
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Electricidad y Computación

Desarrollo de software seguro basado en principios de seguridad por diseño

(security by design) aplicados en una fábrica de software en guayaquil

Proyecto de Titulación

Previa a la obtención del Título de:

Magister en Seguridad Informática

Presentado por:

Ing. Vicente Fernando Arreaga Figueroa

Ing. Juan Carlos Chamorro Arias

Guayaquil – Ecuador

Año: 2025

Agradecimiento

A mis maestros, por compartir sus amplios conocimientos con ética y profesionalismo.

A mi tutor de tesis, Ing. Lenin Freire Cobo, por su valiosa guía y asesoramiento en las

diversas etapas del desarrollo del proyecto.

A mi amigo y compañero de tesis, Juan Carlos Chamorro por su constante respaldo y

colaboración durante el desarrollo de este proyecto. Su compromiso y trabajo en equipo

fueron fundamentales para superar los desafíos y alcanzar los resultados deseados.

Ing. Vicente Fernando Arreaga.

Agradecimiento

En primer lugar, a Dios, mi familia y amigos, quienes han sido mi principal fuente de apoyo y

motivación. Sus palabras alentadoras y comprensión han sido fundamentales durante este

nuevo desafiante viaje académico.

Mi reconocimiento también se extiende a mis compañeros de clase y colaboradores de

investigación en especial a mi compañero de tesis, Vicente Fernando Arreaga. Trabajar codo

a codo con ustedes ha enriquecido mi experiencia académica y ha contribuido de manera

significativa al éxito de este proyecto.

A mi tutor de tesis, Ing. Lenin Freire, por su valiosa aportación de conocimientos y

experiencias en las diversas etapas no tan solo del desarrollo del proyecto sino también en los

conocimientos compartidos en su cátedra.

Este logro no es solo mío, sino de todos aquellos que, han sido parte de este emocionante

viaje académico. Gracias a todos por ser parte de este capítulo en mi vida.

Ing. Juan Carlos Chamorro

Dedicatoria

A Dios por ser la guía en esta etapa académica y darme la fortaleza necesaria para continuar aun en

los momentos más difíciles.

A mis queridos padres Vicente y Alexandra, mi más sincero agradecimiento, ya que gracias a su amor

incondicional y apoyo inquebrantable no me permitieron rendirme. A través de su ejemplo,

dedicación y sacrificio me han inspirado a perseguir mis metas y sueños con

determinación, esfuerzo y trabajo duro.

A mis queridas hermanas, Kelvin y Lourdes, por su infinita paciencia y amor incondicional. Su apoyo

constante ha sido un recordatorio invaluable de la importancia de celebrar los logros junto a la familia.

En memoria de mi querida abuela Margarita.

Ing. Vicente Fernando Arreaga.

Dedicatoria

A Dios y mis padres, Juan Antonio y Susana, cuyo amor incondicional y sacrificios han sido mi

fuente constante de inspiración. Sus valores y correcciones han sido la fuerza impulsora detrás de

cada logro en mi vida.

A mi esposa, Soledad, por ser mi compañera constante en este viaje. Tu amor, paciencia, aliento y

comprensión han hecho posible superar los desafíos académicos.

A mi pequeña hija, Simoné, quien, a pesar de mi ausencia en muchos momentos, siempre han sido mi

razón para esforzarme por ser mejor.

Esta tesis es el resultado de la contribución de muchas personas que han dejado una marca permanente

en mi viaje académico. A todos ustedes, mi más profundo agradecimiento y dedicación.

En memoria de mi padre, Juan Antonio.

Ing. Juan Carlos Chamorro.

Declaración Expresa

Nosotros Ing. Vicente Fernando Arreaga y Juan Carlos Chamorro acordamos y reconocemos que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de

graduación corresponderá a los autores, sin perjuicio de lo cual la ESPOL recibe en este acto

una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra con

facultad de sublicenciar, incluyendo la autorización para su divulgación, así como para la

creación y uso de obras derivadas. En el caso de usos comerciales se respetará el porcentaje

de participación en beneficios que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invención,

modelo de utilidad, diseño industrial, secreto industrial, software o información no divulgada

que corresponda o pueda corresponder respecto de cualquier investigación, desarrollo

tecnológico o invención realizada por nosotros durante el desarrollo del proyecto de

graduación, pertenecerán de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del

porcentaje que nos corresponda de los beneficios económicos que la ESPOL reciba por la

explotación de nuestra innovación, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigación (OTRI) de la

ESPOL comunique a los autores que existe una innovación potencialmente patentable sobre

los resultados del proyecto de graduación, no se realizará publicación o divulgación alguna,

sin la autorización expresa y previa de la ESPOL.

Guayaquil, 11 de septiembre del 2025.

Ing. Juan Carlos Chamorro Arias Ing. Vicente Fernando Arreaga Figueroa

Evaluadores

MSc. Lenin Eduardo Freire Cobo
Tutor

MSc. Juan Carlos García Plúa
Revisor

Resumen

Este artículo propone un marco metodológico de desarrollo de software que se basa en

principios de Seguridad y Diseño. Su objetivo es garantizar que las prácticas seguras se

integren efectivamente en cada fase del ciclo de vida de un programa informático. El

argumento aquí es que, al integrar la seguridad en una etapa temprana y estructurarla de

manera ordenada, podemos evitar que nuestros sistemas se vuelvan vulnerables a errores

graves. Esto ahorrará dinero porque los errores que causan tanto trabajo hoy simplemente se

posponen hasta mañana o el año siguiente, cuando finalmente haya fondos disponibles. A

menudo se sostiene la tesis de que, a través de este enfoque, la resiliencia de un sistema

frente a amenazas cotidianas se establece de mejor manera.

La investigación se justifica por la necesidad creciente de fortalecer la seguridad en

aplicaciones desarrolladas en entornos profesionales, especialmente en fábricas de software.

Para el desarrollo del proyecto se utilizó un enfoque cualitativo-aplicado, con base en el

modelo OWASP SAMM, lineamientos de ISO/IEC 27001 y herramientas como OWASP

ZAP y SonarQube. Se diseñó y ejecutó un piloto técnico en un entorno controlado, donde se

evaluaron buenas prácticas integradas en las fases de diseño, codificación y prueba. Los

resultados mostraron una mejora sustancial en la identificación y mitigación de

vulnerabilidades desde etapas tempranas. Se concluye que aplicar principios de Seguridad

por Diseño de manera estructurada favorece un desarrollo de software más seguro, sostenible

y alineado con normativas vigentes.

Palabras clave: desarrollo seguro, ciclo de vida, OWASP SAMM, vulnerabilidades,

normativa técnica.

Abstract

This article proposes a software development methodological framework based on Security

and Design principles. Its goal is to ensure that secure practices are effectively integrated into

every phase of a software program's lifecycle. The argument here is that by integrating secu-

rity early and structuring it in an orderly manner, we can prevent our systems from becoming

vulnerable to serious errors. This will save money because the errors that cause so much work

today are simply postponed until tomorrow or the following year, when funding is finally

available. It is often argued that, through this approach, a system's resilience to everyday

threats is better established.

The research is justified by the growing need to strengthen security in applications developed

in professional environments, especially in software factories. A qualitative-applied approach

was used for the development of the project, based on the OWASP SAMM model, ISO/IEC

27001 guidelines, and tools such as OWASP ZAP and So-narQube. A technical pilot was de-

signed and executed in a controlled environment, where best practices integrated into the de-

sign, coding, and testing phases were evaluated. The results showed a substantial improve-

ment in the identification and mitigation of vulnerabilities from early stages. It is concluded

that applying Security by Design principles in a structured manner favors more secure, sus-

tainable software development that is aligned with current regulations.

Keywords: secure development, life cycle, OWASP SAMM, vulnerabilities, technical

standards.

.

Índice general

Resumen ...VIII

Abstract...IX

Índice general ..X

Índice de figuras...XII

Índice de tablas ...XIII

Capítulo 1..1

1.1 Introducción..1

1.2 Descripción del Problema ..4

1.3 Justificación del Problema ...7

1.4 Objetivos ...8

1.4.1 Objetivo general...8
1.4.2 Objetivos específicos...9

1.5 Marco teórico ..9

1.5.1 Seguridad en el desarrollo de software .. 9
1.5.2 Seguridad por Diseño: Principios y fundamentos...10
1.5.3 Modelos y estándares internacionales aplicables..12
1.5.4 Problemáticas en metodologías de desarrollo ágiles y tradicionales.............................13
1.5.5 Herramientas técnicas para desarrollo seguro ...14
1.5.6 Estudios previos y casos en Ecuador ... 14

Capítulo 2..1

2.1 Formulación y selección de alternativas de solución ...1

2.2 Diseño conceptual y metodología adoptada ..3

2.3 Herramientas y técnicas utilizadas...6

2.4 Procedimiento de codificación segura...7

2.4.1 Principios del procedimiento...8
2.4.2 Integración en el ciclo ágil..9

2.5 Normativas y principios técnicos..10

2.6 Justificación del método y del diseño adoptado...11

2.7 Especificaciones técnicas del esquema propuesto..12

2.8 Estrategia de identificación..12

2.9 Consideraciones éticas y legales ... 13

2.10 Estrategia de validación y confiabilidad de resultados......................................13

2.11 Limitaciones metodológicas ... 14

Capítulo 3..1

3.1 Introducción a los resultados ... 1

3.5 Diseño experimental del plan piloto..3

3.6 Resultados del Grupo A (sin Seguridad por Diseño)...3

3.7 Resultados del Grupo B (con Seguridad por Diseño) ..4

3.8 Resultados cuantitativos .. 4

3.9 Resultados cualitativos...10

3.10 Análisis de resultados...12

3.11 Discusión crítica con la literatura...12

3.12 Proyección de resultados a escenarios reales .. 13

Capítulo 4..1

4.1 Conclusiones..II

4.2 Recomendaciones..III

Referencias...IV

ApéndiceA...VI

Apéndice B...VIII

ApéndiceC..X

Índice de figuras

FIGURA 1. COMPARACIÓN ENTRE UN CICLO DE VIDA DE DESARROLLO TRADICIONAL Y UNO CON SEGURIDAD POR
DISEÑO...6

FIGURA 2. MODO SIMPLIFICADO DE OWASP SAMM. ... 12
FIGURA 3. FASES DEL ESQUEMA METODOLÓGICO APLICADO...5
FIGURA 4. INTEGRACIÓN DE LA SEGURIDAD EN EL CICLO SCRUM ...6

