ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Mecánica y Ciencias de la Producción

"Diseño de un compactador de etiquetas húmedas de papel"

PROYECTO INTEGRADOR

Previo la obtención del Título de:

Ingeniero Mecánico

Presentado por:

Martin Fernando Correa Reyes

María José Villegas Reyes

GUAYAQUIL - ECUADOR Año: 2020

DEDICATORIA

A la santísima trinidad y a la virgen María por ser mis guías en todo momento. A mis padres Willians Correa y Luisa Reyes por ser los pilares fundamentales en mi vida, lo son todo para mí. A mis hermanos Willian, Paúl y Andrés, por ser mis apoyos incondicionales y siempre desear lo mejor para mí. A mis cuñadas Gabriela y María Fernanda; mis sobrinos Ángel Paúl, Daniel, Gabriel y Willian Fernando; mis tías Rosa e Irma.

(Juan 6:35)

Martin Fernando Correa Reyes

El presente proyecto se lo dedico a mi mamá Elizabeth Reyes por su apoyo a lo largo de mi carrera. A mi padre Chubby Villegas que hubiera dado todo por compartir este logro él y a mi fiel amigo, Balto, que me acompañó en mis trasnochadas y supo esperarme en mis ausencias a lo largo de mi vida académica.

María José Villegas Reyes

AGRADECIMIENTO

A Dios por brindarme fuerzas y sabiduría cuando siempre se las pedí. A mi familia que siempre estuvo para apoyarme. A los profesores que con su granito de arena y experiencia aportaron para mi formación profesional. A mis amigos con los que compartí durante mis estudios.

Martin Fernando Correa Reyes

Mi más sincero agradecimiento a Dios por darme las fuerzas necesarias para llegar hasta aquí. A mi familia y su apoyo incondicional. A los profesores que supieron dejar huella en mi caminar y, por último, pero no menos importante, a mi novio Renato Jara y amigos que me apoyaron a lo largo de mi carrera universitaria.

María José Villegas Reyes

DECLARACIÓN EXPRESA

"Los derechos de titularidad y explotación, nos corresponde conforme al reglamento de propiedad intelectual de la institución; María José Villegas Reyes y Martin Fernando Correa Reyes damos nuestro consentimiento para que la ESPOL realice la comunicación pública de la obra por cualquier medio con el fin de promover la consulta, difusión y uso público de la producción intelectual"

María José Villegas Reyes Martin Fernando Correa Reyes

EVALUADORES

RODOLFO EZEQUIEL PAZ MORA Digitally signed by RODOLFO EZEQUIEL PAZ MORA Date: 2021.02.24 08:47:00 -05'00'

Msc. Rodolfo Paz

PROFESOR DE LA MATERIA

Ing. Ernesto Martínez Lozano

PROFESOR TUTOR

RESUMEN

Para que las botellas retornables de cerveza vuelvan al mercado necesitan pasar por un proceso de lavado en donde son removidas las etiquetas mediante la aspersión de solución cáustica. Debido a la gran demanda se extraen aproximadamente 60 000 etiquetas por hora, éstas se acumulan a la salida de la lavadora generando problemas de orden y limpieza, por lo que se requiere de un operador para trasladarlas hacia un contenedor. Por ende, el presente proyecto tiene como objetivo diseñar un compactador hidráulico automático que permita reducir el volumen de las etiquetas, de tal forma que se almacenen de manera óptima sin disponer de la mano del operador en su transportación. Para llevar a cabo este proyecto se determinaron la densidad y presión de compactación para así poder diseñar tanto el vástago como el disco de compactación, además de seleccionar los demás elementos del sistema hidráulico. Con el software Inventor se realizaron los planos esquemáticos y simulaciones de los componentes diseñados. Como resultado, el sistema hidráulico consta de lo siguiente: una bomba de engranajes GP1K25 de 1,19 [GPM], un motor trifásico jaula de ardilla de 1,21 [HP], un cilindro hidráulico de doble efecto y un reservorio de aceite con capacidad de 14 litros. La estructura final del compactador tiene una longitud de aproximadamente 2 metros. Se realizó el análisis de costos y se obtuvo que el proyecto está valorado en 4 000 dólares. Se concluye que la construcción del compactador es viable y económico a diferencia de importar este tipo de equipos.

Palabras claves: Compactador hidráulico, Densidad de compactación, Bomba de engranajes, Cilindro hidráulico doble efecto.

ABSTRACT

For returnable beer bottles to return to the market they need to go through a washing process and by spraying caustic solution the labels are removed. Due to the high demand approximately 60,000 labels are extracted per hour, these accumulate at the exit of the washing machine generating ordering and cleaning problems, so it is required of an operator to move them to a container. Therefore, this project aims to design an automatic hydraulic compactor to reduce the volume of labels so that they are stored optimally without having the operator's hand in their transport. To carry out this project, the compaction density and pressure were determined in order to be able to design both the stem and the compaction disc, in addition to selecting the other elements of the hydraulic system. With Inventor software, schematic drawings and simulations of the designed components were performed. As a result, the hydraulic system consists of the following: a GP1K25 1.19 [GPM] gear pump, a 1.21 [HP] three-phase squirrel cage engine, a double-acting hydraulic cylinder and a 14-litre oil reservoir. The final structure of the compactor has a length of approximately 2 meters. The cost analysis was carried out and the project was obtained to be valued at \$4,000. It is concluded that the construction of the compactor is feasible and economical as a matter of importing such equipment.

Keywords: Hydraulic Compactor, Compaction Density, Gear Pump, Double Effect Hydraulic Cylinder.

ÍNDICE GENERAL

RESUMEN		۱.
ABSTRACT		II
ÍNDICE GE	NERALl	Ш
ABREVIATI	JRAS	V
SIMBOLOG	iÍA\	/I
ÍNDICE DE	FIGURASI	X
ÍNDICE DE	TABLAS	ΧI
ÍNDICE DE	PLANOSX	(II
CAPÍTULO	1	1
1. Introd	lucción	1
1.1 Def	inición del Problema	1
1.2 Jus	tificación del proyecto	2
1.3 Obj	etivos	3
1.3.1	Objetivo General	3
1.3.2	Objetivos Específicos	3
1.4 Mai	rco teórico	3
1.4.1	Proceso de lavado de botellas	3
1.4.2	Conceptos relacionados	5
1.4.3	Principios de la Oleohidráulica	7
CAPÍTULO	21	0
2. Metod	dología1	0
2.1 Dis	eño Conceptual1	0
2.1.1	Requerimientos de diseño1	0
2.1.2	Determinación del tipo de compactador a diseñar1	0
2.1.3	Árbol de objetivos1	1
214	Restricciones 1	3

2.1.5	Funciones1	13					
2.1.6	Capacidad nominal del equipo1	15					
2.1.7	Alternativas de solución15						
2.1.8	Selección de la mejor alternativa de solución1	16					
2.1.9	Descripción del funcionamiento del sistema1	17					
2.2 Dis	seño Preliminar1	17					
2.2.1	Estimación de densidad de las etiquetas húmedas1	17					
2.2.2	Determinación de la fuerza del actuador1	19					
2.3 Dis	seño detallado1	19					
2.3.1	Diseño del Sistema Oleo hidráulico1	19					
2.3.2	Diseño de las tuberías del compactador	32					
2.3.3	Diseño de la tolva	32					
CAPÍTULO	3	34					
3. Resu	ıltados y Análisis3	34					
3.1 Re	sultados3	34					
3.1.1	Diseño hidráulico	34					
3.1.2	Diseño estructural	36					
3.2 An	álisis de Resultados3	37					
3.3 Co	stos del proyecto2	11					
CAPÍTULO	9.4	1 3					
4. Cond	clusiones y Recomendaciones4	13					
4.1 Co	nclusiones2	13					
4.2 Re	comendaciones2	13					
BIBLIOGRA	AFÍA						
APÉNDICE	ES .						

ABREVIATURAS

ESPOL Escuela Superior Politécnica del Litoral

AISC American Institute of Steel Construction

ISO International Organization for Standardization

ASTM American Society for Testing and Materials

PVC Policloruro de Vinilo

NPTF National Pipe Thread Fuel

BSPP British Standard Pipe Paralell

JIC Joint Industrial Conference

SAE Society of Automative Engineers

NEMA National Electric Manufacturers Association

SIMBOLOGÍA

kg Kilogramos

 $egin{array}{ll} g & & & & & & \\ m & & & & & & \\ \end{array}$ Metro

cmCentímetrommMilímetroinPulgadahHoraminMinuto

s Segundos

psi Libras sobre pulgada cuadrada

PaPascalesNNewtonJoulesWWatts

HP Horse Power

 P_E Presión ejercida

F Fuerza aplicada

A Área sometida a la fuerza F

Q Caudal

GPM Galones por minuto

V Volumen

t Tiempo emplead

v Velocidad del fluido en el ducto

Trabajado realizado

 d_f Distancia recorrida debido a la fuerza F

Pot Potencia requerida

 ρ Densidad

m Peso total etiquetas

∀ Volumen final del papel compactado

*F*_{extensión} Fuerza de extensión del pistón

P Presión de compactación

D Diámetro del cilindro

 S_r Relación de esbeltez

Le Longitud efectiva

K Constante de fijeza final

Longitud de la columna entre extremos

 r_{min} Radio de giro mínimo

Constante de columna

E Módulo de Young

 S_{ν} Esfuerzo de fluencia

FS Factor de seguridad

 σ_T Esfuerzo de trabajo

*F*_{admisible} Fuerza admisible

 $F_{retroceso}$ Fuerza de retroceso

d Diámetro de vástago

 $v_{vstago-avance}$ Velocidad de avance del vástago

 $v_{vstatago-retroceso}$ Velocidad de retroceso del vástago

Q_{entrada} Caudal de entrada

 Q_{salida} Caudal de salida

 $A_{circular}$ Área circular

A_{anular} Área anular

Q Caudal entrada/salida

d_i Diámetro interno de la tubería

 V_{tahla} Velocidad recomendada en la tabla

 $d_{aspersión \ máximo}$ Diámetro de aspersión máximo

 $d_{aspersión \, minimo}$ Diámetro de aspersión mínimo

 $d_{impulsión \ m\'aximo}$ Diámetro de impulsión máximo

 $d_{impulsión \ minimo}$ Diámetro de impulsión mínimo

 $d_{retorno\ m\'aximo}$ Diámetro de retorno máximo

 $d_{retorno\ minimo}$ Diámetro de retorno mínimo

*V*_{tanque} Volumen del tanque

*Q*_{aspiración} Caudal de aspiración

*P*_{motor} Potencia del motor

 p_{bomba} Presión de la bomba

 Q_{bomba} Caudal de la bomba

 η_{bomba} Eficiencia de la bomba

 $K_{conversi\'on}$ Constante de conversi\'on

ÍNDICE DE FIGURAS

Figura 1.1 Sistema de lavado de botellas	4
Figura 1.2 Compactadora vertical	6
Figura 1.3 Compactadora horizontal	6
Figura 1.4 Compactador circular	7
Figura 1.5 Demostración del principio de Pascal	8
Figura 2.1 Árbol de objetivos	11
Figura 2.2 Caja negra	13
Figura 2.3 Caja blanca	13
Figura 2.4 Árbol de funciones, funciones están en rectángulos y medios en óvalos	14
Figura 2.5 Compactador circular	17
Figura 2.6 Aceite Hidráulico ISO 68	22
Figura 2.7 Manguera Hidráulica T3000D	24
Figura 2.8 Adaptador hidráulico macho BSSP - ORR a hembra NPTF	24
Figura 2.9 Acople macho SAE 37 (JIC)	24
Figura 2.10 Bushing de acero NPTF	25
Figura 2.11 Filtro de succión MF-SC2	25
Figura 2.12 Acople macho SAE 37 (JIC)	26
Figura 2.13 Filtro de retorno IFR3-S/E	26
Figura 2.14 Acople macho SAE 37 (JIC)	27
Figura 2.15 Plancha de acero al carbón	27
Figura 2.16 Bomba de engranajes GP1K	28
Figura 2.17 Motor Trifásico jaula de ardilla NEMA B	29
Figura 2.18 Válvula reguladora de presión de bola/resorte RD-1837S	31
Figura 2.19 Válvula de control direccional	32
Figura 2.20 Tolva de alimentación	33
Figura 3.1 Diseño estructural del compactador	37
Figura 3.2 Distribución de fuerzas en el vástago	37
Figura 3.3 Esfuerzos de Von Mises en el vástago	38
Figura 3.4 Factor de seguridad del vástago	38
Figura 3.5 Desplazamiento del vástago	39
Figura 3.6 Distribución de fuerzas en el disco de compactación	39
Figura 3.7 Esfuerzos de Von Mises en el disco de compactación	40

Figura 3.8 Factor de seguridad del disco de compactación	40
Figura 3.9 Desplazamiento del disco de compactación	41

ÍNDICE DE TABLAS

Tabla 2.1. Evaluación por pares	12
Tabla 2.2. Tabla Morfológica	15
Tabla 2.3. Matriz de decisión	16
Tabla 2.4 Pruebas experimentales de las etiquetas	18
Tabla 2.5 Densidad final de compactación	18
Tabla 2.6 Velocidad de fluidos hidráulicos en los circuitos	22
Tabla 2.7 Diámetros seleccionados	23
Tabla 2.8 Válvula reguladora de presión de bola/resorte RD-1837S	31
Tabla 3.1 Condiciones de operación del cilindro hidráulico	34
Tabla 3.2 Dimensionamiento del cilindro hidráulico	35
Tabla 3.3 Elementos del sistema hidráulico	36
Tabla 3.4 Costo total del diseño del compactador	41

ÍNDICE DE PLANOS

PLANO 1	vastago
PLANO 2	Cilindro hidráulico
PLANO 3	Tapa del cilindro y pistón
PLANO 4	Ensamble cilindro hidráulico
PLANO 5	Tubería de compresión

PLANO 6 Compactador hidráulico

CAPÍTULO 1

1. INTRODUCCIÓN

Los compactadores de residuos permiten comprimir grandes cantidades de desechos y optimizar costos de gestión de residuos, siendo ampliamente usados en las industrias de papel, cartón, plástico y madera.

En Ecuador, existen innumerables aplicaciones en donde se requieren reducir volúmenes de desechos sólidos y fomentar el reciclaje, las industrias se orientan en formar fardos de papel y cartón, fundas plásticas y plásticos en general, pero no en las etiquetas de papel provenientes de botellas de plástico y vidrio, provocando así un mal manejo de recursos para estos tipos de materiales.

El presente trabajo se enfoca en la industria cervecera a pedido del cliente ERMARLO S.A., donde las botellas de cerveza al ser recicladas y de vueltas al proveedor, pasan por un proceso de limpieza y desinfección antes de ser nuevamente distribuidas para su venta. En el proceso de lavado las etiquetas son desprendidas, vertidas hacia el exterior y apiladas sin inspección alguna, generando malas prácticas de manufactura y riesgos de accidentes para los operadores encargados de recoger los residuos.

Por tal motivo, se busca diseñar un compactador de etiquetas húmedas de papel que permita comprimir la mayor cantidad de residuos de la manera óptima posible. Para llevarlo a cabo, se emplean métodos de diseño que permitan al lector comprender y sintetizar la información mediante requerimientos del cliente, así como también, softwares de diseño y simulación para representación gráfica y análisis del comportamiento de los elementos del artefacto al encontrarse sometido a fuerzas externas.

1.1 Definición del Problema

Las botellas retornables de cerveza utilizan etiquetas de papel para su presentación al consumidor, por lo tanto, cuando estas botellas regresan a la planta para ser nuevamente llenadas requieren un proceso de lavado, donde se deben retirar todas las etiquetas de las botellas cuyo contenido ha sido

consumido. La lavadora de botellas posee un sistema de extracción de etiquetas que permite a las etiquetas ser desprendidas de las botellas, para luego, por medio de un mecanismo sean descargadas hacia el exterior de la lavadora, generando un apilamiento que no tiene supervisión o control alguno.

Este proceso sin control afecta a los operadores y a la economía de las empresas cerveceras dado que, el impacto económico se genera como gastos de salud en caso de producirse accidentes en los trabajadores encargados de trasladar los residuos hacia un depósito en particular, incluyendo también la mala gestión financiera con respecto al desecho de este tipo de recurso; por otro lado, el impacto ambiental se produce al no reutilizar el papel que conforman estas etiquetas, permitiendo seguir talando árboles y generar gases de efecto invernadero para su producción, además, debido a que las industrias de papel en promedio utilizan 1 árbol para fabricar 16 resmas de papel, resultan en un problema sumamente potencial para las 60 mil etiquetas/hora que se extraen generalmente en el proceso de lavado.

