

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería Marítima y Ciencias del Mar

"Análisis del Polimorfismo, Mediante el Uso de Marcadores SSRs, de Variedades de *Musa* spp., Resistentes, Tolerantes o Susceptibles a la Infección de *Mycosphaerella fijiensis*"

TESIS DE GRADO

Previa a la obtención del Título de:

BIÓLOGO

Presentada por:

Christian Abraham Romero Bonifaz

GUAYAQUIL - ECUADOR

AÑO: 2009

AGRADECIMIENTO

ΑI personal del Centro de Investigaciones Biotecnológicas del Ecuador (CIBE) por apoyarme en la realización de este trabajo, Sc. Pablo especialmente al M. Chong, a la Doctora Esther Peralta, al Doctor Efren Santos y al M. Sc. Omar Ruiz. Quisiera agradecer también al Centro de Investigación Científica y Tecnológica (CICYT) por financiar parte de mi tesis de grado.

DEDICATORIA

A MIS PADRES Y A MIS TIOS POR HABERME APOYADO A LO LARGO DE MI CARRERA UNIVERSITARIA. A NADIA POR SER UN PILAR FUNDAMENTAL EN MI VIDA.

TRIBUNAL DE GRADUACIÓN

Parla falled.

Paola Calle Delgado, Ph,D. PRESIDENTE

Esther Lilia Peralta, Ph. D. **DIRECTORA DE TESIS**

Washington B. Cárdenas, Ph. D. VOCAL PRINCIPAL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de esta
Tesis de Grado, me corresponden
exclusivamente a mi; y el patrimonio
intelectual de la misma a la ESCUELA
SUPERIOR POLITECNICA DEL
LITORAL"

(Reglamento de Graduación de la ESPOL)

Christian Abraham Romero Bonifaz

RESUMEN

El control de la Sigatoka negra es uno de los grandes problemas que enfrenta el País. Los costos para controlar la enfermedad en un área de cultivo de 180.092 ha, bordean los 47 millones de dólares americanos al año. El impacto de la Sigatoka negra no solamente tiene importancia desde el punto de vista económico, sino también ambiental debido a la alta concentración de fungicidas y protectantes que se utilizan en los cultivos. Por tal motivo es de vital importancia que trabajos de investigación estén encaminados a buscar nuevas estrategias de control que sustituyan el uso extendido de fungicidas.

Este estudio fue llevado a cabo con el objetivo de investigar la diversidad genética de 21 genotipos del género Musa spp, procedentes de la Colección Mundial (Transit Center INIBAP, Universidad Católica de Leuven, Bélgica) usando un total de veinte pares de marcadores microsatélites, 10 pares derivados del genoma de M. acuminata y 10 pares derivados del genoma de M. balbisiana. Diecinueve pares de marcadores produjeron bandas definidas y generaron un total de 85 alelos, con un promedio de 5.1 alelos por iniciador. El promedio de diversidad genética fue de M0.7195 y el índice de fijación M1.7195 y el índice

Estos resultados demuestran que existe una muy alta diferenciación genética entre los 21 genotipos de *Musa* spp. El análisis del clúster jerárquico del Dendograma mostró que los genotipos susceptibles son genéticamente más cercanos a los genotipos tolerantes y los genotipos resistentes están genéticamente más alejados de los genotipos tolerantes y susceptibles.

ÍNDICE GENERAL

RESUMEN	VI
ÍNDICE GENERAL	VII
ABREVIATURAS	X
ÍNDICE DE FIGURAS	XI
ÍNDICE DE TABLAS	XII
ÍNDICE DE APÉNDICES	XIII
INTRODUCCIÓN	1
CAPÍTULO 1	
1. BANANO Y SU INTERACCION CON EL HONGO CAUS	
BANANO Y SU INTERACCION CON EL HONGO CAUS SIGATOKA NEGRA 1.1. Origen e historia del género Musa	5
SIGATOKA NEGRA	6
1.1. Origen e historia del género <i>Musa</i>	6 7
1.1. Origen e historia del género <i>Musa</i>	6 7
1.1. Origen e historia del género <i>Musa</i> 1.2. Propagación de las plantas de banano	
1.1. Origen e historia del género <i>Musa</i>	5
1.1. Origen e historia del género <i>Musa</i>	5
1.1. Origen e historia del género <i>Musa</i>	5
1.1. Origen e historia del género <i>Musa</i>	

CAPÍTULO 2

2. MICROSATELITES PARA EL ANÁLISIS DE LA DIVERSIDAD GENÉTICA EN MUSA
2.1. Diversidad genética
2.2. Microsatélites o secuencias simples repetidas (SSRs)23
2.3 Factores que influyen en la diversidad genética25
2.3.1. Mutación25
2.3.2. Selección
2.4. Identificación de la diversidad en Musa27
2.4.1. Análisis del Polimorfismo27
CAPÍTULO 3
3. MATERIALES Y MÉTODOS30
3.1. Materiales31
3.1.1. Material experimental31
3.2. Protocolo de extracción de ADN33
3.2.1. Soluciones
3.3. Secuencias de los iniciadores34
3.4. Amplificación36
3.5. Gel de poliacrilamida38
3.6. Tinción de plata39

3.7. Fotografía40
CAPÍTULO 4
4. RESULTADOS Y DISCUSIÓN42
CAPÍTULO 5
5. CONCLUSIONES Y RECOMENDACIONES55
5.1. Conclusiones55
5.2. Recomendaciones57
APÉNDICES

BIBLIOGRAFÍA

ABREVIATURAS

ADN Ácido Desoxiribonucléico

AFLP Amplificación de Fragmentos de Longitud Variable

CARBAP Centro Africano para la Investigación de Bananas y Plátanos

de Camerún.

CIBE Centro de Investigaciones Biológicas del Ecuador

CIRAD Centro de Cooperación Internacional para el Desarrollo de la

Investigación Agronómica

DNTPs Dinucleótido trifosfato

FHIA Fundación Hondureña de Investigación Agrícola

IITA Instituto Tropical de Agricultura

IMTP Programa Internacional para el Análisis de Musa

INIBAP Red Internacional para el Mejoramiento de las bananas y

plátanos

PCR Reacción en Cadena de la Polimerasa

RAPD Amplificación Aleatoria de ADN Polimórfico

RFLP Fragmentos de Restricción de Longitud Variable

SICA Servicio de Información y Censo Agropecuario del

Ministerio de Agricultura y Ganadería del Ecuador.

SSR Secuencias Simples Repetidas

TBE Solución amortiguadora de Tris base, Ácido Bórico, EDTA

ÍNDICE DE FIGURAS

FIGURA 1.	Principales exportadores de banano	13
FIGURA 2.	Identificación del polimorfismo de microsatélites	29
FIGURA 3.	Gel de poliacrilamida	44
FIGURA 4.	Frecuencia alélica de los loci analizados en los 21 genotipos de Musa spp	
FIGURA 5.	Distancia genética de los genotipos de <i>Musa</i> spp., según el niv de resistencia a la Sigatoka negra	

ÍNDICE DE TABLAS

Tabla1. Nivel de resistencia de los 21 genotipos de Musa spp,	32
Tabla2. Características de los marcadores microsatélites de Musa balbisiana	34
Tabla 3. Características de los marcadores microsatélites de Musa acuminata	35
Tabla 4. Protocolo para preparar la PCR mix	36
Tabla 5. Programa para la amplificacion de los iniciadores de Musa acuminata	37
Tabla 6. Protocolo para preparar la PCR mix	37
Tabla 7. Programa para la amplificacion de los iniciadores de Musa balbisiana	38
Tabla 8. Concentración y tiempo requerido de las soluciones para rea proceso de tinción de plata	
Tabla 9. Tabla comparativa del número y tamaño de alelos originales Musa balbisiana y alelos encontrados	
Tabla 10. Tabla comparativa del número y tamaño de alelos originale Musa acuminata y alelos encontrados	
Tabla 11. Estructura genética de la población basado en el análisis de frecuencias alélicas por locus	
Tabla 12 Análisis multilocus para poblaciones únicas	53

ÍNDICE DE APÉNDICES

Apéndice 1. Distribución de la superficie del banano por provincias59	9
Apéndice 2. Extracción de ADN genómico de hojas de banano6	0
Apéndice 3. Protocolo para preparar geles de poliacrilamida	622
Apéndice 4. Fotografías de los geles de poliacrilamida65	5
Apéndice 5. Tabla que muestra la homocigosis y heterocigosis de todos los loci analizados7	
Apéndice 6. Frecuencia alélica de todos los loci analizados76	6
Apéndice 7. Datos de los alelos encontrados7	7

INTRODUCCIÓN

En el Ecuador existen aproximadamente 180.000 hectáreas (ha) de banano, ubicadas en la región Litoral o Costa, particularmente en las provincias de Los Ríos (50 419 ha), Guayas (44.646 ha) y El Oro (43.353 ha) (52). Este sistema de producción es afectado por muchas plagas y enfermedades, entre ellas la más importante la Sigatoka negra, cuyo agente causal es un hongo ascomiceto denominado *Mycosphaerella fijiensis* (12).

El impacto que este hongo ha causado, no solamente tiene importancia desde el punto de vista económico, sino también ambiental debido a la alta concentración de fungicidas y protectantes que se utilizan en las plantaciones para su control. Los costos del control de la enfermedad pueden llegar a los USD 1000/ha, en las grandes plantaciones. Para los pequeños productores, el costo es mayor porque la aplicación aérea no es posible (12, 15).

El control de la Sigatoka negra es uno de los grandes problemas que enfrenta el País. Actualmente, la Sigatoka negra se encuentra presente en las 10 provincias que poseen cultivos de banano (29, 41).

Por tal motivo es de vital importancia que trabajos de investigación estén encaminados a buscar nuevas estrategias de control (87). Los diseños de control más prometedores están en el desarrollo de variedades resistentes, que sirvan como zonas tampón entre las áreas con diferente grado de infección (20). Sin embargo, ha sido difícil encontrar variedades resistentes y que sean de interés comercial (29).

El desarrollo de técnicas de marcadores moleculares constituye una herramienta de selección rápida, confiable y reproducible que acelera la selección de genotipos resistentes o tolerantes a una determinada enfermedad, consecuentemente permite el mejoramiento genético de los cultivos (42).

Para determinar el nivel de polimorfismo de las muestras, se utilizó la técnica de identificación de microsatélites o secuencias simples repetidas (SSRs), estos marcadores moleculares son altamente polimórficos, multi – alélicos, codominantes y fáciles de amplificar por medio de la reacción en cadena de la polimerasa (PCR) (21).

La tecnología de marcadores moleculares ya ha sido utilizada para caracterizar diversidad de hongos que atacan a cultivos de Musa (47). Además análisis a través del uso de microsatélites han detectado un alto nivel de polimorfismo entre poblaciones (9). El desarrollo y la aplicación de técnicas basadas en marcadores moleculares proporcionan la única herramienta que es capaz de revelar el nivel de polimorfismo en una secuencia de ADN, además son adecuados para detectar la variabilidad genética entre individuos y dentro de poblaciones (18).

Este trabajo formará parte del proyecto denominado "Caracterización Molecular de Variedades de Musa" que se viene desarrollando desde el año 2000, dentro del componente 3 del programa de colaboración que mantiene el VLIR con la ESPOL desde Marzo de 1999. El principal objetivo de este componente es el control (aún no resuelto) de la Sigatoka negra, en dos de los principales rubros agrícolas del Ecuador: el banano y el plátano (84).

El objetivo general de este estudio es el siguiente:

 Analizar el nivel de polimorfismo de 21 genotipos de Musa spp, procedentes de la Colección Mundial (Transit Center INIBAP, Universidad Católica de Leuven, Bélgica) mediante el uso de marcadores microsatélites derivados de *Musa acuminata* y *Musa balbisiana* para determinar la diversidad genética y su relación con el nivel de resistencia a *M. fijiensis*.

Los objetivos específicos son los siguientes:

- Identificar la presencia de secuencias homólogas de M. acuminata y
 M. balbisiana apareadas, en los genotipos de Musa spp.
- 2. Correlacionar la variación genética de los genotipos de *Musa* spp. con el grado de resistencia a *M. fijiensis*.
- Determinar la relación filogenética de los genotipos de Musa spp., en base al nivel de variabilidad genética.

CAPÍTULO 1

1. BANANO Y SU INTERACCIÓN CON EL HONGO CAUSANTE DE LA SIGATOKA NEGRA

El banano y plátano son plantas monocotiledóneas que pertenecen al orden Zingiberales, familia Musaceae y género Musa (83). Las especies más representativas son las especies diploides *Musa acuminata* Colla que ha dado origen a casi todas las variedades comerciales y *Musa balbisiana* Colla (72, 75). Estas plantas, comúnmente con más de tres metros de alto (31), no presentan lignificación, ni tallos secundarios que son característicos de los árboles (83).

El banano y plátano poseen un genoma haploide cuyo tamaño varía entre 500 – 600 Mpb y se encuentra distribuido en 11 cromosomas (55).

Varios grupos genómicos de Musa contienen una o diferentes permutaciones a partir de su genoma base (76).

1.1 Origen e historia del género Musa

Análisis recientes de muestras fósiles indican que Papua Nueva Guinea es posiblemente el centro de origen del género Musa. Sin embargo, muchos cultivos pueden haberse desarrollado en el Sureste Asiático a partir de hibridaciones intra - e ínter - específicas entre dos especies diploides ancestrales salvajes, *Musa acuminata* Colla y *Musa balbisiana* Colla (49, 73). Las dos especies contribuyeron con los genomas AA y BB respectivamente (74).

