 

RESULTADO 

OBTENIDO 

Inicio de Sesión 
Ingreso de 

credenciales válidas 

Acceso según el 

usuario 

Acceso exitoso con 

dirección correcta 

Registro de 

historia clínica 

Ingreso de datos del 

paciente 

Almacenamiento en 

base de datos 

Datos guardados 

correctamente 

Edición de historia 

clínica 

Editar datos del 

paciente 

Almacenamiento en 

base de datos 

Datos guardados 

correctamente 

Carga de imagen 

médica 

Seleccionar la 

imagen 

Imagen almacenada 

y enviada al modelo 

de IA 

Imagen guarda 

correctamente 

Análisis de imagen 

(IA) 

Ejecución del 

modelo chexNET 

Clasificación 

automática, 

mostrado en 

pantalla 

Resultado 

desplegado 

correctamente 

Validación de 

diagnóstico 

Revisión por parte 

del médico 

especializado. 

Confirmación o 

Corrección 

Validación realizada 

y almacenamiento 

en la base de datos 

Visualización del 

paciente 

Acceso al historial 

de resultados 

Consulta de la 

historia clínica 

Datos visibles 

correctamente 

 

3.6 Métricas básicas de desempeño.  

Aunque el sistema se encuentra implementada de forma local se realizaron 

pruebas de empíricas para estimar el tiempo de respuesta de los procesos 
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principales. Estas métricas permiten evaluar la viabilidad operativa del sistema 

y su potencial para escalar a un entorno en la nube. Como indica la Tabla 3.2. 

Tabla 3.2. Métricas de desempeño 

Proceso Promedio estimado Observación 

Tiempo de carga del 

sistema web 
1.8 segundos 

Desde el acceso al 

navegador hasta cargar la 

pantalla principal de login 

Tiempo de autentificación 1.2 segundos 

Desde el clic en login 

hasta redireccionar al 

panel de usuario. 

Tiempo de análisis de 

imagen IA 
4.3 segundos 

desde la carga de imagen 

hasta la visualización del 

diagnóstico 

tiempo guardado en base 

de datos 
< 1 segundo 

validado mediante 

inserciones observadas 
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CONCLUSIONES Y RECOMENDACIONES 

 

CONCLUSIONES 

 

• Se desarrolló un sistema funcional de análisis de imágenes médicas que se puede 

acceder desde un navegador web, el cual permite realizar diagnósticos remotos 

con asistencia de inteligencia artificial. A pesar de que la implementación final 

debió hacerse en local debido a restricciones de recursos, la arquitectura basada 

en Docker está completamente lista para la nube y cumple con el requisito de 

portabilidad. 

• El sistema incorpora un modelo de acceso con roles diferenciados (administrador, 

médicos y paciente) que salvaguarda la información médica bajo su ámbito. 

Además, la autenticación mediante credenciales junto con la estructura modular 

del backend hace posible incorporar fácilmente protocolos de encriptación durante 

futuras migraciones a la nube. 

• El modelo de inteligencia artificial CheXNet fue integrado y adaptado con éxito, lo 

que permite la interpretación de imágenes de rayos X torácicos, así como la 

generación automática de identificación y categorización de patologías. Fue 

probado funcionalmente con imágenes reales, y los resultados diagnósticos se 

almacenaron y presentaron de manera accesible a través del sistema web 

logrando su propósito previsto. 

• Se logró una interfaz web simple y responsiva que soporta la carga y análisis de 

imágenes médicas dentro de un tiempo de respuesta aceptable. Las pruebas 

funcionales realizadas confirmaron que, además de procesar datos de manera 

eficiente, el sistema es verdaderamente adaptable incluso a entornos con 

recursos computacionales limitados, lo que es crítico para su implementación en 

áreas remotas. 

• Se implementó encriptación simétrica utilizando el algoritmo de Fernet de Python, 

para garantizar la transferencia de los datos sensibles e imágenes médicas dentro 

del sistema, esta técnica garantiza que los archivos cifrados solo pueden ser 

descifrados mediante una clave segura generada y almacenada en el sistema. 
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• Se demostró que el sistema puede ser accedido de forma remota gracias al 

programa de Ngrok que facilita exponer nuestro sistema local con una dirección 

pública, de tal forma se pudo realizar pruebas de accesibilidad a través de un 

dispositivo móvil con datos móviles validando su funcionamiento y fluidez. 

RECOMENDACIONES 

• Se recomienda migrar el sistema a una plataforma en la nube (como AWS, Azure 

o GCP) en una etapa posterior, mientras se añaden más medidas de protección 

de la seguridad de los datos, cifrado y copias de seguridad automáticas. 