FIGURA 5. INTEGRACIÓN DE NORMATIVAS ..11
FIGURA 6. COMPARACIÓN GRÁFICA DE VULNERABILIDADES ENTRE GRUPO A Y B. ..7
FIGURA 7. PORCENTAJE DE CUMPLIMIENTO DEL CHECKLIST DE CODIFICACIÓN SEGURA (GRUPO B) 8
FIGURA 8. TIEMPO MEDIO DE CORRECCIÓN DE VULNERABILIDADES ...9
FIGURA 9. COMPARACIÓN DE SATISFACCIÓN PROMEDIO POR GRUPO..11

Índice de tablas

TABLA 1. PRINCIPALES VULNERABILIDADES FRECUENTES EN DESARROLLOS SIN SEGURIDAD POR DISEÑO5
TABLA 2. PRINCIPIOS DE SALTZER Y SCHROEDER Y SU APLICACIÓN PRÁCTICA ... 11
TABLA 3. COMPARACIÓN ENTRE METODOLOGÍAS DE DESARROLLO Y SU RELACIÓN CON LA SEGURIDAD13
TABLA 4. COMPARACIÓN DE ALTERNATIVAS DE SOLUCIÓN..2
TABLA 5. HERRAMIENTAS APLICADAS EN EL PILOTO ..7
TABLA 6. EXTRACTO DEL CHECKLIST DE CODIFICACIÓN SEGURA...9
TABLA 7. COMPARACIÓN DE MARCOS NORMATIVOS Y PRINCIPIOS APLICADOS ..10
TABLA 8. RESULTADOS COMPARATIVOS DE LAS VULNERABILIDADES DE ACUERDO A SU CRITICIDAD.........................5
TABLA 9. RESULTADOS COMPARATIVOS DE LAS VULNERABILIDADES DE ACUERDO A SU CATEGORÍA6
TABLA 10. PERCEPCIÓN DEL EQUIPO SOBRE LA INTEGRACIÓN DE SEGURIDAD (ESCALA 1–5)................................10

Capítulo 1

1.1 Introducción

La rápida evolución de las tecnologías digitales ha hecho que los sistemas

informáticos sean cada vez más complejos. A medida que la complejidad de estos sistemas ha

aumentado, también lo ha hecho el riesgo correspondiente (inseguridad) que traen consigo.

En la actualidad, el desarrollo de software seguro se ha vuelto cada vez más

importante. Esto es necesario porque la frecuencia y sofisticación de los ciberataques están

aumentando rápidamente en todos los frentes. Citando informes internacionales, muchas

vulnerabilidades explotadas en sistemas de producción provienen de malas prácticas durante

las fases iniciales del ciclo de vida del desarrollo de software (SDLC) [1].

En general, lo que rara vez se aborda en los programas educativos tradicionales es que

por cada defecto de software o "bug", siempre hay una serie de otras características

innecesarias cuya presencia solo añade riesgo a los sistemas.

En el caso de América Latina y especialmente Ecuador, es habitual implementar

muchas aplicaciones y plataformas sin considerar inicialmente fundamentos como la

seguridad. Esto aumenta tanto el peligro de ser golpeado por amenazas que provienen

directamente de la red, como inyecciones de código o errores de autenticación; y también

conduce a pérdidas económicas, daño a la reputación de nuestras organizaciones, multas por

violar requisitos regulatorios [2].

La mayoría de los incidentes de seguridad son causados ya sea por un mal diseño o

por no seguir una política de seguridad estructurada desde el inicio de un proyecto. Por

ejemplo, esta deficiencia es grave porque corregir agujeros de seguridad u otros defectos en

fases tardías, especialmente después de que el software ha sido puesto en entornos de

producción, es un trabajo costoso y difícil, que tiene un efecto negativo en todo: eficiencia de

producción, calidad en el producto final [3].

Respaldando el concepto de SBD en este tema, sus elementos esenciales no se limitan

a los principios mencionados. Este enfoque construye sistemáticamente requisitos de

seguridad en cada etapa del proyecto de software. Mientras tanto, bajo tal enfoque podemos

asegurarnos de que las soluciones digitales nazcan con sus requisitos de seguridad

completamente integrados en su arquitectura original; mientras que luego no se añaden por

necesidad o como una solución reactiva a algo que se pasó por alto posteriormente [4].

El objetivo de este estudio es desarrollar un marco sistemático de Seguridad por

Diseño para el desarrollo de software. El propósito es reducir los riesgos comunes de

seguridad y hacer que los sistemas sean más resistentes tanto a amenazas intencionales

internas como externas.

Por lo tanto, examinaremos las metodologías de desarrollo más populares tanto en

campos ágiles como no ágiles para descubrir algo sobre sus potenciales vulnerabilidades, y

también lo que ofrecen en términos de fortalezas al incorporar controles de seguridad en una

etapa temprana del SDLC. También fomentarán las mejores prácticas que se alinean con

estándares reconocidos, como OWASP SAMM/ISO/IEC 27001 para organizaciones de

diferentes tamaños, y especialmente aquellas en mercados emergentes donde las empresas de

servicios informáticos están en auge o fábricas locales que forman parte de un grupo más

grande [5].

El presente proyecto aborda la tecnología de Seguridad por Diseño utilizando, y con

asesoramiento técnico, herramientas automatizadas. Predice que se pueden lograr mejoras

significativas tanto en robustez como en el número de vulnerabilidades críticas.

Para responder a la demanda, algunos de los elementos metodológicos incluyen:

 Análisis de Brechas de Seguridad;

 Realización de un prototipo técnico diseñado en algún entorno de prueba;

 Críticas a nivel de módulo utilizando herramientas OWASP ZAP/SonarQube,

sin olvidar realizar auditorías de código y verificaciones a nivel de aplicación.

La problematica radica en el hecho de que pocas corporaciones, ya sean públicas o

privadas, pueden sostener su desarrollo continuo de sistemas seguros. A pesar de una amplia

gama de recursos técnicos disponibles para ellas, muchas empresas todavía practican solo en

una medida limitada la identificación temprana de riesgos, la priorización de riesgos o la

cuantificación de requisitos de seguridad y no siempre se toman medidas sistemáticas para la

conformidad con los estándares. Esto se refleja en la prevalencia de vulnerabilidades como

inyecciones SQL, debilidades en la autenticación de usuarios, exposición de datos sensibles y

fallas de configuración, entre otras [6].

Además, la ausencia de una cultura de seguridad en el ciclo de vida del desarrollo de

software genera dificultades para cumplir con marcos normativos vigentes. En el caso

ecuatoriano, la entrada en vigencia de la Ley Orgánica de Protección de Datos Personales

(LOPDP) ha creado nuevas exigencias legales para el tratamiento de información sensible. El

incumplimiento de estas normativas puede conllevar sanciones administrativas, pérdida de

licencias o responsabilidad civil y penal para las organizaciones [7].

Ante este escenario, el enfoque propuesto no solo pretende optimizar los aspectos

técnicos del desarrollo de software, sino también contribuir a una transformación cultural en

el proceso de construcción de soluciones tecnológicas. La introducción de prácticas de

Seguridad por Diseño no solo mejorará la calidad del producto, sino que también evitará

fallos importantes que de otro modo ocurrirían en trabajos de mantenimiento a largo plazo o

durante las fases de postproducción. Además, al adoptar tales diseños desde sus orígenes, se

ayuda a mejorar la confianza del usuario final para confiar en que sus datos pueden estar

completamente protegidos.

Se espera que el desarrollo de los resultados de esta investigación actúe como una

base metodológica para implementar programas de desarrollo seguro reproducibles en

entornos empresariales serios, y así promover una cultura proactiva que sea responsable

(legalmente) y que busque el progreso en la ingeniería de software.

1.2 Descripción del Problema

En la actualidad, las organizaciones que desarrollan software enfrentan una creciente

presión para ofrecer productos digitales funcionales, rápidos y seguros. Sin embargo, la

seguridad en el desarrollo de software continúa siendo un desafío persistente, particularmente

en los entornos donde se prioriza la velocidad de entrega sobre la robustez del producto. La

mayoría de los incidentes de seguridad en aplicaciones empresariales y de consumo se

originan por no integrar controles de seguridad desde las primeras fases del ciclo de vida del

software (SDLC), lo cual genera vulnerabilidades que son detectadas demasiado tarde:

durante las pruebas finales, en producción o incluso tras incidentes reales [3].

Uno de los factores críticos que agudiza esta problemática es la baja adopción de

prácticas de Seguridad por Diseño en proyectos reales. A pesar de la disponibilidad de

modelos y principios internacionalmente reconocidos —como los ocho principios de Saltzer

y Schroeder— muchas organizaciones no los integran debido a la ausencia de cultura de

seguridad, desconocimiento técnico o falta de recursos especializados [8]. Esta situación

también se replica en la organización objeto de estudio, una fábrica de software de alcance

nacional, cuya identidad se reserva por razones de confidencialidad. Esta entidad desarrolla

productos para sectores sensibles, incluyendo banca, servicios públicos y plataformas de

consumo.

En esta fábrica, los proyectos son liderados principalmente por desarrolladores que

deben asumir decisiones críticas de diseño sin contar necesariamente con una guía formal de

seguridad o el acompañamiento de especialistas. A esto se suman desafíos como la presión

por cumplir cronogramas ajustados, el uso de metodologías ágiles sin criterios de seguridad

explícitos, y la implementación de herramientas de desarrollo sin configuraciones seguras por

defecto. Como se muestra en la Tabla 1, persisten brechas comunes como inyecciones SQL,

autenticación débil o falta de cifrado, cuya presencia es especialmente crítica en aplicaciones

de misión crítica.

Tabla 1.
Principales vulnerabilidades frecuentes en desarrollos sin seguridad por diseño

Vulnerabilidad Descripción Consecuencia

Inyección SQL Manipulación de consultas
a bases de datos

Acceso o modificación no
autorizada de datos

Autenticación débil Uso de contraseñas
predecibles o sin doble
factor

Suplantación de identidad

Falta de cifrado Transmisión de datos
sensibles sin protección

Exposición de información
privada

Manejo incorrecto de
sesiones

Tokens mal gestionados o
sin expiración

Secuestro de sesión

Exposición de errores Mensajes técnicos
detallados mostrados al
usuario

Divulgación de
información interna

Nota: Elaboración propia con base en OWASP Top 10.