Los factores principales que influyeron en la evolución del plátano comestible fueron: el desarrollo de la potencialidad genética de la partenocarpia vegetativa y, al mismo tiempo, el desarrollo de la esterilidad genética. Los plátanos comestibles más antiguos fueron, por tanto, linajes diploides comestibles de *Musa acuminata* Colla, como los que aún persisten en gran número en el sureste de Asia (68).

En 1920, los botánicos franceses descubrieron la variedad denominada Gross Michel que prolifero en todo el mundo, convirtiéndose así en la especie más cultivada y la única exportable. En el siglo XIX, los británicos descubrieron en el sur de China la variedad Canvedish, que paso a sustituir a la Gross Michel y prácticamente desde el año 1960 se establece como la única variedad comercializada en el mundo (53).

1.2 Propagación de las plantas de banano

En la zona interna de las plantas de banano prontamente se producen yemas que serán los nuevos retoños o hijos, éstos poseen una fuerte conexión vascular a la madre cerca del seudo tallo en la base de la planta de la cual dependen para su nutrición hasta cuando producen hojas anchas y se autoabastecen (57).

Estos hijos pueden ser removidos y plantados separadamente, ya que rápidamente desarrollan nuevas hojas y un sistema de raíces que les permite una rápida multiplicación y la propagación vegetativa (57).

Se permite que un hijo lateral crezca para producir la próxima cosecha. En plantaciones manejadas intensivamente, las plantas se reemplazan con nuevo material libre de enfermedades después de tres a ocho ciclos. En cultivos donde las plantas no son reemplazadas, se observa un declive gradual de la producción como consecuencia del incremento de enfermedades (31).

1.3 Descripción Taxonómica

Los plátanos y bananos pertenecen al orden Zingiberales, familia Musaceae, género Musa. Están distribuidos desde el Pacífico hasta África Occidental, principalmente en la región del Sureste de Asia (66, 11).

La primera clasificación científica del banano fue hecha por Linnaeus en el año 1783. Él le dio el nombre de *Musa sapientum* a todos los bananos de postre, los cuales son dulces cuando maduran y se comen crudos. El nombre de *Musa paradisíaca* fue dado al grupo de los plátanos los cuales se cocinan y se comen cuando todavía están verdes (49).

Existe una gran diversidad en el género Musa, muchas de las especies presentes en él son utilizadas tanto en la alimentación humana como en la animal. El género Musa posee 40 especies y ha sido clasificado por Cheesman (14) en cuatro secciones: *Eumusa, Australimusa, Callimusa, Rhodochalamy* (11).

La sección *Eumusa* contiene la mayoría de los bananos y plátanos comestibles, y se admite que esta serie de poliploides se derivan de las dos especies salvajes: *Musa acuminata* Colla y *Musa balbisiana* Colla, de donde provienen respectivamente las designaciones AA y BB del genoma (46, 47). Esta clasificación fue propuesta por Simmonds y Sheperd (73) en base a la contribución que tienen estas especies en la constitución de los cultivares y también a la ploidía o número de cromosomas (48).

Los bananos comestibles dentro de la clasificación dada por Simmonds y Shepherd (73, 74) se describen por medio de caracteres morfológicos como son: La forma del pecíolo, características en las brácteas y pedúnculo, color del pseudotallo, tamaño del pedicelo, color de la flor masculina y el estigma. Esta clasificación también ha

ayudado a describir clones utilizando características morfológicas (73).

Clasificación taxonómica.

Reino: Plantae

División: Magnoliophyta

Clase: Liliopsida

Orden: Zingiberales

Familia: Musaceae

Género: Musa

Especie: Musa acuminata

Musa balbisiana (54, 55)

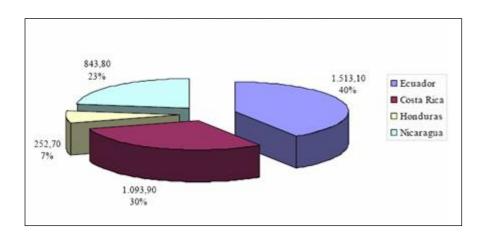
1.4. Descripción nacional del producto

A partir de 1940, el banano comenzó a cultivarse a gran escala en nuestro país (53), hasta 1950 las empresas bananeras estaban localizadas principalmente en las provincias de Guayas, El Oro y Los Ríos, es decir en el área de influencia de la rica y fértil Cuenca del Río Guayas. Los datos del Censo Agropecuario del 2001, confirman

esta tendencia, pues estas tres provincias concentraban el 80.9 % de la superficie sembrada de banano (52).

Con el pasar del tiempo la exportación de banano se convirtió en la principal fuente generadora de divisas. En la década de los 50 se estableció el boom bananero convirtiéndose el Ecuador en el primer exportador mundial de la fruta (53). Desde mediados de la década pasada, el banano ha empezado a expandirse hacia áreas que anteriormente estaban dedicadas a cultivos tradicionales (cacao, café, yuca, maíz) y en donde estaban asentados antiguos colonos y productores diversificados: desde campesinos hasta medianos propietarios (52).

El banano conjuntamente con el plátano registra el 40 % del área agrícola de la costa y el 25 % del área agrícola nacional. Las principales provincias a nivel de superficie en producción son: El Oro con 43 352 has, Guayas con 44 646 has y los Ríos con 50 419 has, representando así el 77 % de la superficie cultivada del país (34).


El sector bananero constituye la actividad económicamente más dinámica y de constante crecimiento debido a los favorables resultados que se han obtenido por la comercialización del producto (3). Representa un rubro muy importante dentro del sector agropecuario del país, contribuyendo con el 3 % del PIB nacional y un 15 % en el PIB del sector agropecuario, beneficiándose así directamente entre el 10 % al 12 % de la población económicamente activa del país (25, 71).

Dentro de los cultivos en el Ecuador ocupa el cuarto puesto entre los productos más cultivados con 180.092 ha, predominando las variedades Cavendish, Orito y Rojo (71).

Ecuador es el primer proveedor de los países de la Unión Europea y el segundo de los Estados Unidos. Además la fruta se exporta a países de Europa del Este, países Árabes, Chile, Rusia, Argentina, Nueva Zelanda, Japón y China (34).

Los países que lideran las exportaciones son Ecuador que satisface el 40% de la demanda internacional (Figura 1) (63), Costa Rica, Filipinas y Colombia. Mientras que los mayores productores son India, Brasil, China, Ecuador, Filipinas, Indonesia, Costa Rica, México, Tailandia y Colombia (31).

FIGURA 1
PRINCIPALES EXPORTADORES DE BANANO

Fuente: Bancos Centrales de los Países mencionados. Año 2006.

1.5. Origen y distribución de la Sigatoka negra

La Sigatoka negra apareció por primera vez en el Sureste de Asia, en la Isla Viti Levu en Fiji, en Febrero de 1963, desde donde se diseminó al resto del mundo (76, 33). La distribución de la enfermedad en América Latina y el Caribe está bien documentada. Esta apareció por primera vez en Honduras en 1972 (76). Entre 1977 y 1980 la Sigatoka se diseminó por el sur de México y por toda América Central. En 1981 aparece en Colombia, en una localidad productora de banano cerca de Turbo (77).

En 1987, la enfermedad fue detectada en el norte de Ecuador y en menos de cuatro años ya se encontraba en las zonas de producción bananera en el sur del país. En 1991 se reportó la enfermedad en la parte Oeste de Venezuela y en Bolivia. Brasil fue el último país suramericano en reportar la presencia de la Sigatoka negra en el año 1998 (6).

1.5.1. Mycosphaerella fijiensis

Mycosphaerella fijiensis (anamorfo Pseudocercospora fijiensis; Mycosphaerellaceae) es el agente causal de la Sigatoka negra, la cual rápidamente se ha convertido en la enfermedad más devastadora en las plantaciones de banano a nivel mundial. Esta enfermedad provoca necrosis, reduce el área foliar, el tamaño del fruto e induce su maduración prematura. Esto da como resultado un abatimiento del rendimiento entre el 33% y 50% de la producción (76, 54).

El costo de control de la enfermedad en grandes plantaciones es aproximadamente \$ 1000 por hectárea (2), pero es mucho mayor en pequeñas plantaciones donde los fungicidas no pueden ser aplicados por aire, en estas áreas las pérdidas pueden llegar hasta un 50% de la producción (54).

1.5.2. Interacción planta – patógeno

En su larga asociación con patógenos, las plantas han desarrollado una intrincada y elaborada serie de herramientas de defensa. Al mismo tiempo, los patógenos adquirieron nuevos mecanismos para superar las barreras de resistencia que presentaba el hospedero, este juego de ping – pong se ha venido dando durante miles de años de evolución (32).

Se han reportado tres distintos niveles de respuesta del hospedero a *M. fijiensis* y se han definido según. Ortiz y Vuylsteke (85) como susceptibles, que se caracterizan por el rápido desarrollo de lesiones necróticas en la hoja (32); resistentes, que presentan un bloqueo en la expresión de los síntomas y no permiten al hongo esporular e hipersensibles, que se caracterizan por una rápida y localizada muerte celular en el sitio de la infección del patógeno, por consiguiente previenen que el patógeno crezca y se propague a través de la hoja (27, 28).

1.5.3. Ciclo de la enfermedad y epidemiología

Estudios citológicos de la interacción de *M. fijiensis* con plantas de banano revelan que el hongo entra a las hojas a través de los estomas. En los genotipos parcialmente resistentes y susceptibles el patógeno coloniza exclusivamente los espacios intracelulares sin formar los haustorios (5).

Hay un largo período en que el patógeno se comporta como un parásito biotrófico antes de que se puedan observar las primeras alteraciones citológicas de las células de la epidermis. Las hifas aparecen entre las células vivientes delante de la zona necrótica, un rápido crecimiento de las hifas es la principal diferencia entre genotipos susceptibles de los parcialmente resistentes (5, 6).

En contraste, en los genotipos resistentes se presenta una temprana necrosis de los estomas de la epidermis. La rápida muerte de solo una pequeña cantidad de células hospederas, asociadas con el bloqueo de la progresión del agente de

infección en los genotipos altamente resistentes es usualmente definida como una reacción hipersensitiva (85).

Esto usualmente sucede dentro de las relaciones gen por gen que confieren una elevada resistencia, sin embargo ésta es inestable y no se mantiene a través del tiempo. En contraste, las plantas que poseen genotipos con resistencia parcial usualmente mantienen ésta característica en el tiempo (39).

Por otra parte, el ciclo sexual del hongo juega un rol importante en la epidemiología de la Sigatoka. Además de la generación de un inóculo que se propaga a través del aire (ascospora), la reproducción sexual produce variación genética que contribuye a la evolución en ascomicetos heterotálicos, como *M. fijiensis* (81).

1.5.4. Problemas que causa en el Ecuador

El control de la Sigatoka negra requiere un promedio de 24 ciclos de aspersiones de fungicidas sistémicos al año (81), con un costo aproximado de 47 millones de dólares americanos para un área de cultivo de 180. 092 ha. Los costos del control de la enfermedad pueden llegar hasta un 70% de los gastos de producción.

El impacto de la Sigatoka negra no solamente tiene importancia desde el punto de vista económico, sino también ambiental debido a la alta concentración de fungicidas y protectantes que se utilizan en los cultivos (38).

El hongo reduce el peso del racimo, por consiguiente se obtienen menos cajas de banano por hectárea, además el impacto económico se siente porque se están aplicando dos o tres ciclos más, que son alrededor de 80 a 100 dólares adicionales por hectárea a lo que se venía invirtiendo en años anteriores al Fenómeno del Niño de 1997 (11).

El comportamiento de la enfermedad está fuertemente ligado al clima, especialmente precipitación y temperatura (8). Después del Fenómeno del Niño de 1997 la Sigatoka negra se volvió más agresiva. Las condiciones climáticas durante ese año (precipitación 4000 mm; temperatura 34 – 36 °C; humedad relativa 98-100 %) favorecieron la producción, maduración y liberación de las ascosporas (espora sexual haploide de los ascomicetos) (41), permitiendo la rápida diseminación de la enfermedad, especialmente en las plantaciones comerciales de la provincia de los Ríos (55, 38).

La aplicación de fungicidas sistémicos de bajo costo junto con las condiciones climáticas extremas durante el año 1997, permitieron que la Sigatoka negra ocasionara graves problemas en las plantaciones. En el año 2001 el 80 % de las plantaciones de los Ríos presentaron la enfermedad, ocasionando graves pérdidas económicas a los productores (55).

Por otra parte, el hecho de que el 80% de la producción comercial de banano está concentrada en pequeños productores (con menos de 30 ha), muchos de los cuales no cuentan con la guía de un técnico para la adecuada aplicación de fungicidas, podría originar que *M. fijiensis* adquiera resistencia a algunos de los fungicidas sistémicos que se utilizan para su control, especialmente a los benzimidazoles (55, 15).

Al no existir un control efectivo del patógeno, esté puede propagarse por medio de sus ascosporas a través del viento entre plantaciones, perjudicado a los grandes productores, los cuales poseen tecnología avanzada y la asesoría de técnicos especializados en la aplicación de fungicidas (8, 41).

CAPÍTULO 2

2. MICROSATÉLITES PARA EL ANÁLISIS DE LA DIVERSIDAD GENÉTICA EN MUSA

2.1. Diversidad Genética

La diversidad genética representa cualquier grado de diferenciación en las secuencias de nucleótidos que conforman los genes de los organismos. Confiere a las especies la habilidad para adaptarse a cambios ambientales como, nuevas plagas o cambios en las condiciones climáticas.

2.2. Microsatélites o secuencias simples repetidas (SSRs)

Los microsatélites o SSRs, son secuencias de ADN, cuya unidad de repetición varía de 1 a 7 pares de bases (pb) y se distribuyen de forma dispersa a lo largo de todos los cromosomas de los organismos eucariotes y procariotes (1). Estas secuencias muestran altos niveles de variación genética según las diferencias que se produzcan en las unidades repetidas en tandem de un locus (82, 88).

