ESPOL POLYTECHNIC UNIVERSITY

YEAR:	2019	EVALUATION:	Rubrica
COURSE:	ORGANIC CHEMISTRY II	TEACHERS:	PhD. HACI BAYKARA, PhD. JOAN VERA
		DATE:	AUGUST 26, 2019

HONOR COMMITMENT

. when signing this commitment, I acknowledge that the present
exam is designed to be solved individually, that I can use an ordinary calculator for arithmetic calculations, a pen or pencil; that I can only communicate with the person responsible for receiving the exam; and, any communication instrument, I must turn it off and deposit it in the front of the room, along with some other material that is accompanying it. I should not also consult books, notes, or additional notes to those delivered in this evaluation. The topics I must develop in an orderly manner.

I sign this commitment, as proof of having read and accept the previous statement.

Signature

Section I: Spectroscopy RMN and Mass. (25 points)

1. The following ${ }^{1} \mathrm{H}-\mathrm{RMN}$ and MS spectra's are a compound of molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$, Set a possible structure for these signals, assign these signals to the protons in the structure, explain the pointed fragments out. (Clue: the compound has an strong infrared absorption in $1740 \mathrm{~cm}^{-1}$ region).

Infrared absorption: C=O, Esther

1H-NMR (15 points)

Assign. Shift(ppm)
A $\quad 7.44$ to 7.07
B $\quad 4.269$
C
D
2.926
2.013

Mass spectra (10 points)

m/z 104

m/z 91

m/z 43

Section II Biomolecules and Polymers. (70 points)

1. In the polymerization by free radicals, polyethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ present lateral ramifications, identify the phenomenon and proposes a simple mechanism, argue your answer. (15 points)

2. In the following monomers which in the cationic polymerization is the best, why? (10 points)
a)

b)

a) (5 points)

b) (5 points)

3. In the propylene polymerization $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ using catalyst Ziegler-Natta the polymers stereochemistry can be controlled. Draw three known ordinations and stablished crystallinity differences about this structure. (10 points)

isotactic

syndiotactic

Crystallinity

4. Polyamides like nylon have many applications in the industry. However, in nature are important polyamides for life, draw the amides polymer obtain crossing the followings amino acids in the sequence Ser-Gly-Ala-Gly (10 points)

5. Draw the cyclization mechanism of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. (15 points)

conformación de silla (todos los sustituyentes ecuatoriales)

conformación de silla (OH en el C1 axial)
6. Identify the following biomolecules according to their structure: (10 points)

Triglyceride Complex lipid	Cholesterol Simple lipid	Glucofuranose Monosaccharide	Phenylalanine Amino acids

Section III. Esthers of inorganic acids (5 points)

1. Write the product obtained for the following reaction:

(