Este conjunto de deficiencias ha generado problemas medibles en la organización,

desde reprocesos técnicos y pérdida de eficiencia, hasta quejas de usuarios, daño reputacional

y exposición a sanciones regulatorias. La percepción de calidad del software entregado se ve

afectada, lo que reduce la confianza de los clientes y aumenta la rotación de proyectos a

causa de los sobrecostos derivados de corregir errores de seguridad en etapas avanzadas.

El problema es especialmente relevante porque, aunque las metodologías ágiles como

Scrum y Programación Extrema (XP) permiten iteraciones rápidas y tolerancia a cambios, no

priorizan de forma explícita la seguridad como atributo de calidad. Diversos autores han

identificado esta debilidad estructural como una barrera para la madurez en desarrollo seguro

[9].

Como se observa en la Figura 1(a) un ciclo de vida de desarrollo tradicional tiende a

relegar la seguridad a las fases finales, lo cual incrementa los riesgos y costos asociados. En

contraste, la Figura 1(b) muestra una propuesta basada en Seguridad por Diseño, donde se

integran controles desde los requisitos hasta el mantenimiento, alineando el proceso con

estándares como OWASP SAMM e ISO/IEC 27001.

Figura 1.
Comparación entre un ciclo de vida de desarrollo tradicional y uno con Seguridad por
Diseño

Requisitos Diseño Desarrollo Pruebas Implementación Mantenimiento

(a) Ciclo de vida de desarrollo tradicional (SDLC clásico)

Requisitos Diseño Desarrollo Pruebas Implementación Mantenimiento

Seguridad in-
tegrada

Evaluación de
amenazas

Buenas prácti-
cas + herra-

mientas
Análisis estáti-
co y dinámico

Configuración
segura

Monitoreo
continuo

(b) Ciclo de vida con seguridad por diseño

Nota: Elaboración propia con base en OWASP SAMM y Microsoft SDL.

Por tanto, se identifica como problema central la ausencia de una estrategia

estructurada para integrar principios de seguridad desde las fases tempranas del desarrollo, lo

cual expone a las organizaciones a riesgos técnicos, económicos y legales. Este problema es

observable, medible y abordable mediante mecanismos de control técnico, análisis de buenas

prácticas, herramientas automatizadas y alineación con estándares de seguridad.

La propuesta busca aplicar un enfoque de Seguridad por Diseño adaptado al contexto

de una fábrica de software nacional, usando herramientas de código abierto como OWASP

ZAP y SonarQube. Se seleccionarán proyectos piloto de tamaño medio para garantizar su

viabilidad técnica en términos de recursos, accesos, cronograma y disponibilidad del equipo

responsable. La propuesta será evaluada mediante un análisis comparativo de resultados antes

y después de la intervención, considerando variables como número de vulnerabilidades

detectadas, nivel de cumplimiento con buenas prácticas y percepción de calidad del producto

entregado.

1.3 Justificación del Problema

La creciente exposición de los sistemas informáticos a amenazas cibernéticas ha

evidenciado la necesidad de fortalecer los procesos de desarrollo de software mediante

enfoques que contemplen la seguridad como un eje transversal. A pesar de los avances

normativos y tecnológicos, persisten brechas en la integración de prácticas seguras desde las

etapas tempranas del ciclo de vida del software, especialmente en entornos donde prevalece

la presión por la entrega ágil y continua de productos. Este escenario es particularmente

notorio en fábricas de software que desarrollan aplicaciones para sectores sensibles, como

banca, comercio electrónico o servicios públicos, donde el impacto de una vulnerabilidad

puede ser crítico.

Resolver este problema resulta esencial no solo para reducir la ocurrencia de errores

técnicos, sino también para prevenir consecuencias económicas, reputacionales y legales que

derivan de incidentes de seguridad. Además, en el contexto ecuatoriano, la entrada en vigor

de la Ley Orgánica de Protección de Datos Personales (LOPDP) impone nuevas exigencias

sobre la protección de la información sensible y la gestión de riesgos asociados a datos

personales [7]. Esto implica la necesidad de rediseñar los procesos metodológicos en los

proyectos de desarrollo de software, integrando seguridad desde su concepción.

La adopción del enfoque de Seguridad por Diseño responde a esta necesidad. Integrar

controles desde la fase de requisitos permite anticipar amenazas, reducir el retrabajo técnico y

generar productos más robustos. Asimismo, promueve una cultura de prevención, mejora la

eficiencia operativa y favorece el cumplimiento de estándares internacionales como OWASP

SAMM e ISO/IEC 27001 [3]. Estos marcos proporcionan lineamientos para la

implementación de prácticas seguras, adaptables a contextos organizacionales de distinta

escala y madurez.

Esta transformación no solo es viable mediante herramientas de código abierto como

OWASP ZAP y SonarQube, sino que también puede aplicarse de manera progresiva en

proyectos piloto de mediana escala. Justificar esta propuesta implica reconocer que el

problema es actual, crítico y resoluble, y que su abordaje representa una oportunidad para

elevar el nivel de madurez en seguridad de las organizaciones que construyen soluciones

digitales.

1.4 Objetivos

1.4.1 Objetivo general

Proponer un esquema metodológico para el desarrollo de software basado en los

principios de Seguridad por Diseño, con el fin de integrar prácticas seguras desde la

concepción del sistema y durante todo su ciclo de vida, asegurando así la mitigación de

vulnerabilidades y el cumplimiento normativo.

1.4.2 Objetivos específicos

 Identificar los principios fundamentales de Seguridad por Diseño aplicables al

desarrollo de software en entornos de fábrica.

 Analizar metodologías de desarrollo ágil y tradicional (como metodología Cascada)

para determinar su capacidad de incorporar seguridad desde etapas tempranas.

 Diseñar un conjunto de buenas prácticas que fortalezcan la seguridad en las fases de

análisis, diseño, codificación y pruebas, considerando vulnerabilidades comunes y

marcos normativos relevantes.

 Implementar y evaluar un proyecto piloto en la fábrica de software seleccionada,

aplicando el esquema propuesto tras un proceso de capacitación metodológica.

1.5 Marco teórico

1.5.1 Seguridad en el desarrollo de software

El desarrollo de software seguro ha evolucionado como una disciplina fundamental

dentro de la ingeniería de software, particularmente a partir del reconocimiento de que la

mayoría de los incidentes de ciberseguridad tienen su origen en errores de diseño o

implementación no controlados [1]. Según Pressman, la seguridad debe considerarse un

atributo de calidad tan relevante como la funcionalidad o el rendimiento [1].

Diversas investigaciones demuestran que los enfoques tradicionales de desarrollo han

fallado en priorizar la seguridad como un requisito no funcional desde las etapas tempranas

del ciclo de vida del software (SDLC). Esto ha motivado la creación de metodologías,

estándares y marcos conceptuales que buscan introducir seguridad de forma estructurada y

proactiva [4].

1.5.2 Seguridad por Diseño: Principios y fundamentos

El concepto de Seguridad por Diseño se basa en integrar principios de protección

desde la concepción del sistema, en lugar de considerarlos únicamente en fases de pruebas o

mantenimiento. Este enfoque se apoya en los principios formulados por Saltzer y Schroeder,

aunque fueron formulados en el contexto de sistemas operativos, su vigencia es indiscutible

en el desarrollo moderno de software, ya que proveen lineamientos generales para prevenir

vulnerabilidades desde la concepción de un sistema [8].

Estos principios se pueden resumir en los siguientes ocho enunciados:

1. Economía de mecanismos. El diseño debe ser lo más simple y pequeño

posible, ya que la complejidad introduce mayores posibilidades de fallos.

2. Fallo seguro por defecto. Las decisiones de acceso deben denegar permisos

por defecto, a menos que sean explícitamente concedidos.

3. Privilegios mínimos. Cada proceso o usuario debe operar con el nivel mínimo

de permisos necesario para cumplir su función.

4. Separación de privilegios. El acceso a recursos críticos debe requerir múltiples

condiciones independientes, como controles multifactor.

5. Diseño abierto. La seguridad no debe depender de secretos en el diseño; la

robustez debe basarse en mecanismos verificables públicamente.

6. Defensa en profundidad. Es preferible implementar múltiples capas de control

para mitigar el impacto de una posible vulnerabilidad.

7. Comprobación completa. Todas las entradas y salidas deben ser verificadas de

manera exhaustiva, sin confiar en datos externos.

8. Usabilidad y aceptación. Los mecanismos de seguridad deben ser

comprensibles y fáciles de aplicar, evitando que los usuarios intenten

eludirlos.

La Tabla 2 resume los principios y su aplicación práctica en el desarrollo de software

actual.

Tabla 2.
Principios de Saltzer y Schroeder y su aplicación práctica

Principio Descripción Aplicación en software moderno
Economía de mecanismos Diseños simples

reducen errores
Arquitectura modular,
microservicios controlados

Fallo seguro por defecto Acceso denegado por
autorización explícita

Políticas deny-all en firewalls y
APIs

Privilegios mínimos Privilegios
estrictamente necesarios

RBAC, control granular de
permisos

Separación de privilegios Más de una condición
para operaciones
críticas

Autenticación multifactor,
segregación de funciones

Diseño abierto Seguridad no basada en
secretos del diseño

Uso de algoritmos de criptografía
estándar (AES, RSA)

Defensa en profundidad Capas de control
redundante

IDS/IPS, WAF, segmentación de
redes

Comprobación completa Validación exhaustiva
extremo a extremo

Sanitización de entradas,
validaciones de API

Usabilidad y aceptación Mecanismos que no
incentiven el bypass

Políticas de contraseñas, UX
seguro

Nota: Elaboración propia.

Además, organizaciones como OWASP promueven estos principios a través de

marcos como OWASP SAMM, orientado a medir y mejorar las prácticas de desarrollo seguro

en organizaciones reales [10]. Como se observa en la Figura 2, este modelo define cinco

dominios clave para estructurar un programa de desarrollo seguro.

Figura 2.
Modo simplificado de OWASP SAMM.

Nota: Elaboración propia con base en OWASP SAMM v2.0 [10]

1.5.3 Modelos y estándares internacionales aplicables

Entre los estándares más relevantes se encuentran:

 ISO/IEC 27001: norma internacional para la gestión de seguridad de la información,

que exige controles desde la concepción del software [3].

 Microsoft SDL (Security Development Lifecycle): modelo que incorpora

evaluaciones de amenazas, revisión de código seguro y validación de requisitos de

seguridad en todo el ciclo de desarrollo [11].

 NIST SP 800-53: conjunto de controles de seguridad de sistemas, ampliamente

adoptado en entornos gubernamentales y corporativos [12].