Cuando estas regiones son individualmente amplificadas por medio de la reacción en cadena de la polimerasa (PCR), utilizando un par de oligonucleótidos flanqueantes como iniciadores, muestran casi invariablemente polimorfismo debido a las diferencias en su longitud. El origen de tal polimorfismo está aún en debate, aunque previsiblemente se deba a errores en la replicación del ADN (15), debido a que la ADN polimerasa se desliza cuando está copiando la región repetida, cambiando el número de repeticiones (16).

Los SSrs se han convertido en marcadores muy atractivos en el mejoramiento molecular y la valoración de la diversidad en plantas, incluyendo Musa. El uso extendido de los microsatélites como marcadores genéticos para el mejoramiento molecular y para la valoración de la diversidad (5), se desprende de su naturaleza multialélica, debido a la alta probabilidad de mutación que estos loci presentan (6, 7), transmisión codominante, fácil detección por medio de la PCR, relativa abundancia, cobertura extensiva del genoma y requerimiento de solo una pequeña cantidad de ADN iniciador (8). Además brindan perfiles altamente reproducibles y confiables. Los microsatélites carecen de efectos pleiotrópicos y sobre todo, no están sujetos al ambiente en donde se desarrolla el organismo en estudio (6, 8).

Estos marcadores permiten visualizar diferencias tangibles entre las secuencias homólogas del ADN de los organismos. Esas diferencias resultan de cambios o rearreglos entre los pares de bases que conforman este tipo de molécula, tales como: translocaciones, inversiones, recombinación desigual, inserciones o deleciones en regiones homólogas (17, 18). Tales diferencias

pueden ser detectadas en geles de poliacrilamida, donde migran diferentes distancias de acuerdo a su tamaño (19).

2.3. Factores que influyen en la diversidad genética

2.3.1. Mutación

Las mutaciones son un proceso por el cual se originan cambios en el cromosoma, pueden ser debido a una alteración en la secuencia de nucleótidos del ADN codificante o por un cambio en el arreglo físico de los cromosomas, esto da como resultado la creación de un nuevo carácter que está ausente en los progenitores.

En Musa, una mutación produjo un cambio en la distribución de los cromosomas durante la gametogénesis, ocasionando que el progenitor femenino ceda la totalidad de sus cromosomas en lugar de solo la mitad, como normalmente sucede en los organismos que se reproducen sexualmente (29).

Esto dio como resultado variedades triploides que desarrollaron la potencialidad genética de la partenocarpia vegetativa, se volvieron infértiles y además, adquirieron características diferentes a las de sus progenitores como, frutos sin semilla y con una gran cantidad de pulpa consumible (31).

2.3.2. Selección

Los bananos y plátanos comestibles de la actualidad son el resultado de un proceso de selección que ha ocurrido a través de miles de años. Este proceso fue llevado a cabo, principalmente por agricultores del Sureste Asiático, de Indonesia, Filipinas y Papua Nueva Guinea (32).

Los agricultores descubrieron que las especies nativas Musa acuminata y Musa balbisiana, poseían características de importancia agronómica y al ser cruzadas entre ellas condujeron a la aparición de varios clones de Musa (33).

Algunos de estos clones fueron introducidos en otros continentes, donde se diversificaron aún más a través de la selección de mutaciones somáticas por parte de los agricultores locales. Debido a la interacción que tuvo el banano en sus diferentes viajes con diferentes clones, fue cambiando su aspecto hasta convertirse en la fruta carnosa y sin semilla que hoy en día conocemos (34).

2.4. Identificación de la diversidad en Musa

2.4.1. Análisis del polimorfismo

El desarrollo y la aplicación de técnicas basadas en marcadores moleculares proveen la única herramienta que es capaz de revelar el nivel de polimorfismo en las secuencias del ADN, estos marcadores son adecuados para detectar variabilidad genética entre individuos y entre poblaciones (13).

Buhariwalla, et al., (7) realizaron el primer aislamiento y caracterización de 25 marcadores microsatélites a partir de accesiones de *Musa balbisiana*. Todos los marcadores descritos detectaron loci homólogos. El número de alelos detectados por cada marcador varió de 1 a 7. Además, todos produjeron amplificación en las variedades diploides y triploides analizadas (22).

Estos resultados apoyan similares observaciones hechas con microsatélites derivados de accesiones de *Musa acuminata* que frecuentemente detectaron loci homólogos en las variedades de *M. balbisiana*. Ortiz y Vuylsteke (79) observaron segregación trisonómica entre los plátanos (con genoma 'AAB') y Calcutta 4 (con genoma 'AA') para algunas características, lo cual indirectamente sugiere la ocurrencia de secuencias apareadas de AA y BB en Musa (58).

Creste, et al., (18) aislaron y caracterizaron 23 microsatélites loci derivados de cultivos comerciales diploides de *Musa acuminata*. El número de alelos por locus detectado por

estos microsatélites varió de 2 a 7. Cuatro de los loci aparentemente amplificaron alelos específicos del genoma B. El número de alelos por genotipo varió de 1 a 3 para variedades diploides, de 1 a 4 para accesiones triploides y de 1 a 4 para híbridos tetraploides. El polimorfismo revelado por estos loci será extremadamente útil para estudios posteriores de mapeo genético (24).

FIGURA 2

IDENTIFICACIÓN DEL POLIMORFISMO DE MICROSATÉLITES.

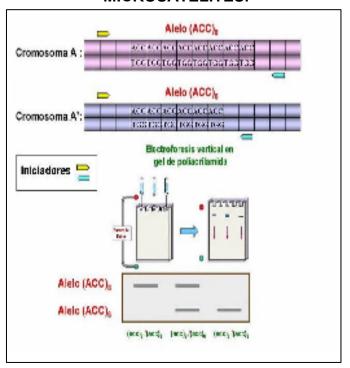


Diagrama que muestra el polimorfismo de los microsatélites debido a las diferencias en su longitud. En un individuo diploide, el cromosoma A contiene el alelo (ACC)₈, mientras que el cromosoma A' en el locus homologo presenta el alelo (ACC)₆. Mediante la PCR, utilizando iniciadores diseñados en las regiones flanqueantes, los alelos son amplificados, para luego ser separados mediante una corrida electroforética. El diagrama muestra el patrón de bandas que deben determinar tanto los homocigotos como los heterocigotos para los alelos mencionados. (80)

CAPÍTULO 3

3. MATERIALES Y MÉTODOS

La presente investigación fue orientada a la validación de la siguiente hipótesis:

"La diversidad genética de los genotipos de *Musa* spp., procedentes de la Colección Mundial (Transit Center INIBAP, Universidad Católica de Leuven, Bélgica) está relacionada con el nivel de resistencia que presentan a *Mycosphaerella fijiensis*"

Esta investigación fue realizada en el Laboratorio de Biología Molecular del Centro de Investigaciones Biotecnológicas del Ecuador (CIBE) ubicado en

el Kilómetro 30.5 de la Vía Perimetral, Campus "Gustavo Galindo", edificio de PROTAL planta alta.

3.1. Materiales

3.1.1. Material Experimental

Material Biológico

Para este estudio se utilizaron 21 plántulas de banano de 10 centímetros de alto, correspondientes a 5 accesiones susceptibles, 12 accesiones tolerantes y 4 accesiones resistentes, procedentes de la Colección Mundial (Transit Center INIBAP, Universidad Católica de Leuven, Bélgica) (Tabla 1).

Iniciadores

Los marcadores microsatélites utilizados para este estudio fueron originalmente aislados y desarrollados a partir de una

variedad comercial diploide de *M. acuminata* ('Pisang Mas') de Brasil (18) y de una variedad diploide de *M. balbisiana* ('Tani') de la India (7).

TABLA QUE MUESTRA EL GENOTIPO Y EL NIVEL
DE RESISTENCIA DE LOS 21 GENOTIPOS DE *Musa* spp.

TABLA 1

Nombre de Accesión	Resistencia	Nivel de Ploidía
Niyarma Yik	Susceptible	AA
Pisang Berlin	Susceptible	AA
Gran Enano	Susceptible	AAA
GCTCV - 215	Susceptible	AAA
GCTCV - 119	Susceptible	AAA
FHIA - 01	Tolerante	AAAB
FHIA - 02	Tolerante	AAAB
FHIA - 03	Tolerante	AAAB
FHIA - 17	Tolerante	AAAA
FHIA - 23	Tolerante	AAAA
IRFA 905	Tolerante	AA
IRFA 908	Tolerante	AAAB
TMBx 5295 - 1	Tolerante	AABB?
SH - 3640	Tolerante	4n
B 7925	Tolerante	3n
CRBP 39	Tolerante	AAAB
FHIA 18	Tolerante	AAAB
Calcutta - 4	Resistente	AA
Tuu Gia	Resistente	AA
Yangambi KM5	Resistente	AAA
Т6	Resistente	AAAA

3.2. Protocolo de Extracción de ADN

El ADN fue extraído de las hojas de las plántulas de banano siguiendo los protocolos de extracción de ADN descritos por DellaPorta y Aljanabi (22, 1) y modificados por Santos (70). El protocolo completo de extracción se describe en el Apéndice 2. El ADN fue conservado en agua ultra pura libre de ADNasas y ARNasas a una temperatura de $-20\,^{\circ}$ C.

3.2.1. Soluciones

Tampón de extracción de ADN**

- 100 mM TRIS HCl, pH 8.0
- 50 mM EDTA
- 500 mM NaCl
- 10 mM B Mercaptoetanol
- 2 % PVP (Polyvinyl pyrrolidone, MW 10 000)

Acetato de Potasio 5 M*

- **47,07** g
- 52,93 ml de Agua Deionizada

Cloruro de Sodio 6 M*

- 350,64 g
- 649,36 ml de Agua Desionizada

^{*} Para un litro de solución . ** Para 4 mililitros de solución

3.3. Secuencias de los Iniciadores

TABLA 2

CARACTERÍSTICAS DE LOS MARCADORES

MICROSATÉLITES DE Musa balbisiana

Locus	Primers 5' - 3'	Repeat motif
Mb1-5	CGGAAGTGGCAGGGTAGAGA	(CA)12
ivib 1–3	CCCAACAACTTATGGCGGAGA	(GA)12
Mb1–18	CTACAACAATAATCCAGGGCAA	(CA)14
IVID I—10	GGTCATCACGGCGTTCTCCA	(GA)14
Mb1-50	GTCGAACTCCTTCCACTTCCA	(TC)11
1VID 1—30	TATGTAGGCTGTGTGTGTCTGA	(10)11
Mb1-52	CCAGCGATACCCTTCATGACCA	(CA)14
IVID 1-32	CTGATTAGGATTTGAAAGGGGCAA	(GA)14
Mb1–69	CTGCCTCTCCTTCTCCTTGGAA	(TC)15
1010 1—09	TCGGTGATGGCTCTGACTCA	(10)15
Mb1-100	TCGGCTGGCTAATAGAGGAA	/TC\12
100 1-100	TCTCGAGGGATGGTGAAAGA	(TC)12
Mb1-134	ATGCCCAAGAAGGGAAGGGAA	(CA)21
IVID 1-134	TAATGCCGGAGGATCAGTGTGA	(GA)21
Mb1–141	ATTCGAGGCATCGTCGTCCA	(CA)12
IVID 1-14 I	GAAGGTTCCCAGAATCGATAGTGA	(GA)12
Mb1–146	CCGTTGGATTTCTCCCCCACA	(TC\9
IVID 1-140	GAAGAACTGGGCTTACCCAGGA	(TC)8
Mb1–149	CCGAAACGAAGGTTACAACAA	(CA)17
IVID 1—149	GCGCCACCTGTATCACTGT	(GA)17

TABLA 3

CARACTERÍSTICAS DE LOS MARCADORES

MICROSATÉLITES DE Musa acuminata

Locus	Locus Primers 5' - 3'	
MaOCEN01	TCTCAGGAAGGGCAACAATC	
Maccellor	GGACCAAAGGGAAAGAAACC	(CT)17
MaOCEN03	CTGTTCGTCATCCTCCCATC	
Maccellos	ATCTCCCATCTCCCATCTCC	(GA)10
MaOCEN04	GCCGAGAGAGGAAATGGAA	
WIAOCLINO4	CTGCGAGGGTAGAGTGGATG	(AG)20
MaOCEN05	ATCAGCAACACAGGAAGAAAAG	
Maoclinos	AATCTGGACGAGGAGCA	(GA)16
MaOCEN07	ATGTCTCTCCGCCTTCC	
WIAOCLINO7	CTCCGCCTTTTCCTCTTCTT	(TC)12
MaOCEN13	GCTGCTATTTTGTCCTTGGTG	
MACCENTO	CTTGATGCTGGGATTCTGG	(TC)16
MaOCEN14	TCTTTTGCGTGAGTTTTTGG	
Maochita	CGTGGGAGGAACAGTGAA	(CT)10
MaOCEN18	CACTACAACTCACCCTTCCAATC	
MACCENTO	GCACAACCTTACTCCCATCAC	(AG)18
MaOCEN20	GCGTGGAGAGAAGAAACC	
CTGAAATGGGAAAGTCAAAACA		(GA)12
MaOCEN22	ATGTCTCTCCGCCTTCC	
MACCLINZZ	CTCCGCCTTTTCCTCTTCTT	(TC)12

3.4. Amplificación

Los protocolos para preparar la PCR mix y los programas para la amplificación de las muestras por medio de la PCR usados en este estudio, fueron originalmente descritos por Creste *et al.*, (18) (Tablas 4, 5) y por Buhariwalla *et al.*, (7) (Tablas 5, 6).

