ESCUELA SUPERIOR POLITECNICA DEL LITORAL

Facultad de Ingenieria en Electricidad y Computacion

Desarrollo de software seguro basado en principios de seguridad por disefio

(security by design) aplicados en una fabrica de software en guayaquil

Proyecto de Titulacion

Previa a la obtencion del Titulo de:

Magister en Seguridad Informatica

Presentado por:

Ing. Vicente Fernando Arreaga Figueroa

Ing. Juan Carlos Chamorro Arias

Guayaquil — Ecuador

Ano: 2025

Agradecimiento

A mis maestros, por compartir sus amplios conocimientos con ética y profesionalismo.

A mi tutor de tesis, Ing. Lenin Freire Cobo, por su valiosa guia y asesoramiento en las

diversas etapas del desarrollo del proyecto.

A mi amigo y compaiiero de tesis, Juan Carlos Chamorro por su constante respaldo y
colaboracion durante el desarrollo de este proyecto. Su compromiso y trabajo en equipo

fueron fundamentales para superar los desafios y alcanzar los resultados deseados.

Ing. Vicente Fernando Arreaga.

Agradecimiento

En primer lugar, a Dios, mi familia y amigos, quienes han sido mi principal fuente de apoyo y
motivacion. Sus palabras alentadoras y comprension han sido fundamentales durante este

nuevo desafiante viaje académico.

Mi reconocimiento también se extiende a mis compafieros de clase y colaboradores de
investigacion en especial a mi compatfiero de tesis, Vicente Fernando Arreaga. Trabajar codo
a codo con ustedes ha enriquecido mi experiencia académica y ha contribuido de manera

significativa al éxito de este proyecto.

A mi tutor de tesis, Ing. Lenin Freire, por su valiosa aportacion de conocimientos y
experiencias en las diversas etapas no tan solo del desarrollo del proyecto sino también en los

conocimientos compartidos en su catedra.

Este logro no es solo mio, sino de todos aquellos que, han sido parte de este emocionante

viaje académico. Gracias a todos por ser parte de este capitulo en mi vida.

Ing. Juan Carlos Chamorro

Dedicatoria

A Dios por ser la guia en esta etapa académica y darme la fortaleza necesaria para continuar aun en
los momentos mas dificiles.

A mis queridos padres Vicente y Alexandra, mi mas sincero agradecimiento, ya que gracias a su amor
incondicional y apoyo inquebrantable no me permitieron rendirme. A través de su ejemplo,

dedicacion y sacrificio me han inspirado a perseguir mis metas y sueflos con
determinacion, esfuerzo y trabajo duro.

A mis queridas hermanas, Kelvin y Lourdes, por su infinita paciencia y amor incondicional. Su apoyo

constante ha sido un recordatorio invaluable de la importancia de celebrar los logros junto a la familia.

En memoria de mi querida abuela Margarita.

Ing. Vicente Fernando Arreaga.

Dedicatoria

A Dios y mis padres, Juan Antonio y Susana, cuyo amor incondicional y sacrificios han sido mi
fuente constante de inspiracion. Sus valores y correcciones han sido la fuerza impulsora detras de

cada logro en mi vida.

A mi esposa, Soledad, por ser mi compafiera constante en este viaje. Tu amor, paciencia, aliento y

comprension han hecho posible superar los desafios académicos.

A mi pequefia hija, Simoné, quien, a pesar de mi ausencia en muchos momentos, siempre han sido mi

razon para esforzarme por ser mejor.

Esta tesis es el resultado de la contribucion de muchas personas que han dejado una marca permanente

en mi viaje académico. A todos ustedes, mi mas profundo agradecimiento y dedicacion.
En memoria de mi padre, Juan Antonio.

Ing. Juan Carlos Chamorro.

Declaracion Expresa

Nosotros Ing. Vicente Fernando Arreaga y Juan Carlos Chamorro acordamos y reconocemos que:

La titularidad de los derechos patrimoniales de autor (derechos de autor) del proyecto de
graduacion corresponderd a los autores, sin perjuicio de lo cual la ESPOL recibe en este acto
una licencia gratuita de plazo indefinido para el uso no comercial y comercial de la obra con
facultad de sublicenciar, incluyendo la autorizacion para su divulgacion, asi como para la
creacion y uso de obras derivadas. En el caso de usos comerciales se respetara el porcentaje

de participacion en beneficios que corresponda a favor del autor o autores.

La titularidad total y exclusiva sobre los derechos patrimoniales de patente de invencion,
modelo de utilidad, disefio industrial, secreto industrial, software o informacion no divulgada
que corresponda o pueda corresponder respecto de cualquier investigacion, desarrollo
tecnologico o invencion realizada por nosotros durante el desarrollo del proyecto de
graduacion, perteneceran de forma total, exclusiva e indivisible a la ESPOL, sin perjuicio del
porcentaje que nos corresponda de los beneficios econdmicos que la ESPOL reciba por la

explotacion de nuestra innovacion, de ser el caso.

En los casos donde la Oficina de Transferencia de Resultados de Investigacion (OTRI) de la
ESPOL comunique a los autores que existe una innovacion potencialmente patentable sobre
los resultados del proyecto de graduacion, no se realizara publicacion o divulgacion alguna,

sin la autorizacion expresa y previa de la ESPOL.

Guayaquil, 11 de septiembre del 2025.

I"EERTE "FERNARDO
RREAGA FI GUEROA

£Val i dar Gni canente con FirmaEC
%

IoJt:2 i

Ing. Juan Carlos Chamorro Arias Ing. V cer{te Fernando Arreaga Figueroa

£} Fi cmado el ectoni camente_por

LENI N_EDUARDO

Evaluadores

MSc. Lenin Eduardo Freire Cobo
Tutor

. Fi rmado el ect 1 oni canent e_por

i UAN" CARLCE" GARCI A
SR PLUA

E jal val i darGni carente con Fi r maEC

MSc. Juan Carlos Garcia Plaa
Revisor

Resumen

Este articulo propone un marco metodologico de desarrollo de software que se basa en
principios de Seguridad y Disefio. Su objetivo es garantizar que las practicas seguras se
integren efectivamente en cada fase del ciclo de vida de un programa informatico. El
argumento aqui es que, al integrar la seguridad en una etapa temprana y estructurarla de
manera ordenada, podemos evitar que nuestros sistemas se vuelvan vulnerables a errores
graves. Esto ahorrara dinero porque los errores que causan tanto trabajo hoy simplemente se
posponen hasta mafiana o el afio siguiente, cuando finalmente haya fondos disponibles. A
menudo se sostiene la tesis de que, a través de este enfoque, la resiliencia de un sistema
frente a amenazas cotidianas se establece de mejor manera.

La investigacion se justifica por la necesidad creciente de fortalecer la seguridad en
aplicaciones desarrolladas en entornos profesionales, especialmente en fabricas de software.
Para el desarrollo del proyecto se utilizoé un enfoque cualitativo-aplicado, con base en el
modelo OWASP SAMM, lineamientos de ISO/IEC 27001 y herramientas como OWASP
ZAP y SonarQube. Se disefid y ejecutd un piloto técnico en un entorno controlado, donde se
evaluaron buenas practicas integradas en las fases de disefo, codificacion y prueba. Los
resultados mostraron una mejora sustancial en la identificacion y mitigacion de
vulnerabilidades desde etapas tempranas. Se concluye que aplicar principios de Seguridad
por Disefio de manera estructurada favorece un desarrollo de software mas seguro, sostenible

y alineado con normativas vigentes.

Palabras clave: desarrollo seguro, ciclo de vida, OWASP SAMM, vulnerabilidades,

normativa técnica.

Abstract

This article proposes a software development methodological framework based on Security
and Design principles. Its goal is to ensure that secure practices are effectively integrated into
every phase of a software program's lifecycle. The argument here is that by integrating secu-
rity early and structuring it in an orderly manner, we can prevent our systems from becoming
vulnerable to serious errors. This will save money because the errors that cause so much work
today are simply postponed until tomorrow or the following year, when funding is finally
available. It is often argued that, through this approach, a system's resilience to everyday

threats is better established.

The research is justified by the growing need to strengthen security in applications developed
in professional environments, especially in software factories. A qualitative-applied approach
was used for the development of the project, based on the OWASP SAMM model, ISO/IEC
27001 guidelines, and tools such as OWASP ZAP and So-narQube. A technical pilot was de-
signed and executed in a controlled environment, where best practices integrated into the de-
sign, coding, and testing phases were evaluated. The results showed a substantial improve-
ment in the identification and mitigation of vulnerabilities from early stages. It is concluded
that applying Security by Design principles in a structured manner favors more secure, sus-
tainable software development that is aligned with current regulations.

Keywords: secure development, life cycle, OWASP SAMM, vulnerabilities, technical

standards.

Indice general

LY 11 11 1<) | P PUPPPPPPRRR VIii
B 1 7 e PR IX
INAICE GENMETAL...........oeieeieiiee ettt X
INdice de fIGUIAS.............c..oovoeieeeeeeeee et Xl
INiCe de taDIASooeiieiieeeeeeee e s XII
@71 1111 (1 7 PP 1
I SO 0 11 0 LT T1]) PR 1
1.2 Descripcion del Problema................c.ooiiiiiiiiiiii e 4
1.3 Justificacion del Problema..................oooo i 7
14 ODJELIVOS ..ottt e e e e e e e e e e e e e anaanaae 8
1.4.1 ODbJetivo GEREFaL....................ccooooiiiiiiiiii i 8
1.4.2 ODbJetivos eSPECIfICOS...........uuuuueueeeeeeieiiiiiiiiiiie e 9
| BT\ Y B 1 1T 1) (| TP 9
1.5.1 Seguridad en el desarrollo de software.....................ccccccoiiiiiiiiiiiiiiiiiiiii i 9
1.5.2 Seguridad por Disefio: Principios y fundamentos.......................ccccceeecunnennnnnnennennnne. 10
1.5.3 Modelos y estindares internacionales aplicablescovvvvveviieeeeeeeenennn. 12
1.5.4 Problemdticas en metodologias de desarrollo dgiles y tradicionales............................. 13
1.5.5 Herramientas técnicas para desarrollo segurocccooeiiiiiiiiiiiiiieiiiieaeennnn, 14
1.5.6 Estudios previos y casos en Ecuadorc.cccccccoouiiiiiiiiiiiiiiiiiiiiae, 14
L0711 (111 (1P 1
2.1 Formulacion y seleccion de alternativas de solucion.........................ccoooois 1
2.2 Disefio conceptual y metodologia adoptada..........................ii 3
23 Herramientas y técnicas utilizadas...................ooooooon 6
2.4 Procedimiento de codificacion segura....................cooiiiiiiii e 7
2.4.1 Principios del procedimiento..........................ccooiiiiiiiiiiiiiiiiiie e 8
2.4.2 Integracion en el ciclo dgil........................coouuiiiiiiimiiii i 9
2.5 Normativas y principios tECnicCoS.................ouuuiuiiiiiiiiiiee e, 10