Estos estándares no son excluyentes, y pueden ser adaptados progresivamente a los

contextos organizacionales, incluyendo fábricas de software de mediana escala como las

existentes en Ecuador.

1.5.4 Problemáticas en metodologías de desarrollo ágiles y tradicionales

Metodologías ágiles como Scrum y XP han ganado popularidad por su flexibilidad y

rapidez, pero estudios recientes cuestionan su falta de enfoque explícito en seguridad. De

hecho, se considera que su orientación a entregas funcionales rápidas puede dejar de lado

controles estructurales de seguridad si no se ajustan adecuadamente [9].

En contraste, metodologías tradicionales como la metodología Cascada permiten una

planificación anticipada, pero muchas veces no actualizan los requisitos de seguridad durante

el proceso. Esto hace necesario proponer esquemas híbridos o complementarios que integren

principios de Seguridad por Diseño independientemente del enfoque metodológico adoptado.

La Tabla 3 presenta una comparación entre estas metodologías con relación a su

integración de la seguridad en el SDLC.

Tabla 3.
Comparación entre metodologías de desarrollo y su relación con la seguridad

Metodología
Fase de

integración de
seguridad

Enfoque común Riesgo principal

Scrum No explícita
(requiere
adaptación)

Iterativo Seguridad relegada
si no se ajusta

XP Parcial en prácticas
técnicas

Incremental Ausencia de
política formal

Cascada En el diseño inicial Secuencial Cambios tardíos
poco adaptables

Seguridad por
Diseño

Desde los requisitos Transversal Requiere
capacitación previa

Nota: Elaboración propia.

1.5.5 Herramientas técnicas para desarrollo seguro

La automatización de controles y pruebas es un componente fundamental de la

Seguridad por Diseño. Entre las herramientas destacadas se encuentran:

 OWASP ZAP: herramienta para pruebas de penetración automatizadas en

aplicaciones web.

 SonarQube: plataforma de análisis estático de código, que permite detectar

vulnerabilidades y malas prácticas.

Estas herramientas son accesibles, de código abierto, y pueden incorporarse

fácilmente a entornos de integración continua (CI/CD), facilitando la aplicación práctica de la

propuesta en fábricas de software.

1.5.6 Estudios previos y casos en Ecuador

Investigaciones realizadas en Ecuador, como las desarrolladas por ESPE y ESPOL,

evidencian que muchas PYMES tecnológicas carecen de procedimientos formales para

evaluar y mitigar riesgos de seguridad en el desarrollo de software [5], [6]. Estas

investigaciones subrayan la necesidad de aplicar modelos adaptativos y herramientas

accesibles para elevar el nivel de madurez en seguridad sin comprometer la productividad.

Capítulo 2

2.1 Formulación y selección de alternativas de solución

En la fase inicial del proyecto fue indispensable evaluar diferentes alternativas para

abordar la problemática de la baja integración de prácticas de seguridad en el ciclo de

desarrollo de software. El objetivo de este análisis comparativo fue identificar la solución

más adecuada considerando el contexto de la organización, los costos de implementación y

los beneficios en términos de seguridad y sostenibilidad.

Las alternativas analizadas fueron las siguientes:

a) Revisiones de código posteriores al desarrollo: Este método, común en muchas

fábricas de software, consiste en revisar el código una vez que ha concluido la fase de

programación. Su ventaja es que permite detectar errores técnicos y fallos de

seguridad antes del despliegue en producción. Sin embargo, se trata de un enfoque

reactivo: los problemas ya están en el producto, y corregirlos en esta etapa resulta

costoso y arriesgado. Según estudios del IBM System Sciences Institute, corregir un

defecto detectado durante la fase de implementación puede ser hasta seis veces más

costoso que hacerlo en la etapa de diseño, y hasta cien veces más si se corrige durante

el mantenimiento [13]. Esta evidencia respalda la idea de que las estrategias reactivas

resultan económicamente inviables frente a enfoques preventivos como la Seguridad

por Diseño.

b) Pruebas de penetración antes del despliegue: Las pruebas de penetración o pentesting

consisten en simular ataques reales contra la aplicación para identificar posibles

brechas. Este método es ampliamente aceptado en la industria, ya que proporciona

una visión realista de la exposición a riesgos. No obstante, comparte la limitación de

ser una estrategia tardía. Si las vulnerabilidades se descubren poco antes de liberar la

aplicación, la presión de los tiempos puede llevar a soluciones parciales o, incluso, a

que se acepte un nivel de riesgo no deseado.

c) Integración de principios de Seguridad por Diseño desde el inicio del ciclo de vida del

software: La tercera alternativa, y la que finalmente se adoptó, fue la incorporación de

la seguridad desde la etapa de requisitos. Este enfoque es preventivo y sostenible,

pues permite anticiparse a las vulnerabilidades antes de que lleguen al código o a la

fase de pruebas. Además, se alinea con normativas internacionales como ISO/IEC

27001 [3] y con los principios propuestos por Saltzer y Schroeder [8], que promueven

prácticas como el control de acceso mínimo, la defensa en profundidad y la

simplicidad en el diseño.

La Tabla 4 resume la comparación entre las alternativas evaluadas, considerando su

enfoque, momento de aplicación, ventajas y limitaciones.

Tabla 4.
Comparación de alternativas de solución

Alternativa Enfoque Momento de
aplicación

Ventaja
principal

Desventaja
principal

Revisión de códi-
go posterior Reactivo Post-codificación Detección de

errores
Costos altos de co-
rrección tardía

Pruebas de pene-
tración Reactivo Pre-despliegue Simulación rea-

lista
Riesgo de hallazgos
tardíos

Seguridad por Di-
seño (elegida) Preventivo Desde requisitos Control desde el

origen
Requiere capacita-
ción inicial

Nota: Elaboración propia.

En consecuencia, se seleccionó diseñar e implementar un esquema metodológico de

desarrollo de software basado en los principios de Seguridad por Diseño, adaptado al entorno

operativo de una fábrica de software ecuatoriana. Esta decisión responde a la necesidad de

contar con una solución integral, sostenible y alineada con las buenas prácticas promovidas

por organismos internacionales como OWASP [4][10].

2.2 Diseño conceptual y metodología adoptada

El diseño metodológico se estructuró en cuatro fases: diagnóstico, diseño del

esquema, implementación piloto y validación. Esta división permitió mantener un control

progresivo del proyecto y recolectar evidencia en cada etapa.

 Fase 1 – Diagnóstico: Durante la fase inicial se buscó identificar las principales

brechas de seguridad en el proceso actual de desarrollo de la fábrica de software. Para

ello, se aplicaron entrevistas semiestructuradas a cinco integrantes del equipo: dos

desarrolladores, un Scrum Master, un QA y un Product Owner.

La entrevista fue diseñada con un formato semiestructurado, es decir, con una guía de

preguntas predefinidas, pero con la flexibilidad de que los participantes pudieran

profundizar en los aspectos que consideraran relevantes. Las preguntas centrales

fueron:

a) ¿Se incluyen requisitos de seguridad en las historias de usuario?

b) ¿Qué herramientas de análisis o pruebas se utilizan para detectar

vulnerabilidades en el software?

c) ¿Cómo se gestionan y corrigen las vulnerabilidades una vez identificadas?

d) ¿Existen métricas de calidad del código que consideren aspectos de seguridad?

e) ¿Cuáles son las principales barreras que encuentran para aplicar buenas

prácticas de seguridad en el desarrollo diario?

Los resultados del diagnóstico mostraron que, si bien se empleaban herramientas

como SonarQube, su uso estaba limitado a la detección de defectos generales, sin un

procedimiento formal para registrar y corregir vulnerabilidades. Además, las historias

de usuario rara vez incluían criterios explícitos de seguridad, lo que generaba que los

fallos se descubrieran en etapas tardías. Otro hallazgo importante fue la ausencia de

métricas de seguridad como parte de la gestión del proyecto, lo que impedía medir el

nivel de riesgo de manera sistemática.

Estos hallazgos evidenciaron la necesidad de un esquema que integrara la seguridad

desde las fases iniciales del ciclo de desarrollo, y que combinara tanto validaciones

automatizadas como controles manuales, alineados con principios de desarrollo

seguro.

 Fase 2 – Diseño del esquema: Se creó un marco de trabajo que se integró con la

metodología Scrum, utilizada por la organización. Este marco incluyó actividades

específicas de seguridad: Revisión de requisitos de seguridad.

o Análisis de amenazas con base en el modelo STRIDE.

o Validaciones automatizadas mediante pipelines conectadas a SonarQube.

o Definición de métricas de cumplimiento (fallos por KLOC, tiempo medio de

corrección, satisfacción del equipo).

Además, se estableció un flujo de control en el backlog para dar seguimiento a riesgos

y vulnerabilidades. El diseño se fundamentó en los principios de Saltzer y Schroeder

[8], destacando el principio de privilegios mínimos, la defensa en profundidad y la

comprobación completa.

 Fase 3 – Implementación piloto: El esquema fue probado en un proyecto real en curso

durante dos sprints consecutivos. Para asegurar la validez de la comparación, se

conformaron dos grupos de trabajo equivalentes:

o Grupo A: 5 integrantes (1 Product Owner, 1 Scrum Master, 2 desarrolladores,

1 QA), quienes trabajaron bajo un enfoque ágil tradicional, sin controles de

seguridad explícitos.

o Grupo B: 5 integrantes (con los mismos roles), quienes recibieron

capacitación previa sobre los principios de Seguridad por Diseño e integraron

controles de seguridad en cada ceremonia de Scrum.

Ambos grupos trabajaron sobre funcionalidades equivalentes, lo que permitió

contrastar los resultados bajo condiciones comparables.

 Fase 4 – Evaluación de resultados: Se analizaron indicadores clave: número de

vulnerabilidades detectadas, correcciones aplicadas antes del despliegue y

satisfacción del equipo técnico. Este análisis permitió identificar fortalezas y áreas de

mejora del esquema adoptado, y sirvió como base para validar la hipótesis de que la

integración temprana de seguridad mejora significativamente la calidad del software.

Estas fases se resumen en la Figura 3, que muestra gráficamente la estructura del

esquema metodológico aplicado.

Figura 3.
Fases del esquema metodológico aplicado

Nota: Elaboración propia.

2.3 Herramientas y técnicas utilizadas

La implementación se apoyó en herramientas de código abierto y recursos accesibles,

priorizando soluciones de bajo costo, pero alta efectividad. Las principales fueron:

 OWASP ZAP: Utilizado como escáner dinámico para simular ataques y detectar

vulnerabilidades en tiempo de ejecución [4].