TABLA 4
PROTOCOLO PARA PREPARAR LA PCR MIX

Musa acuminata								
Solución Stock	Solución Stock Working Stock Volumen Final							
dNTPs 10 mM	0,20 mM	0,4 ul						
Tampon Taq 10 X	1X	2,0 ul						
Primer F 10 mM	0,24 mM	0,5 ul						
Primer R 10 mM	0,24 mM	0,5 ul						
MgCl ₂ 50 mM	2,00 mM	0,8 ul						
DNA Pol 5 U	1,5 U	0,3 ul						
Template DNA	30 ng	2,0 ul						
H₂O Deionizada	-	13,5 ul						
Total	-	20,0 ul						

TABLA 5

PROGRAMA PARA LA AMPLIFICACION DE LOS
INICIADORES DE Musa acuminata

	Musa acuminata					
	Temperatura	Tiempo	Nº de ciclos			
1	94 ° C	4 minutos				
	94 ° C	40 segundos				
	55 ° C – 45 ° C	45 segundos	10 Ciclos			
	72 ° C	40 segundos				
	94 ° C	40 segundos				
	45 ° C	40 segundos	30 Ciclos			
	72 ° C	40 segundos				
2	72 ° C	7 minutos				
3	4 ° C	Indefinido				

TABLA 6
PROTOCOLO PARA PREPARAR LA PCR MIX

Musa balbisiana							
Solución Stock	Solución Stock Working Stock Volumen Fina						
dNTPs 10 mM	0,10 mM	0,4 ul					
Tampon Taq 10 X	1X	2,0 ul					
Primer F 10 mM	0,24 mM	0,6 ul					
Primer R 10 mM	0,24 mM	0,6 ul					
MgCl ₂ 50 mM	2,00 mM	0,6 ul					
DNA Pol 5 U	1,5 U	0,3 ul					
Template DNA	30 ng	2,0 ul					
H₂O Deionizada	-	13,5 ul					
Total	_	20,0 ul					

TABLA 7

PROGRAMA PARA LA AMPLIFICACION DE LOS
INICIADORES DE Musa balbisiana

	Musa balbisiana					
	Temperatura	Tiempo	Nº de ciclos			
1	95 ° C	3 minutos	iv de cicios			
	60 ° C – 55 ° C	40 segundos	5 ciclos			
-	94 ° C	20 segundos				
•	56 ° C	20 segundos	30 Ciclos			
	72 ° C	30 segundos				
2	72 ° C	10 minutos				
3	4 ° C	Indefinido				

3.5. Gel de Poliacrilamida

A cada muestra amplificada, se adicionó 4 ul de tampón de carga. De esta mezcla 7 ul se depositaron en los pocillos de los geles de poliacrilamida al 6 % (arcrilamida/bisacrilamida 29:1) de 1 mm de espesor. Los geles fueron elaborados según el protocolo descrito en el Apéndice 3.

Para la corrida de las muestras se utilizaron tres equipos de secuenciación manual, dos de modelo Sequi – Gen GT de Bio – Rad con un tamaño de gel de 38 X 55 cm, y un equipo modelo S3S de Owl con un tamaño de gel de 30 x 44 cm.

La cámara superior de cada equipo fue llenada con tampón TBE 0,5X y la inferior con TBE 1X. Se cargaron 88 pocillos por equipo, más 8 pocillos correspondientes al marcador de 25 pb DNA ladder marca INVITROGEN (Apéndice 4). Los geles se precorrieron a 319 voltios por 20 minutos para permitir que el tampón de carga se separe de las muestras. Finalmente se corrieron los geles (Bio - Rad) a 778 voltios por 8 horas y el gel (Owl) a 200 voltios por 13 horas, tiempo requerido para que la línea de xylene cyanol del tampón de carga salga del borde inferior de los geles.

3.6. Tinción de Plata

Una vez finalizado el tiempo de corrido, se desmontaron los geles, primero se les retiró el vidrio delantero, posteriormente se los colocó suavemente en las cubetas para realizar el proceso de

tinción. En cada cubeta se depositaron 4 litros de cada una de las soluciones Las concentraciones de cada solución y los tiempos requeridos para realizar el proceso de tinción se aprecian en la (Tabla 8).

CONCENTRACIÓN Y TIEMPO REQUERIDO DE LAS SOLUCIONES PARA REALIZAR EL PROCESO DE TINCIÓN DE PLATA

TABLA 8

PASO SOLUCIONES		TIEMPO
Fijación	10 % Etanol + 0.5 % Ácido	15 minutos
i ijacion	acético	13 1111111103
Impregnación	0, 011 M Nitrato de plata	25 minutos
Lavado	Agua deionizada	1 minuto
Revelado	0,75 M NaOH + 0,085 M	10 – 15 minutos
revelado	formaldehído	10 10 111111111111111111111111111111111
Parada	0,07 M Carbonato de sodio	3 minutos

3.7. Fotografía

La fotografía de los geles se realizó sobre una caja de luz blanca, con una cámara digital marca Olympus C – 500 con Zoom de 5 megapixeles. Para el análisis de las fotografías se utilizó el

programa para Análisis del Genotipo y Fragmentos de ADN Gen Profiler 4.05 para Windows. Las fotografías se muestran en el Apéndice 4.

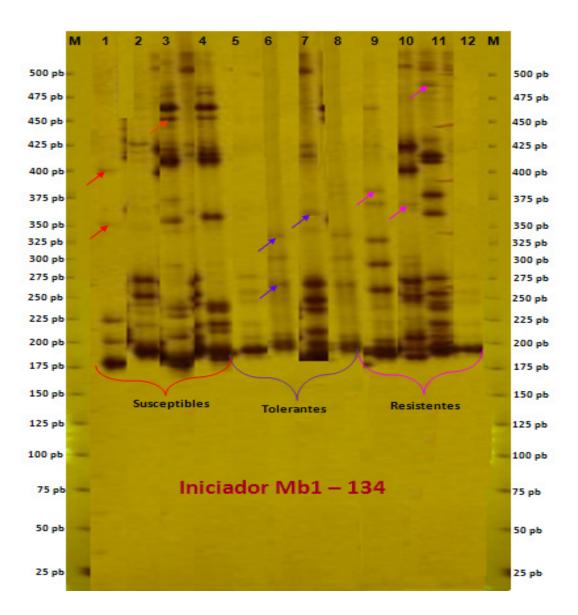
CAPÍTULO 4

4. RESULTADOS Y DISCUSIÓN

Un total de 20 pares de iniciadores fueron utilizados para evaluar la tasa de polimorfismo de los microsatélites de 21 genotipos de banano, procedentes de la Colección Mundial (Transit Center INIBAP, Universidad Católica de Leuven, Bélgica).

Para determinar el porcentaje de loci polimórficos y para generar el dendrograma basado en la relación genética entre los genotipos de *Musa* spp., según Nei's (1978) se uso el programa Tools for Population Genetic Analyses (TFPGA).

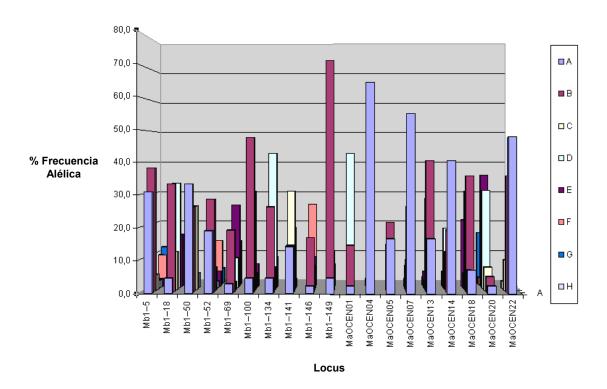
El programa Popgen 32 fue usado para determinar la frecuencia alélica por loci, el promedio de alelos por iniciador y el promedio de heterocigosidad observada (H_O) y heterocigosidad esperada (H_E).


La mayoría de iniciadores produjo bandas de ADN bien definidas (Figura 3), excepto el iniciador MaOCEN03 que no mostró amplificación en ninguno de los 21 genotipos de banano. Un total de 85 alelos fueron generados. El número medio de alelos por iniciador fue de 5.1 (Tabla 9 y 10).

El alelo más frecuente en todas las poblaciones fue el alelo de 193 pb del locus Mb1–149, con una frecuencia alélica de 71,4%. El alelo de 200 pb del locus MaOCEN01, mostró la menor frecuencia alélica 2.3%. (Figura 3)

Los valores de PIC (Polymorphic Information Content) estimados para cada uno de los locus aparecen en la Tabla 9 y 10. Estos valores estuvieron comprendidos en el rango de 37.5 al 100 %. Los loci más polimórficos fueron MaOCEN01 con un valor de PIC del 100%, Mb1–5, Mb1–52 y MaOCEN20 con valores de PIC del 87.5%.

GEL DE POLIACRILAMIDA DE PRODUCTOS DE PCR OBTENIDOS MEDIANTE AMPLIFICACIÓN CON EL INICIADOR Mb1 - 134


FIGURA 3

M Marcador de 25 pb; 1 Niyarma Yik; 2 Pisang Berlin; 3 Gran enano;
4 GCTCV 119; 5 FHIA 02; 6 IRFA 905; 7 IRFA 908; 8 FHIA 03; 9 Calcutta 4;
10 Yangambi Km 5; 11 T6; 12 TUU GIA. Las flechas indican presencia de bandas únicas en variedades susceptibles, tolerantes y resistentes.

FIGURA 4

FRECUENCIA ALÉLICA DE LOS LOCI ANALIZADOS EN LOS 21 GENOTIPOS DE *Musa* spp.

A, B, C, D, E, F, G, H. Alelos encontrados en la población, para mayor información véase Apéndice 6

Todos los marcadores microsatélites derivados de *M. balbisiana*, produjeron productos de amplificación en los genotipos diploides (AA), triploides (AAA) y tetraploides (AAAA). Similares observaciones fueron publicadas por Ortiz y Vuylsteke (1994). Estos resultados indirectamente sugieren la existencia de ciertas secuencias del genoma BB apareadas con el genoma AA dentro de esos genotipos. Tomando en cuenta lo

anteriormente expuesto, se podría pensar que en algún momento M. acuminata y M. balbisiana compartieron un origen común.

TABLA 9

TABLA COMPARATIVA DEL NÚMERO Y TAMAÑO DE LOS ALELOS ORIGINALES DE LOS LOCI DE *Musa balbisiana* Y LOS ALELOS ENCONTRADOS EN LAS 21 GENOTIPOS DE *Musa* spp.

Locus	Nº alelos originales	Tamaño de alelos originales (pb)	Nº alelos encontrados	Rango de alelos encontrados (pb)	PIC
Mb1–5	6	343	7	348 – 435	87,50
Mb1–18	4	359	5	455 – 488	62,5
Mb1-50	2	281	4	298 – 313	50,0
Mb1-52	4	399	7	405 – 467	87,5
Mb1-69	7	386	6	406 – 437	75,0
Mb1-100	6	201	5	197 - 219	62,5
Mb1-134	7	398	5	411 – 438	62,5
Mb1–141	4	204	5	322 – 366	62,5
Mb1-146	4	398	6	230 – 257	75,0
Mb1-149	3	190	5	183 – 204	62,5

TABLA COMPARATIVA DEL NÚMERO Y TAMAÑO DE LOS ALELOS ORIGINALES DE LOS LOCI DE *Musa acuminata* Y LOS ALELOS ENCONTRADOS EN LAS 21 GENOTIPOS DE *Musa* spp.

TABLA 10

Locus	Nº alelos originales	Tamaño de alelos originales (pb)	Nº alelos encontrados	Rango de alelos encontrados (pb)	PIC
MaOCEN01	5	244	8	200 -269	100,0
MaOCEN03	6	215	0	0	0,0
MaOCEN04	4	178	5	160 – 180	62,5
MaOCEN05	3	262	3	246 – 268	37,5
MaOCEN07	5	173	5	164 – 182	62,5
MaOCEN13	6	141	6	140 – 160	75,0
MaOCEN14	5	196	5	195 – 216	62,5
MaOCEN18	5	250	5	212 – 242	62,5
MaOCEN20	5	183	7	177 – 212	87,5
MaOCEN22	2	173	4	167 – 184	50,0

Como se pudo apreciar en las Tablas 9 y 10, en la mayoría de los loci, el número de alelos encontrados es superior al número de alelos esperados. El locus MaOCEN01 fue el más polimórfico, con 8 alelos encontrados, el alelo más frecuente en este locus fue el de 242 pb, el cual presentó una frecuencia alélica del 42.9%. Cabe mencionar además, que en este locus se encuentra el alelo con la menor frecuencia alélica dentro de la población.

El alelo de 193 pb del locus Mb1–149 fue el más frecuentemente encontrado en las genotipos de Musa *spp.*, (independientemente del nivel de resistencia que presentan hacia la infección de la Sigatoka negra). Es posible que este alelo sea de gran influencia dentro de la población.

Sería interesante realizar estudios dirigidos a investigar la influencia que tienen este tipo de alelos conservados en la población y determinar si otras variedades como Williams o Gran Enano que se cultivan localmente también poseen este alelo.

El promedio de diversidad genética fue de He = 0.7195, el promedio de heterocigosis observada fue bastante alto Ho = 0.7393 (Apéndice 1). Estos resultados apoyan similares observaciones realizadas por Oreiro (2006) con respecto a la naturaleza altamente hetericigota del género Musa.

Los datos obtenidos en base al análisis con microsatélites indican que la mayoría de genotipos de Musa tienen un exceso de heterocigosidad. Los valores negativos de F_{IS} (Inbreeding coefficient) en todos los loci (Tabla 11) indican muy bajos niveles de endogamia dentro de la población. Lo cual tiene concordancia con lo esperado, debido al origen diverso de los genotipos. Pappert (2000), Auge (2001) y Stilwell (2003) han reportado que los clones de Musa (que son el resultado de hibridaciones intra e inter específicas) poseen altos niveles de heterocigosidad.