1.2 Justificación del proyecto

El diseño del compactador de etiquetas húmedas de papel es ejecutado para lograr una mejor organización del espacio de trabajo, permitiendo que los trabajadores puedan transitar de forma segura mientras laboran. Al implementar el equipo obtendremos bloques de papel compactado lo que permitirá enviarlos a las recicladoras de papel, cartón y plástico PET tales como Intercia en Guayaquil y Reciclar Cía. Ltda. en Quito para una mejor disposición de los desechos. Los mayores beneficiarios serán: los trabajadores ya que contarían con un mejor ambiente laboral, la empresa podría delegar otras tareas al operador mientras se llena el contenedor y, de manera indirecta, las familias cuyo sustento es el reciclaje.

Además, al investigar sobre compactadores de residuos mediante accionamiento de cilindros hidráulicos, éstos son utilizados para sólidos provenientes de aguas municipales e industriales en E.E.U.U. y España empleando materiales más caros para su construcción. Por ello, mediante el presente trabajo se propone darle otra finalidad de uso con materiales dentro

de lo posible en el mercado nacional, aportando así en el crecimiento económico del Ecuador. La implementación de estos equipos creará una alternativa de compactación novedosa, porque en el mercado generalmente son conocidos las clásicas compactadoras verticales y horizontales debido a que no se tiende a reciclar etiquetas húmedas.

1.3 Objetivos

1.3.1 Objetivo General

Diseñar un compactador de etiquetas húmedas de papel para la reducción del riesgo de accidentes a los operadores causado por el apilamiento.

1.3.2 Objetivos Específicos

- Determinar los subsistemas del compactador para que tenga un funcionamiento sencillo y óptimo
- 2. Seleccionar materiales del equipo dentro de lo posible en el mercado nacional para apoyar a la economía del Ecuador
- Plantear el sistema motriz adecuado del compactador para su correcto funcionamiento
- Estimar los costos de operación para el análisis financiero del compactador

1.4 Marco teórico

1.4.1 Proceso de lavado de botellas

Las botellas retornables de cervezas deben estar en perfectas condiciones para poder ser reabastecidas y que salgan a la venta nuevamente salvaguardando la higiene y salud del consumidor, para ello se dispone de un sistema de lavado descrito a continuación. (Sidel, s. f.)

1.4.1.1 Ciclo de lavado

En este mecanismo podemos apreciar cuatro fases importantes que son: prelavado, lavado, aspersión del agente cáustico y finalmente, enjuague.

Las botellas ingresan contaminadas ya sea con polvo, óxido o líquidos residuales por lo que, en primera instancia, se debe verter

dichos residuos a un depósito y de esta forma están listas para su primer enjuague. Con agua caliente son lavadas las botellas para luego ser sumergidas en un tanque con detergentes finalizando así, la fase de prelavado.

El lavado principal se da mediante un proceso de inmersión donde nuevamente son enjuagadas con detergentes con la diferencia de que ahora pasan por una fase de remoción de etiquetas. Al salir de la inmersión las botellas son enjuagadas en su interior mediante chorro directo con la ayuda de aspersores, concluyendo la fase de lavado. Finalmente, para que las botellas estén listas para ser nuevamente comercializadas, son enjuagas primero con el agua recirculante de todo el proceso de lavado y finalmente con agua potable para que estén aptas para un nuevo consumo. (Sidel, s. f.)

1.4.1.2 Componente de la máquina lavadora de botellas

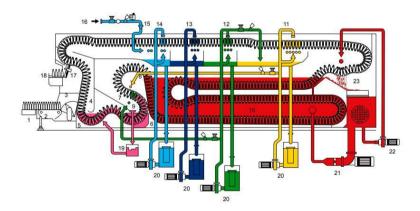


Figura 1.1 Sistema de lavado de botellas Fuente: (Sidel, s. f.)

- Banda transportadora de botellas (entrada)
- Mesa de acumulación de botellas
- 3. Sistema de carga
- Tanque de acumulación de residuos

- 5. Primera fase de prelavado
- 6. Segunda fase de prelavado
- 7. Mecanismo de aspersión (65 C)

- 8. Segundo mecanismo de aspersión (70 C)
- Tanque de recogida de prelavado
- 10. Lavado con detergente
- 11. Mecanismo de aspersión con solución cáustica
- Primera aspersión de enjuague
- 13. Segunda aspersión de enjuague
- 14. Tercera aspersión de enjuaque

- 15. Aspersión con agua potable
- 16. Entrada del agua potable
- 17. Descarga de botellas
- 18. Banda de descarga de botellas
- 19. Filtro de prelavado
- 20. Filtro de malla
- 21. Bomba de remoción de etiquetas
- 22. Segunda bomba de remoción de etiquetas
- 23. Filtro de remoción de etiquetas

1.4.2 Conceptos relacionados

1.4.2.1 Tipos de compactadores

Compactadores Mecánicos

Su sistema consta de dos partes, posee un motor eléctrico para el accionamiento y un sistema de cigüeñal para la compactación. (Sidel, s. f.)

Compactadores Neumáticos

Sistemas que utilizan gas como fluido principal para transmitir potencia, por lo general se utiliza aire. Estos sistemas necesitan una alta presión por lo que limita la fuerza que puede ejercerse sobre ellos. (Sidel, s. f.)

Compactadores Hidráulicos

Son usados a nivel industrial son los destinados a reducir el volumen de sólidos de acuerdo al interés de la empresa, siendo estos: papeles, cartones, plásticos, latas, etc., clasificándose tal y como se muestra a continuación:

Verticales

En este tipo de máquinas, por lo general se dispone de un operador que ingresa los residuos poco a poco y de manera manual en el interior del compactador hasta que no se pueden comprimir más, para luego mediante unos alambres realizar el cerraje total del desecho compactado y así llevarlo a su destino final.

Figura 1.2 Compactadora vertical Fuente: (IMMSA, s. f.)

Horizontales

Son más versátiles de usar, debido a que disponen de un sistema de transporte en la alimentación que ayudan a disminuir los costos por manejo y transporte de residuos, ingresando a la tolva mediante desprendimiento por efecto de la gravedad, para después proceder a usar un sistema neumático o hidráulico y así compactar el material requerido, teniendo al final de su proceso un carrito de depósito.

Figura 1.3 Compactadora horizontal Fuente: (IMMSA, s. f.)

Circulares

Este tipo de compactador se lo utiliza para comprimir desechos que surgen de procesos de lavados o que provienen de aguas industriales. Constan de una tolva por donde ingresan los residuos y es el pistón hidráulico el encargo de la compactación que se da mediante el rozamiento a lo largo de la tubería, ya sea circular o rectangular. La parte inferior del compactador es diseñar de tal forma que el líquido pueda drenarse y ser redirigido a una zona de interés.

Figura 1.4 Compactador circular Fuente: (WAM, 2018)

1.4.3 Principios de la Oleohidráulica

Oleohidráulica

Es una rama de la hidráulica que abarca el estudio de la presión y el caudal, donde el líquido empleado no es el agua, sino el aceite, siendo ambos usados para la transmisión de energía de acuerdo a la aplicación en análisis. (SOHIPREN S.A, 2005)

Principios básicos

El principio fundamental de esta rama es la Ley de Pascal, que durante muchos años sirvió de base para diversos estudios con uso en agua, con la única diferencia que en el siglo XX se implementó el uso de aceites. (SOHIPREN S.A, 2005)

Ley de Pascal

Enuncia lo siguiente: "Si se tiene un líquido en un recipiente cerrado y se aplica una presión en el fluido, esta se trasmitirá en todas las direcciones de manera perpendicular sobre las paredes internas de la misma". (Czekaj, 1988)

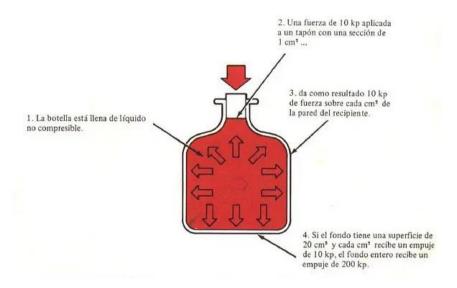


Figura 1.5 Demostración del principio de Pascal Fuente: (Vickers & Villaronga, 1986)

Presión

Definida como la aplicación de una fuerza F por unidad de área A en un fluido determinado.

$$P_E = \frac{F}{A} \tag{1.1}$$

Donde:

P_E: Presión ejercida [Pa]

F: Fuerza aplicada [N]

A: Área sometida a la fuerza $F[m^2]$

Caudal

Definida como la cantidad de volumen de fluido que circula a través de un ducto en un determinado tiempo.

$$Q = \frac{V}{t} = A.v \tag{1.2}$$

Donde:

Q: Caudal [m/s³]

V: Volumen [m³]

t: Tiempo empleado [s]

A: Área de sección transversal [m²]

v: Velocidad del fluido en el ducto $\left[\frac{\mathbf{m}}{\mathbf{s}}\right]$

Trabajo

El trabajo se encuentra definido como la fuerza F aplicada en una determinada distancia.

$$T = F \cdot d_f \tag{1.3}$$

Donde:

T: Trabajo realizado [N.m]

F: Fuerza aplicada [N]

 d_f : Distancia recorrida debido a la fuerza F [m]

Potencia

Es el trabajo realizado en un determinado tiempo (s)

$$Pot = \frac{T}{t} \tag{1.4}$$

Donde:

Pot: Potencia requerida [J]

T: Trabajo realizado [Nm]

t: Tiempo empleado [s]

CAPÍTULO 2

2. METODOLOGÍA

2.1 Diseño Conceptual

2.1.1 Requerimientos de diseño

De acuerdo con lo solicitado por nuestro cliente ERMARLO S.A., se describen a continuación los parámetros que deben ser considerados para el diseño del proyecto.

- Se pretende que la densidad final del papel compactado sea del 25 al 30% del material a ser compactado.
- ➤ El compactador debe ser de fácil operación, automático y que su consumo de energía sea menor a 7 [kW].
- ➤ El proceso de compactación debe utilizar en su preferencia sistema oleo hidráulico.
- > Se dispone de un área de 4 [m²].
- > El Compactador debe ser de fácil mantenimiento.

2.1.2 Determinación del tipo de compactador a diseñar

La primera característica que debe tener nuestro compactador, solicitada por nuestro cliente, es de que el ingreso y salida de los residuos no debe ser manejada por un operador o, en otras palabras, este proceso debe darse de forma automática. Este compactador también debe contar con un mantenimiento fácil. Dicho esto, podemos descartar opciones macro de diseño.

Los compactadores mecánicos al utilizar un sistema de levas y cigüeñales hacen que el mantenimiento sea más riguroso y que su compactación se dé de forma lenta, por lo que, su uso en la industria ha desaparecido. Por otro lado, tenemos a los compactadores neumáticos. Éstos, como ya se había mencionado, necesitan altas presiones para trabajar y esto implica riesgos en la zona de trabajo.

De los tipos de compactadores hidráulicos mencionados, el compactador vertical requiere que el operador ingrese los residuos a la compactadora

y a su vez que los retire una vez se haya realizado el proceso. El ingreso de los residuos a la compactadora vertical si es de forma automática, sin embargo, el retiro de los mismos requiere que sea de forma manual. Dicho esto, estas opciones son descartadas para nuestro diseño debido a los requerimientos de diseño ya mencionados.

Finalmente, el tipo de compactador que se diseñará es el compactador circular puesto que no requiere la disposición de un operador para el ingreso o retiro de los residuos luego del proceso. La metodología de diseño a aplicar a continuación será para determinar los elementos o características de nuestro compactador circular.

2.1.3 Árbol de objetivos

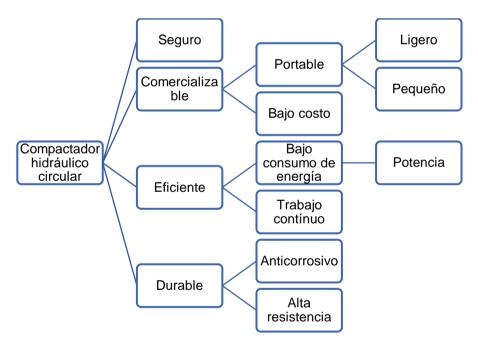


Figura 2.1 Árbol de objetivos Fuente: Autores

2.1.3.1 Criterios de selección

- ✓ Costo: Se busca que el diseño sea lo menos costoso para competir en el mercado.
- ✓ Bajo consumo de energía: compactador eficiente y eco amigable, estará relacionado con la potencia del compactador.

- ✓ Tamaño: Se dispone poco espacio y hace referencia a dimensiones de la tubería.
- ✓ Material Anticorrosivo: La tubería de compactación deber ser anticorrosiva.
- ✓ Resistente: La tubería de compactación deber tener una alta resistencia.

2.1.3.2 Evaluación por pares de los objetivos

Para realizar la evaluación por pares de los criterios de selección utilizaremos la siguiente ponderación:

0: Menor importancia

1: Igual importancia

2: Mayor importancia

Tabla 2.1. Evaluación por pares Fuente: Autores

	Costo	Bajo consumo de energía	Anticorrosivo	Tamaño de tubería (diámetro)	Resistencia	Total	Peso
Costo		1	2	1	1	5	0.25
Bajo consumo de energía	1		1	1	0	3	0.15
Anticorrosivo	0	1		1	1	3	0.15
Tamaño de tubería (diámetro)	1	1	1		1	4	0.20
Resistencia	1	2	1	1		5	0.25
			Total			20	1

2.1.4 Restricciones

Se describirán las restricciones o comportamientos que el compactador debe tener de acuerdo con las especificaciones del cliente.

- a. El compactador debe consumir menos de 7 [kW] de energía.
- b. El compactador debe ser pequeño con respecto al área disponible de 4 [m²].
- c. La tubería de compactación debe eliminar el agua al momento de la compresión

2.1.5 Funciones

La herramienta utilizada para determinar las funciones de nuestro diseño fue la caja negra y caja blanca.

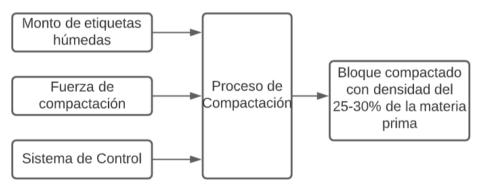


Figura 2.2 Caja negra Fuente: Autores

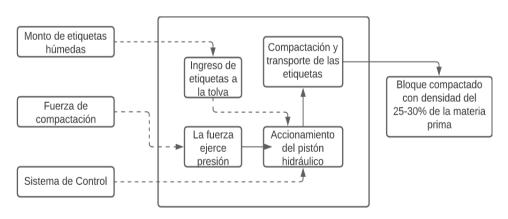


Figura 2.3 Caja blanca Fuente: Autores

Funciones del sistema

- Compactar las etiquetas húmedas de papel a un 25-30% de su densidad inicial de la materia prima.
- Eliminar el agua durante la compactación evitando derrames cerca del área de trabajo.
- Descargar los residuos compactados en un contenedor.
- Proteger contra la corrosión (tubería de compactación)

2.1.5.1 Árbol de función-medios

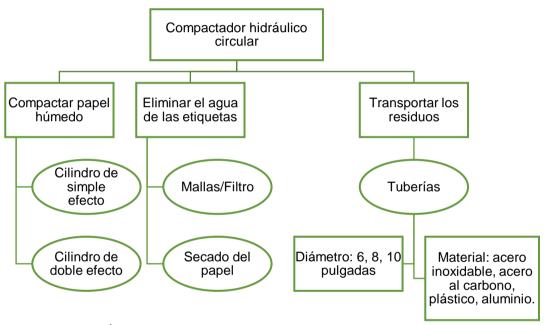


Figura 2.4 Árbol de funciones, funciones están en rectángulos y medios en óvalos Fuente: Autores

2.1.5.2 Tabla Morfológica

Mediante esta herramienta, se crean soluciones potenciales que podría tener el diseño, las cuales se encuentran mostradas a continuación:

Tabla 2.2. Tabla Morfológica Fuente: Autores

Funciones / Medios	1	2	3	4
Compactación hidráulica	Cilindro de simple efecto	Cilindro de doble efecto	-	-
Eliminar agua de las etiquetas	Mallas / Filtro	-	-	-
Transporte de residuos	Tubería de 6"	Tubería de 8"	Tubería de 10"	-
Protección contra corrosión	Acero al carbono	Acero inoxidable	Plástico	Aluminio

Mediante esta tabla, existen un sin número de alternativas, teniendo 2 x 1 x 3 x 4= 24 soluciones potenciales de diseño, creando así un espacio de diseño. Por ello, para establecer los criterios de selección, estos son basados de acuerdo a los requerimientos del cliente, tomando en cuenta también principios físicos y sentido común. (Dym, Little, & Orwin, 2014)

2.1.6 Capacidad nominal del equipo

En el proceso de lavado de botellas se estima que la cantidad que se produce es de 30 000 botellas/hora. Asumiendo un estándar de que cada botella contiene 2 etiquetas, nos da como resultado un total de 60 000 etiquetas/hora o un equivalente a 1.5 m³/h, siendo ésta, la capacidad nominal a la cual el compactador debe trabajar.