 

• Para el uso en entornos clínicos reales, se recomienda complementar el sistema 

con un módulo de auditoría y trazabilidad que documente el acceso de los 

usuarios, las ediciones y los diagnósticos realizados por cada usuario, 

cumpliendo con las regulaciones Internacionales. 

• Asegurarse que los resultados automáticos procesados por el sistema alcancen 

una sensibilidad, especificidad y precisión diagnóstica aceptables en estándares 

automáticos, es necesario validar el modelo con imágenes clínicas etiquetadas 

por especialistas en futuras versiones del sistema. 

• Para mejorar la experiencia del usuario, se recomienda realizar pruebas de 

usabilidad con médicos esto ayudará a adaptar el diseño a necesidades 

específicas. 
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ANEXOS 

 

Anexo 1: Docker-compose.yml 

En el anexo 1 se muestra el código utilizado para levantar los servicios del sistema 

de backend y de la base de datos de PostgreSQL en los contenedores Docker.  

version: '3.8' 

services: 

  backend: 

    build: . 

    ports: 

      - "5000:5000" 

    depends_on: 

      - postgres 

    networks: 

      - tesisnet 

 

  postgres: 

    image: postgres:13 

    environment: 

      POSTGRES_DB: tesis_db 

      POSTGRES_USER: tesis_user 

      POSTGRES_PASSWORD: tesis123 

    ports: 

      - "5432:5432" 

    networks: 

      - tesisnet 

 

networks: 

  tesisnet: 

 
Anexo 2: model_ia.py 
 
En el anexo 2 se puede visualizar el código utilizado para cargar el modelo de 

CheXNet basado en DenseNet121 donde se realiza el análisis automático de las 

imágenes médicas. 

 
import torch 

import torchvision.transforms as transforms 

from PIL import Image 

from torchvision import models 
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def chexnet_predict(image_path): 

    model = models.densenet121(pretrained=True) 

    model.eval() 

 

    transform = transforms.Compose([ 

        transforms.Resize(224), 

        transforms.CenterCrop(224), 

        transforms.ToTensor() 

    ]) 

 

    image = Image.open(image_path).convert('RGB') 

    image = transform(image).unsqueeze(0) 

 

    with torch.no_grad(): 

        outputs = model(image) 

 

    prediction = torch.sigmoid(outputs).numpy()[0] 

    predicted_label = "Anomalía detectada" if max(prediction) > 0.5 

else "Sin anomalías" 

    return predicted_label 

 
Anexo 3: backend – Flask 
  
En el anexo 3 se puede observar el código utilizado para que funcione la aplicación 

desde la web. 

 
from flask import Flask, render_template, request, redirect, ses-

sion, url_for, jsonify 

from werkzeug.utils import secure_filename 

from model_ia import chexnet_predict 

import psycopg2 

import os 

from datetime import datetime 

 

app = Flask(__name__) 

app.secret_key = 'clave_secreta_segura' 

 

def conectar_db(): 

    return psycopg2.connect( 

        host="postgres", 

        database="tesis_db", 

        user="tesis_user", 

        password="tesis123" 

    ) 

 

@app.route('/login', methods=['POST']) 

def login_post(): 

    data = request.get_json() 
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    usuario = data.get('usuario') 

    password = data.get('password') 

    conn = conectar_db() 

    cur = conn.cursor() 

    cur.execute("SELECT password, rol FROM usuarios WHERE usuario = 

%s", (usuario,)) 

    resultado = cur.fetchone() 

    cur.close() 

    conn.close() 

    if resultado and resultado[0] == password: 

        return jsonify({"success": True, "rol": resultado[1]}) 

    return jsonify({"success": False}) 

 

@app.route('/subir_imagen/<cedula>', methods=['POST']) 

def subir_imagen(cedula): 

    if 'imagen' not in request.files: 

        return "No se envió ninguna imagen" 

    imagen = request.files['imagen'] 

    filename = secure_filename(imagen.filename) 

    ruta = os.path.join('uploads', filename) 

    imagen.save(ruta) 

    resultado = chexnet_predict(ruta) 

    # Guardar en la base de datos 

    conn = conectar_db() 

    cur = conn.cursor() 

    cur.execute("INSERT INTO diagnostico (cedula, resultado, fecha) 

VALUES (%s, %s, %s)",  

                (cedula, str(resultado), datetime.now())) 

    conn.commit() 

    cur.close() 

    conn.close() 

    return "Diagnóstico realizado correctamente" 

 
Anexo 4: Estructura base de datos  
 
En el anexo 4 se puede visualizar la estructura de base de datos donde se procedió 

a crear 3 tablas. 