El índice de fijación F_{ST} es una medida de la diferenciación genética, sus valores pueden variar de 0.0 (no diferenciación) a 1.0 (completamente diferenciados) dentro y entre poblaciones. Wright (1978) sugiere que valores comprendidos entre:

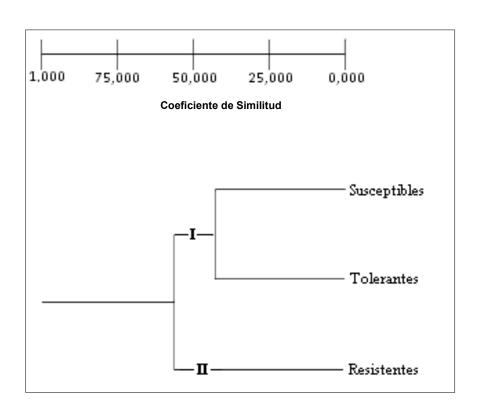
- > 0.0 a 0.05 pueden ser considerados como indicadores de una muy pequeña diferenciación genética.
- > 0.05 a 0.15 indican una moderada diferenciación genética.
- > 0.15 a 0.25 indican una alta diferenciación genética
- > Valores sobre 0.25 indican una muy alta diferenciación genética.

El valor promedio de F_{ST} de los loci fue de 0,4089 (Tabla 11). En base a los parámetros arriba citados, podemos concluir que existe una muy alta diferenciación genética dentro de la población.

Los resultados obtenidos en este estudio son similares a los obtenidos por Ge (2005), quien utilizando marcadores microsatélites derivados de *M. balbisiana*, determinó valores de F_{ST} ubicados en el rango de 0.29 a 0.56 con un valor promedio de 0.43.

TABLA 11 ESTRUCTURA GENETICA DE LA POBLACIÓN BASADO EN EL ANÁLISIS DE VARIANZA JACKKNIFE DE LAS FRECUENCIAS ALÉLICAS POR CADA LOCUS

Locus	Tamaño de la muestra	F _{IT}	F _{ST}	F _{IS}		
Mb1-5	42	-0,1398	0,4116	-0,9371		
Mb1-18	42	-0,1359	0,4135	-0,9369		
Mb1-50	42	-0,1542	0,4087	-0,9519		
Mb1-52	42	-0,1583	0,4022	-0,9377		
Mb1-69	42	-0,1408	0,4112	-0,9369		
Mb1-100	42	-0,1347	0,4143	-0,9373		
Mb1-134	42	-0,1694	0,3969	-0,9389		
Mb1-141	42	-0,1561	0,4034	-0,9379		
Mb1-146	42	-0,1799	0,3915	-0,9391		
Mb1-149	42	-0,1455	0,4091	-0,9387		
MaOCEN01	42	-0,1564	0,4033	-0,9379		
MaOCEN04	42	-0,1491	0,4076	-0,9396		
MaOCEN05	42	-0,1512	0,4133	-0,9621		
MaOCEN07	42	-0,1356	0,4148	-0,9405		
MaOCEN13	42	-0,1494	0,4078	-0,9415		
MaOCEN14	42	-0,1353	0,4149	-0,9402		
MaOCEN18	42	-0,1435	0,4107	-0,9404		
MaOCEN20	42	-0,1371	0,4139	-0,9401		
MaOCEN22	42	-0,133	0,4172	-0,9440		
Media	42	-0,1473	0,4089	-0,9408		
Desviación Estándar		0,0524	0,0276	0,0255		


F_{IT}: Overall Fixation Index

F_{ST}: Fixation Index F_{IS}: Inbreeding Coefficient

Para elaborar el dendograma, se agrupó a los genotipos de Musa *spp.*, de acuerdo al nivel de resistencia que presentan hacia la infección de la Sigatoka negra (Tabla 3). Como se puede apreciar en la Figura 4, los genotipos susceptibles son genéticamente más cercanos a los genotipos tolerantes, y los genotipos resistentes son genéticamente más lejanos que los genotipos susceptibles y tolerantes.

FIGURA 5

DENDOGRAMA BASADO EN NEI'S (1978). DISTANCIA GENÉTICA DE LOS GENOTIPOS DE Musa spp., SEGÚN EL NIVEL DE RESISTENCIA A LA SIGATOKA NEGRA

En base a los valores de la prueba Chi – cuadrado obtenidos en la Tabla 12, podemos concluir que la diversidad genética y el nivel de resistencia a la Sigatoka negra, son variables dependientes. Es decir que una diversidad genética alta determina un mayor nivel de resistencia hacia la infección de la Sigatoka negra.

TABLA 12

ANÁLISIS MULTILOCUS PARA POBLACIONES ÚNICAS SEGÚN SMOUSE'S 1977

Población	Nº de individuos	Promedio de Correlación	Grados de Libertad	Chi - Cuadrado	α	Р
1	21	0.3266	171	387.96	0.05	0.0000

α: Significancia **P:** Probabilidad

Ho: La diversidad genética y el nivel de resistencia a la Sigatoka negra, son variables independientes.

Ha: La diversidad genética y el nivel de resistencia a la Sigatoka negra, son variables dependientes.

Para obtener una mejor apreciación de la importancia que desempeña un alto nivel de diversidad genética en Musa, sería interesante realizar un estudio basado en el análisis del polimorfismo del ADNcp (cloroplastos). Chiang y Huang (2001) han reportado una significativa diferenciación genética en los cloroplastos usando marcadores moleculares AFLPS.

Este estudio podría corroborar si efectivamente la diversidad genética está relacionada con el nivel de resistencia a la infección de *Mycosphaerella fijiensis*

Debido a las limitaciones que posee Musa para emprender programas de mejoramiento genético (partenocarpia y esterilidad) (58). Seleccionar los mejores parentales de las principales variedades de banano cultivadas en el Ecuador (Gross Michel y Cavendish), en base al análisis del polimorfismo, podría incrementar la diversidad genética y lograría contribuir al mejoramiento genético de estos cultivos.

CAPÍTULO 5

5. CONCLUSIONES Y RECOMENDACIONES

5.1. CONCLUSIONES

1. En la mayoría de los loci el número de alelos encontrados fue mayor al número de alelos esperados, estas diferencias pueden haberse originado debido a que los iniciadores anillaron en regiones inespecíficas del ADN molde. Sin embargo, es posible que estas diferencias estén relacionadas con algún tipo de mutación presente en los loci de los genotipos de Musa spp. analizados.

- 2. Los marcadores microsatélites utilizados en este estudio revelaron un total de 85 alelos en la población. Estos resultados demuestran la efectividad de los marcadores utilizados y su uso potencial para posteriores estudios de diversidad y mapeo genético en las distintas variedades de banano que conforman el banco de germoplasma del CIBE.
- 3. Los valores de F_{ST} demostraron que existe una muy alta diferenciación genética dentro de la población. Esto confirma la naturaleza altamente heterocigota de los genotipos de Musa spp.
- 4. Los genotipos susceptibles son genéticamente más cercanos a los genotipos tolerantes, y los genotipos resistentes son genéticamente más lejanos que los susceptibles y tolerantes. Este resultado indica que el nivel de resistencia hacia la infección de la Sigatoka negra de los genotipos de Musa spp. esta relacionado con los valores de diferenciación genética que presentan.

5.2. RECOMENDACIONES

- 1. Se recomienda continuar este tipo de estudio en variedades comerciales de banano como Gross Michel y Williams, y en variedades no comerciales que se utilizan para consumo local, con el objetivo de determinar si alguna de éstas presenta valores de diversidad genética diferentes a los encontrados en este estudio.
- 2. Se recomienda desarrollar marcadores microsatélites para la identificación molecular de clones de banano, para evitar la presencia de duplicados en el banco de germoplasma del CIBE.
- 3. Se recomienda en futuros estudios secuenciar los fragmentos de ADN de los alelos que se encontraron con mayor frecuencia en la población y determinar si existe algún tipo de mutación a nivel de nucleótidos.

APÉNDICES

APÉNDICE 1

PROVINCIAS	SUPERFICIE HAS	UPAs		
EL ORO	43.352	3.887		
LOS RÍOS	50.419	1.104		
GUAYAS	44.646	2.125		
ESMERALDAS	7.611	2.596		
MANABÍ	5.778	2.977		
CAÑAR	5.562	741		
COTOPAXI	5.561	733		
PICHINCHA	3.212	1.821		
BOLIVAR	3.572	2.425		
AZUAY	1.379	1.442		
TOTAL	171.092	19.851		

DISTRIBUCIÓN DE LA SUPERFICIE DEL BANANO POR PROVINCIAS

Fuente: SICA, III Censo Nacional Agropecuario, 2001.

EXTRACCIÓN DE ADN GENÓMICO DE HOJAS DE BANANO

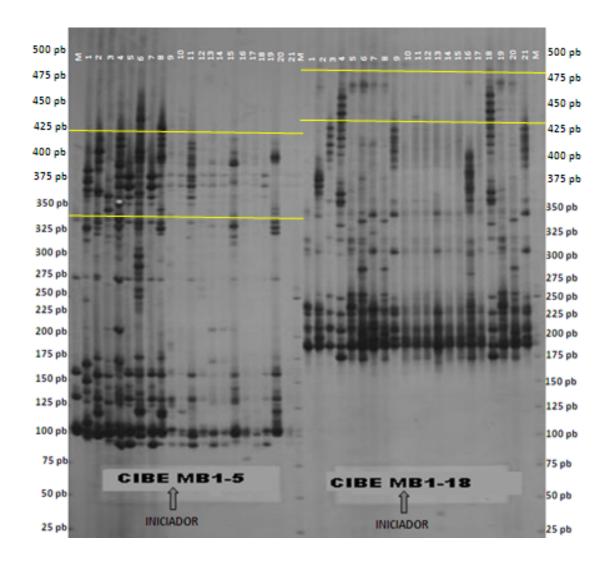
Combinación de los Protocolos de Extracción de ADN de DellaPorta *et al* y Aljanabi, *et al.* (21, 1). Modificados por Santos (67).

- 1. Tomar un gramo de hoja de invernadero o in Vitro.
- Colocar la hoja en un mortero y triturarla con ayuda de nitrógeno líquido hasta conseguir un polvo muy fino, transferir el polvo a un tubo de 50 ml.
- 3. Añadir 4 ml de buffer de extracción
 - 100 mM Tris HCl, PH 8
 - 50 mM EDTA
 - 500 mM B Mercaptoetanol
 - 2 % PVP (Polivinil Pyrrolidone)
- Añadir SDS (Sodium Dudecyl Sulfate) a una concentración final de 2% e incubar por 10 minutos a 55 ° C.
- Añadir 1 300 ul 5 M de Acetato de Potasio, mezclar el contenido del tubo en un vortex, centrifugar durante 10 minutos a 12 000 RPM.

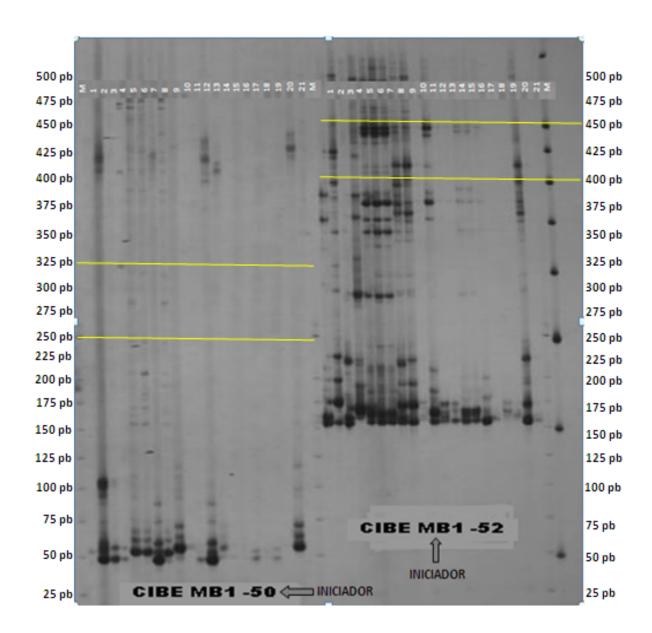
- Recolectar la mayor cantidad posible de sobrenadante, evitando recolectar el pellet.
- Añadir 3 ml de Cloruro de Sodio 6 M y vortex por 30 segundos a la mayor velocidad.
- 8. Centrifugar 10 minutos a 12 000 RPM y recolectar el sobrenadante.
- Añadir RNAasa (a una concentración final de 200 ug/ml) al sobrenadante e incubar a 37 °C por 15 minutos.
- Centrifugar a 12 000 RPM por 10 minutos y transferir el sobrenadante a un nuevo tubo resistente a cloroformo.
- 11. Añadir igual volumen de Cloroformo: Isoamilalcohol con una pipeta de vidrio e invertir los tubos, centrifugar a 12 000 RPM por 5 minutos y transferir la fase acuosa superior a un nuevo tubo, este paso puede ser repetido.
- 12. Añadir igual volumen de Isopropanol al sobrenadante, mezclar bien e incubar las muestras a 20 °C por 30 minutos (o menos a menor temperatura) el protocolo puede ser parado aquí y las muestras pueden ser almacenadas en el congelador.
- 13. Centrifugar a 12 000 RPM por 20 m.
- 14. Lavar el pellet con etanol al 70 % y dejar secar brevemente.
- 15. Disolver el pellet en 0,4 1 ml de agua estéril.