2.1.7 Alternativas de solución

Todas las soluciones tienen un sistema de malla o filtro para drenar el agua escurrida durante el proceso de la compactación. De acuerdo a la capacidad nominal que tenemos de 1.5 m³/h aproximadamente, según catálogos el diámetro de tubería recomendado es de 8", descartando así

las otras opciones. Sabemos que los metales aportan un mayor coeficiente de fricción en relación a los plásticos, y como restricción tenemos que la tubería tenga alto coeficiente de rozamiento, se descarta también que la tubería sea de plástico PVC. Las ventajas que tiene un cilindro doble efecto es que no necesita de gravedad o una fuerza opuesta para replegarse, por lo que se decide que el sistema hidráulico funcione con un cilindro de doble efecto.

Solución A: Compactador hidráulico circular con cilindro de doble efecto con tubería de acero al carbono de 8".

Solución B: Compactador hidráulico circular con cilindro de doble efecto con tubería de acero inoxidable de 8".

Solución C: Compactador hidráulico circular con cilindro de doble efecto con tubería de aluminio de 8".

2.1.8 Selección de la mejor alternativa de solución

Para seleccionar la mejor solución utilizamos la herramienta matriz de decisión, cuyos parámetros calificativos serán los criterios seleccionados de los objetivos con su respectiva ponderación. La puntuación va desde el valor de (1), como la menor, hasta (5), mayor importancia.

Tabla 2.3. Matriz de decisión Fuente: Autores

Criterios	Costo	Resistencia	Eficiencia	Anticorrosivo	Tamaño	Grado de
						satisfacción
Peso	0.25	0.25	0.15	0.15	0.20	1
Alternativa	Bajo	Alta	Bajo	Mejor	Pequeño	Total
			consumo	protección		
			de			
			energía			
A	4	5	4	3	5	<mark>4.30</mark>
В	1	5	4	5	5	3.85
С	3	4	4	4	5	3.95

La opción A "Compactador hidráulico circular con cilindro de doble efecto con tubería de acero al carbono de 8 in" tuvo el mayor grado de satisfacción, por ende, la escogimos como solución para nuestro problema.

Figura 2.5 Compactador circular Fuente: (WAM, 2018)

2.1.9 Descripción del funcionamiento del sistema

Las etiquetas húmedas de papel caen en la tolva que se encuentra justo por encima de la tubería de compresión. A medida que caen las etiquetas, el pistón que es un disco circular, es accionado por una central hidráulica y comprime a su vez el papel húmedo. En la parte inferior de la tubería de compresión se cuenta con una malla filtrante que escurre el agua residual que se produce al momento de la compresión del papel, la misma que es evacuada por medio de una tubería auxiliar. La compactación se produce por rozamiento y se da en la tubería inclinada del compactador. Mientras el pistón sigue en funcionamiento, va compactando y empujando las etiquetas que posteriormente serán evacuadas al final de la tubería de compactación y depositadas en un contenedor.

2.2 Diseño Preliminar

2.2.1 Estimación de densidad de las etiquetas húmedas

Se utilizó un recipiente cilíndrico de acero de 8 cm de diámetro y 15 cm de alto para compactar un total de 160 etiquetas húmedas de papel. El

volumen inicial para todas las pruebas fue de 754 cm³. Se utilizaron diversos pesos para la compactación. Se compactó el papel hasta obtener una reducción al 25-30% de su volumen inicial para poder determinar la densidad final. Se realizaron 5 pruebas obteniendo lo siguiente:

Tabla 2.4 Pruebas experimentales de las etiquetas Fuente: Autores

Prueba	Cantidad de etiquetas	Peso total de etiquetas [g]	Peso para compactar [kg]	Altura final [cm]	Volumen final [cm³]	%Volumen final
1	40	51	5,0	3,0	150,8	20,0
2	70	64	5,6	3,5	175,9	23,3
3	90	81	5,7	4,5	226,2	30,0
4	120	121	6,0	7,0	351,8	46,7
5	136	138	6,5	7,3	364,4	48,3

Con estos datos se procedió a determinar las densidades finales.

$$\rho = \frac{m}{\forall} \tag{2.1}$$

Donde:

m: Peso total de etiquetas [g]

 \forall : Volumen final del papel compactado [cm^3]

Tabla 2.5 Densidad final de compactación Fuente: Autores

Prueba	Densidad final [g/cm³]
1	0,338
2	0,364
3	0,358
4	0,344
5	0,378

2.2.2 Determinación de la fuerza del actuador

Relacionando la densidad máxima obtenida de $378,67 [kg/m^3]$ con (Arboleda, Correa, & Otoya, 1986, p. 5), se obtiene un valor cercano de papel periódico a $379,80 [kg/m^3]$. Para tal valor, utilizaron una fuerza máxima de compactación de 15 000 [kg], en el cual, para el presente trabajo se tomaron en consideración las fuerzas de fricción existentes en el cilindro hidráulico multiplicándolo por 0,9, teniendo así una fuerza de 132, 44 [kN] respectivamente.

2.3 Diseño detallado

2.3.1 Diseño del Sistema Oleo hidráulico

2.3.1.1 Diseño del Cilindro Hidráulico

Dispositivo que permite aprovechar la energía hidráulica generada por la bomba para transformarla en energía mecánica lineal mediante la aplicación de un pistón en su interior, que realizará un movimiento lineal permitiendo desplazar grandes cargas. Pueden ser: simple efecto, doble efecto y telescópicos.

Para la selección, se lo realiza mediante el valor del diámetro del cilindro, reemplazando de la siguiente ecuación: (Solé, 2007)

$$F_{extensión} = P \cdot A = P \cdot \frac{\pi D^2}{4} \cdot 0.9; \qquad (2.2)$$

Donde:

 $F_{extensión}$: Fuerza de extensión del pistón [N]

P: Presión de compactación [Pa]

D: Diámetro del cilindro [m]

0,9: Coeficiente de rozamiento de rodamientos, juntas y partes móviles del cilindro

De acuerdo a los cálculos realizados en el apéndice A, la presión de compactación en la extensión del vástago es de 1 565 [psi] con diámetro de 0,125 [m].

2.3.1.2 Diseño del vástago

Al estar sometido a compresión, el elemento será tratado como una columna que puede fallar mediante pandeo y no por compresión, ocurriendo de manera inesperada y sin advertencia (Norton, 2009). Se halló el diámetro mínimo de acuerdo a la norma AISC (American Institute of Steel Construction) para definir si corresponde a columna larga o corta, que será comparada con la relación de esbeltez de transición o constante de columna \mathcal{C}_c .

$$S_r = \frac{L_e}{r_{min}} = \frac{Kl}{r_{min}}$$
 (2.3)

$$C_c = \sqrt{\frac{2\pi^2 E}{S_y}} \tag{2.4}$$

Donde:

 S_r : Relación de Esbeltez

L_e: Longitud Efectiva [m]

K: Constante dependiente de la fijeza final

l: Longitud de la columna entre extremos [m]

 r_{min} : Radio de giro mínimo [m]

C_c: Constante de columna

E: Módulo de Young $\left[\frac{N}{m^2}\right]$

 S_y : Esfuerzo de fluencia $\left[\frac{N}{m^2}\right]$

Para establecer las fórmulas de las columnas cortas y largas, el AISC especifica que para $^{L_e}\!/_r > \mathcal{C}_c$, el esfuerzo de trabajo está dado como:

$$\sigma_T = \frac{12\pi^2 E}{23 \left(\frac{L_e}{r_{min}}\right)^2};$$
 (2.5)

Y, para $^{L_e}/_r < \mathcal{C}_c$, el esfuerzo de trabajo está dado como:

$$\sigma_T = \left[1 - \frac{\left(\frac{L_e}{r_{min}}\right)^2}{2C_c^2}\right] \frac{S_y}{FS}; \qquad (2.6)$$

$$FS = \frac{5}{3} + \frac{3(\frac{L_e}{r_{min}})}{8C_c} - \frac{(\frac{L_e}{r_{min}})^3}{8C_c^3}; \qquad (2.7)$$

Donde:

FS: Factor de seguridad

 σ_T : Esfuerzo de trabajo [Pa]

De acuerdo a los cálculos realizados en el apéndice A, el diámetro mínimo obtenido es 48,39 [mm]. Con referencia a los catálogos en Ecuador el diámetro próximo a escoger es 70 [mm].

La fuerza de retroceso que tendrá el vástago será realizada mediante la siguiente ecuación:

$$F_{retroceso} = P \cdot A = P \cdot \frac{\pi (D^2 - d^2)}{4} \cdot 0.9;$$
 (2.8)

Donde:

d: Diámetro del vástago [m]

La velocidad del vástago es obtenida mediante la ecuación de movimiento lineal, teniendo así:

$$v_{v\'astago-avance} = \frac{distancia\ recorrida}{tiempo};$$
 (2.9)

Para encontrar los caudales en la entrada y salida del cilindro hidráulico, se usaron las siguientes ecuaciones:

$$Q_{entrada} = v_{v\'astago-avance} \cdot A_{circular}; \qquad (2.10)$$

$$Q_{salida} = v_{v\'astago-retroceso} \cdot A_{anular}; \qquad (2.11)$$

Con las áreas a usar:

$$A_{circular} = \frac{\pi D^2}{4}; (2.12)$$

$$A_{anular} = \frac{\pi(D^2 - d^2)}{4};$$
 (2.13)

2.3.1.3 Fluido Hidráulico

Es de mucha importancia saber qué fluido hidráulico utilizar, dado que se lo empleará como medio de transmisión de energía generada por la presión, que proveerá de lubricación interna a los elementos hidráulicos, transmisión de potencias y minimizar fugas. Por lo general, los más usados son los aceites minerales, contenidos con aditivos para mejorar sus propiedades de antidesgaste, anticorrosivo, antiespumante y evacuación de calor. (Delnero, s. f.)

Las condiciones de operación que tendrá el fluido serán de acuerdo a las especificadas en la siguiente tabla:

Tabla 2.6 Velocidad de fluidos hidráulicos en los circuitos

1 dente. (001c, 2001)					
Equipos	Velocidad [m/s]				
Aspiración de bombas	0,6 - 1,2				
Caudal de impulsión	2 - 5				
Caudal de retorno	1,5 - 4				
Aplicaciones generales	4				

El aceite hidráulico al ser un fluido de fácil adquisición en el mercado se escogerá con grado de viscosidad ISO 68. Ver apéndice B para hoja técnica.

Figura 2.6 Aceite Hidráulico ISO 68 Fuente: (REPSOL)

2.3.1.4 Tuberías hidráulicas

Para obtener los diámetros que deberían tener las tuberías, es importante basarse en velocidades estándar en las diversas secciones, tal y como se muestra en la tabla 2.6.

$$Q = \frac{\pi d_i^2}{4} V_{tabla}; ag{2.14}$$

Donde:

Q: Caudal en la entrada/salida $\left[\frac{m^3}{s}\right]$

d_i: Diámetro interno de la tubería [m]

 V_{tabla} : Velocidad recomendada en la tabla 2.6 $\left[\frac{m}{s}\right]$

Por lo tanto:

$$d_i = \sqrt{\frac{4Q}{\pi V_{tabla}}}; {(2.15)}$$

De la empresa "Hidrofreno" se seleccionan las mangueras hidráulicas de caucho sintético para los distintos diámetros, tal y como se muestran a continuación:

Tabla 2.7 Diámetros seleccionados Fuente: Autores

Sección	Manguera	Diámetro [mm]	Diámetro [in]	Presión máxima [bar]
		[]	[]	[bai]
Aspersión	T3004D	11,80	0,46	245
Impulsión	T3004D	6,30	1/4	245
Retorno	T3004D	6,30	1/4	245

De la tabla 2.7 se puede apreciar que los diámetros seleccionados se encuentran dentro de los rangos establecidos anteriormente y, la presión máxima al ser de 245 [bar] satisface la demandada de 108 [bar]. Ver apéndice B para hoja técnica.

Figura 2.7 Manguera Hidráulica T3000D Fuente: (Hidrofreno, s. f.)

2.3.1.5 Adaptador de conexión manguera/cilindro hidráulico

De la empresa "Hidrofreno" se selecciona un adaptador NPTF a BSPP debido a que el cilindro hidráulico contiene un modelo de rosca diferente. Ver apéndice B para hoja técnica.

Figura 2.8 Adaptador hidráulico macho BSSP - ORR a hembra NPTF Fuente: (Hidrofreno, s. f.)

2.3.1.6 Acoples de conexión manguera/cilindro hidráulico

De la empresa "Hidrofreno" se selecciona un acople con diámetro de espiga igual o menor al diámetro de tubería e igual a las roscas del cilindro hidráulico, teniendo así:

Figura 2.9 Acople macho SAE 37 (JIC) Fuente: (Hidrofreno, s. f.)

De acuerdo con el diámetro de rosca de filtro de succión, se escoge una igual para el acople, teniendo así una rosca macho NPTF 3/8" - espiga manguera 1/4". Ver apéndice B para hoja técnica.

2.3.1.7 Adaptador hidráulico

Debido a que el acople anterior (manguera/acople) tiene un diámetro de rosca macho menor a la rosca hembra del adaptador BSSP a NPTF, se proceden a seleccionar dos bushing de acero NPTF para empatar ambas conexiones, uno de rosca hembra a macho 3/8" - 1/2" y el otro de rosca hembra a macho 1/2" - 3/4". Ver apéndice B para hoja técnica.

Figura 2.10 Bushing de acero NPTF Fuente: (Hidrofreno, s. f.)

2.3.1.8 Filtros de succión

De la empresa "Hydromecánica" se escoge un filtro para la succión de la bomba de modelo MF-SC2.

Figura 2.11 Filtro de succión MF-SC2 Fuente: Hydromecánica S.A.

La bomba requiere 4,42 [l/min] para su funcionamiento, por ende, se escoge del catálogo el próximo siguiente de 12 [l/min], modelo SC2-003 y rosca hembra 3/8". Ver apéndice B para hoja técnica.

2.3.1.9 Acople de succión

De la empresa "Hidrofreno" se selecciona un acople con diámetro de espiga menor o igual al diámetro de tubería e igual al filtro de succión, teniendo así:

Figura 2.12 Acople macho SAE 37 (JIC)
Fuente: Hidrofreno

De acuerdo al diámetro de rosca de filtro de succión, se escoge una igual para el acople, teniendo así una rosca macho NPTF 3/8" - espiga manguera 1/4". Ver apéndice B para hoja técnica.

2.3.1.10 Filtros de retorno

De la empresa "Hydromecánica" se escoge un filtro para el retorno del cilindro hacia la bomba de modelo IFR3-S/E.

Figura 2.13 Filtro de retorno IFR3-S/E Fuente: Hidrofreno

La bomba requiere 6,06 [l/min] para su funcionamiento, por ende, se escoge del catálogo 15 [l/min], modelo IFR4-02, micras de filtración A25 y rosca hembra 1/4". Ver apéndice B para hoja técnica.

2.3.1.11 Acople de retorno

De la empresa "Hidrofreno" se selecciona un acople con diámetro de espiga menor o igual al diámetro de tubería e igual al filtro de retorno, teniendo así:

Figura 2.14 Acople macho SAE 37 (JIC)
Fuente: Hidrofreno

De acuerdo con el diámetro de rosca de filtro de succión, se escoge una igual para el acople, teniendo así una rosca macho NPTF 1/4" - espiga manguera 1/4". Ver apéndice B para hoja técnica.

2.3.1.12 Reservorio de aceite

De acuerdo a los cálculos realizados en el apéndice A, el volumen del tanque de aceite será de 0,01351 [m³]. Para su construcción se utilizarán planchas de acero al carbón de 0,20x0,20x0,3 [m], provenientes de la empresa "DIPAC MANTA".



Figura 2.15 Plancha de acero al carbón Fuente: DIPAC MANTA

2.3.1.13 Bomba

Las bombas son conocidas como cualquier máquina hidráulica que añade energía al fluido, distinguidas también como dispositivos que absorben energía, debido a que se les suministra energía mediante una flecha rotatoria, siendo la mayor parte de esta transferida al fluido. En pocas palabras, convierte la energía mecánica entregada por el motor eléctrico en energía de presión hidráulica (Cengel & Cimbala, 2006). Se clasifican en dinámicas y desplazamiento positivo. Esta última se subdivide en alternativa (pistón y émbolo) y rotativa (engranajes, paletas, etc.). Debido a su gran desempeño y bajo mantenimiento, se prefiere el uso de bombas de engranes (Medina, 2011).