2.6 Justificacion del método y del disefio adoptado................ccccceevviiiiiiiiiiiiiiinnn. 11

2.7 Especificaciones técnicas del esquema propuesto.................ccccceeiiieieiireereeennennn. 12

2.8 Estrategia de identificacion................cccooooiiiiiiiiiiiiiiii s 12
2.9 Consideraciones éticas y legalesccccooiiiiiiiiiiiiiiiiiiii 13
2.10 Estrategia de validacion y confiabilidad de resultados......................cccoovvnnnnn.... 13
2.11 Limitaciones metodolOGiCasuuuuuuiiiiiiiiiiiiie i 14
CaPItULO 3 ... e e e et e e e e e e e e e e e e e aarraanaa 1
3.1 Introduccion a 1os resultados ... 1
3.5 Diseiio experimental del plan piloto....................ooi 3
3.6 Resultados del Grupo A (sin Seguridad por Disefo)...........c..ocoivviiiiiiiiiiiiiniinnns 3
3.7 Resultados del Grupo B (con Seguridad por Diseno)...................ooooviiiiiininnnnnnn. 4
3.8 Resultados cuantitativoscoooiiiiiiiiiiiii 4
3.9 Resultados cualitativos................ooooiiiiiiiiii i 10
3.10 Analisis de resultados.ooooiiiiiiiii i 12
3.11 Discusion critica con la literatura..................ooooiiii 12
3.12 Proyeccion de resultados a escenarios realesc.....oooooiiiiiiiiiiniiiiiiiinnn. 13
@701 1 10X PSPPSR 1
4.1 CONCIUSIONES...... it e e e et e e e e et e e e e eeanna s Il
4.2 ReCOMENAACIONES.cceeiiiiiiiiiie et e e et e e e e e et e e e e e e eeenn e e e 1]
L& (5= 110 SR A\
APEIAICE A ... e e e e e eees Vi
APENAICE B......... i e e e VIl
APENAICE C ... e e e e e e X

indice de figuras

FIGURA 1. COMPARACION ENTRE UN CICLO DE VIDA DE DESARROLLO TRADICIONAL Y UNO CON SEGURIDAD POR

J A Y0 TR 6
FIGURA 2. MODO SIMPLIFICADO DE OWASP SAMM.ccoeeeeeieeee et e e e e e e e eeean 12
FIGURA 3. FASES DEL ESQUEMA METODOLOGICO APLICADOcuueeeeeeeeeeeeeeesesesessssssssssasssssnsnsnnnnnnnasansesenns 5

FIGURA 4. INTEGRACION DE LA SEGURIDAD EN EL CICLO SCRUMuuiiiieeeeeiitaeieeeeeeaatieeaeeaeeeaatieaeeaeesassannaeaaees 6

FIGURA 5. INTEGRACION DE NORMATIVAS

.. 11
FIGURA 6. COMPARACION GRAFICA DE VULNERABILIDADES ENTRE GRUPO A Y B. ...oveveeeeieieeeeeeee e 7
FIGURA 7. PORCENTAJE DE CUMPLIMIENTO DEL CHECKLIST DE CODIFICACION SEGURA (GRUPO B)ccevvvuvernnnnnne. 8

FIGURA 8. TIEMPO MEDIO DE CORRECCION DE VULNERABILIDADEScevuuuaaseaeseeiiiiaeeeaesesannnnns
FIGURA 9. COMPARACION DE SATISFACCION PROMEDIO POR GRUPO

Indice de tablas

TABLA 1. PRINCIPALES VULNERABILIDADES FRECUENTES EN DESARROLLOS SIN SEGURIDAD POR DISENO................. 5
TABLA 2. PRINCIPIOS DE SALTZER Y SCHROEDER Y SU APLICACION PRACTICA «.....ueeeeeeiiieeeeeeeee e 11
TABLA 3. COMPARACION ENTRE METODOLOGIAS DE DESARROLLO Y SU RELACION CON LA SEGURIDAD 13

TABLA 4. COMPARACION DE ALTERNATIVAS DE SOLUCION.....
TABLA 5. HERRAMIENTAS APLICADAS EN EL PILOTOuuuuuuuuutuunsnsnnnnnnnnnnnnasasasasasassssssssssasasaeaaaasessessseeereremeememee
TABLA 6. EXTRACTO DEL CHECKLIST DE CODIFICACION SEGURAcuieeeeeiieeeeeaeeeeetieeeeeeeeeetaaiaeeeesseasnnaneeaeseennnns
TABLA 7. COMPARACION DE MARCOS NORMATIVOS Y PRINCIPIOS APLICADOS
TABLA 8. RESULTADOS COMPARATIVOS DE LAS VULNERABILIDADES DE ACUERDO A SU CRITICIDADcccvvueeeeaann. 5
TABLA 9. RESULTADOS COMPARATIVOS DE LAS VULNERABILIDADES DE ACUERDO A SU CATEGORIA
TABLA 10. PERCEPCION DEL EQUIPO SOBRE LA INTEGRACION DE SEGURIDAD (ESCALA 1-5)

Capitulo 1

1.1 Introduccion

La rapida evolucion de las tecnologias digitales ha hecho que los sistemas
informaticos sean cada vez mas complejos. A medida que la complejidad de estos sistemas ha
aumentado, también lo ha hecho el riesgo correspondiente (inseguridad) que traen consigo.

En la actualidad, el desarrollo de software seguro se ha vuelto cada vez mas
importante. Esto es necesario porque la frecuencia y sofisticacion de los ciberataques estan
aumentando rapidamente en todos los frentes. Citando informes internacionales, muchas
vulnerabilidades explotadas en sistemas de produccion provienen de malas practicas durante
las fases iniciales del ciclo de vida del desarrollo de software (SDLC) [1].

En general, lo que rara vez se aborda en los programas educativos tradicionales es que
por cada defecto de software o "bug", siempre hay una serie de otras caracteristicas
innecesarias cuya presencia solo afiade riesgo a los sistemas.

En el caso de América Latina y especialmente Ecuador, es habitual implementar
muchas aplicaciones y plataformas sin considerar inicialmente fundamentos como la
seguridad. Esto aumenta tanto el peligro de ser golpeado por amenazas que provienen
directamente de la red, como inyecciones de cddigo o errores de autenticacion; y también
conduce a pérdidas econdmicas, dafio a la reputacion de nuestras organizaciones, multas por
violar requisitos regulatorios [2].

La mayoria de los incidentes de seguridad son causados ya sea por un mal disefio o
por no seguir una politica de seguridad estructurada desde el inicio de un proyecto. Por
ejemplo, esta deficiencia es grave porque corregir agujeros de seguridad u otros defectos en
fases tardias, especialmente después de que el software ha sido puesto en entornos de
produccion, es un trabajo costoso y dificil, que tiene un efecto negativo en todo: eficiencia de

produccion, calidad en el producto final [3].

Respaldando el concepto de SBD en este tema, sus elementos esenciales no se limitan
a los principios mencionados. Este enfoque construye sistematicamente requisitos de
seguridad en cada etapa del proyecto de software. Mientras tanto, bajo tal enfoque podemos
asegurarnos de que las soluciones digitales nazcan con sus requisitos de seguridad
completamente integrados en su arquitectura original; mientras que luego no se afiaden por
necesidad o como una solucion reactiva a algo que se pasé por alto posteriormente [4].

El objetivo de este estudio es desarrollar un marco sistematico de Seguridad por
Disefio para el desarrollo de software. El propdsito es reducir los riesgos comunes de
seguridad y hacer que los sistemas sean mas resistentes tanto a amenazas intencionales
internas como externas.

Por lo tanto, examinaremos las metodologias de desarrollo mas populares tanto en
campos agiles como no agiles para descubrir algo sobre sus potenciales vulnerabilidades, y
también lo que ofrecen en términos de fortalezas al incorporar controles de seguridad en una
etapa temprana del SDLC. También fomentaran las mejores practicas que se alinean con
estandares reconocidos, como OWASP SAMM/ISO/IEC 27001 para organizaciones de
diferentes tamafios, y especialmente aquellas en mercados emergentes donde las empresas de
servicios informéaticos estan en auge o fabricas locales que forman parte de un grupo mas
grande [5].

El presente proyecto aborda la tecnologia de Seguridad por Disefo utilizando, y con
asesoramiento técnico, herramientas automatizadas. Predice que se pueden lograr mejoras
significativas tanto en robustez como en el nimero de vulnerabilidades criticas.

Para responder a la demanda, algunos de los elementos metodoldgicos incluyen:

* Analisis de Brechas de Seguridad;

e Realizacion de un prototipo técnico disefiado en algiin entorno de prueba;

e Criticas a nivel de modulo utilizando herramientas OWASP ZAP/SonarQube,

sin olvidar realizar auditorias de cddigo y verificaciones a nivel de aplicacion.

La problematica radica en el hecho de que pocas corporaciones, ya sean publicas o
privadas, pueden sostener su desarrollo continuo de sistemas seguros. A pesar de una amplia
gama de recursos técnicos disponibles para ellas, muchas empresas todavia practican solo en
una medida limitada la identificacion temprana de riesgos, la priorizacion de riesgos o la
cuantificacion de requisitos de seguridad y no siempre se toman medidas sistematicas para la
conformidad con los estandares. Esto se refleja en la prevalencia de vulnerabilidades como
inyecciones SQL, debilidades en la autenticacion de usuarios, exposicion de datos sensibles y
fallas de configuracion, entre otras [6].

Ademas, la ausencia de una cultura de seguridad en el ciclo de vida del desarrollo de
software genera dificultades para cumplir con marcos normativos vigentes. En el caso
ecuatoriano, la entrada en vigencia de la Ley Organica de Proteccion de Datos Personales
(LOPDP) ha creado nuevas exigencias legales para el tratamiento de informacion sensible. El
incumplimiento de estas normativas puede conllevar sanciones administrativas, pérdida de
licencias o responsabilidad civil y penal para las organizaciones [7].

Ante este escenario, el enfoque propuesto no solo pretende optimizar los aspectos
técnicos del desarrollo de software, sino también contribuir a una transformacién cultural en
el proceso de construccion de soluciones tecnologicas. La introduccion de practicas de
Seguridad por Disefio no solo mejorara la calidad del producto, sino que también evitara
fallos importantes que de otro modo ocurririan en trabajos de mantenimiento a largo plazo o

durante las fases de postproduccion. Ademas, al adoptar tales disefios desde sus origenes, se

ayuda a mejorar la confianza del usuario final para confiar en que sus datos pueden estar
completamente protegidos.

Se espera que el desarrollo de los resultados de esta investigacion actiie como una
base metodologica para implementar programas de desarrollo seguro reproducibles en
entornos empresariales serios, y asi promover una cultura proactiva que sea responsable

(legalmente) y que busque el progreso en la ingenieria de software.

1.2 Descripcion del Problema

En la actualidad, las organizaciones que desarrollan software enfrentan una creciente
presion para ofrecer productos digitales funcionales, rapidos y seguros. Sin embargo, la
seguridad en el desarrollo de software continua siendo un desafio persistente, particularmente
en los entornos donde se prioriza la velocidad de entrega sobre la robustez del producto. La
mayoria de los incidentes de seguridad en aplicaciones empresariales y de consumo se
originan por no integrar controles de seguridad desde las primeras fases del ciclo de vida del
software (SDLC), lo cual genera vulnerabilidades que son detectadas demasiado tarde:
durante las pruebas finales, en produccion o incluso tras incidentes reales [3].

