

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE CIENCIAS QUÍMICAS Y AMBIENTALES

Año: 2017	Período: Primer Término			
Materia: QUÍMICA GENERAL	Coordinador: QF. Marianita Pazmiño, Mgter.			
Evaluación: Primera	Fecha: 30 de junio de 2017			
COMPROMI	SO DE HONOR			
Yo,				
Firma NÚMERO DE	MATRÍCULA: PARALELO:			

RESOLUCIÓN Y RÚBRICA

TEMA 1: APLICACIÓN DE LA LEY DE HESS (10 PUNTOS)

Encontrar el calor de reacción en cal/mol de la siguiente ecuación química:

$$C_{(s)} + H_{2(g)} + O_{2(g)} \rightarrow CH3COOH_{(l)}$$

Utilizando los siguientes datos de ecuaciones y sus respectivos cambios de entalpía:

A)
$$CH_3COOH_{(I)} + 2 O_{2 (g)} \rightarrow 2 CO_{2 (g)} + 2 H_2O_{(I)}$$
 $\Delta H_1(25^{\circ}C) = -870.86 \text{ J/mol}$ $\Delta H_2(25^{\circ}C) = -94.05 \text{ cal/mol}$

C) $H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2 O_{(l)}$

 $\Delta H (25^{\circ}C) = -0.6832 \text{ Kcal/mol}$

A. Ecuación balanceada

$$2C_{(s)} + 2 H_{2 (g)} + O_{2 (g)} \rightarrow CH_3COOH_{(l)}$$

B. Sumar ecuación A con 2*B

Ecuación D.- $2C(s) + 2H_2O \rightarrow CH_3COOH_{(I)};$ 20.24 cal/mol

C. Sumar ecuación D con 2*C

$$2C(s) + 2H_2O \rightarrow CH_3COOH_{(I)}$$
 20.24 cal/mol $2H_{2(g)} + O_2(g) \rightarrow 2H_2O_{(I)}$ -1366.4 cal/mol $2C_{(s)} + 2H_{2(g)} + O_{2(g)} \rightarrow CH_3COOH_{(I)}$ -1346.16 cal/mol

TEMA: TERMOQUÍMICA (10 puntos)							
	Conductas y niveles de desempeño						
NIVELES DE	INICIAL	EN	DESARROLLADO	EXCELENTE			
EJECUCIÓN		DESARROLLO					
Aplicar correctamente la ley de Hess calculando la entalpía de reacción	El estudiante equilibra de manera correcta la ecuación química inicial ya establecida.	El estudiante efectúa de manera correcta las conversiones de unidades a cal/mol.	El estudiante plantea de manera correcta los reactivos y productos entre las ecuaciones A y B, realiza los cálculos necesarios para la determinación de la entalpia de reacción.	El estudiante plantea de manera correcta los reactivos y productos en las ecuaciones D y C y realiza los cálculos necesarios para determinar la nueva entalpia			
	0-2	2.1-5	5.1-8	de reacción 8.1-10			

TEMA 2: ENLACES QUÍMICOS. (10 PUNTOS)

Para el $COCl_2$ se presentan las siguientes 5 estructuras de Lewis. Determine en cada caso, el número total de electrones de valencia que tiene cada molécula, el número de pares enlazantes y no enlazantes, su carga formal, además analice e indique cuál sería la representación más apropiada y justifique su respuesta tanto si es la más apropiada o no.

	Electrones valencia	Pares de elec átomo c		Carga formal	Apropiada Si o No	Justificación
COCl ₂	24 e ⁻	enlazantes	no enlazan tes			
:0: :CI—C—CI:	24 e ⁻	3	1	C=4-5=-1 O=6-5=+1 Cl1=7-7=0 Cl2=7-7=0	No	El O no cumple el octeto
;c:—c—ci:	24 e ⁻	4	0	C=4-4=0 O=6-6=0 CI1=7-7=0 CI2=7-7=0	Si	Todos cumplen el octeto y la carga formal de cada elemento es igual a cero
::::::::::::::::::::::::::::::::::::	26 e ⁻	4	0	C=4-4=0 O=6-7=-1 CI1=7-7=0 CI2=7-8=-1	No	La molécula se excede en e ⁻ , El cloro no cumple octeto, y la carga formal es -1 para el oxígeno y para cada cloro
:0: :CI—C—CI:	26 e ⁻	4	1	C=4-6=-2 O=6-6=0 CI1=7-7=0 CI2=7-7=0	No	La molécula se excede en e ⁻ , el carbono no cumple octeto y el carbono tiene carga formal de -2