 
CREATE TABLE usuarios ( 

    id SERIAL PRIMARY KEY, 

    nombres VARCHAR(50), 

    apellidos VARCHAR(50), 

    usuario VARCHAR(50) UNIQUE, 

    password VARCHAR(100), 

    rol VARCHAR(20) 

); 

 

CREATE TABLE historia_clinica ( 
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    id SERIAL PRIMARY KEY, 

    cedula VARCHAR(10) UNIQUE, 

    nombre VARCHAR(100), 

    edad INTEGER, 

    antecedentes TEXT 

); 

 

CREATE TABLE diagnostico ( 

    id SERIAL PRIMARY KEY, 

    cedula VARCHAR(10), 

    resultado TEXT, 

    fecha TIMESTAMP 

); 

 
 
Anexo 5: Docker file 
 
En el anexo 5 podemos visualizar el código utilizado para construir el contenedor 

Docker del backend (app.py), donde incluye todas las dependencias. 

 
FROM python:3.10-slim 

WORKDIR /app 

COPY . . 

RUN pip install --no-cache-dir -r requirements.txt 

EXPOSE 5000 

CMD ["python", "app.py"] 

 
 
Anexo 6: requirements.txt 
 

En el anexo 6 se puede visualizar la lista de bibliotecas necesarias para el backend 

Python funcione correctamente, esto permite instalar automáticamente las 

dependencias. 

 
Flask 

psycopg2-binary 

torch 

torchvision 

Pillow 

 
 
Anexo 7: app.py  
 
En el anexo 7 se puede observar el código utilizado para el desarrollo del sistema 

este es el principal porque maneja las rutas web de conexión a base de datos donde 
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permite el registro, la carda de imágenes y la ejecución del diagnóstico. Coordina toda 

la lógica del siatema. 

 
from flask import Flask, render_template, request, redirect, ses-

sion, url_for, jsonify 

from werkzeug.utils import secure_filename 

from model_ia import chexnet_predict 

import psycopg2 

import os 

from datetime import datetime 

 

app = Flask(__name__, template_folder='templates', static_fol-

der='static') 

app.secret_key = 'clave_secreta_segura' 

 

def conectar_db(): 

    return psycopg2.connect( 

        host="postgres", 

        database="tesis_db", 

        user="tesis_user", 

        password="tesis123" 

    ) 

 

@app.route('/') 

def login(): 

    return render_template('login.html') 

 

@app.route('/login', methods=['POST']) 

def login_post(): 

    data = request.get_json() 

    usuario = data.get('usuario') 

    password = data.get('password') 

    conn = conectar_db() 

    cur = conn.cursor() 

    cur.execute("SELECT password, rol FROM usuarios WHERE usuario = 

%s", (usuario,)) 

    resultado = cur.fetchone() 

    cur.close() 

    conn.close() 

    if resultado and resultado[0] == password: 

        return jsonify({"success": True, "rol": resultado[1]}) 

    return jsonify({"success": False}) 

 

@app.route('/registro', methods=['POST']) 

def registrar_usuario(): 

    nombres = request.form['nombres'] 

    apellidos = request.form['apellidos'] 

    usuario = request.form['usuario'] 

    password = request.form['password'] 
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    rol = request.form['rol'] 

    conn = conectar_db() 

    cur = conn.cursor() 

    cur.execute("INSERT INTO usuarios (nombres, apellidos, usuario, 

password, rol) VALUES (%s, %s, %s, %s, %s)", 

                (nombres, apellidos, usuario, password, rol)) 

    conn.commit() 

    cur.close() 

    conn.close() 

    return redirect('/') 

 

@app.route('/guardar_historia', methods=['POST']) 

def guardar_historia(): 

    cedula = request.form['cedula'] 

    nombre = request.form['nombre'] 

    edad = request.form['edad'] 

    antecedentes = request.form['antecedentes'] 

    conn = conectar_db() 

    cur = conn.cursor() 

    cur.execute("INSERT INTO historia_clinica (cedula, nombre, edad, 

antecedentes) VALUES (%s, %s, %s, %s)", 

                (cedula, nombre, edad, antecedentes)) 

    conn.commit() 

    cur.close() 

    conn.close() 

    return "Historia clínica guardada correctamente" 

 

@app.route('/subir_imagen', methods=['POST']) 

def subir_imagen(): 

    cedula = request.form['cedula'] 

    imagen = request.files['imagen'] 

    filename = secure_filename(imagen.filename) 

    ruta = os.path.join('uploads', filename) 

    imagen.save(ruta) 

    resultado = chexnet_predict(ruta) 

    conn = conectar_db() 

    cur = conn.cursor() 

    cur.execute("INSERT INTO diagnostico (cedula, resultado, fecha) 

