

FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

AÑO : 2021	PERIODO: PRIMER TERMINO
MATERIA: Álgebra Lineal	PROFESORES: Laveglia F, Martínez M,
	Ramírez J, Valdiviezo J, Varas A, Vielma J.
EVALUACIÓN: SEGUNDA	FECHA: 02/09/2021

TEMA 1

1. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sean A y B matrices cuadradas nxn y $p_A(\lambda)$, $p_B(\lambda)$ sus correspondientes polinomios propios Si A es semejante a B entonces $p_A(\lambda) = p_B(\lambda)$

2. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sean A y B matrices cuadradas nxn.

Si A es semejante a B entonces Aⁿ es semejante a Bⁿ

3. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa

Si la matriz A de orden nxn, es la matriz de la forma cuadrática $ax^2 + 2bxy + cy^2 = 0$ que cuyos puntos de coordenadas (x, y) forman una elipse en el plano, entonces det(A) > 0.

4. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sean A y B matrices cuadradas nxn y $p_A(\lambda)$, $p_B(\lambda)$ sus correspondientes polinomios propios

Si
$$p_A(\lambda) = p_B(\lambda)$$
 entonces $A = B$

5. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sea A una matriz cuadrada de orden nxn

Si A es diagonalizable, entonces A es diagonalizable de manera ortogonal

1. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sea (V, \langle , \rangle) un espacio vectorial con producto interno y W un subespacio vectorial de V.

Si
$$dim V = n y dim W = n/2$$
 entonces $dim W^{\perp} = n/2$

2. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sea (V, \langle , \rangle) un espacio vectorial con producto interno y W un subespacio vectorial de V.

$$\forall x \in V (proy_W x = x \Rightarrow proy_{W^{\perp}} x = 0_V)$$

3. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sea (V, \langle , \rangle) un espacio vectorial con producto interno y W un subespacio vectorial de V.

$$\forall u, v \in V \ (proy_W u = proy_W v \Rightarrow u = v)$$

4. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sea (V, \langle , \rangle) un espacio vectorial con producto interno y W un subespacio vectorial de V.

$$\forall u, v \in V \ (proy_W (u + v) = proy_W u + proy_W v)$$

5. (10 Puntos)

Califique la siguiente proposición de acuerdo con su grado de veracidad:

S (siempre verdadera), **A** (a veces verdadera) **N** (nunca verdaderas)

Justifique apropiadamente. Si usted considera que la proposición es a veces verdadera explicite un ejemplo en donde sea verdadera y otro en que sea falsa.

Sea (V, \langle , \rangle) un espacio vectorial con producto interno

$$\forall u, v \in V \ \langle u, v \rangle > \langle u, u \rangle \langle v, v \rangle$$

1. (20 Puntos)

Sea el espacio vectorial $V = \mathbb{R}^3$, con el producto interno definido por:

$$\langle x, y \rangle = x_1 y_1 - x_1 y_3 + 4x_2 y_2 - x_3 y_1 + 2x_3 y_3.$$

Si H es el espacio generado por $\{(3, 2, 0), (5, 0, 5)\}$.

- a. Exprese el vector ${\pmb v}$ = (1, 2, 3) como la suma de dos vectores ${\pmb v}$ = h_1+h_2 tal que $h_1\in {\pmb H}\wedge h_2\in H^\perp$
- b. Halle la distancia más corta de \boldsymbol{v} a H^{\perp}

2. (20 Puntos)

Sea el espacio vectorial $V=\mathbb{R}^3$, con el producto interno definido por:

$$\langle x, y \rangle = 2x_1y_1 - x_1y_3 + 2x_2y_2 - x_3y_1 + x_3y_3.$$

Si H es el espacio generado por $\{(2, 2, 0), (1, 0, 2)\}$.