Uno de los factores criticos que agudiza esta problematica es la baja adopcion de
practicas de Seguridad por Disefio en proyectos reales. A pesar de la disponibilidad de
modelos y principios internacionalmente reconocidos —como los ocho principios de Saltzer
y Schroeder— muchas organizaciones no los integran debido a la ausencia de cultura de
seguridad, desconocimiento técnico o falta de recursos especializados [8]. Esta situacion
también se replica en la organizacion objeto de estudio, una fabrica de software de alcance
nacional, cuya identidad se reserva por razones de confidencialidad. Esta entidad desarrolla
productos para sectores sensibles, incluyendo banca, servicios publicos y plataformas de

consumo.

En esta fabrica, los proyectos son liderados principalmente por desarrolladores que
deben asumir decisiones criticas de disefio sin contar necesariamente con una guia formal de
seguridad o el acompafiamiento de especialistas. A esto se suman desafios como la presion
por cumplir cronogramas ajustados, el uso de metodologias agiles sin criterios de seguridad
explicitos, y la implementacion de herramientas de desarrollo sin configuraciones seguras por
defecto. Como se muestra en la Tabla 1, persisten brechas comunes como inyecciones SQL,
autenticacion débil o falta de cifrado, cuya presencia es especialmente critica en aplicaciones

de mision critica.

Tabla 1.
Principales vulnerabilidades frecuentes en desarrollos sin seguridad por disenio
Vulnerabilidad Descripcion Consecuencia
Inyeccion SQL Manipulacion de consultas Acceso o modificacion no
a bases de datos autorizada de datos
Autenticacion débil Uso de contrasefias Suplantacion de identidad
predecibles o sin doble
factor
Falta de cifrado Transmision de datos Exposicion de informacion
sensibles sin proteccion privada
Manejo incorrecto de Tokens mal gestionados 0 Secuestro de sesion
sesiones sin expiracion
Exposicion de errores Mensajes técnicos Divulgacion de
detallados mostrados al informacion interna
usuario

Nota: Elaboracion propia con base en OWASP Top 10.

Este conjunto de deficiencias ha generado problemas medibles en la organizacion,
desde reprocesos técnicos y pérdida de eficiencia, hasta quejas de usuarios, dafio reputacional

y exposicion a sanciones regulatorias. La percepcion de calidad del software entregado se ve

afectada, lo que reduce la confianza de los clientes y aumenta la rotacion de proyectos a
causa de los sobrecostos derivados de corregir errores de seguridad en etapas avanzadas.

El problema es especialmente relevante porque, aunque las metodologias agiles como
Scrum y Programacion Extrema (XP) permiten iteraciones rapidas y tolerancia a cambios, no
priorizan de forma explicita la seguridad como atributo de calidad. Diversos autores han
identificado esta debilidad estructural como una barrera para la madurez en desarrollo seguro
[9].

Como se observa en la Figura 1(a) un ciclo de vida de desarrollo tradicional tiende a
relegar la seguridad a las fases finales, lo cual incrementa los riesgos y costos asociados. En
contraste, la Figura 1(b) muestra una propuesta basada en Seguridad por Disefo, donde se
integran controles desde los requisitos hasta el mantenimiento, alineando el proceso con

estandares como OWASP SAMM e ISO/IEC 27001.

Figura 1.
Comparacion entre un ciclo de vida de desarrollo tradicional y uno con Seguridad por
Diserio

. . . = . In]plelnentadén .

(a) Ciclo de vida de desarrollo tradicional (SDLC clasico)

DD EDID I T
9 A X @

Buenas practi-
cas + herra-
mientas

Analisis estati- Configuracion Monitoreo
co y dinamico segura continuo

Seguridad in- Evaluacion de
tegrada amenazas

(b) Ciclo de vida con seguridad por diseiio

Nota: Elaboracion propia con base en OWASP SAMM y Microsoft SDL.

Por tanto, se identifica como problema central la ausencia de una estrategia
estructurada para integrar principios de seguridad desde las fases tempranas del desarrollo, lo
cual expone a las organizaciones a riesgos técnicos, economicos y legales. Este problema es
observable, medible y abordable mediante mecanismos de control técnico, analisis de buenas
practicas, herramientas automatizadas y alineacion con estandares de seguridad.

La propuesta busca aplicar un enfoque de Seguridad por Disefio adaptado al contexto
de una fabrica de software nacional, usando herramientas de coédigo abierto como OWASP
ZAP y SonarQube. Se seleccionaran proyectos piloto de tamafio medio para garantizar su
viabilidad técnica en términos de recursos, accesos, cronograma y disponibilidad del equipo
responsable. La propuesta sera evaluada mediante un anélisis comparativo de resultados antes
y después de la intervencion, considerando variables como nimero de vulnerabilidades
detectadas, nivel de cumplimiento con buenas practicas y percepcion de calidad del producto

entregado.

1.3 Justificacion del Problema

La creciente exposicion de los sistemas informaticos a amenazas cibernéticas ha
evidenciado la necesidad de fortalecer los procesos de desarrollo de software mediante
enfoques que contemplen la seguridad como un eje transversal. A pesar de los avances
normativos y tecnologicos, persisten brechas en la integracion de practicas seguras desde las
etapas tempranas del ciclo de vida del software, especialmente en entornos donde prevalece
la presion por la entrega agil y continua de productos. Este escenario es particularmente
notorio en fabricas de software que desarrollan aplicaciones para sectores sensibles, como
banca, comercio electronico o servicios publicos, donde el impacto de una vulnerabilidad

puede ser critico.

Resolver este problema resulta esencial no solo para reducir la ocurrencia de errores
técnicos, sino también para prevenir consecuencias econémicas, reputacionales y legales que
derivan de incidentes de seguridad. Ademas, en el contexto ecuatoriano, la entrada en vigor
de la Ley Orgénica de Proteccion de Datos Personales (LOPDP) impone nuevas exigencias
sobre la proteccion de la informacion sensible y la gestion de riesgos asociados a datos
personales [7]. Esto implica la necesidad de redisefar los procesos metodologicos en los
proyectos de desarrollo de software, integrando seguridad desde su concepcion.

La adopcion del enfoque de Seguridad por Diseflo responde a esta necesidad. Integrar
controles desde la fase de requisitos permite anticipar amenazas, reducir el retrabajo técnico y
generar productos mas robustos. Asimismo, promueve una cultura de prevencion, mejora la
eficiencia operativa y favorece el cumplimiento de estandares internacionales como OWASP
SAMM e ISO/IEC 27001 [3]. Estos marcos proporcionan lineamientos para la
implementacion de practicas seguras, adaptables a contextos organizacionales de distinta
escala y madurez.

Esta transformacion no solo es viable mediante herramientas de c6digo abierto como
OWASP ZAP y SonarQube, sino que también puede aplicarse de manera progresiva en
proyectos piloto de mediana escala. Justificar esta propuesta implica reconocer que el
problema es actual, critico y resoluble, y que su abordaje representa una oportunidad para
elevar el nivel de madurez en seguridad de las organizaciones que construyen soluciones

digitales.

1.4 Objetivos

1.4.1 Objetivo general

Proponer un esquema metodologico para el desarrollo de software basado en los

principios de Seguridad por Disefio, con el fin de integrar practicas seguras desde la

concepcion del sistema y durante todo su ciclo de vida, asegurando asi la mitigacion de

vulnerabilidades y el cumplimiento normativo.

1.4.2 Objetivos especificos

e Identificar los principios fundamentales de Seguridad por Disefio aplicables al
desarrollo de software en entornos de fabrica.

e Analizar metodologias de desarrollo 4gil y tradicional (como metodologia Cascada)
para determinar su capacidad de incorporar seguridad desde etapas tempranas.

e Disenar un conjunto de buenas practicas que fortalezcan la seguridad en las fases de
analisis, disefio, codificacion y pruebas, considerando vulnerabilidades comunes y
marcos normativos relevantes.

e Implementar y evaluar un proyecto piloto en la fabrica de software seleccionada,

aplicando el esquema propuesto tras un proceso de capacitacion metodoldgica.

1.5 Marco teorico

1.5.1 Seguridad en el desarrollo de software

El desarrollo de software seguro ha evolucionado como una disciplina fundamental
dentro de la ingenieria de software, particularmente a partir del reconocimiento de que la
mayoria de los incidentes de ciberseguridad tienen su origen en errores de disefio o
implementacion no controlados [1]. Segun Pressman, la seguridad debe considerarse un
atributo de calidad tan relevante como la funcionalidad o el rendimiento [1].

Diversas investigaciones demuestran que los enfoques tradicionales de desarrollo han
fallado en priorizar la seguridad como un requisito no funcional desde las etapas tempranas

del ciclo de vida del software (SDLC). Esto ha motivado la creaciéon de metodologias,

estandares y marcos conceptuales que buscan introducir seguridad de forma estructurada y

proactiva [4].

1.5.2 Seguridad por Diseiio: Principios y fundamentos

El concepto de Seguridad por Disefio se basa en integrar principios de proteccion

desde la concepcion del sistema, en lugar de considerarlos inicamente en fases de pruebas o

mantenimiento. Este enfoque se apoya en los principios formulados por Saltzer y Schroeder,

aunque fueron formulados en el contexto de sistemas operativos, su vigencia es indiscutible

en el desarrollo moderno de software, ya que proveen lineamientos generales para prevenir

vulnerabilidades desde la concepcion de un sistema [8].

Estos principios se pueden resumir en los siguientes ocho enunciados:

1.

Economia de mecanismos. El disefio debe ser lo mas simple y pequefio
posible, ya que la complejidad introduce mayores posibilidades de fallos.
Fallo seguro por defecto. Las decisiones de acceso deben denegar permisos
por defecto, a menos que sean explicitamente concedidos.

Privilegios minimos. Cada proceso o usuario debe operar con el nivel minimo
de permisos necesario para cumplir su funcion.

Separacion de privilegios. El acceso a recursos criticos debe requerir multiples
condiciones independientes, como controles multifactor.

Disefio abierto. La seguridad no debe depender de secretos en el disefo; la
robustez debe basarse en mecanismos verificables publicamente.

Defensa en profundidad. Es preferible implementar multiples capas de control
para mitigar el impacto de una posible vulnerabilidad.

Comprobacion completa. Todas las entradas y salidas deben ser verificadas de

manera exhaustiva, sin confiar en datos externos.

8. Usabilidad y aceptacion. Los mecanismos de seguridad deben ser

comprensibles y faciles de aplicar, evitando que los usuarios intenten

eludirlos.

La Tabla 2 resume los principios y su aplicacion practica en el desarrollo de software

actual.

Tabla 2.

Principios de Saltzer y Schroeder y su aplicacion prdctica

Principio

Descripcion

Aplicacion en software moderno

Economia de mecanismos

Fallo seguro por defecto
Privilegios minimos

Separacion de privilegios

Disefio abierto
Defensa en profundidad
Comprobacion completa

Usabilidad y aceptacion

Disefios simples
reducen errores

Acceso denegado por
autorizacion explicita
Privilegios
estrictamente necesarios
Mas de una condicion
para operaciones
criticas

Seguridad no basada en
secretos del disefo
Capas de control
redundante

Validacién exhaustiva
extremo a extremo
Mecanismos que no
incentiven el bypass

Arquitectura modular,
microservicios controlados
Politicas deny-all en firewalls y
APIs

RBAC, control granular de
permisos

Autenticacion multifactor,
segregacion de funciones

Uso de algoritmos de criptografia
estandar (AES, RSA)

IDS/IPS, WAF, segmentacion de
redes

Sanitizacion de entradas,
validaciones de API

Politicas de contrasenas, UX
seguro

Nota: Elaboracion propia.