PROTOCOLO DESCRITO POR SAMBROOK et al., (1989) PARA ENSAMBLAR Y PREPARAR GELES DE POLIACRILAMIDA

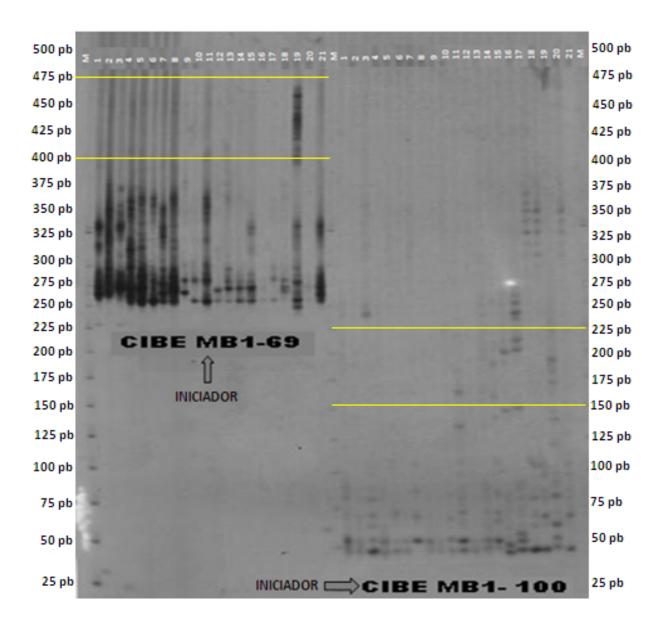
MATERIALES

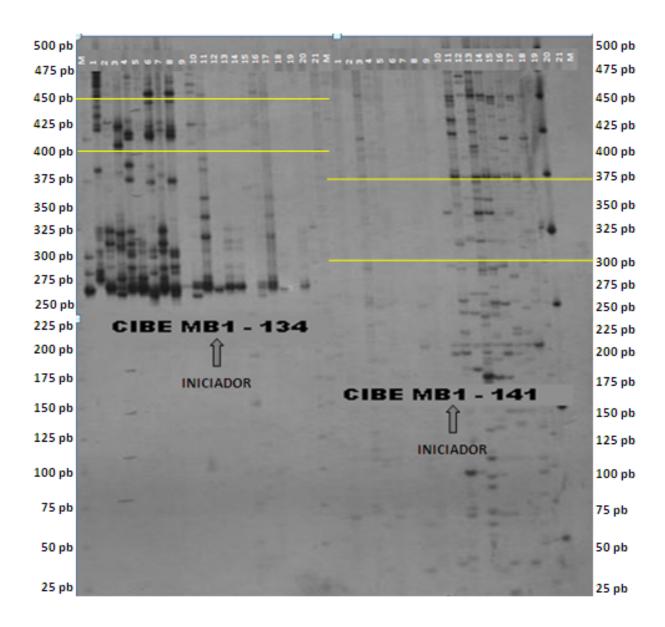

- Vidrios de secuenciación manual (frontal y posterior).
- Espaciadores plásticos y peineta dentada
- Cinta adhesiva para geles 3M 764
- > Ganchos sujetadores
- > Alcohol al 99 %
- Solución antiadherente de silicona para vidrios
- Solución 1:1 ácido acético: glass bond
- > Bandeja plástica
- > Guantes de nitrilo

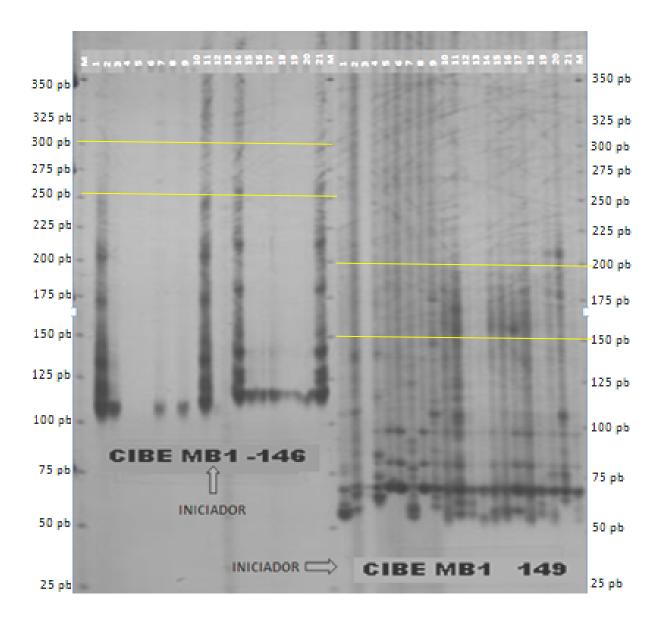
DESARROLLO

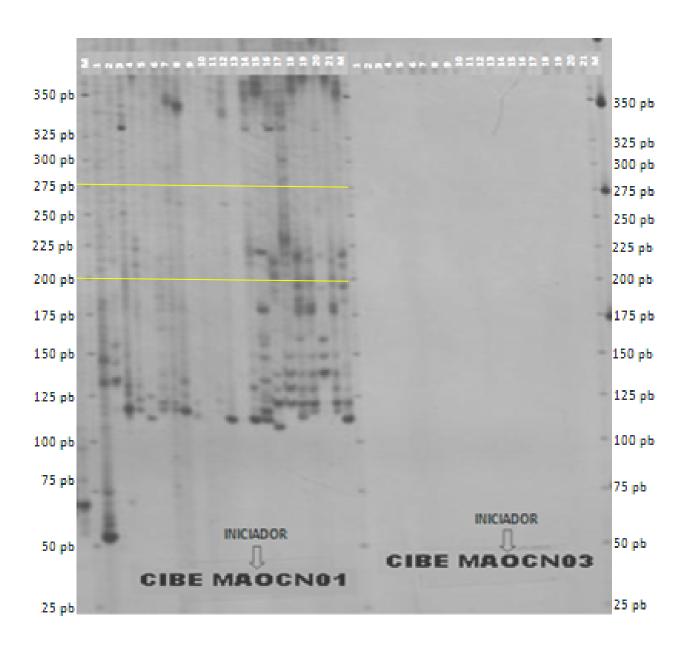

- Lavar los vidrios y espaciadores con jabón neutro para retirar la suciedad y la grasa. Enjuagar con agua desionizada y secar al aire.
- Colocar los vidrios frontal y posterior sobre un mesón. Limpiar las superficies de ambos vidrios con alcohol al 99 %. Colocar 1 ml de la solución antiadhesiva sobre el vidrio frontal y esparcir uniformemente. Colocar sobre el vidrio posterior 600 ul de la solución 1:1 ácido acético: glass bond, esparcir dejando un margen de 1 cm en cada borde, en el cual irán los espaciadores.
- Ubicar los espaciadores en los bordes laterales del vidrio posterior.
 Colocar el vidrio frontal sobre el vidrio posterior. Sellar cuidadosamente todos los bordes (excepto el superior), con la cinta adhesiva para geles.
 Sujetar los vidrios con los ganchos sujetadores para evitar que el gel se derrame.
- Colocar suavemente con una pipeta de 10 ml la solución de poliacrilamida, evitando la formación de burbujas. Introducir la peineta dentro del gel para formar los pocillos. Dejar polimerizar el gel por una hora.

➢ Retirar cuidadosamente la peineta y la cinta adhesiva de los bordes de los vidrios. Llenar con TBE 0.5X los pocillos formados por la peineta para evitar que estos se unan entre si. Colocar los vidrios en el secuenciador manual. Precorrer los geles a 200 voltios por 15 minutos. Depositar las muestras en los pocillos. Correr el gel a un voltaje y tiempo previamente determinados.

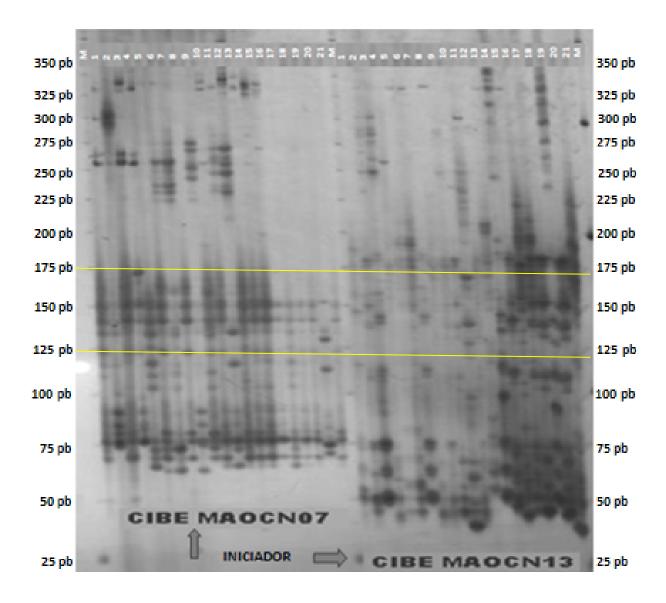

FOTOGRAFÍAS DE LOS GELES DE POLIACRILAMIDA

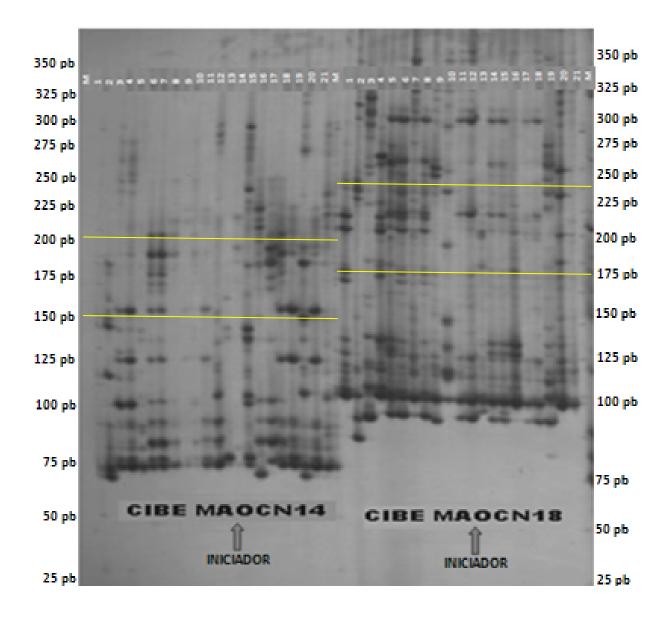

M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx; 10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.

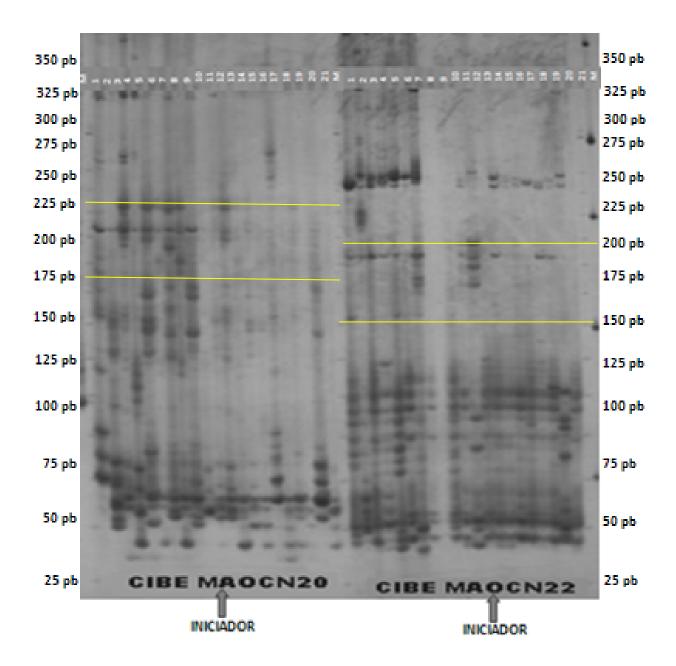

M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.


M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.

M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.


M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.


M Marcador de 25 pb; **1** Niyarma Yik; **2** FHIA 03; **3** Pisang Berlin; **4** Yangambi Km5; **5** T6; **6** Gran enano; **7** IRFA 908; **8** GCTCV 119; **9** TMBx;**10** Calcutta 4; **11** FHIA 01; **12** FHIA 02; **13** TUU GIA; **14** FHIA 17; **15** FHIA 23;**16** IRFA 905; **17** GCTCV 215; **18** SH-3640; **19** B7925; **20** CRBP-39; **21** FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.


M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.

M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.

M Marcador de 25 pb; 1 Niyarma Yik; 2 FHIA 03; 3 Pisang Berlin; 4 Yangambi Km5; 5 T6; 6 Gran enano; 7 IRFA 908; 8 GCTCV 119; 9 TMBx;10 Calcutta 4; 11 FHIA 01; 12 FHIA 02; 13 TUU GIA; 14 FHIA 17; 15 FHIA 23;16 IRFA 905; 17 GCTCV 215; 18 SH-3640; 19 B7925; 20 CRBP-39; 21 FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.

M Marcador de 25 pb; **1** Niyarma Yik; **2** FHIA 03; **3** Pisang Berlin; **4** Yangambi Km5; **5** T6; **6** Gran enano; **7** IRFA 908; **8** GCTCV 119; **9** TMBx;**10** Calcutta 4; **11** FHIA 01; **12** FHIA 02; **13** TUU GIA; **14** FHIA 17; **15** FHIA 23;**16** IRFA 905; **17** GCTCV 215; **18** SH-3640; **19** B7925; **20** CRBP-39; **21** FHIA 18. Las líneas amarillas indican la región del gel que fue analizada con el programa Gen Profiler 4.05.