- a. Exprese el vector v = (3, 2, 1) como la suma de dos vectores v = h_1 + h_2 tal que $h_1 \in H \land h_2 \in H^\perp$
- b. Halle la distancia más corta de ${m v}$ a H^\perp

3. (20 Puntos)

Sea el espacio vectorial $V=\mathbb{R}^3$, con el producto interno definido por:

$$\langle x, y \rangle = 2x_1y_1 + 2x_1y_3 + 2x_2y_2 - 2x_3y_1 + 2x_3y_3.$$

Si \boldsymbol{H} es el espacio generado por $\{(4, 4, \boldsymbol{0}), (2, \boldsymbol{0}, 3)\}$.

- a. Exprese el vector v = (2, 3, 5) como la suma de dos vectores v = h_1 + h_2 tal que $h_1 \in H \land h_2 \in H^{\perp}$
- b. Halle la distancia más corta de ${m v}$ a H^\perp

4. (20 Puntos)

Sea el espacio vectorial $V=\mathbb{R}^3$, con el producto interno definido por:

$$\langle x, y \rangle = 4x_1y_1 - 2x_1y_3 + 4x_2y_2 - 2x_3y_1 + x_3y_3.$$

Si H es el espacio generado por $\{(2, 0, 3), (1, 2, 0)\}$.

- a. Exprese el vector v = (1, 2, 3) como la suma de dos vectores v = h_1 + h_2 tal que $h_1 \in H \land h_2 \in H^\perp$
- b. Halle la distancia más corta de ${m v}$ a H^\perp

5. (20 Puntos)

Sea el espacio vectorial $V = \mathbb{R}^3$, con el producto interno definido por:

$$\langle x, y \rangle = 4x_1y_1 - 2x_1y_3 + x_2y_2 - 2x_3y_1 + x_3y_3.$$

Si *H* es el espacio generado por $\{(2, 0, 2), (0, 2, 5)\}$.

- a. Exprese el vector v = (1, 3, 2) como la suma de dos vectores v = h_1 + h_2 tal que $h_1 \in H \land h_2 \in H^{\perp}$
- b. Halle la distancia más corta de v a H^{\perp}

1. (20 Puntos)

Construir, en caso de ser posible, una transformación lineal T de $P_2(\mathbb{R})$ en $M_{2\times 2}(\mathbb{R})$ que cumpla las condiciones siguientes:

a)
$$Ker(T) = \{p(x) \in P_2(\mathbb{R}) / p(1) = p(-1) + p(0)\}$$

b)
$$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \in Im(T)$$

2. (20 Puntos)

Construir, en caso de ser posible, una transformación lineal T de $P_2(\mathbb{R})$ en $M_{2\times 2}(\mathbb{R})$ que cumpla las condiciones siguientes:

a)
$$Ker(T) = \{p(x) \in P_2(\mathbb{R}) / p(1) = p(-1) \land p(0) = 0\}$$

b)
$$Im(T) = \left\{ \begin{pmatrix} a & a+b \\ b-a & b \end{pmatrix} / a, b \in IR \right\}$$

3. (20 Puntos)

Construir, en caso de ser posible, una transformación lineal T de $P_2(\mathbb{R})$ en $M_{2\times 2}(\mathbb{R})$ que cumpla las condiciones siguientes:

a)
$$Ker(T) = \{ax^2 + bx + (b - a)/a, b \in \mathbb{R}\}\$$

b)
$$Im(T) = \left\{ \begin{pmatrix} a & -2a \\ 2a & a \end{pmatrix} / a \in IR \right\}$$

4. (20 Puntos)

Construir, en caso de ser posible, una transformación lineal T de $P_2(\mathbb{R})$ en $M_{2\times 2}(\mathbb{R})$ que cumpla las condiciones siguientes:

a)
$$Ker(T) = gen\{x^2 - x\}$$

b)
$$Im(T) = gen\left\{ \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \right\}$$

5. (20 Puntos)

Construir, en caso de ser posible, una transformación lineal T de $P_2(\mathbb{R})$ en $M_{2\times 2}(\mathbb{R})$ que cumpla las condiciones siguientes:

a)
$$Ker(T) = gen\{x^2 - x, x + 1, x^2 - 3x - 2\}$$

b)
$$\begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \in Im(T)$$

1. (20 Puntos)