 SonarQube: Configurado como herramienta de análisis estático, identificó problemas

en el código relacionados con inyección SQL, exposición de datos sensibles y mala

gestión de sesiones.

 OWASP ASVS: Lista estructurada para validar manualmente los controles

implementados en cada historia de usuario.

 Adaptación de Scrum: Se incluyeron actividades específicas de seguridad dentro de

las ceremonias ágiles (revisión de seguridad en sprint review, planificación de

mitigaciones en backlog grooming).

La Figura 4 ilustra cómo se integraron estos controles en el ciclo de desarrollo ágil

Scrum.

Figura 4.
Integración de la seguridad en el ciclo Scrum

Nota: Elaboración propia.

Asimismo, en la Tabla 5 se resumen las principales herramientas utilizadas,

clasificadas por tipo de análisis y objetivo técnico.

Tabla 5.
Herramientas aplicadas en el piloto

Herramienta Tipo de
análisis Propósito principal Momento sugerido

OWASP ZAP Dinámico Pruebas de penetración (runtime) Post-build
SonarQube Estático Detección de vulnerabilidades y code sme-

lls
Pre-merge

OWASP AS-
VS Manual Checklist estructurado de verificación

Nota: Elaboración propia.

Se evaluaron también herramientas comerciales como Burp Suite y Fortify. Sin

embargo, no fueron seleccionadas debido a sus altos costos de licenciamiento y complejidad

de integración, mientras que ZAP y SonarQube ofrecieron un equilibrio adecuado entre costo

y beneficio para un piloto académico aplicado.

2.4 Procedimiento de codificación segura

Un componente esencial del esquema metodológico propuesto fue la adopción de un

procedimiento de codificación segura, cuyo propósito fue estandarizar las prácticas de los

desarrolladores e integrar la seguridad como un requisito transversal en cada historia de

usuario.

Este procedimiento se fundamentó en lineamientos internacionales, entre ellos la

ISO/IEC 27034 (seguridad en aplicaciones) [16], el OWASP Application Security

Verification Standard (ASVS) [17] y las guías de CERT Secure Coding Standards [18].

La incorporación de estas guías permitió reducir la introducción de vulnerabilidades

durante la implementación y garantizar un control continuo sobre la calidad del código. El

procedimiento fue aplicado en cada sprint de los grupos participantes, asegurando que la

seguridad no se tratara como una actividad aislada, sino como un componente natural del

proceso de desarrollo.

2.4.1 Principios del procedimiento

a) Validación de entradas y salidas. Se implementaron rutinas de sanitización contra

inyecciones SQL y XSS, así como validaciones en el servidor para datos

provenientes del cliente.

b) Gestión de autenticación y sesiones. Se eliminaron credenciales hardcodeadas, se

usaron algoritmos de hash como bcrypt y se configuraron tiempos de expiración

de sesión.

c) Manejo de errores y excepciones. Los mensajes de error mostrados al usuario

fueron genéricos, mientras que los registros internos incluyeron detalles para

trazabilidad.

d) Protección de datos sensibles. Toda la información crítica se cifró en tránsito y en

reposo utilizando TLS 1.3 y AES-256.

e) Dependencias confiables. Las librerías fueron descargadas desde repositorios

oficiales y verificadas con OWASP Dependency-Check.

f) Principio de privilegios mínimos. Ningún componente o función operó con

permisos superiores a los necesarios.

g) Registro y monitoreo seguro. Los intentos fallidos de acceso se registraron,

evitando la exposición de datos sensibles en logs.

Con el fin de operacionalizar estas prácticas, se elaboró un checklist de codificación

segura, el cual fue utilizado por los equipos durante el desarrollo para verificar el

cumplimiento de los controles mínimos establecidos. La Tabla 6 presenta un extracto

representativo de este checklist.

Tabla 6.
Extracto del checklist de codificación segura

Área Ítem de verificación Ejemplo de aplicación
Validación de entradas ¿Se validan todas las entradas de

usuario en servidor y cliente?
Sanitización de inputs para
prevenir inyecciones SQL.

Autenticación y sesiones ¿Las contraseñas están cifradas con
algoritmos seguros? Uso de bcrypt o Argon2.

Manejo de errores ¿Los mensajes de error mostrados al
usuario son genéricos?

Evitar exponer trazas técnicas
en producción.

Nota: Extracto del checklist completo presentado en el Anexo 1. Elaboración propia con
base en OWASP ASVS, ISO/IEC 27034 y CERT Secure Coding Standards.

2.4.2 Integración en el ciclo ágil

El procedimiento fue incorporado de la siguiente forma en el flujo Scrum:

En la planificación de sprint, cada historia de usuario incluyó criterios de aceptación

relacionados con seguridad.

Durante el desarrollo, los programadores siguieron el checklist de codificación segura.

En el sprint review, se verificó que se cumplieran los controles establecidos.

En la retrospectiva, se documentaron mejoras sugeridas para el próximo ciclo.

De esta manera, la codificación segura se convirtió en una práctica sistemática y no en

una actividad aislada.

2.5 Normativas y principios técnicos

El diseño metodológico se fundamentó en marcos normativos y principios técnicos

reconocidos:

 OWASP SAMM: Se utilizaron sus cinco dominios como base para mapear

actividades de madurez en seguridad: Gobernanza, Diseño, Implementación,

Verificación y Operación [10].

 ISO/IEC 27001: Sirvió como referencia normativa para establecer buenas prácticas de

gestión de seguridad de la información [3].

 NIST SP 800-53: Aportó lineamientos específicos sobre controles técnicos

implementables, especialmente en autenticación y gestión de identidades [7].

 Principios de Saltzer y Schroeder: Guiaron la filosofía del diseño, asegurando control

de acceso mínimo, separación de funciones y defensa en profundidad [8].

La Tabla 7 resume su aporte comparativo.

Tabla 7.
Comparación de marcos normativos y principios aplicados
Marco / Principio Ámbito de aplicación Aporte al esquema propuesto

OWASP SAMM Madurez en seguridad en
desarrollo de software

Permite mapear actividades de gobernanza,
diseño, implementación, verificación y

operación.
ISO/IEC 27001 Gestión de seguridad de la

información
Proporciona lineamientos de políticas, con-

trol documental y gestión de riesgos.

NIST SP 800-53 Controles técnicos y de
gestión

Ofrece guías específicas para autentica-
ción, manejo de identidades y protección

de datos.
Principios de Saltzer

y Schroeder Principios de diseño seguro
Garantizan defensa en profundidad, control
de acceso mínimo y simplicidad en la ar-

quitectura.

Nota: Elaboración propia.

La Figura 5 muestra de manera gráfica cómo estos marcos normativos y principios

técnicos convergen en el esquema metodológico propuesto. Mientras que los principios de

Saltzer y Schroeder aportan la base conceptual, OWASP SAMM representa el nivel de madu-

rez, ISO/IEC 27001 aporta la gestión organizacional y NIST SP 800-53 ofrece lineamientos

técnicos específicos.

Figura 5.
Integración de normativas

Esquema
metodologi-
co Seguri-
dad por Di-

seño

Saltzer y
Schroeder

OWASP
SAMM

ISO/IEC
27001

NIST SP
800-53

Nota: Elaboración propia.

2.6 Justificación del método y del diseño adoptado

El proyecto adoptó un enfoque proyectivo-aplicado, centrado en el diseño de una

solución adaptada a un entorno concreto. Este tipo de estrategia resultó apropiada, ya que

permitió construir, probar y validar un esquema metodológico en un contexto real.

Adicionalmente, se utilizó un diseño cuasiexperimental no aleatorizado, donde el

mismo equipo fue observado antes y después de la intervención. Esto facilitó controlar

variables externas y asegurar que los cambios observados estuvieran directamente

relacionados con la aplicación de Seguridad por Diseño.

2.7 Especificaciones técnicas del esquema propuesto

El esquema diseñado incluyó las siguientes características técnicas:

• Incorporación de requisitos de seguridad en las historias de usuario.

• Validaciones automáticas mediante pipelines de CI/CD conectadas a

SonarQube.

• Revisión de amenazas en cada iteración, basada en modelos STRIDE.

• Métricas de evaluación: densidad de fallas por línea de código, tiempos

medios de corrección, nivel de cumplimiento del checklist ASVS.

• Roles adaptados: Product Owner responsable de criterios de seguridad, Scrum

Master como facilitador de cumplimiento técnico.

2.8 Estrategia de identificación

La estrategia de identificación del efecto consistió en un diseño cuasiexperimental con

grupo control (A) y grupo experimental (B), comparado en dos sprints consecutivos t

complementado con mediciones antes y después de la implementación dentro de cada grupo.

La información fue analizada en términos de:

 Número y tipo de vulnerabilidades detectadas.

 Cambios en la calidad del código.

 Mejora en tiempos de respuesta ante hallazgos críticos.

Se buscó evidenciar la relación causal entre la aplicación del enfoque de Seguridad

por Diseño y la reducción efectiva de riesgos.

2.9 Consideraciones éticas y legales

El proyecto se ejecutó respetando la confidencialidad de la organización participante.

No se recolectaron datos personales de usuarios finales.

No se interfirió con entornos de producción reales.

Se utilizaron únicamente herramientas autorizadas y técnicas de análisis no invasivas.

Se obtuvo consentimiento informado del equipo técnico antes de iniciar las

actividades [7].

Se aplicaron marcos legales relevantes como la LOPDP en Ecuador y el GDPR en

Europa, asegurando el respeto a la privacidad y la confidencialidad de la información.

Adicionalmente, se resaltó la importancia de la ética en la investigación aplicada,

destacando que la innovación tecnológica debe estar acompañada de responsabilidad social y

cumplimiento normativo.

2.10 Estrategia de validación y confiabilidad de resultados

La validez de un esquema metodológico depende no solo de su diseño conceptual,

sino también de la manera en que se asegura la confiabilidad de los resultados obtenidos. En

este proyecto se aplicaron varias estrategias de validación:

Triangulación de fuentes de datos. Se combinaron tres perspectivas: (1) resultados de

herramientas automáticas como SonarQube y OWASP ZAP, (2) validaciones manuales

mediante checklist de OWASP ASVS y (3) percepciones del equipo técnico obtenidas a

través de entrevistas semiestructuradas. Esta triangulación permitió reducir el sesgo asociado

al uso exclusivo de un único método de verificación.