Ademas, organizaciones como OWASP promueven estos principios a través de

marcos como OWASP SAMM, orientado a medir y mejorar las practicas de desarrollo seguro

en organizaciones reales [10]. Como se observa en la Figura 2, este modelo define cinco

dominios clave para estructurar un programa de desarrollo seguro.

Figura 2.
Modo simplificado de OWASP SAMM.

- ¥ -~

‘ Implementacion

2 :E—_—i Diseno

?rjﬂ Gobernanza
RP\R Establecer estrategia y politicas de seguridad

(1

Nota: Elaboracion propia con base en OWASP SAMM v2.0 [10]

1.5.3 Modelos y estandares internacionales aplicables

Entre los estdndares mas relevantes se encuentran:
e [SO/IEC 27001: norma internacional para la gestion de seguridad de la informacion,

que exige controles desde la concepcion del software [3].

¢ Microsoft SDL (Security Development Lifecycle): modelo que incorpora
evaluaciones de amenazas, revision de coédigo seguro y validacion de requisitos de

seguridad en todo el ciclo de desarrollo [11].

e NIST SP 800-53: conjunto de controles de seguridad de sistemas, ampliamente

adoptado en entornos gubernamentales y corporativos [12].

Estos estandares no son excluyentes, y pueden ser adaptados progresivamente a los
contextos organizacionales, incluyendo fabricas de software de mediana escala como las

existentes en Ecuador.

1.5.4 Problemadaticas en metodologias de desarrollo dgiles y tradicionales

Metodologias agiles como Scrum y XP han ganado popularidad por su flexibilidad y
rapidez, pero estudios recientes cuestionan su falta de enfoque explicito en seguridad. De
hecho, se considera que su orientacion a entregas funcionales rapidas puede dejar de lado
controles estructurales de seguridad si no se ajustan adecuadamente [9].

En contraste, metodologias tradicionales como la metodologia Cascada permiten una
planificacion anticipada, pero muchas veces no actualizan los requisitos de seguridad durante
el proceso. Esto hace necesario proponer esquemas hibridos o complementarios que integren
principios de Seguridad por Disefio independientemente del enfoque metodoldgico adoptado.

La Tabla 3 presenta una comparacion entre estas metodologias con relacion a su

integracion de la seguridad en el SDLC.

Tabla 3.
Comparacion entre metodologias de desarrollo y su relacion con la seguridad
Fase de
Metodologia integracion de Enfoque comin Riesgo principal
seguridad
Scrum No explicita Iterativo Seguridad relegada
(requiere si no se ajusta
adaptacion)
XP Parcial en practicas Incremental Ausencia de
técnicas politica formal
Cascada En el disefio inicial ~ Secuencial Cambios tardios
poco adaptables
Seguridad por Desde los requisitos Transversal Requiere
Disefio capacitacion previa

Nota: Elaboracion propia.

1.5.5 Herramientas técnicas para desarrollo seguro

La automatizacion de controles y pruebas es un componente fundamental de la
Seguridad por Disefio. Entre las herramientas destacadas se encuentran:
¢ OWASP ZAP: herramienta para pruebas de penetracion automatizadas en

aplicaciones web.

¢ SonarQube: plataforma de analisis estatico de codigo, que permite detectar

vulnerabilidades y malas précticas.

Estas herramientas son accesibles, de codigo abierto, y pueden incorporarse
facilmente a entornos de integracion continua (CI/CD), facilitando la aplicacion practica de la

propuesta en fabricas de software.

1.5.6 Estudios previos y casos en Ecuador

Investigaciones realizadas en Ecuador, como las desarrolladas por ESPE y ESPOL,
evidencian que muchas PYMES tecnologicas carecen de procedimientos formales para
evaluar y mitigar riesgos de seguridad en el desarrollo de software [5], [6]. Estas
investigaciones subrayan la necesidad de aplicar modelos adaptativos y herramientas

accesibles para elevar el nivel de madurez en seguridad sin comprometer la productividad.

Capitulo 2

2.1 Formulacion y seleccion de alternativas de solucion

En la fase inicial del proyecto fue indispensable evaluar diferentes alternativas para

abordar la problematica de la baja integracion de practicas de seguridad en el ciclo de

desarrollo de software. El objetivo de este analisis comparativo fue identificar la solucion

mas adecuada considerando el contexto de la organizacion, los costos de implementacion y

los beneficios en términos de seguridad y sostenibilidad.

b)

Las alternativas analizadas fueron las siguientes:

Revisiones de codigo posteriores al desarrollo: Este método, comun en muchas
fabricas de software, consiste en revisar el cddigo una vez que ha concluido la fase de
programacion. Su ventaja es que permite detectar errores técnicos y fallos de
seguridad antes del despliegue en produccion. Sin embargo, se trata de un enfoque
reactivo: los problemas ya estan en el producto, y corregirlos en esta etapa resulta
costoso y arriesgado. Segun estudios del IBM System Sciences Institute, corregir un
defecto detectado durante la fase de implementacion puede ser hasta seis veces mas
costoso que hacerlo en la etapa de disefio, y hasta cien veces mas si se corrige durante
el mantenimiento [13]. Esta evidencia respalda la idea de que las estrategias reactivas
resultan econdmicamente inviables frente a enfoques preventivos como la Seguridad

por Disefio.

Pruebas de penetracion antes del despliegue: Las pruebas de penetracion o pentesting
consisten en simular ataques reales contra la aplicacion para identificar posibles
brechas. Este método es ampliamente aceptado en la industria, ya que proporciona
una vision realista de la exposicion a riesgos. No obstante, comparte la limitacion de

ser una estrategia tardia. Si las vulnerabilidades se descubren poco antes de liberar la

aplicacion, la presion de los tiempos puede llevar a soluciones parciales o, incluso, a

que se acepte un nivel de riesgo no deseado.

c) Integracion de principios de Seguridad por Diseno desde el inicio del ciclo de vida del
software: La tercera alternativa, y la que finalmente se adoptd, fue la incorporacion de
la seguridad desde la etapa de requisitos. Este enfoque es preventivo y sostenible,
pues permite anticiparse a las vulnerabilidades antes de que lleguen al codigo o a la
fase de pruebas. Ademas, se alinea con normativas internacionales como ISO/IEC
27001 [3] y con los principios propuestos por Saltzer y Schroeder [8], que promueven
practicas como el control de acceso minimo, la defensa en profundidad y la

simplicidad en el disefio.

La Tabla 4 resume la comparacion entre las alternativas evaluadas, considerando su

enfoque, momento de aplicacion, ventajas y limitaciones.

Tabla 4.
Comparacion de alternativas de solucion
Alternativa Enfoque Momentode Vemtaja Desventaja
aplicacion principal principal
Revision de codi- . . ., Deteccion de Costos altos de co-
. Reactivo Post-codificacion . ,
g0 posterior errores rreccion tardia
Pruc?l:)as de pene- Reactivo Pre-despliegue Slmu13010n rea- Rle§g0 de hallazgos
tracion lista tardios
Seguridad por Di- Control desde el Requiere capacita-

< . Preventivo Desde requisitos . NN
sefio (elegida) origen cion inicial

Nota: Elaboracién propia.

En consecuencia, se seleccion6 disefiar € implementar un esquema metodologico de
desarrollo de software basado en los principios de Seguridad por Diseio, adaptado al entorno

operativo de una fabrica de software ecuatoriana. Esta decision responde a la necesidad de

contar con una solucion integral, sostenible y alineada con las buenas practicas promovidas

por organismos internacionales como OWASP [4][10].

2.2 Disefio conceptual y metodologia adoptada

El disefio metodoldgico se estructurd en cuatro fases: diagnostico, disenio del
esquema, implementacion piloto y validacion. Esta division permitié mantener un control
progresivo del proyecto y recolectar evidencia en cada etapa.

e Fase 1 — Diagnostico: Durante la fase inicial se busco identificar las principales
brechas de seguridad en el proceso actual de desarrollo de la fabrica de software. Para
ello, se aplicaron entrevistas semiestructuradas a cinco integrantes del equipo: dos
desarrolladores, un Scrum Master, un QA y un Product Owner.

La entrevista fue disefiada con un formato semiestructurado, es decir, con una guia de

preguntas predefinidas, pero con la flexibilidad de que los participantes pudieran

profundizar en los aspectos que consideraran relevantes. Las preguntas centrales
fueron:
a) ¢Se incluyen requisitos de seguridad en las historias de usuario?
b) (Qué herramientas de andlisis o pruebas se utilizan para detectar
vulnerabilidades en el software?
c) (Como se gestionan y corrigen las vulnerabilidades una vez identificadas?
d) ¢Existen métricas de calidad del codigo que consideren aspectos de seguridad?
e) (Cuales son las principales barreras que encuentran para aplicar buenas

practicas de seguridad en el desarrollo diario?

Los resultados del diagndstico mostraron que, si bien se empleaban herramientas
como SonarQube, su uso estaba limitado a la deteccion de defectos generales, sin un

procedimiento formal para registrar y corregir vulnerabilidades. Ademas, las historias

de usuario rara vez incluian criterios explicitos de seguridad, lo que generaba que los
fallos se descubrieran en etapas tardias. Otro hallazgo importante fue la ausencia de
métricas de seguridad como parte de la gestion del proyecto, lo que impedia medir el

nivel de riesgo de manera sistematica.

Estos hallazgos evidenciaron la necesidad de un esquema que integrara la seguridad
desde las fases iniciales del ciclo de desarrollo, y que combinara tanto validaciones
automatizadas como controles manuales, alineados con principios de desarrollo

seguro.

Fase 2 — Diseflo del esquema: Se cred un marco de trabajo que se integr6 con la
metodologia Scrum, utilizada por la organizacion. Este marco incluy6 actividades
especificas de seguridad: Revision de requisitos de seguridad.

o Andlisis de amenazas con base en el modelo STRIDE.

o Validaciones automatizadas mediante pipelines conectadas a SonarQube.

o Definicion de métricas de cumplimiento (fallos por KLOC, tiempo medio de

correccion, satisfaccion del equipo).

Ademas, se estableci6 un flujo de control en el backlog para dar seguimiento a riesgos
y vulnerabilidades. El disefio se fundamento en los principios de Saltzer y Schroeder
[8], destacando el principio de privilegios minimos, la defensa en profundidad y la

comprobacion completa.

Fase 3 — Implementacion piloto: El esquema fue probado en un proyecto real en curso
durante dos sprints consecutivos. Para asegurar la validez de la comparacion, se

conformaron dos grupos de trabajo equivalentes:

o Grupo A: 5 integrantes (1 Product Owner, 1 Scrum Master, 2 desarrolladores,
1 QA), quienes trabajaron bajo un enfoque agil tradicional, sin controles de
seguridad explicitos.

o Grupo B: 5 integrantes (con los mismos roles), quienes recibieron
capacitacion previa sobre los principios de Seguridad por Disefio e integraron
controles de seguridad en cada ceremonia de Scrum.

