

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

AÑO:	2018	PERIODO:	PRIMER TÉRMINO
MATERIA:	FÍSICA II	PROFESORES:	Del Pozo Luis, Heredia Tamara, Montero Eduardo
EVALUACIÓN:	PRIMERA	FECHA:	Junio 27 del 2018

COMPROMICO DE HONOR				
COMPROMISO DE HONOR				
Yo,	ra individual, que puedo usar una calculadora con la persona responsable de la recepción del ositarlo en la parte anterior del aula, junto con as, ni apuntes adicionales a las que se entreguen			
"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".				
Firma NÚMERO DE MATRÍCULA:				

TEMA 1 (20%)

El silbato de una fábrica, en una región donde la velocidad del viento es de 15.0 m/s desde el norte, emite un sonido con frecuencia de 720 Hz. Considere la rapidez del sonido igual a 343 m/s.

a) ¿Qué frecuencia escucha un ciclista que se dirige al norte del silbato a 12.0 m/s?

b) ¿Qué frecuencia escucha el ciclista si se dirige al oeste del silbato a 12.0 m/s?

TEMA 2 (20%)

Un pulso de onda transversal viaja hacia la derecha a lo largo de una cuerda, con una rapidez de 2.0 m/s. En t = 0, la forma del pulso está dada por la función

$$D(x, 0) = 0.50 \cos(2.6x + 12)$$

donde D y x están en metros.

- a) Utilice los ejes mostrados en la figura 1 para graficar D versus x en t = 0.
- b) Suponiendo que no hay pérdidas por fricción, determine una expresión para el pulso de onda en cualquier tiempo t, es decir, D(x, t).
- c) Grafique D(x, t) versus x en t = 1.0 s sobre los mismos ejes de la figura 1. Identifique adecuadamente cada gráfico.
- d) Repita las partes b) y c) suponiendo que el pulso viaja hacia la izquierda.

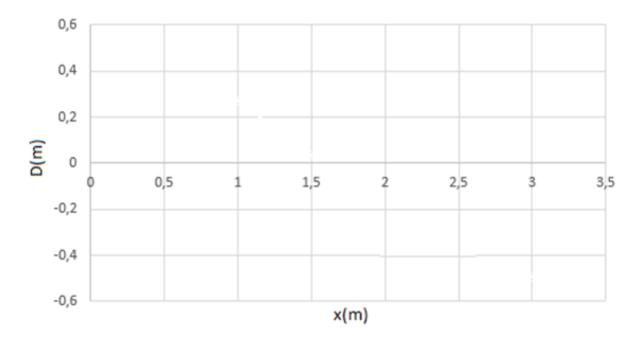


Figura 1

TEMA 3 (20%)

Un gas que consiste en 15 200 moléculas, cada una de 2.00×10^{-26} kg de masa, tiene la siguiente distribución de rapidez, que aproximadamente imita la distribución de Maxwell:

Número de moléculas	Rapidez (m/s)
1600	220
4100	440
4700	660
3100	880
1300	1100
400	1320

Determine v_{rms} para esta distribución de rapideces y use ese valor para asignar una temperatura (absoluta) al gas.

TEMA 4 (20%)

¿Aproximadamente cuánto tardarán en fundirse 9.5 kg de hielo a 0° C, cuando se colocan en una hielera de poliestireno, de 25 cm \times 35 cm \times 55 cm, sellada cuidadosamente, cuyas paredes miden 1.5 cm de grosor? Suponga que la temperatura exterior es de 34° C.

$$L_f = 3.33 \times 10^5 \frac{J}{kg}$$
; $k_{poliestireno} = 0.023 \frac{W}{m \cdot {}^{\circ}C}$

TEMA 5 (20%)

Un refrigerador "de Carnot" absorbe calor del compartimiento congelador a una temperatura de 17°C y lo expulsa en la habitación a 25°C. Si la salida del compresor es de 180 W, ¿qué tiempo mínimo se necesita para tomar 0.40 kg de agua a 25°C y congelarla a 0°C?