Para seleccionar el tipo de bomba, es necesario hacer énfasis en la característica cuantitativa que debería tener, tal es el caso del caudal.

Caudal

El caudal requerido por la bomba es la obtenida en la sección del cilindro hidráulico, teniendo así:

$$Q_{aspiración} = Q_{entrada} = 7.38 \ x \ 10^{-5} \left[\frac{m^3}{s} \right] = 1.17 \ [GPM]$$

De la empresa "Hydromecánica del Ecuador S.A." se selecciona la bomba mediante entrada a 1,19 [gpm] y presión 210 [bar]:

Figura 2.16 Bomba de engranajes GP1K Fuente: Hydromecánica del Ecuador S.A.

Se puede notar que la presión aplicada en el cilindro hidráulico es 108 [bar], cantidad menor a 210 [bar] del catálogo, resultando así el sistema de compactación abastecido.

2.3.1.14 Motor

Es un dispositivo que convierte la energía eléctrica a mecánica, la cual, por medio de un acople hacer girar a la bomba. Es seleccionada a partir de los requerimientos de diseño por su potencia (PH). (Medina, 2011)

$$P_{motor} = \frac{p_{bomba} \cdot Q_{bomba}}{K_{conversi\'on} \cdot \eta_{bomba}}; \qquad (2.16)$$

Donde:

P_{motor}: Potencia del motor [kW]

 p_{bomba} : Presión de la bomba [psi]

 Q_{bomba} : Caudal de la bomba [gpm]

 η_{bomba} : Eficiencia de la bomba (0,8% - 0,9%)

 $K_{conversión}$: Constante de conversión - 1714 $\left\lceil \frac{GPM \cdot psi}{HP} \right\rceil$

Figura 2.17 Motor Trifásico jaula de ardilla NEMA B
Fuente: Siemens

Del catálogo de Siemens se selecciona el motor trifásico jaula de ardilla de 1,5 [HP] a 1800 [rpm]. Ver apéndice B para hoja técnica.

2.3.1.15 Acople bomba/motor

Es seleccionado a partir del requerimiento de la potencia del motor 1,5 [HP] = 0,857 [kW] con código Hydromecánica 32 DC. Ver apéndice B para hoja técnica.

2.3.1.16 Manómetro de alta presión

De la empresa "HYDROMECÁNICA del Ecuador" se escoge un manómetro con glicerina con capacidad de 2000 [psi] para satisfacer la condición de operación de 1 565 [psi]. Ver apéndice B para hoja técnica.

2.3.1.17 Selección de elementos de control

Son aquellos elementos que se encuentran entre el cilindro y la bomba, siendo en estos no necesarios la realización de cálculos.

Válvulas

Permiten darle sentido a la dirección del fluido y controlar su comportamiento, con la finalidad de evitar averías y optimizar el funcionamiento del sistema. Además, contienen orificios por donde fluye el fluido (vías) y elementos móviles para cambiar su posición, permitiendo así controlar, regular, mandar, distribuir y bloquear el fluido (Landin, s. f.). Estas serán seleccionadas de acuerdo al caudal y presión que deban circular a través de ellas.

Válvula reguladora de presión

Es un dispositivo que regula la presión del sistema que redirecciona el exceso hacia el depósito de aceite. Se selecciona a partir de las condiciones de operación del sistema, siendo esta presión de 1565 [psi] y caudal de 1,19 [GPM]:

Figura 2.18 Válvula reguladora de presión de bola/resorte RD-1837S Fuente: Hydromecánica del Ecuador S.A.

Tabla 2.8 Válvula reguladora de presión bola/resorte RD/1837S Fuente: Hydromecánica del Ecuador S.A.

Capacidad	20 GPM flujo de entrada máxima
Presión	2500 psi máxima presión operacional
Rango ajustable	1000 a 2500 psi

Tal y como se aprecia, estos tipos de válvulas operan con presiones y caudales de hasta 2500 [psi] y 20 [GPM], satisfaciendo así las condiciones de diseño.

Válvula de control

Son conocidas como válvulas distribuidoras cuando son empleadas para uso de cilindros hidráulicos, motores neumáticos/hidráulicos o pinzas, siendo de dos o tres posiciones y dos o más vías. Se utilizará una válvula distribuidora 4/3 (4 vías y 3 posiciones) para conducir cilindros de doble efecto, que cumplan con la función de paro o despresurización en cualquier momento de su posición intermedia.

De la empresa "Hydromecánica del Ecuador S.A." se selecciona la siguiente válvula:

Figura 2.19 Válvula de control direccional Fuente: Hydromecánica del Ecuador S.A.

Las presiones máximas de 21 y 32 [MPa] con caudal máximo de 80 [l/min] abastecen lo requerido en el sistema oleo hidráulico, siendo estas de presión 10,79 [MPa] y caudal 4,42 [l/min]. Ver apéndice B para hoja técnica.

2.3.2 Diseño de las tuberías del compactador

Tubería de compactación

Para poder abarcar con la capacidad nominal del equipo que es de 60 000 etiquetas/h la longitud de la tubería inclinada o de compactación se escogió de 1 m de largo. Esta tubería contará con una pequeña compuerta que facilitará el mantenimiento en la tubería en caso de obstrucción del papel. De la empresa "DIPAC MANTA" se escoge la tubería de acero galvanizado sin costura cédula 40 y diámetro 8".

Tubería de compresión

Esta aloja al cilindro hidráulico y tiene una longitud aproximada a 1 m. En la parte inferior contará con una rejilla para permitir el drene de agua que se almacenará en las bandejas que se sitúan debajo de la tubería para recolectarle antes de ingresar a las tuberías. Es seleccionada de la misma empresa proveedora de la tubería anterior.

2.3.3 Diseño de la tolva

Permite el ingreso de las etiquetas y sus dimensiones son de 300 mm de ancho, 350 mm de largo y aproximadamente 400 mm de alto

construido con planchas de acero de 5mm de espesor. Los materiales usados son de acero galvanizado de la empresa DIPAC Manta.

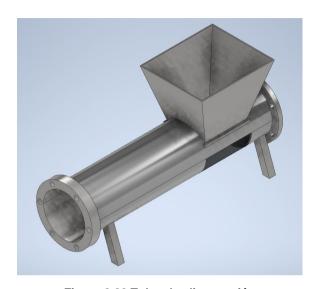


Figura 2.20 Tolva de alimentación Fuente: Autores

CAPÍTULO 3

3. RESULTADOS Y ANÁLISIS

3.1 Resultados

3.1.1 Diseño hidráulico

Se definieron los parámetros a los que trabajará nuestro sistema hidráulico y fueron los siguientes:

Tabla 3.1 Condiciones de operación del cilindro hidráulico Fuente: Autores

Fuerza de compactación [kg]	15 000
Presión de compactación [psi]	1 565,22
Carrera [mm]	240
Tiempo de avance [s]	40
Tiempo de retroceso [s]	20
Velocidad del vástago en avance [mm/s]	6
Velocidad del vástago en retroceso [mm/s]	12
Caudal entrada [GPM]	1,19
Caudal salida [GPM]	1,60

En el apartado 2.3.1.1 se determinó el diámetro del cilindro hidráulico de 125 [mm] y en el apartado 2.3.1.2 se diseñó el vástago cuyo diámetro fue de 48,39 [mm]. En el mercado ecuatoriano se encontró el catálogo de un cilindro hidráulico de doble efecto y brida trasera con las siguientes especificaciones:

Tabla 3.2 Dimensionamiento del cilindro hidráulico Fuente: Autores

r dente. Adtores	
Diámetro interior del cilindro [mm]	125
Diámetro exterior del cilindro [mm]	145
Diámetro del vástago [mm]	70
Rosca del vástago	M48x2
Carrera del vástago [mm]	240

El cilindro hidráulico está hecho de acero AISI 1024 y el vástago de acero cromado AISI 1045 su capa de cromo es de 20 micras.

El aceite hidráulico escogido al ser de fácil adquisición dentro del mercado nacional se escogió con grado de viscosidad ISO 68 de la proveedora REPSOL.

En el apartado 2.3.1.13 se seleccionó, mediante el caudal de entrada de 1,19 [GPM], la bomba de engranajes GP1K25 del catálogo de Hydromecánica del Ecuador S.A, esta bomba trabaja a una presión máxima de 210 [bar] que es menor a la presión de trabajo que tenemos.

En el inciso 2.3.1.14 se determinó la potencia del motor dando como resultado una potencia de 1,21 [HP] por lo que se seleccionó del catálogo Siemens de la empresa Sebatelec CIA LTDA un motor de jaula de ardilla de 1,5 [HP] que trabaja a 1 800 rpm.

En el apartado 2.3.1.4 se calcularon los diámetros de las tuberías hidráulicas mediante el caudal de entrada y salida, obteniendo un diámetro de 11,8 [mm] para aspersión y 6,30 [mm] tanto para impulsión como retorno. Por lo tanto, se seleccionaron mangueras hidráulicas de caucho serie T3000D disponibles de la empresa Hidrofreno.

Se seleccionaron diversos elementos, descritos en la siguiente tabla, que forman parte del circuito hidráulico entre ellos están: acoples, filtros, válvulas, etc.

Tabla 3.3 Elementos del sistema hidráulico Fuente: Autores

i donto. Adtoro						
Acoples						
Manguera/cilindro	Acople macho SAE 37 3/8"					
De succión	Acople macho SAE 37 3/8"					
De retorno	Acople macho SAE 37 1/4"					
Bomba/motor	32 C [código Hydromecánica]					
	Adaptadores					
Manguera/cilindro	Adaptador macho BSSP a NPTF 3/4"					
D. alaba a D. Lada P. a.	Acople de acero macho NPTF 1/2"					
Bushing Hidráulico	Acople de acero macho NPTF 3/4"					
	Filtros					
De succión	MF-SC2-005 rosca hembra 3/8"					
De retorno	IFR4-02-S/E rosca hembra 1/4"					
Válvulas						
Aliviadora de presión	De bola/resorte RD-1837s					
De control	Distribuidora 4/3 (4 vías y 3 posiciones)					

Los elementos fueron seleccionados del catálogo de la empresa Hydromecánica de Ecuador S.A

3.1.2 Diseño estructural

Se utilizaron dos tuberías de acero al galvanizado sin costura cédula 40 y diámetro 8" para el cuerpo del compactador de aproximadamente 1m de longitud cada una. La tolva de alimentación está hecha de acero galvanizado también, tiene una altura de 400 mm, 300 mm de ancho y 350 mm de largo. Se le implementó una rendija/ malla a la tubería recta horizontal y al codo en la parte inferior para drenar el agua al momento de la compactación. Se incorporó una mini compuerta a la tubería inclinada para facilitar el mantenimiento, se encuentra a medio metro desde el suelo que permite el fácil acceso.

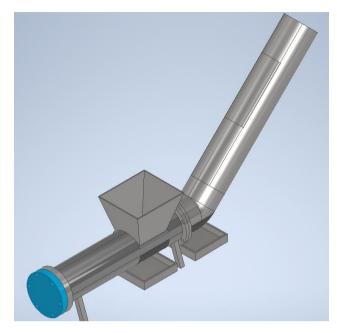


Figura 3.1 Diseño estructural del compactador Fuente: Autores

3.2 Análisis de Resultados

Se analizó por pandeo al vástago del cilindro hidráulico con una fuerza de 132 [kN] que equivale a la fuerza de compactación. Se consideró que el vástago está fijo en un extremo y articulado en el otro extremo. Su distribución de fuerzas se muestra en la figura 3.2.

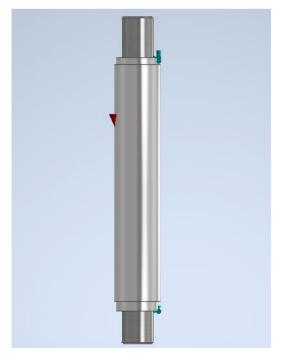


Figura 3.2 Distribución de fuerzas en el vástago Fuente: Autores

Se obtuvieron los resultados de los esfuerzos Von Mises, en la figura 3.3, donde podemos observar que el vástago resiste la carga aplicada.

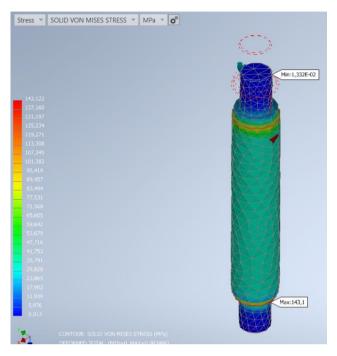


Figura 3.3 Esfuerzos de Von Mises en el vástago Fuente: Autores

Se determinó el factor de seguridad en la figura 3.4, lo que nos muestra un valor de 1.7 indicando que podrá resistir la carga en pandeo aplicada.

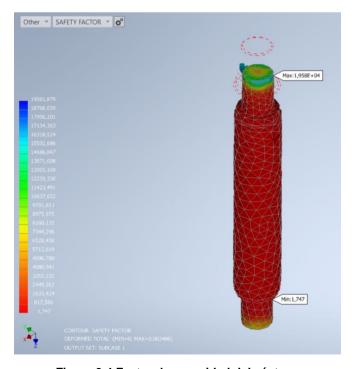


Figura 3.4 Factor de seguridad del vástago Fuente: Autores

Por último, el desplazamiento máximo del vástago obtenido fue de 0,08 [mm] aproximadamente, indicando que durante el proceso de avance y retroceso el vástago mantendrá su posición sin fallar.

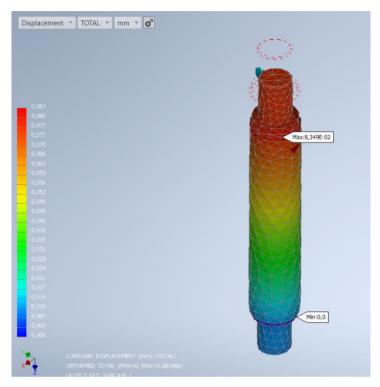


Figura 3.5 Desplazamiento del vástago Fuente: Autores

Se analizó también, por compresión, el disco de compactación con una fuerza puntual en una de sus caras y en la otra cara tenemos una presión de 4,2 [MPa] correspondiente a la reacción de la fuerza de compactación. La distribución de fuerzas de muestra en la figura 3.6.

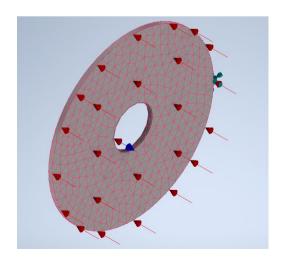


Figura 3.6 Distribución de fuerzas en el disco de compactación Fuente: Autores

Se obtuvieron los resultados de los esfuerzos Von Mises en la figura 3.7, donde podemos observar que el disco de compactación resiste la carga aplicada.

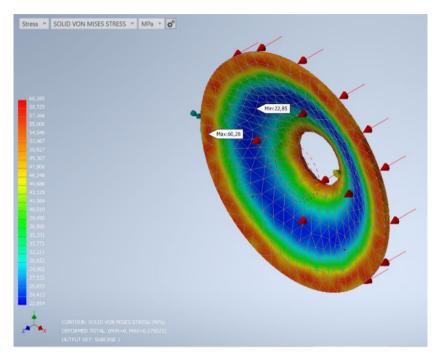


Figura 3.7 Esfuerzos de Von Mises en el disco de compactación Fuente: Autores

Se calculó el factor de seguridad, en la figura 3.8, y nos dio como resultado un mínimo de 6 lo que asegura perfectamente que el disco no fallará en el proceso.

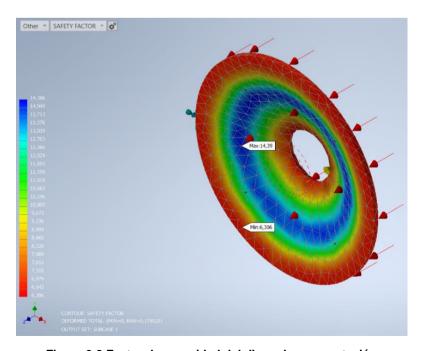


Figura 3.8 Factor de seguridad del disco de compactación Fuente: Autores

Por último, se calculó también su desplazamiento máximo que es de aproximadamente 0,2 [mm] lo que nos indica que su deformación al momento de comprimir el papel será mínima.