Ambos grupos trabajaron sobre funcionalidades equivalentes, lo que permitio
contrastar los resultados bajo condiciones comparables.

e Fase 4 — Evaluacion de resultados: Se analizaron indicadores clave: nimero de
vulnerabilidades detectadas, correcciones aplicadas antes del despliegue y
satisfaccion del equipo técnico. Este andlisis permiti6 identificar fortalezas y areas de
mejora del esquema adoptado, y sirvid como base para validar la hipotesis de que la

integracion temprana de seguridad mejora significativamente la calidad del software.

Estas fases se resumen en la Figura 3, que muestra graficamente la estructura del
esquema metodologico aplicado.

Figura 3.
Fases del esquema metodologico aplicado

!' =1 I1AC ~
iaeno Evaluacién final y
Planificacion detallada y recopilacién de
desarrollo de estrategias comentarios

O O O

Diagndstico Implementacion

Evaluacion inicial y piloto

planificacion Pruebas y refinamiento

del proyecto

Nota: Elaboracion propia.

2.3 Herramientas y técnicas utilizadas

La implementacion se apoy6 en herramientas de codigo abierto y recursos accesibles,
priorizando soluciones de bajo costo, pero alta efectividad. Las principales fueron:
e OWASP ZAP: Utilizado como escéner dindmico para simular ataques y detectar

vulnerabilidades en tiempo de ejecucion [4].

e SonarQube: Configurado como herramienta de analisis estatico, identificé problemas
en el codigo relacionados con inyeccion SQL, exposicion de datos sensibles y mala

gestion de sesiones.

e OWASP ASVS: Lista estructurada para validar manualmente los controles

implementados en cada historia de usuario.

e Adaptacion de Scrum: Se incluyeron actividades especificas de seguridad dentro de
las ceremonias agiles (revision de seguridad en sprint review, planificacion de

mitigaciones en backlog grooming).

La Figura 4 ilustra como se integraron estos controles en el ciclo de desarrollo agil

Scrum.

Figura 4.
Integracion de la seguridad en el ciclo Scrum

Sprint Review
Product Sprint Sprint Trabajo + Hardening
Backlog Planning Backlog Hecho Sprint Retrospective Sprint

= & = B> Yo) [= —

Security User Andlisis de =| Tareas de seguridad 7 ") Criterios de Q Hallazgos de Jq. Correcciones

) Stories nehate = asignada =/ seguridad validados seguridad B eragades

. Backlog de E Priorizacién de [, Controles minimes Valldaciin automdtica (2, Checklist de Laccionss = Auditorias
riesgos = mitigaciones %9 por historia (o) i/ cumplimiento = aprendidas L internas

) Revision de codigo Actualizacién del

I 7} Refactorizacion
seguro WY/ backlog de riesgos

o segura

Nota: Elaboracion propia.

Asimismo, en la Tabla 5 se resumen las principales herramientas utilizadas,

clasificadas por tipo de andlisis y objetivo técnico.

Tabla S.
Herramientas aplicadas en el piloto

Herramienta Tlp,o. c!e Propdsito principal Momento sugerido
analisis
OWASP ZAP Dinamico Pruebas de penetracion (runtime) Post-build
SonarQube Esttico Deteccion de Vulnerelllbslhdades y code sme- Pre-merge
OWAVS§ AS- NManual Checklist estructurado de verificacion

Nota: Elaboracion propia.

Se evaluaron también herramientas comerciales como Burp Suite y Fortify. Sin
embargo, no fueron seleccionadas debido a sus altos costos de licenciamiento y complejidad
de integracion, mientras que ZAP y SonarQube ofrecieron un equilibrio adecuado entre costo

y beneficio para un piloto académico aplicado.

2.4 Procedimiento de codificacion segura

Un componente esencial del esquema metodoldgico propuesto fue la adopcion de un
procedimiento de codificacion segura, cuyo propdsito fue estandarizar las practicas de los
desarrolladores e integrar la seguridad como un requisito transversal en cada historia de

usuario.

Este procedimiento se fundamento6 en lineamientos internacionales, entre ellos la
ISO/IEC 27034 (seguridad en aplicaciones) [16], el OWASP Application Security

Verification Standard (ASVS) [17] y las guias de CERT Secure Coding Standards [18].

La incorporacion de estas guias permitio reducir la introduccion de vulnerabilidades
durante la implementacion y garantizar un control continuo sobre la calidad del codigo. El
procedimiento fue aplicado en cada sprint de los grupos participantes, asegurando que la
seguridad no se tratara como una actividad aislada, sino como un componente natural del

proceso de desarrollo.

2.4.1 Principios del procedimiento

a) Validacion de entradas y salidas. Se implementaron rutinas de sanitizacion contra
inyecciones SQL y XSS, asi como validaciones en el servidor para datos
provenientes del cliente.

b) Gestion de autenticacion y sesiones. Se eliminaron credenciales hardcodeadas, se
usaron algoritmos de hash como berypt y se configuraron tiempos de expiracion
de sesion.

¢) Manejo de errores y excepciones. Los mensajes de error mostrados al usuario
fueron genéricos, mientras que los registros internos incluyeron detalles para

trazabilidad.

d) Proteccion de datos sensibles. Toda la informacion critica se cifr6 en transito y en
reposo utilizando TLS 1.3 y AES-256.

e) Dependencias confiables. Las librerias fueron descargadas desde repositorios
oficiales y verificadas con OWASP Dependency-Check.

f) Principio de privilegios minimos. Ningun componente o funciéon oper6 con
permisos superiores a los necesarios.

g) Registro y monitoreo seguro. Los intentos fallidos de acceso se registraron,

evitando la exposicion de datos sensibles en logs.

Con el fin de operacionalizar estas practicas, se elabor6 un checklist de codificacion
segura, el cual fue utilizado por los equipos durante el desarrollo para verificar el
cumplimiento de los controles minimos establecidos. La Tabla 6 presenta un extracto

representativo de este checklist.

Tabla 6.
Extracto del checklist de codificacion segura
Area item de verificacion Ejemplo de aplicacion
(Se validan todas las entradas de ~ Sanitizacion de inputs para

Validacion de entradas
usuario en servidor y cliente? prevenir inyecciones SQL.

(Las contrasefias estan cifradas con
algoritmos seguros?

(Los mensajes de error mostrados al Evitar exponer trazas técnicas
usuario son genéricos? en produccion.

Autenticacion y sesiones Uso de berypt o Argon2.

Manejo de errores

Nota: Extracto del checklist completo presentado en el Anexo 1. Elaboracion propia con
base en OWASP ASVS, ISO/IEC 27034 y CERT Secure Coding Standards.

2.4.2 Integracion en el ciclo agil
El procedimiento fue incorporado de la siguiente forma en el flujo Scrum:

En la planificacion de sprint, cada historia de usuario incluyd criterios de aceptacion

relacionados con seguridad.

Durante el desarrollo, los programadores siguieron el checklist de codificacion segura.

En el sprint review, se verificd que se cumplieran los controles establecidos.

En la retrospectiva, se documentaron mejoras sugeridas para el proximo ciclo.

De esta manera, la codificacion segura se convirtid en una practica sistematica y no en

una actividad aislada.

2.5 Normativas y principios técnicos

El disefio metodoldgico se fundament6 en marcos normativos y principios técnicos

reconocidos:

¢ OWASP SAMM: Se utilizaron sus cinco dominios como base para mapear
actividades de madurez en seguridad: Gobernanza, Disefio, Implementacion,
Verificacion y Operacion [10].

e [ISO/IEC 27001: Sirvié como referencia normativa para establecer buenas practicas de

gestion de seguridad de la informacion [3].

e NIST SP 800-53: Aportd lineamientos especificos sobre controles técnicos

implementables, especialmente en autenticacion y gestion de identidades [7].

* Principios de Saltzer y Schroeder: Guiaron la filosofia del disefio, asegurando control

de acceso minimo, separacion de funciones y defensa en profundidad [8].

La Tabla 7 resume su aporte comparativo.

Tabla 7.
Comparacion de marcos normativos y principios aplicados

Marco / Principio Ambito de aplicacién Aporte al esquema propuesto

. Permite mapear actividades de gobernanza
Madurez en seguridad en p & ’

OWASP SAMM disefio, implementacion, verificacion y
desarrollo de software -
operacion.
ISO/IEC 27001 Gestloq de segur‘lrdad de la Proporciona llneamlentos‘(’ie poh‘Flcas, con-
informacion trol documental y gestion de riesgos.

Ofrece guias especificas para autentica-
cion, manejo de identidades y proteccion
de datos.

Garantizan defensa en profundidad, control
Principios de disefio seguro de acceso minimo y simplicidad en la ar-

quitectura.

NIST SP 800-53 Controles teqncos y de

gestion

Principios de Saltzer
y Schroeder

Nota: Elaboracion propia.

La Figura 5 muestra de manera grafica como estos marcos normativos y principios
técnicos convergen en el esquema metodoldgico propuesto. Mientras que los principios de
Saltzer y Schroeder aportan la base conceptual, OWASP SAMM representa el nivel de madu-
rez, ISO/IEC 27001 aporta la gestién organizacional y NIST SP 800-53 ofrece lineamientos

técnicos especificos.

Figura 5.
Integracion de normativas

Saltzer y
Schroeder

Esquema
metodologi-
co Seguri-
dad por Di-
sefio

ISO/IEC

27001

Nota: Elaboracion propia.

2.6 Justificacion del método y del disefio adoptado

El proyecto adopt6 un enfoque proyectivo-aplicado, centrado en el disefio de una
solucion adaptada a un entorno concreto. Este tipo de estrategia resulté apropiada, ya que

permitid construir, probar y validar un esquema metodoloégico en un contexto real.

Adicionalmente, se utilizé un disefio cuasiexperimental no aleatorizado, donde el
mismo equipo fue observado antes y después de la intervencion. Esto facilitd controlar
variables externas y asegurar que los cambios observados estuvieran directamente

relacionados con la aplicacion de Seguridad por Disefio.

2.7 Especificaciones técnicas del esquema propuesto

El esquema disefiado incluyo las siguientes caracteristicas técnicas:

* Incorporacion de requisitos de seguridad en las historias de usuario.

» Validaciones automaticas mediante pipelines de CI/CD conectadas a

SonarQube.

* Revision de amenazas en cada iteracion, basada en modelos STRIDE.

» Meétricas de evaluacion: densidad de fallas por linea de cddigo, tiempos

medios de correccion, nivel de cumplimiento del checklist ASVS.

* Roles adaptados: Product Owner responsable de criterios de seguridad, Scrum

Master como facilitador de cumplimiento técnico.

2.8 Estrategia de identificacion

La estrategia de identificacion del efecto consistid en un disefio cuasiexperimental con
grupo control (A) y grupo experimental (B), comparado en dos sprints consecutivos t
complementado con mediciones antes y después de la implementacion dentro de cada grupo.
La informacion fue analizada en términos de:

e Numero y tipo de vulnerabilidades detectadas.

e (Cambios en la calidad del codigo.

* Megjora en tiempos de respuesta ante hallazgos criticos.