	TEMA: ENLACE QUÍMICO (10 puntos)					
	Conduc	ctas y niveles de	desempeño			
NIVELES DE	INICIAL	EN	DESARROLLADO	EXCELENTE		
EJECUCIÓN		DESARROLLO				
Reconocer los conceptos de enlace químico y Estructura de Lewis	El estudiante calcula y determina el número total de electrones de valencia, pares enlazantes y no enlazantes	El estudiante calcula la carga formal de cada elemento de forma correcta	En base a los cálculos realizados, el estudiante determina si cada estructura de Lewis planteada es apropiada o no	El estudiante justifica correctamente la determinación de cada estructura de Lewis planteada.		
	0-2	2.1-5	5.1-8	8.1-10		

TEMA 3: GEOMETRÍA MOLECULAR (10 PUNTOS)

Dibuje e indique la geometría de dominios y la geometría molecular y el número de dominios de las siguientes moléculas HCN, TeO₂, O₃ y XeF₂. Determine además si la molécula es polar o no polar. Respuesta:

Especies Químicas	Geometría (dibuje)	Geometría Molecular (nombre)	Geometría por dominios (nombre)	Número de dominio de electrones	Momento dipolar (polar o no)
HCN	Linear E. P. G. Linear Molecular Geometry C Gyrafe 2, 200	Lineal	Lineal	2	Polar
O ₃	ÖÖ	angular	Trigonal plana	3	Polar
XeF ₂		lineal	Bipiramidal trigonal	5	No polar

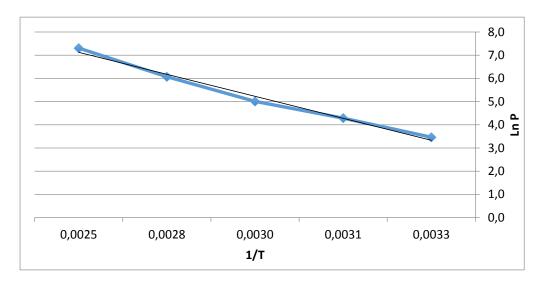
CH₃Br Br:	Tetraédrica	Tetraédrica	4	polar
-----------	-------------	-------------	---	-------

RÚBRICA:

Onnahaata	Tema : GEOMETRÍA MOLECULAR (10 PUNTOS) Conductas y niveles de desempeño(Inicial/En desarrollo/Desarrollado/Excelente)					
Conducta	as y niveies a	e desempeno(inicia	ai/En desarrollo/Desar	rollado/Excelente)		
NIVELES DE	INICIAL	EN	DESARROLLADO	EXCELENTE		
EJECUCIÓN		DESARROLLO				
Reconocer el	El	El estudiante	El estudiante	El estudiante		
tipo de	estudiante	mediante el	identifica	completa		
especie	identifica	dibujo de la	correctamente el	correctamente la		
química y su	la	geometría,	número de	tabla con la		
geometría	estructura	nombra	dominios de cada	identificación del		
molecular.	de Lewis y	correctamente	especie.	momento dipolar de la		
	dibuja la	las geometrías		molécula.		
	geometría	moleculares y				
	molecular	de dominios.				
Puntaje	0 - 2	2.1 - 6	6.1 - 8	8.1 - 10		

TEMA 4: ECUACION CLAUSIUS CLAPEYRON (10 PUNTOS)

Un autoclave es un equipo que permite trabajar a alta presión para realizar esterilizaciones con vapor de agua. La presión elevada permite que el agua alcance temperaturas superiores a 100°C.


La siguiente tabla muestra datos de presión de vapor y temperatura del agua:

T °C	30	45	60	85	120
P mmHg	31.85	72.8	149.62	433	1489.14

Datos: calor específico = 4.186 J/g °C, R= 8.314 J/mol K.

- A) Demuestre si se cumple o no la ecuación de Clausius Clapeyron.
- B) Conociendo que los autoclaves modernos permiten alcanzar hasta 135°C de temperatura. Calcule la presión necesaria a someter el agua para que no hierva hasta esa temperatura.
- C) Calcule el calor transferido desde el punto de ebullición normal del agua hasta la temperatura máxima del autoclave, si se utilizó un volumen de 4 litros de agua.