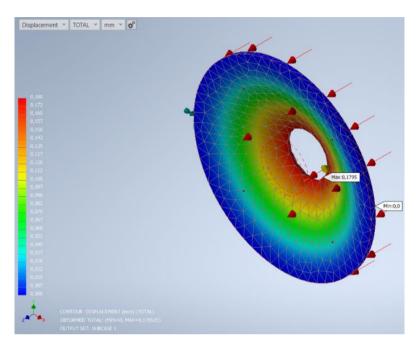


Figura 3.9 Desplazamiento del disco de compactación Fuente: Autores

3.3 Costos del proyecto

En este apartado se presentan los costos estimados que tendrá el diseño del compactador. Están en función no solo de los gastos de los materiales, sino también de los gastos administrativos, imprevistos, mano de obra y tiempo que se requiera para su construcción. Es importante mencionar que las tablas descritas a continuación no representan una lista completa del diseño, sino a los elementos y servicios fundamentales necesarios para su ensamble.

Tabla 3.4 Costo total del diseño del compactador

Fuente: Autores

Costos directos	
Sistema Hidráulico	\$ 1.200,75
Sistema de Compactación	\$ 277,73
Sistema Eléctrico	\$ 1.498,47
Mano de obra para ensamble	\$ 268,56
TOTAL	\$ 3.525,51
Costos Indirectos	
Gastos Administrativos	\$ 325,69
Imprevistos	\$ 100,00
TOTAL	\$ 425,69
TOTAL	\$ 3 671,20

Por lo tanto, el costo estimado del diseño del compactador es de \$3 671,20. Para visualizar costos detallados en Apéndice D.

CAPÍTULO 4

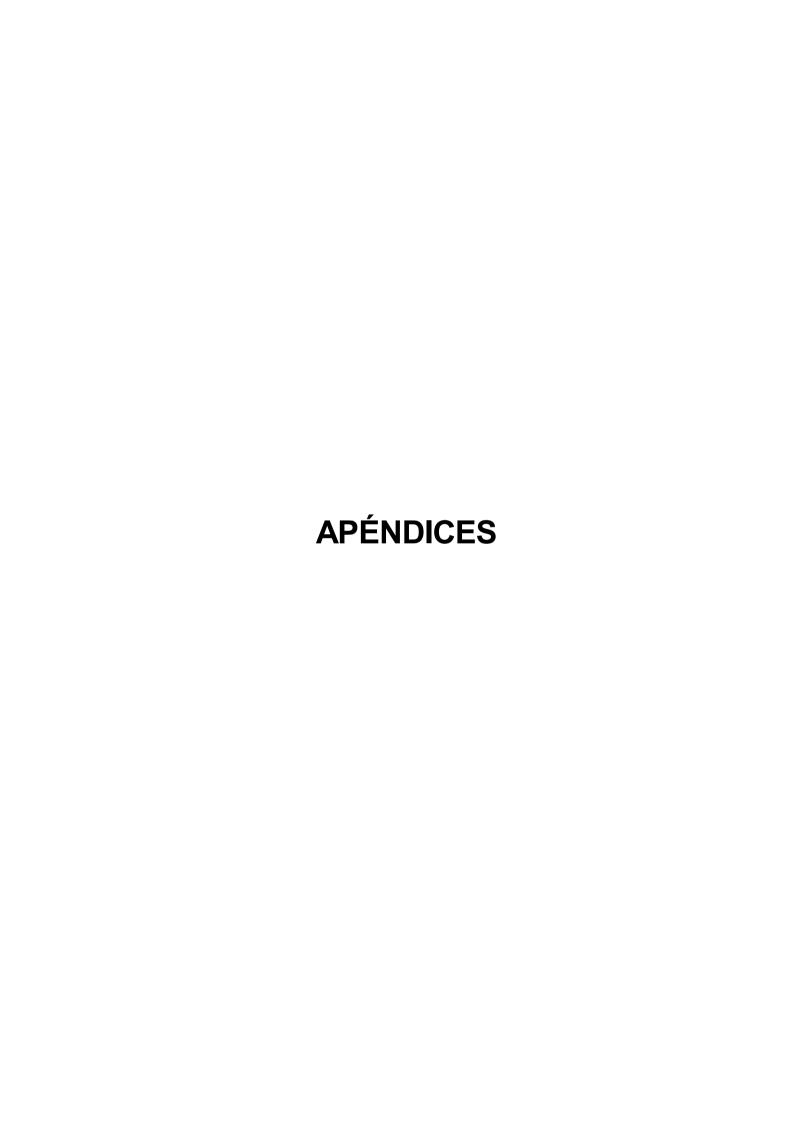
4. CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

- Para lograr diseñar el compactador fue de vital importancia establecer los subsistemas que lo comprenden para poder entender de mejor manera su funcionamiento, quedando detallados los siguientes: hidráulico, estructural y eléctrico según se pueden apreciar en el apartado de costos de manera más detallada.
- Los materiales usados para la construcción del compactador hidráulico fueron encontrados dentro del mercado nacional sin complejidad de adquisición alguna, permitiendo así beneficiar a la economía del Ecuador.
- En función del caudal de entrada requerido para el diseño oleo hidráulico, en la succión e impulsión, se seleccionaron la bomba con 1,19 [GPM] de modelo GP1K25 y un motor trifásico jaula de ardilla de 1,5 [HP]; con velocidad de rotación de eje a 1 800 [rpm].
- De acuerdo a las cotizaciones realizadas con las diversas empresas nacionales, el costo total de construcción del compactador incluida su mano de obra será de \$3 671,20; resultando ser un valor accesible en comparación con el uso requerido para salvaguardar la seguridad de los operadores, mantener un área ordenada y reducir el impacto ambiental al cortar árboles para la producción de papel.

4.2 Recomendaciones

- Se recomienda realizar las pruebas experimentales con los equipos y sistemas adecuados para poder tener datos más precisos sobre la presión de compactación para lograr un mejor dimensionamiento del compactador, así como la selección de los elementos de los subsistemas.
- Se recomienda utilizar otros materiales para las tuberías estructurales tales como acero inoxidable en caso de trabajar con sólidos/desechos provenientes de aguas industriales o cualquier material abrasivo que pueda oxidar o afectar la vida útil de las tuberías en corto tiempo.


- Para los sistemas hidráulicos es de vital importancia seleccionar primero el cilindro hidráulico, debido a que nos permitirá seleccionar de manera correcta la bomba y el motor para así poder cumplir a cabalidad lo requerido por el cliente.
- Los costos de operación obtenidos son valores estimados básicos que tendrá el compactador, pudiendo ser incrementados si desde el punto de visto eléctrico se decide automatizar más la máquina, como el añadir finales de carreras, sensor de reconocimiento de material, etc.

BIBLIOGRAFÍA

- Dym, C., Little, P., & Orwin, E. (2014). *ENGINEERING DESIGN: A PROJECT BASED INTRODUCTION* (Fourth). Nueva Jersey: WILEY.
- Sidel. (s. f.). AQUA MÁQUINA LAVADORA DE BOTELLAS.
- WAM. (2018). Compactadores hidráulicos a pistón CHP. Recuperado de https://wamgroup.com.ar/es-ES/WAMAR/Product/CHP/Compactadores-hidraulicos-a-piston. Accedido el 29 de octubre,2020.
- Vickers, & Villaronga. (1986). Manual de Oleohidráulica Industrial. Barcelona.
- SOHIPREN S.A. (2005). MANUAL BÁSICO de OLEOHIDRAULICA (Segunda). Córdoba.
- Czekaj, D. (1988). Aplicaciones de la ingeniería: maquinaria hidráulica en embarcaciones pesqueras pequeñas, Volumen 3 (F. & A. Org., Ed.).
- IMMSA. (s. f.). Prensa compactadora horizontal. Recuperado de https://www.immsa.com/web/index.php/es/prensa-compactadora-horizontal. Accedido el 26 de octubre, 2020.
- IMMSA. (s. f.). Prensas compactadoras verticales. Recuperado de https://www.immsa.com/web/index.php/es/prensas-compactadoras-verticales. Accedido el 26 de octubre, 2020.
- Solé, A. C. (2007). Neumática e Hidráulica (Alfaomega, Ed.). España: Marcombo.
- Medina, C. A. S. (2011). Sistemas oleohidráulicos.
- Cengel, Y., & Cimbala, J. (2006). *MECÁNICA DE FLUIDOS: Fundamentos y Aplicaciones* (Primera). México: McGraw-Hill Companies, Inc.
- Delnero, J. (s. f.). Oleohidráulica Circuitos Hidráulicos.
- Landin, P. (s. f.). *Neumática e Hidráulica*. Fundación Educativa Sofía Barat Sagrado Corazón de Placeres.
- Tipan, R. (2017). Diseño e Implementación de un sistema automático compactador pet utilizando sistema hidráulico (Escuela Superior Politécnica del Chimborazo). Recuperado de http://dspace.espoch.edu.ec/bitstream/123456789/8996/1/108T0234.pdf. Accedido el 25 de noviembre, 2020.
- MUNCIE. (2020). Conceptos básicos de los sistemas hidráulicos montados en camiones.

 Recuperado de https://www.munciepower.com/cms/files/Products/Literature/Documents/Training/T R-G93-01S.pdf. Accedido el 25 de noviembre, 2020.

- Almandoz, J., & Mongelos, B. (2007). Sistemas Neumáticos y Oleohidráulicos. Recuperado de https://makrodidactica.files.wordpress.com/2014/08/oleohidraulica.pdf. Accedido el 1 de diciembre, 2020.
- Romero, F. H. C. (2005). Acueductos: teoría y diseño. Universidad De Medellin.
- Mataix, C. (1986). *Mecánica de Fluidos y Máquinas Hidráulicas* (Segunda). Madrid: Ediciones del Castillo S.A.
- VICKERS. (s. f.). Manual de Hidráulica Industrial.
- Norton, R. L. (2011). *Diseño de Máquinas: Un enfoque integrado* (Cuarta). México: Pearson Education.
- Macías, A. (1997). Cálculo y Diseño del Sistema Oleohidráulico para una prensa de vulcanizado por compresión accionada electricamente. Autónoma de Occidente.
- S.L.L, T. B. B. (s. f.). Oleohidráulica y Neumática.
- S.A., H. del E. (s. f.). VÁLVULAS DIRECCIONALES ELÉCTRICAS. Recuperado de https://www.hydromecanica.com/images/pdf/4.VALVULAS/4.3VALVULAS-DIRECCIONALES-ELECTRICAS/3.VALVULAS-DIRECCIONALES-ELECTRICAS.pdf. Accedido el 28 de diciembre, 2020.
- S.A., H. del E. (s. f.). BOMBA DE ENGRANAJES. Recuperado de https://www.hydromecanica.com/images/pdf/2.BOMBAS/PINONES/BOMBAS-DE-PINONES.pdf. Accedido el 28 de diciembre, 2020.
- S.A., H. del E. (s. f.). VÁLVULAS DE CONTROL DE PRESIÓN. Recuperado de https://www.hydromecanica.com/images/pdf/4.VALVULAS/4.1VALVULAS-DE-CONTROL-DE-PRESION/1.VALVULAS-DE-CONTROL-DE-PRESION.pdf. Accedido el 28 de diciembre, 2020.
- Hidrofreno. (s. f.). *Mangueras Hidráulicas*. Recuperado de https://8283f202-b3b4-4299-b1e6a64e46cbeae6.filesusr.com/ugd/ba9602_e9491e9016c9404bb987d10946855 794.pdf. Accedido el 02 de enero, 2021.
- BIGLAND. (s. f.). Sinopec L-HM Aceite hidráulico anti desgaste. Recuperado de https://www.bigland-ec.com/hidraulicos/sinopec-l-hm-aceite-hidraulico-anti-desgaste.html. Accedido el 02 de enero, 2021.
- Pytel, A., & Singer, F. (1994). Resistencia de materiales (Cuarta). México: HARLA.
- Arboleda, D., Correa, M., & Otoya, F. (1986). *Diseño y construcción de una máquina compactadora de papel*. Universidad Autónoma de Occidente.

APÉNDICE A

(Desarrollo de fórmulas)

2.3.1.1 Diseño del cilindro hidráulico

La presión recomendable debe estar entre 1000 y 1500 psi, para lo cual se realizaron iteraciones para encontrar el diámetro del cilindro que cumpla con dicha condición, quedando de la siguiente forma:

$$P = \frac{F_{extensión}}{\frac{\pi D^2}{4}};$$

$$D = 0,125 [m]; \qquad F_{extensión} = 132 435,00 [N]$$

$$P = \frac{132 435,00 [N]}{\frac{\pi (0,125 [m])^2}{4}}$$

$$P = 10,79 [MPa] = 1565,22 [psi]$$
(6.1)

2.3.1.2 Diseño del vástago

El límite mínimo de la esbeltez mecánica para aceros debe ser menor a 100 (Pytel & Singer, 1994). Por lo tanto, despejando el radio de giro mínimo tenemos:

$$\frac{Le}{r_{min}} \ge 100$$

$$r_{min} \le 5 [mm]$$

Se procede a verificar si el vástago es tratado como columna larga o corta:

$$S_{r} = \frac{(K) \cdot (l)}{r_{min}} = \frac{(1) \cdot (0,5 \ [m])}{0.005 \ [m]} = 100$$

$$C_{c} = \sqrt{\frac{2\pi^{2}E}{S_{y}}} = \sqrt{\frac{2\pi^{2}(200 \ [GPa])}{(216 \ [MPa])}} = 135,19$$

$$S_{r} < C_{c} \quad \therefore \quad Columna \ corta$$

Utilizando la ecuación (12) y asumiendo un factor de seguridad de 3, tenemos:

$$\sigma_T = \left[1 - \frac{(0,005)^2}{2(135,19)^2}\right] \frac{216 [MPa]}{3}$$

$$\sigma_T = 72,00 [MPa]$$

El diámetro que garantiza que resista como mínimo la carga aplicada es de:

$$F_{admisible} = \sigma_T \cdot A = (72,00 \ [MPa]) \cdot \left(\frac{\pi d^2}{4}\right) = 132,44 \ [kN]$$

$$d = \sqrt{\frac{(132,44 \ [kN]) \cdot (4)}{\pi \cdot (72,00 \ [MPa])}}$$

$$d = 0,04839 \ [m] = 48,39 \ [mm]$$

De acuerdo al catálogo encontrado en el mercado ecuatoriano el diámetro próximo es de 70 [mm]. Considerando un cilindro de doble efecto y con el diámetro corregido, la fuerza de retroceso del vástago será mediante la ecuación 12:

$$F_{retroceso} = P \cdot A$$

$$F_{retroceso} = (10,79 \ [MPa]) \cdot \frac{\pi \{(0,125[m])^2 - (0,070 \ [m])^2\}}{4} \cdot 0,9;$$

$$F_{retroceso} = 81 \ 800 \ [N]$$

La velocidad del vástago es obtenida mediante la ecuación 13, escogiendo como carrera 240 [mm] y tiempo 40 [s] en realizar el proceso de extensión y 20 [s] para el retroceso, tenemos:

$$v_{vstatago-avance} = rac{240 \ [mm]}{40 \ [s]}; \qquad v_{vstatago-retroceso} = rac{240 \ [mm]}{20 \ [s]}$$
 $v_{vstatago-avance} = 6 \left[rac{mm}{s}
ight]; \qquad v_{vstatago-retroceso} = 12 \ \left[rac{mm}{s}
ight]$

Para encontrar los caudales en la entrada y salida del cilindro hidráulico, se usaron las ecuaciones 14, 15, 16 y 17:

$$\begin{split} A_{circular} &= \frac{\pi (0,125 \ [m])^2}{4}; \\ A_{anular} &= \frac{\pi \{(0,125 [m])^2 - (0,070 \ [m])^2\}}{4} \end{split}$$

$$A_{circular} = 0.0123 [m^2]$$

 $A_{anular} = 0.0084 [m^2]$

Por lo tanto:

$$Q_{entrada} = \left(0,006 \left[\frac{m}{s}\right]\right) \cdot \left(0,0123 \left[m^2\right]\right)$$

$$Q_{entrada} = 7,38 \times 10^{-5} \left[\frac{m^3}{s}\right]$$

$$Q_{salida} = \left(0,012 \left[\frac{m}{s}\right]\right) \cdot \left(0,0084 \left[m^2\right]\right)$$

$$Q_{salida} = 10,00 \times 10^{-5} \left[\frac{m^3}{s}\right]$$

2.3.1.4 Tuberías Hidráulicas

Mediante la ecuación (19) se proceden a obtener los diámetros de las tuberías en la aspersión, impulsión y retroceso:

$$d_{aspersión \, máximo} = 0,0125 \, [m] = 12,50 \, [mm]$$
 $d_{aspersión \, mínimo} = 0,0088 \, [m] = 8,84 \, [mm]$
 $d_{impulsión \, máximo} = 0,0068 \, [m] = 6,85 \, [mm]$
 $d_{impulsión \, mínimo} = 0,0043 \, [m] = 4,33 \, [mm]$
 $d_{retorno \, máximo} = 0,0093 \, [m] = 9,26 \, [mm]$
 $d_{retorno \, mínimo} = 0,0057 \, [m] = 5,67 \, [mm]$

2.3.1.12 Reservorio de aceite

Para el diseño del reservorio de aceite es recomendable que contenga 3 o más veces el volumen proporcionado por lo bomba en 1 minuto, por ello:

$$V_{tanque} = (1,19 \ [Gal]) \cdot (3 \ veces) = 3,57 \ [Gal] = 13,51 \ [l]$$

= 0,01351 $[m^3]$

2.3.1.14 Motor

Por lo tanto, usando la ecuación 20 y asumiendo que la bomba trabaja al 90% de eficiencia, tenemos:

$$P_{motor} = \frac{(1565,22 [psi]) \cdot (1,19 [GPM])}{\left(1714 \left[\frac{GPM \cdot psi}{HP}\right]\right) \cdot (0,9)}$$

$$P_{motor} = 1,21 [HP]$$

APÉNDICE B

(HOJAS TÉCNICAS)

Tabla B.1 Especificaciones técnicas del aceite hidráulico REPSOL Fuente: REPSOL

Características técnicas

	UNIDAD	MÉTODO		VALOR	
Grado ISO VG			32	46	68
Viscosidad a 40 °C	cSt	ASTM D 445	29,5	46	68
Viscosidad a 100 °C	cSt	ASTM D 445	5,1	6,6	8,7
Índice de viscosidad		ASTM D 2270	100	98	98
Inflamabilidad V/A	°C	ASTM D 92	226	231	246
Punto congelación	°C	ASTM D 97	-15	-27	-24
Desemulsión a 54 °C	min	ASTM D 1401	20	20	20
Corrosión al Cu		ASTM D 130	1	1	1
Rust, Método A		ASTM D 665	Pasa	Pasa	Pasa
TAN	mg KOH/g	ASTM D 974	0,4	0,4	0,4
Aeroemulsión a 50 °C	min	ASTM D 3427	2	3	6
Oxidación, TAN a 2000 h	mg KOH/g	ASTM D 943	<2	<2	<2
FZG, escalón de daños		DIN 51583	11	11	11
Máquina 4 bolas, diámetro de huella	mm	ASTM D 4172	0,35	0,30	0,30
Máquina 4 bolas, índice carga desgaste		ASTM D 2783	28	34	35

Tabla B.2 Catálogo de tuberías hidráulicas Fuente: (Hidrofreno, s. f.)