TABLA QUE MUESTRA LA HOMOCIGOSIS Y HETEROCIGOSIS DE TODOS LOS LOCI ANALIZADOS

Locus	Tamaño de la muestra	Homocigotos observados (Hom.obs)	Heterocigotos observados (Ho)	Homocigotos esperados (Hom. esp)*	Heterocigotos esperados (He)*	Nei **	Promedio de hetrocigocidad
Mb1-5	42	0.0476	0.9524	0.2497	0.7503	0.7324	0.7324
Mb1-18	42	0.0000	1000	0.2485	0.7515	0.7336	0.7336
Mb1-50	42	0.3333	0.6667	0.2416	0.7584	0.7404	0.7404
Mb1-52	42	0.1905	0.8095	0.1742	0.8258	0.8061	0.8061
Mb1-69	42	0.0000	1000	0.1974	0.8026	0.7834	0.7834
Mb1-100	42	0.1429	0.8571	0.3182	0.6818	0.6655	0.6655
Mb1-134	42	0.5238	0.4762	0.2602	0.7398	0.7222	0.7222
Mb1-141	42	0.3810	0.6190	0.1905	0.8095	0.7902	0.7902
Mb1-146	42	0.6667	0.3333	0.2056	0.7944	0.7755	0.7755
Mb1-149	42	0.4286	0.5714	0.5226	0.4774	0.4660	0.4660
MaOCEN01	42	0.2857	0.7143	0.2369	0.7631	0.7449	0.7449
MaOCEN04	42	0.7619	0.2381	0.4611	0.5389	0.5261	0.5261
MaOCEN05	42	0.5714	0.4286	0.3043	0.6957	0.6791	0.6791
MaOCEN07	42	0.0952	0.9048	0.3682	0.6318	0.6168	0.6168
MaOCEN13	42	0.2381	0.7619	0.2613	0.7387	0.7211	0.7211
MaOCEN14	42	0.0476	0.9524	0.2369	0.7631	0.7449	0.7449
MaOCEN18	42	0.0952	0.9048	0.2590	0.7410	0.7234	0.7234
MaOCEN20	42	0.0000	1000	0.2416	0.7584	0.7404	0.7404
MaOCEN22	42	0.1429	0.8571	0.3508	0.6492	0.6338	0.6338
				<u> </u>			
Media	42	0.2607	0.7393	0.2805	0.7195	0.7024	0.7024
Desviación Estándar		0.2372	0.2372	0.0906	0.0906	0.0885	0.0885

^{*} La homocigosis y la heterocigosis esperada fueron estimadas usando Levene (1949).

^{**} Nei's (1973) heterocigosis esperada

FRECUENCIA ALÉLICA DE TODOS LOS LOCI ANALIZADOS

	Locus												
Alelos	Mb1 5	Mb1 18	Mb1 50	Mb1 52	Mb1 69	Mb1 100	Mb1 134	Mb1 141	Mb1 146	Mb1 149			
Α	31,0	4,8	33,3	19,1	2,9	4,8	4,8	14,3	2,4	4,8			
В	38,1	33,3	26,2	28,6	19,1	47,6	26,2	14,3	16,7	71,4			
С	4,8	11,9	26,2	7,1	2,4	31,0	7,1	31,0	4,8	11,9			
D	2,4	33,3	4,8	2,1	9,5	4,8	42,9	19,1	7,1	4,8			
Е	2,4	16,7		4,8	26,2	7,1	9,5	2,4	9,5	7,1			
F	9,5			14,3	14,3				26,2				
G	11,9			4,8									
Н													

					Locus				
Alelos	MaOCEN 01	MaOCEN 04	MaOCEN 05	MaOCEN 07	MaOCEN 13	MaOCEN 14	MaOCEN 18	MaOCEN 20	MaOCEN 22
Α	2,4	64,3	16,7	54,8	16,7	40,5	7,1	2,4	47,6
В	14,3	4,8	21,4	26,2	40,5	19,1	35,7	4,8	35,7
С	2,4	2,4	14,3	9,5	28,6	11,9	31,0	7,1	9,5
D	42,9	2,4		7,1	2,4	19,1	4,8	31,0	2,4
Е	9,5	2,4		2,4	4,8	4,8	21,4	35,7	
F	19,1				2,4			2,4	
G	0,0							16,7	
Н	4,8								

DATOS OBTENIDOS CON EL PROGRAMA GEN PROFILER 4.05 A PARTIR DE MUESTRAS DE ADN DE 21 GENOTIPOS DE Musa spp. CORRIDAS EN GELES DE POLIACRILAMIDA AL 6%.

	MaOCEN 01	MaOCEN 03	MaOCEN 04	MaOCEN 05	MaOCEN 07	MaOCEN 13	MaOCEN 14	MaOCEN 18	MaOCEN 20	MaOCEN 22
1	200	0	170	268	175	154	201	242	212	177
1	257	0	170	246	169	150	195	225	201	172
2	257	0	170	258	175	152	205	232	190	177
2	242	0	160	246	169	150	201	212	184	167
3	248	0	170	268	175	150	212	225	190	177
3	242	0	170	258	169	145	205	212	184	172
4	248	0	0	268	175	145	205	225	190	177
4	242	0	0	258	169	145	201	212	184	172
5	248	0	170	0	175	152	216	221	190	177
5	237	0	167	0	169	145	201	212	184	172
6	269	0	170	268	182	150	212	225	195	177
6	257	0	170	258	175	145	201	212	184	172
7	248	0	170	258	171	152	216	242	190	177
7	242	0	170	246	164	150	201	225	180	167
8	248	0	174	268	175	150	205	225	190	0
8	237	0	170	246	163	145	201	212	180	0
9	242	0	170	0	175	160	216	221	184	177
9	237	0	170	0	169	140	201	212	180	172
10	0	0	0	0	175	0	0	221	190	177
10	0	0	0	0	175	0	0	212	184	167

11	242	0	170	246	175	154	205	221	190	177
11	237	0	170	246	169	152	201	212	184	172
12	248	0	0	0	175	150	216	221	190	177
12	233	0	0	0	169	145	195	212	184	172
13	257	0	170	0	175	150	216	225	201	177
13	248	0	170	0	169	145	205	221	190	172
14	248	0	0	0	175	154	216	221	190	177
14	242	0	0	0	169	145	201	212	184	177
15	264	0	170	0	175	150	201	225	184	177
15	264	0	170	0	175	150	195	212	177	172
16	248	0	170	0	175	154	205	225	190	177
16	242	0	167	0	171	145	201	221	180	172
17	248	0	170	0	175	154	212	221	190	177
17	237	0	170	0	169	150	201	221	184	167
18	248	0	0	268	182	150	212	232	195	184
18	242	0	0	246	175	145	201	225	180	177
19	248	0	180	268	175	154	216	225	190	172
19	237	0	180	246	164	145	201	212	177	172
20	248	0	170	0	182	150	205	242	195	177
20	242	0	170	0	175	145	201	225	184	172
21	257	0	170	268	175	160	212	225	190	177
21	237	0	170	246	169	154	201	225	184	172

	Mb1 5	Mb1 18	Mb1 50	Mb1 52	Mb1 69	Mb1 100	Mb1 134	Mb1 141	Mb1 146	Mb1 149
1	411	488	304	410	422	205	438	341	0	200
1	381	459	304	405	414	197	417	322	0	193
2	411	480	309	467	437	203	422	347	234	193
2	381	459	298	410	422	197	422	322	234	193
3	411	480	309	415	429	203	422	355	0	204
3	381	459	304	405	406	197	417	347	0	193
4	411	485	309	467	437	203	431	322	0	193
4	381	455	304	423	414	197	417	322	0	193
5	348	480	304	410	429	197	422	341	241	193
5	348	459	298	410	406	197	422	322	241	193
6	435	485	304	444	427	203	438	355	257	193
6	398	459	298	423	414	197	431	347	234	188
7	411	485	309	415	429	219	417	0	234	204
7	369	459	298	405	414	203	411	0	230	193
8	411	480	313	444	429	203	417	0	234	193
8	381	459	304	423	414	197	411	0	230	188
9	350	480	298	415	429	203	422	355	247	193
9	348	455	298	405	406	197	411	335	237	188
10	411	480	309	423	414	203	422	0	234	193
10	381	455	298	410	406	197	417	0	234	188

11	381	480	309	415	422	203	422	355	247	193
11	350	459	298	405	406	197	422	347	241	183
12	411	480	0	415	422	203	422	355	241	193
12	381	459	0	405	406	197	422	341	241	183
13	381	480	304	423	422	203	0	347	241	193
13	350	455	298	405	406	197	0	341	237	183
14	411	480	304	423	422	197	422	347	241	193
14	381	455	298	415	414	197	422	322	241	193
15	411	488	309	410	429	205	417	366	241	193
15	381	459	309	410	406	197	417	347	241	193
16	411	485	313	423	422	219	0	355	237	200
16	381	455	304	405	406	197	0	341	237	193
17	350	480	0	405	422	0	422	355	247	193
17	348	459	0	405	406	0	422	355	241	193
18	411	480	304	444	422	205	431	0	0	193
18	381	459	298	418	414	197	411	0	0	188
19	435	485	309	423	437	203	422	355	0	193
19	381	459	304	415	422	197	417	341	0	193
20	411	480	309	423	429	203	422	355	0	193
20	381	455	309	410	406	197	422	355	0	193
21	381	480	304	405	429	203	417	355	0	193
21	348	459	298	405	422	197	417	347	0	193

BIBLIOGRAFÍA

- Aljanabi, S. Martinez, I. 1997. Universal and rapid salt extraction of high quality genomic DNA for PCR – based techniques. Nucleic Acids Research 25. Pp. 4692 – 4693.
- Arias P., Dankers C., Liu P. and Pilkaus P.. The World banana economy. 1985 – 2002. http://www.fao.org [Último acceso, 20 de Octubre del 2008].
- Barredo, C., Reyes, B. 2001. Conversión a banano orgánico: Una alternativa para la recuperación financiera de las bananeras. Tesis de Grado. ESPOL. Guayaquil – Ecuador. Pp 12 – 27.
- 4. Berrie, A. M. 1997. The Musaceae: the bananas. In: An introduction to the botany of the major crop plants. Heyden, Londres. Pp. 113-116.
- 5. Beveraggi A. 1992. Etude des interactions hôte-parasite chez des bananiers sensibles et résistants inoculés par Cercospora fijiensis responsables de la maladie des raies noires ème. Thèse de 3 cycle, Université de Montpellier II, USTL.

- 6. Beveraggi A., X. Mourichon and G. Salle. 1995. Etude comparée des premières étapes de l'infection chez les bananiers sensibles et résistants infectés par Cercospora fijiensis (Mycosphaerella fijiensis), agent responsable de la maladie des raies noires. Canadian Journal of Botany 73:1328-1337.
- Buhariwalla, H., Jarret, R., Jayashree, B., Crouch, J., and Ortiz, R.
 2005. Isolation and characterization of microsatellite markers from
 Musa balbisiana. Molecular Ecology Notes 5.México pp. 327-330
- Calle, H. 2003. Estrategias de manejo para sigatoka negra en Ecuador.
 Actas del taller "Manejo convencional y alternativo de la sigatoka negra, nematodos y otras plagas asociadas al cultivo de Musáceas".
 Guayaquil, Ecuador. Pp. 29 30.
- Carlier, J., Mourichon, X., González de León, D., Zapater, M.F. and Lebrun, M.H. 1994. DNA restriction fragment length polymorphisms in Mycosphaerella species that cause banana leaf spot diseases. Phytopathology 84:751-756.

- Chambers, G., MacAvoy, E. 2000. Microsatellites: consensus and controversy. Comparative Biochemistry and Phisiology Parte B. Pp. 521 532.
- Champion, J. 1968. El plátano. Edición Española. Editorial Blume Barcelona. 247 p.
- Chang, J. 2000. Efectos de la dolarización en el costo de producción de banano en el Ecuador. ACROBAT – Ecuador. Pp. 6
- 13. Chase, G. 1996. Distant gene flow in tropical trees. Nature 383. Pp. 398 399.
- Cheesman, E. 1948. Classification of the Bananas. III. Critical Notes on Species. c. Musa paradisiacal L. and Musa sapientrum L., in Kew Bulletin 2(3): 145 – 153.
- Chong, P., Rodriguez, H. 2007. Diversidad Genética de Poblaciones de Mycosphaerella fijiensis Provenientes de Haciendas Bananeras con Manejo Orgánico y Convencional. Revista Tecnológica ESPOL. Vol. 20, N. 1, 215-222.