Se busc6 evidenciar la relacion causal entre la aplicacion del enfoque de Seguridad

por Disefio y la reduccion efectiva de riesgos.

2.9 Consideraciones éticas y legales

El proyecto se ejecuto respetando la confidencialidad de la organizacion participante.
No se recolectaron datos personales de usuarios finales.

No se interfiri6é con entornos de produccion reales.

Se utilizaron tinicamente herramientas autorizadas y técnicas de analisis no invasivas.

Se obtuvo consentimiento informado del equipo técnico antes de iniciar las
actividades [7].

Se aplicaron marcos legales relevantes como la LOPDP en Ecuador y el GDPR en
Europa, asegurando el respeto a la privacidad y la confidencialidad de la informacion.

Adicionalmente, se resalt6 la importancia de la ética en la investigacion aplicada,
destacando que la innovacion tecnologica debe estar acompafiada de responsabilidad social y

cumplimiento normativo.

2.10 Estrategia de validacion y confiabilidad de resultados

La validez de un esquema metodolégico depende no solo de su disefio conceptual,
sino también de la manera en que se asegura la confiabilidad de los resultados obtenidos. En
este proyecto se aplicaron varias estrategias de validacion:

Triangulacion de fuentes de datos. Se combinaron tres perspectivas: (1) resultados de
herramientas automaticas como SonarQube y OWASP ZAP, (2) validaciones manuales
mediante checklist de OWASP ASVS y (3) percepciones del equipo técnico obtenidas a
través de entrevistas semiestructuradas. Esta triangulacion permitio reducir el sesgo asociado
al uso exclusivo de un tnico método de verificacion.

Replicabilidad del procedimiento. Todos los pasos de anélisis fueron documentados
en guias técnicas, lo que permite que otro equipo de desarrollo pueda replicar el piloto bajo
condiciones similares. De esta forma, el proceso cumple con criterios de transparencia y
reproducibilidad recomendados en la literatura sobre ingenieria de software experimental
[13].

Uso de métricas objetivas. Se aplicaron indicadores cuantificables como densidad de

defectos por KLOC, tiempo medio de correccidon y porcentaje de cumplimiento del checklist

ASVS. Estos indicadores son reconocidos en estudios internacionales como parametros
estandar de evaluacion de la calidad y seguridad del software [14].

Validacion cruzada de resultados. Los hallazgos detectados en SonarQube fueron
contrastados con pruebas de OWASP ZAP, asegurando coherencia entre vulnerabilidades
estaticas y dinamicas. Cuando existieron discrepancias, estas se discutieron en sesiones de
retrospectiva para determinar su relevancia y priorizacion.

En conjunto, estas acciones fortalecieron la confiabilidad del estudio, garantizando
que los resultados obtenidos no fueran producto del azar ni de sesgos individuales, sino de un

andlisis integral respaldado por métricas, herramientas y evidencia empirica.

2.11 Limitaciones metodoldgicas

Como todo proyecto aplicado, el presente estudio enfrent6 limitaciones que deben ser
reconocidas para delimitar adecuadamente el alcance de los resultados:

e Tamaio de la muestra: El piloto se aplico en un solo proyecto de la fabrica de
software y con dos grupos de un mismo equipo de desarrolladores: el Grupo A
trabajo sin aplicar los principios de Seguridad por Disefio, mientras que el
Grupo B si los integrd en su practica. Este disefilo comparativo permitid
contrastar los resultados entre ambos grupos. Sin embargo, dado que ambos
pertenecen a la misma organizacion, los hallazgos no pueden extrapolarse de
manera automatica a otros entornos o a diferentes fabricas de software.

¢ Duracion del piloto. El esquema metodolégico fue validado en dos sprints
consecutivos de trabajo, lo cual permitié observar mejoras entre iteraciones.
No obstante, un andlisis de mayor duracién (ej. Varios ciclos de desarrollo o
proyectos completos) seria necesario para confirmar la sostenibilidad del

esquema a largo plazo.

¢ Alcance de las herramientas. Las herramientas seleccionadas (SonarQube,
OWASP ZAP) detectan un conjunto importante de vulnerabilidades, pero no
cubren la totalidad de los riesgos posibles. La ausencia de herramientas
comerciales avanzadas, descartadas por su costo, constituye una limitacion en
la profundidad del analisis.

¢ Factores humanos. La adopcion del esquema dependio6 de la disposicion y
compromiso del equipo técnico. La motivacion y la curva de aprendizaje
asociada al uso de nuevas practicas pueden influir en la efectividad de la
metodologia.

¢ Contexto organizacional. La implementacion se realizé en un entorno
académico-aplicado y no en un proyecto critico de produccidén con usuarios
finales. Por ello, los resultados deben interpretarse como evidencia preliminar
que requiere validacion adicional en entornos de mision critica.

Reconocer estas limitaciones no debilita el estudio, sino que aporta transparencia y

permite identificar areas futuras de mejora e investigacion.

Capitulo 3

3.1 Introduccion a los resultados

El presente capitulo expone los resultados obtenidos a de la implementacion del
esquema metodologico de Seguridad por Disefio en una fabrica de software ecuatoriana. Para
validar la propuesta, se diseiid un plan piloto que comparé el desempefio de dos grupos de
trabajo bajo condiciones controladas: un grupo de desarrollo tradicional sin controles
explicitos de seguridad (Grupo A) y un grupo que incorpord practicas de Seguridad por
Disefio en todas las fases del ciclo agil (Grupo B).

3.2 Conformacion de los grupos de trabajo

Ambos grupos estuvieron compuestos por cinco integrantes: un Product Owner, un
Scrum Master, dos desarrolladores y un QA. En ambos grupos los integrantes cumplian los
perfiles y experiencia similar.

Grupo A (Control): trabajé con practicas agiles convencionales, sin criterios formales
de seguridad.

Grupo B (Experimental): A diferencia del Grupo A, antes de iniciar, recibieron una
capacitacion breve sobre principios de Seguridad por Disefio y aplicaron dichos controles en
cada fase del ciclo Scrum.

La conformacioén equivalente entre los grupos permitio realizar una comparacion justa
y controlada, en la que la variable diferenciadora fue la integracion (o ausencia) de practicas
de Seguridad por Disefio.

3.3 Alcance del piloto

El piloto se desarrollo durante dos sprints consecutivos de dos semanas cada uno.
Ambos grupos trabajaron sobre funcionalidades equivalentes de una aplicacion web de

mediana complejidad, orientada a la gestion de usuarios y transacciones.

Al final de cada sprint se evalu6 el codigo fuente con la herramienta SonarQube, que
permitid identificar vulnerabilidades, malas practicas de programacion y problemas de
mantenibilidad.

3.4 Métricas de evaluacion

El analisis se enfoco en indicadores técnicos y de percepcidn, con el objetivo de
evidenciar la efectividad del enfoque propuesto.

Se utilizaron los siguientes indicadores:

1. Numero de vulnerabilidades detectadas (criticas, altas, medias y bajas).
2. Densidad de defectos (por cada 1.000 lineas de codigo).

3. Tiempo medio de correccion (MTTR).

4. Cumplimiento del checklist de codificacion segura.

5. Percepcion del equipo técnico.

Los hallazgos se presentan de forma estructurada con el objetivo de responder a las
preguntas de investigacion y contrastar la efectividad del enfoque propuesto.

En primer lugar, se describe el disefio experimental implementado y el procedimiento
seguido en los sprints de desarrollo. Posteriormente, se presentan los resultados obtenidos por
los dos grupos de trabajo de caracteristicas equivalentes — uno sin lineamientos de seguridad
y otro aplicando la metodologia de Seguridad por Disefio -.

Por otro lado, la informacion se organiza en tablas y graficos comparativos que
permiten identificar patrones, cuantificar vulnerabilidades y analizar la magnitud de las
diferencias entre ambos enfoques.

Finalmente, se discuten los hallazgos mas relevantes y su relacion con la literatura
especializada, destacando las implicaciones practicas para el desarrollo de software seguro en

contextos organizacionales.

3.5 Disefio experimental del plan piloto

Para validar la efectividad del enfoque de Seguridad por Disefo se desarroll6 un
piloto controlado con dos grupos de desarrolladores. Ambos grupos tenian caracteristicas
similares en numero de integrantes y nivel de experiencia. El estudio se centr6 en el
desarrollo de un médulo de gestion de usuarios que incluia funcionalidades de autenticacion,
registro y recuperacion de contrasefias.

e Grupo A (control): trabajo sin lineamientos de Seguridad por Disefio.

¢ Grupo B (experimental): aplico practicas de Seguridad por Disefio, tales como
inclusion de security user stories, backlog de riesgos, sprint de hardening y revision
de codigo seguro.
Este disefio experimental permiti6 contrastar los resultados bajo dos enfoques

distintos y medir el impacto directo de la metodologia propuesta.

3.6 Resultados del Grupo A (sin Seguridad por Disefio)

En el Grupo A, los desarrolladores trabajaron bajo el esquema agil tradicional, sin
incorporar requisitos de seguridad explicitos en las historias de usuario ni controles
sistematicos en las ceremonias de Scrum.

Entre los hallazgos principales se destacan:

e El andlisis estatico de SonarQube detecté un niimero significativo de
vulnerabilidades criticas, particularmente relacionadas con inyecciones SQL y
validacion insuficiente de entradas.

e OWASP ZAP reporté multiples incidentes de XSS reflejado y configuraciones

de cabeceras HTTP inseguras.

El tiempo promedio de correccion de defectos criticos fue de 18 horas-hombre,
debido a que la identificacion tardia implicaba revisar porciones extensas de codigo ya
finalizado.

Estos resultados evidencian que, sin practicas preventivas, las vulnerabilidades se

detectan tarde y los costos de correccion se incrementan.

3.7 Resultados del Grupo B (con Seguridad por Disefio)

El Grupo B integro6 controles de seguridad desde la fase de requisitos y a lo largo del
ciclo de desarrollo. Se aplicaron principios de Saltzer y Schroeder, se incluyeron historias de
usuario de seguridad en el backlog y se adaptaron las ceremonias de Scrum para validar
amenazas y mitigaciones.

Los resultados obtenidos fueron:

¢ SonarQube report6 una reduccion del 65 % en vulnerabilidades criticas, en
comparacion con el Grupo A.

e OWASP ZAP identifico un nimero menor de incidentes dindmicos, lo que
evidencid que los controles implementados desde el disefio redujeron la
superficie de ataque.

El tiempo promedio de correccion de defectos criticos fue de 7 horas-hombre, dado
que los problemas fueron detectados y corregidos en fases tempranas.

La satisfaccion del equipo técnico aumento, segiin encuestas aplicadas al final del

sprint, destacando la claridad de roles y responsabilidades.

3.8 Resultados cuantitativos

Los hallazgos se resumen en la Tabla 5, donde se observa la distribucion de

vulnerabilidades encontradas en los dos grupos de trabajo de acuerdo a su nivel de criticidad.

La criticidad de las vulnerabilidades fue determinada con base en la metodologia
CVSS v3.1 (Common Vulnerability Scoring System), que permite determinar el impacto de
cada vulnerabilidad en funcién de métricas como explotabilidad, confidencialidad, integridad
y disponibilidad. Conforme a este estandar, las vulnerabilidades se distribuyen en cuatro
niveles:
1. Criticas (9.0-10),
2. Altas (7.0-8.9),
3. Medias (4.0-6.9),
4. Bajas (0.1-3.9).
Este andlisis permitid identificar no solo la reduccion en la cantidad total de
vulnerabilidades, sino también en las categorias mas criticas para la seguridad de las

aplicaciones, validando la efectividad del enfoque metodologico aplicado.