Sea A una matriz cuadrada de orden 3, tal que $A = A^t$. Se conoce que los valores propios de A son $\lambda_1, \lambda_2, \lambda_3$ distintos entre sí. Si $v_1 = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ y $v_2 = \begin{pmatrix} -1 \\ a \\ 2 \end{pmatrix}$ son los vectores propios asociados a λ_1 y λ_2 respectivamente. Justificando de manera apropiada, determine el valor de a y un vector propio asociado a λ_3

2. (20 Puntos)

Sea A una matriz cuadrada de orden 3, tal que $A = A^t$. Se conoce que los valores propios de A son $\lambda_1, \lambda_2, \lambda_3$ distintos entre sí. Si $v_1 = \begin{pmatrix} 6 \\ -3 \\ 9 \end{pmatrix}$ y $v_2 = \begin{pmatrix} -2 \\ a \\ 4 \end{pmatrix}$ son los vectores propios asociados a λ_1 y λ_2 respectivamente. Justificando de manera apropiada, determine el valor de a y un vector propio asociados a λ_3

3. (20 Puntos)

Sea A una matriz cuadrada de orden 3, tal que $A = A^t$. Se conoce que los valores propios de A son $\lambda_1, \lambda_2, \lambda_3$ distintos entre sí. Si $v_1 = \begin{pmatrix} a \\ -4 \\ 12 \end{pmatrix}$ y $v_2 = \begin{pmatrix} -5 \\ 20 \\ 10 \end{pmatrix}$ son los vectores propios asociados a λ_1 y λ_2 respectivamente. Justificando de manera apropiada, determine el valor de a y un vector propio asociado a λ_3

4. (20 Puntos)

Sea A una matriz cuadrada de orden 3, tal que $A = A^t$. Se conoce que los valores propios de A son $\lambda_1, \lambda_2, \lambda_3$ distintos entre sí. Si $v_1 = \begin{pmatrix} -6 \\ -3 \\ 3 \end{pmatrix}$ y $v_2 = \begin{pmatrix} -6 \\ a \\ 12 \end{pmatrix}$ son los vectores propios asociados a λ_1 y λ_2 respectivamente. Justificando de manera apropiada, determine el valor de a y un vector propio asociado a λ_3

5. (20 Puntos)

Sea A una matriz cuadrada de orden 3, tal que $A=A^t$. Se conoce que los valores propios de A son $\lambda_1, \lambda_2, \lambda_3$ distintos entre sí. Si $v_1=\begin{pmatrix} 6\\-3\\9 \end{pmatrix}$ y $v_2=\begin{pmatrix} -10\\a\\5 \end{pmatrix}$ son los vectores propios asociados a λ_1 y λ_2 respectivamente. Justificando de manera apropiada, determine el valor de a y un vector propio asociado a λ_3

1. (20 Puntos)

Sea $T:V \to W$ una transformación lineal. Demuestre que:

T es inyectiva \Rightarrow dimV \leq dimW

2. (20 Puntos)

Sea $T:V \to W$ una transformación lineal. Demuestre que:

T es sobreyectiva \Rightarrow dimV \geq dimW

3. (20 Puntos)

Sea $T:V \to W$ una transformación lineal. Demuestre que:

T es invertible $\Rightarrow dim V = \dim W$

4. (20 Puntos)

Sea $T:V \to W$ una transformación lineal. Demuestre que:

 $\left\{ T\left(v_{1}\right),T\left(v_{2}\right),T\left(v_{2}\right)\right\} \text{ es L.I. en }W\Rightarrow\left\{ v_{1},v_{2},v_{3}\right\} \text{ es linealmente independiente en }V$

5. (20 Puntos)

Sea $T:V \to W$ una transformación lineal. Demuestre que:

 $\dim \mathbf{V} \neq \dim \mathbf{W} \Rightarrow \ \mathbf{T}$ no es un Isomorfismo