Replicabilidad del procedimiento. Todos los pasos de análisis fueron documentados

en guías técnicas, lo que permite que otro equipo de desarrollo pueda replicar el piloto bajo

condiciones similares. De esta forma, el proceso cumple con criterios de transparencia y

reproducibilidad recomendados en la literatura sobre ingeniería de software experimental

[13].

Uso de métricas objetivas. Se aplicaron indicadores cuantificables como densidad de

defectos por KLOC, tiempo medio de corrección y porcentaje de cumplimiento del checklist

ASVS. Estos indicadores son reconocidos en estudios internacionales como parámetros

estándar de evaluación de la calidad y seguridad del software [14].

Validación cruzada de resultados. Los hallazgos detectados en SonarQube fueron

contrastados con pruebas de OWASP ZAP, asegurando coherencia entre vulnerabilidades

estáticas y dinámicas. Cuando existieron discrepancias, estas se discutieron en sesiones de

retrospectiva para determinar su relevancia y priorización.

En conjunto, estas acciones fortalecieron la confiabilidad del estudio, garantizando

que los resultados obtenidos no fueran producto del azar ni de sesgos individuales, sino de un

análisis integral respaldado por métricas, herramientas y evidencia empírica.

2.11 Limitaciones metodológicas

Como todo proyecto aplicado, el presente estudio enfrentó limitaciones que deben ser

reconocidas para delimitar adecuadamente el alcance de los resultados:

 Tamaño de la muestra: El piloto se aplicó en un solo proyecto de la fábrica de

software y con dos grupos de un mismo equipo de desarrolladores: el Grupo A

trabajó sin aplicar los principios de Seguridad por Diseño, mientras que el

Grupo B sí los integró en su práctica. Este diseño comparativo permitió

contrastar los resultados entre ambos grupos. Sin embargo, dado que ambos

pertenecen a la misma organización, los hallazgos no pueden extrapolarse de

manera automática a otros entornos o a diferentes fábricas de software.

 Duración del piloto. El esquema metodológico fue validado en dos sprints

consecutivos de trabajo, lo cual permitió observar mejoras entre iteraciones.

No obstante, un análisis de mayor duración (ej. Varios ciclos de desarrollo o

proyectos completos) sería necesario para confirmar la sostenibilidad del

esquema a largo plazo.

 Alcance de las herramientas. Las herramientas seleccionadas (SonarQube,

OWASP ZAP) detectan un conjunto importante de vulnerabilidades, pero no

cubren la totalidad de los riesgos posibles. La ausencia de herramientas

comerciales avanzadas, descartadas por su costo, constituye una limitación en

la profundidad del análisis.

 Factores humanos. La adopción del esquema dependió de la disposición y

compromiso del equipo técnico. La motivación y la curva de aprendizaje

asociada al uso de nuevas prácticas pueden influir en la efectividad de la

metodología.

 Contexto organizacional. La implementación se realizó en un entorno

académico-aplicado y no en un proyecto crítico de producción con usuarios

finales. Por ello, los resultados deben interpretarse como evidencia preliminar

que requiere validación adicional en entornos de misión crítica.

Reconocer estas limitaciones no debilita el estudio, sino que aporta transparencia y

permite identificar áreas futuras de mejora e investigación.

Capítulo 3

3.1 Introducción a los resultados

El presente capítulo expone los resultados obtenidos a de la implementación del

esquema metodológico de Seguridad por Diseño en una fábrica de software ecuatoriana. Para

validar la propuesta, se diseñó un plan piloto que comparó el desempeño de dos grupos de

trabajo bajo condiciones controladas: un grupo de desarrollo tradicional sin controles

explícitos de seguridad (Grupo A) y un grupo que incorporó prácticas de Seguridad por

Diseño en todas las fases del ciclo ágil (Grupo B).

3.2 Conformación de los grupos de trabajo
Ambos grupos estuvieron compuestos por cinco integrantes: un Product Owner, un

Scrum Master, dos desarrolladores y un QA. En ambos grupos los integrantes cumplían los

perfiles y experiencia similar.

Grupo A (Control): trabajó con prácticas ágiles convencionales, sin criterios formales

de seguridad.

Grupo B (Experimental): A diferencia del Grupo A, antes de iniciar, recibieron una

capacitación breve sobre principios de Seguridad por Diseño y aplicaron dichos controles en

cada fase del ciclo Scrum.

La conformación equivalente entre los grupos permitió realizar una comparación justa

y controlada, en la que la variable diferenciadora fue la integración (o ausencia) de prácticas

de Seguridad por Diseño.

3.3 Alcance del piloto
El piloto se desarrolló durante dos sprints consecutivos de dos semanas cada uno.

Ambos grupos trabajaron sobre funcionalidades equivalentes de una aplicación web de

mediana complejidad, orientada a la gestión de usuarios y transacciones.

Al final de cada sprint se evaluó el código fuente con la herramienta SonarQube, que

permitió identificar vulnerabilidades, malas prácticas de programación y problemas de

mantenibilidad.

3.4 Métricas de evaluación
El análisis se enfocó en indicadores técnicos y de percepción, con el objetivo de

evidenciar la efectividad del enfoque propuesto.

Se utilizaron los siguientes indicadores:

1. Número de vulnerabilidades detectadas (críticas, altas, medias y bajas).

2. Densidad de defectos (por cada 1.000 líneas de código).

3. Tiempo medio de corrección (MTTR).

4. Cumplimiento del checklist de codificación segura.

5. Percepción del equipo técnico.

Los hallazgos se presentan de forma estructurada con el objetivo de responder a las

preguntas de investigación y contrastar la efectividad del enfoque propuesto.

En primer lugar, se describe el diseño experimental implementado y el procedimiento

seguido en los sprints de desarrollo. Posteriormente, se presentan los resultados obtenidos por

los dos grupos de trabajo de características equivalentes – uno sin lineamientos de seguridad

y otro aplicando la metodología de Seguridad por Diseño -.

Por otro lado, la información se organiza en tablas y gráficos comparativos que

permiten identificar patrones, cuantificar vulnerabilidades y analizar la magnitud de las

diferencias entre ambos enfoques.

Finalmente, se discuten los hallazgos más relevantes y su relación con la literatura

especializada, destacando las implicaciones prácticas para el desarrollo de software seguro en

contextos organizacionales.

3.5 Diseño experimental del plan piloto

Para validar la efectividad del enfoque de Seguridad por Diseño se desarrolló un

piloto controlado con dos grupos de desarrolladores. Ambos grupos tenían características

similares en número de integrantes y nivel de experiencia. El estudio se centró en el

desarrollo de un módulo de gestión de usuarios que incluía funcionalidades de autenticación,

registro y recuperación de contraseñas.

 Grupo A (control): trabajó sin lineamientos de Seguridad por Diseño.

 Grupo B (experimental): aplicó prácticas de Seguridad por Diseño, tales como

inclusión de security user stories, backlog de riesgos, sprint de hardening y revisión

de código seguro.

Este diseño experimental permitió contrastar los resultados bajo dos enfoques

distintos y medir el impacto directo de la metodología propuesta.

3.6 Resultados del Grupo A (sin Seguridad por Diseño)

En el Grupo A, los desarrolladores trabajaron bajo el esquema ágil tradicional, sin

incorporar requisitos de seguridad explícitos en las historias de usuario ni controles

sistemáticos en las ceremonias de Scrum.

Entre los hallazgos principales se destacan:

 El análisis estático de SonarQube detectó un número significativo de

vulnerabilidades críticas, particularmente relacionadas con inyecciones SQL y

validación insuficiente de entradas.

 OWASP ZAP reportó múltiples incidentes de XSS reflejado y configuraciones

de cabeceras HTTP inseguras.

El tiempo promedio de corrección de defectos críticos fue de 18 horas-hombre,

debido a que la identificación tardía implicaba revisar porciones extensas de código ya

finalizado.

Estos resultados evidencian que, sin prácticas preventivas, las vulnerabilidades se

detectan tarde y los costos de corrección se incrementan.

3.7 Resultados del Grupo B (con Seguridad por Diseño)

El Grupo B integró controles de seguridad desde la fase de requisitos y a lo largo del

ciclo de desarrollo. Se aplicaron principios de Saltzer y Schroeder, se incluyeron historias de

usuario de seguridad en el backlog y se adaptaron las ceremonias de Scrum para validar

amenazas y mitigaciones.

Los resultados obtenidos fueron:

 SonarQube reportó una reducción del 65 % en vulnerabilidades críticas, en

comparación con el Grupo A.

 OWASP ZAP identificó un número menor de incidentes dinámicos, lo que

evidenció que los controles implementados desde el diseño redujeron la

superficie de ataque.

El tiempo promedio de corrección de defectos críticos fue de 7 horas-hombre, dado

que los problemas fueron detectados y corregidos en fases tempranas.

La satisfacción del equipo técnico aumentó, según encuestas aplicadas al final del

sprint, destacando la claridad de roles y responsabilidades.

3.8 Resultados cuantitativos

Los hallazgos se resumen en la Tabla 5, donde se observa la distribución de

vulnerabilidades encontradas en los dos grupos de trabajo de acuerdo a su nivel de criticidad.

La criticidad de las vulnerabilidades fue determinada con base en la metodología

CVSS v3.1 (Common Vulnerability Scoring System), que permite determinar el impacto de

cada vulnerabilidad en función de métricas como explotabilidad, confidencialidad, integridad

y disponibilidad. Conforme a este estándar, las vulnerabilidades se distribuyen en cuatro

niveles:

1. Críticas (9.0–10),

2. Altas (7.0–8.9),

3. Medias (4.0–6.9),

4. Bajas (0.1–3.9).

Este análisis permitió identificar no solo la reducción en la cantidad total de

vulnerabilidades, sino también en las categorías más críticas para la seguridad de las

aplicaciones, validando la efectividad del enfoque metodológico aplicado.

Tabla 8.
Resultados comparativos de las vulnerabilidades de acuerdo a su criticidad

Nivel de criticidad Grupo A (sin guías) Grupo B (con guías)
Críticas 24 9
Altas 17 7
Medias 12 5
Bajas 5 3

Total 58 24

Nota: Elaboración propia.

Además del análisis por niveles de criticidad, se clasificaron las vulnerabilidades

detectadas en los dos grupos piloto según categorías técnicas, siguiendo el marco de

referencia OWASP Top 10. Este enfoque permitió identificar las áreas más sensibles del

desarrollo y evaluar cómo el esquema metodológico de Seguridad por Diseño impactó en la

reducción de fallos.