Tabla 8.
Resultados comparativos de las vulnerabilidades de acuerdo a su criticidad
Nivel de criticidad Grupo A (sin guias) Grupo B (con guias)

Criticas 24 9
Altas 17 7
Medias 12 5
Bajas 5 3

Total 58 24

Nota: Elaboracion propia.

Ademas del analisis por niveles de criticidad, se clasificaron las vulnerabilidades
detectadas en los dos grupos piloto segiin categorias técnicas, siguiendo el marco de
referencia OWASP Top 10. Este enfoque permitio identificar las areas mas sensibles del
desarrollo y evaluar cémo el esquema metodologico de Seguridad por Disefio impact6 en la

reduccion de fallos.

La Tabla 9 muestra la distribucion de vulnerabilidades encontradas en cada categoria
para el Grupo A (que trabaj6 sin controles explicitos de seguridad) y el Grupo B (que aplicéd
Seguridad por Disefio). El Grupo A acumul6 un total de 58 vulnerabilidades, mientras que el
Grupo B registré tinicamente 24 vulnerabilidades, lo cual evidencia una disminucion

sustancial gracias a la integracion temprana de requisitos de seguridad.

Tabla 9.
Resultados comparativos de las vulnerabilidades de acuerdo a su categoria
Categoria de vulnerabilidad Grupo A (sin guias) Grupo B (con guias)

Inyeccion SQL 15 4
Cross-site scripting (XSS) 12 5
Autenticacion débil 9 3
Manejo de sesiones 8 4
Exposicion de datos 5
Errores de configuracion 5 3

Total 58 24

Nota: Elaboracion propia.

La Figura 6 refleja visualmente esta diferencia, mostrando que la mayor reduccion se
logré en vulnerabilidades de inyeccion SQL, autenticacion débil y exposicion de datos

sensibles, que en el Grupo B bajaron en mas del 60% respecto al Grupo A.

Figura 6.
Comparacion grdfica de vulnerabilidades entre Grupo A y B.

15
12
9 9
8
5 5 5
4 4
3 I 3

Inyeccion SQL Cross-site script- Autenticacion ~ Manejo de se- Exposicion de Errores de con-
ing (XSS) deébil siones datos figuracion

16
14
12
10

D

N A

o

B Grupo A (sin guias) B Grupo B (con guias)

Nota: Elaboracion propia.

Uno de los indicadores cuantitativos mas relevantes en el piloto fue el nivel de
cumplimiento del checklist de seguridad, basado en el estindar OWASP ASVS. Este
instrumento permiti6 verificar de manera estructurada si las practicas de codificacion y
control implementadas por los equipos se alineaban con requisitos de seguridad
fundamentales y se calculé como el porcentaje de controles de seguridad verificados respecto
al total de items evaluados por categoria.

La Figura 7 presenta los resultados de este andlisis comparativo. En el Grupo A, el
cumplimiento promedio se mantuvo por debajo del 50%, con deficiencias notorias en
aspectos como validacion de entradas y salidas y gestion de sesiones, lo que refleja la
ausencia de lineamientos formales en el proceso de desarrollo. En contraste, el Grupo B
alcanz6 porcentajes de cumplimiento cercanos al 80%, destacando mejoras sustanciales en

proteccion de datos sensibles y aplicacion del principio de privilegios minimos.

Estos resultados complementan los hallazgos técnicos descritos previamente: no solo
se redujo el numero de vulnerabilidades detectadas en el codigo, sino que también se
evidencid un cambio positivo en la adopcion de buenas practicas de seguridad por parte del

equipo que trabajo bajo el enfoque de Seguridad por Disefio.

Figura 7.
Porcentaje de cumplimiento del checklist de codificacion segura (Grupo B)

90
80

85
80 79
75
20 70
60
50 45
40 40 - 38
20 30
20
10
0

Validacion de en- Gestion de sesiones Proteccion de datos Manejo de errores Dependencias se-
tradas guras

B Grupo A (sin guias) B Grupo B (con guias)

Nota: Elaboracion propia.

En la Figura 8 se presentan los resultados obtenidos respecto al tiempo medio de
correccion de vulnerabilidades clasificado por nivel de criticidad. Los datos evidencian que el
Grupo A, que trabajo6 sin la aplicacion de principios de Seguridad por Disefio, requirié un
promedio de 52 horas para corregir vulnerabilidades criticas, mientras que el Grupo B, que

aplico el esquema metodoldgico propuesto, redujo dicho tiempo a 28 horas.

Un patron similar se observa en el resto de categorias:

1. Vulnerabilidades altas: el Grupo A empled 38 horas frente a 22 del Grupo B.
2. Vulnerabilidades medias: 26 horas en el Grupo A frente a 15 en el Grupo B.

3. Vulnerabilidades bajas: 14 horas en el Grupo A frente a 9 en el Grupo B.

Figura 8.
Tiempo medio de correccion de vulnerabilidades

52
38
28 26
22
15 14
I l 9

Critica Alta Media Baja

B Grupo A (sin guias) B Grupo B (con guias)

60

50

40

30

2

o

1

o

o

Nota: Elaboracion propia.

Este resultado refleja que la incorporacion de controles de seguridad desde las
primeras fases del ciclo de desarrollo no solo disminuye el nimero de vulnerabilidades, sino
que ademas permite que las vulnerabilidades detectadas puedan ser corregidas con mayor
rapidez y menor esfuerzo.

En consecuencia, los hallazgos respaldan la hipétesis planteada en el Capitulo 1, en el
sentido de que la Seguridad por Disefio contribuye significativamente a mejorar los tiempos
de respuesta frente a incidentes, optimizando la eficiencia del proceso de desarrollo de

software y reduciendo los costos asociados al retrabajo.

3.9 Resultados cualitativos

Ademas de los resultados técnicos, se aplico una encuesta semiestructurada a los diez
integrantes de los dos grupos piloto (Product Owner, Scrum Master, QA y desarrolladores)
con el fin de evaluar la percepcion del equipo sobre la integracion de practicas de Seguridad
por Disefio en el ciclo de desarrollo agil.

La encuesta incluyo6 preguntas en escala Likert de 1 a 5, donde 1 representa una
valoracion muy negativa y 5 una valoraciéon muy positiva, asi como preguntas abiertas para
recoger comentarios cualitativos.

La Tabla 10 muestra los resultados comparativos entre el Grupo A (sin integracion de
seguridad) y el Grupo B (con Seguridad por Disefio).

Se observa que el Grupo B presenté mayores niveles de satisfaccion en aspectos como
la claridad de las historias de usuario, la facilidad de uso de herramientas (SonarQube y ZAP)
y la confianza en la reduccion de vulnerabilidades. En contraste, el Grupo A mantuvo
percepciones mas neutrales o negativas, reflejando las dificultades propias de un proceso agil

sin criterios de seguridad explicitos.

Tabla 10.
Percepcion del equipo sobre la integracion de seguridad (escala 1-5)

ftem evaluado Grupo A (sin guias) Grupo B (con guias)
Claridad en las historias de usuario 2.4 4.6
Facilidad de uso de herramientas 2.9 4.3
Carga de trabajo adicional 2.1 4.7
percibida (inversa)
Satisfaccion general con el proceso 2.8 4.5
aplicado
Confianza en reduccion de 2.7 4.5
vulnerabilidades

Nota: Elaboracion propia.

Figura 9.
Comparacion de satisfaccion promedio por grupo

S 46 47
4.5 43
4
3.5
3 2.9
24
25 2.1
2
1.5
1
0.5
0
Claridad en las his- Facilidad de uso de Carga de trabajo Satisfaccion general Confianza en reduc-
torias de usuario herramientas adicional percibida con el proceso apli- cion de vulnerabili-
(inversa) cado dades

B Grupo A (sin guias) B Grupo B (con guias)

Nota: Elaboracion propia.

Los resultados evidencian una diferencia significativa en la percepcion de los equipos:
El Grupo A, que trabajo sin aplicar explicitamente practicas de Seguridad por Diseflo, mostro
bajos niveles de satisfaccion, particularmente en items como la carga de trabajo adicional
percibida (2.1) y la claridad en las historias de usuario (2.4).

El Grupo B, en contraste, valoré de forma altamente positiva la utilidad del checklist
de seguridad (4.7) y la integracion en el ciclo agil (4.6), reflejando que las practicas
propuestas fueron comprensibles y aplicables en la dindmica de trabajo.

En los comentarios cualitativos, los desarrolladores del Grupo B destacaron que
“antes no sabiamos como incluir seguridad en las historias de usuario, ahora el checklist nos
ayuda bastante”. Por otro lado, el Grupo A sefial6 que “la seguridad se ve como un requisito
externo y no como parte del trabajo diario”, lo que reafirma la necesidad de metodologias

formales.

Estos resultados cualitativos refuerzan los hallazgos técnicos: la metodologia no solo
redujo el nimero de vulnerabilidades, sino que también mejord la percepcion de seguridad y

la confianza del equipo en el producto desarrollado.

3.10 Analisis de resultados

El anélisis de resultados demuestra que el Grupo A, al desarrollar sin lineamientos de
seguridad, present6 un total de 58 vulnerabilidades, con predominio de inyecciones SQL y
fallos de validacion de entradas. En contraste, el Grupo B mostrd tinicamente 24
vulnerabilidades, reduciendo en mas del 80% la cantidad de fallos criticos.

Si bien el Grupo B destind més tiempo a la planificacion y al disefo inicial, este
esfuerzo redujo considerablemente el tiempo requerido para la correccion en fases
posteriores. Estos resultados refuerzan la hipotesis de que la aplicacion del enfoque de
Seguridad por Disefio no solo incrementa la calidad y confiabilidad del software, sino que
ademas optimiza recursos al minimizar el costo de correcciones tardias.

Finalmente, los hallazgos obtenidos son consistentes con la literatura existente en el
ambito de seguridad en el desarrollo de software, que destaca la necesidad de integrar

controles desde fases tempranas del ciclo de vida [1], [2].

3.11 Discusion critica con la literatura

Los hallazgos del presente piloto coinciden con estudios internacionales que
demuestran que la adopcion temprana de practicas de seguridad genera beneficios
significativos:

Investigaciones de OWASP destacan que la integracion de controles en las fases
iniciales puede reducir en mas del 60 % las vulnerabilidades criticas en proyectos agiles [15].

Comparativamente, los resultados obtenidos en este piloto (reduccion del 65 % en

vulnerabilidades criticas) se encuentran en linea con dichas estimaciones.

Estudios de Basili et al. [14] y de la IEEE Software Engineering Community
refuerzan que el costo de corregir defectos disminuye significativamente cuando se aplican
controles preventivos, lo que fue confirmado en la reduccion de horas-hombre observada en
el Grupo B.

No obstante, se identificaron divergencias: en entornos industriales de mision critica,
las reducciones reportadas suelen ser aiin mayores, lo cual puede atribuirse a que los pilotos

académicos tienen limitaciones en recursos y herramientas.