					,		
T3000D MA I S O B A C O M P A	RICA				<u>a</u>		
		ID DE	ID DE	MÁXIMA	MÍNIMA	RADIO	
T.	AMAÑO DE	MANGUERA	MANGUERA	PRESIÓN DE	PRESIÓN PARA	MÍNIMO DE	PESO
PARTE NO.	MANGUERA	NOMINAL	NOMINAL	TRABAJO	REVENTAR	CURBATURA	PROMEDIO

MANGUERA	DN	DASH	mm	pulg.	mm	pulg.	bar	psi	bar	psi	mm	pulg.	kg/m	lb/pies
T3004D	6	-04	6,3	1/4	11,8	0,46	245	3500	980	14000	38	1,5	0,16	0.11
T3005D	8	-05	7,9	5/16	14,4	0,57	245	3500	980	14000	41	1,6	0,23	0.15
T3006D	10	-06	9,5	3/8	15,6	0,61	215	3100	860	12400	65	2,6	0,26	0.18
T3008D	12	-08	12,7	1/2	18,7	0,74	215	3100	860	12400	90	3,6	0,36	0.24
T3010D	16	-10	15,9	5/8	23,4	0,92	215	3100	860	12400	100	3,9	0,56	0.38
T3012D	19	-12	19,1	3/4	27,6	1,09	215	3100	860	12400	120	4,7	0,78	0.52
T3016D	25	-16	25,4	1	34,8	1,37	215	3100	860	12400	150	5,9	1,14	0,77

Tabla B.3 Especificaciones del adaptador hidráulico Macho BSPP-ORR a hembra NPTF Fuente: (Hidrofreno, s. f.)

Macho BSPP-ORR a hembra NPTF

Rosca macho BSPP-ORR	Rosca hembra NPTF
1/4"	1/4"
3/8"	3/8"
1/2"	1/2"
3/4"	3/4"

Tabla B.4 Especificaciones del acople macho SAE 37(JIC) Fuente: (Hidrofreno, s. f.)

Rosca macho NPTF	Espiga manguera
1/4"	1/4"
3/8"	1/4"
3/8"	3/8"
1/2"	3/8"
1/2"	1/2"
5/8"	1/2"
5/8"	5/8"
3/4"	5/8"
3/4"	3/4"
1"	1"

Tabla B.5 Bushing de acero NPTF Fuente: (Hidrofreno, s. f.)

Bushing acero	NPTF

Rosca macho NPTF	Rosca hembra NPTF
1/4"	1/8"
3/8"	1/4"
1/2"	1/4"
1/2"	3/8"
3/4"	1/2"
1"	1/2*
1"	3/4"
1 1/4"	1"

Tabla B.6 Especificaciones del filtro de succión MF-SC2 Fuente: (Hidrofreno, s. f.)

Modelo	Q nom LPM	Micras de filtración	Rosca Macho	Rosca hembra B/N
SC2-003	12			3/8"
SC2-005	20			3/8"
SC2-007	28			3/4"
SC2-010	40			1"
SC2-020	80			1-1/4"
SC2-030	120			1-1/2"
SC2-050	200	149		1-1/2"
SC2-051	200			2"
SC2-075	300			1-1/2"
SC2-100	400			3"
SC2-150	600			3"
SC2-200	800			4"
SC2-300	1200			4"
SC2-400	1600			4"
SC2-600	2400			4"

Tabla B.7 Especificaciones del acople macho SAE 37(JIC) Fuente: (Hidrofreno, s. f.)

Rosca	Espiga	
macho NPTF	manguera	
1/4"	1/4"	
3/8"	1/4"	
3/8"	3/8"	
1/2"	3/8"	
1/2"	1/2"	
5/8"	1/2"	
5/8"	5/8"	
3/4"	5/8"	
3/4"	3/4"	
1"	1"	

Tabla B.8 Especificaciones del filtro de retorno IFR3-S/E Fuente: (Hidrofreno, s. f.)

Modelo	Q nom LPM	P max Bar	Micras de filtración	Puerto rosca B/N
IFR3-06	70		P10	3/4"
			P25	
IFR3-10	200			1-1/4"
		10	A10	
IFR4-02	15		A25	1/4"
IFR4-03	15			3/8"
IFR4-04	35		M125	1/2"
IFR4-06	70			3/4"

Tabla B.9 Especificaciones del acople macho SAE 37(JIC) Fuente: (Hidrofreno, s. f.)

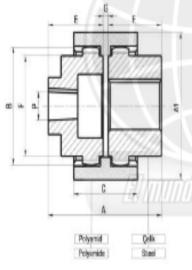
Rosca macho NPTF	Espiga manguera
1/4"	1/4"
3/8"	1/4"
3/8"	3/8"
1/2"	3/8"
1/2"	1/2"
5/8"	1/2"
5/8"	5/8"
3/4"	5/8"
3/4"	3/4"
1"	1"

Tabla B.10 Información técnica y dimensiones de ensamblaje Fuente: (Hydromecánica d<u>el E</u>cuador S.A.)

ТІРО		GP1K1	GP1K1.2	GP1K1.6	GP1K2.1	GP1K2.5	GP1K3.2	GP1K3.5	GP1K4.2	GP1K5	GP1K6.2	GP1K7	GP1K8	GP1K10
DESPLAZAMIENTO	cm²/rev	1,0	1,2	1,6	2,1	2,5	3,2	3,5	4,2	5,0	6,2	7,0	8,0	10,0
GPA A 1800 RPM	GPA	0,48	0,57	0,76	1,00	1,19	1,52	1,66	2,00	2,38	2,95	3,33	3,80	4,76
DIMENSION A	mm	37,70	38,40	39,90	41,80	43,30	45,90	47,00	49,60	52,60	57,20	60,20	63,60	71,00
DIMENSION B	mm	18,85	19,20	19,95	20,90	21,65	22,95	23,50	24,80	26,30	28,60	30,10	31,80	35,50
PRESIÓN CONTINUA MÁXIMA, P1	bar			2	50			24	40	230	220	210	170	140
PRESIÓN CONTINUA MÁXIMA, P2	bar			2	70			20	50	250	240	230	190	160
PICO DE PRESIÓN, P₃	bar			2	90			28	30	270	260	250	210	180
VELOCIDAD MÁXIMA P2, nmax	min-1			40	000					3500			32	00
VELOCIDAD MINIMA P1,Ínmin	min-1	750				650					600			
PESO	kg	0,83	0,85	0,87	0,91	0,93	0,96	0,98	1,00	1,05	1,16	1,20	1,26	1,32

Tabla B.11 Catálogo motores trifásicos jaula de ardilla NEMA B Fuente: (Siemens)

	Des	cripción			Modelo	
Potencia en HP	Velocidad en RPM	Tensión a 60 Hz en Volts	Tamaño Armazón NEMA	RGZE Uso general Catálogo Spiridon	RGZESD Uso pesado Catálogo Spiridon	RGZZESD A prueba de explosión Catálogo Spiridon
0.5	900	230/460	143T	1LA01438FP21	No disponible	No disponible
0.75	1800	230/460	143T	1LA01434FE21	*	1MJ01434XE21
	1200	230/460	143T	1LA01436FE21	*	1MJ01436XE21
	900	230/460	145T	1LA01458FE21	*	No disponible
1	3600	230/460	143T	1LA01432FE21	A7B10000020167	1MJ01432XE21
	1800	230/460	143T	1LA01444FE21	A7B10000020169	1MJ01444XE21
	1200	230/460	145T	1LA01456FE21	A7B10000014868	1MJ01456XE21
	900	230/460	182T	1LA01828FE21	A7B10000020180	1MJ01828XE21
1.5	3600	230/460	143T	1LA01442FE21	A7R10000020181	1MI01442XF21
	1800	230/460	145T	1LA01454FE21	A7B10000020182	1MJ01454XE21
	1200	230/460	182T	1LA01826FE21	A7B10000020184	1MJ01826XE21
	900	230/460	184T	1LA01848FE21	A7B10000020185	1MJ01848XE21
2	3600	230/460	145T	1LA01452FE21	A7B10000020186	1MJ01452XE21
	1800	230/460	145T	1LA01464FE21	A7B10000020187	1MJ01464XE21
	1200	230/460	184T	1LA01846FE21	A7B10000020188	1MJ01846XE21
	900	230/460	213T	1LA02138FE21	A7B10000020189	1MJ02138XE21
3	3600	230/460	182T	1LA01822FE21	A7B10000014829	1MJ01822XE21
	1800	230/460	182T	1LA01824FE21	A7B10000014845	1MJ01824XE21
	1200	230/460	213T	1LA02136FE21	A7B10000014869	1MJ02136XE21
	900	230/460	215T	1LA02158FE21	A7B10000020190	1MJ02158XE21
5	3600	230/460	184T	1LA01842FE21	A7B10000014850	1MJ01842XE21
	1800	230/460	184T	1LA01844FE21	A7B10000014846	1MJ01844XE21
	1200	230/460	215T	1LA02156FE21	A7B10000014890	1MJ02156XE21
	900	230/460	254T	1LA02548FE21	A7B10000020191	1MJ02548XE21
7.5	3600	230/460	213T	1LA02132FE21	A7B10000020192	1MJ02132XE21
	1800	230/460	213T	1LA02134FE21	A7B10000014847	1MJ02134XE21
	1200	230/460	254T	1LA02546FE21	A7B10000020193	1MJ02546XE21
	900	230/460	256T	1LA02568FE21	A7B10000020194	1MJ02568XE21
10	3600	230/460	215T	1LA02152FE21	A7B10000020195	1MJ02152XE21
	1800	230/460	215T	1LA02154FE21	A7B10000014865	1MJ02154XE21
	1200	230/460	256T	1LA02566FE21	A7B10000020196	1MJ02566XE21
	900	230/460	284T	A7B10000014281	A7B10000013643	A7B10000017089
15	3600	230/460	254T	1LA02542FE21	A7B10000014851	1MJ02542XE21
	1800	230/460	254T	1LA02544FE21	A7B10000014866	1MJ02544XE21
	1200	230/460	284T	A7B10000014271	A7B10000013645	A7B10000014893
	900	230/460	286T	A7B10000014282	A7B10000013646	A7B10000017110



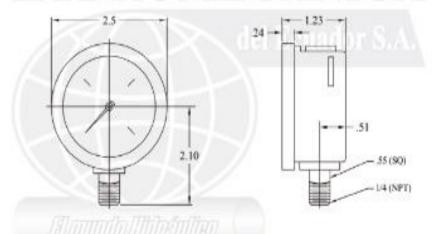
ACOPLES Y MATRIMONIOS PARA BOMBA

Código HEDROMECANICA	Tipo de Romba	Dimensión de eje de motor mm
14 DC	GR 10-20	14
24 DC	GR 10-20	14-19-24
28 DC	GR 10-20-30	14-19-24-28
32 DC	GR 20-30	19-24-28
38 DC	GR 20-30	24-28-38
42 DC	GR 20-30	24-28-38-42
48 DC	GR 20-30	28-38-42-48
55 DC	GR 20-30	38-42-48-55
60 DC	GR 20-30	42-48-55-60

del Ecuador S.A.

Código		DIMENSIONES						EE					PODER	
HIDROMECANICA	A	A1	В	F	E	¢	G		MO	TOR		80	MBA	kw
14 DCP	44	40	33	23	21	28	1							0.25-0.37
14 DC	51	40	33	24	24	28	3	-			14	10	20	0.25-0.37
24 DC	58	54	44	35	28	34	2	-	14	19	24	10	20	1.1-1.5
28 DC	82	68	56	45	40	40	2	14	19	24	28	20	30	2.2-4
32 DC	83	76	59	49	40	45	3	-	19	24	28	20	30	2.2-4
38 DC	85	84	68	57	42	48	2	-	24	28	38	20	30	5.5-7.5
42 DC	86	88	71	60	42	50	2	24	28	38	42	20	30	11-15
48 DC	100	100	78	65	47	51	3	28	38	42	48	20	30	18.5-22
55 DC	114	120	98	85	55	63	3	38	42	48	55	20	30	30
60 DC	138	140	111	98	68	71	2	42	48	55	60	20	30	37-45

Figura B.1 Acople bomba/motor Fuente: (Hydromecánica del Ecuador S.A.)


MANÓMETRO CON GLICERINA

CARACTERISTICAS:

- · Relleno de glicerina
- · Cuerpo de acero inoxidable
- · Dial de aluminio
- Escala dual PSI/Bar
- · Tubo de bourdon de bronce
- · Conexión interior 1/4 NPT
- · Amortiguador interno c/w de 5mm
- · Precisión +2% @ 23°F
- Diámetro de 2 1/2"

201						4.16				
RC1		-34	n.	~	-	tá	м.	м	-	,
3	ш	ĸ.	ж	_	٠,	1.24	п	ш	e.	г

Código del modelo	Rango
M-300	0 - 300 PSI
M-1000	0 - 1000 PSI
M-2000	0 - 2000 PSI
M-3000	0 - 3000 PSI
M-5000	0 - 5000 PSI
M-10000	0 - 10000 PSI

Figura B.2 Manómetro de alta presión Fuente: (Hydromecánica del Ecuador S.A.)

Tabla B.12 Datos técnicos de válvula de control direccional Fuente: (Hydromecánica del Ecuador S.A.)