Graficando In P vs 1/T

- A) Según la gráfica tiene una pendiente negativa si cumple la ecuación de Clausius Clapeyron.
- **B)** m(pendiente) ≈ 4889

$$\Delta$$
Hvap = m * R

$$\Delta$$
Hvap = 4889*8.314 = 40.65 kJ/mol

Datos :
$$100 \, ^{\circ}\text{C} - 1 \, \text{atm}$$
; $40.65 \, \text{kJ/mol} = 40650 \, \text{J/mol}$

$$ln(P_2/P_1) = -\Delta Hvap/R (1/T_2 - 1/T_1)$$

$$ln(P_2/1) = -40650/8.314 (1/408 - 1/373)$$

$$P_2 = 3.09 \text{ atm}$$

C)
$$4 L * 1 kg/L = 4 kg = 4000g$$

Q = Ce* m*
$$\Delta t$$
 = (4.186) 4000 (135-100) = 586040 J = 586.040 kJ

	Tema: LIQUIDOS (10 PUNTOS)					
Conducta	as y Niveles d	le desempeño (inic	ial/En desarrollo/ Desarrolla	do/Excelente		
NIVELES DE	INICIAL	EN	DESARROLLADO	EXCELENTE		
EJECUCIÓN		DESARROLLO				
Desempeño en el uso de la ecuación de Clapeyron y ecuación del calor.	realiza cálculos	El estudiante con esos datos realiza la gráfica ln P vs 1/T, demuestra y contesta si cumple o no la ecuación de Clausius Clapeyron	El estudiante utiliza el valor de la pendiente (m) para calcular la ΔHvap utilizando la ecuación de Clausius Clapeyron para determinar la presión del agua.	El estudiante utiliza adecuadamente los datos para calcular el calor transferido.		
Puntaje	0-2	2.1-5	5.1 – 8.0	8.1 - 10		

TEMA 5: SÓLIDOS CRISTALINOS (10 PUNTOS)

Una substancia desconocida (X) cristaliza en una red cúbica centrada en el cuerpo. La arista de la celda unitaria mide 501 pm y la densidad del cristal es 3.50 g/cm³.

- A) Realice el cálculo respectivo para identificar la sustancia y complete la tabla a continuación, considerando las propiedades físicas de la sustancia desconocida (X): excelente conductividad térmica y eléctrica, Pto. Fusión: 1000 K, maleable.
- B) Si se compara la densidad de la substancia X con la de otra substancia Y, que cristaliza en una red cúbica centrada en las caras. ¿Cuál substancia es más densa? Justifique su respuesta.

Substancia	Peso Molecular
	(g/mol)
ZnCl ₂	136
Cs	133
Xe	132
H ₂ Te	130

NOMBRE DEL SÓLIDO CRISTALINO	TIPO DE SÓLIDO	N° DE COORDINACIÓN
Cesio	metálico	8

A)
$$a = 502 \text{ pm} * \frac{1 \times 10^{-10} \text{ cm}}{1 \text{ pm}} = 5.01 \times 10^{-8} \text{ cm}$$

$$V = a^3 = (5.01 \times 10^{-8} \text{ cm})^3 = 1.26 * 10^{-22} \text{ cm}^3$$

$$m = dV = 3.5 \text{ g} \cdot \text{cm}^{-3} \times 1.26 * 10^{-22} = 4.4 * 10^{-22} \text{ g}$$

$$2 \text{ átomos} * \frac{1 \text{mol}}{6.02 \times 10^{23} \text{ átomos}} = 3.32 \times 10^{-24} \text{ moles}$$

$$M = \frac{g}{\text{mol}} = \frac{4.4 * 10^{-22} \text{ g}}{3.32 \times 10^{-24} \text{ moles}} = 132.56 \frac{g}{\text{mol}}$$

B) La substancia Y es más densa, porque existe mayor volumen ocupado por celda cúbica centrada en las caras.

Tema: SÓLIDOS (10 PUNTOS)				
Conductas y Niveles de desempeño (inicial/En desarrollo/				
Desarrollado/Excelente				
NIVELES DE	INICIAL	EN	DESARROLLAD	EXCELENTE
EJECUCIÓN		DESARROLL	0	
		0		
Desempeño en	EI	El estudiante	El estudiante	El estudiante
calcular la masa	estudiante	con el valor del	calcula	determina
molar de un	realiza la	Volumen	correctamente la	correctamente
elemento que	conversión	determina la	masa molar de la	el tipo de sólido
presenta una	de la arista	masa en g de	sustancia y la	estudiado,
red cristalina	de pm a	sólido y lo	identifica de la	completa la
	cm., y	transforma a	tabla.	tabla con el
	determina	moles.		número de
	el volumen			coordinación y
	de la celda			justifica la
				pregunta B.
Puntaje	0-2	2.1- 4	4.1- 6	6.1 - 10