VALUES (%s, %s, %s)", 

                (cedula, resultado, datetime.now())) 

    conn.commit() 

    cur.close() 

    conn.close() 

    return f"Diagnóstico: {resultado}" 

 

@app.route('/ver_diagnostico/<cedula>') 

def ver_diagnostico(cedula): 

    conn = conectar_db() 

    cur = conn.cursor() 
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    cur.execute("SELECT resultado, fecha FROM diagnostico WHERE ce-

dula = %s ORDER BY fecha DESC LIMIT 1", (cedula,)) 

    data = cur.fetchone() 

    cur.close() 

    conn.close() 

    if data: 

        return render_template('ver_diagnostico.html', cedula=ce-

dula, resultado=data[0], fecha=data[1]) 

    else: 

        return "No hay diagnóstico disponible" 

 

if __name__ == '__main__': 

    app.run(host='0.0.0.0', port=5000) 

 

6. style.css 

body { 

    font-family: Arial, sans-serif; 

    background-color: #f4f7fc; 

    margin: 0; 

    padding: 0; 

    text-align: center; 

} 

form { 

    background-color: white; 

    margin: 50px auto; 

    padding: 30px; 

    width: 400px; 

    border-radius: 12px; 

    box-shadow: 0 0 10px rgba(0,0,0,0.1); 

} 

input, select, textarea { 

    width: 90%; 

    margin: 10px 0; 

    padding: 10px; 

} 

 
Anexo 8: registro.html 

En el anexo 8, se visualiza el código utilizado para el formulario web donde permite 

registrar nuevos usuarios con el rol médico y facilita la creación de cuentas seguras 

para médicos generales y especialistas. 

 

<!DOCTYPE html> 

<html lang="es"> 

<head> 

    <meta charset="UTF-8"> 

    <title>Registro</title> 

</head> 
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<body> 

    <h2>Registro de Usuario</h2> 

    <form action="/registro" method="POST"> 

        Nombre: <input type="text" name="nombres"><br> 

        Apellido: <input type="text" name="apellidos"><br> 

        Usuario: <input type="text" name="usuario"><br> 

        Contraseña: <input type="password" name="password"><br> 

        Rol: 

        <select name="rol"> 

            <option value="medico_general">Médico General</option> 

            <option value="medico_especialista">Médico Especia-

lista</option> 

        </select><br><br> 

        <button type="submit">Registrar</button> 

    </form> 

</body> 

</html> 

 
Anexo 9: medico.html 

 
En el anexo 9, se puedo observar el código utilizado para la interfaz del médico 

general donde muestra los distintos accesos para registrar la historia clínica del 

paciente sobre las imágenes visualizar su análisis haz una de las interfases 

principales del sistema.  

 

<!DOCTYPE html> 

<html lang="es"> 

<head> 

    <meta charset="UTF-8"> 

    <title>Perfil Médico</title> 

</head> 

<body> 

    <h2>Bienvenido, Doctor</h2> 

    <form action="/guardar_historia" method="POST"> 

        Cédula del paciente: <input type="text" name="cedula"><br> 

        Nombre: <input type="text" name="nombre"><br> 

        Edad: <input type="number" name="edad"><br> 

        Antecedentes: <textarea name="antecedentes"></textarea><br> 

        <button type="submit">Guardar Historia Clínica</button> 

    </form> 

    <br> 

    <form action="/subir_imagen" method="POST" enctype="multi-

part/form-data"> 

        Cargar imagen médica del paciente: 

        <input type="text" name="cedula" placeholder="Cédula del pa-

ciente"><br> 

        <input type="file" name="imagen"><br> 
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        <button type="submit">Subir Imagen y Analizar</button> 

    </form> 

</body> 

</html> 

 
Anexo 10: diagnostico.html 
En el anexo 10, se puedo observar el código utilizado para que muestra el resultado 

del análisis realizado por el modelo de inteligencia artificial incluyendo el diagnóstico 

la cédula, la fecha de la carga de la imagen. 

 
<!DOCTYPE html> 

<html lang="es"> 

<head> 

    <meta charset="UTF-8"> 

    <title>Diagnóstico</title> 

</head> 

<body> 

    <h2>Diagnóstico del Paciente</h2> 

    <p>Cédula: {{ cedula }}</p> 

    <p>Resultado del análisis: {{ resultado }}</p> 

    <p>Fecha: {{ fecha }}</p> 

</body> 

</html> 
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