DATOS TECNICOS

GENERAL						
DATOS	UNIDADES	RA	NGO			
Pocisión de instalación		Opcial, except	to symbologia			
		"08", "09","20" y	"82" - Horizontal			
Máx. temperatura ambiente	°C	-20	. +50			
Peso (Válvula selenoide simple)	kg	1600				
(Válvula selenoide doble)	kg	2,200				
HIDRÁULICO						
Máx. presión port P, A & B	MPa	TARTS	2 4 8			
port T	MPa	, A 2	4 /			
Rango de flujo (at Δp 0,1 Mpa.)	I/min		20			
Máx. flujo	I/min		0			
	(Cale)	Ecuado	Г Э. А.\			
Aceite hidráulico líquido-mineral:						
- Viscosidad	mm/s	10	. 800			
- Grado de filtración	mm	0.025				
- Temperatura	°C	-2080				
ELÉCTRICO						
Duración del ciclo	%	10	00			
Impermeabilidad		IP	65			
Aislamiento térmico		ŀ				
Tipo de voltaje	Then	DC	AC			
Voltahe/Frecuencia disponible	ШОШ	12/00	110/50 (60)			
	V/Hz	24/00	220/50 (60)			
		48/00				
Consumo actual 12VDC		2,4				
24VDC		1,3				
48VDC	A	0,58				
110V RAC			0,5			
220V RAC		0,25				
Max. frecuencias de conmutación	cycle/h	150	000			
Tiempo de conmutación en on	ms	5				
p = 17,5MPa, en 50ms off	ms	2	5			

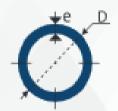
Q = 40 I / min (medido para apagado en 25ms símbolo de la válvula de control "01")

TUBERÍA SIN COSTURA CÉDULA 40

Especificaciones Generales:

ASTM A 53 GRB: Conducción fluídos y gases en

mineria, petroquímica, pesca y

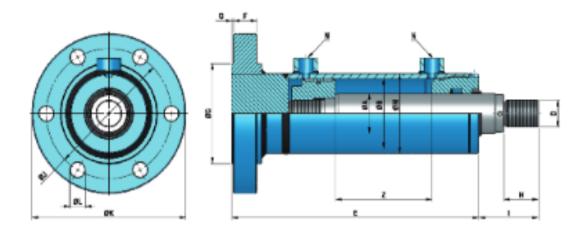

en general.

API 5L: Tubos para industria petrolera ASTM A 106: Tubos para servicio a altas

temperaturas

Recubrimiento: Negro o galvanizado

Largo normal: 6,00 mts. Acabado: Acero negro



COMP	COMPOSICIÓN QUÍMICA %									
C Max	Mn	P Max	S Max							
0.3	1.2	0.05	0.06							

	PROPIEDADES NECANICAS										
RESISTENCIA	MECÁNICA	PUNTO DE	Elongación %								
Kg/mm²	Psi	Kg/mm ^a	Psi	Min							
42.2	60000	24.6	35000	30 - 35							

	DIÁMETR(0		F	PROPIEDAD	ES			
INTERIOR	EXTE	RIOR (D)	ESPES	OR (e)	PRESIÓN	UPRUEBA	PESO		
pulg	mm	pulg	mm	pulg	kg/cm²	lb/pulg ²	kg/mts		
1/2*	21.30	0.84	2.77	0.10	49	700	1.27		
3/4"	26.70	1.05	2.87	0.11	49	700	1.68		
111	33.40	1.31	3,38	0.13	49	700	2,50		
1.1/4"	42.20	1.66	3.56	0.14	91	1300	3.38		
1.1/2*	48.30	1.90	3.68	0.14	91	1300	4.05		
2"	60.30	2.37	3.91	0.15	176	2500	5.44		
2:1/2*	73.00	2.87	5.16	0.20	176	2500	8.62		
31	88.90	3.50	5.49	0.21	176	2600	11.29		
41	114.30	4.50	6.02	0.23	155	2210	16.07		
5"	141,30	5.56	6.55	0.25	137	1950	21.78		
61	168.30	6.62	7.11	0.28	125	1780	28.26		
8*	219.10	8.62	8.18	0.32	110	1570	42.53		
101	273.00	10.75	9.27	0.36	101	1430	60.29		
121	323.80	12.75	10.31	0.40	94	1340	79.65		
14"	355.60	14.00	11.13	0.43	92	1310	94.55		

Figura B.3 Tubería sin costura cédula 40 Fuente: (DIPAC MANTA)

REF.	ØA	ØB	E	c	D	F	G	н	Ţ.	J	K	ï	м	N BSP
8100/Z	20	32	125 + Z	52	M14x1,5	15	2	18	35	67	80	7	42	1/4
8101/Z	22													
8102/Z	25	40	130 + Z	60	M16x1,5	15	2	22	40	82	100	9	50	3/8
8103/Z	28													
8104/Z	25													
8105/Z	28	50	139 + Z	75	M20x1,5	18	2	28	48	103	125	11	60	3/8
8106/Z	30													
8107/Z	36													
8108/Z	30													
8109/Z	35	60	149 + Z	90	M27x2	20	2	36	58	120	145	13	70	3/8
8110/Z	40													
8111/Z	36													
8112/Z	40	63	149 + Z	90	M27x2	20	2	36	58	120	145	13	75	3/8
8113/Z	45													
8114/Z	35													
8115/Z	40	70	157 + Z	100	M27x2	24	2	36	58	130	160	15	85	3/8
8116/Z	45													
8117/Z	36													
8118/Z	40													
8119/Z	45	80	171 + Z	110	M33x2	28	2	45	68	142	170	15	95	3/8
8120/Z	50													
8121/Z	56						ш				Ш			
8122/2	45													
8123/Z	50									*700				
8124/Z	56	100	185 + Z	135	M42x2	30	3	56	85	170	202	17	115	1/2
8125/Z	60													
8126/Z	70													
8127/2	70	125	260 + Z	170	M48x2	40	3	63	92	210	250	21	145	3/4
8128/Z	90	440	225 . 2	400	1404.0	40		or	430	226	200	24	100	204
8129/Z	80	140	275 + Z	190	M64x3	40	3	85	120	230	280	21	160	3/4
8130/Z	90	160	308 + Z	215	M80x3	54	3	95	130	270	320	29	180	1
8131/Z	110	200	262 7	970	1100 7		_	OF.		225	200		224	
8132/Z	110	200	363 + Z	270	M80x3	65	3	95	130	330	385	32	230	1

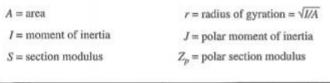
- Z = carrera (a definir por el cliente). Consultar amarres de vástago en la página 43.
- Z = stroke (to be defined by customer). Check rod attachments on page 43.
- Z course (3 définir par le client). Vérifiez les fixations de tige sur page 43.

Figura B.4 Catálogo del cilindro hidráulico Fuente: (Catálogo en línea)

APÉNDICE C

(PROPIEDADES DE LOS ELEMENTOS)

Nº del tipo de montaje	Modo de fijación del cilindro	Modo de fijación del extremo del vástago	Representación del modo de montaje	K
1	Pata delantera	Fijado y guiado rígidamente		0,5
2	y trasera Articulado y guiado rígidamente			0,7
3	Brida delantera	Soportado pero no guiado rígidamente		2
4		Fijado y guiado rígidamente		1
5	Brida trasera	Articulado y guiado rígidamente		1,5
6		Soportado pero no guiado rígidamente	[i=i= <u>n</u>	4


Figura C.1 Constante dependiente de fijeza final Fuente: (S.L.L, s. f.)

Aleaciones de acero inoxidable	Condición	por tensió	a la fluencia in (0.2% de n remanente)		cia última ensión	Elongación en 2 in	Dureza Rockwell o Brinell
		kpsi	MPa	kpsi	MPa	%	
Tipo 301	recocido en tiras	40	276	110	758	60	85HRB
	rolado en frío	165	1 138	200	1 379	8	41HRC
Tipo 302	recocido en láminas	40	276	90	621	50	85HRB
	rolado en frío	165	1 138	190	1 310	5	40HRC
Tipo 304	recocido en láminas	35	241	85	586	50	80HRB
	rolado en frío	160	1 103	185	1 276	4	40HRC
Tipo 314	recocido en barras	50	345	100	689	45	180HB
Tipo 316	recocido en láminas	40	276	90	621	50	85HRB
Tipo 330	rolado en caliente	55	379	100	689	35	200HB
	recocido	35	241	80	552	50	150HB
Tipo 410	recocido en láminas	45	310	70	483	25	80HRB
	tratamiento térmico	140	965	180	1 241	15	39HRC
Tipo 420	recocido en barras	50	345	95	655	25	92HRB
	tratamiento térmico	195	1 344	230	1 586	8	500HB
Tipo 431	recocido en barras	95	655	125	862	25	260HB
	tratamiento térmico	150	1 034	195	1 344	15	400HB
Tipo 440C	recocido en barras	65	448	110	758	14	230HB
	T y R @ 600 °F	275	1 896	285	1 965	2	57HRC
17-4 PH (AISI 630)	endurecido	185	1 276	200	1 379	14	44HRC
17-7 PH (AISI 631)	endurecido	220	1 517	235	1 620	6	48HRC

^{*} Propiedades de algunos metales y aleaciones, International Nickel Co., Inc., Nueva York.

Figura C.2 Propiedades mecánicas de algunas aleaciones de acero inoxidable Fuente: (Norton, 2011)

APPENDIX 1 Properties of Areas

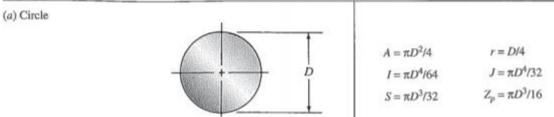


Figura C.3 Propiedades del área de un círculo Fuente: (Robert L, 2006)

APÉNDICE D

COTIZACIÓN DE LOS ELEMENTOS DE LOS SUBSISTEMAS

Tabla D.1 Materiales y costos del sistema hidráulico Fuente: Autores

Producto	Descripción	Cantidad	С	Costo Unitario		sto Total	Empresa proveedora
Cilindro Hidráulico	Cilindros D.E. brida trasera [Serie 8100]		\$	414,39	\$	414,39	-
Mangueras Hidráulicas	Manguera Hidráulica T3000D. Diámetro 11,80 [mm] - 0,46". Presión máxima 215 [bar]	2	\$	15,90	\$	31,80	HIDROFRENO
Mangueras Hidráulicas	Manguera Hidráulica T3000D. Diámetro 6,30 [mm] - 1/4". Presión máxima 215 [bar]	1	\$	15,90	\$	15,90	HIDROFRENO
Válvula aliviadora de presión	Válvula de alivio de presión bola/resorte RD-1837S. Capacidad 20 [GPM]. Presión máxima 2500 [psi]	1	\$	81,27	\$	81,27	HYDROMECÁNICA del Ecuador
Válvula de control	Válvula de control direccional. Presión máxima 32 [Mpa]. Capacidad 80 [LPM]		\$	147,00	\$	147,00	HYDROMECÁNICA del Ecuador
Acoples de manguera/filtros	Acople de succión macho SAE 37 (JIC). Rosca macho NPTF 3/8" y espiga de manguera 1/4"	1	\$	2,55	\$	2,55	HIDROFRENO
Acoples de manguera/filtros	Acople de retorno macho SAE 37 (JIC). Rosca macho NPTF 1/4" y espiga de manguera 1/4"	1	\$	2,55	\$	2,55	HIDROFRENO
Filtro de succión	Filtro de succión MF-SC2-003. Q nom 12 [LPM]. Rosca hembra 3/8"	1	\$	15,12	\$	15,12	HYDROMECÁNICA del Ecuador
Filtro de retorno	Filtro de retorno IFR4-04. Q nom 15 [LPM]. Micras de filtración A25. Puerto rosca B/N 1/4"	1	\$	21,32	\$	21,32	HYDROMECÁNICA del Ecuador
Fluido hidráulico	Aceite hidrálico REPSOL ISO 68 - 5 [Gal]	1	\$	40,00	\$	40,00	Cualquier distribuidora
Bomba de engranaje	Bomba de engranajes GP1K. Presión máxima 4000 [psi]. Capacidad 1,19 GPM. Velocidad 1800 [rpm]		\$	130,27	\$	130,27	HYDROMECÁNICA del Ecuador
Acople bomba/motor	Acople y matrimonio para bomba	1	\$	30,67	\$	30,67	HYDROMECÁNICA del Ecuador
Adaptador Hidráulico	Adaptador Hidráulico Macho BSPP-ORR a hembra NPTF. Rosca macho 3/4" y rosca hembra 3/4"	2	\$	4,30	\$	8,60	HIDROFRENO

Adaptador Hidráulico	Bushing acero NPTF. Rosca macho NPTF 1/2" a Rosca hembra 3/8"	2	\$ 3,95	\$ 7,90	HIDROFRENO
Adaptador Hidráulico	Bushing acero NPTF. Rosca macho NPTF 3/4" a Rosca hembra 1/2"	2	\$ 3,95	\$ 7,90	HIDROFRENO
Acople manguera/cilindro hidráulico	Acople macho SAE 37 (JIC). Rosca macho NPTF 3/8" y espiga de manguera 1/4"	2	\$ 2,55	\$ 5,10	HIDROFRENO
Manómetro de alta presión	Manómetro con glicerina con capacidad de 2000 [psi]	1	\$ 14,43	\$ 28,86	HYDROMECÁNICA del Ecuador
COSTO TOTAL				\$ 962,34	

Tabla D.2 Materiales y costos del tanque hidráulico Fuente: Autores

Producto	Descripción	Cantidad	dad Costo Unitario		Co	osto Total	Empresa proveedora
Plancha de acero al carbón	Plancha de acero galvanizado 1,22x2,44 [m] con espesor de 2 [mm]	1	\$	40,00	\$	40,00	DIPAC MANTA
Tapón para drenaje	Tapón Macho Galvanizado 1/4" - Código GAL0047	1	\$	1,75	\$	1,75	FINPAC Cia.Ltda.
Tapón para respiradero	Tapa de acero cromado 40 micras	1	\$	12,70	\$	12,70	TECASEN
Placa para montaje bomba/motor y separadora	Plancha de acero galvanizado 1,22x2 [m] con espesor de 2 [mm]	1	\$	40,00	\$	40,00	DIPAC MANTA
Termostato	Termostato eléctrico Ksd 180° [C]	1	\$	3,95	\$	3,95	Cualquier electrónica
Indicador de nivel	Indicador de nivel LG2 de 10"	1	\$	11,36	\$	11,36	HYDROMECÁNICA del Ecuador
COSTO TOTAL					\$	109,76	

Tabla D.3 Costo total del sistema hidráulico Fuente: Autores

COSTO TOTAL SIN IVA	1 072, 10
COSTO TOTAL CON IVA	1 200, 75

Tabla D.4 Materiales y costos del sistema de compactación Fuente: Autores

Producto	Descripción		Costo Unitario		Costo Total		Empresa proveedora
Tubería Circular	Tubería de acero galvanizado sin costura cédula 40. Diámetro 8" de 1 [m] de largo. Viene en 6 [m]		\$	61,22	\$	61,22	DIPAC MANTA
Codo	Codo acero al carbono 45° - Diámetro 8"	1	\$	16,75	\$	16,75	TUBACERO
Tolva y Disco de compactación	Plancha de acero galvanizado 1,22x2,44x0,002 [m]	1	\$	40,00	\$	40,00	DIPAC MANTA
Bridas	Acero al carbono galvanizado de 8"	2	\$	65,00	\$	130,00	PRINCO
COSTO TOTAL					\$	247,97	