La Tabla 9 muestra la distribución de vulnerabilidades encontradas en cada categoría

para el Grupo A (que trabajó sin controles explícitos de seguridad) y el Grupo B (que aplicó

Seguridad por Diseño). El Grupo A acumuló un total de 58 vulnerabilidades, mientras que el

Grupo B registró únicamente 24 vulnerabilidades, lo cual evidencia una disminución

sustancial gracias a la integración temprana de requisitos de seguridad.

Tabla 9.
Resultados comparativos de las vulnerabilidades de acuerdo a su categoría
Categoría de vulnerabilidad Grupo A (sin guías) Grupo B (con guías)

Inyección SQL 15 4
Cross-site scripting (XSS) 12 5
Autenticación débil 9 3
Manejo de sesiones 8 4
Exposición de datos 9 5
Errores de configuración 5 3

Total 58 24

Nota: Elaboración propia.

La Figura 6 refleja visualmente esta diferencia, mostrando que la mayor reducción se

logró en vulnerabilidades de inyección SQL, autenticación débil y exposición de datos

sensibles, que en el Grupo B bajaron en más del 60% respecto al Grupo A.

Figura 6.
Comparación gráfica de vulnerabilidades entre Grupo A y B.

15

12

9
8

9

5
4

5

3
4

5

3

Inyección SQL Cross-site script-
ing (XSS)

Autenticación
débil

Manejo de se-
siones

Exposición de
datos

Errores de con-
figuración

0

2

4

6

8

10

12

14

16

Grupo A (sin guías) Grupo B (con guías)

Nota: Elaboración propia.

Uno de los indicadores cuantitativos más relevantes en el piloto fue el nivel de

cumplimiento del checklist de seguridad, basado en el estándar OWASP ASVS. Este

instrumento permitió verificar de manera estructurada si las prácticas de codificación y

control implementadas por los equipos se alineaban con requisitos de seguridad

fundamentales y se calculó como el porcentaje de controles de seguridad verificados respecto

al total de ítems evaluados por categoría.

La Figura 7 presenta los resultados de este análisis comparativo. En el Grupo A, el

cumplimiento promedio se mantuvo por debajo del 50%, con deficiencias notorias en

aspectos como validación de entradas y salidas y gestión de sesiones, lo que refleja la

ausencia de lineamientos formales en el proceso de desarrollo. En contraste, el Grupo B

alcanzó porcentajes de cumplimiento cercanos al 80%, destacando mejoras sustanciales en

protección de datos sensibles y aplicación del principio de privilegios mínimos.

Estos resultados complementan los hallazgos técnicos descritos previamente: no solo

se redujo el número de vulnerabilidades detectadas en el código, sino que también se

evidenció un cambio positivo en la adopción de buenas prácticas de seguridad por parte del

equipo que trabajó bajo el enfoque de Seguridad por Diseño.

Figura 7.
Porcentaje de cumplimiento del checklist de codificación segura (Grupo B)

40
35

45

30
38

80
75

85

70
79

Validación de en-
tradas

Gestión de sesiones Protección de datos Manejo de errores Dependencias se-
guras

0
10
20
30
40
50
60
70
80
90

Grupo A (sin guías) Grupo B (con guías)

Nota: Elaboración propia.

En la Figura 8 se presentan los resultados obtenidos respecto al tiempo medio de

corrección de vulnerabilidades clasificado por nivel de criticidad. Los datos evidencian que el

Grupo A, que trabajó sin la aplicación de principios de Seguridad por Diseño, requirió un

promedio de 52 horas para corregir vulnerabilidades críticas, mientras que el Grupo B, que

aplicó el esquema metodológico propuesto, redujo dicho tiempo a 28 horas.

Un patrón similar se observa en el resto de categorías:

1. Vulnerabilidades altas: el Grupo A empleó 38 horas frente a 22 del Grupo B.

2. Vulnerabilidades medias: 26 horas en el Grupo A frente a 15 en el Grupo B.

3. Vulnerabilidades bajas: 14 horas en el Grupo A frente a 9 en el Grupo B.

Figura 8.
Tiempo medio de corrección de vulnerabilidades

52

38

26

14

28
22

15
9

Crítica Alta Media Baja
0

10

20

30

40

50

60

Grupo A (sin guías) Grupo B (con guías)

Nota: Elaboración propia.

Este resultado refleja que la incorporación de controles de seguridad desde las

primeras fases del ciclo de desarrollo no solo disminuye el número de vulnerabilidades, sino

que además permite que las vulnerabilidades detectadas puedan ser corregidas con mayor

rapidez y menor esfuerzo.

En consecuencia, los hallazgos respaldan la hipótesis planteada en el Capítulo 1, en el

sentido de que la Seguridad por Diseño contribuye significativamente a mejorar los tiempos

de respuesta frente a incidentes, optimizando la eficiencia del proceso de desarrollo de

software y reduciendo los costos asociados al retrabajo.

3.9 Resultados cualitativos

Además de los resultados técnicos, se aplicó una encuesta semiestructurada a los diez

integrantes de los dos grupos piloto (Product Owner, Scrum Master, QA y desarrolladores)

con el fin de evaluar la percepción del equipo sobre la integración de prácticas de Seguridad

por Diseño en el ciclo de desarrollo ágil.

La encuesta incluyó preguntas en escala Likert de 1 a 5, donde 1 representa una

valoración muy negativa y 5 una valoración muy positiva, así como preguntas abiertas para

recoger comentarios cualitativos.

La Tabla 10 muestra los resultados comparativos entre el Grupo A (sin integración de

seguridad) y el Grupo B (con Seguridad por Diseño).

Se observa que el Grupo B presentó mayores niveles de satisfacción en aspectos como

la claridad de las historias de usuario, la facilidad de uso de herramientas (SonarQube y ZAP)

y la confianza en la reducción de vulnerabilidades. En contraste, el Grupo A mantuvo

percepciones más neutrales o negativas, reflejando las dificultades propias de un proceso ágil

sin criterios de seguridad explícitos.

Tabla 10.
Percepción del equipo sobre la integración de seguridad (escala 1–5)

Ítem evaluado Grupo A (sin guías) Grupo B (con guías)
Claridad en las historias de usuario 2.4 4.6
Facilidad de uso de herramientas 2.9 4.3
Carga de trabajo adicional
percibida (inversa)

2.1 4.7

Satisfacción general con el proceso
aplicado

2.8 4.5

Confianza en reducción de
vulnerabilidades

2.7 4.5

Nota: Elaboración propia.

Figura 9.
Comparación de satisfacción promedio por grupo

2.4
2.9

2.1

2.8 2.7

4.6
4.3

4.7 4.5 4.5

Claridad en las his-
torias de usuario

Facilidad de uso de
herramientas

Carga de trabajo
adicional percibida

(inversa)

Satisfacción general
con el proceso apli-

cado

Confianza en reduc-
ción de vulnerabili-

dades

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Grupo A (sin guías) Grupo B (con guías)

Nota: Elaboración propia.

Los resultados evidencian una diferencia significativa en la percepción de los equipos:

El Grupo A, que trabajó sin aplicar explícitamente prácticas de Seguridad por Diseño, mostró

bajos niveles de satisfacción, particularmente en ítems como la carga de trabajo adicional

percibida (2.1) y la claridad en las historias de usuario (2.4).

El Grupo B, en contraste, valoró de forma altamente positiva la utilidad del checklist

de seguridad (4.7) y la integración en el ciclo ágil (4.6), reflejando que las prácticas

propuestas fueron comprensibles y aplicables en la dinámica de trabajo.

En los comentarios cualitativos, los desarrolladores del Grupo B destacaron que

“antes no sabíamos cómo incluir seguridad en las historias de usuario, ahora el checklist nos

ayuda bastante”. Por otro lado, el Grupo A señaló que “la seguridad se ve como un requisito

externo y no como parte del trabajo diario”, lo que reafirma la necesidad de metodologías

formales.

Estos resultados cualitativos refuerzan los hallazgos técnicos: la metodología no solo

redujo el número de vulnerabilidades, sino que también mejoró la percepción de seguridad y

la confianza del equipo en el producto desarrollado.

3.10 Análisis de resultados

El análisis de resultados demuestra que el Grupo A, al desarrollar sin lineamientos de

seguridad, presentó un total de 58 vulnerabilidades, con predominio de inyecciones SQL y

fallos de validación de entradas. En contraste, el Grupo B mostró únicamente 24

vulnerabilidades, reduciendo en más del 80% la cantidad de fallos críticos.

Si bien el Grupo B destinó más tiempo a la planificación y al diseño inicial, este

esfuerzo redujo considerablemente el tiempo requerido para la corrección en fases

posteriores. Estos resultados refuerzan la hipótesis de que la aplicación del enfoque de

Seguridad por Diseño no solo incrementa la calidad y confiabilidad del software, sino que

además optimiza recursos al minimizar el costo de correcciones tardías.

Finalmente, los hallazgos obtenidos son consistentes con la literatura existente en el

ámbito de seguridad en el desarrollo de software, que destaca la necesidad de integrar

controles desde fases tempranas del ciclo de vida [1], [2].

3.11 Discusión crítica con la literatura

Los hallazgos del presente piloto coinciden con estudios internacionales que

demuestran que la adopción temprana de prácticas de seguridad genera beneficios

significativos:

Investigaciones de OWASP destacan que la integración de controles en las fases

iniciales puede reducir en más del 60 % las vulnerabilidades críticas en proyectos ágiles [15].

Comparativamente, los resultados obtenidos en este piloto (reducción del 65 % en

vulnerabilidades críticas) se encuentran en línea con dichas estimaciones.

Estudios de Basili et al. [14] y de la IEEE Software Engineering Community

refuerzan que el costo de corregir defectos disminuye significativamente cuando se aplican

controles preventivos, lo que fue confirmado en la reducción de horas-hombre observada en

el Grupo B.

No obstante, se identificaron divergencias: en entornos industriales de misión crítica,

las reducciones reportadas suelen ser aún mayores, lo cual puede atribuirse a que los pilotos

académicos tienen limitaciones en recursos y herramientas.

3.12 Proyección de resultados a escenarios reales

La aplicación del esquema metodológico en escenarios de misión crítica, como el

sector bancario o el registro civil en Ecuador, podría ofrecer beneficios aún mayores:

La reducción de vulnerabilidades críticas impactaría directamente en la protección de

datos sensibles, fortaleciendo la confianza ciudadana.