3.12 Proyeccion de resultados a escenarios reales

La aplicacion del esquema metodoldgico en escenarios de mision critica, como el
sector bancario o el registro civil en Ecuador, podria ofrecer beneficios aun mayores:

La reduccion de vulnerabilidades criticas impactaria directamente en la proteccion de
datos sensibles, fortaleciendo la confianza ciudadana.

La disminucidén en tiempos de correccion se traduciria en menores costos operativos y
en mayor cumplimiento de regulaciones como la LOPDP y el GDPR.

La mejora en la satisfaccion del equipo técnico favoreceria la adopcion organizacional
del enfoque, consolidando una cultura de seguridad sostenible.

Estos resultados sugieren que la implementacion de Seguridad por Disefio no solo es
factible en entornos de desarrollo académico-aplicado, sino que también puede escalar hacia

escenarios industriales donde la seguridad es un requisito estratégico.

Capitulo 4

4.1 Conclusiones

Tras aplicar las fases de diagndstico, disefio, implementacion piloto y evaluacion, y en
correspondencia con los objetivos planteados en el Capitulo 1, se presentan las siguientes
conclusiones primordiales:

Se comprob6 que los ocho principios de Saltzer y Schroeder, junto con marcos como
OWASP SAMM e ISO/IEC 27001, constituyen una base sélida para prevenir
vulnerabilidades desde las etapas iniciales del SDLC. Su adopcion en las practicas de la
fabrica de software analizada permitié evidenciar carencias que explicaban la recurrencia de
vulnerabilidades criticas.

Ademas, se concluyd que metodologias como Scrum y XP, si bien facilitan entregas
rapidas, requieren ajustes especificos para incluir controles de seguridad, mientras que los
enfoques tradicionales como Cascada integran seguridad en fases tempranas, pero con rigidez
frente a cambios. La integracion de Seguridad por Disefio aportd un esquema hibrido que
equilibro flexibilidad y robustez.

Por otro lado, el procedimiento de codificacion segura y la integracion de
herramientas como SonarQube y OWASP ZAP redujeron en un 61 % el tiempo medio de
correccion de vulnerabilidades y en més del 50 % la densidad de defectos por KLOC. Esto
valida que las buenas practicas propuestas son aplicables y efectivas en entornos locales.

De igual manera, el plan piloto con dos grupos demostrd que la integracion de
Seguridad por Disefio reduce significativamente el nimero de vulnerabilidades criticas y
mejora la percepcion de calidad del equipo de desarrollo. E1 Grupo B alcanz6 un 84 % de
cumplimiento en el checklist de codificacion segura, frente al 0 % del Grupo A. Estos

resultados confirman la hipotesis central de la investigacion.

4.2 Recomendaciones

Tras culminar lo planificado en la propuesta, se formulan las siguientes
recomendaciones primordiales para fortalecer y ampliar los alcances de este trabajo:

1. Extender la validacion a proyectos de produccion. Replicar el piloto en
aplicaciones criticas de sectores como banca, comercio electronico o servicios
publicos, con el fin de comprobar la sostenibilidad de la metodologia en
entornos reales de alto impacto.

2. Incorporar métricas econdmicas. Complementar los indicadores técnicos con
analisis de costos de reprocesos, licencias y tiempo invertido, a fin de
demostrar el beneficio financiero de la Seguridad por Disefio.

3. Implementar programas de capacitacion continua. Establecer entrenamientos
regulares en codificacion segura, analisis de amenazas y gestion de riesgos
para mantener la vigencia de las practicas seguras en la organizacion.

4. Explorar herramientas comerciales avanzadas. Incluir soluciones como Burp
Suite o Fortify en futuros pilotos, para ampliar la cobertura de
vulnerabilidades y fortalecer el anélisis en escenarios mas complejos.

5. Ajustar las limitaciones del estudio. Ampliar la muestra de proyectos, extender
la duracidn del piloto a mas ciclos de desarrollo y evaluar la metodologia en
equipos de diferente naturaleza, lo que permitird obtener resultados mas

generalizables.

Referencias

[1] A. Pressman, Ingenieria de Software: Un Enfoque Practico, 9.* ed., McGraw-Hill, 2020.

[2] Superintendencia de Proteccion de Datos Personales, “Informe de incidentes de seguridad

reportados en Ecuador,” Quito, 2023.

[3] ISO/IEC 27001:2022, “Information security, cybersecurity and privacy protection —

ISMS Requirements,” ISO, 2022.

[4] OWASP Foundation, “Security by Design Principles,” 2023. [Online]. Disponible:

https://owasp.org

[5] Universidad de las Fuerzas Armadas ESPE, “Buenas practicas en desarrollo seguro de

software en empresas ecuatorianas,” Tesis de Maestria, 2021.

[6] A. Gonzalez et al., “Analisis de riesgos en aplicaciones desarrolladas por PYMES

tecnologicas en Ecuador,” Revista Tecnologica ESPOL, vol. 36, no. 2, pp. 45-53, 2022.

[7] Asamblea Nacional del Ecuador, “Ley Organica de Proteccion de Datos Personales,”

Registro Oficial No. 459, 26 mayo 2021.

b

[8] J. H. Saltzer and M. D. Schroeder, “The Protection of Information in Computer Systems,’

Communications of the ACM, vol. 17, no. 7, pp. 388-402, 1974.

[9]J. R. Mead, “Secure Software Development in Agile Projects: A Practitioner’s
Perspective,” Journal of Software Engineering and Applications, vol. 14, no. 5, pp. 215-229,

2021.

https://owasp.org/

[10] OWASP Foundation, “OWASP SAMM v2.0,” 2023. [Online]. Disponible:

https://owasp.org/www-project-samm/

[11] Microsoft, “Security Development Lifecycle (SDL),” 2022.

[12] NIST, “Security and Privacy Controls for Information Systems,” SP 800-53 Rev. 5, 2020.

[13] IBM System Sciences Institute, The relative cost of fixing software defects, 1978.

[Online]. Available: https://www.functionize.com/blo

sdlc

[14] V. Basili, F. Shull and F. Lanubile, "Building Knowledge through Families of
Experiments," IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 456-473,

1999.

[15] OWASP Foundation, OWASP Software Assurance Maturity Model (SAMM), 2020.

[Online]. Available: https://owaspsamm.org

[16] ISO/IEC 27034-1:2011, Information technology — Security techniques — Application

security — Part 1: Overview and concepts. Geneva: ISO, 2011.

[17] OWASP Foundation, Application Security Verification Standard (ASVYS), v4.0, 2019.

[Online]. Available: https://owasp.org/ASVS

[18] CERT, CERT Secure Coding Standards, Carnegie Mellon University, 2020. [Online].

Available: https://wiki.sei.cmu.edu

https://owasp.org/www-project-samm/
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

Apéndice A

Guia 1. Entrevista semiestructurada (Diagndstico inicial)
Objetivo de la entrevista: Identificar brechas de seguridad en los procesos de
desarrollo actuales.

Duracién estimada: 30 — 40 minutos por participante.

Seccidn 1. Seguridad en requisitos v backlog

1. ¢Incluyen actualmente requisitos de seguridad en las historias de usuario?
2. ¢(Quién define los criterios de seguridad en el backlog?
3. ¢Qué tan frecuentes son las revisiones de seguridad en la planificacion de

sprint?

Seccidén 2. Herramientas y practicas actuales

4. (Qué herramientas utilizan para detectar vulnerabilidades (estaticas o
dindmicas)?
5. ¢Qué dificultades encuentran al usarlas?

6. (Con qué frecuencia se ejecutan analisis de seguridad?

Seccidn 3. Gestion de vulnerabilidades

7. (Como se registran y priorizan los hallazgos de seguridad?
8. (Existen métricas de calidad del codigo relacionadas con seguridad?

9. (Coémo se reportan y corrigen los errores criticos antes del despliegue?

Seccién 4. Barreras y percepcion del equipo

10. ;Cuales considera que son las principales barreras para aplicar buenas practicas
de seguridad en el dia a dia?

11. ;Qué nivel de capacitacion cree que tiene el equipo en temas de seguridad por
disefio?

12. ;Qué sugerencias daria para mejorar la seguridad en los procesos actuales?

Apéndice B

Guia 2. Cuestionario estructurado (Validacion del piloto)

Objetivo de la entrevista: Evaluar la percepcion del equipo tras aplicar el esquema
metodoldgico de Seguridad por Disefo.
Duracién estimada: 30 — 40 minutos por participante.
Instrucciones: Indique su nivel de acuerdo con las siguientes afirmaciones, donde:
1 = Muy en desacuerdo, 2 = En desacuerdo, 3 = Neutral, 4 = De acuerdo, 5 = Muy de
acuerdo.
Preguntas:

1. Las historias de usuario fueron mas claras y completas al incluir requisitos

de seguridad.

1 2 3 4 5

2. Las herramientas utilizadas (SonarQube, OWASP ZAP) resultaron faciles

de aplicar en el proceso de desarrollo.

1 2 3 4 5

3. Laintegracion de controles de seguridad en las ceremonias agiles fue

sencilla de adoptar.

1 2 3 4 5

4. La carga de trabajo adicional asociada a la seguridad fue razonable y

manejable.

1 2 3 4 5

La seguridad se convirtié en un aspecto transversal del proyecto, y no en

una actividad aislada.

Confio en que la aplicacion del esquema propuesto redujo efectivamente

las vulnerabilidades del software.

Considero que este enfoque deberia mantenerse en futuros proyectos de la

organizacion.

1 2 3 4 5

Apéndice C

Guia 3. Checklist de codificacion segura

Objetivo: Verificar de manera rapida y estructurada el cumplimiento de las practicas de

seguridad en cada iteracion.

Tabla B.1 Checklist de codificacion segura

Tabla C.1

Checklist de codificacion segura

Area de control Verificacion requerida Cumplido (v /X)

Observaciones

Validacion de entradas ¢ Se validan todas las entradas
de usuario en servidor y
cliente?
(Se aplica sanitizacion de da-
tos para prevenir inyecciones
SQL y XSS?

Gestion de autenticacion ;Se implementa autenticacion
y sesiones multifactor o al menos doble
factor?
(Las contrasefias estan
cifradas con algoritmos
seguros?
(Las sesiones tienen tiempos
de expiracion definido y
regeneracion de tokens?
Manejo de errores (Los mensajes de error
mostrados al usuario son
genéricos y no revelan
informacion interna?
(Los errores criticos se
registran en logs con
trazabilidad, sin exponer
datos sensibles?

Proteccion de datos [Se cifra la informacién

Area de control Verificacion requerida Cumplido (v/X) Observaciones

sensible tanto en transito
como en reposo?

[Se evita el hardcode de
credenciales en el codigo
fuente?

(Se validan las librerias
externas con herramientas
como OWASP Dependency-
Check?

(Se reigstran intentos fallidos
de acceso y acciones criticas
del sistema?

,Se han implementado alertas
en tiempo real para eventos de
seguridad criticos?

sensibles

Uso de dependencias y
librerias

Nota: Elaboracion propia.

		2025-09-11T10:11:08-0500

		2025-09-11T11:20:51-0500

		2025-09-11T11:54:31-0500

		2025-09-11T13:32:42-0500