Tabla D.5 Costo total del sistema de compactación Fuente: Autores

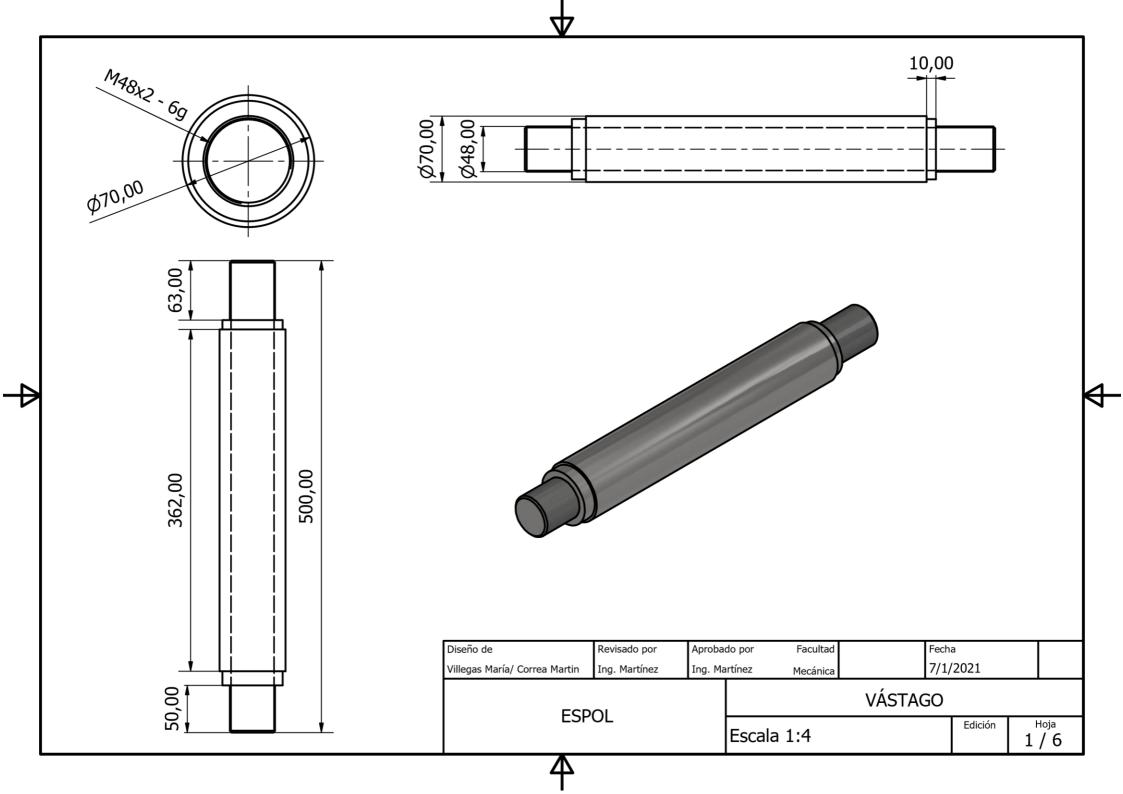
COSTO TOTAL SIN IVA	247,97
COSTO TOTAL CON IVA	277,73

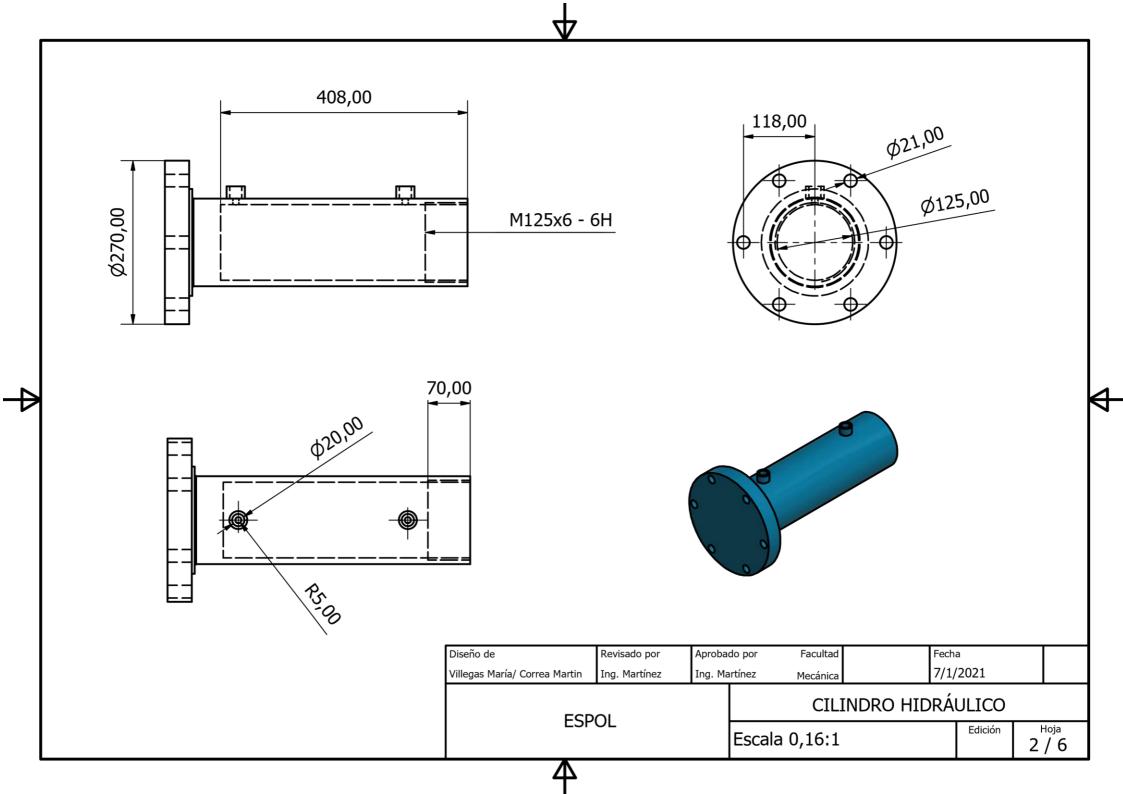
Tabla D.6 Materiales y costos del sistema eléctrico

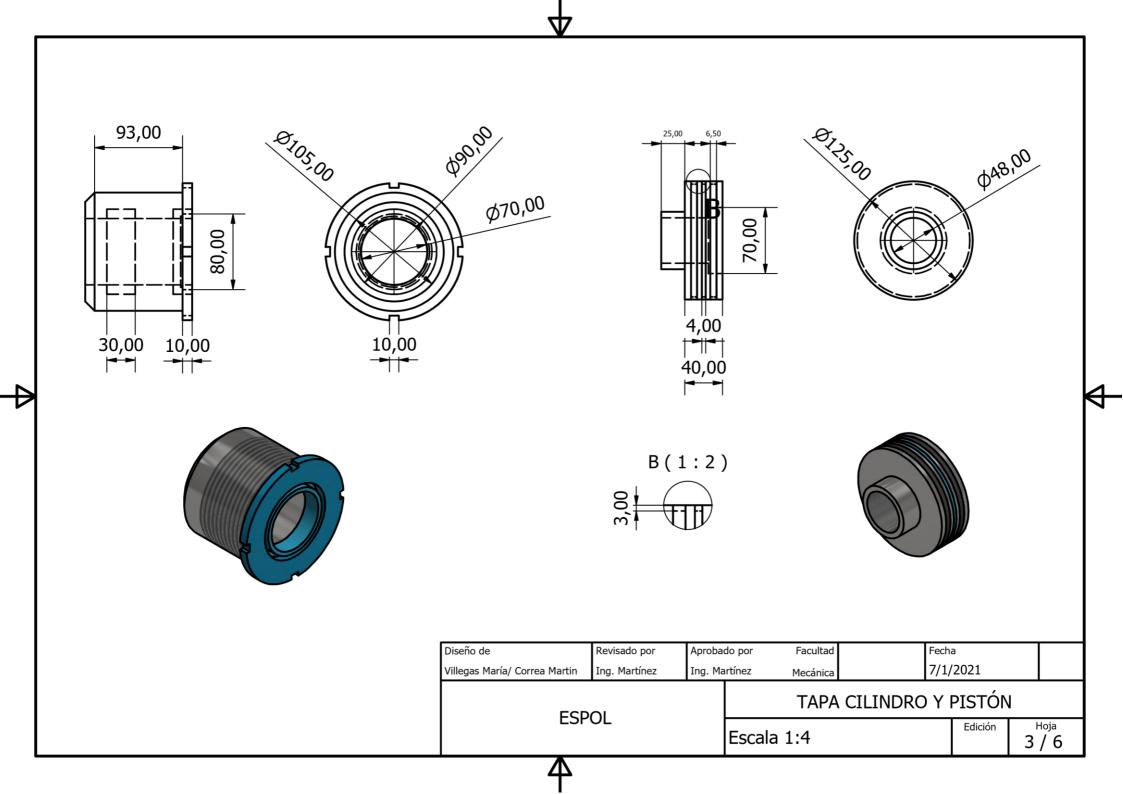
Fuente: Autores

Producto	Descripción Cantidad Costo Unitario		Costo Total		Empresa proveedora		
Motor eléctrico	Motor trifásico jaula de ardilla NEMA B. Potencia 15 [HP]. Velocidad 1800 [rpm]	1 \$ 250,00			\$	250,00	Sebatelec CIA LTDA
Interruptor de sobrecarga	Interruptor automático 3VM IEC Frame 100 clase de poder de corte N ICU=25KA @ 415 V 3 POLOSCódigo 100391453	1	\$	75,30	\$	75,30	SENSORTECSA S.A.
Contactor de potencia	Contactor de potencia AC-3 12 A; 5,5 kW/400 V 1 NA + 1 NC, 110 V AC 50/60 HZ, 3 polos, Tamaño S0, Conexión por tornillo. Código 100208184	tactor de potencia AC-3 12 A; 5,5 kW/400 V 1 NA + 1 NC, / AC 50/60 HZ, 3 polos, Tamaño S0, Conexión por tornillo. 3 \$ 36,58				109,74	SENSORTECSA S.A.
Pulsador eléctrico de accionamiento	Pulsador 22mm, Redondo, Metal, Brillante, Rojo, Botón, Rasante, Momentáneo, Con Soporte, 1 NC, Borne de Tornillo. Código 100350592	sante, Momentáneo, Con Soporte, 1 NC, Borne de Tornillo. 1 \$ 12,56				12,56	SENSORTECSA S.A.
Pulsador eléctrico de parada	Pulsador 22mm, Redondo, Metal, Brillante, Verde, Botón, Rasante, Momentáneo, 1 NA, Borne de Tornillo. Código 100350093	12,56	\$	12,56	SENSORTECSA S.A.		
Interruptor de posición	Interruptor de posición, Caja de plástico de 40 mm palanca articulada, Conexión del aparato 1 x (M20x1,5) 1NA/1NC. Código 100273040		\$	42,38	\$	84,76	SENSORTECSA S.A.
Tablero eléctrico	-		\$	343,00	SENSORTECSA S.A.		
Servicios	Conexionado y montaje eléctrico	\$	450,00	SENSORTECSA S.A.			
COSTO TOTAL					\$	1 337,92	

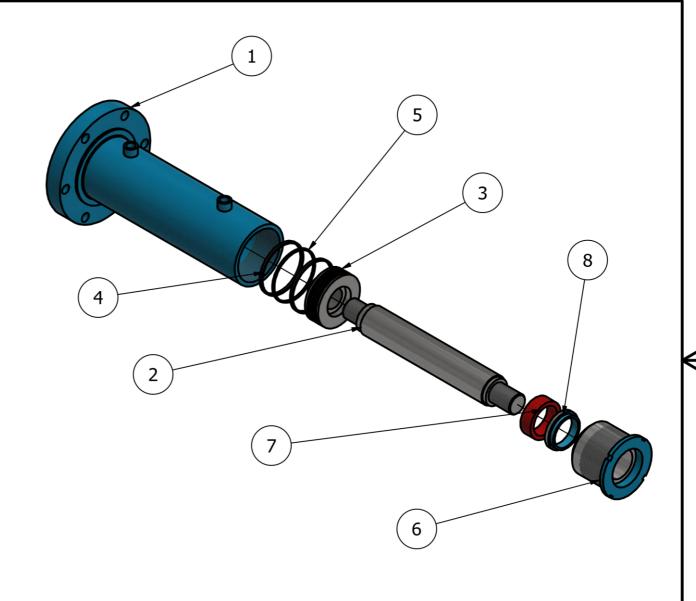
Tabla D.7 Costo total del sistema eléctrico

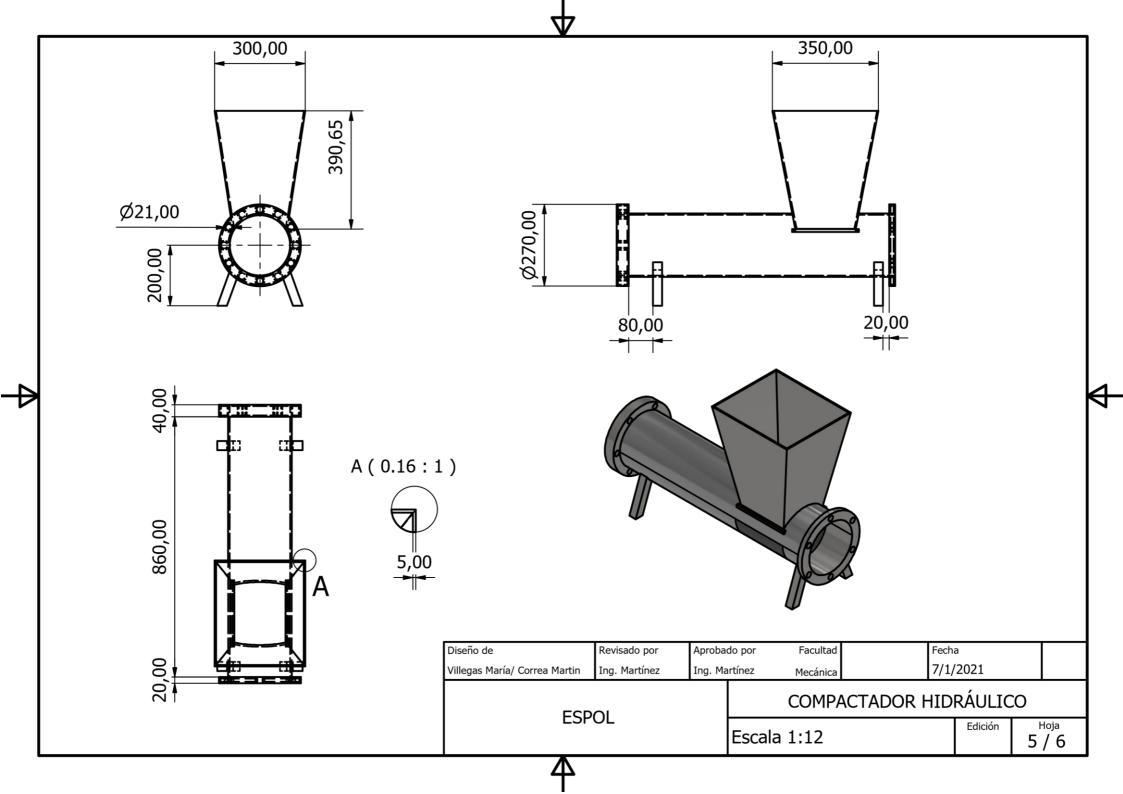

i domoi /tatoroo	
COSTO TOTAL SIN IVA	1 337,92
COSTO TOTAL CON IVA	1 498,48

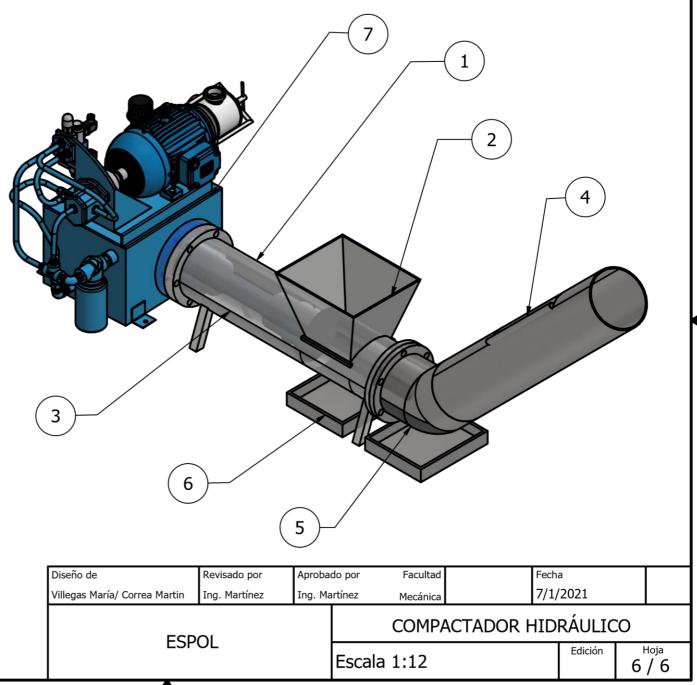

Tabla D.8 Costo total del servicio de fabricación incluida la mano de obra Fuente: Autores


Servicio de fabricación incluida la mano de obra	Días	Horas	Pr	ecio unitario	Costo total
Soldado	2	8	\$	8,00	\$ 64,00
Pintar	1	4	\$	5,00	\$ 20,00
Maquinado	1	8	\$	13,68	\$ 109,44
Montaje	5	6	\$	12,52	\$ 75,12
COSTO TOTAL					\$ 268,56

APÉNDICE E


PLANOS ESQUEMÁTICOS




LISTA DE PIEZAS						
ITEM	CANT.	DESCRIPCIÓN				
1	1	Cilindro hidráulico				
2	1	Vástago				
3	1	Pistón				
4	2	Sello pistón 1				
5	1	Sello pistón 2				
6	1	Cabeza del cilindro				
7	1	Sello cabeza 1				
8	1	Sello cabeza 2				

Diseño de	Revisado por	Aprobado	por Facultad	Fech	na	
Villegas María/ Correa Martin	Ing. Martínez	Ing. Martí	nez Mecánica	7/1	/2021	
ESF	201		ENSAMBL	E CILINDRO H	HIDRÁU	LICO
LSF	OL	F	scala 1:12		Edición	Hoja 4 / 6

LISTA DE COMPONENTES							
ELEMENTO	CTDAD	DESCRIPCIÓN					
1	1	TUBERÍA DE COMPRESIÓN					
2	1	TOLVA DE ALIMENTACIÓ N					
3	1	CILINDRO HIDRÁULICO					
4	1	COMPUERTA EN TUBERÍA DE COMPACTACI ÓN					
5	1	RENDIJA					
6	1	RETENEDOR DE LÍQUIDO					
7	1	TANQUE HIDRÁULICO					