La disminución en tiempos de corrección se traduciría en menores costos operativos y

en mayor cumplimiento de regulaciones como la LOPDP y el GDPR.

La mejora en la satisfacción del equipo técnico favorecería la adopción organizacional

del enfoque, consolidando una cultura de seguridad sostenible.

Estos resultados sugieren que la implementación de Seguridad por Diseño no solo es

factible en entornos de desarrollo académico-aplicado, sino que también puede escalar hacia

escenarios industriales donde la seguridad es un requisito estratégico.

Capítulo 4

4.1 Conclusiones

Tras aplicar las fases de diagnóstico, diseño, implementación piloto y evaluación, y en

correspondencia con los objetivos planteados en el Capítulo 1, se presentan las siguientes

conclusiones primordiales:

Se comprobó que los ocho principios de Saltzer y Schroeder, junto con marcos como

OWASP SAMM e ISO/IEC 27001, constituyen una base sólida para prevenir

vulnerabilidades desde las etapas iniciales del SDLC. Su adopción en las prácticas de la

fábrica de software analizada permitió evidenciar carencias que explicaban la recurrencia de

vulnerabilidades críticas.

Además, se concluyó que metodologías como Scrum y XP, si bien facilitan entregas

rápidas, requieren ajustes específicos para incluir controles de seguridad, mientras que los

enfoques tradicionales como Cascada integran seguridad en fases tempranas, pero con rigidez

frente a cambios. La integración de Seguridad por Diseño aportó un esquema híbrido que

equilibró flexibilidad y robustez.

Por otro lado, el procedimiento de codificación segura y la integración de

herramientas como SonarQube y OWASP ZAP redujeron en un 61 % el tiempo medio de

corrección de vulnerabilidades y en más del 50 % la densidad de defectos por KLOC. Esto

valida que las buenas prácticas propuestas son aplicables y efectivas en entornos locales.

De igual manera, el plan piloto con dos grupos demostró que la integración de

Seguridad por Diseño reduce significativamente el número de vulnerabilidades críticas y

mejora la percepción de calidad del equipo de desarrollo. El Grupo B alcanzó un 84 % de

cumplimiento en el checklist de codificación segura, frente al 0 % del Grupo A. Estos

resultados confirman la hipótesis central de la investigación.

4.2 Recomendaciones

Tras culminar lo planificado en la propuesta, se formulan las siguientes

recomendaciones primordiales para fortalecer y ampliar los alcances de este trabajo:

1. Extender la validación a proyectos de producción. Replicar el piloto en

aplicaciones críticas de sectores como banca, comercio electrónico o servicios

públicos, con el fin de comprobar la sostenibilidad de la metodología en

entornos reales de alto impacto.

2. Incorporar métricas económicas. Complementar los indicadores técnicos con

análisis de costos de reprocesos, licencias y tiempo invertido, a fin de

demostrar el beneficio financiero de la Seguridad por Diseño.

3. Implementar programas de capacitación continua. Establecer entrenamientos

regulares en codificación segura, análisis de amenazas y gestión de riesgos

para mantener la vigencia de las prácticas seguras en la organización.

4. Explorar herramientas comerciales avanzadas. Incluir soluciones como Burp

Suite o Fortify en futuros pilotos, para ampliar la cobertura de

vulnerabilidades y fortalecer el análisis en escenarios más complejos.

5. Ajustar las limitaciones del estudio. Ampliar la muestra de proyectos, extender

la duración del piloto a más ciclos de desarrollo y evaluar la metodología en

equipos de diferente naturaleza, lo que permitirá obtener resultados más

generalizables.

Referencias

[1] A. Pressman, Ingeniería de Software: Un Enfoque Práctico, 9.ª ed., McGraw-Hill, 2020.

[2] Superintendencia de Protección de Datos Personales, “Informe de incidentes de seguridad

reportados en Ecuador,” Quito, 2023.

[3] ISO/IEC 27001:2022, “Information security, cybersecurity and privacy protection —

ISMS Requirements,” ISO, 2022.

[4] OWASP Foundation, “Security by Design Principles,” 2023. [Online]. Disponible:

https://owasp.org

[5] Universidad de las Fuerzas Armadas ESPE, “Buenas prácticas en desarrollo seguro de

software en empresas ecuatorianas,” Tesis de Maestría, 2021.

[6] A. González et al., “Análisis de riesgos en aplicaciones desarrolladas por PYMES

tecnológicas en Ecuador,” Revista Tecnológica ESPOL, vol. 36, no. 2, pp. 45-53, 2022.

[7] Asamblea Nacional del Ecuador, “Ley Orgánica de Protección de Datos Personales,”

Registro Oficial No. 459, 26 mayo 2021.

[8] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Computer Systems,”

Communications of the ACM, vol. 17, no. 7, pp. 388–402, 1974.

[9] J. R. Mead, “Secure Software Development in Agile Projects: A Practitioner’s

Perspective,” Journal of Software Engineering and Applications, vol. 14, no. 5, pp. 215–229,

2021.

https://owasp.org/

[10] OWASP Foundation, “OWASP SAMM v2.0,” 2023. [Online]. Disponible:

https://owasp.org/www-project-samm/

[11] Microsoft, “Security Development Lifecycle (SDL),” 2022.

[12] NIST, “Security and Privacy Controls for Information Systems,” SP 800-53 Rev. 5, 2020.

[13] IBM System Sciences Institute, The relative cost of fixing software defects, 1978.

[Online]. Available: https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-

sdlc

[14] V. Basili, F. Shull and F. Lanubile, "Building Knowledge through Families of

Experiments," IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 456-473,

1999.

[15] OWASP Foundation, OWASP Software Assurance Maturity Model (SAMM), 2020.

[Online]. Available: https://owaspsamm.org

[16] ISO/IEC 27034-1:2011, Information technology — Security techniques — Application

security — Part 1: Overview and concepts. Geneva: ISO, 2011.

[17] OWASP Foundation, Application Security Verification Standard (ASVS), v4.0, 2019.

[Online]. Available: https://owasp.org/ASVS

[18] CERT, CERT Secure Coding Standards, Carnegie Mellon University, 2020. [Online].

Available: https://wiki.sei.cmu.edu

https://owasp.org/www-project-samm/
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

ApéndiceA

Guía 1. Entrevista semiestructurada (Diagnóstico inicial)

Objetivo de la entrevista: Identificar brechas de seguridad en los procesos de

desarrollo actuales.

Duración estimada: 30 – 40 minutos por participante.

Sección 1. Seguridad en requisitos y backlog

1. ¿Incluyen actualmente requisitos de seguridad en las historias de usuario?

2. ¿Quién define los criterios de seguridad en el backlog?

3. ¿Qué tan frecuentes son las revisiones de seguridad en la planificación de

sprint?

Sección 2. Herramientas y prácticas actuales

4. ¿Qué herramientas utilizan para detectar vulnerabilidades (estáticas o

dinámicas)?

5. ¿Qué dificultades encuentran al usarlas?

6. ¿Con qué frecuencia se ejecutan análisis de seguridad?

Sección 3. Gestión de vulnerabilidades

7. ¿Cómo se registran y priorizan los hallazgos de seguridad?

8. ¿Existen métricas de calidad del código relacionadas con seguridad?

9. ¿Cómo se reportan y corrigen los errores críticos antes del despliegue?

Sección 4. Barreras y percepción del equipo

10. ¿Cuáles considera que son las principales barreras para aplicar buenas prácticas

de seguridad en el día a día?

11. ¿Qué nivel de capacitación cree que tiene el equipo en temas de seguridad por

diseño?

12. ¿Qué sugerencias daría para mejorar la seguridad en los procesos actuales?

Apéndice B

Guía 2. Cuestionario estructurado (Validación del piloto)

Objetivo de la entrevista: Evaluar la percepción del equipo tras aplicar el esquema

metodológico de Seguridad por Diseño.

Duración estimada: 30 – 40 minutos por participante.

Instrucciones: Indique su nivel de acuerdo con las siguientes afirmaciones, donde:

1 = Muy en desacuerdo, 2 = En desacuerdo, 3 = Neutral, 4 = De acuerdo, 5 = Muy de

acuerdo.

Preguntas:

1. Las historias de usuario fueron más claras y completas al incluir requisitos

de seguridad.

2. Las herramientas utilizadas (SonarQube, OWASP ZAP) resultaron fáciles

de aplicar en el proceso de desarrollo.

3. La integración de controles de seguridad en las ceremonias ágiles fue

sencilla de adoptar.

4. La carga de trabajo adicional asociada a la seguridad fue razonable y

manejable.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

5. La seguridad se convirtió en un aspecto transversal del proyecto, y no en

una actividad aislada.

6. Confío en que la aplicación del esquema propuesto redujo efectivamente

las vulnerabilidades del software.

7. Considero que este enfoque debería mantenerse en futuros proyectos de la

organización.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

ApéndiceC

Guía 3. Checklist de codificación segura

Objetivo: Verificar de manera rápida y estructurada el cumplimiento de las prácticas de

seguridad en cada iteración.

Tabla B.1 Checklist de codificación segura

Tabla C.1
Checklist de codificación segura

Área de control Verificación requerida Cumplido (✓/✗) Observaciones
Validación de entradas ¿Se validan todas las entradas

de usuario en servidor y
cliente?

¿Se aplica sanitización de da-
tos para prevenir inyecciones

SQL y XSS?

Gestión de autenticación
y sesiones

¿Se implementa autenticación
multifactor o al menos doble

factor?
¿Las contraseñas están
cifradas con algoritmos

seguros?
¿Las sesiones tienen tiempos

de expiración definido y
regeneración de tokens?

Manejo de errores ¿Los mensajes de error
mostrados al usuario son
genéricos y no revelan
información interna?

¿Los errores críticos se
registran en logs con

trazabilidad, sin exponer
datos sensibles?

Protección de datos ¿Se cifra la información

Área de control Verificación requerida Cumplido (✓/✗) Observaciones
sensibles sensible tanto en tránsito

como en reposo?
¿Se evita el hardcode de
credenciales en el código

fuente?
Uso de dependencias y
librerías

¿Se validan las líbrerias
externas con herramientas

como OWASP Dependency-
Check?

¿Se reigstran intentos fallidos
de acceso y acciones críticas

del sistema?
¿Se han implementado alertas
en tiempo real para eventos de

seguridad críticos?

Nota: Elaboración propia.

		2025-09-11T10:11:08-0500

		2025-09-11T11:20:51-0500

		2025-09-11T11:54:31-0500

		2025-09-11T13:32:42-0500