- 16. Clarke, W., Thaman, R. 1993. Agroforestry in the Pacific Islands: Systems for Sustainability. United Nations University. Tokio. – Japan.http://www.unu.edu/unupress/unupbooks/80824e/80824E00.ht m#Contents> [Último acceso, 4 de Febrero del 2009].
- Convenio MAG / IICA. Subprograma de Cooperación Técnica. 2001.
 Identificacion de Mercados y Tecnologia para Productos Agrícolas
 Tradicionales de Exportación. Quito Ecuador. Pp. 3-8.
- Creste, S., Benatti, T., Orsi, M., Risterucci, A., y Figueira A. 2006.
 Isolation and characterization of microsatellite loci from a comercial cultivar of Musa acuminate. Molecular Ecology Notes 6. Brazil pp. 303-306.
- 19. Crouch y colaboradores. 1998. Perspectives on the application of biotechnology for assist the genetic enhacement of plantain and banana (Musa spp.). Electronic Journal of Biotechnology. Volume 1, No 1, April. Review article.
- Crouch, H., Crouch, K., Constandt, H., Van Gysel, A., Breyne, P.,
 Montagu, V., Jarret, L., Ortiz, R. 1999. Comparison of PCR-based

- molecular marker analyses of Musa breeding populations. Mol Breeding 5:233 244.
- 21. Crouch, J., and Vuylsteke, D., 1998. Perspectives on the application of biotechnology to assist the genetic enhancement of plantain and banana (Musa *sp.*). EJB Electronic Journal of Biotechnology. Vol.1, No.1. Universidad Católica de Valparaíso Chile. Pp 11 22.
- Dellaporta, S. Word, J. 1983. A plant DNA minipreparation: version II.
 Plant Molecular Biology Reports 1. Pp. 19 21.
- 23. Eskew, D., Welch, R., Norvell, W. 1983. Nickel: Essential micronutrients for legumes and possible higher plants. Science 222: 621 623.
- 24. Espinoza, L. 2007. Monitoreo in vitro del potencial de cinco nutrients (B, Mn, Zn,Cu, Si) sobre órganos de Mycosphaerella fijiensis Morelet agente causal de la Sigatoka negra. Tesis de Grado. ESPOL. Guayaquil Ecuador. Pp 28-35.
- 25. Ex Programa Nacional del Banano. 2001. El cultivo del Banano. SICA. Servicio de Información y Censo Agropecuario del Ministerio de

- Agricultura y Ganadería del Ecuador Programa Nacional del Banano.http://www.sica.gov.ec/agronegocios/biblioteca/Ing%20Rizzo/p erfilesproducto/banano.pdf> [Último acceso, Agosto del 2008].
- 26. Fawe, A., Abou Zaid, M., Menzies, J., Belanger, R. 1998. Silicon mediated accumulation of flavonoid phyloalexins in Cucumber. Phytopathology. 88: 396 401.
- 27. Ferreira, R., Monteiro, S., Freitas, R., Santos, C., Chen, Z., Batista, L., Duarte, J., Borges, A., Teixeira, A. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology. 8(5). Pp 677 700.
- Flowers, T., Lauchli, A. 1983. Sodium versus Potassium substitution and compartmentation. In: Inorganic Plant nutrition. Heidelberg, Berlin: Springer. Pp 651 – 681.
- 29. Hayden, H., Carlier, J., and Aitken, E. 2003. Genetic structure of *Mycosphaerella fijiensis* populations from Australia, Papua New Guinea and the Pacific Islands. Plant pathology. Vol. 52, Issue. Pp. 703 712.
- Heath, M. 2000. Hypersensitive response-related death. Plant Molecular Biology. 44. Pp 321 – 334.

- 31. Heslop Harrison, J., Schwarzacher, T. 2007. Domestication, Genomics and the Future for Banana. Department of Biology. University of Leicester. Leicester LE1 7RH. UK.
 http://aob.oxfordjournals.org/misc/terms.shtml [Último acceso, 21 de Agosto del 2008].
- 32. Hippolyte, I., Bakry, F., Carreel, F., Jenny, C., Arnaud, E., Roux, N., Glaszmann, J.C., Risterucci, A., Garsmeur, O., D'Hont, A., Baurens F. 2007. Progress of Musa (banana and plantain) genetic diversity and genome analysis at Agropolis-CIRAD. Plant and Animal Genomes. [Abstract].
- 33. Human Rights Watch. Tainted Harvest. Child labor and obstacles to organizing on Ecuador's Banana Plantations., NY, 2002.

34. IICA. 2004. Instituto Interamericano de Cooperación para la agricultura. Documento Técnico para la competitividad de la cadena Plantación – Harina. Puré – Banano. http://www.iica-ecuador.org [Último acceso, Junio del 2008].

- INIAP. 1999. Guía de Cultivos. Ecuador Agropecuario. INIAP.Instituto
 Nacional Autónomo de Investigaciones. Pp. 186.
- 36. INIBAP. 1993. Annual Reports. Risks involved in the transfer of banana and plantain germplasm. Montpellier. France. Pp 39 47.
- INIBAP. 2006. Informe anual INIBAP 2005. Red Internacional para el
 Mejoramiento del Banano y el Plátano, Montpellier, Francia. Pp. 4 35.
- 38. INIBAP. Gonzales de Leon, D., Fauré, S. Biotechnology Applications for Banana and Plantain Improvement. 1993. San José Costa Rica. Pp.1-12.
- 39. Jacome, L., Lepoivre,P., Marin, R., Ortiz,R., Romero, R. 2002. Mycosphaerellaleaf spot diseases of bananas: present status and outlook. Proceedings of the 2nd International workshop on Mycosphaerellaleaf spot diseases held in San José, Costa Rica. Pp. 140 – 143.
- 40. Jarne y Lagoda .1996. Microsatellites, from molecules to populations and back. Trends in ecology and Evolution 1:424 429.

- 41. Jimenez, M. 2008. Effect of the nutritional status of banana (*Musa* spp.) on leaf disease infestation by *Mycosphaerella fijiensis* Morelet in Ecuador. Dissertationes de agricultura. Ph.D. thesis 787. Katholieke Universiteit Leuven, Belgium Faculteit Bio-Ingenieurswetenschappen. P. 188. Pp. 6 28.
- 42. Johanson, A., and Jeger Johanson, A. and Jeger, M. 1993. Use of PCR for detection of *Mycosphaerella fijiensis* and *M. musicola*, the causal agent of Sigatoka leaf spots in banana and plantain. Mycological Research 97:670-674.
- 43. Jones, D. 2000. Disease of Banana, Abaca and Ensete. D. Jones ed. CAB Interanational, Wallingford UK. Pp 544.
- 44. Kabata, A., Pendias, H. 1992. Trace elements in soil plants, 2nd ed. Boca Raton, Fl. CRC, press.
- 45. Karp y Colaboradores. 1996. Molecular techniques in the assessment of Botanical Diversity. Annals of Botany 678. Pp. 143 149.

- 46. Karp, C. 1997. Molecular tools in plant genetic resources conservation: a guide to the Technologies. International plant Genetic Resources Institute. Technical Bulletin N°2.
- 47. Kresovich, S., Szewc-Mcfadden, A., Blick, S., McFerson, JR. 1995.
 Abundance and characterization of simple sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapseed). Theor. Appl. Genet. 91:206 211.
- 48. Lamboy. J. 1994. Computing genetic distance similarity coefficients from RAPD data: the effects of PCR artifacts. PCR methods and Applications 4:31-37.
- 49. Lentfer, C. Tracing Antiquity of Banana Cultivation in Papua New Guinea. 2003 Report on collection of modern reference material from Papua New Guinea in 2002. Unpublished report prepared for the Pacific Biological Foundation Sydney. NSW. Australia.
- 50. Luque, J., Herráez, A. 2000. Biología Molécular e Ingeniería Genética.
 Departamento de Bioquímica y Biología Molecular. Universidad de Alcalá. Madrid. Pp. 108 116.

- 51. Martillo, E. Solano, P. 2003. Situación de la Sigatoka negra en ecuador. Actas del taller "Manejo convencional y alternativo de la sigatoka negra, nematodos y otras plagas asociadas al cultivo de Musáceas". Guayaquil, Ecuador. Pp. 13 – 17.
- 52. Martínez, L. 2004. Trabajo Flexible en las Nuevas Zonas Bananeras del Ecuador. Red de Bibliotecas Virtuales de Ciencias Sociales de América Latina y el Caribe, de la Red de Centros Miembros de CLACSO.
- 53. Maura, L. 2007. Manejo alternativo de la Sigatoka negra, utilizando biofertilizantes, en plantaciones comerciales de banano Cavendish, variedad Williams, cantón Taura. Tesis de Grado. ESPOL. Guayaquil – Ecuador. Pp 20-28.
- 54. Mobambo, K., Gauhl, F., Vuylsteke, D., Ortiz, R., Pasberg Gauhl, C., and Swennen, R. 1993. Yield loss in plantain from black sigatoka leaf spot and field performance of resistant hybrids. Field Crops Research, 35. 35 42.

- 55. Moore, P., Ming, R., Delmer, D. 2008. Genomics of Tropical Crop Plants. Plant Genetics – Genomics. Edit. Springer. Volume 1. Pp. 83 – 88.
- 56. Morgante., Olivieri. 1993. PCR amplified microsatellites as markers in plants. Plant J. 3. Pp. 175 182.
- 57. Nuñez, R. 1989. El Cultivo del Banano. Ministerio de Agricultura y Ganadería del Ecuador. Programa Nacional del Banano. Sección Cooperativas. Pp. 3 – 10.
- 58. Oreiro, C. Odunola, O. Lokko, Y. Ingelbretch, I. Analyses of B genome derived simple sequences repeat SSR markes in Musa spp. African Journal of Biotechnology. Vol. 5, 2006, pp. 126 128
- 59. Osuji, J.; Vuylsteke, D.; Ortiz, R. 1997. Variación de ploidía en híbridos procedentes de cruces 3x X 2x interploides en Musa. Tropicultura 15(1): Pp. 37 39.
- 60. Pollefeys, P., Sharrock, S., Arnaud E. Preliminary analysis of the literature on the distribution of wild Musa species using MGIS and DIVA-GIS. 2004. Montpellier, France: INIBAP.

- http://bananas.bioversityinternational.org/files/files/pdf/publications/wildspecies pollefeys.pdf.>> [Último acceso, Julio del 2007].
- 61. Powell y Colaboradores. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science: Reviews. July. Volumen 1. No 7. Pp. 215 222.
- Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey,
 S., Rafalsky, A. 1996. The comparison of RFLP, RAPD, AFLP and
 SSR (microsatellite) markers for germoplasm análisis. Mol Breed.
 Volume. 2. Pp 225 238.
- 63. Powell., B. 1996. Polymorphism revealed by simple sequence repeats.

 Trends in plants science: review. Vol. 1. No 7. Pp. 215 222.
- 64. Rivera y Colaboradores. 1999. Isolation y characterization of polymorphic microsatellites in Coco nucifera. Genome 42:668 675.
- 65. Rivera, J. 1999. Isolation and characterization of polymorphic microsatellites in Coco nucifera. Genome. 42. Pp. 668 675.

- 66. Robinson, J. 1996. Banana and Plantains. CAB Internacional, Cambridge. UK. 238p.
- 67. Rodríguez, A., Pérez, J., Rivera, C. 1983. Estudio de densidades de plantación en clones de plátano fruta. Ciencias Técnicas. Agricultura. Viandas Tropicales 7(1). Pp. 33 – 40.
- 68. Román, M., Alonso, M., Barrios, A. Marcadores de la variabilidad genética en el género Musa. Facultad de Biología, UH. Pp. 1-20.
- 69. Roseto, C. 1999. Microsatellite variation and assesment of genetic structure in teatree (Melaleuca alternifolia Myrtaceace). Molecular ecology 8. Pp. 663 643.
- 70. Santos, E. 2008. Characterization and isolation of T-DNA tagged banana promoters active during in vitro regeneration and low temperature stress. Dissertationes de agricultura. Ph.D. thesis 787. Katholieke Universiteit Leuven, Belgium Faculteit Bio-Ingenieurswetenschappen. P. 188.
- 71. SICA, 2001. Servicio de Información y Censo Agropecuario del Ministerio de Agricultura y Ganadería del Ecuador Programa Nacional

- del Banano. El cultivo del Banano. http://:www.sica.gov.ec> [Último acceso, Agosto del 2008].
- 72. Sierra I. El cultivo del banano: producción y comercio. 1993. Medellín: Graficas Olímpicas. Pp. 680.
- 73. Simmonds NW, Shepherd K. 1955. Taxonomy and origins of cultivated bananas. Botanical Journal of the Linnean Society.55:302 312.
- 74. Simmonds NW. Evolution of the bananas. 1962 London: Longmans, Green & Co. Pp. 537
- 75. Soto, B. Banano cultivo y comercialización. 1985. San José, Costa Rica: Litografia e Impressa LIL. Pp. 648.
- 76. Stover, R. 1978. Distribution and probable origen of Mycosphaerella fijiensis in southeast Asia. Trop. Agriculture. 55. Pp. 65 68.
- 77. Stover, R., 1980. Sigatoka leaf spot of bananas and plantains. Plant Disease, 64: 750 756.

- 78. Stover, R., and Simmonds, N. 1987. Bananas. Tropical Agriculture Series. Longman Group UK. Pp 468.
- 79. Strand y colaboradores. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismacht repair. Nature 365:274 – 276.
- 80. Strand, F. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365. Pp. 274 – 276.
- 81. Suquilanda, M. 2001. Manejo alternativo de la Sigatoka negra. Servicio de Información Agropecuaria del Ministerio de Agricultura y Ganadería del Ecuador.
- 82. Tautz, D. 1989. Hypervariability of simple sequence as a general source for polimorphic DNA markers. Nucleic Acids Res. 17. Pp. 6463 6471.
- 83. Tomlinson P. Anatomy of the monocotyledons. III. Commelinales—Zingiberales (1969) Oxford: Clarendon Press.

- 84. Trujillo, E., 1997. Monografías.com. Las Musáceas.http://www.monografias.com/trabajos19/musaceas/musaceas.zip[Último acceso, 15 de Septiembre del 2008].
- 85. Vuylsteke, D., Swennen, R., and Ortiz, R. 1993. Registration of 14 improvemend tropical Musa plantain hybrids with black sigatoka resistance. HortScience, 28: 957 959.
- 86. Yañez, V. 2002. Aislamiento y caracterización de marcadores moleculares microsatélites a partir de la construcción de librerías genómicas enriquecidas de camote (Ipomoea batatas). Tesis de Grado. Universidad Nacional Mayor de San Marcos. Lima Perú. Pp. 15 24.
- 87. Zambrano, Y., Martínez, G., Gutiérrez, Z., Manzanilla, E., Villardón, J., Demey, J. 2007. Marcador RAPD Asociado a la Resistencia a *Fusarium oxysporum* en Musa.
- 88. Zane, L., Bargelloni, L., Patarnello, T. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology 11. Pp. 1 16.