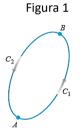
AÑO: 2019	PERIODO: PRIMERO
MATERIA: CÁLCULO DE VARIAS VARIABLES	PROFESOR:
EVALUACIÓN: SEGUNDA	
TIEMPO DE DURACIÓN: 2 Horas	FECHA: AGOSTO 26 DE 2019

COMPROMISO DE HONOR

Yo,	al	firmar	este
compromiso, reconozco que el presente examen está diseñado para ser resuelto de mane	era ir	dividual, q	ue no
puedo usar calculadora; que solo puedo comunicarme con la persona responsable de la re	есеро	ción del exa	amen;
y, cualquier instrumento de comunicación que hubiere traído, debo apagarlo y depositarlo	o en	la parte an	terior
del aula, junto con algún otro material que se encuentre acompañándolo. No debo adei	más,	consultar	libros,
notas, ni apuntes adicionales a las que se entreguen en esta evaluación. Los temas de	ebo d	desarrollari	os de
manera ordenada.			

Firmo al pie del presente compromiso, como constancia de haber leído y aceptar la declaración anterior.


"Como estudiante de ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar".


TIRMA:	NÚMERO DE MATRÍCULA:	PARALELO:	

PRIMER TEMA (15 puntos)

Determine el valor de verdad de las siguientes proposiciones; en caso de ser verdaderas, justifíquelas formalmente; caso contrario, desarrolle un contraejemplo:

a) Considere un campo vectorial conservativo $\vec{F}(x,y)$; en la figura 1, $\int_{C_1} \vec{F}(x,y) \cdot dr = \lambda, \lambda \in R$ desde el punto A al punto B, y , $\int_{C_2} \vec{F}(x,y) \cdot dr = -\lambda, \lambda \in R$, desde el punto B al punto A. Note la simetría del problema (C_2 es la semielipse opuesta de C_1).

Si en la figura 2, $\int_{\mathcal{C}_1} \vec{F}(x,y) \cdot dr = \beta, \beta \in R$ desde el punto A al punto B entonces , $\int_{-\mathcal{C}_2} \vec{F}(x,y) \cdot dr = -\beta, \ \beta \in R$ desde el punto B al punto A.

b) $\vec{F}(x,y,z) = sen(x)e^z\hat{\imath} + xy\hat{\jmath} - \cos(x)e^z\hat{k}$, representa un campo vectorial conservativo.

c) Dada la región $R=\left\{(x,y)\in R^2; \frac{x^2}{16}+\frac{y^2}{9}\leq 1\right\}$, utilizando el teorema de Green se obtiene que el área de la superficie de R es igual a $12\pi\,u^2$.

Rúbrica:

d) El valor de $\iiint_Q z^2 dV$ donde Q es la región sólida que yace arriba del cono $z=\sqrt{3x^2+3y^2}$ y dentro de la esfera $x^2+y^2+z^2=6z$ es igual a $\frac{5505}{32}\pi\,u^3$

SEGUNDO TEMA (6 puntos)

Utilizando multiplicadores de Lagrange, determine los puntos de la esfera $x^2 + y^2 + z^2 = 81$, que estén más distantes y más cercanos del punto P (2,1,2). Hallar las respectivas distancias.

TERCER TEMA (8 puntos)

Dada la siguiente integral doble $\int_0^{2a} \int_{\sqrt{ax}}^{\sqrt{6a^2-x^2}} 2xy \, dy \, dx$, cambie el orden de integración y luego evalúela.

CUARTO TEMA (8 puntos)

Utilizando integrales triples y luego un cambio de sistema adecuado, calcule el volumen del sólido limitado por las superficies $x^2+y^2=9$; $x^2+y^2+z^2=25$; $x^2+y^2=z^2$; $z\geq 0$.

QUINTO TEMA (8 puntos)

Calcule la integral $\int_C (y-z)dx + (z-x)\,dy + (x-y)\,dz$, siendo C la curva dada por las ecuaciones $\begin{cases} x^2+4y^2=1\\ z=x^2+y^2 \end{cases}$ utilizando el teorema de Stokes.

