Faculty of Maritime Engineering and Biological, Ocean and Natural Resources Sciences

FINITE ELEMENTS

PARTIAL EXAM
28 June 2016
Student: \qquad

1. A deck beam of flexural rigidity $\mathrm{EI}=6912 \mathrm{kN} . \mathrm{m} 2$ subjected to a uniformly distributed load as shown in Figure is supported by frame brackets and a pillar [40 Pts].

a) Assemble the global structural stiffness matrix of the deck beam using the stiffness matrix of a beam element with length L given below, [13]
b) Determine the angular displacement of the beam at the pillar if a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ is applied over a span of 4 m . Assume that the pillar constrains only the vertical displacement and the brackets rigidly restrict any movement of the beam ends. [6]
c) Calculate all reactions at the brackets and pillar and demonstrate that the beam structure is in equilibrium. [15] Keep in mind the reactions where the external force is applied!
d) If the brackets were only partially constrained describe how you would solve the beam bracket problem. [6]
2. A frame structure attached to the stern of a boat is designed to withstand a vertical load of 2.5 kN as shown below. The cross section of the frame area A of $0.005 \mathrm{~m}^{2}$ and the second moment of area I of $0.2 \times 10^{-4} \mathrm{~m}^{4}$. Young's Modulus E $=2.1 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$. [60 Pts]
a) Using the stiffness matrix of a general beam element given below, assemble the
 global structural stiffness matrix of the frame structure.[11 Marks]
b) If the frame is rigidly fixed to the stern of the boat, calculate the displacements of the tip of the frame due to the vertical load.
[26 Marks]
c) Finally, determine all reactions at the stern supports and demonstrate that the frame structure is in equilibrium.

Stiffness Matrices:

$$
\begin{aligned}
& {\left[K^{e}\right]=\frac{E I}{L^{3}}\left[\begin{array}{cc:cc}
v_{i} & \theta_{z i} & v_{j} & \theta_{z j} \\
\hdashline 6 L & 6 L & -12 & 6 L \\
\hdashline-12 & -6 L & -6 L & 2 L^{2} \\
6 L & 2 L^{2} & -6 L & -6 L^{2}
\end{array}\right]} \\
& {\left[K^{e}\right]=\frac{E A}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]} \\
& {\left[\mathrm{K}^{\mathrm{e}}\right]=\frac{E A}{L}\left[\begin{array}{cccc}
C^{2} & C S & -C^{2} & -C S \\
C S & S^{2} & -C S & -S^{2} \\
-C^{2} & -C S & C^{2} & C S \\
-C S & -S^{2} & C S & S^{2}
\end{array}\right]} \\
& {\left[\bar{K}^{e}\right]=\frac{E A}{L}\left[\begin{array}{ccc:ccc}
\bar{u}_{i} & \bar{v}_{i} & \theta_{z i} & \bar{u}_{j} & \bar{v}_{j} & \theta_{z j} \\
c^{2}+s^{2} \frac{12 r^{2}}{L^{2}} & c s-c s \frac{12 r^{2}}{L^{2}} & -s \frac{6 r^{2}}{L} & -c^{2}-s^{2} \frac{12 r^{2}}{L^{2}} & -c s+c s \frac{12 r^{2}}{L^{2}} & -s \frac{6 r^{2}}{L} \\
c s-c s \frac{12 r^{2}}{L^{2}} & s^{2}+c^{2} \frac{12 r^{2}}{L^{2}} & c \frac{6 r^{2}}{L} & -c s+c s \frac{12 r^{2}}{L^{2}} & -s^{2}-c^{2} \frac{12 r^{2}}{L^{2}} & c \frac{6 r^{2}}{L} \\
-s \frac{6 r^{2}}{L^{2}} & c \frac{6 r^{2}}{L} & 4 r^{2} & s \frac{6 r^{2}}{L} & -c \frac{6 r^{2}}{L-} & 2 r^{2} \\
\hdashline-c^{2}-s^{2} \frac{12 r^{2}}{L^{2}} & -c s+c s \frac{12 r^{2}}{L^{2}} & s \frac{6 r^{2}}{L} & c^{2}+s^{2} \frac{12 r^{2}}{L^{2}} & c s-c s \frac{12 r^{2}}{L^{2}} & s \frac{6 r^{2}}{L} \\
-c s+c s \frac{12 r^{2}}{L^{2}} & -s^{2}-c^{2} \frac{12 r^{2}}{L^{2}} & -c \frac{6 r^{2}}{L} & c s-c s \frac{12 r^{2}}{L^{2}} & s^{2}+c^{2} \frac{12 r^{2}}{L^{2}} & -c \frac{6 r^{2}}{L} \\
-s \frac{6 r^{2}}{L} & c \frac{6 r^{2}}{L} & 2 r^{2} & s \frac{6 r^{2}}{L} & -c \frac{6 r^{2}}{L} & 4 r^{2}
\end{array}\right]}
\end{aligned}
$$

Where $\mathbf{C}=\cos \alpha, S=\sin \alpha$ and $r=\sqrt{ }(I / A)$, radius of gyration of cross-section. And the equivalent nodal loads for a uniformly distributed load q over a beam of length L is:

Uniform load
distribution

Don't waste your time, select your final matrix accordingly and don't forget to put comments on your results!!

